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HIGHEST WEIGHT MODULES AT THE CRITICAL LEVEL AND

NONCOMMUTATIVE SPRINGER RESOLUTION

ROMAN BEZRUKAVNIKOV AND QIAN LIN

Abstract. In [5] a certain non-commutative algebra A was defined starting
from a semi-simple algebraic group, so that the derived category of A-modules
is equivalent to the derived category of coherent sheaves on the Springer (or
Grothendieck-Springer) resolution.

Let ǧ be the Langlands dual Lie algebra and let ĝ be the corresponding
affine Lie algebra, i.e. ĝ is a central extension of ǧ ⊗ C((t)).

Using results of Frenkel and Gaitsgory we show that the category of ĝ mod-
ules at the critical level which are Iwahori integrable and have a fixed central
character, is equivalent to the category of modules over a central reduction of
A. This implies that numerics of Iwahori integrable modules at the critical
level is governed by the canonical basis in the K-group of a Springer fiber,
which was conjecturally described by Lusztig [14] and constructed in [5].
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1. Introduction

1.1. Modules at the critical level. Category O of highest weight modules over a
semi-simple Lie algebra with a fixed central character is a classical object of study in
representation theory; Kazhdan-Lusztig conjectures (proved by Beilinson–Bernstein
and Brylinksi–Kashiwara) assert that numerics of such modules is governed by the
canonical basis in the Hecke algebra. The subject of this paper is an analogue of
that result for modules over an affine Lie algebra at the critical level. We show that
the category of such modules is governed by the canonical bases in the Grothendieck
group (or homology) of Springer fibers. This basis was described conjecturally by
Lusztig [14] and its existence was established in [5]. The original motivation for [5]
came from representation theory of Lie algebras in positive characteristic; it turns
out that the same generalization of Kazhdan-Lusztig theory controls highest weight
modules at the critical level.

Let G be a semi-simple algebraic group over C with Lie algebra g. Let ĝ be the
affine Lie algebra corresponding to the Langlands dual Lie algebra ǧ . Thus ĝ is a
central extension of the loop algebra

0→ Cr → ĝ→ ǧ ⊗ C((t))→ 0,

where r is the number of simple summands in g.
Let Ucritĝ denote the quotient of the enveloping algebra U ĝ at the critical value

of the central charge.

Let Ucritĝ–modI0

denote the category of Iwahori monodromic Ucritĝ modules in
the sense of [10]. Recall that by the result of Feigin and Frenkel [8] a continuous
Ucritĝ module carries a canonical commuting action of the topological ring O(Op)
of functions on the space Op of G-opers on the formal punctured disc. In particular,
an irreducible module has a central character which corresponds to such an oper.

For an irreducible module L ∈ Ucritĝ–modI
0

the oper necessarily has a regular
singularity and a nilpotent residue.

Fix a nilpotent element e ∈ g and a nilpotent oper O with residue e (thus, the
underlying connection is isomorphic to ∇ = d+ e dt

t where t is a coordinate on the

formal disc). We let Ucritĝ–modI
0

O be the full subcategory in Ucritĝ–modI
0

consist-
ing of finite length modules where O(Op) acts through the character corresponding
to O.

1.2. Noncommutative Springer resolution. We now introduce another abelian
category associated to the nilpotent element e. Let B = G/B be the flag variety of
G thought of as the variety of Borel subalgebras in g; let g̃ = {(x, b) |b ∈ B, x ∈

b}
π
−→ g be the Grothendieck-Springer map π : (b, x) 7→ x.
In [5] a certain non-commutative algebra A, well defined up to a Morita equiva-

lence was introduced. The algebra comes equipped with an equivalence of triangu-
lated categories Db(A–modfg) ∼= Db(Coh(g̃)); by A–modfg we denote the category
of finitely generated A-modules.

The center of A is identified with the algebra O(g) of regular functions on g. For
e ∈ g we let Ae denote the corresponding central reduction of A.

The results of [5] provide a canonical isomorphism of Grothendieck groupsK0(Ae–modfg) ∼=
K0(Coh(π−1(e))) sending the classes of irreducible modules to elements of the
canonical basis, i.e. the unique (up to signs) basis satisfying the axioms of [14].
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The next statement conjectured in [5, Conjecture 1.7.2] is the main result of the
present note.

Theorem 1. There exists a canonical equivalence of abelian categories

Ae–modfg ∼= Ucritĝ–modI0

O .

In fact, the equivalence of derived categories follows by comparing the result

of [9] which identifies Db(Ucritĝ–modI
0

O ) with DGCoh(Be) with that of [5], [16]

which identify Db(Ae–modfg) with the same category of coherent sheaves. Here
DGCoh(Be) denotes the derived category of coherent sheaves on the DG-scheme

Be = {e}
L
×g g̃. (Notice that K0(DGCoh(Be)) = K0(Coh(π−1(e))) since the

Grothendieck group of coherent complexes on a DG-scheme is identified with the
Grothendieck group of coherent sheaves on the underlying scheme.)

