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ALGORITHMS FOR SYMMETRIC SUBMODULAR FUNCTION
MINIMIZATION UNDER HEREDITARY CONSTRAINTS AND

GENERALIZATIONS∗

MICHEL X. GOEMANS† AND JOSÉ A. SOTO‡

Abstract. We present an efficient algorithm to find nonempty minimizers of a symmetric sub-
modular function f over any family of sets I closed under inclusion. Our algorithm makes O(n3)
oracle calls to f and I, where n is the cardinality of the ground set. In contrast, the problem of
minimizing a general submodular function under a cardinality constraint is known to be inapprox-
imable within o(

√
n/ logn) [Z. Svitkina and L. Fleischer, in Proceedings of the 49th Annual IEEE

Symposium on Foundations of Computer Science, IEEE, Washington, DC, 2008, pp. 697–706]. We
also present two extensions of the above algorithm. The first extension reports all nontrivial inclu-
sionwise minimal minimizers of f over I using O(n3) oracle calls, and the second reports all extreme
subsets of f using O(n4) oracle calls. Our algorithms are similar to a procedure by Nagamochi and
Ibaraki [Inform. Process. Lett., 67 (1998), pp. 239–244] that finds all nontrivial inclusionwise minimal
minimizers of a symmetric submodular function over a set of size n using O(n3) oracle calls. Their
procedure in turn is based on Queyranne’s algorithm [M. Queyranne, Math. Program., 82 (1998),
pp. 3–12] to minimize a symmetric submodular function by finding pendent pairs. Our results extend
to any class of functions for which we can find a pendent pair whose head is not a given element.
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1. Introduction. A real valued function f is called a set function on V if its
domain consists of all subsets of a finite set V . We assume that f is given through a
value oracle which, for any input S ⊆ V , returns f(S). A set function f : 2V → R is
called submodular over V if

(1.1) f(A ∪B) + f(A ∩B) ≤ f(A) + f(B)

for every pair of subsets A and B of V . The function f is further called symmetric if

(1.2) f(A) = f(V \A) for all A ⊆ V .

Submodularity is observed in a wide family of problems. The rank function of a ma-
troid, the cut function of a (nonnegatively weighted, directed, or undirected) graph,
the entropy of a set of random variables, and the logarithm of the volume of the par-
allelepiped formed by a set of vectors are all examples of submodular functions. Many
combinatorial optimization problems can be formulated as minimizing a submodular
function; this is, for example, the case for the problem of finding the smallest number
of edges to add to make a graph k-edge-connected. Therefore, the following problem
is considered fundamental in combinatorial optimization.
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1124 MICHEL X. GOEMANS AND JOSÉ A. SOTO

Submodular function minimization problem. Given a submodular function f : 2V →
R, find a subset X∗ ⊆ V that minimizes f(X∗).

Grötschel, Lovász, and Schrijver [6, 7] show that the above problem can be solved
using the ellipsoid method in strongly polynomial time and using a polynomial num-
ber of oracle calls. Later, a series of combinatorial strongly polynomial algorithms,
starting with the works of Iwata, Fleischer, and Fujishige [8] and of Schrijver [23], was
developed [2, 8, 11, 18, 23, 10]. The current fastest combinatorial algorithm known,
due to Orlin [18], runs in O(n5 log n) time and makes O(n5) function oracle calls,
where n is the size of the ground set.

Faster algorithms are available when the function f has more structure. The case
where f is symmetric is of special interest. In this case we also require the minimizer
X∗ of f to be a nontrivial subset of V , that is, ∅ ⊂ X∗ ⊂ V ; otherwise the problem
becomes trivial since, by symmetry and submodularity, f(∅) = 1

2 (f(∅) + f(V )) ≤
1
2 (f(X) + f(V \X)) = f(X) for all X ⊆ V .

The canonical example of a symmetric submodular function (SSF) is the cut
function of a nonnegatively weighted undirected graph. Minimizing such a function
corresponds to the minimum cut problem. Nagamochi and Ibaraki [13, 14] give a
combinatorial algorithm to solve this problem without relying on network flows. This
algorithm has been improved and simplified independently by Stoer and Wagner [24]
and Frank [3]. Queyranne [20] generalizes it and obtains a purely combinatorial
algorithm that minimizes any SSF using only O(|V |3) function oracle calls.

In this paper, we focus on the problem of minimizing set functions over subfamilies
of 2V that are closed under inclusion. More precisely, a hereditary family I (also called
a lower ideal or a down-monotone family) over V is a collection of subsets of V such
that if a set is in the family, so are all its subsets. A natural set function minimization
problem is the following.

Hereditary set function minimization problem. Given a set function f on V and
a hereditary family I over V , find a subset ∅ 	= X∗ ∈ I that minimizes f(X) over all
sets X ∈ I \ {∅}.

Common examples of hereditary families over V include the following.
• Cardinality families. For k ≥ 0, consider the family of all subsets with at
most k elements, I = {A ⊆ V : |A| ≤ k}.
• Knapsack families. Given a weight function w : V → R+, consider the family
of all subsets of weight at most one unit, I = {A ⊆ V :

∑
v∈A w(v) ≤ 1}.

• Matroid families. The family of independent sets of a matroid with ground
set V .
• Hereditary graph families. Given a graph G = (V,E), consider the family
of sets S of vertices such that the induced subgraph G[S] satisfies a certain
hereditary property such as being a clique, being triangle-free, being planar,
or excluding certain minors.
• Matching families. Given a hypergraph H with edge set V , consider the
family of matchings of H , i.e., sets of pairwise disjoint edges.

We assume that the hereditary family I is given through a membership oracle
which, for any input S ⊆ V , reports whether S ∈ I or not. Noting that the in-
tersection of hereditary families is also hereditary, we can see that the minimization
problem defined above is very general. In fact, when f is a general (nonsymmetric)
submodular function, this problem cannot be approximated within o(

√|V |/ log |V |)
using a polynomial number of oracle calls even for the simple case of cardinality fam-
ilies (see [25]). For the case where f is symmetric, we extend Queyranne’s algorithm
as follows.
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Theorem 1. Given an SSF f on V and a hereditary family I over V , an optimal
solution for the associated hereditary minimization problem can be found in O(|V |3)
time and using O(|V |3) oracle calls to f and I.

In this statement, an optimal solution refers to a nonempty set X∗ ∈ I that
attains the minimum in the hereditary minimization problem. Our algorithm in fact
returns a minimal solution among all optimal solutions, that is, one such that no
proper subset of it is also optimal.

The result above implies, for example, polynomial time algorithms for the follow-
ing problems:

1. Find a minimum unbalanced cut in a graph; that is, for given k, find among
all nonempty sets of at most k vertices the one inducing a minimum cut.

2. More generally, given a nonnegatively weighted graph, find a nonempty in-
duced subgraph satisfying a hereditary graph property (e.g. triangle-free,
clique, stable-set, or planar) minimizing the weights of the edges having pre-
cisely one endpoint in the subgraph.

For the unconstrained SSF minimization problem, Nagamochi and Ibaraki [15]
present a modification of Queyranne’s algorithm that finds all inclusionwise minimal
minimizers of an SSF still using a cubic number of oracle calls. Using similar ideas,
we can also list all minimal solutions of a hereditary minimization problem using only
O(|V |3) oracle calls. As these minimal solutions can be shown to be disjoint, there
are at most |V | of them. More precisely, we show the following theorem.

Theorem 2. Given an SSF f on V and a hereditary family I over V , the
collection of all minimal optimal solutions of the associated hereditary minimization
problem can be found in O(|V |3) time and using O(|V |3) oracle calls to f and I.

Our methods can be used to solve the hereditary minimization problem on a
more general class of functions that we denote as strongly PP-admissible functions.
These are the functions f such that every one of its fusions admits a polynomial
time procedure returning a so-called pendent pair whose head avoids a given ele-
ment. See sections 2 and 4 for definitions and precise statements. The works of
Queyranne [20], Nagamochi and Ibaraki [15], and Rizzi [21] show that the class of
strongly PP-admissible functions includes crossing SSFs, their restrictions (these are
functions that are both intersecting submodular and intersecting posimodular), and
the case where f(S) is defined as d(S, V \ S) for a monotone and consistent symmet-
ric set map d in the sense of Rizzi. An example of the latter setting is to find an
induced subgraph G[S] satisfying a certain hereditary property (e.g., being planar or
bipartite) and minimizing the maximum (weighted) distance between any vertex in
S and any vertex in V \ S (note that this does not define a submodular function).
For all the functions mentioned in this paragraph, it is possible to find a pendent pair
whose head avoids a single element by constructing a so-called maximum adjacency
order.

