
MIT Open Access Articles

Matroids and integrality gaps for
hypergraphic steiner tree relaxations

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Goemans, Michel X., Neil Olver, Thomas Rothvoss, and Rico Zenklusen. “Matroids
and integrality gaps for hypergraphic steiner tree relaxations.” In Proceedings of the 44th
symposium on Theory of Computing - STOC 12, 1161. Association for Computing Machinery,
2012.

As Published: http://dx.doi.org/10.1145/2213977.2214081

Persistent URL: http://hdl.handle.net/1721.1/80862

Version: Original manuscript: author's manuscript prior to formal peer review

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike 3.0

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/80862
http://creativecommons.org/licenses/by-nc-sa/3.0/

Matroids and Integrality Gaps
for Hypergraphic Steiner Tree Relaxations

Michel X. Goemans∗ Neil Olver† Thomas Rothvoß‡ Rico Zenklusen§

M.I.T.

December 14, 2011

Abstract

Until recently, LP relaxations have only played a very limited role in the design of approximation
algorithms for the Steiner tree problem. In particular, no (efficiently solvable) Steiner tree relaxation was
known to have an integrality gap bounded away from 2, before Byrka et al. [3] showed an upper bound
of ≈ 1.55 of a hypergraphic LP relaxation and presented a ln(4) + ε ≈ 1.39 approximation based on
this relaxation. Interestingly, even though their approach is LP based, they do not compare the solution
produced against the LP value.

We take a fresh look at hypergraphic LP relaxations for the Steiner tree problem—one that heavily
exploits methods and results from the theory of matroids and submodular functions—which leads to
stronger integrality gaps, faster algorithms, and a variety of structural insights of independent interest.
More precisely, along the lines of the algorithm of Byrka et al. [3], we present a deterministic ln(4) + ε
approximation that compares against the LP value and therefore proves a matching ln(4) upper bound on
the integrality gap of hypergraphic relaxations.

Similarly to [3], we iteratively fix one component and update the LP solution. However, whereas
in [3] the LP is solved at every iteration after contracting a component, we show how feasibility can be
maintained by a greedy procedure on a well-chosen matroid. Apart from avoiding the expensive step
of solving a hypergraphic LP at each iteration, our algorithm can be analyzed using a simple potential
function. This potential function gives an easy means to determine stronger approximation guarantees
and integrality gaps when considering restricted graph topologies. In particular, this readily leads to a
73
60 ≈ 1.217 upper bound on the integrality gap of hypergraphic relaxations for quasi-bipartite graphs.

Additionally, for the case of quasi-bipartite graphs, we present a simple algorithm to transform an
optimal solution to the bidirected cut relaxation to an optimal solution of the hypergraphic relaxation,
leading to a fast 73

60 approximation for quasi-bipartite graphs. Furthermore, we show how the separation
problem of the hypergraphic relaxation can be solved by computing maximum flows, which provides a
way to obtain a fast independence oracle for the matroids that we use in our approach.

∗E-mail: goemans@math.mit.edu. Supported by NSF grants CCF-1115849 and CCF-0829878, and by ONR grant N00014-
11-1-0053.
†E-mail: olver@math.mit.edu. Supported by NSF grant CCF-1115849.
‡E-mail: rothvoss@math.mit.edu. Supported by the Alexander von Humboldt Foundation within the Feodor Lynen

program, by ONR grant N00014-11-1-0053 and by NSF contract CCF-0829878.
§E-mail: ricoz@math.mit.edu. Supported by NSF grants CCF-1115849 and CCF-0829878, and by ONR grants N00014-

11-1-0053 and N00014-09-1-0326.

ar
X

iv
:1

11
1.

72
80

v2
 [

cs
.D

M
]

 1
3

D
ec

 2
01

1

1 Introduction

The Steiner tree problem is one of the most fundamental and important problems in Computer Science and
Operations Research. Whereas a 2-approximation is easily obtained by computing a minimum spanning tree
over the terminals, obtaining algorithms with an approximation guarantee bounded away from 2 has proven
to be a non-trivial task. The problem is known to be inapproximable to within 96

95 , unless NP = P [1, 8]).
There has been a long sequence of combinatorial approximation algorithms [9, 24, 12, 19, 21], based on
different greedy approaches, culminating in the famous 1 + ln(3)

2 + ε < 1.55 approximation of Robins and
Zelikovsky [21]. No further progress was achieved until Byrka, Grandoni, Rothvoß and Sanità [3] presented
the first LP-based approach leading to a ln(4) + ε ≈ 1.39 approximation. A major hindrance in the design of
LP-based Steiner tree algorithms is a rather poor understanding of potential LP relaxations. In particular,
until the result of [3], for no (efficiently solvable) LP relaxation of the Steiner tree problem was it known
whether the integrality gap was bounded away from 2. Intriguingly, even though their ln(4)+ε approximation
algorithm is based on a particular LP relaxation, its approximation guarantee is not with respect to the LP
solution and does not imply a ln(4) integrality gap for the relaxation. In [3], the authors show a weaker
≈ 1.55 integrality gap using a technique not directly linked to their algorithm. Chakrabarty et al. [7] provide
a simpler alternative proof of the same bound.

The linear relaxation used by Byrka et al., the directed component-based relaxation, was introduced
by Polzin and Vahdati-Daneshmand [18], based in turn on an equivalent undirected component-based LP
introduced by Warme [23]. It is the undirected version that we will use in this paper. Another notable
relaxation is the partition-based LP introduced by Könemann et al. [13]. In [6], Chakrabarty et al. showed
that this relaxation is equivalent to the others mentioned above, and introduced the term “hypergraphic” for
this family of relaxations. They also proved that basic solutions are sparse, having support size less than the
number of terminals.

The limited understanding of LP relaxations of the Steiner tree problem is arguably a major barrier in
the design of stronger approximation algorithms. The goal of this work is to fill this gap by providing a
fresh view on the component-based LP relaxation—one that heavily exploits methods and results from the
theory of matroids and submodular functions. More precisely, based on the approach of Byrka et al. [3], we
present a deterministic ln(4) + ε algorithm that starts with a solution to the component-based LP relaxation,
iteratively contracts a component and updates the LP solution. The algorithm of Byrka et al. solves the
component-based LP (through a very large extended formulation) in each iteration after contracting, in order
to again obtain a feasible solution. By contrast, we show how the LP can be modified by a simple greedy
algorithm over a well-chosen matroid to achieve the same goal. This leads to a considerably faster way to
update the LP, but more importantly, we show how the approximation quality of our approach can be analyzed
with respect to the initial LP solution. This implies a bound of the integrality gap of the component-based LP
relaxation of ln(4). By comparison, the best known lower bound is 8/7 ≈ 1.142 (e.g., by the example of
[13]). Furthermore, we show how the separation problem of the component-based relaxation can be reduced
to computing maximum flows. Whereas this result is likely to be of independent interest, it also provides a
way to obtain a fast independence oracle for the matroids that we use in our approach.

Additionally, we further investigate the special case of quasi-bipartite graphs, which has played a central
role in the design of approximation algorithms for the Steiner tree problem, as well as to find APX-hard
problem classes. Rajagopalan and Vazirani [20] showed that the integrality gap of the bidirected cut relaxation
for such graphs can be bounded by 3/2. This was later improved to 4/3 [5] and to 1.28 [7]. We obtain a 73

60
bound for the integrality gap, again matching the approximation factor of [3]. Such a bound was previously
known only for the case when all edge costs are equal [7]. Chakrabarty et al. [6] showed that on quasi-bipartite
graphs, the bidirected cut and hypergraphic relaxations are actually equivalent. However their proof is based
on a duality argument, and they leave as an open problem the question of converting a solution from the
bidirected cut relaxation to the hypergraphic relaxation efficiently (more quickly than simply optimizing the

1

hypergraphic LP). We present a simple algorithm to perform this transformation; since the bidirected cut
relaxation can be solved much more efficiently via a compact extended formulation, this gives a much faster
method of solving the hypergraphic LP in the quasi-bipartite case. Combining this result with the suggested
approximation algorithm, we obtain a significantly faster 73

60 approximation than the one of Byrka et al. [3],
since we do not need to (repeatedly) optimize the component-based relaxation by using either the ellipsoid
method or a very large extended formulation.

2 Discussion of results and techniques

2.1 The component-based LP

Let G = (V,E) be an undirected graph with terminals R ⊆ V and edge costs c : E → R+. A component C
is simply a subgraph of G with the property that it is a tree spanning V (C), all leaves of C are terminals, and
all internal nodes are non-terminals. Write cost(C) :=

∑
e∈E(C) c(e) for the cost of a component C. We

will frequently need the terminal set of a component C ∈ K, and so by abuse of notation, when we refer to
C as a vertex set, we mean the set V (C) ∩ R of terminals in C. In particular, |C| refers to the number of
terminals in C.

Now letK be the set of all components ofG; we assume that all components contain at least two terminals,
else they can be safely removed. We use the notation (Z)+ := max{Z, 0}. Then the component-based LP
relaxation is as follows [23]:

min
∑
C∈K

xC cost(C)∑
C∈K

xC(|S ∩ C| − 1)+ ≤ |S| − 1 ∀S ⊆ R,S 6= ∅∑
C∈K

xC(|C| − 1) = |R| − 1

xC ≥ 0 ∀C ∈ K.

(LP)

Borchers and Du [2] showed that the optimal k-restricted Steiner tree, meaning only components with at
most k terminals can be used, has cost at most 1 + 1/blog2 kc times the cost of an optimal Steiner tree.
Furthermore, when restricting the variables in (LP) to components with at most k terminals, the resulting
linear program can be solved efficiently, e.g., by solving a polynomial-size extended formulation [3]. It
follows that for any fixed ε > 0, a (1 + ε)-approximate solution to (LP) can be obtained efficiently. We also
point out in Appendix E that optimizing (LP) exactly is strongly NP-hard (this does not seem to have been
previously observed).

The framework of our algorithm is similar to Byrka et al. [4], and in particular, it is iterative in nature.
They begin by computing a near-optimal fractional solution x to (LP). They then sample a component C at
random, proportional to its entry xC , and contract this component. The solution x is no longer feasible to
(LP) on this new contracted instance, so they re-solve the LP and iterate this procedure until all terminals are
connected.