Our job in the present note is to show that the resulting equivalence

Db(Ae–modfg) ∼= Db(Ucritĝ–modI
0

O )

induces an equivalence of abelian categories, i.e. that it is t-exact with respect to the
natural t-structures. This will be done using characterizations of the t-structure on
DGCoh(Be) coming from the two equivalences with derived categories of modules,
appearing, respectively, in [5], [9].

According to [5, Conjecture 1.7.1], the category of Ae–modfg is equivalent to a
category of modules over the Kac - De Concini quantum group at a root of unity.
Thus, together with the present result, that Conjecture implies an equivalence
between modules over the affine Lie algebra and quantum group modules at a root
of unity. Another equivalence of this sort has been established in the celebrated
work by Kazhdan and Lusztig [13].

We also expect that when the nilpotent e is of principal Levi type (a generaliza-
tion of) our result can be used to derive character formulas for irreducible highest
weight modules in terms of parabolic periodic Kazhdan-Lusztig polynomials; we
plan to develop this application in a future work.

The rest of the text is structured as follows. In section 2 we recall the needed
properties of the noncommutative Springer resolution including a characterization
of the corresponding t-structure on the derived categories of coherent sheaves. Sec-
tion 3 is devoted to constructible sheaves on affine flag variety of the dual group.
We state a description of the subcategory of complexes equivariant with respect to
the radical of the Iwahori subgroup I0 in terms of coherent sheaves on Steinberg
variety of G, to appear in [4]. A technical result about the t-structure on the cate-
gory of Iwahori-Whittaker sheaves appearing in Proposition 1 is the key statement
providing a link between the description of the t-structure by Frenkel-Gaitsgory [9]
to our formalism of braid positive t-structures. In section 4 we quote the result
of [9] and argue, in subsection 4.2, that the two characterizations are compatible,
which yields Theorem 1.

1.3. Conventions and notations. Let Waff denote the semi-direct product of
the Weyl group W by the weight lattice Λ of G. Thus Waff is an extended affine
Weyl group corresponding (in the Bourbaki terminology) to the dual group G .̌ Let
ℓ denote the length function on Waff . Let Baff be the corresponding extended
affine braid group and B+

aff ⊂ Baff be the semigroup of positive braids, i.e. the
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semigroup consisting of products of the Coxeter generators (but not their inverses)
and length zero elements. Thus Baff surjects onto Waff . We have a section of the
map Baff → Waff sending an element w ∈ Waff to its minimal length preimage

w̃ ∈ B+
aff . The elements w̃ generate Baff subject to the relation w̃1w2 = w̃1w̃2

provided that ℓ(w1w2) = ℓ(w1) + ℓ(w2). Let Σ (respectively, Σaff ) be the set of
vertices of Dynkin diagram (respectively, affine Dynkin diagram) of ǧ . For domi-

nant weights λ, µ ∈ Λ+ ⊂ Λ we have λ̃µ̃ = λ̃+ µ, thus we have a homomorphism

Λ→ Baff sending λ ∈ Λ+ to λ̃, we denote this homomorphism by λ 7→ θλ.
For a set S of objects in a triangulated category C we let 〈S〉 denote the full

subcategory in C generated by S under extensions and direct summands.

1.4. Acknowledgements. We thank Dennis Gaitsgory for helpful discussions.

2. Noncommutative Springer resolution

In this section we summarize the results of [5], [7] (see also [3]).
We will use the language of DG-schemes, see [7] for the summary of necessary

elementary facts. We only use DG-schemes explicitly presented as fiber products of
ordinary schemes, so we do not require the subtler aspects of the theory discussed
in the current literature on the subject.

The concept of a geometric action of a group on a scheme X over a scheme
Y (where a map X → Y is fixed) is introduced in [5], [7]. We do not recall the
definition in detail, but we mention that a geometric action induces a usual action

on the derived category DGCoh(X
L
×Y S) for any scheme S mapping to Y . Here

X
L
×Y S is the derived fiber product and DGCoh denotes the triangulated category

of sheaves of coherent DG-modules over the structure sheaf. In the case when
higher Tor sheaves Tor

O(Y )
i (O(X),O(S)), i > 0, vanish, this reduces to the usual

fiber product X ×Y S and we have DGCoh(X
L
×Y S) = Db(Coh(X ×Y S)). For

varying S, the actions are compatible with pull-back and push-forward functors.
Recall that π : g̃ → g is the Grothendieck-Springer map. In [7] a geometric

action of Baff on g̃ over g is constructed.
For a quasi-projective scheme S of finite type over C with a fixed map to g set

g̃S = g̃
L
×g S.

We let ℵ denote the geometric action and ℵS the corresponding action of Baff

on DGCoh(g̃S). The action ℵS can be described as follows.
For λ ∈ Λ let OB(λ) be the corresponding line bundle on the flag variety, and

Og̃S
be its pull-back to g̃S .