Finally, we show how to extend our methods to return all the extreme subsets
of certain classes of set functions, where a set is called extreme if its function value
is strictly smaller than any one of its nontrivial subsets. In particular, the minimal
minimizers of a set function over any hereditary family are extreme subsets. For our
methods to work, we further require the family of extreme subsets of f to form a simple
structure known as a laminar family. This is the case for most of the strongly PP-
admissible functions we consider. The general versions of our results about minimal
minimizers and extreme sets are stated as Theorems 18 and 24 in sections 5 and 6,
respectively.
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1126 MICHEL X. GOEMANS AND JOSÉ A. SOTO

Related work. Constrained submodular function minimization problems, i.e., the
minimization of a submodular function over subfamilies of 2V , have been studied in
different contexts. Padberg and Rao [19] show that the minimum odd cut problem,
obtained by restricting the minimization over all odd sets, can be solved in polyno-
mial time. This was generalized to submodular functions over larger families of sets
(satisfying certain axioms) by Grötschel, Lovász, and Schrijver [7] and by Goemans
and Ramakrishnan [5]. This covers, for example, the minimization over all even sets,
or all sets not belonging to a given antichain, or all sets excluding all minimizers
(i.e., to find the second minimum). For the particular case of minimizing a symmet-
ric submodular function under cardinality constraints the best previous result is a
2-approximation algorithm by Dughmi [1]. Goel et al. [4] have studied the minimiza-
tion of monotone submodular functions constrained to sets satisfying combinatorial
structures on graphs, such as vertex covers, shortest paths, perfect matchings, and
spanning trees, giving inapproximability results and almost matching approximation
algorithms for them. Independently, Iwata and Nagano [9] study both the vertex and
the edge covering versions of this problem.

The algorithm of Nagamochi and Ibaraki [15] also works with functions satisfy-
ing a less restrictive symmetry condition. Narayanan [17] shows that Queyranne’s
algorithm can be used to minimize a wider class of submodular functions, namely,
functions that are contractions or restrictions of SSFs. Rizzi [21] has given a further
extension of this algorithm for a different class of functions. Nagamochi [16] has re-
cently given an efficient algorithm to find all extreme subsets of an SSF and some
extensions. This algorithm is not based on the ability to find pendent pairs but on a
different structure denoted as flat pairs.

Paper organization. In section 2 we define pendent pairs and revisit Queyranne’s
procedure for finding nontrivial minimizers of set functions admitting pendent pairs.
This algorithm solves the unconstrained problem, provided we have access to a black
box for finding pendent pairs, not only for the original function but also for every one
of its fusions.

In section 3 we modify the procedure above to solve the hereditary minimization
problem of certain set functions, denoted as strongly PP-admissible functions, pro-
vided there is a stronger black box that finds, for every fusion, a pendent pair whose
head avoids any fixed element.

In section 4 we present a general class of strongly PP-admissible functions, in-
cluding SSFs, for which the problem of finding a pendent pair whose head avoids an
element can be solved efficiently by finding a so-called maximum adjacency order.

In section 5 we summarize our results for the hereditary minimization problem
and give some extensions to cohereditary systems.

In section 6 we turn to the problem of finding extreme subsets of a set function,
and we give a pendent pair based algorithm to find all of them in certain cases. We
compare our results to a recent work of Nagamochi [16] that is based on a different
structure known as flat pair. We conclude this article with a section of relevant
examples.

2. Pendent pairs and a review of Queyranne’s algorithm. We start this
section by introducing some notation. A pair (V, f) where f is a set function over V
is called a (set function) system. For any set A ⊆ V , any x ∈ A, and any y ∈ V \ A,
we use the convention that, A+ y and A− x stand for the sets A ∪ {y} and A \ {x},
respectively. Also, for x ∈ V we use f(x) to denote f({x}).
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HEREDITARY SYMMETRIC SUBMODULAR MINIMIZATION 1127

Let Π be a partition of V . For every collection of parts X ⊆ Π, we use VX to
denote the set of elements contained in the union of the parts in X ; this is

VX =
⋃
S∈X

S ⊆ V.(2.1)

The fusion of f relative to Π, denoted by fΠ, is the set function on Π given by

fΠ(X) = f(VX).(2.2)

We say that (V ′, f ′) is a fusion of (V, f) if V ′ corresponds, up to renaming, to a
partition of V and f ′ is the fusion of f relative to this partition.

By fusing a collection of elements S ⊆ V into a new single element s we mean
replacing the system (V, f) by the system ((V \S)+s, fΠ), where Π is the partition that
has one part equal to S (renamed as s) and where all the other parts are singletons,
which keep the same name as the unique element they contain.

Queyranne’s technique performs iterative fusions on the original system (V, f).
To keep our explanation simple, we overload the notation above by saying that for
any fusion (V ′, f ′) of (V, f) and any x ∈ V ′, Vx is the set of elements in the original
set V that have been fused into x, and for every set X ⊆ V ′, VX is the union of all
sets Vx with x ∈ X . Furthermore, we say that a set A ⊆ V is present in a fused
system (V ′, f ′) if there is a set B ⊆ V ′ such that A = VB .

A set X ⊆ V separates two elements t and u of V if X contains exactly one of t
and u. We extend this notion to fusions by saying that two elements t and u in V ′

are separated by a set X ⊆ V if Vt ⊆ X and Vu ⊆ V \X or vice versa.
The following concept is crucial for the development of Queyranne’s technique.

An ordered pair (t, u) of different elements of V is called a pendent pair of the system
(V, f) if {u} has the minimum f -value among all the subsets of V separating u and
t; this is

(2.3) f(u) = min{f(U) : U ⊂ V, |U ∩ {t, u}| = 1}.
The element u is called the head of the pendent pair (t, u). We say that the

system (V, f) is PP-admissible if for every fusion (V ′, f ′) with |V ′| ≥ 2 there exists a
pendent pair (t, u) for (V ′, f ′). Observe that by definition, PP-admissibility is closed
under taking fusions.

Suppose that (V, f) is a PP-admissible system and that (t, u) is a pendent pair for
(V, f). Let X∗ be a nontrivial minimizer of (V, f). Then we have two cases depending
on whetherX∗ separates t and u or not. IfX∗ separates t and u, then by the definition
of a pendent pair, f(u) ≤ f(X∗), and so {u} is also a nontrivial minimizer. If this
is not the case, consider the set system (V ′, f ′) obtained by fusing t and u into a
single element tu. Any nontrivial minimizer X ′ of this system induces a nontrivial
minimizer VX′ of (V, f).

By iteratively applying the above argument n− 1 times (as all the fused systems
admit pendent pairs) we can find a nontrivial minimizer of (V, f) as the set having
minimum value among all sets Vu, where (t, u) is the pendent pair found in a given
iteration. The procedure is described as Algorithm 1, which we call Queyranne’s
routine.

The above argument shows that Queyranne’s routine is correct. The only non-
trivial step of the routine corresponds to finding pendent pairs. Suppose in what
follows that we have access to a black box algorithm A that computes pendent pairs
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1128 MICHEL X. GOEMANS AND JOSÉ A. SOTO

Algorithm 1. (Queyranne’s routine).

Input: A PP-admissible system (V, f).
Output: A nontrivial minimizer X∗ for (V, f).
1: (V ′, f ′)← (V, f) and C ← ∅. � C is the set of candidates for minimum.
2: while |V ′| ≥ 2 do
3: Find any pendent pair (t, u) for (V ′, f ′).
4: Add Vu to C. � Vu is the set of elements of V that have been fused into u.
5: Update (V ′, f ′) by fusing {t, u} into a single element tu.
6: end while � |V ′| = 1.
7: Return a set X∗ in C with minimum f -value.

for any fusion of (V, f) in O(T (|V |)) time and using O(T (|V |)) calls to a value oracle
for some function T (·).

Lemma 3. By using A as a subroutine, Queyranne’s routine returns a nontrivial
minimizer of (V, f) in O(|V | · T (|V |)) time and using the same asymptotic number of
oracle calls.

Queyranne [20] originally devised the routine above for SSFs. He shows not only
that these functions are PP-admissible, a fact originally shown by Mader [12], but
also that we can compute pendent pairs for a system (V, f) in time O(|V |2) and
using O(|V |2) oracle calls. In section 4 we discuss how to perform this and give some
extensions.

By using the lemma above and the fact that SSFs are closed for fusions, Queyranne
has shown the following theorem.

Theorem 4 (Queyranne [20]). The problem of finding a nontrivial minimizer of
an SSF f over V can be solved in O(|V |3) time and using O(|V |3) oracle calls to f .

In section 3, we extend Queyranne’s algorithm to the problem of finding nontrivial
minimizers of certain set functions under hereditary constraints.

3. Hereditary minimization problem. A triple (V, f, I), where f is a set
function over V and I is a hereditary family of V , is called a hereditary system. A set
X∗ is an optimal solution for (V, f, I) if X∗ is a minimizer of the function f over the
nonempty sets in I. The set X∗ is a minimal optimal solution for (V, f, I) if X∗ is
a (nonempty) inclusionwise minimal optimal solution for the hereditary system. We
also say that X∗ is a minimal optimal solution for (V, f) if X∗ is minimal optimal for
(V, f, 2V ).