In their analysis, they show that a single random contraction reduces the cost of the optimum Steiner
tree by a certain factor in each iteration. The crucial ingredient is a lower bound on the expected cost of
edges that could be removed from an optimum solution after a contraction, while still obtaining a Steiner
tree. To obtain a bound on the integrality gap, we need a stronger result that says even a fractional solution
becomes significantly cheaper after a random contraction. Even for a fixed set of terminals Q, it was unclear
how to modify a fractional solution in order to preserve feasibility after contraction—a question that had a

2

simple answer in the integral case. Our first goal will be to obtain an understanding of the structure of these
modifications.

While it can be avoided, it significantly simplifies the discussion to consider “blown up” versions of
solutions to (LP). Consider any x ∈ QK+, and let N ∈ N be such that xC ·N ∈ N for all C ∈ K. The minimal
blowup graph corresponding to x is the unweighted multigraph defined as follows. First take the disjoint
union of xC ·N disjoint copies of C for each component C; then identify, for each v ∈ R, all the copies
of v. The edge costs of X are inherited from G in the obvious way. See Figure 1 for an example of an LP
solution and its associated minimal blowup graph. Observe then that cost(X) = N · cost(x). Note that X
(along with N , but this will remain fixed throughout) encodes all the information in x. In particular, given X
we can determine all of its components: these are simply the maximal connected subgraphs that are trees
whose leaves are precisely the terminals spanned. Thus we can define Γ(X) as the set of components of a
blowup graph X . Each component C ∈ Γ(X) is a subgraph of X , but again, we will abuse notation when the
context is clear and sometimes use C to refer to just the terminals of C. Thus, e.g., for some S ⊆ R, S ∩ C
refers to the terminals in C that are also in S.

We will need slightly more generality in our definition of a blowup graph. For any t ∈ N, let Gt be the
multigraph obtained by first taking t disjoint copies of G, and then for each v ∈ R, identifying all copies of v.
For a solution y with corresponding minimal blowup graph Y , we call a multigraph Y ′ a (not necessarily
minimal) blowup graph corresponding to y if (i) Y ′ ⊆ Gt for some t ∈ N, (ii) Y ′ ⊇ Y , and (iii) for any
distinct terminals u, v ∈ R, there is no u-v-path in Y ′ that is not already present in Y . Any edges in Y ′ that
were not in Y we call pendant edges. We will say that a blowup graph Y is feasible if it corresponds to a
feasible solution to (LP); otherwise we call it infeasible. Note that pendant edges have no effect on feasibility;
they will always be removed in what we will later call a “cleanup” step.

2.2 Edge removal after contraction

Let X be the blowup graph corresponding to some solution x. We are interested in the situation after
contracting some full component of G. In order to avoid some annoying technicalities, for now instead of
contracting Q we will think of increasing the value of xQ by 1. In other words, in terms of the blowup
graph, we take N fresh copies of component Q and add it to X . We denote the new blowup graph obtained
by X ~ Q. Formally, X ~ Q is obtained by taking the disjoint union of X and N copies of Q, and then
identifying all copies of v for each v ∈ R.

It is clear that X ~Q is not feasible. We are interested in describing the set of edges F ⊆ E(X) that can
be removed so that (X ~Q)− F is feasible.

This is the primary reason that it is simpler to work with the blowup graph X rather than x; this
modification operation is much simpler than an equivalent operation defined on x. For example, removing a
single edge from X can have the effect of splitting up some component C into subcomponents C1 and C2;
the corresponding effect on x is to reduce xC by 1/N and increase xC1 and xC2 by the same amount.

Unfortunately, the set of all possible edge removals is not so well behaved. In order to expose the structure
we need, we must consider minimal removals. Let

BQ = {B ⊆ E(X) | (X ~Q)−B is feasible, and B is minimal with this property}.

Figure 2 shows an example; after a set B ∈ BQ is removed, an edge of the blowup graph becomes pendant,
and so can also be removed without affecting feasibility.

One of the most crucial elements of our analysis is the following:

Theorem 2.1. For every component Q, BQ forms the set of bases of a matroid MQ.

3

In particular, it follows that any minimal removal set has the same number of edges; this number turns out
to be N(|Q| − 1). We are able to give a precise description of the matroid MQ by giving its rank function;
more details of this will be given in Section 3. We can also show that the matroid is a gammoid (a special type
of matroid related to flows); see Appendix A. As an aside, we note that MQ depends only on the terminals of
Q, and not its structure; we could actually define a matroid MS for any subset S of terminals, but this will
not be important for our purposes.

We will now study which edge sets can be removed after the random contraction of a component. Even
though we will finally present a deterministic algorithm, this analysis will be helpful in guaranteeing the
existence of removal sets with certain properties by an averaging argument.

As before, let X be the blowup graph corresponding to a feasible LP solution x. Upon contracting
component Q, we may remove some edges in order to again obtain a feasible solution. In particular, by
Theorem 2.1, we can remove any basis of MQ. For added flexibility, we allow choosing a basis BQ ∈ BQ
randomly, according to any distribution we like. In this case, each edge e will be removed with some
probability qe. The probability vectors that are attainable are simply the convex combinations of incidence
vectors of the bases; in other words, precisely the vectors in B(MQ), the base polytope of MQ.

Now consider, as in [4], randomly contracting a single component, with component Q ∈ Γ(X) contracted
with probability 1/|Γ(X)|. Note that since each original component Q̃ ∈ K has NxQ̃ copies in Γ(X), this is
the same as contracting a component in K with probability proportional to xQ̃. Again, we allow ourselves to
choose an arbitrary distribution over BQ for removals on contracting Q, and ask what probability vectors p
describing edge removal probabilities are attainable. But any such probability vector is given by some convex
combination 1

|Γ(X)|
∑

Q∈Γ(X) q
Q, where qQ ∈ B(MQ). In other words, the attainable probability vectors

form precisely the polytope Brem given by the Minkowski sum

Brem =
1

|Γ(X)|
∑

Q∈Γ(X)

B(MQ).

This implies that Brem is a polymatroid [14]; from our knowledge of the rank functions of the MQ’s, we can
also describe the rank function of Brem, as will be described in detail in Section 3.

In the following, we use scaled cost to refer to costs reduced by a factor of N , compensating for the
blowup factor. The goal is to show that the expected scaled cost of removed edges is large, compared to the
expected cost of the component that is contracted. Perfection would be if we could always remove edges of
total scaled cost as large as the cost of the contracted component, but of course this is not possible (it would
imply an integrality gap of 1). Thus we lower our goals slightly. It is possible to show that there is a point
p ∈ Brem with pe ≥ N

2|Γ(X)| for all e ∈ E(X). This gives an expected decrease of cost(X)/(2|Γ(X)|) in the
LP solution after scaling down, and the expected cost of the contracted component is cost(X)/|Γ(X)|; so
this implies only an uninteresting bound of 2 on the integrality gap. Instead, we must choose the distribution
more carefully.

More precisely, we will choose a well-structured subset K ⊆ E(X) and only consider removal probabili-
ties p ∈ Brem whose support is contained in K. The set K will be chosen to be a minimal subset of E(X)
whose removal from E(X) disconnects all terminals in the blowup graph. We call such a set a splitting set1.
Interestingly, the family of all splitting sets form the bases of a cographic matroid, since K is a splitting set
precisely when E(X) \K is a spanning tree in the graph obtained from X by contracting together all its
terminals. As we will see more formally in the proof of Theorem 2.2, when choosing K to be a splitting
set, the set BKQ = {B ∈ BQ | B ⊆ K} is nonempty for every Q, and so form the bases of the matroid MK

Q

obtained by restricting MQ to K. This implies that the polytope BK
rem = {p ∈ Brem | supp(p) ⊆ K} of

1The complements of splitting sets are sometimes called losses.

4

removal probabilities we consider is nonempty, and thus forms the base polytope of the polymatroid obtained
by restricting the polymatroid corresponding to Brem to K.

Once we have chosen some splitting set K, we will call edges in K core edges, and all other edges
cleanup edges. To see the reason for this name, recall that the matroid MQ describes only the minimal edge
removals upon contracting Q. However, there may be other removals that are possible; for B ∈ BQ, there
may be pendant edges in (X ~Q)−B which can be removed without having any effect on feasibility. Our
choice of K ensures that for any edge e ∈ E(X) \K, e can be deleted (“cleaned up”) once enough edges of
K ∩ C have been removed. But just as importantly, we can prove

Theorem 2.2. If K is any splitting set, then there is a distribution over BKQ for each Q ∈ Γ(X) such that
if Q is chosen uniformly at random from Γ(X), and then B is chosen from BKQ according to the chosen
distribution, then

P{e ∈ B} ≥ N/|Γ(X)| for each e ∈ K.

This is discussed further in Section 3.

2.3 The algorithm

For the accounting in our analysis, we will need to keep track of precisely which edges in E(C)∩K must be
removed before an edge e ∈ E(C) \K can be deleted (cleaned up). Define W (e) ⊆ K, the witness set of
edge e, as the unique minimal set of edges such that after removing W (e), e becomes a pendant edge and can
be cleaned up. The fact that there exists such a unique set is shown in Lemma B.1 in the appendix. We also
define W (e) = {e} if e ∈ K. Figure 3 shows an example of a witness set.

We define a weight (distinct from the cost) on all core edges in such a way that the total weight of core
edges equals the total cost of X , by charging the cost of a cleanup edge to the core edges in its witness set.
More precisely, let

w(e) = c(e) +
∑

f /∈K:e∈W (f)

c(f)

|W (f)|
for all e ∈ K.

The following is an easy consequence of Theorem 2.2 and the fact that
∑

e∈K w(e) = cost(X):

Lemma 2.3. Let K be any splitting set. There exists some component Q such that cost(Q) ≤ w(BQ)/N ,
where BQ is a maximum weight basis of MK

Q .

