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École Normale Supérieure de Lyon, 46 Allée d’Italie, 69364 Lyon cedex 07, France
5Institut Universitaire de France

(Dated: July 20, 2012)

In the past twenty years, shear-banding flows have been probed by various techniques, such as
rheometry, velocimetry and flow birefringence. In micellar solutions, many of the data collected
exhibit unexplained spatiotemporal fluctuations. Recently, it has been suggested that those fluctu-
ations originate from a purely elastic instability of the shear-banding flow. In cylindrical Couette
geometry, the instability is reminiscent of the Taylor-like instability observed in viscoelastic poly-
mer solutions. The criterion for purely elastic Taylor-Couette instability adapted to shear-banding
flows suggested three categories of shear-banding depending on their stability. In the present study,
we report on a large set of experimental data which demonstrates the existence of the three cate-
gories of shear-banding flows in various surfactant solutions. Consistent with theoretical predictions,
increases in the surfactant concentration or in the curvature of the geometry destabilize the flow,
whereas an increase in temperature stabilizes the flow. But experiments also exhibit some interesting
behaviors going beyond the purely elastic instability criterion.

Introduction

In 1991, Rehage and Hoffmann wrote a seminal review
article entitled: “Viscoelastic surfactant solutions: model
systems for rheological research” [1]. More than twenty
years later, their point is still vividly accurate. One could
even argue that throughout the years, studies around
surfactant solutions have reflected some of the new de-
veloping trends in rheological research. (1) The origi-
nal focus was on scaling laws of “living polymers” and
their surprisingly robust Maxwellian behavior at small
deformations. (2) The focus then shifted toward the
shear-banding transition observed in nonlinear rheology.
(3) Nowadays researchers are also concerned with the sta-
bility of such banded flows, in particular with respect to
elastic instabilities.

Surfactant solutions can have a variety of mesoscopic
structures at equilibrium: vesicles, rods, entangled or
connected worms, liquid crystals or lamellar phases [2, 3].
Rehage and Hoffmann’s review focused on surfactant
molecules possessing packing properties which favor the
formation of cylindrical micelles, sometimes with the help
of added salt [1, 4]. They described how, in semi-dilute
and concentrated regimes, wormlike micelles are entan-
gled as in polymer solutions. In comparison to solu-
tions of polymers, there is, however, one important differ-
ence. The permanent exchange of surfactant molecules
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leads to the perpetual breaking and reformation of the
worms. This is why they are sometimes called “living
polymers”. Stress relaxation is modified by this addi-
tional mechanism, in a way modelled efficiently by Cates’
reptation-reaction model [5]. Strikingly, this added com-
plexity at the mesoscopic scale leads to simpler macro-
scopic properties. Indeed, in polymer solutions, polydis-
persity in the chain lengths generates a range of relax-
ation times, whereas, for wormlike micelles, if the break-
ing processes are fast in contrast to reptation, the aver-
age length of worms dominates and the stress relaxation
is mono-exponential [5]. We shall come back on the lin-
ear rheology of solutions of wormlike micelles in the first
section of this paper.

If the variety of structures present in surfactant so-
lutions at equilibrium is already very rich, the range
of shear-induced structures (out of equilibrium) is even
greater, and far less understood [4]. By investigating the
nonlinear rheology of wormlike micellar solutions, Rehage
and Hoffman gave the first robust experimental observa-
tion of what was then to be coined “shear-banding” [1].
Roughly speaking, a shear-banding transition is reminis-
cent of a first order phase transition [6–12]. Above a
critical shear rate γ̇l, the shear stress plateaus at a value
σp. Then, up to a second higher critical shear rate γ̇h, the
flow is inhomogeneous, split in two bands with different
structures and local shear rates γ̇l and γ̇h. To leading or-
der, for γ̇ ∈ [γ̇l, γ̇h], an increase in the value of the macro-
scopic shear rate γ̇ only increases the proportion α ∈ [0, 1]
of the high shear rate band, following a ‘simple lever rule’
γ̇ ≃ αγ̇h + (1 − α)γ̇l. This scenario has been confirmed
experimentally with various techniques like pure viscom-
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etry, velocimetry, birefringence, etc. (see [13] and Ref.
therein) and we shall highlight typical observations in
the first section of the present paper.

The simple lever rule scenario of shear-banding phe-
nomenon was roughly confirmed in the last twenty
years [14, 15], but many unexpected fluctuating be-
haviours were observed in all the gathered data [15–19,
25]. Thus, in the last few years, the focus shifted toward
the stability of shear-banded flows and the importance of
elastic instability mechanisms potentially triggering sec-
ondary flows (laminar or turbulent) responsible for the
fluctuations on the main flow [5, 26, 27, 29, 30, 33, 35–
38].
In order to show, first, the existence of secondary flows
and, second, their elastic origin, we conducted, in pre-
vious studies, intensive experiments on two systems: a
11 wt % semi-dilute aqueous mixture of cetyltrimethy-
lammonium bromide (CTAB; 0.3 M) and sodium nitrate
(NaNO3; 0.405 M) at a temperature T = 28◦C [35–38],
and a 10 wt % cetylpyridinium chloride (CPCl; 0.238 M)
and sodium salicylate (NaSal; 0.119 M) in NaCl brine
at T = 21.5◦C [39]. In both cases, the shearing ge-
ometry was a Taylor-Couette (TC) device with a gap
d = 1.13 mm and an inner rotating cylinder of radius
Ri = 13.33 mm. Both series of experiments confirmed
the presence of secondary flows on top of a primary shear-
banding flow. Those secondary flows originated from an
instability of the material constituting the high shear rate
band and thus also filling the entire geometry for γ̇ > γ̇h.
But the successions of secondary flows in the two systems
were different. Our analysis suggested that this difference
may be due to subtle changes in boundary conditions on
the unstable domain [38]. Indeed, in a recent theoreti-
cal letter where we derived the appropriate dimensionless
group controlling the threshold to elastic instability in
shear-banded flows, we predicted the existence of three
categories of shear-banding flows, depending on their sta-
bility [stable SB, unstable SB (3D coherent) or unstable
SB (3D coherent then turbulent)] [40]. The two systems
investigated so far seemed to validate the existence of
the two unstable categories of shear-banding, while the
third category–stable shear-banding flow–was left to be
witnessed experimentally.

In the present study, we vastly increase the volume of
data supporting the emerging rationale behind the insta-
bility of shear-banded flows. We report on a large set
of experimental data which demonstrates the existence
of the three categories of shear-banding flows, essentially
for one surfactant system in various thermodynamical
and geometrical conditions. Consistent with theoretical
predictions [40], increases in the concentration of surfac-
tant or in the curvature of the geometry destabilize the
flow, whereas an increase in temperature stabilizes the
flow.

The paper is organized as follows. In section I, we
highlight the preparation of the various samples and the
different experimental techniques employed. This sec-
tion is also used to recall some classical results concern-

ing: (1) the scaling laws of “living polymers” and their
robust Maxwellian behavior under small deformations;
and (2) typical observations of the base shear-banding
flow. Section II is concerned with (3) the stability of
shear-banding flows. It summarizes the observations col-
lected on the model system of CTAB/NaNO3 for various
surfactant or salt concentrations, various temperatures
and various geometries of the TC device. We recall the
theoretical arguments suggesting the existence of three
categories of shear-banding flows and we show robust ev-
idences for them. In section III, we discuss phenomena
that can become relevant when one explores extreme val-
ues of temperature or concentrations or when one departs
from the small gap regime. All of those cases go beyond
the simple theory we developed recently. Finally, we con-
clude in section IV.

I. MATERIALS, METHODS AND

PRELIMINARY RESULTS

1. Samples

The main goal of this study is to demonstrate the
the existence and the robustness of the three categories
of shear-banding flows that we have recently predicted.
Therefore, we have conducted experiments on a very
large range of solutions. In section II, we describe results
for various semi-dilute and concentrated aqueous mix-
ture of cetyltrimethylammonium bromide (CTAB) and
sodium nitrate (NaNO3). In order to be consistent with
the literature [42], we have used solutions of 0.3 M of
CTAB with salt concentrations varying between 0.1 M
and 2.8 M. We have also used solutions with 0.3 M of
NaNO3 and with surfactant concentrations varying be-
tween 0.1 M and 0.7 M, allowing to widely explore the
semi-dilute regime but also the concentrated regime. Ex-
periments for varying concentrations of salt or surfac-
tant were conducted at T=30◦C in a TC geometry with
d = 1.13 mm and Ri = 13.33 mm. Experiments for
varying temperatures or for varying geometries were con-
ducted on a sample of 0.3 M of CTAB and 0.4 M of
NaNO3. Temperatures were taken between the Krafft
temperature (T ≃21.5◦C) and 40◦C [42]. Below the
Krafft temperature, the surfactant is not soluble in water.

In addition to the systematic variation of the ther-
modynamical parameters for the CTAB/NaNO3 sys-
tem, we also probed other systems. Hence a few
data in the manuscript concern the concentrated 20%
CTAB/D2O solution [18–22] and the semi-dilute 10%
CPCl/NaSal/brine system [15–17, 24, 25, 39].

All samples were made at least two weeks before ex-
periments and were stored in the dark at 35◦C.
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FIG. 1: Linear rheology of solutions of CTAB/NaNO3. (a) Example of semi-circular Cole-Cole plots showing the Maxwellian
behavior of wormlike micelles solutions. The storage and loss moduli (G′ and G′′) were obtained from small amplitude
oscillatory tests in cone-and-plate geometry for solutions with [NaNO3]=0.3 M at T=30◦C. The concentrations of CTAB
are given directly on the figure (in M). We have also performed linear rheology in small gap TC geometry and the data are
identical. (b-d) Summary of the relaxation times (◦, right axis) and elastic moduli (�, left axis) as functions of (b) the surfactant
concentration [CTAB] for fixed salt concentration ([NaNO3]=0.3 M) and temperature (T=30◦C); (c) the salt concentration
[NaNO3] for fixed surfactant concentration ([CTAB]=0.3 M) and temperature (T=30◦C); (d) the temperature T for fixed salt
and surfactant concentrations ([CTAB]=0.3 M and [NaNO3]=0.4 M). In (c), the lines are guides to the eye. In all other cases,
they are theoretical fits discussed in the text.