For α ∈ Σ let Pα be the corresponding partial flag variety thought of as the
variety of parabolic subalgebras in g belonging to a fixed conjugacy class. Let
g̃α = {(x, p) | p ∈ Pα, x ∈ p}, and let Γα denote the component of g̃×g̃α

g̃ different

from the diagonal. Let Γα
S = Γα

L
×g S. Let pr1, pr2 : Γα

S → g̃S be the projections.
Then we have:

ℵS(s̃α) : F → prα2∗pr
α∗
1 (F), α ∈ Σ

ℵS(θλ) : F → F ⊗Og̃S
Og̃S

(λ).



CRITICAL LEVEL AND NONCOMMUTATIVE SPRINGER 5

We say1 that a t-structure τ on DGCoh(g̃S) is braid positive if ℵS(s̃α), α ∈ Σaff

is right exact i.e. it sends DGCoh(g̃S)
≤0
τ to itself. Notice that this definition

involves the action of s̃α for all α ∈ Σaff ; in particular, for α 6∈ Σ this action is not
given by an explicit correspondence (though it can be expressed as a composition

of correspondences used defining the action of s̃α
±1

, α ∈ Σ and θλ).
We will say that such a t-structure is normalized if the direct image functor

RπS∗ : DGCoh(g̃S)→ Db(Coh(S)) is t-exact where the target category is equipped
with the tautological t-structure.

The following was established in [5].

Theorem 2. a) For any S a normalized braid positive t-structure exists and it is
unique. It satisfies:
F ∈ D≤0 iff prS∗(b(F )) ∈ D≤0(Coh(S)) for all b ∈ B+

aff ,

F ∈ D≥0 iff prS∗(b
−1(F )) ∈ D≥0(Coh(S)) for all b ∈ B+

aff .

b) There exists a finite locally free O(g) algebra A such that for any S as above

there is an equivalence Db(AS–modfg) ∼= DGCoh(g̃S) sending the tautological t-
structure on the LHS to the normalized braid positive t-structure on the RHS. Here
AS = A⊗O(g)O(S) and AS–modfg is the category of finitely generated AS-modules.

Remark 1. It is easy to see that the properties stated in part (b) of the Theorem
characterize the algebra A appearing there uniquely up to a Morita equivalence. (In
fact, the part of the statement pertaining to the absolute case S = g is sufficient to
characterize A). For notational convenience we fix a representative A of the Morita
equivalence class.

Remark 2. The Theorem was stated in [5] under the additional assumption of
Tor vanishing, when g̃S can be considered as an ordinary scheme rather than a
DG-scheme, and only for affine S. However, the proof carries over to the case of
arbitrary base change involving DG-schemes, given the foundational material in
[16, §1], [7].

Remark 3. The characterization of a normalized braid positive t-structure involves
only the action of Coxeter generators s̃α which generate the semi-group B+

aff if G

is adjoint but not in general. However, elements of B+
aff act by right exact functors

for any G, see [5, Remark 1.5.2]. In particular, the subgroup Ω of length zero
elements in Waff acts by t-exact automorphisms, i.e. it acts by automorphisms of
the corresponding abelian heart. Notice that Ω acts on ĝ by outer automorphisms
coming from automorphisms of the affine Dynkin diagram. Thus if an oper O is

Ω-invariant we get an action of Ω on Ucritĝ–modI
0

O . It is natural to conjecture that
for such an oper the equivalence of Theorem 1 is compatible with the action of Ω.

2.1. Base change to a point and canonical bases. We now turn to the par-
ticular case when S = {e} is a point. We assume for simplicity that e ∈ N .

Then we get a finite dimensional algebra Ae together with the equivalence

(1) Db(Ae–modfg) ∼= DGCoh(g̃e).

The reduced variety of the DG-scheme g̃e is the Springer fiber Be = π−1(e). It fol-
lows that the Grothendieck groupK0(DGCoh(g̃e)) is isomorphic toK0(Coh(Be)) =:

1This terminology differs slightly from that of [5] – a normalized braid positive t-structure was
called an exotic t-structure in loc. cit.
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K0(Be). The equivalence (1) induces an isomorphism

K0(Ae–modfg) ∼= K0(DGCoh(g̃e)) = K0(Coh(Be)).

Since Ae is a finite dimensional algebra over k, the group K0(Ae–modfg) is a
free abelian group with a basis formed by the classes of irreducible Ae-modules.

The following is a restatement of the main result of [5].

Theorem 3. The basis in K0(Be) corresponding to the basis of irreducible Ae-
modules under the above isomorphisms is the canonical basis, i.e. it is characterized
(uniquely up to signs) by the axioms of [14].

2.2. The equivariant version. LetH be a reductive group with a homomorphism
H → G, and assume that H acts on S so that the map S → g is H-equivariant.
Then we get (see [5, 1.6.6])

(2) DGCohH(g̃S) ∼= Db(AS–modHcoh),

whereAS–modHcoh denotes the categoryH-equivariant finitely generatedAS-modules.

Below we will apply it in the case S = Ñ , H = G.