For a given Q, a maximum weight basis of MK
Q can be found via a greedy approach; all that is needed is

an independence oracle. This we can obtain immediately from our understanding of the rank function of MK
Q ;

it can be computed using submodular function minimization (see (4) in the next section). However, while
polynomial time, this is quite slow. We can instead exploit the result that MK

Q is a gammoid, giving a much
faster independence oracle based on solving a maximum flow problem; this is discussed in Appendix A.

We are now ready to describe precisely our deterministic algorithm, given in Algorithm 1. In the
algorithm, at each stage we choose a component Q and contract it (in the usual sense, yielding an instance
with a smaller vertex set). Thus at intermediate stages of the algorithm, X will be a feasible blowup graph of
some contraction of the original graph G. We also emphasize that the witness sets W (e), and hence also the
weights w(e), depend on the blowup graph in the particular iteration.

We now define, for any blowup graph X and splitting set K, a potential function ΦK(X) by

ΦK(X) :=
∑

e∈E(X)

c(e)H(|W (e)|),

where H(`) := 1 + 1/2 + · · ·+ 1/` is the harmonic function.

5

Algorithm 1: A deterministic algorithm for Steiner tree demonstrating a ln(4) integrality gap.
Input :Graph G with edge costs c and terminal set R, feasible blowup graph X , and splitting set K.
Result: A Steiner tree T .

T ← ∅.
while T is not a Steiner tree do

Find a component Q ∈ Γ(X) and maximum weight basis B ∈ BKQ with cost(Q) ≤ w(B)/N .
Cleanup: Let F = {e /∈ K |W (e) ⊆ B}.
Update: T ← T ∪Q, X ← (X −B − F)/Q, K ← K \B.

end

Theorem 2.4. For any minimal splitting set K and feasible blowup graph X , Algorithm 1 yields a solution
of cost at most ΦK(X)/N .

The proof of this theorem (given in Appendix B) essentially boils down to showing that in a single step
of the algorithm, the expected cost of the contracted component is no larger than the decrease in the potential
function scaled down by 1/N . Let Xt and Kt be the blowup graph and splitting set at iteration t of the
algorithm, with Bt the selected removal set. We are able to show that ΦKt(Xt)− ΦKt+1(Xt+1) ≥ w(Bt),
from which the theorem immediately follows.

From this, we can use an averaging argument to show the ln(4) integrality gap bound. Essentially, if K is
chosen randomly from the matroid of possible minimal splitting sets according to an appropriate distribution,
it can be shown that

E{ΦK(X)} ≤ ln(4) · cost(X).

It is also possible to minimize ΦK(X) as a function of K, via a dynamic program. The full proof can be
found in the appendix: altogether we obtain, recalling cost(X) = N · cost(x),

Theorem 2.5. For any solution x of (LP), and choosing K to minimize ΦK(X), Algorithm 1 returns a
solution of cost at most ln(4) · cost(x).

We emphasize again that while we have described everything in terms of the blowup graph, it is possible
to implement Algorithm 1 directly in terms of the LP solution, yielding a polynomial time algorithm. Details
will be provided in the full version.

2.4 Quasi-bipartite graphs

The situation is much simplified in the case of quasi-bipartite graphs. In this case, we may choose K to
consist of all edges except for the cheapest in each component. This clearly minimizes ΦK(X), and it can be
shown that

Lemma 2.6. Let K = E(X) \ Emin, where Emin consists of a cheapest edge from every component. Then

ΦK(X) ≤ 73
60 · cost(X).

A 73/60 < 1.217 bound on the integrality gap immediately follows from Theorem 2.4. One of the major
drawbacks of relying on (LP), or any of the hypergraphic LPs, is that solving them is computational intensive;
in general, to obtain a 1 + ε approximation, nothing better than n2Ω(1/ε)

time is known. This can be improved
somewhat to nΩ(1/ε) in quasi-bipartite graphs, but this is still very slow. We show how to sidestep this issue
and obtain a reasonable running time for quasi-bipartite graphs by instead solving the much more tractable

6

bidirected cut relaxation, which has only O(n2) variables. Combined with the fact that we do not need to
re-solve the LP in each iteration, we obtain a markedly faster algorithm than the one of Byrka et al. [3].

More precisely, we show how a solution to the bidirected cut relaxation can be transformed into a solution
to (LP) with the same cost, via a natural greedy procedure. One step of the transformation consists of
taking, from a star centered around a Steiner vertex, all arcs with incoming flow and one arc with outgoing
flow. This yields one component for (LP); the capacities are then uniformly reduced on these edges and the
process is continued. The details of this are given in Appendix D. Previously, [6] showed that the bidirected
cut relaxation always has the same objective value as the hypergraphic relaxations, suggesting that such a
transformation should exist, but the question remained open.

3 Deeper into the matroid structure

In this section, we discuss in more detail the heart of our arguments; uncovering the matroid structure of
edge removals, and showing appropriate uniform removal probabilities after the random contraction of a
component.

In what follows, we will often need to refer to the terminal set of a component C, so we will again abuse
notation and write, e.g., |C| for the number of terminals in C. Define hX : 2R → N by

hX (S) = N(|S| − 1)−
∑

C∈Γ(X)

(|S ∩ C| − 1)+. (1)

It is immediate from (LP) that X is feasible if and only if

hX (S) ≥ 0 ∀S ⊆ R,S 6= ∅ and hX (R) = 0. (2)

Indeed, hX (S) is, up to scaling, simply the slack (or if negative, violation) of the corresponding constraint in
(LP). Two important properties of hX are the following:

Lemma 3.1. For any blowup graph X ,
i) hX is intersecting submodular, i.e., for any two sets S1, S2 ⊆ E(X) with S1 ∩ S2 6= ∅,

hX (S1 ∪ S2) + hX (S1 ∩ S2) ≤ hX (S1) + hX (S2), and

ii) for any F ⊆ E(X) and ∅ 6= S ⊆ R, hX (S) ≤ hX−F (S) ≤ hX (S) + |F |.

Proof. i) This follows immediately from the fact that for any C ⊆ R, the function S → (|S ∩ C| − 1)+ is
intersecting supermodular.

ii) The removal of any additional edge e ∈ E(X) from X leads to a split of some component C of X
into subcomponents C1, C2 with C1 ∩ C2 = ∅, C1 ∪ C2 = C. Hence,

hX−e(S)− hX (S) = (|S ∩ C| − 1)+ − (|S ∩ C1| − 1)+ − (|S ∩ C2| − 1)+ ∈ {0, 1},

which leads to hX (S) ≤ hX−e(S) ≤ hX (S) + 1. Applying this repeatedly yields the claim.

An interesting consequence, that essentially follows by intersecting submodularity of hX and standard
uncrossing techniques, is that any basic feasible solution to (LP) has a support of size bounded by |R| − 1
(see, e.g., [10] for an example of this reasoning). For an equivalent version of (LP), this result was already
obtained through a rather involved technique by Chakrabarty et al. [6].

For convenience, define

hF̄ (S) := hX−F (S) = N(|S| − 1)−
∑

C∈Γ(X−F)

(|S ∩ C| − 1)+.

7

The following lemma describes feasibility of (X ~Q)− F in a convenient form, and also shows that we
need only consider constraints corresponding to subsets containing Q.

Lemma 3.2. The blowup graph (X ~Q)− F is feasible if and only if hF̄ (R) = N(|Q| − 1) and hF̄ (S) ≥
N(|Q| − 1) for all S ⊇ Q.

Proof. Let X ′ = (X ~Q)− F . Then X ′ is feasible iff hX ′(S) ≥ 0 for all S ⊆ R, S 6= ∅, with equality for
S = R. But

hX ′(S) = hF̄ (S)−N(|S ∩Q| − 1)+, (3)

and so this can be equivalently stated as hF̄ (S) ≥ N(|S ∩Q|− 1)+ for all S 6= ∅, and hF̄ (R) = N(|Q|− 1).
All that needs to be proved then is that only the constraints for S ⊇ Q need to be considered. So suppose

S is a violated set: hX ′(S) < 0. Then S ∩Q 6= ∅, otherwise hX ′(S) = hF̄ (S) ≥ hX (S) ≥ 0 by feasibility
of X . But for any such S,

N(|S| − 1)−N(|S ∩Q| − 1)+ = N(|S ∪Q| − 1)−N(|Q| − 1)+

and clearly
∑

C∈Γ(X−F)

(|S ∩ C| − 1)+ ≤
∑

C∈Γ(X−F)

(|(S ∪Q) ∩ C| − 1)+.

Subtracting and using (3), we obtain that hX ′(S∪Q) ≤ hX ′(S). Since S was a violating set, so is S∪Q.

Let E(X) be any subset of E(X), and define rQ : E(X)→ N by

rQ(F) = min
S⊇Q

hF̄ (S). (4)

We will show:

Proposition 3.3. The function rQ is the rank function of a matroid of rank N(|Q| − 1).

Once we have this, it is straightforward to show that this matroid precisely describes the minimal edge
removals:

Theorem 3.4. The set of bases of the matroid defined by rQ is precisely BQ.

Proof. Let B′Q be the set of bases of the matroid defined by rQ, and consider any B ∈ B′Q. By the definition
of rQ, we have that

hB̄(S) ≥ rQ(B) = N(|Q| − 1) for any S ⊇ Q.

Moreover, by Lemma 3.1 (ii),

hB̄(R) ≤ hX (R) + |B| = N(|Q| − 1);

the final equality follows since |B| = rQ(B) = N(|Q| − 1) and hX (R) = 0 by feasibility of X . Thus by
Lemma 3.2, (X ~Q)−B is feasible.

Conversely, consider any B ∈ BQ. By feasibility and Lemma 3.2 again, hB̄(S) ≥ N(|Q| − 1) for all
S ⊇ Q, with equality for S = R. Thus rQ(B) = N(|Q| − 1), and so there is some B′ ⊆ B with B′ ∈ B′Q.
But then B′ is also a feasible removal set by the above, and so by minimality B′ = B.

Proof of Proposition 3.3. First, observe from (1) applied to the empty blowup graph that

rQ(E(X)) = min
S⊇Q

N(|S| − 1) = N(|Q| − 1).