2. Shearing geometries

All the experiments were performed in transparent
cylindrical Couette devices with smooth walls, also re-
ferred to as TC cells in the following. In all experi-
ments, only the inner cylinder was rotating and its axis
was adapted to a stress-controlled rheometer (Physica
MCR301). The top of the cell was closed by a small
plug which limits the destabilization of the free surface
of the fluid at high shear rates [36] and a home-made
solvent trap was also used to limit evaporation. In order
to check for the effect of higher curvature of the stream-
lines on the onset of elastic instability, we used various
inner and outer radii. We used two types of outer radii,
Ro = 14.46 or 25 mm. With the large outer radius,
we used two types of inner radii Ri = 13.33 or 24 mm.
With the smaller outer radius, we also used two types of
inner radii Ri = 11.97 or 13.33 mm. All cylinders are
H = 40 mm high.
In the following, shearing geometries will be referred to
using the two dimensionless ratios defined as Λ ≡ d/Ri

and Γ ≡ d/H . Overall we have four TC devices, with
Λ ≃ 0.04, 0.08, 0.2 and 0.9 (Γ ≃ 0.025, 0.025, 0.06, 0.3).
Note that in addition to the TC geometries, a cone-
and-plate device (radius 25 mm, angle 1◦) was used for
linear rheology and measurement of a few flow curves.
Moreover, to test inertial effects, we used a transparent
cylindrical double-gap geometry, that consists in an in-
ner cylinder with a shape of a hollow cylinder mounted
in the center of the outer fixed cylinder. Consequently,
the inner cylinder presents both an inner and outer sur-
face leading to a double-gap configuration : the inner gap
has a rotating outer cylinder and a rotating inner cylin-
der while the situation is the opposite for the outer gap.
Details on the double-gap device are given in ESI.

3. Linear rheology

Small amplitude oscillatory tests [2, 41] were con-
ducted (both in TC and in cone-and-plate geometries) on
all samples in order to extract their elastic modulus G0

and relaxation time λ from Maxwellian fits of the storage
and loss moduli (G′ and G′′) [42]. Fig. 1a gives, as an
example, the Cole-Cole plots for varying concentrations
of CTAB at constant salt concentration and tempera-
ture. The semi-circular shapes confirm the Maxwellian
behavior of the solutions in the linear rheology regime.
Overall, all of the linear rheology data collected are con-
sistent with the literature [42]. Fig. 1b, c and d give
the variations of G0 and λ as functions of the surfac-
tant concentration, the salt concentration and tempera-
ture. We have G0 ∼[CTAB]9/4 and λ ∼[CTAB]5/4, as
expected from Cates’s reptation-reaction model [5, 42].
Also expected are the Arrhenius equation for the relax-
ation time as a function of temperature, and the linear
relation between the elastic modulus and temperature
G0 = kBT/ξ

3, where kB is the Boltzmann constant and
ξ is the mesh size of the entanglement network [5]. The
variations of λ and G0 with the concentration of salt
[NaNO3] are consistent with the literature [42]. The ini-
tial increase of λ andG0 with [NaNO3] is generally admit-
ted to be a consequence of the screening of electrostatic
interactions, which induces micellar growth [5, 42]. The
subsequent decrease of λ at higher salt concentration is
supposed to reflect the effect of micellar branching [5, 42].

4. Nonlinear rheology

Although in the regime of small deformations the
Maxwell model is sufficient to account for the rheology
of the solutions, it becomes completely inadequate in the
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FIG. 2: (a) Experimental flow curves obtained for various
concentrations of [CTAB]=0.1, 0.2, 0.3, 0.4, 0.5 and 0.6 M
at a constant salt concentration [NaNO3]=0.3 M and con-
stant temperature T=30◦C. The flow curves were obtained
by increasing the imposed shear rate. The shear stress is
in units of G0 and the shear rate is made dimensionless by
using the Weissenberg number Wi ≡ λγ̇. The flow curves
with the symbols (� and ◦) were obtained on a TC device
with d = 1.13 mm and Ri = 13.33 mm, with two min-
utes spent on each data point. The continuous lines are the
corresponding flow curves obtained in cone-and-plate geom-
etry (2 min/point). Inset: TC flow curves in dimensional
form (σxy vs γ̇), stacked from top to bottom in between
[CTAB]=0.6 M and [CTAB]=0.1 M. For each system, two
runs are plotted, one with a sampling time of 2 min/point
(corresponding to the dimensionless data) and one with only
5 s/point. (b) Experimental flow curves for a system with
[CTAB]=0.3 M, [NaNO3]=0.4 M and T=28◦C. The flow
curves are obtained in different shearing geometries: cone-
and-plate (•) and TC with Λ =0.04 (◦), 0.08 (△), 0.2 (N)
and 0.9 (�); 2 min/point.

nonlinear regime. The crossover between the linear and
nonlinear rheology regime can be roughly given by the
Weissenberg number. The Weissenberg number is de-
fined as Wi ≡ λγ̇ [46]. For Wi ≪ 1 the rheology is lin-
ear and the solutions behave as Maxwellian fluids. For
Wi & 1 the solutions exhibit shear-banding or at least
shear-thinning [4].
Fig. 2a gives, as an example, the flow curves for varying

concentrations of CTAB at constant salt concentration
and temperature. When the global shear stress σxy is di-
rectly plotted against the global shear rate γ̇ (inset), flow
curves are stacked, with shear-banding plateaus at higher
stresses and spanning a smaller range of shear rates cor-
responding to the more concentrated solutions. This fol-
lows from the rough scaling σp ∼ G0 and γ̇l ∼ λ−1. If
flow curves are made dimensionless by plotting σxy/G0

againstWi we can see that indeed all stress plateaus start
for Wi ≃ 1 [4]. The dimensionless curves are stacked
the other way round: the solutions with a higher surfac-
tant concentration have a lower and wider dimensionless
plateau [4]. The existence of a plateau on the flow curve
is the mechanical signature of shear-banding. For the
lowest concentration of surfactant ([CTAB]=0.1 M), the
dimensionless flow curve does not have a plateau and
shear-banding does not occur. The flow curves in Fig. 2a
are consistent with the literature [42], and we checked
that it was also the case for the flow curves for vary-
ing temperatures and salt concentrations (see ESI) and
for other surfactants [8, 20]. In general, we can define
the apparent Weissenberg number marking the end of
the shear-banding plateau as Wi∗h ≡ λγ̇∗

h, where γ̇∗

h is
the apparent end of the plateau. Then, Fig. 2a seems
to show that Wi∗h increases with the surfactant concen-
tration [4, 40]. We also observed a similar increase of
Wi∗h with decreasing temperature (see ESI). For vary-
ing salt concentrations the effect on Wi∗h is more sub-
tle. The variations of σp/G0 and Wi∗h with [NaNO3] are
non-monotonic. Consistently with ref. [42] (Fig. 9), we
found roughly three domains. First, σp/G0 increases, for
concentrations up to [NaNO3] ≃ 0.5 M, then levels off
for concentrations up to [NaNO3] ≃ 1 M. Finally, for
[NaNO3] > 1 M, σp/G0 decreases (see ESI). This will be
discussed further in sections II E and III C.

As a transition to the next subsection, let us mention
a point that we believe to be essential in analysing flow
curves: the data collected in experiments very rarely cor-
respond to the ideal conditions of a steady simple shear
flow, the very conditions most of the time assumed in
modelling, that is without secondary flows and without
wall slip.

On steadiness, the well-known kinetics of the establish-
ment of banded flows can be particularly slow, especially
near the beginning of the shear-banding regime, when
α ≪ 1 [4, 13, 47]. The time spent on each data point
of the flow curve must be greater than the time needed
to reach the steady state. In the inset of Fig. 2a, we
have plotted two runs for each flow curves. One with a
time sampling of 2 min/point and one with a sampling
of 5 s/point. Note how at the beginning of the plateau,
the shorter sampling produces higher stresses because not
enough time was allowed to reach steady state. It is a
phenomenon long known to happen in shear-banding flu-
ids [4, 13].

The presence of slip at the walls, i.e. a mismatch be-
tween the velocity of the fluid adjacent to the wall and of
the wall itself, also impacts the flow curve. The true shear
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rate experienced by the bulk of the sample is smaller than
the imposed shear rate, leading to a shift of the stress
plateau towards lower global shear rates. The position
of the stress plateau and its width may also be affected.
For more details on wall slip, please see section I 5.
It is also important to realize that in cylindrical ge-

ometries, the stress is not homogeneous in the gap but
decreases as 1/r2 [36, 41]. This is one of the reasons
why the shear-banding plateaus measured in TC de-
vices are tilted in contrast to those measured in cone-
and-plate [36, 48–50]. But it is not the only reason.
Fig. 2b gives five flow curves for the same surfactant sys-
tem ([CTAB]=0.3 M, [NaNO3]=0.4 M, T=28◦C) but ob-
tained in different shearing geometries. As noticed in a
previous publication [36], the slope of the stress plateau
is not simply related to the curvature of the geometry.
For instance, TC devices with Λ ≃ 0.04, 0.08, 0.2 have
almost exactly the same slope. The slope of the plateau
may also be influenced by a concentration difference be-
tween the bands [51].
Most importantly, Fig. 2b illustrates the fact that the
shape of the flow curves can be greatly influenced by
secondary flows. For Λ = 0.2 and 0.9 the flows become
turbulent before the end of the shear banding regime (for
α < 1) and the apparent upper branch of the flow curves
is due to the strong extra stress generated by turbulent
flows. This point was discussed in detail in a recent pub-
lication [39]. In this case, the apparent end of the stress
plateau Wi∗h is not the true end, i.e. such that α = 1.
Although the plateaus measured in cone-and-plate geom-
etry do not seem to have a slope, it does not mean that
secondary flows are absent. Indeed, in Fig. 2a data collec-
tion usually had to be stopped due to the ejection of the
sample, mostly triggered by secondary flows as already
mentioned in a previous publication [40] and as explicitly
shown in a recent study [52].