3. Perverse sheaves on the affine flag variety

3.1. Affine flag variety and categories of constructible sheaves. Along with
the Lie algebra ǧ ((t)) we consider the group ind-scheme G (̌(t)) and its group
subschemes I0 ⊂ I ⊂ GO, where I is the Iwahori subgroup and I0 is its pro-
unipotent radical and GO = G [̌[t]] is the subgroup of regular loops into G .̌ Let
also I− ⊂ GO be an opposite Iwahori and I0− be its pro-unipotent radical. Let Fℓ
be the affine flag variety for the group G ;̌ thus Fℓ = G (̌(t))/I is an ind-projective
ind-scheme.

We will consider the following full subcategories in the derived category D(Fℓ)
of constructible sheaves on Fℓ: the categoryDI0(Fℓ) of complexes equivariant with
respect to I0 and DIW of complexes equivariant with respect to a non-degenerate
character of I0−, see [1] for details. The functors of forgetting the equivariance
DI0(Fℓ) → D(Fℓ), DIW → D(Fℓ) are full embeddings since the group schemes
I0, I0− are pro-unipotent.

Let PervI0(Fℓ) ⊂ DI0(Fℓ), PervIW (Fℓ) ⊂ DIW (Fℓ) be the full subcategories
of perverse sheaves. It is known that there are natural equivalenceDb(PervI0(Fℓ)) ∼=
DI0(Fℓ), Db(PervIW (Fℓ)) ∼= DIW (Fℓ) (see e.g. [1]).

We will also need the Iwahori equivariant derived category DI(Fℓ) (which, in
contrast with the categoriesDI0(Fℓ), DIW is not equivalent to the derived category
of the abelian subcategory of perverse sheaves PervI(Fℓ)). The category DI(Fℓ)
carries a monoidal structure provided by convolution which will be denoted by ⋆.
This monoidal category acts on D(Fℓ) by convolution on the right, which will also
be denoted by ⋆; the action preserves the subcategories DI0 , DIW .

The orbits of I on Fℓ are indexed by Waff ; for w ∈ Waff let Fℓw denote the
corresponding orbit and jw : Fℓw → Fℓ be the embedding. We abbreviate jw∗ =
jw∗(C[dimFℓw]), jw! = jw!(C[dimFℓw]); thus jw∗, jw! ∈ PervI(Fℓ) ⊂ DI(Fℓ).

We have jw1∗ ⋆ jw2∗
∼= jw1w2∗, jw1! ⋆ jw2!

∼= jw1w2!, jw1w2∗ ⋆ jw−1
2 !
∼= jw1∗ provided

that ℓ(w1w2) = ℓ(w1) + ℓ(w2).
For λ ∈ Λ the corresponding Wakimoto sheaf Jλ ∈ PervI(Fℓ) ⊂ DI(Fℓ) is

introduced in [1, 3.2]. It can be characterized by Jλ ⋆ Jµ ∼= Jλ+µ for λ, µ ∈ Λ and
Jλ ∼= jλ∗ for dominant λ. Notice that Jλ ∼= jλ! when λ is antidominant.
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The orbits of GO on Fℓ are indexed by Λ, we let Fℓλ denote the orbit corre-
sponding to λ ∈ Λ and let iλ : Fℓλ → Fℓ be the embedding. There exists a unique
irreducible Iwahori-Whittaker perverse sheaf on Fℓλ, we let ∆λ (respectively, ∇λ)
be its ! (respectively, ∗) extension to Fℓ. We have ∆λ = ∆0 ⋆ jw!, ∇λ = ∆0 ⋆ jw∗

if w ∈ W · λ.
We set also JIW

λ = ∆0 ⋆ Jλ. The functor F 7→ ∆0 ⋆ F is t-exact [1, Proposition
2], so we have JIW

λ , ∆λ, ∇λ ∈ PervIW .
Recall the central sheaves Zλ, λ ∈ Λ+ of [12].

3.2. The equivalence of [1] and its relation to the t-structures. The main
result of [1] is a construction of an equivalence of triangulated categories

(3) ΦIW : Db(CohG(Ñ )) ∼= DIW (Fℓ).

We recall some properties of the ΦIW that will be used below.

(4) ΦIW (OÑ ) = ∆0,

(5) ΦIW (F ⊗OÑ (λ)) ∼= ΦIW (F) ⋆ Jλ,

(6) ΦIW (F ⊗ Vλ) ∼= ΦIW (F) ⋆ Zλ,

where Vλ denotes the irreducible G-module with highest weight λ.
The following technical statement relating the natural t-structures in the two

sides of (3) will play a key role in the proof of the main result.

Proposition 1. For F ∈ DIW (Fℓ) the following are equivalent:
i) For all λ ∈ Λ, F ⋆ Jλ ∈ D≤0(PervIW (Fℓ)).
ii) F ∈ 〈JIW

λ [d] | d ≥ 0〉.

iii) Φ−1
IW (F) ∈ D≤0(CohG(Ñ )), where D≤0 is taken with respect to the tautolog-

ical t-structure on Db(CohG(Ñ )).