We extend the notion of fusion to hereditary systems as follows. Given a partition
Π of V , the fusion of I relative to Π, denoted by IΠ, is the family

IΠ = {I ⊆ Π: VI ∈ I}.(3.1)

It is easy to see that if I is hereditary, then so is IΠ. We say that (V ′, f ′, I ′) is a fusion
of (V, f, I) if this system is, up to renaming of the elements, equal to (VΠ, fΠ, IΠ) for
some partition Π of V .

It is worth noting that if (V ′, f ′, I ′) is a specific fusion of (V, f, I), then, for every
A ⊆ V ′, we can test if A ∈ I ′ and we can evaluate f ′(A) using only one oracle call to
I and f , respectively.

In order to find optimal solutions of hereditary systems we require a stronger
admissibility condition. We say that a system (V, f) is strongly PP-admissible if, for
every fusion (V ′, f ′) where V ′ has at least three elements, and every s ∈ V ′, there is
a pendent pair (t, u) for (V ′, f ′) whose head avoids s. By this we mean that u 	= s.
We say that (V, f, I) is strongly admissible when (V, f) is. Strong PP-admissibility
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HEREDITARY SYMMETRIC SUBMODULAR MINIMIZATION 1129

is closed under taking fusions. Observe also that strongly PP-admissible functions
are not necessarily symmetric. In fact, symmetry is equivalent to the property of
admitting pendent pairs avoiding a fixed element for fusions in which the partition
V ′ has exactly two elements (in the definition of strong PP-admissibility we require
that |V ′| ≥ 3).

The lemmas in this section are useful for our purposes and may be of interest on
their own.

Lemma 5. Let U be a nonsingleton minimal optimal solution for a hereditary
system (V, f, I). If (t, u) is a pendent pair of (V, f) and u ∈ U , then t ∈ U .

Proof. Suppose by contradiction that t 	∈ U . Since (t, u) is a pendent pair and U
separates t and u, f(u) ≤ f(U). This contradicts the minimality of U because {u} is
a proper subset of U .

Lemma 6. The minimal optimal solutions of a strongly PP-admissible system
(V, f, I) are pairwise disjoint.

Proof. Assume that A and B are two nondisjoint minimal optimal solutions.
Since no one includes the other, the sets A \B, B \A, and A ∩B are nonempty. We
have two cases: either A ∪B = V , or V \ (A ∪B) 	= ∅.

For the first and second cases, respectively, consider the systems (V ′ = {a, b, c},
f ′, I ′) and (V ′ = {a, b, c, d}, f ′, I ′) obtained by fusing A\B into a, B \A into b, A∩B
into c, and, only for the second case, V \ (A ∪B) into d. In both systems, V{a,c} = A
and V{b,c} = B, and so the sets {a, c} and {b, c} are minimal optimal solutions.

We claim that there is no pendent pair (t, u) for (V ′, f ′) with u 	= d (in the first
case, this means that there is no pendent pair at all). The validity of this claim
contradicts the strong PP-admissibility of (V, f) and completes the proof.

To prove the claim suppose that (t, u) is a pendent pair with u 	= d. Note that
u 	= c, for if they were equal, Lemma 5 would imply that t is in both {a, c} and {b, c},
which is a contradiction.

Then, without loss of generality, we can assume that u = a. In this case, Lemma 5
implies that t = c. But then, as (c, a) is a pendent pair, we have f ′(a) ≤ f ′({b, c})
or, equivalently, f(A \ B) ≤ f(B) = f(A), contradicting the minimality of A and
completing the proof.

In what follows define M = M(V, f, I) as the family of minimal minimizers of
a strongly PP-admissible system (V, f, I). Define also the minimal partition M =
M(V, f, I) of V whose parts are all the sets inM (which are disjoint by the previous
lemma), plus possibly one extra part V \⋃X∈M X , which we call the bad part ofM.

The following lemma relates the pendent pairs of (V, f) with the minimal partitionM.
Lemma 7. Let (t, u) be a pendent pair of (V, f). At least one of the following

holds:
(i) t and u are in the same part of M.
(ii) u is a loop1 of I.
(iii) {u} ∈ M.
Proof. Suppose that (i) does not hold. Then there are different parts ofM, say,

T and U , such that t ∈ T and u ∈ U . If U is a part inM, then, by Lemma 5, U must
be a singleton, and so (iii) holds. So assume that U is the bad part of M. Then T
is a minimal optimal solution separating t and u. Since (t, u) is a pendent pair, we
conclude that f(u) ≤ f(T ). But then u has to be a loop, as otherwise {u} would be
a minimal optimal solution strictly contained in U .

1A loop u of a hereditary family I is an element such that {u} is not in I.

D
ow

nl
oa

de
d 

08
/2

0/
13

 to
 1

8.
51

.3
.7

6.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1130 MICHEL X. GOEMANS AND JOSÉ A. SOTO

In what follows we present two algorithms: one to find a particular minimal
optimal solution of a strongly PP-admissible system (V, f, I) and another to find all
of them. To simplify our discussion we assume that I is not trivial (in other words,
I 	∈ {∅, {∅}, 2V }).

If we simply use Queyranne’s routine on (V, f), we could consider candidates that
are not in the hereditary family. In order to avoid that, we make two changes. First,
we impose that the (fused) system considered in each iteration has at most one loop.
We do this by fusing all the loops (if any) of the current system into a single loop
that we denote as s. The second change is that the pendent pair (t, u) we use in every
iteration must satisfy u 	= s (this is possible by strong admissibility).

As in Queyranne’s routine, we add the set Vu associated to the head u to the
family C of candidates, and then we fuse t and u together. Since u is not a loop, the
candidate Vu is in the hereditary family I. At the end of the procedure, we return
the candidate having minimum f -value. If there are several with the same value, we
return the one that was considered earlier. As we show below, this set is a minimal
optimal solution.

The complete procedure, denoted as FindMinimal, is depicted below as Algo-
rithm 2. We defer the problem of finding pendent pairs to section 4. For now assume
that we have access to a black box algorithmA that computes a pendent pair avoiding
an element on any given fusion of (V, f) of size at least three in O(T (|V |)) time and
using O(T (|V |)) oracle calls to f and I for some function T (·).
Algorithm 2. FindMinimal (V, f, I).
Input: A strongly admissible hereditary system (V, f, I), where I is not trivial.
Output: A minimal optimal set X∗ for the hereditary minimization problem.
1: Set (V ′, f ′, I ′)← (V, f, I), and C ← ∅. � C is the set of candidates.
2: while I ′ has no loops and |V ′| ≥ 3 do
3: Find any pendent pair (t, u) of (V ′, f ′).
4: Add Vu to C. � Vu is the set of elements of V that have been fused into u.
5: Update (V ′, f ′, I ′) by fusing {t, u} into a single element tu.
6: end while � I ′ has at least one loop.
7: Update (V ′, f ′, I ′) by fusing all the loops of I ′ into a single element called s ∈ V ′.
8: while |V ′| ≥ 3 do
9: Find a pendent pair (t, u) of (V ′, f ′) with u 	= s.

10: Add Vu to C.
11: if {t, u} ∈ I ′ then
12: Update (V ′, f ′, I ′) by fusing {t, u} into a single element tu.
13: else
14: Update (V ′, f ′, I ′) by fusing {s, t, u} into a single element s.
15: end if
16: end while
17: if |V ′| = 2 then
18: Add Vx to C for all nonloops x ∈ V ′

19: end if
20: Among the sets in C of minimum f -value, return the set X∗ that was added

earlier.

Theorem 8. By using A as a subroutine, Algorithm FindMinimal returns a
minimal optimal solution of the strongly PP-admissible hereditary system (V, f, I) in
O(|V | · T (|V |)) time and using the same asymptotic number of oracle calls.
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Proof. The running time claim follows immediately since each iteration decreases
the size of V ′ by one or two units, and so we focus on checking correctness.

By construction, at the beginning of every iteration of both while-loops, either
I ′ is loopless or s is its only loop. In particular, every set Vu added to C is obtained
from a nonloop u, implying that every candidate is in the hereditary family I. To
conclude we show that at least one minimal optimal solution is added to C and that
every candidate considered before it is not optimal.

Consider the partition M = M(V, f, I) of V defined earlier. Recall that a set
A ⊆ V is said to be present in a given fusion (V ′, f ′, I ′) if there is a set B ⊆ V ′ such
that A = VB . The parts ofM are all present in the system obtained by fusing all the
loops together into one. After that, they stay present from one iteration to the next
provided the elements we fuse at the end of that iteration belong to the same part2 of
M. We have two cases: either all the parts ofM survive until the end of the second
while-loop, or they do not.

Since I is not trivial, M has at least two parts. If the first case occurs, then
after the second while-loop, the set V ′ must have exactly two elements. But then
M must be a partition with two parts. Both sets in M are checked for addition to
C (as one of them may be bad) in line 18. We conclude this case by noting that all
candidates considered before this step are strict subsets of a set in M, and so they
are not optimal.