5. Observing secondary flows

Almost all experiments presented in this article have
been performed in a rheo-optical device where the gap of
the TC device was visualized by using a laser sheet (wave-
length 632.8 nm) propagating along the velocity gradient
axis and extending along the vorticity axis. A digital
camera recorded the scattered intensity at 90◦, giving a
view of the gap in the velocity-gradient/vorticity (y, z)
plane [36]. Fig. 3a (ii) gives an example of the type of
images gathered. For most solutions, the turbidity con-
trast between the bands was strong enough that we could
clearly see the interface between the bands. We then ap-
plied a numerical algorithm to each frame in order to
detect the interface [36, 37]. We have also imaged the
gap with white light in order to observe the vortex struc-
ture [37], even when the turbidity contrast is weak. The
evolution in space and time of the amplitude of the inter-
face along z has been shown previously to be correlated
to secondary flows [37]. When the interface exhibits un-

dulations, each wavelength of the interface corresponds
to a pair of counter-rotating Taylor-like vortices, mainly
localized in the high shear rate band, with inward flows
co-localized with the interface inner crests and outward
flows co-localized with the interface outer crests. The
size of a pair of vortices is symbolized by 2L. A precise
description of the TC devices used for optical visuali-
sations is given elsewhere [36, 37] and in the Electronic
Supplementary Information (ESI).

Evidently, due to incompressibility, velocity compo-
nents involved in secondary flows locally modify the base
flow vθ(y, z). In order to check this fact, we have per-
formed velocity measurements using the ultrasonic ve-
locimetry (USV) set-up described in detail elsewhere [53].
Typical velocity profiles vθ(y) measured at a particular
location along z are given in Fig. 3c for the solution
[CTAB]=0.3 M, [NaNO3]=0.4 M at T=28◦ C in a TC
cell with Λ ≃ 0.08. They exhibit the characteristic pro-
file broken in two slopes corresponding to the high and
low shear rates bands [13]. As shown in Fig. 3d, the pro-
portion of the high shear rate band α increases roughly
linearly with the global shear rate γ̇, as measured consis-
tently by both velocimetry and optical methods.
We have demonstrated in a previous study how the
spatio-temporal dynamics of the secondary flows and
thus of the interface as imaged by turbidity contrast are
related to the dynamics of velocity profiles of the base
flow vθ(y) [39]. Fig 3a (i) and Fig 3b now show how the
vorticity structuring of secondary flows modifies measure-
ments of velocity profiles done at several consecutive lo-
cations along the vorticity axis. The position of the inter-
face between the two shear bands clearly undulates along
the vertical direction, demonstrating the full consistency
between the optical and velocimetry measurements.

The velocity measurements also reveal the presence of
systematic apparent slip at the wall in contact with the
high shear rate band. As shown in Fig 3e, the slip veloc-
ity first increases at the beginning of the shear-banding
regime and then levels off at a value of a few mm/s. A
similar evolution of the local shear rate in the high shear
rate band is observed as shown in Fig 3.f. Indeed, in con-
trast with the expectations of the simple lever rule, the
high shear rate γ̇h is not constant throughout the entire
shear-banding regime. It first increases and then tends
to saturate to a value γ̇h=89± 4 s−1 consistent with the
end of the plateau [γ̇∗

h=97± 5 s−1 (Fig. 2.b)] (this last
observation is robust as long as the shear-banding flow
does not become turbulent, depending on the value of
Λ). All these features are consistent with our previous
investigation of the 10% CPCl/NaSal solution [39] and
seem to be widespread across shear-banding micellar sys-
tems [19, 43–45].

In the rest of this article, we will assume that this
phenomenology–wall slip correlated with a gradual in-
crease of γ̇h(γ̇)–is systematic. We will discuss its over-
all impact on secondary flows and on their onset in sec-
tion III A.

Most of the experimental results presented in this pa-
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FIG. 3: (a) Comparison between (i) velocity measurements and (ii) optical visualizations of the shear-banding flow of a solution
of [CTAB]=0.3 M, [NaNO3]=0.4 M, T=28◦C, Λ ≃ 0.08, at γ̇ = 40 s−1. (i) USV measurements. Each horizontal line is a velocity
profile vθ(y) at a given location z along the vorticity axis, with the velocity encoded as a grey level between the zero velocity at
the fixed outer cylinder (right) and vw=39 mm/s, the velocity at the moving inner cylinder (left). Measurements along z were
done every 100 µm, which is above the vertical resolution of the transducer (65 µm). The time interval between each velocity
profile is between 0.5 and 1 s depending on the applied shear rate. (ii) Overlay of two optical visualization techniques showing
the secondary vortex flow in the high shear rate band. The first technique, with the red laser, gives the strong turbidity contrast
between the bands. The second technique, with white light, allows for the observation of the vortices. (b) Velocity profiles
along the vorticity axis for γ̇ =30, 40, 50 s−1. The velocity is encoded as a grey level between 0 and vw(γ̇). (c) Time averaged
velocity profiles vx(y) at a given location z for various shear rates. (d) Proportion of the high shear rate band as a function of
γ̇ measured from the optical or USV protocols. (e) Slip velocity at the inner cylinder as a function of γ̇. (f) Local shear rate
in the high shear rate band (γ̇h) as a function of γ̇. (g) Local shear rate in the low shear rate band (γ̇l) as a function of γ̇.

per were obtained for start-up flows at a known imposed
shear rate. Typically, each start-up test was performed
for ten minutes. In between each start-up flow experi-
ment, the sample was allowed to relax and rest without
flow for two minutes. Note nonetheless that most results
presented in the paper have also been duplicated using
start-up flows at imposed shear stress (i.e. creep tests).
Except for the particulars of the early time transient re-
sponse, the same behaviors were observed.

II. THREE CATEGORIES OF

SHEAR-BANDING FLOWS

A. Background on elastic instabilities

It is well known that Newtonian fluids can exhibit in-
creasingly unstable flows for large values of the Reynolds
number Re = τvdγ̇, which gives the relative importance
of destabilizing inertial forces and viscous stabilization–

τvd ≡ d2

ν being the viscous diffusion time [59].

As mentioned in section I 4, in non-Newtonian fluids, the
primary nonlinearity usually comes from the constitutive
relation rather than from the momentum balance. The
dimensionless group linked to the magnitude of nonlin-
ear effects is the Weissenberg number Wi ≡ τ γ̇. For
solutions of wormlike micelles, it had been long known
that Wi ∼ 1 was a rough estimate of the onset of shear-
banding (if the corresponding value of the dimensionless
stress was not higher than σxy/G0 ∼ 1) [4]. In short,
shear-banding was known to be linked to Wi. With our
recent experiments [37–40], we have also shown that, con-
comitantly, the Weissenberg number is also linked to the
magnitude of destabilizing elastic forces that can lead
to the emergence of secondary flows and eventually to
‘elastic turbulence’, a fact well known already for the–
homogeneous–flows of polymer solutions [55–58].

In a 1990 seminal study, Larson, Shaqfeh and Muller
showed in particular that the TC flow of polymer so-
lutions could become unstable to a Taylor-like instabil-
ity [55]. The kinematics of the unsteady flow are roughly
similar to those of the Newtonian case, i.e. after a critical
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FIG. 4: (a)-i: Visualization of the inner and outer gaps in a cylindrical double-gap geometry. The fluid is [CTAB]=0.3 M and
[NaNO3]=0.4 M at T=30◦C. The shear rates in the inner and outer gaps are respectively γ̇in ≃ 35 s−1 and γ̇out ≃ 45 s−1. Both
gaps are 1.5 mm wide, the inner gap with Λi = 0.16 and the outer gap with Λ = 0.12 (see ESI for details on the geometry). ii:
[CTAB]=0.3 M and [NaNO3]=0.4 M at T=30◦C, in the cell with Λ = 0.9, for γ̇ = 15 s−1. The horizontal and vertical scales are
the same. (b) Summary across conditions ([CTAB], [NANO3], T , Λ) of the dimensionless wavelength of the oscillations of the
interface between bands 2L/d as a function of the proportion of the high shear rate band α. The white symbols are re-plotted
from the (original ‘OS’) system of 10 wt % cetylpyridinium chloride in NaCl brine at T=21.5◦C investigated in ref. [39]. The
dashed line is the best fit of the data for [CTAB]=0.3 M and [NaNO3]=0.4 M at T=28◦C, the system previously discussed in
ref. [40]. The equation for the lines is 2L

d
= 2nα, with n = 3.8 for Λ=0.08 (dashed line) and n=2 for Λ=0.9 (dotted line). (c)

Similar vorticity structuring of the secondary flows as observed by the oscillations of the interface between the bands of various
systems. i: the system of 10 wt % cetylpyridinium chloride in NaCl brine at T=21.5◦C for γ̇ = 5 s−1 investigated in ref. [39]. ii:
many conditions for the CTAB/NaNO3 system. The horizontal scale (given by the gap) is stretched twice in comparison to the
vertical scale. All the data in (a-c) correspond to systems in C2, or in C3 before the onset of turbulent bursts (cf. section II E).

threshold, Taylor vortices appear, but the destabilizing
mechanisms is linked to Wi rather than Re. Note that
for both inertial and elastic mechanisms, if the geometry
of the base flow is curved, the appropriate dimension-
less group controlling the threshold to instability needs
to take into account the curvature of the streamlines. In
the simplest TC flow, where only the inner cylinder is
rotating, and in the small gap limit, i.e. d ≪ Ri, there
exist two important dimensionless groups. The first one
is relevant to the ‘purely inertial TC instability’:

Σi ≡
√
ΛRe (1)

derived and observed by Taylor [60]. The second one is

relevant to the ‘purely elastic TC instability’:

Σe ≡
√
ΛWi (2)

derived and observed by Larson et al. [55] when Re ∼ 0.
Here, Λ ≡ d

Ri

is the geometrical ratio linked to the
streamline curvature. Note that the Taylor number is
usually defined as Ta ≡ Σ2

i [59]. In the purely iner-
tial case, the flow becomes unstable for Σi > m′. In
the purely elastic case, the flow becomes unstable for
Σe > m. Both m′ and m are coefficients of order unity,
with precise values that depend on the boundary condi-
tions [59, 61].
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B. Instability criterion for shear-banding flows

If one wishes to derive the appropriate dimensionless
group for a purely elastic instability in the case of a shear-
banding base flow, the key is to realize that the instability
comes from the high shear rate band only, contrary to
the flow of polymer solutions, which is homogeneous and
where the entire sample becomes unstable. In small gap
TC flow, the purely elastic dimensionless group is Σe ≡√
ΛWi for homogeneous flows. For shear-banded flows,

it should be given by the following equation:

Σ ≡
√
αΛWih (3)

The gap d has been replaced by the ‘effective gap’, i.e.
the band of high shear rate with width αd [40]. And
the global Weissenberg number Wi has been replaced
by the local Weissenberg number in the induced band
Wih ≡ λγ̇h [40]. It is important to remember that the
dimensionless group Σ should be the correct scaling for
the instability of shear-banded base flows only if: (1) in-
ertial effects are negligible, i.e. if the elasticity number
E follows E ≡ Wi/Re ≫ 1, with Wi and Re taken in the
appropriate domain; (2) for small gaps, i.e. Λ ≪ 1; and
(3) when there is no end effects Γ ≪ 1.
For most of the experiments presented in this arti-
cle, those three conditions will indeed be satisfied.
The three TC cells with Λ ≃ 0.04, 0.08, 0.2 (Γ ≃
0.025, 0.025, 0.06) satisfy the conditions Λ ≪ 1 and
Γ ≪ 1. We will see in section III B that the TC cell with
Λ ≃ 0.9 (Γ ≃ 0.3) does show behaviors departing from
the small gap/no end effects approximation.

C. Irrelevance of inertial effects

To check if inertial effects are negligible in the high
shear rate band, one must compute the elasticity number
Eh associated with the different conditions investigated.
We recall that in an unstable domain of width d, the
Reynolds number is given by Re = τvdγ̇. In the case of
shear-banded base flows, one must substitute γ̇ by γ̇h.
The viscous dissipation time to consider should also take
into account the effective gap αd, and the viscosity of
the high shear rate band. An order of magnitude for this
local viscosity is the ratio ηh ≡ σp/γ̇h. Thus the elasticity
number associated with the high shear rate band is given
by:

Eh = Wih
σp

ρ(γ̇hαd)2
(4)

where ρ ≃ 103 kg/m3 is the density of the fluid. In our ex-
periments, the lowest values of Eh correspond to solutions
with a low concentration of surfactant, which have high
values of γ̇h. For instance, for a band of a few millimeters
wide, the solution of [CTAB]=0.2 M, [NaNO3]=0.4 M at
T=30◦C has Eh ≃ 0.9Wih. Since in this case Wih ≃ 10,
we have Eh ≃ 10 > 1. It is large enough that elasticity

dominates, even if some ‘inertio-elastic’ effects may be
detectable [62]. In most of the other conditions, we have
Eh ≫ 1 and inertia has no effect.
This point is supported by experiments performed in

a cylindrical double-gap geometry where the inner gap
is in a TC configuration with the outer cylinder rotating
while the outer gap is in a TC configuration with the in-
ner cylinder rotating. It is well known that the inertial
Taylor instability does not occur if only the outer cylinder
is rotating [59, 60]. In contrast, in the purely elastic ana-
logue, the instability does not depend on which cylinder
is rotating [55]. Fig. 4a-i shows the secondary flow struc-
ture of a solution of [CTAB]=0.3 M, [NaNO3]=0.4 M
at T=30◦C in this particular flow geometry. For this
solution at the angular velocity of the inner hollow cylin-
der chosen here, the order of magnitude of the elasticity
number in the high shear rate band is Eh ≃ 400. Inertial
effects are then supposed to be negligible. The fact that
the structures of the secondary flow and thus of the oscil-
lations of the interface are similar in both the inner and
outer cylinder rotating situations unambiguously demon-
strates the irrelevance of inertia. The slight difference on
the wavelength is only due to the slight difference in α,
because the inner and outer gaps support slightly dif-
ferent shear rates. The spatio-temporal dynamics of the
two gaps are the same (see ESI). Note by the way that
the (turbid) high shear rate band is localized at the in-
ner wall of both the inner and outer gaps. It is because
the high shear rate band is located in the region having
the highest curvature [48–50] , where the shear stress is
largest, independently of which cylinder is rotating.

D. Effective gap

The fact that in the formula for Σ (eq. 3), αd replaces
d is well illustrated by the scaling of the characteristic
dimension of secondary flows along the vorticity axis. In
a Taylor-like vortex flow, the size of a pair of vortices 2L–
or equivalently, the size of a wavelength of the interface–
scales with the size of the unstable domain in which it is
contained. For instance, in the inertial case (E = 0), if
the cylinders are counter-rotating, the gap of the TC cell
is split in two domains, one unstable near the inner cylin-
der and one stable near the outer cylinder [60, 63, 64].
Indeed, in the lab frame, there is a surface of zero velocity
somewhere inside the gap, so for the outer domain the sit-
uation is equivalent to the situation of an outer cylinder
rotating and an inner cylinder fixed. The original exper-
iments of G.I. Taylor clearly showed that already [60].
Fig. 13-20 of Taylor’s article showed secondary flows for
counter-rotation, with vortices localized in the inner do-
main, shrinking with increasing outer rotation speed.
In the case of shear-banding base flows prone to elastic

instability, the inner high shear rate band is the analogue
of the inner domain in an inertial situation with contra-
rotation. Instead of d we must consider the size of the
band, i.e. αd. Fig. 4c-ii shows pictures of the plane
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(y, z) for a representative set of tested systems of various
[CTAB], [NaNO3], T and Λ; at various imposed global
shear rates γ̇. All pictures were taken a few minutes af-
ter the beginning of the start-up test so that they are
representative of the asymptotic flow. In all cases, we
can see that the wavelength of the interface scales with
the size of the high shear rate band. Fig. 4b gives the
dimensionless wavelength of a pair of vortices as a func-
tion of the proportion of the high shear rate band α, for
over 250 conditions ([CTAB], [NaNO3], T , Λ, γ̇). They
all confirmed the following scaling:

2L

d
= 2nα (5)

We have also reproduced the data from our previous
study on the CPCl/NaSal system [39]. They overlap
well, showing a fortiori no difference between different
surfactants. The picture of the CPCl/NaSal system in
Fig. 4c-i is essentially indistinct from pictures of the
CTAB/NaNO3 system.
In ref. [40] we fitted the data for a system of
[CTAB]=0.3 M and [NaNO3]=0.4 M at T=28◦C in a TC
cell with Λ ≃ 0.08. We found n = 3.8 ± 0.1. This fit is
reproduced here by the straight dashed line. It seems to
fit all the data gathered on the various solutions reason-
ably well.
Note that the data at low α come from experiments done
on the TC cell with Λ ≃ 0.9 (Γ ≃ 0.3). Fig. 4a-ii shows
an example of shear-banding flow in this TC cell. The
data for this TC cell also follow a linear scaling but with
a lower value of n (n ≃ 2). This may be due to behaviors
departing from the small gap/no end effects approxima-
tion, as discussed in section III B.
Note also that for α & 0.6 the wavelength usually levels
off or even decreases slightly. This is due to the onset
of a particular spatiotemporal dynamics of the vortex
flow [36, 40].

E. Three categories of shear-banding

Let us now recall the implications of the instability cri-
terion (Eq. 3) that we derived in Ref. [40]. We have seen
in section I 5 that the local Weissenberg number Wih
in the high shear rate band depends on the global Weis-
senberg numberWi, due to slip at the moving wall. How-
ever, velocimetry data also show that, for large enough
bands (typically for α >0.3) and provided that the shear-
banding flow does not become turbulent, Wih is of the
same order as the upper boundary of the stress plateau
Wih ≃ Wi∗h. Since Wi∗h increases with the surfac-
tant concentration and decreases with temperature (sec-
tion I 4), concentrated/low temperature solutions should
be more prone to instability in a given TC cell.
We can actually make a finer prediction. Let us recall

that we expect a shear-banded base flow to become
unstable if Σ > m, where m is a coefficient of order
unity, whose precise value depends on the boundary
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FIG. 5: Categories of shear-banding for varying surfactant
concentration [CTAB] (a), temperature T (b), geometry Λ
(c), and salt concentration [NaNO3] (d). On each sub-figure,
(i-iii) are pictures of the gap (y, z) and (iv) shows the di-
mensionless flow curves corresponding to i (�), ii (�) and iii
(◦). The parameters held constant are given in (iv), while
the value of the varying parameter is given directly on (i-iii).
The arrows on the bottom left corner of each picture give the
relative scales of the y and z axes. All images represent the
entire width of the gap, except for c-iii that only shows d/4.
(a-d)-iii represent snapshots of turbulent bursts, thus for fluid
in C3. (a-d)-ii represent snapshots of vortex flows regularly
deforming the interface between bands. For those systems,
α = 1 is reached without the occurrence of turbulence and
for Wi ∈ [Wi∗h,W ic] the flow is homogeneous and secondary
flows disappear. The fluids are in C2. (b,c)-i represent snap-
shots of stable shear-banding flows, with a flat interface be-
tween bands, thus in C1. In (a)-i, the shear-banding base
flow disappears before we can reach C1. In (d)-i, the low
concentration of salt prevent us from observing the turbidity
contrast between bands. But bands can be imaged with white
light, revealing that even for [NaNO3]=0.2 M, we are still in
C2 (see section III for more informations on the effect of salt).
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conditions [59, 61]. The structure of the secondary flows
may also depend on the boundary conditions.
At the end of the shear-banding regime, i.e. when
α = 1, the boundary conditions on the unstable domain
are modified. As long as α < 1 the interface with the
low shear rate band acts as a soft boundary, then when
α = 1, the soft interface vanishes and is replaced by a
hard wall.
We can define ms and mh to be the values of m
corresponding respectively to ‘soft’ and ‘hard’ boundary
conditions. Because ms < mh [40, 61], we can use basic
Boolean logic to classify shear-banding flows into three
possible categories depending only on the values of Λ
and Wih:

• Category 1 (C1)
For sufficiently low Wih–i.e. high T , low Λ and low
concentration–the shear-banding flow is stable for any α,
since Σ < ms even for α = 1. The flow can then become
unstable for Weissenberg numbers above a critical value
Wic > Wih as in the case of a regular viscoelastic fluid,
i.e. following the scaling Σe =

√
ΛWi.