Proof. ii) ⇒ iii) follows from (4), (5) which imply that Φ−1
IW (JIW

λ ) = OÑ (λ).
To check that iii) ⇒ ii) notice that every equivariant coherent sheaf on a quasi-

projective algebraic variety with a reductive group action is a quotient of a line
bundle tensored by a representation of the group. In particular, every object in
CohG(Ñ ) is a quotient of a sheaf of the form V ⊗ O(λ) for some V ∈ Rep(G). It

follows by a standard argument that every object D≤0(CohG(Ñ ))∩Db(CohG(Ñ ))
is a direct summand in an object represented by a finite complex of sheaves of
the form V ⊗O(λ) concentrated in non-positive degrees. Thus D≤0(CohG(Ñ )) ∩
Db(CohG(Ñ )) = 〈Vν ⊗O(λ)[d]〉, d ≥ 0. So we see that Φ−1

IW (F) ∈ D≤0(CohG(Ñ ))
iff F ∈ 〈JIW

λ ⋆Zν〉. Since Zν admits a filtration with associated graded being a sum
of Wakimoto sheaves [1, 3.6] and JIW

λ ⋆Jµ ∼= JIW
λ+µ, we get that 〈J

IW
λ ⋆Zν〉 = 〈JIW

λ 〉,
which yields the implication.

The implication ii) ⇒ i) is clear from JIW
λ ∈ PervIW , JIW

λ ⋆ Jµ ∼= JIW
λ+µ.

Finally to check that i) ⇒ ii) we need an auxiliary statement.

Lemma 1. (see [1, Lemma 15]) Given F ∈ DIW (Fℓ) there exists a finite subset
S ⊂ Λ, such that for µ, λ ∈ Λ we have i∗µ(F ⋆ jν!) = 0 unless µ ∈ S+ ν.

Now, to check i) ⇒ ii) let S ⊂ Λ be constructed as in the Lemma, and let
ν ∈ Λ be such that both {ν} and S + ν are contained in the set of antidominant
weights. Using the standard exact triangles connecting a constructible complex, its
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∗ restriction to a closed subset and ! extension from the open complement we see
that

(7) F ⋆ jν! ∈ 〈∆λ[d] | λ ∈ S+ ν, d ∈ Z〉.

Since ν is antidominant, we have Jν = jν!; so condition i) says that F ⋆ jν! ∈
D≤0(PervIW (Fℓ)). Given (7), this is equivalent to F ⋆jν! ∈ 〈∆λ[d] | λ ∈ S+ν, d ≥
0〉. Since all λ appearing in the last expression are antidominant, we get that
F ⋆ Jν ∈ 〈JIW

λ [d] | d ≥ 0〉 which yields ii). �

3.3. The Baff action on DI0(Fℓ). The two sided cosets of I inG (̌(t)) are indexed
by Waff . For each w ∈ Waff fix a representative w ∈ IwI. Let wI0 = wI0w−1 (it
is easy to check that the functors defined in the Lemma below do not depend on
this choice, up to a noncanonical isomorphism). Let Convw denote the quotient of
I0 × Fℓ by the action of I0 ∩w I0 given by g : (γ, x) 7→ (γg−1, g(x)). The action
map descends to a map convw : Convw → Fℓ.

For F ∈ DI0(Fℓ) the complex w∗(F) is equivariant with respect to I0 ∩w I0,
thus the complex C⊠w∗F on I ×Fℓ descends to a canonically defined complex on
Convw, let us denote it by Fw. The following is standard.

Lemma 2. There exists an (obviously unique) action of Baff on DI0(Fℓ), such
that for w ∈Waff ,

w̃ : F 7→ convw∗(Fw)[ℓ(w)].

It satisfies:

w̃−1 : F 7→ convw−1!(Fw)[ℓ(w)].

3.4. A coherent description of DI0(Fℓ). A proof of the following result will
appear in [4], see also announcement in [3].

Define the Steinberg variety as St = g̃×g Ñ . Let AvIW : DI0(Fℓ) → DIW (Fℓ)
be the averaging functor, i.e. the adjoint functor to the embedding of DIW (Fℓ)
into the category of constructible complexes on Fℓ, restricted to DI0(Fℓ).

Theorem 4. There exists an equivalence of triangulated categories

Φ : Db(CohG(St)) ∼= DI0(Fℓ),

satisfying the following properties.
a) Φ intertwines the Baff action from section 2 with that from 3.3.

b) pr2∗ ◦ Φ−1 ∼= Φ−1
IW ◦AvIW .

We refer the reader to [3] and [9] for a discussion of some other properties of this
equivalence.

3.5. The ”new t-structure”. We are now in the position to derive a partial
answer to a question of [9].

Proposition 2. For F ∈ DI0(Fℓ) the following are equivalent
i) For all λ ∈ Λ we have F ⋆ Jλ ∈ D≤0(PervI0(Fℓ)).
i′) There exists λ0 such that F ⋆ Jλ ∈ D≤0(PervI0(Fℓ)) for λ ∈ λ0 − Λ+.
ii) Φ−1(F) ∈ D≤0(CohG(St)) where D≤0(CohG(St)) is equipped with the braid

positive normalized t-structure for S = Ñ .
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Proof. i)⇒ i′) is obvious. To see that i′)⇒ i) notice that any λ ∈ Λ can be written
as λ = λ′ + µ where µ ∈ Λ+ and λ′ ∈ λ0 − Λ+; then F ⋆ Jλ = (F ⋆ Jλ′) ⋆ jµ∗ ∈
D≤0(PervI0(Fℓ)) since convolution with jw∗ is right exact as it amounts to taking
direct image under an affine morphism.