For the second case, consider the last iteration in which every set ofM is present,
and let (t, u) be the pendent pair found at that time. Observe that the candidates
added to C before this iteration are strict subsets of parts ofM, and so they are not
optimal. To conclude, we prove that the set Vu added in this iteration is a minimal
optimal solution. Indeed, if this is not the case, then {u} is not a minimal optimal
solution of (V ′, f ′, I ′). Since u 	= s, u is not a loop either; therefore, by Lemma 7,
t and u must be in the same part ofM.3 But since after this iteration at least one
set of M stops being present, we must be in the case where s, t, and u are fused
together. According to the algorithm, this fusion happens only when {t, u} is not in
I ′, meaning that all s, t, and u are in the bad part ofM. But this is a contradiction,
since this particular fusion preserves the presence of all parts ofM.

We can use that the minimal optimal solutions are disjoint to find all of them:
Compute the optimal value λ∗ = minX∈I∗ f(X) of the original system (V, f, I) and
using FindMinimal. While V is not a singleton, find a minimal optimal solution
X∗ of the current system using FindMinimal, and add it to the set of solutions
if its f -value is λ∗. Afterward, modify I by removing all the sets containing X∗

from the hereditary family, and repeat. We recover the entire collection of minimal
optimal solutions of (V, f, I) in this way. A naive implementation of this procedure
may require O(|V |) calls to FindMinimal.

We can give a better implementation, which is similar to the algorithm presented
by Nagamochi and Ibaraki [15], to find all the minimal optimal solutions in the un-
constrained setting, as follows.

We start by finding a particular minimal optimal solution X∗ of (V, f, I) using
FindMinimal and add it to the output family. We then check if there are singleton
minimal optimal solutions in I by testing the value of all of them. Afterward, we fuse
the set X∗ together with all the singleton minimal optimal solutions found and all
the loops of I into a single element s, which (if it is not already a loop) we consider

2By this we mean that if we fuse a set R ⊆ V ′ together, then the set VR ⊆ V of original elements
is a subset of a part in M.

3More precisely, Vt and Vu are subsets of the same part of M.
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1132 MICHEL X. GOEMANS AND JOSÉ A. SOTO

as a loop. The new system (V ′, f ′, I ′) contains exactly one loop, and every nonloop
has value strictly larger than that of X∗.

We now proceed iteratively. In each iteration, we find a pendent pair (t, u) such
that u 	= s and fuse t and u together into a single element tu. We then check if
the new singleton is optimal (if so, we add it to the solution and consider it as a
new loop, fusing it with s), or if it is a loop (in which case, we also fuse it with s).
We continue doing this until the system becomes trivial. The full implementation is
depicted below as Algorithm 3, which we denote as FindAllMinimals. Similar to
the case of FindMinimal, we assume the existence of a black box A that, given a
fusion of the system (V, f) having at least three elements, and an element s, returns a
pendent pair whose head avoids s in O(T (|V |)) time and using O(T (|V |)) oracle calls
to f and I for some function T (·).
Algorithm 3. FindAllMinimals (V, f, I).
Input: A strongly PP-admissible hereditary system (V, f, I), where I is not trivial.
Output: The familyM of minimal optimal solutions for the hereditary minimization

problem.
1: Using FindMinimal, compute a minimal optimal solution X∗ of (V, f, I).
2: SetM← {X∗} and λ∗ ← f(X∗).
3: Add toM every singleton {v} ∈ I with f(v) = λ∗.
4: Let (V ′, f ′, I ′) be the system obtained by fusing together all the loops of I, and

the elements of all the sets added toM. Denote the resulting new element as s.
5: I ′ ← I ′ \ {A ∈ I ′ : s ∈ A}. � If s is not a loop, consider it as one.
6: while |V ′| ≥ 3 do � f ′(v) > λ∗ for all v ∈ V ′, and s is the only loop of I ′.
7: Find a pendent pair (t, u) of (V ′, f ′) with u 	= s.
8: if {t, u} ∈ I ′ and f ′({t, u}) = λ∗ then
9: Add V{t,u} toM.

10: Update (V ′, f ′, I ′) by fusing {s, t, u} into a single element s.
11: else if {t, u} ∈ I ′ and f ′({t, u}) > λ∗ then
12: Update (V ′, f ′, I ′) by fusing {t, u} into a single element tu.
13: else � {t, u} 	∈ I ′.
14: Update (V ′, f ′, I ′) by fusing {s, t, u} into a single element s.
15: end if
16: end while
17: Return the familyM.

Theorem 9. By using A as a subroutine, Algorithm FindAllMinimals outputs
all minimal optimal solutions of the strongly PP-admissible hereditary system (V, f, I)
in O(|V | · T (|V |)) time and using the same asymptotic number of oracle calls.

Proof. The claim about the running time follows from Theorem 8 and the fact
that each iteration decreases the cardinality of V ′ by at least one unit. LetMA be the
collection returned by the algorithm and M =M(V, f, I) be the family of minimal
optimal solutions of (V, f, I).

Since all the solutions added toMA are disjoint and optimal by construction, it
is enough to show that every minimal optimal solution X ofM is eventually added
toMA.

Suppose that this is not the case, and let Y ∈ M \MA. Let (V0, f0, I0) be the
system obtained after fusing X∗, all the singleton minimal optimal solutions, and the
loops into s (see line 4). Every system considered in the algorithm after that point is
a fusion of (V0, f0, I0).
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Consider the minimal partitionM0 =M(V0, f0, I0) and observe that Y is a part
ofM0. We claim that Y is not present at the end of the while-loop. Indeed, if it were
present, then, since V ′ has at most two elements at that moment, and one of them
is a loop, Y must have been fused into the only nonloop singleton of V ′. But this is
a contradiction, since the algorithm ensures that every singleton ever created is not
optimal.

Consider then the last iteration in which Y is present in the fusion (V ′, f ′, I ′), and
let (t, u) be the pendent pair found at that time. Since, by construction, u is neither
a loop nor a singleton optimal solution of the current system, Lemma 7 implies that
t and u are in the same part of the current partition M(V ′, f ′, I ′). It follows that
t and u are both inside or both outside Y .4 Since Y stops being present after this
iteration, we must be in the case where t and u are inside Y , s is outside Y , and we
fuse {s, t, u} together into s. We do this only when {t, u} ∈ I ′ and f ′({t, u}) = λ∗ or
when {t, u} 	∈ I ′. As V{t,u} ⊆ Y ∈ I, we must be in the first case. Then, according
to the algorithm, V{t,u} is an optimum solution that is added toMA. By minimality
of Y we obtain Y = V{t,u}, which contradicts that Y 	∈ MA and concludes the
proof.

4. Strongly PP-admissible functions. In this section, we study different fam-
ilies of strongly PP-admissible set functions and show how to find pendent pairs in
all of them. Most of the presented families are not new and can be found in different
articles related to Queyranne’s algorithm for SSF minimization [15, 21, 17].

4.1. Symmetric crossing submodular functions. Consider two different sets
A,B ⊆ V . We say that A and B are intersecting if A \ B, B \ A, and A ∩ B are all
nonempty. We further say that A and B are crossing if they are intersecting and the
set V \ (A ∪B) is also nonempty. Consider the following submodular inequality:

(4.1) f(A ∪B) + f(A ∩B) ≤ f(A) + f(B).

A set function f : 2V → R is called fully (resp., intersecting, crossing) submodular
if inequality (4.1) is satisfied for every pair A and B in V (resp., for every pair of
intersecting sets or crossing sets). Fully submodular functions are what we usually
denote as submodular functions. However, from this point on we keep the adjective
“fully” to avoid confusion. Note that every fully submodular function is intersecting
submodular and every intersecting submodular function is crossing submodular. The
function f is called fully supermodular if −f is fully submodular and fully modular if
it is both fully submodular and fully supermodular. We extend these definitions to
their intersecting and crossing versions.

Queyranne [20] gives a very simple algorithm to find pendent pairs of symmetric
fully submodular functions. Consider an ordering (v1, . . . , vn) of the elements of V in
which the first element v1 is selected arbitrarily and the vertex vi is the one maximizing
f(v) − f(Wi−1 + v) over V \Wi−1, where Wj denotes the set {v1, . . . , vj}. In other
words, (v1, . . . , vn) satisfies

(4.2) f(vi)− f(Wi−1 + vi) ≥ f(vj)− f(Wi−1 + vj) for all 2 ≤ i ≤ j ≤ n.

An ordering satisfying (4.2) is called a maximum adjacency ordering (this ordering
has also been called a “legal order”).