• Category 2 (C2)
For intermediate values of Wih–i.e. intermediate T , Λ
and concentration–the shear-banding flow is unstable
above a critical value αc when Σ > ms for α > αc. Then
as the imposed shear rate is increased and α → 1 the
boundary conditions change and the flow is stabilized,
because the flow is below the threshold mh. Eventually
for Wi > Wic > Wih the flow becomes unstable again.

• Category 3 (C3)
Finally, if Wih is high enough–i.e. for low T , high Λ and
high concentration–we have two critical band widths αc1

and αc2. For α > αc1, Σ > ms. And for α > αc2, Σ >
mh. In this case, there is no stabilization for Wi > Wih.
The flow remains unstable, although the spatiotemporal
characteristics may change.

Note that if one is interested in the stability of the
low shear rate band, γ̇l and [1 − α]d must be used to
compute the relevant stability criterion. Low shear rate
bands prone to elastic instability could compromise the
onset of shear-banding. This could be a category C4, but
we found no evidence for it in all conditions tested. The
Weissenberg number in the low shear rate band is always
low.

Overall, if concentrations of surfactant and salt, tem-
perature and the shearing geometry are allowed to vary,
we expect changes in the stability of shear-banding flows.
Concentrations and temperature modify Σ through the
value of Wih. The geometry of the TC cell modifies Σ
through Λ. Any way of increasing Σ should result in sim-
ilar changes in the category of shear-banding flow: from
C1 to C2 and eventually to C3 as Σ increases.

In previous studies we found first evidence for C2 [38]
and C3 [39] by using two different systems with fixed
thermodynamical and geometrical conditions [CTAB

(0.3 M)/NaNO3 (0.405 M) at T = 28◦C and CPCl/NaSal
10% in NaCl brine at T = 21.5◦C]. Here, using large
ranges of values for the different parameters ([CTAB],
[NaNO3], T , Λ, γ̇), we demonstrate the relevance of the
criterion in most of the tested conditions.

1. Effect of [CTAB]

Fig. 5a illustrates the effect of increasing surfactant
concentration on the type of secondary flows. Those ex-
periments have been conducted in a TC cell with Λ =
0.08, at T = 30◦C in solutions with [NaNO3]=0.3 M and
varying surfactant concentrations [CTAB]. For [CTAB]≥
0.4 M shear-banding flows are clearly in C3. Indeed, be-
fore the end of the shear banding regime, i.e. before
α = 1, we observe the onset of turbulent bursts similar
to the one described in detail in ref. [39]. The turbu-
lent bursts destabilize the 3D shear-banded vortex flow
and the system undergoes a transition towards elastic
turbulence before reaching the true end of the plateau,
i.e. before α = 1. For [CTAB]=0.3 and 0.2 M, the
shear-banding flows is in C2 while for [CTAB]=0.1 M,
the shear-banding flow disappeared altogether. There-
fore, in this last case, we could not observe C1.

2. Effect of T

Fig. 5.b displays the effect of increasing temperature
on the type of secondary flows. Those experiments have
been conducted in a TC cell with Λ = 0.2, in solutions
with [CTAB]=0.3 M and [NaNO3]=0.4 M, and varying
temperature T . For T ≤ 34◦C shear-banding flows corre-
spond to the C3 category, since turbulent bursts, clearly
localized in the high shear rate band, develop before the
end of the shear-banding regime. For 34 < T ≤ 40◦C,
the shear-banding flows are in C2. Finally, for T ≥ 40◦C,
the shear-banding flows are in C1. Note that we have also
conducted experiments with varying temperatures on the
same surfactant system in TC cells with Λ = 0.04, 0.08
and 0.9. In the cells with Λ = 0.04 and 0.08, C3 could
not be reached, because even at T = 22◦C, Σ is still too
small. Finally, temperatures below T = 22◦C cannot be
reached because the surfactant demixes. For Λ = 0.9, it is
the opposite, C1 could not be reached, even at T = 40◦C.
We refrained from going to higher temperature because
of the sensitivity of our home made TC device. In the
ESI we show the disappearance of secondary flows as the
boundary between C2 and C1 is crossed for a system un-
der a constant shear rate but with quasi-static increase
of the temperature.

3. Effect of Λ

In Fig. 5c, we show the effect of increasing the curva-
ture of the base flow streamlines Λ on the type of sec-
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ondary flows. Those experiments were conducted with
solutions of [CTAB]=0.3 M and [NaNO3]=0.4 M, at
T = 38◦C, and for varying Λ. For Λ = 0.9 shear-banding
flows are in C3. Here again, the dynamics of turbulent
bursts is similar to the ones in ref. [39]. In such a large
gap, turbulence is unmistakeably localized in the high
shear rate band. Fig. 5c-iii gives a snapshot showing
only the quarter of the gap close to the inner cylinder.
The low shear rate band in the three other quarters of
the gap is completely unaffected by the turbulence in the
high shear rate band. For Λ = 0.2 the shear-banding
flows are in C2. Finally, for Λ = 0.08 and 0.04, they are
in C1. Note that we have also changed Λ at other temper-
atures and we have observed the same phenomenology.
Note however that the TC cell with Λ = 0.9 goes beyond
the small gap/small aspect ratio. We will discuss this in
section III B.

4. Effect of [NaNO3]

Fig. 5d displays the effect of varying the salt concen-
tration [NaNO3] on the type of secondary flows. As
discussed in section I 4, the effect of salt on Wi∗h are
more subtle and the three categories are not observed
in a simple order. For the results in the figure, we only
increased salt concentration up to the maximum of λ
around [NaNO3]≃ 1 M (cf. Fig. 1c). For higher salt con-
centrations, other effects come into play, as discussed in
section III C. The experiments have been conducted with
solutions of [CTAB]=0.3 M at T = 30◦C, in a TC cell
with Λ = 0.08. For [NaNO3]≥ 0.7 M, shear-banding flows
are in C3 and turbulent bursts occur. For [NaNO3]= 0.5
and 0.6 M, the shear-banding flows are in C2 and the tur-
bidity contrast between bands is standard. But, even for
[NaNO3]=0.2 M, we cannot not reach C1. Note moreover
that at low concentrations in salt, the turbidity contrast
between the bands becomes too low and the band struc-
ture needs to be imaged using white light [37].

5. Impact on dimensionless flow curves

Fig. 5a,b,c,d-iv give the dimensionless flow curves for
the three examples of flows given in Fig. 5a,b,c,d-i to
iii. It seems that Wi∗h increases with the surfactant
concentration, justifying the increase of Σ responsible
for the changes in categories of shear-banding. Note
nonetheless that since the system with [CTAB]= 0.4 M
is in C3, Wi∗h is smaller than the true end of the plateau.
A similar phenomenology is observed for changes in the
temperature.
Changes in Λ illustrate once more the importance of
secondary flows on the apparent flow curves as already
mentioned in section I 2 (cf. Fig. 2b).
Finally, changes in salt concentration have a subtler
effect as mentioned already in section I 4. In Fig. 5d-iv,
the flow curve for [NaNO3]=0.5 M has a higher dimen-

sionless plateau and thus a lower expected value of Wi∗h
than the flow curve for [NaNO3]=0.9 M. But for lower
concentrations of salt, in particular [NaNO3]=0.2 M,
σp/G0 seems to decrease and Wi∗h seems to increase.
The disappearance of the turbidity contrast between
bands suggests a change in mesoscopic structure that
may be responsible for this non-monotonicity in the
behaviors of σp/G0 and Wi∗h vs [NaNO3].

F. Spatiotemporal dynamics of the secondary flows

The theoretical framework developed in ref. [40] and
recalled in section II E should give us the onset of sec-
ondary flows when Σ > m. But this criterion does not
give us any information on the precise spatiotemporal
dynamics of the vortex flows.
For the inertial TC problem, it is well known that a va-

riety of spatiotemporal patterns can be observed [65, 66].
When only the inner cylinder is rotating, the vortex flow
is first steady (Taylor vortex flow or TVF ). As Σi is
increased further, the vortex flow becomes wavy (wavy
vortex flow or WVF ), then modulated waves develop
and, eventually, a regime of turbulent Taylor vortices is
reached.
For the purely elastic TC problem, the situation is

not yet fully sorted out. Linear stability analysis found
that the first unstable modes are non-axisymmetric and
oscillatory [67]. But the first experiments seemed to
suggest otherwise [68–70]. Baumert and Muller found
steady axisymmetric modes with a very long onset time.
A potential explanation for the discrepancies has since
emerged [62]. The explanation involves thermal effects.
Indeed, the viscosity of the fluids used in experiments be-
ing high, viscous heating can produce temperature gra-
dients that in turn result in gradients in fluid viscosity
and fluid elasticity. The axisymmetric modes found by
Baumert and Muller are now understood to be ‘thermo-
elastic’ modes [71, 72]. In isothermal conditions, the typ-
ical flow pattern is indeed non-axisymmetric and time de-
pendent. It is the so-called flame pattern [69–71], which
can also be observed when inertia and elasticity both
play a role [62]. The flame pattern is constituted of ‘di-
whirls’ [73–79]. The diwhirls are mostly solitary vortex
pairs with a very strong and localized inward flow and a
very broad and weak outward flow. Diwhirls can be cre-
ated spontaneously in regions of outflows (see Fig. 26 of
ref. [69] and Fig. 10 of ref. [70]) and they can merge when
they come too close to each other. When they merge, it
is always the counter-rotating vortices separated by an
outflow that annihilate each other [73, 74]. It has been
argued that this particular type of structure is character-
istic of secondary flows driven by elasticity.
For shear-banding surfactant solutions, our previous