It remains to show that i) ⇔ ii). Assume that i) holds for a given F . In view of
Theorem 2a) and compatibility of the Baff actions, we need to check that for all

b ∈ B+
aff , pr∗(Φ

−1(b(F))) ∈ D≤0(Coh(Ñ )). Since B+
aff acts on Db(PervI0(Fℓ))

by left exact functors, b(F) ⋆ Jλ ∈ D≤0(PervI0 (Fℓ)) for all b ∈ B+
aff , λ ∈

Λ. Thus AvIW (b(F)) ⋆ Jλ ∈ D≤0(PervIW (Fℓ)) for all λ. Applying Proposi-
tion 1 to AvIW (b(F)) ⋆ Jλ we see that Φ−1

IW (AvIW (b(F))) = pr∗(b(Φ
−1(F))) ∈

D≤0(CohG(Ñ )), which gives ii).
The converse statement follows from Proposition 1 and the following

Proposition 3. Suppose F ∈ DI0(Fℓ) is such that AvIW (b(F)) ∈ D≤0(PervIW (Fℓ))
for all b ∈ B+

aff . Then F ∈ D≤0(PervI0(Fℓ)).

Proof. Let F be as in the statement of the Proposition, and let n be the smallest
integer such that F ∈ D≤n

I0 (Fℓ). We need to show that n ≤ 0.
Let Fn be the n-th perverse cohomology sheaf and L be an irreducible quotient

of Fn. It suffices to show that

(8) pervH0(AvIW (b(L))) 6= 0

for some b ∈ B+
aff : then using right exactness of the action of b ∈ B+

aff we see that

the composed arrow b(F) → b(Fn[−n]) → b(L[−n]) induces a surjection on the
n-th perverse cohomology sheaf, hence (8) implies that n-th perverse cohomology
of AvIW (b(F)) does not vanish, thus n ≤ 0.

We now check (8). First we claim that there exists b ∈ B+
aff such that AvIW (b(L)) 6=

0. For this we need the following variation of Lemma 1.

Lemma 3. Given F ∈ DI0(Fℓ) there exists a finite subset S ⊂ Waff , such that
for w1, w2 ∈Waff we have j!w2

(w̃1(F)) = 0 unless w2 ∈ w1 ·S.

Proof. is similar to that of Lemma 1 (see [1, Lemma 15]).

Now take b = λ̃ for a dominant weight λ. We can assume that if w = µ · wf ∈
S where S is as in the Lemma with F = L, wf ∈ W , µ ∈ Λ, then λ + µ is
strictly dominant. Then each left coset of W in Waff contains at most one element

such that the ! restriction of λ̃(L) to the corresponding I orbit is non-zero (no
cancelations in the spectral sequence containing exactly one non-zero entry). If

such an element exists then the corresponding costalk of AvIW (λ̃(L)) does not

vanish; thus AvIW (λ̃(L)) 6= 0 for such λ.
Choose now b ∈ B+

aff such that AvIW (b(L)) 6= 0 and b is an element of minimal
possible length satisfying this property. Notice that L is I-equivariant, and for an
I-equivariant complex L we have w̃(L) ∼= jw∗ ⋆ L where ⋆ denotes convolution of
I-equivariant complexes on Fℓ. In particular, when w = sα is a simple reflection
we have s̃α(L) = jsα∗ ⋆ L, s̃α

−1(L) = jsα! ⋆ L. The perverse sheaves jsα!, jsα∗

are concentrated on the closure of a one dimensional I-orbit; this closure can be
identified with P1, and we denote it by P1

α. We have an exact sequence of perverse
sheaves on P1

α:

0→ δe → jsα! → jsα∗ → δe → 0,
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where δe denotes the sky-scraper at the zero-dimensional I-orbit {e} ⊂ P1
α. This ex-

act sequence shows that s̃α(L) and s̃α
−1(L) are isomorphic in the quotient modulo

the thick subcategory generated by L. Let b = s̃α1
· · · s̃αn be a minimal decompo-

sition of b. Then our assumptions on b imply that

AvIW (b(L)) ∼= AvIW (b′(L)),

where b′ = s̃−1
α1
· · · s̃−1

αn
. Since the action of b is right exact, the action of b′ is left

exact and AvIW is exact, we see that AvIW (b(L)) is a perverse sheaf; thus the
assumption on b implies (8).

Remark 4. The idea of the proof is partly borrowed from [5, 2.2].

Corollary 1. There exists a t-structure τnew on DI0(Fℓ) given by: F ∈ D≤0,new

iff F ⋆ Jλ ∈ D≤0(PervI0(Fℓ)). The composed equivalence

DI0(Fℓ)←̃−
Φ

Db(CohG(St))−̃→
(2)

Db(AÑ –modGcoh)

sends τnew to the tautological t-structure on Db(AÑ–modGcoh).