4To be precise, either Vt and Vu are subsets of Y or they are subsets of V \ Y .
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Lemma 10 (Queyranne [20]). If f is a symmetric fully submodular function on
V , and v1 ∈ V is an arbitrarily chosen element, the last two elements (vn−1, vn)
of a maximum adjacency ordering of V starting from v1 constitute a pendent pair.
Furthermore, this ordering always exists and can be found using O(n2) oracle calls
and in the same running time.

As observed by Nagamochi and Ibaraki [15], the above result requires only sym-
metry and crossing submodularity, and so Lemma 10 holds also for that slightly larger
class of functions. Note that we can use this to find pendent pairs whose head avoids
a given element s by simply setting the first element of the ordering to be s. From
this we get the following observation.

Corollary 11. If f is a symmetric crossing submodular function on V , then
the system (V, f) is strongly PP-admissible and we can find a pendent pair whose head
avoids an element for any fusion having at least three elements in O(|V |2) time and
using O(|V |2) oracle calls to f .

4.2. Weak Rizzi functions. In this section we describe a larger class of strongly
PP-admissible functions. Let V be a finite ground set and Q(V ) be the collection of
disjoint pairs of subsets of V ,

Q(V ) = {(A,B) : A,B ⊆ V,A ∩B = ∅}.(4.3)

A bi-set function on V is a real function whose domain is Q(V ). Just like the case
of set functions, we assume that bi-set functions are given through a value oracle,
that is, an oracle that, given a pair of disjoint sets (A,B), returns d(A,B). A bi-set
function d on V is symmetric if for all (A,B) ∈ Q(V ), d(A,B) = d(B,A). Every
symmetric bi-set function admits a canonical symmetric set function and vice versa.
Given a symmetric bi-set function d on V , the symmetric set function f (d) is defined
as

f (d)(A) = d(A, V \A) for all A ⊆ V .(4.4)

Given a (not necessarily symmetric) set function f on V , the symmetric bi-set function
d(f) is defined as

d(f)(A,B) =
1

2

(
f(A) + f(B) + f(∅)− f(A ∪B)

)
for all (A,B) ∈ Q(V ).(4.5)

Proposition 12. If f is a symmetric function on V , then f = f (d(f)).
Proof. Let d = d(f) and f̂ = f (d); then for all A ⊆ V we have

f̂(A) = d(A, V \A) = 1

2
(f(A) + f(V \A) + f(∅)− f(V )) = f(A).

Observe that even for symmetric d, the functions d and d(f
(d)) can be extremely

different. For example, consider the nonconstant function

d(A,B) = |A|+ |B| for all (A,B) ∈ Q(V ).

In this case f (d) is a constant function, and d(f
(d)) is also constant.

A natural example of a set and bi-set function is the following: Let G = (V,E,w)
be a weighted graph with w : E → R. For all pairs (A,B) of disjoint subsets of V ,
let E(A : B) be the set of edges with one endpoint in A and one endpoint in B. The
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cut between A and B is defined as dG(A,B) = w(E(A : B)) =
∑

e∈E(A:B)w(e), and

the cut function of G (also called the weighted degree function of G) is fG : V → R

defined as fG(A) = w(E(A : V \A)) = ∑
e∈E(A:V \A) w(e) for all A ⊆ V . It is easy to

see that f (dG) = fG and d(fG) = dG.
Rizzi [21] introduces a nice family of bi-set functions, which we describe below.

We say that a symmetric bi-set function d on V is a Rizzi bi-set function if the
following properties hold.

1. (Consistency) For all A,B,C ⊆ V disjoint,

d(A,B) ≤ d(A,C) implies d(A ∪ C,B) ≤ d(A ∪B,C).

2. (Monotonicity) For all nonempty disjoint sets A,B,C ⊆ V ,

d(A,B) ≤ d(A,B ∪ C).

The associated Rizzi set function is f = f (d). As the following lemma shows,
consistency is a natural property to consider.

Proposition 13. For every set function f , the bi-set function d(f) is symmetric
and consistent.

Proof. The function d(f)(A,B) = 1
2 (f(A) + f(B) + f(∅)− f(A ∪B)) is symmet-

ric by definition. Consistency holds since

d(f)(A ∪ C,B)− d(f)(A ∪B,C) =
1

2
(f(A ∪C) + f(B)− f(A ∪B)− f(C))

= d(f)(A,B)− d(f)(A,C).

Rizzi set functions and symmetric submodular functions are related by the fol-
lowing observation.

Lemma 14 (Rizzi [21]). If f is an intersecting submodular function on V , then
the associated bi-set function5 d(f) is a Rizzi bi-set function. Furthermore, if f is
symmetric, then f is the associated Rizzi set function of d(f).

Proof. Let A, B, and C be nonempty pairwise disjoint sets. Then

(4.6) 2
(
d(f)(A,B∪C)−d(f)(A,B)

)
= f(B∪C)−f(A∪B∪C)−f(B)+f(A∪B).

Let D = B ∪C and E = A∪B, so that D∪E = A∪B ∪C and D∩E = B. Since A,
B, and C are nonempty, D and E are intersecting. By the intersecting submodularity
of f , (4.6) above is nonnegative, implying monotonicity of d(f). Thus d(f) is a Rizzi

bi-set function. Furthermore, by Proposition 12, if f is symmetric, f = f (d(f)).
Rizzi [21] mistakenly states that the lemma above holds if we replace the intersect-

ing submodularity of f by the weaker condition of crossing submodularity. However,
for the symmetric crossing submodular function f : V → R satisfying f(∅) = f(V ) = 1
and f(X) = 0 for all X 	∈ {∅, V }, where |V | ≥ 3, this does not holds. Indeed, if
{A,B,C} is a partition of V in nonempty parts, then

2d(f)(A,B ∪ C) = f(A) + f(B ∪ C) + f(∅)− f(A ∪B ∪ C) = 0, and

2d(f)(A,B) = f(A) + f(B) + f(∅)− f(A ∪B) = 1.

Hence, we do not have monotonicity. One way to fix this problem is to define a weaker
version of monotonicity. Consider the following property.

5Rizzi used the function d(A,B) = f(A)+f(B)−f(A∪B) instead, but the function d we consider

is better behaved as f = f(d(f)).
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1136 MICHEL X. GOEMANS AND JOSÉ A. SOTO

1’. (Weak monotonicity) d(A,B) ≤ d(A,B ∪ C) for all nonempty disjoint sets
A,B,C ⊆ V with A ∪B ∪ C 	= V .

We call d a weak Rizzi bi-set function if it is symmetric, weak monotone, and
consistent. The associated function f (d) is called a weak Rizzi set function.

Lemma 15. If f is a crossing submodular function on V , then the associated
bi-set function d(f) is a weak Rizzi bi-set function. Furthermore, if f is symmetric,
then f is the associated weak Rizzi set function of d(f).

Proof. We need only show weak monotonicity. Indeed, for A, B, and C satis-
fying A ∪ B ∪ C 	= V , the right-hand side of (4.6) is nonnegative by the crossing
submodularity of f .

We remark here that recognizing whether a function f is a (weak) Rizzi function
or not, without having access to the Rizzi bi-set function d for which f = f (d), is not

simple. This follows since it is not always the case that d = d(f
(d)). It is also easy to

find Rizzi functions that are not crossing submodular (see Example 1 in section 7).
By extending the notion of fusions to bi-set functions in a natural way, it is easy

to see that if d is a (weak) Rizzi bi-set function, then so are all its fusions.
Rizzi has shown that a version of Queyranne’s maximum adjacency ordering al-

lows us to find pendent pairs for Rizzi set functions. His proof, which we describe for
completeness below, naturally extends to weak Rizzi set functions.

Let d be a weak Rizzi bi-set function. An ordering (v1, . . . , vn) of the elements
of V , such that

(4.7) d(vi,Wi−1) ≥ d(vj ,Wi−1) for all 2 ≤ i ≤ j ≤ n,

where v1 is chosen arbitrarily and Wi denotes the set {v1, . . . , vi}, is called a maximum
adjacency ordering for d. The origin of the name comes from its interpretation for
the cut function on a graph. If d(A,B) represents the cut between A and B in a
given graph G, then the ith vertex of a maximum adjacency ordering of d is exactly
the one having a maximum number of edges going toward the previous i− 1 vertices.
Furthermore, note that if f is a crossing submodular function on V , then the maximum
adjacency orderings of f in the sense of Queyranne (4.2) coincide with those of d(f)

in the sense of Rizzi (4.7).
Lemma 16 (essentially in Rizzi [21]). Let d be a weak Rizzi bi-set function

on V and v1 be an arbitrary element of V . The last two elements (vn−1, vn) of a
maximum adjacency ordering of V starting from v1 constitute a pendent pair for f (d).
Furthermore, this ordering can be found by using O(n2) oracle calls to d and in the
same running time.

Proof. It is easy to check the claim regarding the running time since to construct
the ith element of the ordering we need only find the maximum of the n − i differ-
ent values {d(x,Wi−1)}x∈V \Wi−1

. We show the rest by induction on the number of
elements.