studies have identified several important features of the
spatiotemporal dynamics of secondary flows. For small
widths of the high shear rate band (α . 0.1), the vor-
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FIG. 6: Example of the classes of spatiotemporal dynamics of secondary flows inferred from the evolution of the position of the
interface between band during a step shear rate from rest. (a) Zig-zag pattern for [CTAB]=0.3 M, [NaNO3]=0.4 M, T=28◦C,
Λ = 0.04 and γ̇ = 10 s−1; (b) Anti-flame pattern for [CTAB]=0.4 M, [NaNO3]=0.3 M, T=30◦C, Λ = 0.08 and γ̇ = 40 s−1;
(c) Steady vortex flow pattern for [CTAB]=0.3 M, [NaNO3]=0.5 M, T=30◦C, Λ = 0.08 and γ̇ = 50 s−1; (d) Flame pattern
for [CTAB]=0.3 M, [NaNO3]=0.3 M, T=30◦C, Λ = 0.08 and γ̇ = 250 s−1; (e) Turbulent burst pattern for [CTAB]=0.3 M,
[NaNO3]=0.4 M, T=28◦C, Λ = 0.2 and γ̇ = 50 s−1. The amplitude of the interface oscillations is given in grey scale. The
vertical axis represents the spatial coordinate along the cylinder axis with an origin z0 taken roughly at the middle of the TC
cell (z0 ≃ 20 mm from the bottom of the cell). Periodic white dots on some patterns are due to small bubbles trapped in the
flow during the loading of the sample or by an instability of the free surface near the axis of the inner cylinder.

tex flow was oscillating along the vorticity direction in a
characteristic zig-zag pattern [35, 36, 39]. For intermedi-
ate widths, the vortex flow was steady, with the bound-
aries of the vortices oscillating slightly with a period of a
few times the relaxation time λ [36, 37]. For the largest
widths (α & 0.6) pair of vortices could be created and an-
nihilated in a way reminiscent of the flame pattern [35–
37]. In the CPCl/NaSal 10% system, the flame pattern
could not be reached because of the onset of turbulent
bursts, disturbing the band structure more and more fre-
quently as the global shear rate increased [39].

In the present study, we have greatly increased the
range of systems investigated but found the same succes-

sion of spatiotemporal patterns, except for the discovery
of a new intriguing one. First, for small proportions, the
vortex flows follow a zig-zag pattern. As an example,
Fig. 6a shows the zig-zag pattern observed for a solu-
tion of [CTAB]=0.3 M and [NaNO3]=0.4 M at T=28◦C
in a TC cell with Λ = 0.04 for γ̇ = 10 s−1. Previ-
ously, we had noticed that the zig-zag and steady vortex
flow patterns were separated by a small crossover where
we could observe an asymptotic wavelength of the pat-
tern half of the initially growing wavelength (Fig. 11f
of ref [36]). By studying the spatiotemporal dynam-
ics on a wider range of conditions than before, we have
found that this crossover region actually corresponded
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to a pattern in itself: the anti-flame pattern. Fig. 6b
gives an example of the anti-flame pattern for a solution
of [CTAB]=0.4 M and [NaNO3]=0.3 M at T=30◦C in a
TC cell with Λ = 0.08 for γ̇ = 40 s−1. We call it ‘anti-
flame’ because pairs of vortices can be created in regions
of inflow and they can merge but always by the annihila-
tion of counter-rotating vortices separated by an inflow,
shaking some of the arguments made on diwhirls [73–
79]. The anti-flame pattern is followed by a steady vor-

tex flow. Most of the time, a time variation can be seen,
but we cannot analyse it in enough details to confirm
that this time periodicity is always of the scale of λ. In
some cases, the time periodicity is not even detectable,
as in the example given in Fig. 6c. Finally, we have been
able to reach a flame pattern (Fig. 6.d) for a solution of
[CTAB]=0.3 M and [NaNO3]=0.3 M at T=30◦C in a TC
cell with Λ = 0.08 for γ̇ = 250 s−1.
Note that it is still unclear what is the control parame-

ter for the transitions between spatiotemporal dynamics.
We always observe the succession from zig-zag, to anti-
flame, to steady vortex flow, to flame for increasing α, but
it is unclear if the transition thresholds scale with α, αΛ,
Σ or even something else. Experiments seem to discard
a scaling on solely α. For instance, in the TC cell with
Λ = 0.2, with the reference system of [CTAB]=0.3 M
and [NaNO3]=0.4 M at T=28◦C, we observe a transition
toward the flame pattern for values of αd similar to the
one in the TC cell with Λ = 0.08 [36, 37], even though
the corresponding values of α are widely different. A
scaling on Σ would be hard to identify, because when Σ
increases, systems tend to switch to C3 where turbulence
disturbs the spatiotemporal dynamics of the vortices (cf.
Fig. 6e).
It is important to remember that the succession of pat-

terns is only seen if the vortex flows are unperturbed by
turbulent bursts. When a system is in C3, turbulence
bursts become more and more frequent as the global
shear rate is increased. In ref. [39], the turbulent bursts
occurred too frequently before we could see the flame
pattern. But in Fig. 6e, we give an example of turbulent
bursts occurring on top of a flame pattern, in a solution
of [CTAB]=0.3 M and [NaNO3]=0.4 M at T=28◦C in a
TC cell with Λ = 0.2 for γ̇ = 50 s−1.

III. DISCUSSION: BEYOND THE PURELY

ELASTIC INSTABILITY SCALING

In this article, we have demonstrated that the emer-
gence of secondary flows in solutions of wormlike micelles
can be well interpreted by a purely elastic instability of
the high shear rate band. This purely elastic instability
is similar to the one observed in polymer solutions. The
only difference concerns the base flow. In polymer solu-
tions, the base flow is homogeneous. In wormlike micelles
solutions, the base flow is shear-banded. The deforma-
tion of the interface between bands follows from the onset
of secondary flows localized in the high shear rate band.

And the prediction of three categories of shear-banding is
a consequence of the switch in boundary conditions when
α → 1.
Overall, both the homogeneous case Σe (eq. 2) and the

shear-banded case Σ (eq. 3) are instances of the same
underlying ‘purely elastic instability scaling’:

ΣD ≡
√

ΛDWiD ⇒
{

if α = 1, ΣD = Σe

if α 6= 1, ΣD = Σ
(6)

where ΛD and WiD need to be taken in the appropriate
unstable domain D. The parameter α is just an indicator
of the type of base flow. This is actually a consequence of
the general scaling for any flow with curved streamlines
derived by Pakdel and McKinley [40, 57].
It is not necessarily always the case, however, that sec-

ondary flows in solutions of wormlike micelles can be well
described by a scaling of the form ΣD. We have seen
already that the scaling encompassed in Σ can be inac-
curate if the system under investigation fails to respect:
(1) the creep flow hypothesis (E ≫ 1); (2) the small gap
hypothesis (Λ ≪ 1); and (3) the large aspect ratio hy-
pothesis (Γ ≪ 1). Those three hypotheses limiting the
validity of the scaling were explicitly needed by the the-
oretical framework used in ref. [40]. But actually, there
are other implicit hypotheses. We could underline some
of them from rational grounds, but most are suggested
to us empirically. Experiments on a wide range of con-
ditions sometimes lead us to explore extreme values of
the parameter space ([CTAB],[NaNO3], T , Λ, Γ, γ̇) and
we have clearly observed deviations from small gap and
large aspect ratio (III B).
We have also found that the excess of salt could lead

to modifications on the spatiotemporal dynamics of sec-
ondary flows (III C). We also realized that secondary
flows could eventually disturb the structure of the bands,
resulting in a feedback between the structure and the sec-
ondary flows (III D). Finally, we will come back on an
important point that we have left unspoken: the poten-
tial effects of interfacial modes (III E).
Overall, if the criterion seems qualitatively valid, all

the effects deviating from the purely elastic instability
scaling severely limited our experiments to too small a
range of systems to quantitatively check the scaling Σ
given in eq. 3. We do not have at our disposal enough
reliable systems to have a large range of αΛ and Wih to
draw a stability diagram similar the one predicted in Fig.
3 of ref. [40]. Moreover, we refrained from computing
more than orders of magnitude for Σ since we know that
the apparent end of the shear-banding plateauWi∗h is not
reliably equal to the local value Wih in the high shear
rate band for a given global Wi (III A).