8

We must show that rQ is increasing, submodular, and satisfies rQ(F) ≤ |F | for all F ⊆ E(X). The fact
that rQ is increasing follows immediately from the definitions of rQ and hF̄ ; removing a larger set can only
increase the slack. Considering some fixed S ⊇ Q, we have by Lemma 3.1 (ii) that hX−F (S) ≤ hX (S)+ |F |.
Thus rQ(F) ≤ rQ(∅) + |F | = |F | since rQ(∅) = 0 by feasibility of X .

Now we come to the main part of the proof, showing that rQ is submodular. We must show that for any
F1 ⊆ F2 ⊆ E(X) and e /∈ F2,

rQ(F1 + e)− rQ(F1) ≥ rQ(F2 + e)− rQ(F2). (5)

It is clearly sufficient to show this for F1 and F2 differing by a single edge. Consider any S ⊇ Q and
i ∈ {1, 2}. The difference

hFi + e(S)− hFi(S) =
∑

C∈Γ(X−Fi)

(|C ∩ S| − 1)+ −
∑

C∈Γ(X−(Fi+e))

(|C ∩ S| − 1)+

is one or zero, and it is one precisely if e splits up some component C ∈ Γ(X − Fi) into two components
C1, C2 that both intersect S. If this is the case for some component in Γ(X − F2), then e will also split up
some component in Γ(X − F1) into two pieces both intersecting S, since X − F2 is a subgraph of X − F1.
Thus for any S ⊇ Q,

hF2 + e(S)− hF2
(S) ≤ hF1 + e(S)− hF1

(S). (6)

It also follows that for any S, S′ ⊆ R with Q ⊆ S ⊆ S′,

hF1 + e(S)− hF1
(S) ≤ hF1 + e(S

′)− hF1
(S′). (7)

Let Si be the set of terminal subsets containing Q that minimize hFi(S), over all S ⊇ Q. Since hF1

is intersecting submodular by Lemma 3.1, there is a unique maximal set S∗1 ∈ S1, meaning S∗1 ⊇ S for
all S ∈ S1. Similarly, there is a unique minimal set S∗2 ∈ S2; so S∗2 ⊆ S for all S ∈ S2. We first show
S∗2 ⊆ S∗1 . Notice that for S ⊇ Q with S /∈ S1 we have hF2

(S) ≥ hF1
(S) ≥ hF1

(S∗1) + 1, where the first
inequality follows by Lemma 3.1 (ii). Furthermore, hF2

(S∗1) ≤ hF1
(S∗1)+1, again by Lemma 3.1 (ii). Hence

hF2
(S∗1) ≤ hF2

(S) ∀S ⊇ Q,S /∈ S1, and thus S1 must contain some minimizers of hF2
, i.e., S1 ∩ S2 6= ∅.

Since S∗2 is the minimal set in S2 and S∗1 is the maximal set in S1 we obtain S∗2 ⊆ S∗1 .
We finally have

rQ(F2 + e)− rQ(F2) = hF2 + e(S
∗
2)− hF2

(S∗2)

≤ hF1 + e(S
∗
2)− hF1

(S∗2) by (6)

≤ hF1 + e(S
∗
1)− hF1

(S∗1) by (7), since S∗2 ⊆ S∗1
= rQ(F1 + e)− rQ(F1).

Proof of Theorem 2.2

We first show that for any component Q,

rQ(K) = N(|Q| − 1).

This in turn implies that BQ = {B ∈ BQ | B ⊆ K} is nonempty, since the rank of MQ is N(|Q| − 1) by
Proposition 3.3, and so Brem 6= ∅. Notice that for S ⊆ R,S 6= ∅, we have hK(S) = N(|S| − 1), since in
X −K all components contain precisely one terminal. Hence,

rQ(K) = min
S⊇Q

hK(S) = N(|Q| − 1).

9

As already discussed in Section 2, the polytope Brem is simply a weighted Minkowski sum of the base
polytopes B(MQ) for Q ∈ Γ(X). It is well known that the Minkowski sum of matroid polytopes is a
polymatroid, and moreover, the rank function of the sum is simply the sum of the rank functions of the
summands [14]. Thus, Brem is the base polytope of a polymatroid with rank function

r =
1

|Γ(X)|
∑

Q∈Γ(X)

rQ. (8)

To show that the point p given by pe = N/|Γ(X)| for all e ∈ K is in Brem, we need to show that
r(F) ≥ |F | ·N/|Γ(X)| for every F ⊆ K. Expanding out (8) and the definition of rQ, and writing SQ for
the subset S ⊇ Q that attains the minimum in (4), we obtain

r(F) =
1

|Γ(X)|
∑

Q∈Γ(X)

hF̄ (SQ).

We now observe that because K is a splitting set, hF̄ (R) = |F |. For imagine removing the edges of F from
X one by one; hX−F (R)− hX (R) just counts the number of times where a component is split by the deleted
edge in this process. But by the nature of minimal splitting sets, this must happen at every step—no pendant
edges are formed at any stage. Hence hF̄ (R)−hX (R) = |F |; moreover, hX (R) = 0 by feasibility, so indeed
hF̄ (R) = |F |. Thus to finish the proof, it suffices to show

Claim 3.5.
∑

Q∈Γ(X) hF̄ (SQ) ≥ N · hF̄ (R).

To prove Claim 3.5, we replace the function hF̄ on the left-hand side of the inequality by a function
f that lower bounds hF̄ and is well structured. More precisely, f is chosen to be a conic combination of
a special type of intersecting submodular functions which we call partition functions: for any partition
P = {P1, . . . , Pn} of R, the corresponding partition function fP is given by

fP(S) = (|{j ∈ [n] | Pj ∩ S 6= ∅}| − 1)+ ∀S ⊆ R.

The following theorem (whose proof can be found in Appendix C) guarantees the existence of the function f
that we need to prove Claim 3.5.

Theorem 3.6. Let h : 2U → R+ any nonnegative intersecting submodular function with h({v}) = 0 for all
v ∈ U . Then there is a monotone intersecting submodular function f of the form

f =
k∑
i=1

λifPi ,

for some k ∈ N, where λi > 0 and P i is a partition of U for each 1 ≤ i ≤ k, satisfying:
i) f(S) ≤ h(S) for all S ⊆ U , and

ii) f(U) = h(U).

Consider the function h+
F̄

defined by h+
F̄

(S) = max{hF̄ (S), 0}. Then h+
F̄

differs from hF̄ only on the
empty set, since hF̄ (S) ≥ 0 for all S 6= ∅. Thus h+

F̄
is still intersecting submodular, and also nonnegative.

Let f =
∑k

i=1 λifPi be the function obtained by applying Theorem 3.6 to h+
F̄

. We then have∑
Q∈Γ(X)

hF̄ (SQ) ≥
∑

Q∈Γ(X)

f(SQ) ≥
∑

Q∈Γ(X)

f(Q)

=
∑

Q∈Γ(X)

k∑
i=1

λifPi(Q) =
k∑
i=1

λi
∑

Q∈Γ(X)

fPi(Q),

(9)

10

where the first inequality holds since hF̄ (S) = h+
F̄

(S) ≥ f(S) for all S 6= ∅, and the second inequality holds
since f is monotone and Q ⊆ SQ.

As observed by Chakrabarty et al. [6], any solution x to (LP) satisfies the following partition constraints
for any partition P of R: ∑

C∈K
xCfP(C) ≥ |P| − 1,

where |P| is the number of sets in partition P . In our blown-up setting this translates into∑
Q∈Γ(X)

fP(Q) ≥ N(|P| − 1).

Combining this observation with (9) and using |Pi| − 1 = fPi(R), Claim 3.5 follows since

∑
Q∈Γ(X)

hF̄ (SQ) ≥
k∑
i=1

λi
∑

Q∈Γ(X)

fPi(Q) ≥
k∑
i=1

λiN(|Pi| − 1)

= N ·
k∑
i=1

λifPi(R) = N · f(R) = N · hF̄ (R),

where the last equality follows from property (ii) of Theorem 3.6.

11

r

1/2

1
1/2 1/2

(a) fractional solution x

r

(b) blowup graph X

Figure 1: In (a): fractional solution x (components drawn in different gray scales and labelled with their capacity xC).
In (b): blowup graph X for N = 2.

r

×2
(a) blowup graph X ~Q

r pendant

×2
(b) blowup graphX~Q−B after removal

Figure 2: In (a): X ~Q, edges in B ⊆ E(X) in bold, copies of Q are dotted, terminals in Q are filled gray. In (b):
feasible blowup graph X ~Q−B (which is not minimal due to the pendant edge that may also be removed).

u

beW (e) = {a, b, c} a

c

Pu

Figure 3: Illustration of the definition of W (e). Depicted is some component C with core edges K (solid) and cleanup
edges (dashed).

12

References

[1] M. Bern and P. Plassmann. The Steiner problem with edge lengths 1 and 2. Information Processing
Letters, 32(4):171–176, 1989.

[2] A. Borchers and D.-Z. Du. The k-Steiner ratio in graphs. SIAM Journal on Computing, 26(3):857–869,
June 1997.

[3] J. Byrka, F. Grandoni, T. Rothvoß, and L. Sanità. Steiner tree approximation via iterative randomized
rounding. Journal of the ACM. To appear.

[4] J. Byrka, F. Grandoni, T. Rothvoß, and L. Sanità. An improved LP-based approximation for Steiner
Tree. In Proceedings of the 42nd Annual ACM Symposium on Theory of Computing (STOC), pages
583–592, 2010.

[5] D. Chakrabarty, N. R. Devanur, and V. V. Vazirani. New geometry-inspired relaxations and algorithms for
the metric Steiner tree problem. In International Conference on Integer Programming and Combinatorial
Optimization (IPCO), pages 344–358, 2008.

[6] D. Chakrabarty, J. Könemann, and D. Pritchard. Hypergraphic LP relaxations for Steiner trees. In
International Conference on Integer Programming and Combinatorial Optimization (IPCO). 2010.

[7] D. Chakrabarty, J. Könemann, and D. Pritchard. Integrality gap of the hypergraphic relaxation of Steiner
trees: A short proof of a 1.55 upper bound. Operations Research Letters, 38(6):567 – 570, 2010.