The lemma holds trivially for n = 2 since the only set separating v1 and v2 are
singletons and the function f (d) is symmetric. For n = 3, the only sets separating
v2 and v3 are {v3}, {v1, v3}, and their complements. By definition of the ordering,
d(v2, v1) ≥ d(v3, v1). Consistency implies that

f (d)({v1, v3}) = d({v1, v3}, v2) ≥ d({v1, v2}, v3) = f (d)(v3).

Consider then n ≥ 4, and let S be any set separating vn and vn−1. We must show
that

(4.8) d(S, V \ S) ≥ d(vn, V − vn).
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It is easy to see that (v{1,2}, v3, . . . , vn) is a maximum adjacency ordering for the
function d1,2 obtained by fusing v1 and v2 into v{1,2}. If S does not separate v1 and
v2, then (4.8) holds since (vn−1, vn) is a pendent pair of d1,2 by induction. So assume
that S separates v1 and v2.

We claim that the ordering (v1, v{2,3}, . . . , vn) is a maximum adjacency ordering
for the function d2,3 obtained by fusing v2 and v3 into v{2,3}. Indeed, we need only
prove that d2,3(v{2,3}, v1) ≥ d2,3(vj , v1) for all j ≥ 4. This follows since, by hypothesis
and weak monotonicity,

d(vj , v1) ≤ d(v2, v1) ≤ d({v2, v3}, v1).
If S does not separate v2 and v3, then (4.8) holds by induction, since (vn−1, vn)

is a pendent pair for d2,3. The only remaining possibility is the case in which S
separates v1 from v2 and v2 from v3. This means that S does not separate v1 and v3.
To conclude (4.8) it suffices to show that (v2, v{1,3}, . . . , vn) is a maximum adjacency
ordering for the function d1,3 obtained by fusing v1 and v3 into v{1,3}. Assume that
this is not the case; then we must have

d1,3(v{1,3}, v2) < d1,3(vj , v2)

for some j ≥ 4. Since (v1, . . . , vn) is a maximum adjacency ordering of d, we have
d(v2, v1) ≥ d(v3, v1) and d(v3, {v1, v2}) ≥ d(vj , {v1, v2}). By consistency we have
d({v1, v3}, v2) ≥ d({v1, v2}, v3). Combining the inequalities above and using weak
monotonicity, we get

d(v3, {v1, v2}) ≥ d(vj , {v1, v2}) ≥ d(vj , v2) = d1,3(vj , v2)

> d1,3(v{1,3}, v2) = d({v1, v3}, v2) ≥ d(v3, {v1, v2}),
which is a contradiction.

By using that the element v1 of a maximum adjacency ordering can be chosen
arbitrarily, we conclude the following result.

Corollary 17. Consider the function f = f (d), where d is a weak Rizzi bi-
set function on V . The system (V, f) is strongly PP-admissible, and we can find a
pendent pair whose head avoids an element in any fusion having at least three elements
in O(|V |2) time and using O(|V |2) oracle calls to d.

4.3. Extensions and restrictions. Consider a set function f on V ; let S ⊆ V
and S = V \ S. The function obtained from f by deleting S, also known as the
restriction of f to S, is

f \ S = f |S : 2S → R, where f |S(A) = f(A) for all A ⊆ S.(4.9)

We say that a restriction is nontrivial if the associated set S above satisfies
∅ ⊂ S ⊂ V . Furthermore, any set function g such that f = g|V is called an extension
of f .

Note that the set of solutions (in fact, the entire structure) of an arbitrary heredi-
tary system (V, f, I) is the same as that of the system (W, g, I), where g is an arbitrary
extension of f . Therefore, one strategy to solve a given hereditary minimization prob-
lem (V, f, I) is to find a strongly PP-admissible extension g of f for which we can find
pendent pairs avoiding a single element. It is easy to see that we need only look for
extensions having only one extra element (since by fusing all the extra elements into
one, we obtain another such extension).
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1138 MICHEL X. GOEMANS AND JOSÉ A. SOTO

Nagamochi and Ibaraki [15] follow a similar route and give a modification of
Queyranne’s pendent pair based algorithm to find all the minimal minimizers of the
class of restrictions of crossing SSFs in the unconstrained setting. For that, they
introduce a well-behaved type of extension.

Let f be an arbitrary set function on V and s be an element outside V . The anti-
restriction of f with extra element s is the symmetric function g on V + s defined
as

g(A) =

{
f(A) if s 	∈ A,

f(V \A) if s ∈ A.
(4.10)

Note that g is the only extension of f by one extra element that is symmetric.
Nagamochi and Ibaraki [15] and also Narayanan [17] show that f is a nontrivial restric-
tion of a symmetric (crossing) submodular function if and only if its antirestriction g
is symmetric (crossing) submodular and they use this fact to devise algorithms that
work, in the unconstrained setting, on this class of functions. Furthermore, they give
a nice characterization of this class of functions, which we describe below.

A set function f : 2V → R is called fully posimodular if, for all A,B ⊆ V ,

(4.11) f(A \B) + f(B \A) ≤ f(A) + f(B).

The function f is called intersecting posimodular or crossing posimodular if in-
equality (4.11) is satisfied for every pair A and B of intersecting sets or crossing sets,
respectively.

Nagamochi and Ibaraki show that the nontrivial restrictions of symmetric crossing
submodular functions are exactly those functions that are both intersecting submod-
ular and intersecting posimodular. This type of function appears very often: For
example, the sum of a symmetric submodular function with a modular function is
clearly posimodular, but it is not necessarily symmetric.

The discussion in this section shows that our methods can be used to find the
minimal optimal solutions of any system (V, f, I) provided that f is intersecting posi-
modular and intersecting submodular or, more generally, if f is the restriction of a
weak Rizzi function. A more formal statement of this will follow Theorem 18.

5. Main results and cohereditary minimization. By specializing our meth-
ods to the families of strongly PP-admissible functions we have studied so far and to
their restrictions, we obtain the following results.

Theorem 18. We can compute all the minimal optimal solutions of the hereditary
system (V, f, I) in time O(|V |3) and using O(|V |3) oracle calls for the following cases:

1. If f is symmetric crossing submodular on V , provided oracle access to f and
I.

2. If f = f (d), where d is a weak Rizzi bi-set function on V , provided oracle
access to d and I.

3. If f is intersecting submodular and intersecting posimodular on V , provided
oracle access to f and I.

4. If f is defined as

f(A) = d(A, (V \A) + s) for all A ⊆ V,

for some weak Rizzi bi-set function d on V + s, provided oracle access to d
and I.
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Proof. For all results we use Algorithm FindAllMinimals and Theorem 9. The
first and second results follow from Corollaries 11 and 17, respectively.

To obtain the third result, we consider the system (V + s, g, I), where g is the
antirestriction of f with extra element s. Since g is symmetric crossing submodular,
we can use the first result of this theorem to find all minimal optimal solutions of
(V + s, g, I) which coincide with those of (V, f, I).

For the last result, we use the second result to find the minimal optimal solutions
of the system (V + s, g, I), where g = f (d) is the weak Rizzi function on V + s
associated to d. Since f = g|V , these solutions coincide with those of (V, f, I).

Note that Theorems 1 and 2 in the introduction follow immediately from the
theorem above.

It is worth noting at this point that we can also use our methods to find all
the nontrivial inclusionwise maximal minimizers of some functions constrained to
cohereditary families, that is, families of sets closed under union. Given a family of
sets I on V , its dual with respect to V is the family I∗V = {A : V \ A ∈ I}. Then,
the cohereditary families are exactly the duals of hereditary families. The set function
dual f∗V of f is defined as f∗V (A) = f(V \A) for all A ⊆ V .

A triple (V, f,J ) is a cohereditary system if (V, f∗V ,J ∗V ) is a hereditary system.
A set X ⊆ V is a nontrivial maximal optimal solution for a cohereditary system
(V, f,J ) if X is an inclusionwise maximal set minimizing f over all the sets in J \
{V }. Note that the maximal optimal solutions for a cohereditary system (V, f,J ) are
exactly the complements of the minimal optimal solutions of the hereditary system
(V, f∗V ,J ∗V ). This property is useful in the setting we describe next.

Consider an arbitrary set function f on V . The function obtained from f by
contracting S = V \ S, also known as the contraction of f to S, is

(5.1) f/S = (f ×S) : 2S → R, where (f ×S)(A) = f(A∪S)−f(S) for all A ⊆ S.

It is easy to see that deletion and contraction commute; that is, if S and T are disjoint
subsets of V , then (f/S) \ T = (f \ T )/S. Any function obtained from f by deleting
and contracting subsets is called a minor of f .

Narayanan [17] shows that every submodular function is a translation of a minor of
a symmetric crossing submodular function, making the problem of finding minimizers
of minors of a symmetric crossing submodular function equivalent to the corresponding
one for general submodular functions. Rizzi [22] has given an example of a simple
nonsymmetric fully submodular function without pendent pairs, ruling out this type
of approach to minimize general submodular functions. Nevertheless, Narayanan is
able to modify Queyranne’s routine to find particular minimizers of contractions of
symmetric crossing submodular functions (in the unconstrained setting).