A. Systematic wall slip

Even when turbulence does not lead to an up-turn in
the flow curve before the true end of the shear-banding



14

0

1

2

3

4

5

6

7

0 10 20 30 40 50 60 70 80

Σ

(s-1)

FIG. 7: Instability criterion Σ =
√
αΛWih computed as a

function of the global shear rate γ̇. The dashed line is the
best fit for Σ = a(γ̇− γ̇l)

b, with γ̇l = 5±2 s−1, a = 0.4±0.1 sb

and b = 0.67± 0.06.

regime (α = 1), wall slip leads (at least at the beginning
of the banding regime) to :

Wi∗h 6= Wih (7)

We chose to highlight this difference in an equation, be-
cause it has such an impact on the pragmatic use of the
scaling Σ. If, following the simple lever rule, the local
value of the Weissenberg number in the high shear rate
band Wih is constant and equal to the end of the plateau
on the flow curve Wi∗h, then we can compute Σ easily.
But we have shown in Fig. 3 that wall slip leads to a varia-
tion of the localWih with the globalWi, with only rigor-
ouslyWih = Wi∗h when α = 1 (assuming that the system
is in C2). Moreover, theoretical arguments suggest that
wall slip is a necessary feature of shear-banded flows [12].
Wall slip and a variation of Wih with Wi seem to be re-
quired for the global shear rate in the gap to match the
value imposed by the rheometer [12]. Such effects have
been observed in many cases [17, 24, 32], and they seem
to be a manifestation of non-local effects [12, 82, 83]
This wall slip does not violate the scaling Σ given in

eq. 3, but it means that we cannot use Wi∗h but should
use the local Wih given by velocity measurements. Fig. 7
gives the computation of the value of Σ(γ̇) based on ve-
locity measurements to compute Wih, for the solution
of [CTAB]=0.3 M and [NaNO3]=0.4 M at T=28◦C, in a
TC cell with Λ ≃ 0.08. The dashed line is the best fit
for Σ = a(γ̇ − γ̇l)

b, with γ̇l = 5± 2 s−1 the critical shear
rate for the onset of shear-banding and a = 0.4± 0.1 sb,
b = 0.67 ± 0.06. Note that if we had Wih = Wi∗h and

a simple lever rule, we would have Σ ∼ γ̇1/2, because
α ∼ γ̇. The fact that b = 0.67 > 1

2
comes from the fact

that Wih ∼ γ̇c with c > 0.
Note that this particular solution is in C2 but that

a slight increase of surfactant concentration, or a slight
decrease in temperature would put it in C3. Thus, this
indicates that the value of Σ close to the beginning of
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FIG. 8: (a) Proportion of the high shear rate band α as a func-
tion of the global shear rate γ̇, imposed by the rheometer. The
system is a solution of [CTAB]=0.3 M and [NaNO3]=0.4 M
at T=28◦C, in TC cells with Λ ≃ 0.04 (•), Λ ≃ 0.08 (�),
Λ ≃ 0.2 (�) and Λ ≃ 0.9 (◦). (b) Spatiotemporal dynamics
of vortex flows modified by small aspect ratio effects in the
TC cell with Λ = 0.9: (i) Modified anti-flame for γ̇ = 6 s−1

and (ii) modified flame for γ̇ = 10 s−1. The location z0 at
which the dynamics is recorded is such that the middle of the
height of the pattern coincides with H/2.

the shear-banding regime (for γ̇ & γ̇l) is greater than
ms, while the value of Σ at the end of the shear-banding
regime (for γ̇ = γ̇h) is just under mh. From Fig. 7 we
conclude that ms ≃ 1 and mh ≃ 7.

B. Deviations from small gap and small aspect

ratio

As mentioned in section II B, the TC cell with Λ ≃ 0.9
and Γ ≃ 0.3 does show behaviors departing from the
small gap and no end effects approximations. First, the
effect of large gap is that the global shear rate has a large
inhomogeneity. For this reason, at the same imposed
shear rate γ̇, in TC cells with different Λ, the proportion
of the high shear rate band is not the same. Fig. 8a shows
how for TC cells with Λ = 0.2 and even more for Λ = 0.9,
the deviation from the simple lever rule is unmistakable.
In the TC cell with Λ = 0.9, we also have Γ = 0.3,

i.e. the gap height is just a bit more than three times its
width. A striking consequence can be observed on the
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spatiotemporal dynamics of the vortex flows. When the
large aspect ratio holds (Γ−1 ≫ 1), the spatiotemporal
patterns, for instance in Fig. 6, are globally invariant
along the vorticity axis z. They are periodic along z of
course, but the top and bottom of the cell do not have
a significant effect on the pattern. For Λ = 0.08, we
have Γ = 0.025. If we only fill the gap half way up,
Γ′ = 0.05 still respects the large aspect ratio. In such
conditions we can not see any significant impact on the
spatiotemporal pattern (data not shown). In contrast,
when Γ = 0.3 in the large gap cell, we observe clear
influences of the top and bottom ends of the TC cell.
For instance, for [CTAB]=0.3 M and [NaNO3]=0.4 M at
T=28◦C, Fig. 8b gives a modified anti-flame pattern for
γ̇ = 6 s−1 (i) and a modified flame pattern for γ̇ = 10 s−1

(ii). In both cases, the original large aspect ratio pattern
is partly overlapped by travelling waves going from the
top and bottom ends towards the center of the TC cell
(z = H/2). Similar phenomenon occurs in the inertial
TC instability with short aspect ratios [66]. Note that a
fast zig-zag mode is also superimposed to the anti-flame
pattern during the first four minutes.
Note that when Γ becomes large, the base flow between

cylinders is not simply a purely annular Couette flow. In
a Couette flow, surfaces of streamlines under the same
stress have only one radius of curvature, linked to their
radial position. In more general cases, including the case
of TC flows with small aspect ratios, the occurrence of
ΛD in the instability scaling (eq. (6)) must be replaced
by a combination of ΛD and ΓD, where ΓD is taken in
the appropriate domain [57].

C. Effects of the salt concentration

As mentioned with respect to Fig. 1c, the salt concen-
tration is known to have some effects on the mesoscopic
architecture of networks of wormlike micelles. The meso-
scopic architecture is modified even in the absence of flow
as reflected by changes in the behavior of the viscoelastic
parameters obtained in linear rheology. For concentra-
tions up to [NaNO3]≃ 1 M, the main effect of increasing
salt concentration seems to be an increase in the aver-
age length of micelles. But we have seen in Fig. 5d that
it also has some unexplained effect on the turbidity of
high shear rate bands. For low concentrations of salts,
[NaNO3]≤ 0.2 M, the turbidity contrast seems to disap-
pear completely and the dimensionless flow curve has a
lower plateau than for higher concentrations of salt. If
the effect of salt is just to increase the length of worms
as for an increase in surfactant concentration, we would
expect the opposite behavior [4].
For [NaNO3]≥ 1 M, the relaxation time λ decreases

with increasing salt concentration, as shown in Fig. 1c.
This decrease supposedly reflects the effect of branching
of micelles [5, 42]. The effect of such branching on the
nonlinear rheology is still unsettled [5]. Our experiments
on solutions of [CTAB]=0.3 M for salt concentrations
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FIG. 9: Spatiotemporal dynamics of vortex flows for high con-
centrations of salt. (a) [CTAB]=0.3 M and [NaNO3]=1.2 M
at T=30◦C, and Λ = 0.08. (i) γ̇ = 20 s−1. (ii) γ̇ = 30 s−1.
(b) [CTAB]=0.3 M and [NaNO3]=2.8 M at T=30◦C and
Λ = 0.08, γ̇ = 300 s−1.

[NaNO3]> 1 M can give a few interesting indications.
First, even for very large salt concentrations, the tur-
bidity contrast between bands is still strong. Then, the
spatiotemporal dynamics of secondary flows can be al-
tered by high concentrations of salt. We have noted two
types of consequences illustrated on examples in Fig. 9a
and b.
Figure 9a gives two spatiotemporal patterns observed

for a solution of [CTAB]=0.3 M and [NaNO3]=1.2 M
at T=30◦C, in the TC cell with Λ = 0.08. They are
representative of the spatiotemporal dynamics for con-
centrations of salt not much higher than [NaNO3]≃ 1 M.
They resemble the spatiotemporal dynamics for the vor-
tex flows described in section II F, except that they are
disrupted by turbidity fluctuations. The patterns re-
semble those corresponding to situations where impuri-
ties are present in the sample, generating enhanced wall
slip [39].
Fig. 9b gives the spatiotemporal dynamics of a solution

of [CTAB]=0.3 M and [NaNO3]=2.8 M at T=30◦C, in the
TC cell with Λ = 0.08. It is an example of the effects of
even higher concentrations of salt. The spatiotemporal
patterns are strongly altered and appear chaotic. The
spatiotemporal pattern seems to be a combination of the
flame and anti-flame patterns.

D. Feedback beetween the band structure and

secondary flows

In the purely elastic instability scaling given in eq. 3,
the formula includes αd, the width of the effective gap.
Interestingly, if secondary flows are generated, they tend
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FIG. 10: Three snapshot of the gap of a solution of
[CTAB]=0.55 M in D2O (20 wt %) at T=37.5◦C, in a TC
cell with Λ = 0.08. The gap is illuminated by white light (the
illumination is made non-homogenous in the gap in order to
increase the contrast between the high and low shear bands).
The three pictures are taken a few instants after the onset of
a start-up flow with γ̇ = 50 s−1. The last picture (t=30 s
after the onset of shear) is representative of the asymptotic
state.

to locally modify the proportion of the high shear rate
band. In other words, α becomes a function of the posi-
tion along the vorticity axis : α = α(z). This feedback
between the secondary flows and the shear-banded base
flow is what allowed us to extract the dynamics of the sec-
ondary flows from the dynamics of the oscillations of the
interface between bands, i.e. the oscillations of α(z) [37].
This correspondence between the dynamics of α(z) and
the dynamics of secondary flows works as long as the
secondary flows do not disrupt the band structure com-
pletely, remixing the two bands together. For systems in
C3, turbulent bursts can have such disrupting effects.

By studying systems over a wide range of parameters,
we realize that several features of the asymptotic flows
can depend crucially on the particulars of the feedback
between the band structure and secondary flows. For in-
stance, the behavior of the amplitude of the oscillations
of the interface between bands most likely follows from a
balance between the intensity of secondary flows deform-
ing the interface and the effective surface tension of the
interface, which can be connected to the stress diffusion
coefficient [12]. In some cases, if the surface tension of
the interface is not high enough (corresponding to very
thin interfaces [12]), the high shear rate band can lo-
cally disappear in regions of strong radial inward flow.
We observed this in systems with very high concentra-
tions of surfactant. Those systems are concentrated and
close to the isotropic/nematic (I/N) transition at equi-
librium [4]. For instance, Fig. 10 gives the behavior of

the band structure and secondary flows developing in a
system of 20 wt % of CTAB without salt in D2O, at
T=37.5◦C in a TC cell with Λ = 0.08. This system
has been widely studied in the last twenty years [18–22],
in particular recently, by Helgeson et al. [23, 45]. Right
after the onset of shear, the bands form, with a flat inter-
face between them. Then, quickly, the interface starts to
undulate, under the effect of the emerging vortex flow.
But the resistance of the interface to those secondary
flows is too weak and the proportion of the high shear
rate band goes to zero in regions of inward radial flow.
Eventually, the two bands seem to be mixed in regions
of weak outward radial flow. We have observed similar
behaviors at other temperatures, well into the nematic
state (T=34◦C) and further away from the I/N transition
(T=44◦C). The same phenomenology holds for a solution
of [CTAB]=0.7 M and [NaNO3]=0.3 M at T=30◦C, in
the TC cell with Λ = 0.08. This solution is also close to
the I/N transition. The addition of salt switches the I/N
transition towards higher concentrations [4].