[8] M. Chlebı́k and J. Chlebı́ková. The Steiner tree problem on graphs: Inapproximability results. Theoreti-
cal Computer Science, 406(3):207–214, 2008.

[9] E. N. Gilbert and H. O. Pollak. Steiner minimal trees. SIAM Journal on Applied Mathematics,
16(1):1–29, 1968.

[10] M. X. Goemans. Minimum bounded degree spanning trees. In Proceedings of the 47th IEEE Symposium
on Foundations of Computer Science (FOCS), pages 273–282, 2006.

[11] M. X. Goemans and Y. Myung. A catalog of Steiner tree formulations. Networks, 23(1):19–28, 1993.

[12] M. Karpinski and A. Zelikovsky. New approximation algorithms for the Steiner tree problem. Journal
of Combinatorial Optimization, 1(1):47–65, 1997.

[13] J. Könemann, D. Pritchard, and K. Tan. A partition-based relaxation for Steiner trees. Math. Program.,
127(2):345–370, 2011.

[14] C.J.H. McDiarmid. Rado’s theorem for polymatroids. Mathematical Proceedings of the Cambridge
Philosophical Society, 78:263–281, 1975.

[15] N. Megiddo. Applying parallel computation algorithms in the design of serial algorithms. J. ACM,
30(4):852–865, 1983.

[16] M. Padberg and L.A. Wolsey. Trees and cuts. In Combinatorial Mathamtics (Proceedings International
Colloquium on Graph Theory and Combinatorics), pages 511–517, 1983.

[17] J.-C. Picard and M. Queyranne. Selected applications of minimum cuts in networks. INFOR Canadian
Journal of Operational Research and Information Processing, 20:294–370, 1982.

13

[18] T. Polzin and S. Vahdati-Daneshmand. On Steiner trees and minimum spanning trees in hypergraphs.
Operations Research Letters, 31(1):12–20, 2003.

[19] H. J. Prömel and A. Steger. A new approximation algorithm for the Steiner tree problem with perfor-
mance ratio 5/3. Journal of Algorithms, 36:89–101, 2000.

[20] S. Rajagopalan and V. V. Vazirani. On the bidirected cut relaxation for the metric Steiner tree problem.
In ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 742–751, 1999.

[21] G. Robins and A. Zelikovsky. Tighter bounds for graph steiner tree approximation. SIAM Journal on
Discrete Mathematics, 19(1):122–134, 2005.

[22] A. Schrijver. Combinatorial Optimization, Polyhedra and Efficiency. Springer, 2003.

[23] D. Warme. Spanning Trees in Hypergraphs with Applications to Steiner Trees. PhD thesis, 1998.

[24] A. Zelikovsky. An 11/6-approximation algorithm for the network Steiner problem. Algorithmica,
9:463–470, 1993.

14

A Separation and gammoid structure

In this section, we investigate the separation problem for (LP). Although it is not necessary, for convenience
we will work in the blown up formulation; thus, for a given X , our goal is to determine whether (2) is satisfied
(see Section 3 for details of this and the definition of hX). In fact, we will do more; for any Q ⊆ R, Q 6= ∅,
we will find the most violated set over all S ⊇ Q. Given this, we can answer the separation question by
checking that minS⊇{v} hX (S) is zero for each choice of v (note that hX (∅) = −N , and so we must exclude
this trivial set from consideration). For each choice of v, one max-flow calculation will be required.

The construction is inspired by one for the forest polytope [17, 16] (see also [22, §51.4]). While
what follows is not precisely a generalization (in the case where all components have size 2, the resulting
construction is slightly different), it is similar in spirit. In the directed component-based relaxation, separation
via an equivalent flow-based formulation is completely straightforward. However this does not imply such a
formulation for the undirected version.

Since hX is an intersecting submodular function, it follows already that minS⊇Q hX (S) can be computed
in polynomial time [22], using submodular function minimization as a black box. However, the combinatorial
algorithm we demonstrate here, which reduces the separation problem to a max-flow calculation, gives some
additional insights (as well as being more efficient).

Let X be the blowup graph of some solution x. First, let

yv = |{C ∈ Γ(X) : v ∈ C}| −N for v ∈ R.

If yv is negative for any v, it is easily seen that X is not feasible (it corresponds to x(δ(v)) < 1). So from
now on, we assume yv ≥ 0 for all v ∈ R. Construct a directed multigraph D = (W,A) (we will write DX if
we wish to be explicit on the choice of X) as follows. Begin with the multigraph X , and for each component
C ∈ Γ(X), pick an arbitrary node rC as the root. Adjoin a source node s and sink node t. Now orient all
edges of E(C) away from rC for each component, and adjoin the arcs srC for each C ∈ Γ(X), and vt for
each v ∈ R. We assign capacities z to the arcs; z(vt) = yv for all v ∈ R, and z(a) = 1 for all other arcs.

Theorem A.1. For any nonempty Q ⊆ R, the value of the maximum s-(Q ∪ {t})-flow in D is equal to
y(R) +N + minS⊇Q hX (S). More specifically, if U∗ is a minimum (Q ∪ {t})-s cut in D with s /∈ U∗, then
S∗ = U∗ ∩R minimizes hX (S) over S ⊇ Q, and

z(δ−(U∗)) = y(R) +N + hX (S∗).

Proof. Use ~E(C) to denote the arcs in D corresponding to E(C) in X , and let A(C) = ~E(C) ∪ {srC}. For
any S ⊆ R, let ν(S) ⊆W be defined by

ν(S) = S ∪ {t} ∪
⋃

C∈Γ(X):

C∩S 6=∅

(V (C) \R).

Claim A.2. For any nonempty S ⊆ R, z(δ−(ν(S))) = hX (S) + y(R) + N . Moreover, for any U ⊂ W
with s /∈ U , t ∈ U and U ∩R = S, we have z(δ−(U)) ≥ hX (S) + y(R) +N .

Proof. Consider some component C ∈ Γ(X). If S ∩C = ∅, then clearly δ−(ν(S))∩A(C) = ∅. So suppose
S ∩ C 6= ∅. If rC ∈ ν(S), then clearly δ−(ν(S)) ∩ ~E(C) = ∅, and srC ∈ δ−(ν(S)). On the other hand, if
rC /∈ ν(S) (implying in particular that rC is a terminal), then srC /∈ δ−(ν(S)) and |δ−(ν(S)) ∩ ~E(C)| = 1,
since all terminals are leaves of the components they belong to. In either case, z(δ−(ν(S)) ∩A(C)) = 1.

For any v ∈ R, sv ∈ δ−(ν(S)) if and only if v /∈ S. Putting this all together,

z(δ−(ν(S))) = |{C ∈ Γ(X) : C ∩ S 6= ∅}|+
∑
v/∈S

yv.

15

Now taking (1) and adding and subtracting y(S), we have

hX (S) = N(|S| − 1)−
∑

C∈Γ(X)

(|C ∩ S| − 1)+ +

 ∑
C∈Γ(X)

|C ∩ S| − N |S|

− y(S)

= |{C ∈ Γ(X) : C ∩ S 6= ∅}| −N − y(S)

= z(δ−(ν(S))−N − y(R).

Now consider any U with t ∈ U , s /∈ U and U ∩ R = S. We again clearly have sv ∈ δ−(U) for all
v ∈ R \ U , and again δ−(U) ∩A(C) 6= ∅ if S ∩ C 6= ∅. So z(δ−(U)) = hX (S) + y(R) +N .

By this claim, z(δ−(ν(S∗)) ≤ z(δ−(U∗)); since U∗ is a minimum cut, we must have equality. Then
again by the claim,

z(δ−(ν(S∗))) = hX (S∗) + y(R) +N.

We now show how this leads to a description of the matroid MQ as a gammoid. Recall the definition
of a gammoid: a directed graph H is given, along with two subsets X,Y ⊆ V (H). The groundset of the
gammoid is X , and a set I ⊆ X is independent if there are vertex-disjoint paths from I to some subset of
Y . We say in this case that this defines the gammoid from X to Y in H . It is convenient to observe that
by transforming the digraph H appropriately, we can replace vertex-disjoint in the above definition with
arc-disjoint, and still characterize gammoids.

We need to slightly tweak the digraph D defined above. For each f ∈ E(X), there is a corresponding arc
a in D. Split the arc by adding an additional node vf , producing a “front” arc af

f with tail vf and a “back”
arc ab

f with head vf . We may also remove the node s and all its adjacent arcs. Call the resulting modified
digraph D′.

Define the sets

X = {vf | f ∈ E(X)}; X ′ =
⋃

C∈Γ(X)

rC and Y = Q ∪ {t}.

Let G′Q be the gammoid defined on D from X ′ ∪ X to Y , requiring arc-disjointness rather than vertex-
disjointness. Then define GQ = G′Q/X

′; this contraction is also a gammoid. By the one-to-one correspon-
dence between X and E(X), we may consider this is a matroid over E(X).

Theorem A.3. For any component Q, GQ = MQ.

Proof. The rank of a set U ⊆ X in GQ is ρ(U) = ρ′(U ∪X ′) − ρ′(X ′), where ρ′ is the rank function of
G′Q. Notice that the maximum number of arc-disjoint paths from X ′ to Y is precisely the max-flow from s to
Q ∪ {t} in D. Thus by Theorem A.1, and the definition of rQ, ρ′(X ′) = rQ(∅) + y(R) +N .

Now ρ′(U ∪X ′) is the maximum number of arc-disjoint paths from U ∪X ′ to Y . But imagine what
would happen to ρ′(U ∪X ′) if the arcs AU = {ab

f | vf ∈ U} were removed from D′. Take P1, . . . , P` to be
any maximum collection of arc-disjoint paths from U ∪X ′ to Y in D′. For some vf ∈ U , if some path Pi
uses arc ab

f , then certainly no other path emanates from vf , and so we can simply remove the initial segment
of Pi before vf to obtain another maximum collection of disjoint paths that do not use ab

f . Repeating this
process, we obtain paths P ′1, . . . , P

′
` that do not use any arcs in AU . But taking D′ −AU , and contracting all

of U to form the source, yields precisely DX−F , the digraph for the separation construction corresponding
to X − F . Thus again by Theorem A.1, ρ′(U ∪X ′) = rQ(U) + y(R) +N . Thus ρ(U) = rQ(U), and so
GQ = MQ.