By using the discussion in the preceding paragraphs, we can find all the maximal
optimal solutions of a cohereditary system (S, g,J ) if g is a (not necessarily nontrivial)
contraction of a symmetric strongly PP-admissible function f for which we can find
pendent pairs whose head avoids an element in every fusion (this includes not only
Narayanan’s case, where g is the contraction of a symmetric crossing submodular
function, but also the case where g itself is a weak Rizzi set function or a contraction
of one). Indeed, if g is the contraction f × S, where f is a set function on V , then
its dual g∗S : S → R is such that g∗S(X) = g(S \ X) = f((S \ X) ∪ S) − f(S) =
f(V \ X) − f(S) = f |S(X) − f(S). In other words, g∗S is just a translation of the
function f |S , and so finding the maximal optimal solutions of (S, g,J ) is the same as
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1140 MICHEL X. GOEMANS AND JOSÉ A. SOTO

finding the minimal optimal solutions of (S, f |S ,J ∗S) which we can do by Theorem 18.
The next corollary summarizes our results regarding typical cohereditary systems.

Corollary 19. We can compute all the maximal optimal solutions of the co-
hereditary system (V, g,J ) in time O(n3) and using O(n3) oracle calls for the following
cases:

1. If g is symmetric crossing submodular on V , provided oracle access to g and
J .

2. If g = g(d), where d is a weak Rizzi bi-set function on V , provided oracle
access to d and J .

3. If g∗V is intersecting submodular and intersecting posimodular on V , provided
oracle access to g and J .

4. If g is defined as

g(A) = d(A+ s, V \A) for all A ⊆ V ,

for some weak Rizzi bi-set function d on V + s, provided oracle access to d
and J .

Proof. The cohereditary systems (V, g,J ) for each case are exactly the duals of
the hereditary systems considered in Theorem 18.

6. Extreme subsets. A set X ⊆ V is said to be an extreme subset of a system
(V, f) if

f(X) < f(Y ) for all ∅ ⊂ Y ⊂ X.

Every singleton {v} with v ∈ V is an extreme subset by definition. The following
observation highlights the importance of extreme subsets for solving hereditary min-
imization problems.

Proposition 20. Every minimal optimal solution of the hereditary system (V, f, I)
is an extreme subset of (V, f).

Therefore, if we had an algorithm that reports the entire collection of extreme
subsets of (V, f), and if this collection itself is not too large, we could find the minimal
optimal solutions of (V, f, I) by simply keeping the extreme subsets of (V, f) that are
in the hereditary family and reporting those having minimum f -value.

Efficiently finding extreme subsets of “nice” set functions, such as the cut function
of a graph or hypergraph, is a problem that has been studied by many authors.
For references, see Nagamochi’s article [16]. In particular, Nagamochi has recently
devised a beautiful algorithm that computes all extreme subsets of (restrictions of)
symmetric crossing submodular functions. This algorithm shares many similarities
with Queyranne’s routine; however, it is based not on finding pendent pairs but on
finding a different structure called flat pairs. We briefly visit Nagamochi’s algorithm
at the end of this section.

In what follows, we show that it is possible to use a pendent pair based approach
to compute all the extreme subsets of a strongly PP-admissible system, provided the
collection of extreme subsets is laminar. A family L of sets is called laminar if no pair
of sets in L is intersecting. As Example 2 in section 7 shows, the family of extreme
subsets of strongly PP-admissible systems is not necessarily laminar. However, the
systems studied in this paper satisfy this property, as the following lemma shows.

Lemma 21. Let d be a weak Rizzi bi-set function on V and f = f (d) be its
associated set function. The extreme subsets of the system (V, f) form a laminar
family.
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Proof. Let S and T be two intersecting extreme subsets of f . Consider the
nonempty sets A = V \T , B = T \S and C = S∩T . By definition of extreme subsets,
we have that f(T \ S) > f(T ) or equivalently, d(B,A ∪ C) > d(B ∪ C,A). Using the
contrapositive of consistency we deduce that d(B,C) > d(A,C), i.e. d(T \S, S ∩T ) >
d(V \ T, S ∩ T ). Furthermore, by weak monotonicity, we have d(V \ T, S ∩ T ) ≥
d(S \ T, S ∩ T ) implying that

d(T \ S, S ∩ T ) > d(S \ T, S ∩ T ).

But, by exchanging the roles of S and T , we get the reverse inequality, which is a
contradiction.

The lemma above also holds for restrictions of weak Rizzi functions, including for
instance, functions that are both intersecting posimodular and intersecting submod-
ular. As every laminar family on V contains at most 2|V | − 1 sets, it is reasonable to
ask for an algorithm that returns all the extreme subsets of weak Rizzi functions in
polynomial time.

More generally, suppose that (V, f) is a system whose extreme subsets form a
laminar family, and A is an algorithm that given a hereditary family I on V , returns
all minimal optimal solution of the system (V, f, I). We can use A to compute all
extreme subsets of (V, f) as follows: Let I0 = 2V and define iteratively for all i ≥ 1,

Yi = A(Ii) (family of minimal optimal solutions of (V, f, Ii)),
Xi =

⋃
j≤i

Yj , Ii+1 = {A ⊆ V : ∀X ∈ Xi, (A ∩X 	= ∅ ⇒ A ⊂ X)}.

To conclude, return Xj , where j is the first index for which Yj is empty.
Each family Ii+1 defined above is hereditary and is obtained from Ii by removing

the sets in Yi and also all those sets that are intersecting with some set in Yi. In
particular, the family Yi consists of sets that are not inside Xi−1. Note also that Yi is
empty only when Ii = {∅}. Therefore, the sequence {Ii}i≥0 is a (strictly) decreasing
family that converges to {∅}. That is, there is a finite index j for which:

2V = I0 ⊃ I1 ⊃ · · · ⊃ Ij = {∅} = Ij+1 = · · · .
The index of the set Xj we return is exactly the index j above, meaning that our

algorithm is finite. Let us check correctness.
Proposition 22. Let X be the family of extreme subsets of (V, f). Then for all

i, Yi ⊆ X .
Proof. The property holds for i = 0. Assume by induction that it holds for a given

i and let A ∈ Yi+1 ⊆ Ii+1. If A is not extreme, then there is a strict nonempty subset
B ⊂ A with f(B) < f(A). But since A ∈ Ii+1, we also have B ∈ Ii+1, contradicting
that A is a minimal optimal solution of (V, f, Ii+1).

It is easy to see that the family Yi consists of the collection of extreme subsets that
have minimum f -value among those not yet added to Xi−1. The following proposition
shows that every extreme subset is eventually added to Xi.

Proposition 23. Let X be the family of extreme subsets (V, f). Then
⋃

i≥0 Xi =
X .

Proof. By the previous proposition,
⋃

i≥0 Xi ⊆ X . Suppose that there is a set
A ∈ X \⋃i≥0 Xi. Find the last index i such that A ∈ Ii. Since A 	∈ Ii+1 we know that
there is a set X ∈ Yi such that A ∩X 	= ∅ and A 	⊂ X . The set A cannot contain X ,
since in this case, as A is extreme, f(A) < f(X) and so X is not a minimal minimizer
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of (V, f, Ii). The only other possibility is that X and A are intersecting, but this
cannot happen since both sets are extreme.

Since in every iteration we find at least one new extreme subset, this algorithm
uses at most O(|V |) calls to A. By specializing this algorithm to the families studied
in this paper, we have the following results.

Theorem 24. We can compute all extreme subsets of the system (V, f) in time
O(|V |4) and using O(|V |4) oracle calls for the following cases:

1. If f is symmetric crossing submodular on V , provided oracle access to f and
I.

2. If f = f (d), where d is a weak Rizzi bi-set function on V , provided oracle
access to d and I.

3. If f is intersecting submodular and intersecting posimodular on V , provided
oracle access to f and I.

4. If f is defined as

f(A) = d(A, (V \A) + s) for all A ⊆ V,

for some weak Rizzi bi-set function d on V + s, provided oracle access to d
and I.

Proof. These results follows immediately by using the algorithm of Theorem 18
as a subroutine for the the algorithm described in this section.

As stated at the beginning of this section, Nagamochi [16] has devised a combina-
torial algorithm to find all extreme sets of crossing submodular functions (and their
restrictions). In what follows we compare our results with his.

Nagamochi’s algorithm is based on the following concept: We say that an un-
ordered pair of elements {t, u} of V is a flat pair of (V, f) if

(6.1) f(X) ≥ min
x∈X

f(x) for all X ⊆ V separating t and u.