Remark 5. Corollary provides a positive partial answer to Question 2.1.3 of [9].
In more detail, in loc. cit. the so called new t-structure is defined on a certain
Ind-completion of the bounded derived category of finitely generated D-modules
on Fℓ. Then the question is posed whether this t-structure induces one on the
original (not completed) bounded derived category (in a footnote the authors say
they expect a negative answer). The above Corollary gives a positive answer to
a weaker question: it shows that the new t-structure of [9] induces one on the
bounded derived category of I0-equivariant finitely generated D-modules on Fℓ.

4. Results of Frenkel-Gaitsgory and a proof of Theorem 1

4.1. The functor to modules. Recall the notion of a nilpotent oper on a punc-
tured formal disc [11] (see also [2] for a general introduction to the notion of an
oper); let Opnilp be the infinite dimensional scheme parameterizing such opers. By
definition O ∈ Opnilp is a collection of data O = (E , F,∇) where E is a G-bundle
on the formal disc D = Spec(C[[t]]), ∇ is a connection on E , having a first order
pole at the origin x0 ∈ D, ∇ : ad(E)→ t−1ad(E)Ω1

D; and F is a B-structure on the
bundle ad(E), these should satisfy a certain compatibility condition.

The compatibility implies in particular that the residue of the connection is
nilpotent and preserves the B-structure on the fiber at the closed point x0; thus
we get a canonical map Opnilp → Ñ /G. We will say that a point (e, b) ∈ Ñ is
compatible with a given nilpotent oper if it lies in the corresponding G-orbit.

The space of all opers maps isomorphically to the spectrum of center of the
category Ucritĝ–mod by [8].

The following result is a direct consequence of [9] compared to Proposition 2.
We identify DI0(Fℓ) with the category of I0 equivariant critically twisted D-

modules on Fℓ, this is possible by Riemann-Hilbert correspondence, since the crit-
ical twisting is integral. Then we get the derived functor of global sections from
DI0(Fℓ) to the derived category of Ucritĝ-modules; in fact it lands in the derived
category of I0 monodromic modules [9].

Recall that Be = {e}
L
×g g̃.
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Theorem 5. a) Fix O ∈ Opnilp and e ∈ N so that Res(O) is in the conjugacy
class of e. Then there exists an equivalence

ΦO : DGCoh(Be)−̃→Db(Ucritĝ–modI
0

O ).

b) Fix ẽ = (e, b) ∈ Ñ compatible with O. For F ∈ DGCoh(Be) we have:

ΦO(F) ∈ D>0(Ucritĝ–modI
0

O ) iff HomDbCoh(St)(G, iẽ ∗F) = 0 for any G ∈ Db(CohG(St))

which belongs to D≤0 with respect to the braid positive normalized t-structure with

S = Ñ . Here iẽ is the composed map g̃
L
×g {e}−̃→St

L
×Ñ {ẽ} → St = g̃×g Ñ .

Proof. Part (a) is [9, Corollary 0.6].
To check (b) we need to recall the idea of the proof of [9, Corollary 0.6]. That

result is obtained by combining our equivalence of Theorem 4 with the equivalence

of loc. cit., Main Theorem 2 between a certain Ind-completion of Db(Ucritĝ–modI0

)
and an (appropriately defined) base change of the categoryDI0(Fℓ) with respect to

the morphism Opnilp → Ñ/G; here the construction of [1] is used to endowDI0(Fℓ)

with the structure of a category over Ñ /G (see [9] and references therein for a
definition of a category over a stack and the notion of base change in this context).
Thus, using the usual notation for base change (and omitting Ind-completion from
notation), [9, Main Theorem 2] asserts that:

(9) Db(Ucritĝ–modI0

) ∼= Opnilp ×Ñ/G DI0(Fℓ).

Furthermore, the categoryDb(Ucritĝ–modI
0

O ) is obtained fromDb(Ucritĝ–modI0

)
by base change with respect to the morphism of point embedding {O} → Opnilp.
Thus we get

Db(Ucritĝ–modI
0

O ) ∼= {O} ×Opnilp
(Opnilp ×Ñ/G DI0(Fℓ)) ∼= {O} ×Ñ/G DI0(Fℓ).

Substituting the equivalence of Theorem 4: DI0(Fℓ) ∼= Db(CohG(St)) we can
rewrite the latter category as

{O} ×Ñ/G Db(Coh(St/G)) ∼= DGCoh({O}
L
×Ñ/G St/G)

where the equivalence comes from basic properties of base change for categories.
Finally,

(St/G)
L
×Ñ/G {O}

∼= (g̃/G)×g/G (Ñ /G)
L
×Ñ/G {O}

∼= g̃
L
×g {O} ∼= g̃

L
×g {e},

which gives the desired equivalence. Notice that the tautological functorDb(Ucritĝ–modI
0

O )→

Db(Ucritĝ–modI
0

) corresponds under the above equivalences to the push-forward
functor iO∗ : {O} ×Ñ/G DI0(Fℓ) → Opnilp ×Ñ/G DI0(Fℓ) which comes from the

point embedding iO : {O} → Opnilp via functoriality of the base change construc-
tion.