16

B Proofs for Section 2.3

Let us fix a component C ∈ Γ(X) and a splitting set K. By the definition of K (as the complement of a
spanning tree in the graph C̃ obtained by contracting terminals), every Steiner node u ∈ V (C) \ C has a
unique path Pu ⊆ E(C) \K of cleanup edges to a terminal that we term ru ∈ C (see again Figure 3).

Lemma B.1. For any splitting set K ⊆ E(X), component C ∈ Γ(X) and edge e ∈ E(C) \K, let

W (e) = {uv ∈ K ∩ E(C) | e ∈ Pu}.

Then W (e) is the unique minimal subset of E(C) ∩K whose removal makes e a pendant edge.

Proof. Let W̄ ⊆ E(C) ∩K be any subset of splitting edges. If uv ∈W (e) \ W̄ then e remains on a path,
namely Pu ∪ uv ∪ Pv ⊆ E(C) \ W̄ between the terminals, implying that e is not pendant. Thus, any subset
W̄ which makes e pendant must contain W (e).

On the other hand, we claim that e is pendant in E(C) \W (e). To see this, let e = ab with e ∈ Pa. For e
to be pendant, there would need to be a path P that does not contain e from a to a terminal. But the first edge
in K on P must be in W (e), contradicting the fact that P ⊆ E(C) \W (e).

Theorem 2.4. For any splitting set K and feasible blowup graph X , Algorithm 1 yields a solution of cost at
most ΦK(X)/N .

Proof. We prove the theorem by showing that the decrease in the potential at any iteration is lower bounded
by the weight of the edges we remove. More formally, consider a given iteration t with current blowup
graph Xt, splitting set Kt, and weights wt. let Qt be the component to contract and Bt ∈ BKtQ the edges to
be removed from Xt in this iteration. At the end of iteration t a new blowup graph Xt+1 is obtained with
splitting set Kt+1 = Kt \Bt. We will show

ΦKt(Xt)− ΦKt+1(Xt+1) ≥ wt(Bt). (10)

This in turn implies the theorem since the potential function at any iteration, and in particular at the end of
the algorithm, is nonnegative. Therefore, the total weight of all core edges being removed throughout the
algorithm is upper bounded by the potential value of the initial blowup graph, i.e.,

∑
twt(Bt) ≤ ΦK(X).

Furthermore, since at every iteration, Qt and Bt are chosen such that cost(Qt) ≤ wt(Bt)/N , we obtain that
the cost of all contracted components—which is the cost of the Steiner tree our algorithm returns—can be
upper bounded by

∑
t cost(Qt) ≤ 1

N

∑
twt(Bt) ≤ ΦK(X)/N , as desired. Hence, it remains to prove (10).

For any edge e ∈ Xt, we denote by Wt(e) its witness set at the beginning of iteration t. For simplicity, we
define Wt+1 on all of E(Xt), defining Wt+1(e) = ∅ for e ∈ E(Xt) \ E(Xt+1). By definition of the witness
sets, we have

Wt+1(e) = Wt(e) \Bt for any e ∈ E(Xt). (11)

Expanding the left-hand side of (10), we obtain

ΦKt(Xt)− ΦKt+1(Xt+1) =
∑

e∈E(Xt)

c(e)
(
H(|Wt(e)|)−H(|Wt+1(e)|)

)

=
∑

e∈E(Xt)

c(e)

|Wt(e)|∑
k=|Wt+1(e)|+1

1

k

≥
∑

e∈E(Xt)

c(e) · |Wt(e)| − |Wt+1(e)|
|Wt(e)|

=
∑

e∈E(Xt)

c(e) · |Wt(e) ∩Bt|
|Wt(e)|

by (11). (12)

17

Furthermore, by expanding the right-hand side of (10) using the definition of the weights wt, we obtain

wt(Bt) =
∑
f∈Bt

∑
e∈E(Xt)
e∈Wt(f)

c(e)

|Wt(e)|

=
∑

e∈E(Xt)

∑
f∈Bt∩Wt(e)

c(e)

|Wt(e)|

=
∑

e∈E(Xt)

c(e)
|Wt(e) ∩Bt|
|Wt(e)|

. (13)

Inequality (10) finally follows by combining (12) with (13).

In the following, we show that K can always be chosen s.t. ΦK(X) ≤ ln(4) · cost(X), following the
proof of [4]. For the sake of a simpler exposition, we replace every Steiner node in X of degree higher than 3,
with a binary tree consisting of cost zero edges in order to obtain nodes that have degree exactly 3. Suppose
we find a suitable pair (K,F) of splitting and cleanup edges in this auxiliary graph. Then every Steiner node
u in the original graph has potentially several paths P1, . . . , Pq ⊆ F of cleanup edges to terminals. We keep
the one path minimizing c(Pi) and discard the first edge of all other paths. This does not increase ΦK(X).
Applying this iteratively, we end up with a feasible pair of cleanup edges and splitting edges.

From now on, we assume that every component C ∈ Γ(X) is a binary tree. We pick an arbitrary edge
eC ∈ E(C) as root edge. From any interior node u ∈ V (C) \ C, there are two outgoing edges (these are the
edges that do not lie on the path from u to the root edge). We randomly pick one of these edges as cleanup
edge and the other one as splitting edge. In other words, every interior node u has a unique path of cleanup
edges to some terminal and hence, K is a legal splitting set. Moreover, for every non-root edge e one has
P{e ∈ K} = 1

2 .

Lemma B.2. If E(X) is chosen randomly according to the above distribution,

E{ΦK(X)} ≤ ln(4) · cost(X).

Proof. Fix a component C and an edge e ∈ E(C). It suffices to show that E{H(|W (e)|)} ≤ ln(4). The root
edge is always a splitting edge, thus |W (eC)| = 1. So, let e be a non-root edge and let v0, v1, . . . , vk+1 be
the path from e to the root edge, i.e. v0v1 = e and vkvk+1 = eC . Let

X := max{i | v0v1, v1v2, . . . , vi−1vi ∈ E(C) \K}

be the number of consecutive cleanup edges on this path, starting from e (and X = 0 if already v0v1 ∈ K).
Then P{X = i} = (1

2)i+1 for i < k and P{X = k} = (1
2)k. Furthermore |W (e)| = X + 1 if X < k and

|W (e)| = k otherwise. We calculate

E{H(|W (e)|)} ≤
k−1∑
i=0

P{X = i} ·H(i+ 1) + P{X = k} ·H(k)

≤
∞∑
i=0

H(i+ 1) ·
(

1

2

)i+1

= ln(4).

18

The above argument can be derandomized by the method of conditional expectations, and this leads to a
proof of Theorem 2.5. Another option is to observe that the best choice of K can be found in polynomial time,
via a dynamic program as is indicated below. Combined with the above lemma, this implies Theorem 2.5.

Lemma B.3. A splitting set K minimizing ΦK(X) can be found in polynomial time.

Proof. Since the potential function can be decomposed into terms corresponding to each component, and a
splitting setK consists of the union of splitting sets in each component, it suffices to consider each component
separately. Hence, let C be any fixed component with vertices V (C) and edges E(C); our goal is to find a
splitting set K for C that minimizes

∑
e∈E(C) c(e)H(|W (e)|).

As usual when applying dynamic programming to problems on trees, we start by computing tables (to be
specified soon) for subtrees consisting of a single terminal, and successively combine those tables until a table
for the full tree is obtained, revealing the optimal splitting set. To specify the order in which we create tables
for larger subtrees from smaller ones, we direct the edge of the tree C away from an arbitrarily chosen node
in V (C). We consider the following type of subtrees that we call partial trees. For any vertex r ∈ V (C) and
subset U ⊆ δ+(r) of arcs leaving r, the partial tree TU with root r is the induced subgraph of C consisting
of r and all vertices that can be reached from r with paths starting with one of the arcs in U . To simplify
notation we also use TU to refer to the edge set of the partial tree. Furthermore, let TU = E(C) \ TU , and let
RTU ⊆ R denote the terminals contained in the partial tree TU .

To better understand what information should be stored for a partial tree T , we first briefly discuss how the
choice of splitting set K within T impacts the witness sets in T , and vice versa. We will refer to the choice of
core and cleanup edges (i.e., the choice of K) within some subset of edges as a configuration for that subset.
We distinguish two ways that the root r of T can be connected to a terminal through cleanup edges: case (A)
through a path within the partial tree T , and case (B) through a path outside of T . Correspondingly, we call a
configuration for T a type (A) configuration if case (A) holds for the root of T , and a type (B) configuration
otherwise. Notice that in a type (A) configuration, every node within T is connected to a terminal in RT by
cleanup edges. For a partial tree T we will store two tables, one corresponding to case (A) and one to case
(B).

Consider case (A) and let P be the path of cleanup edges connecting a terminal in RT to r. Notice that in
this case W (e) ⊆ T ∀e ∈ T . Hence, the configuration for T does not have any impact on the contribution of
the edges of T to the function

∑
e∈E(C) c(e)H(|W (e)|). However, the witness sets of the edges in P depend

on the configuration for T , namely every core edge that can be reached within T from r by following cleanup
edges is part of the witness set of any e ∈ P . Hence, the only information about the configuration for T that
matters in finding an optimal configuration within T is the number α of core edges in T that can be reached
from r through cleanup edges. Thus for case (A) we want to store a table for T which contains, for each
value of α ∈ {0, . . . , |T |}, a corresponding type (A) configuration that minimizes

∑
e∈T ceH(|W (e)|). Here,

|W (e)| can be computed without knowing the precise configuration in T (apart from α) since

|W (e)| =

{
|W (e) ∩ T | if e ∈ T \ P,
|W (e) ∩ T |+ α if e ∈ P.