Denote a function f FP-admissible6 if f and all its fusions admit flat pairs. As noted
by Nagamochi, a nonsingleton extreme set A cannot separate a flat pair {t, u}. This
fact alone implies that the extreme sets of FP-admissible functions form a laminar
family. Even though Nagamochi does not show this, this can be derived from his
results. We give a new and direct proof of this fact below.

Lemma 25. The family of extreme sets of FP-admissible function f is laminar.
Proof. Suppose by contradiction that two extreme sets A and B are intersecting.

Let (V ′, f ′) be the system obtained by fusing all the elements of A \ B into a, all
the elements of B \ A into b, all the elements of A ∩ B into c, and, if V \ (A ∪B) is
nonempty, all the elements of this set into d. Every pair of elements in V ′ is separated
by either A or B. Hence none of them is a flat pair.

The above lemma implies that the number of extreme sets of an FP-admissible
function is O(n). Nagamochi gives an algorithm that outputs all the extreme sets
of any FP-admissible function provided we have access to an algorithm that finds a
flat pair of any fusion of f . The algorithm is similar to Queyranne’s routine in the
sense that at every iteration we fuse a flat pair together. A high level overview of the
algorithm is given below.

Maintain a set X which will contain the extreme sets of f that are completely
inside Vx for some x ∈ V ′, where V ′ is the current ground set. Initialize X with all

6In [16] this class of functions is not named.
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the singletons of V , and set (V ′, f ′) as (V, f). Iteratively, until the system (V ′, f ′)
contains only one element, find a flat pair {t, u} of (V ′, f ′) and fuse t and u into a
single element tu. Then, test if the set Vtu associated to the new singleton is extreme
by using the information already in X . If Vtu is extreme, add it to X . At the end of
the algorithm, the family X contains all the extreme sets.

Nagamochi gives an efficient implementation of the above algorithm that runs in
O(nT (n)) time, where T (n) is the time needed to find a flat pair of a function over a
ground set of n elements.

It is an interesting question to decide when a function is FP-admissible. Nag-
amochi has shown that symmetric crossing submodular functions (and also their re-
strictions) admit flat pairs and that we can find them as the last two elements of a
so-called minimum degree ordering of V . He further shows that this ordering can be
found in time O(n2) and using O(n2) oracle calls to f . In particular, by using this
procedure as a subroutine, Nagamochi’s algorithm can find all the extreme subsets
of (V, f) in cubic time and using a cubic number of oracle calls. Even though this
algorithm is more efficient than the pendent pair based algorithm for extreme sets we
have previously presented, we would like to point out that the scopes of pendent pair
based and flat pair based algorithms are different. For example, our algorithm is able
to find extreme sets of weak Rizzi functions, and it is not clear whether or not there
is an efficient algorithm to find flat pairs of functions in this class (we do not know if
weak Rizzi functions are always FP-admissible).

Another interesting fact is that the class of strongly PP-admissible functions is
incomparable with the class of FP-admissible functions. On the one hand, Example 2
in section 7 describes a strongly PP-admissible function whose extreme sets do not
form a laminar family. By Lemma 25, this function is not FP-admissible. On the
other hand, Example 3 in section 7 describes an FP-admissible function that does not
admit pendent pairs.

7. Examples. In this section we include some relevant examples. Our first
example can be found in Rizzi [21].

Example 1 (Rizzi set function that is not crossing submodular or crossing posi-
modular). Given a weighted graph G = (V,E,w), with w : E → R+, define the max-
imum separation between two disjoint sets of vertices A and B as

d(A,B) =

⎧⎨
⎩

max
ab∈E(A:B)

w(ab) if E(A : B) 	= ∅,
0 if E(A : B) = ∅.

This function is symmetric, monotone, and consistent. Consider the complete
graph in {a, b, c, d} where all the edges have weight 1, except for ac and bd, which
have weight 2. The corresponding function f = f (d) given by f(A) = d(A, V \A) for
A ⊆ V is not crossing submodular since

3 = f({a, c}) + f({a, d}) < f({a, c, d}) + f(a) = 4.

The function f is not even crossing posimodular since

3 = f({a, c}) + f({a, d}) < f(c) + f(d) = 4.

Example 1 shows, in particular, that the class of (restrictions of) weak Rizzi
functions strictly contains the class of (restrictions of) crossing submodular functions.
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Example 2 (the family of extreme subsets of a strongly PP-admissible function is
not necessarily laminar). Let (V = {a, b, c, d}, f) be the symmetric function defined
by

f(a) = f({b, c, d}) = 1, f({a, b}) = f({c, d}) = 1,

f(b) = f({a, c, d}) = 2, f({a, c}) = f({b, d}) = 0,

f(c) = f({a, b, d}) = 2, f({b, c}) = f({a, d}) = 1,

f(d) = f({a, b, c}) = 0, f(∅) = f({a, b, c, d}) = 0.

Observe that the extreme subsets {a, c} and {b, c} cross; therefore, the extreme subsets
of (V, f) do not form a laminar family. In order to show that (V, f) is strongly PP-
admissible, we need the proposition below.

Proposition 26. If |W | ≤ 3 and g is symmetric, then the system (W, g) is
strongly PP-admissible.

Proof. The property holds by definition if |W | ≤ 2, so assume W = {a, b, c}. We
show that there is a pendent pair whose head avoids a. Without loss of generality,
assume that g(b) ≤ g(c). By symmetry, min{g(b), g(c), g({a, b}), g({a, c})} = g(b),
meaning that (c, b) is a pendent pair.

By the proposition we just proved, every nontrivial fusion of the system in Ex-
ample 2 is strongly PP-admissible. To conclude that (V, f) itself is strongly PP-
admissible, we show that (V, f) admits a pendent pair avoiding any of its elements.
But this holds since both (b, d) and (c, a) are pendent pairs. Indeed,

min{f(X) : X ∩ |{b, d}| = 1} ≥ min{f(X) : X ⊆ V } = f(d).

min{f(X) : X ∩ |{c, a}| = 1} = min{f(a), f({a, b}), f({a, d}), f({a, b, d})} = f(a).

In particular, Example 2 shows a strongly PP-admissible function that is not
FP-admissible.

Example 3 (function admitting flat pairs but not pendent pairs). Let (V =
{a, b, c}, f) be the nonsymmetric set function defined by

f(a) = 2, f({b, c}) = 1,

f(b) = 2, f({a, c}) = 1,

f(c) = 1, f({a, b}) = 0,

f(∅) = 1, f({a, b, c}) = 1.

On the one hand, since f({a, b}) < f(c) we conclude that (a, c) and (b, c) are not
pendent pairs. The pairs (c, a) and (c, b) are not pendent either since f(c) < f(a) =
f(b). Since f({a, c}) < f(b) and f({b, c}) < f(a), we conclude that (a, b) and (b, a)
are not pendent pairs either, implying that f admits no pendent pairs.

On the other hand, the only nonsingleton sets separating a and b are X = {a, c}
and Y = {b, c}. Since f(X) = f(Y ) ≥ f(c), we conclude that {a, b} is a flat pair.

Acknowledgments. We would like to thank Shaddin Dughmi and Jan Vondrák
for introducing us to the problem of minimizing submodular functions under cardi-
nality constraints and for very useful discussions.
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IMAG, Université J. Fourier, Grenoble, France, 1994.

[4] G. Goel, C. Karande, P. Tripathi, and L. Wang, Approximability of combinatorial prob-
lems with multi-agent submodular cost functions, in Proceedings of the 50th Annual IEEE
Symposium on Foundations of Computer Science, FOCS’09, 2009, IEEE, Washington, DC,
pp. 755–764.

[5] M. X. Goemans and V. S. Ramakrishnan, Minimizing submodular functions over families of
sets, Combinatorica, 15 (1995), pp. 499–513.

[6] M. Grötschel, L. Lovász, and A. Schrijver, The ellipsoid method and its consequences in
combinatorial optimization, Combinatorica, 1 (1981), pp. 169–197.

[7] M. Grötschel, L. Lovász, and A. Schrijver, Geometric Algorithms and Combinatorial
Optimization, 2nd ed., Springer-Verlag, New York, 1993.

[8] S. Iwata, L. Fleischer, and S. Fujishige, A combinatorial strongly polynomial algorithm for
minimizing submodular functions, J. ACM, 48 (2001), pp. 761–777.

[9] S. Iwata and K. Nagano, Submodular function minimization under covering constraints, in
Proceedings of the 50th Annual IEEE Symposium on Foundations of Computer Science,
FOCS’09, IEEE, Washington, DC, 2009, pp. 671–680.

[10] S. Iwata and J. B. Orlin, A simple combinatorial algorithm for submodular function min-
imization, in Proceedings of the 20th Annual ACM–SIAM Symposium on Discrete Algo-
rithms, SODA’09, ACM, New York, SIAM, Philadelphia, 2009, pp. 1230–1237.

[11] S. Iwata, A fully combinatorial algorithm for submodular function minimization, J. Combin.
Theory Ser. B, 84 (2002), pp. 203–212.
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