We are now ready to deduce statement (b) from the exactness statement in [9,
Main Theorem 2]. The latter yields the following description of

Φ−1
O (D>0(Ucritĝ–modI

0

O )) (cf. definition of the t-structure in loc. cit., 3.6.1):

for F ∈ DGCoh({e}
L
×g g̃) we have ΦO(F) ∈ D>0(Ucritĝ–modI

0

O ) iff the following
holds. For any G ∈ DI0(Fℓ) such that Jλ ⋆G ∈ D≤0(PervI0 (Fℓ)) for all λ we have

(10) HomOpnilp×Ñ/GDI0 (Fℓ)(pr
∗
2(G), iO∗(F

′)) = 0,
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where F ′ is the image of F under the equivalence DGCoh({e}
L
×g g̃) ∼= {O} ×Ñ/G

DI0(Fℓ), and pr∗2 denotes the natural pull-back functor DI0(Fℓ) → Opnilp ×Ñ/G

DI0(Fℓ).
Since the composed morphism pt → Ñ/G is isomorphic to the composition

{ẽ} → Ñ → Ñ/G, we can use projection formula to simplify the last condition to:

Hom
DGCoh({ẽ}

L

×
Ñ
St)

(i∗ẽ(Φ
−1(G)),F) = 0,

where iẽ is the map {ẽ}
L
×Ñ St→ St. In view of Proposition 2 we get the result.

4.2. The proof of Theorem 1. In view of Theorem 5 it suffices to check that
the image of D>0(Ae–modfg) under equivalence (1) consists of such objects F ∈
DGCoh(g̃e) that Hom(G, iẽ∗(F)) = 0 when G ∈ Db(CohG(St)) lies in D≤0 with

respect to the normalized braid positive t-structure with S = Ñ . This is immediate
from Theorem 2.

Remark 6. The equivalences of [9] are based on existence of a certain infinite di-
mensional vector bundle on the space of Miura opers carrying an action of ĝ at the
critical level. According to a conjecture of [9] the fibers of this bundle are baby
Wakimoto modules for ĝ at the critical level.

Likewise, the equivalence of [6], [5] are based on the existence of certain vector
bundles on the space g̃ and its subspaces. In particular, in [6] a certain vector
bundle on the formal neighborhood of a Springer fiber in g̃ over a field of positive
characteristic k is constructed. It carries an action of the Lie algebra gk and its
fibers are baby Verma modules for gk.

Theorem 1 shows that the two vector bundles are related. In particular, consider
their pull-back to a fixed Springer fiber (defined as either derived, or an ordinary
scheme) where the Springer fiber is embedded in the space of Miura opers by fixing a
point in Opnilp. Then the bundle of baby Verma modules in positive characteristic is
a sum of indecomposable summands; for almost all values of p = char(k) each such
summand can be lifted to characteristic zero, and the bundle of Ucritĝmodules is the
sum of the resulting indecomposable bundles (generally with infinite multiplicities).

It would be interesting to find a more direct explanation of this phenomenon.
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Birkhäuser, Boston.

[12] D. Gaitsgory, Construction of central elements in the affine Hecke algebra via nearby cycles,

Invent. Math. 144 (2001), no. 2, 253–280.
[13] D. Kazhdan, G. Lusztig, Affine Lie algebras and quantum groups, Intern. Math. Res. Notices

2 (1991), 21–29.
[14] G. Lusztig, Bases in equivariant K-theory II, Represent. Theory 3 (1999), 281–353.
[15] G. Lusztig, Periodic W -graphs, Represent. Theory 3 (1999) 281–353.
[16] S. Riche, Koszul duality and modular representations of semi-simple Lie algebras, Duke

Math. J., 154 (2010), no. 1, 31–134.

Department of Mathematics, Massachusetts Institute of Technology, 77
Massachusetts ave., Cambridge, MA 02139, USA

E-mail address: bezrukav@math.mit.edu

Oracle Hardware and Software Engineering, 400 Oracle Parkway, Red-
wood City, CA 94065

E-mail address: qianlin88@gmail.com


	1. Introduction
	1.1. Modules at the critical level
	1.2. Noncommutative Springer resolution
	1.3. Conventions and notations
	1.4. Acknowledgements

	2. Noncommutative Springer resolution
	2.1. Base change to a point and canonical bases
	2.2. The equivariant version

	3. Perverse sheaves on the affine flag variety
	3.1. Affine flag variety and categories of constructible sheaves
	3.2. The equivalence of AB and its relation to the t-structures
	3.3. The Baff action on DI0(F)
	3.4. A coherent description of DI0(F)
	3.5. The "new t-structure"

	4. Results of Frenkel-Gaitsgory and a proof of Theorem 1
	4.1. The functor to modules
	4.2. The proof of Theorem 1

	References