Now consider case (B) and let P be the path in T connecting a terminal to r. In this case the situation
is reversed and W (e) ⊆ T for any e ∈ T . Hence, the configuration for T does not have any impact on the
contribution of the edges of T to the function

∑
e∈E(C) c(e)H(|W (e)|). However this time, the witness sets

of edges on P depends on the configuration for T , namely every core edges that can be reached within T
from r by following cleanup edges is part of the witness set of any e ∈ P . Hence, the only information
that has to be stored for T in case (B), in order to describe how the configuration within T impacts the
configuration outside of T , is the number β of core edges in T that can be reached from r through cleanup

19

edges. Hence, for case (B) we want to store a table for T which contains, for each value of β ∈ {0, . . . , |T |},
a corresponding type (B) configuration that minimizes

∑
e∈T c(e)H(|W (e)|).

Clearly, if we can compute the (A) table for the full component C, then we are done, since the globally
best configuration is the one minimizing the potential function over all values of α. Computing type (A)
and (B) tables for partial trees corresponding to single terminals is trivial: table (A) contains one entry
corresponding to α = 0 of value zero, and table (B) is empty. There are two constellation we exploit to
compute tables for larger partial trees based on the tables of smaller ones.

The first constellation is the following. Assume that we have tables (A) and (B) for two partial trees
TU1 and TU2 with U1 ∩ U2 = ∅, and both having root r. Then we can compute the two tables for TU1∪U2

from the tables of TU1 and TU2 . This can be done by considering all legal combinations (meaning pairs
of configurations that can be completed to a splitting set) of one table entry corresponding to TU1 and one
corresponding to TU2 , keeping the best ones. Since the size of each table is polynomially bounded in the
input, this can be done efficiently. We skip the somewhat tedious details for combining those tables which are
based on standard arguments.

In the second constellation, we consider a vertex r and one of its out-neighbors v, i.e., there is an arc
directed from r to v, such that both tables for Tδ+(v) have already been computed. We can then compute the
two tables for T{rv} by considering all legal combinations of an entry of one of the tables of Tδ+(v) and the
two possibilities of rv being a core edge or a cleanup edge.

It is easy to observe that starting from the terminals and leveraging the above two update rules, one can
construct both tables for the full component C efficiently.

For the following Lemma, we assume that the graph G is quasi-bipartite.

Lemma 2.6. Let K = E(X) \ Emin, where Emin consists of a cheapest edge from every component. Then

ΦK(X) ≤ 73
60 · cost(X).

Proof. Consider a component C, which now is a star with edges e1, . . . , ek. Assume ek minimizes the cost,
then the splitting edges in C are K ∩ C = {e1, . . . , ek−1}. First of all, K is obviously a legal splitting set.
Secondly |W (ei)| = 1 for i ∈ {1, . . . , k − 1} and |W (ek)| = k − 1. Thus

k∑
i=1

c(e) ·H(|W (ei)|) ≤ (k − 1 +H(k − 1)) · cost(C)

k
≤ 73

60
· cost(C),

using that 1 + H(k−1)−1
k is maximized for k = 5. The claim follows by summing over all components

C ∈ Γ(X).

C A lower-bound property of nonnegative intersecting submodular func-
tions 3.6

The main goal of this section is to prove Theorem 3.6. Before presenting the core part of the proof we discuss
some basic properties of partition functions, and make some general observations concerning the statement
of Theorem 3.6 which are useful to understanding its proof.

Let U be a finite set. We recall that F ⊆ 2U is called a lattice family if it is closed under unions and
intersections. A function F → R is submodular on F if f(A ∪ B) + f(A ∩ B) ≤ f(A) + f(B) for all
A,B ∈ F ; supermodular on F , intersecting supermodular on F etc., are defined similarly in the obvious
way.

20

Any partition P = {P1, . . . , Pn} of U induces naturally a lattice family FP ⊆ 2U which consists of all
possible unions of sets in P . Consider the coverage function α(S) = |{j ∈ [n] | Pj ∩ S 6= ∅}|, which is
clearly submodular. Notice that we can write fP(S) = (α(S)− 1)+, and in particular fP(S) = α(S)− 1
for all S 6= ∅. Thus fP is intersecting submodular: for any A,B ⊆ U with A ∩B 6= ∅,

fP(A) + fP(B) = (α(A)− 1) + (α(B)− 1)

≥ α(A ∪B)− 1 + α(A ∩B)− 1

= fP(A ∪B) + fP(A ∩B).

Furthermore, it is easy to see that fP is intersecting supermodular on FP . Hence fP is intersecting modular
on P , i.e., fP(A) + fP(B) = fP(A ∪B) + fP(A ∩B) for any intersecting sets A,B ∈ FP .

By the above observation, the function f claimed by Theorem 3.6 is by construction intersecting
submodular since all fPi are intersecting submodular. Similarly, f is monotone due to the monotonicity of
fPi . We prove the following slightly stronger version of Theorem 3.6.

Theorem C.1. Let h : 2U → R+ any nonnegative intersecting submodular function, such that all maximal
sets S ⊆ U with h(S) = 0 form a partition P1 of U . Then there is an intersecting submodular function f of
the form

f =
k∑
i=1

λifPi ,

where k ≤ |U | − 1, λi > 0 ∀i ∈ [k], P1, . . .Pk are partitions of U that become coarser with increasing
index, and f satisfies:

i) f(S) ≤ h(S) ∀S ⊆ U ,
ii) f(U) = h(U).

Furthermore, the partitions P i together with the coefficients λi, and hence f , can be constructed efficiently.

Notice that the condition in Theorem C.1 stating that the maximal tight sets of h form a partition of U
is equivalent to the property that the family of all tight sets of h covers U , due to the following uncrossing
argument. If the tight sets of h cover U then so do the maximal tight sets; furthermore, for any two intersecting
tight sets A,B ⊆ U ,

0 = h(A) + h(B) ≥ h(A ∪B) + h(A ∩B) ≥ 0,

by submodularity and nonnegativity of h; hence A ∪B is also tight. Hence, this condition is indeed weaker
than the one used in Theorem 3.6, which states that all singletons must be tight.

Proof of Theorem C.1. The partitions P1, . . . ,Pk and coefficients λ1, . . . , λk defining f are obtained as
follows.

1. Let i = 1, h1 = h, and P1 be the maximal tight sets with respect to h.
2. While hi(U) > 0:

(a) Let λi ∈ R+ be the maximum value such that

hi(S)− λifPi(S) ≥ 0 ∀S ∈ FPi .

(b) hi+1 ← hi − λifPi ; let P i+1 ⊆ FPi be the maximal tight sets with respect to hi+1.
(c) i← i+ 1.

We start by observing that each function hi encountered during the algorithm is intersecting submodular
over FPi−1 (by convention we set P0 = 2U), and that P i indeed forms a partition of U . This can easily be

21

verified through an inductive argument. By assumption h1 is intersecting submodular over U , and P0 is a
partition of U . The intersecting submodularity of hi+1 = hi − λifPi over FPi follows by the intersecting
submodularity of hi overFPi and the intersecting supermodularity of fPi overFPi . Since hi+1 is intersecting
submodular over FPi , the maximal tight sets P i+1 of hi+1 in FPi thus again form a partition of U .

The suggested procedure can indeed be implemented efficiently. At any iteration i and for any fixed
λ > 0, finding the set S ∈ FPi minimizing hi(S)− λfPi is a submodular function minimization problem.
Hence, in step (2a), λi can be found by using e.g. binary search, or by applying the parametric search
technique of Megiddo [15].

Furthermore, since fPi(S) = 0 for all the sets S ∈ FPi that are tight with respect to hi—which are
precisely the sets in P i—we have λi > 0 in each iteration. By choosing λi to be maximum in step (2a), there
is at least one set S ∈ FPi that is tight with respect to hi+1 but not hi. Hence, |P1| > |P2| > . . . , and the
procedures will terminate. Let k be the index of the last λ that was set in step (2a). Hence, hk+1(U) = 0, and
Pk+1 = {U}. Since we start with |P0| ≤ |U | and the partitions coarsen at each step, this implies k ≤ |U |−1.
Additionally, point (i) of Theorem 3.6 clearly holds by the termination criterion of the while-loop.

Hence, it remains to prove point (ii), which we prove by showing the following claim through induction
from j = k + 1 to j = 1, where j = 1 corresponds to the statement (ii):

hj(S)−
k∑
i=j

λifPi(S) ≥ 0 ∀S ∈ FPj−1 . (14)

For j = k + 1, (14) clearly holds, since hk+1(S) = hk(S) − λkfPk(S) ≥ 0 ∀S ∈ FPk , by choice of λk.
Now let j ∈ {1, . . . , k} and assume that (14) holds for all values above j. Let S ∈ FPj−1 , and we define
S′ ∈ F jP to be the minimal set in F jP that contains S, i.e.,

S′ :=
⋃

P∈Pj ,
P∩S 6=∅

P.

Notice that

hj(S) = hj(S) +
∑
P∈Pj ,
P∩S 6=∅

hj(P) ≥ hj(S′) (15)

where the equality holds since all sets in Pj are tight with respect to hj by construction, and the inequality
follows by standard uncrossing arguments: for any set P ∈ Pj , P ∩ S 6= ∅, we have hj(S) + hj(P) ≥
hi(S ∪ P) by intersecting submodularity and nonnegativity of hi, and thus the two terms hi(Si) and hi(P)
can be replaced by hi(Si−1 ∪ P) and this procedure can be repeated. In other words, we simply exploit that
any nonnegative intersecting submodular function has the subadditivity property for any family of sets that
are connected when seen as hyperedges on the given ground set.

The inductive step of the proof of (14) finally follows by

hj(S)−
k∑
i=j

λifPi(S) ≥ hj(S′)−
k∑
i=j

λifPi(S
′) = hj+1(S′)−

k∑
i=j+1

λifPi(S
′) ≥ 0,

where the first inequality follows from (15) and the monotonicity of
∑k

i=1 λifPi(S), and the last one by the
inductive hypothesis.

22

D Equivalence of the hypergraphic and bidirected cut relaxations in quasi-
bipartite graphs

Let G = (V,E) be a quasi-bipartite graph, where Steiner vertices are not connected by edges (i.e., we
have edges only between terminals and Steiner vertices or between terminals and terminals). Let ~E be the
bidirection of E, i.e., for any {u, v} ∈ E, ~E contains arcs (u, v) and (v, u).

The bidirected cut relaxation with root terminal r ∈ R is

min
∑
e∈ ~E

cexe

x(δ+(S)) ≥ 1 ∀S ⊆ V \{r} : S ∩R 6= ∅
xe ≥ 0 ∀e ∈ ~E

(BCR(r))

In words: we need to reserve enough capacity in order to support a unit flow from every terminal to the
current root r. It was proven in [6] that in quasi-bipartite graphs, the value of (BCR(r)) coincides with the
optimum value of (LP). This was done by lifting an optimum dual solution for the partition-based relaxation
(which is equivalent to (LP) even in general graphs [6]) to a dual solution of (BCR(r)). However, the authors
of [6] posed as an open question: for a given optimum bidirected cut solution, can a corresponding primal
solution to (LP) be directly extracted without solving (LP)? We answer this question affirmatively.

To avoid an unnecessary case analysis, we split direct edges between terminals by inserting a dummy
Steiner vertex (we split the edge cost arbitrarily among the two parts). Let x be an optimum solution to
(BCR(r)); then the natural decomposition is as follows. For a star with center u ∈ V \R, take an arc (u, s) with
positive outgoing flow and all arcs H = {(t, u) | x(t, u) > 0; t 6= s} carrying incoming flow. Let ε be the
minimum capacity on any of these arcs. Then transfer this capacity into a component {s} ∪ {t | (t, u) ∈ H}.
Iterate this process until all capacity has been transferred. The main result of this section is:

Theorem D.1. Let x be an optimum solution for (BCR(r)). Then the natural decomposition yields a feasible
optimum solution for (LP) with the same objective value.

Imagine that we want to “relocate” the root from r to another terminal r′. We can do this by considering
the unit flow from r′ to r, and reversing all capacity corresponding to this flow. This provides a feasible
solution for BCR(r′) that we term x(r′), which again has the same cost (see [11] for a proof). Note that for
any {u, v} ∈ E, the sum x(r)(u, v) + x(r)(v, u) is independent of r. For a Steiner vertex u ∈ V \R, let
N(u) := {v | {u, v} ∈ E} be the set of neighbours in the star with center u. It suffices to show Theorem D.1
for basic solutions, since the decomposition of a convex combination of capacity vectors equals the convex
combination of natural decompositions. By standard arguments, we may assume that the edge costs are
distinct for all edges in the same star.

Lemma D.2. In a star with center u and r ∈ N(u) one has x(r)(r, u) = 0 and x(r)(u, s) = 0 for each
s ∈ N(u) with c(u, s) > c(u, r).

Proof. The flow on arc (r, u) can be removed and the flow on (u, s) arc can be redirected to (u, r). Both
operations would leave the solution feasible and decrease the cost, contradicting optimality.

See Figure 4 for an illustration of the claim.

23

r

s : csu > cur s : csu < cur

u

Figure 4: Arcs in the optimum solution x(r) that may carry positive flow.

Next, we consider one iteration of the natural decomposition for a star with center u. For this reason,
insert an extra Steiner vertex ū into the graph, which has an edge {ū, s} with s ∈ R iff there is an edge
{u, s} ∈ E with x(r)(s, u) > 0. For e = (u, s), we abbreviate ē = (ū, s) (see Figure 5). We define
c(ē) := c(e) and x(r)(e) = 0 for all e ∈ δ(ū). Note that x(r) is still an optimum solution.

Lemma D.3. Let r := argmin{c(u, r) | r ∈ N(u)}, H := {(u, r)} ∪ {(s, u) | s ∈ N(u)\{r}} and
ε := min{x(r)(e) | e ∈ H}. Starting from x(r), transfer capacity of ε from all arcs e ∈ H to ē and term the
new capacity reservation x̄(r). Then the new capacity vector x̄(r) is a feasible optimum solution for (BCR(r)).

Proof. We first show that the claim holds for some ε > 0 which is small enough. Consider any cut
S ⊆ V \{r} and assume for the sake of a contradiction that x̄(r)(δ+(S)) < 1. For ε > 0 small enough, this
may only happen if S was a tight cut before, i.e. x(r)(δ+(S)) = 1. Furthermore, any critical cut must contain
at least two arcs of the form (s, u), i.e., |N(u) ∩ S| ≥ 2. Pick r′ := argmin{c(u, r′) | r′ ∈ N(u) ∩ S}.
According to Lemma D.2, the flow is x(r)(e) = 0 for e ∈ (δ−(u) ∪ δ+(u))\H . Since x(r)(δ+(S)) = 1, the
unit flow from r′ to r needs all capacities on (s, u) arcs for s ∈ N(u) ∩ S. Consequently, when relocating
the root to r′, the flow on all these arcs must be turned around completely. In particular x(r′)(u, s) > 0 for
s ∈ (N(u) ∩ S)\{r′} contradicting Lemma D.2.

ru ū

e

0

0

0

0
ē

0

(a) capacities x(r)

r

r′

u ū
−ε

−ε −ε

−ε
−ε

ε

ε

ε

ε

ε

S

(b) capacities x̄(r)

Figure 5: Transferring capacity of ε according to Lemma D.3. (a) visualizes capacity in x(r), where newly added edges
ē are dashed. (b) depicts x̄(r) and a potentially critical cut S.

We conclude that we can choose some ε > 0 s.t. x̄(r) is feasible. But the argument above shows that no
cut S can become tight, thus the only limitation on ε is the arc capacity. The claim then follows.

We apply Lemma D.3 iteratively to all stars, adding copies of Steiner nodes as required, until we have
a solution x∗ (with root r∗ ∈ R chosen arbitrarily) where (i) every Steiner node has flow on at most one

24

outgoing arc, and (ii) the flow on all arcs of a star carrying a nonzero amount of flow is the same. Then x∗

induces a solution to the directed component-based relaxation:

min
∑

C∈K,s∈C
cost(C) · yC,s∑

C∈K,s∈C:C∩S 6=∅,s/∈S

yC,s ≥ 1 ∀∅ (S ⊆ R\{r∗}

yC,s ≥ 0 ∀C ∈ K ∀s ∈ C.

The solution y∗ corresponding to x∗ is obtained by setting, for each flow-carrying star with terminal set C
and outgoing flow on arc (u, s), y∗C,s = x∗(u, s) (the common flow value in the star). All other components
of y∗ are zero. It is easily checked that y∗ is feasible, and has the same cost as x∗ (and hence x). Then
projecting to the undirected formulation, the vector (

∑
s∈C yC,s)C∈K is feasible for (LP) (see [18]), and

moreover corresponds precisely to the natural decomposition described earlier.

E NP-hardness for solving the component-based relaxation

It is well-known that there is a PTAS for solving (LP). In other words, for every fixed ε > 0, there is
a polynomial time algorithm that computes a feasible fractional solution to the considered hypergraphic
relaxation (LP), which is within a 1 + ε factor of the optimum fractional value. We argue now, that this is
best possible (answering the posed question in [6]).

Theorem E.1. Solving (LP) is strongly NP-hard.

Proof. Let G = (V,E) be a complete graph with terminals R = {s1, . . . , sk} ⊆ V , edge cost c(e) ∈ {1, 2}
for all e ∈ E. Bern and Plassmann [1] showed that it is NP-hard to decide whether the cost OPT of the
cheapest Steiner tree is at most a given parameter Z.

We construct another Steiner tree instance G′ = (V ′, E′) as follows: For each terminal si ∈ R in
the original instance, we add a terminal s′i and an edge sis′i with cost c(si, s′i) := M with M := 3n2

and n = |V |. Furthermore, we downgrade the original terminal to an ordinary vertex, i.e., we define
R′ := {s′i | i = 1, . . . , k} as terminal set. Let OPT ′f be the value of the optimum fractional solution of (LP)
for instance G′ (using components of arbitrary size).

First we show that OPT ≤ Z ⇒ OPT ′f ≤ Z + k ·M . Let S∗ be the optimum integral Steiner tree in G.
We add all sis′i edges to S∗ and consider the emerging tree as component with fractional weight 1 and cost
OPT + k ·M .

Next, we prove that OPT ≥ Z + 1 ⇒ OPT ′f ≥ Z + 1 + k ·M (which in turn implies the claim of
the theorem). Let x be an optimum solution to (LP) in G′. For a component C ∈ K, we denote E(C) as
the contained edges from the original graph (i.e. without sis′i edges) and by |C| we denote the number of
terminals. Either C contains less than k terminals, or cost(E(C)) ≥ Z + 1. In any case

cost(E(C)) +M

|C| − 1
≥ min

{
Z + 1 +M

k − 1
,
M

k − 2

}
≥ Z + 1 +M

k − 1

using that M = 3n2, k ≤ n and Z ≤ 2n. Now we can bound the cost of the fractional solution as

OPT ′f =
∑
C∈K

(cost(E(C)) + |C| ·M) · xC

= M
∑
C∈K

(|C| − 1)xC +
∑
C∈K

(cost(E(C)) +M)xC

≥ (k − 1)M +
∑
C∈K

|C| − 1

k − 1
(Z + 1 +M)xC = Z + 1 + kM

25

exploiting
∑

C∈K xC(|C| − 1) = k − 1.

Observe that the above reduction in not approximation preserving. This is not surprising, considering the
fact that Steiner tree even with edge weights {1, 2} is APX-hard (e.g. by a straightforward reduction from
Set Cover with sets of size 3).

26

	1 Introduction
	2 Discussion of results and techniques
	2.1 The component-based LP
	2.2 Edge removal after contraction
	2.3 The algorithm
	2.4 Quasi-bipartite graphs

	3 Deeper into the matroid structure
	A Separation and gammoid structure
	B Proofs for Section 2.3
	C A lower-bound property of nonnegative intersecting submodular functions 3.6
	D Equivalence of the hypergraphic and bidirected cut relaxations in quasi-bipartite graphs
	E NP-hardness for solving the component-based relaxation