Note that if shear-banding flows are in C2 or C3, the
proportion of the high shear rate band is a function of
the location along the vorticity direction but is also a
function of time–because of the spatiotemporal dynamics
of the vortex flow are often time-dependent (cf. fig. 6).
This fact calls for a re-evaluation of experimental sit-
uations where the so-called ‘vorticity banding’ was ob-
served [88–93]. Note moreover that the ‘non-monotonic
shear-thickening flow curve’ underlying vorticity banding
could be simply due to the emergence of secondary flows
responsible for the increased resistance to flow. In sum,
vorticity banding could very well originate from a con-
stitutive instability [94]. But it could also be the conse-
quence of secondary flows developing on top of a gradient
banding base flow.

We did not study in detail the feedback between sec-
ondary flows and the spatiotemporal structure of the in-
homogeneity of the shear rate leading to bands, but we
believe that it can be an important aspect of other phe-
nomena observed in flows of surfactant solutions. When
the surfactant solutions are semi-dilute, concentrated,
maybe even nematic, and present a clear banded struc-
ture along the gradient direction y, the present article
and its grounds on previous studies show that the feed-
back is indeed crucial to the understanding of many ‘fluc-
tuating behaviors’. But the literature on flows of surfac-
tant solutions is also very rich on the side of dilute solu-
tions and their shear-thickening rheology [13]. We believe
that considering the influence of elastic instabilities in
some of those cases could be enlightening. Note however,
that since the viscosity of dilute solutions is usually small,
the full spectrum of inertio-elastic effects [62] may have
to be considered on top of the kinetics of shear-induced
structures [13]. In all cases, the effects of concentration
fluctuations could also complicate the picture [51, 84–86].
The most general case where elasticity, inertia and shear-
induced structural transitions and concentration fluctu-
ations are taken into account is most likely chaotic. This
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FIG. 11: (a) Large angle view of the bottom of the TC cell
with Λ = 0.04. [CTAB]=0.3 M, [NaNO3]=0.4 M, T=32◦C,
γ̇ = 150 s−1. The bright white vertical line on the cylinder is
due to a reflection of the laser sheet. (b) Pictures of the gap
of a TC device with off-centered cylinders. [CTAB]=0.3 M,
[NaNO3]=0.4 M, T=30◦C, Λ ≃ 0.04. Pictures (i) and (ii) are
separated by 1 s.

is what had been coined rheochaos [5, 87].
It is worth acknowledging that by studying the elas-

tic instability of shear-banded flows in TC geometry, we
have greatly restricted the bounds of the feedback be-
tween secondary flows and the banding structure. The
fact that the high shear rate band always occupies the
locus of highest curvature greatly stabilizes the banding
structure of the band against secondary flows. Except
when secondary flows are turbulent, we do not observe
a switch in the radial position of the high and low shear
rate domains. But other base flows can allow much more
freedom on the location of the bands. Theoretically, in a
plane Couette flow (simple shear) the interfaces between
bands can be located anywhere in the gap. In a cone and
plate geometry, the high shear rate band can be located
on the cone or plate, or even in the middle [32, 52, 95].
Fig. 11a shows the location of the bands at a given in-
stant at the bottom of the TC device used in this article.
The inner cylinder actually possesses a conical bottom
end (Mooney-Couette). Thus the gap at the bottom of
the Couette cell is a cone-and-plate geometry. As an-
other example, Fig. 11b shows the band structure in a
TC cell with the two cylinders slightly off-centered (by
≃ 0.25 mm). In both cases, the shape is highly unsteady.
It is clear in those two cases that the feedback between
secondary flows and the band structure leads to a much
more complicated situation, witnessed by the geometrical
complexity of the shape of the turbid band itself.

E. Interfacial modes and axisymmetry

Note that if the instability of the base flow is solely
due to the purely elastic instability of the high shear rate
band, as described in section II B, then for small enough
proportions of the high shear rate band, the flow should
always be stable, no matter how high Λ and Wih are. In
other words, limα→0 Σ = 0. In all the conditions tested,

we have never observed this stable range. One reason is
that the smallest width we can measure with our optical
set-up is of the order of 50 µm. But another reason is
that other instability mechanisms may be important for
small bands.

So far, we have only considered an elastic instability
arising in the bulk of the high shear rate band. It is
a ‘bulk mechanism’, in the sense that it involves the
value of a dimensionless quantity taken in a domain–
here the band of width αd. Similarly, the homogeneous
purely elastic instability in polymer solutions, or the in-
ertial TC instability for Newtonian fluids, are bulk mech-
anisms. Another important class of instabilities involve
‘interfacial mechanisms’. The Rayleigh-Taylor or Kelvin-
Helmholtz instabilities are well known examples of inter-
facial mechanisms involving inertia. Interfacial mecha-
nisms are not linked to the value of a dimensionless quan-
tity taken in a domain, but to a dimensionless quantity
linked to a difference in properties between domains sep-
arated by an interface. For instance, interfacial mecha-
nisms involving inertia are usually linked to a difference
in density between domains or even to a difference in
Reynolds numbers.

It has long been known that viscoelastic materials
can be subject to interfacial instability mechanisms in-
volving elasticity [56]. The interface and bulk mecha-
nisms are both ‘elastic instabilities’, in the sense that
they are driven by normal stresses [56]. Indeed, before
experiments suggested that shear-banding base flows in
TC geometry could exhibit secondary flows structured
along the vorticity axis, a linear stability analysis of the
Johnson-Segalman model in simple shear suggested that
shear-banding flows could become unstable along the flow
direction x, due to an interfacial mechanism [27]. Field-
ing showed that a jump in the first normal stress differ-
ence between the bands could generate interfacial modes

in the flow direction. Eventually, Fielding also inves-
tigated the stability of shear-banded flows subjected to
perturbations along the vorticity direction z. She also
found an instability, this time triggered by a jump in the
second normal stress difference between bands [28]. It
was shown that the instability of the interface generated
recirculation rolls resembling Taylor-like vortices. Ex-
periments done in straight micro-channels gave evidence
that these interfacial modes along the vorticity direction
dominated over the interfacial modes along the flow di-
rection [96]. It is known that the bulk modes are linearly
stable in base flows without curvature, i.e. for Λ = 0 [58].
At this point, it remained unclear which mechanism–bulk
or interfacial–was responsible for the secondary flows and
undulations of the interface between bands in TC flows.

But in a recent study, Fielding extended her original
calculations focused on simple shear, to the case of TC
flows [29]. She suggested that the interfacial and bulk
elastic modes lie in two separate regions of the space
(Λ,N1|h), i.e. of the space (Λ,Wih) [29]. The bulk mode
prevails at high Wih and high curvature Λ. The inter-
facial mode prevails at low Wih and low Λ. Nonethe-
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less, only axisymmetric perturbations were considered in
Fielding’s study [29], and the stability analysis was per-
formed for a single value of α. In the last theoretical
study known to us, Nicolas and Morozov extended the
stability analysis to non-axisymmetric modes [30]. They
found that, for parameters corresponding to our earlier
experiments on the CTAB/NaNO3 system [35–38], the
interfacial modes only dominate at the very beginning
of the shear-banding regime (α ≪ 1). Bulk modes oth-
erwise dominate. This last study significantly altered
the stability diagram in the space (Λ,Wih) proposed by
Fielding [29], because it showed that at a given value
of Λ = 0.08, there was not any interval of parameters
separating interfacial and bulk modes. The two types of
modes can even interact with each other.
An extension of Nicolas and Morozov’s study to TC

flows with different Λ and different Wih would be neces-
sary to substantiate this claim, but we believe that inter-
facial modes are only relevant when the effective curva-
ture of the high shear rate band is low, i.e. when αΛ is
small. We think that in our experiments, the zig-zag pat-
tern in the spatiotemporal dynamics of secondary flows
may be due to the dominance of the interfacial mode.
Generally, the particulars of the spatiotemporal dynam-
ics of secondary flows may be connected to interactions
between bulk and interfacial modes.
Note that whether the non-axisymmetry originates

from bulk or interfacial modes, we do not observe it
in our experiments. Some non-axisymmetry can be a
consequence of the spatiotemporal dynamics of vortex
flows, but the main instability always seems to be along
the vorticity direction rather than along the flow di-
rection. A recent study by Decruppe et al. [97] has
shown some evidence for non-axisymmetric modes. They
studied a system made of [CTAB]=0.05 M and 0.1 M
and [NaSal]=0.1 M, at T=23◦C in a TC cell with Λ =
0.5/28.5 ≃ 0.02. An azimuthal instability seemed to oc-
cur, with a high shear rate band periodically moving in
the middle of the gap. We have reproduced those experi-
ments, seeing indeed what seems to be azimuthal modes,
but entangled with other phenomena: turbidity fluctua-
tions, some instability along the vorticity axis and elastic
turbulence. A thorough investigation of the possibility of
non-axisymmetric mode is left for further study.

IV. CONCLUSION AND PERSPECTIVES

In this article, we have shown that the TC flows of
shear-thinning semi-dilute surfactant solutions are char-
acterized by the convergence of two nonlinearities that
have nothing to do with inertia–the source of nonlinear-
ity in Newtonian fluids. We call the first nonlinearity
‘structural ’. Flows of surfactant solutions become inho-
mogeneous when for Wi ∼ 1, we have σxy/G0 . 1 [4]. In
theoretical modelling this is often expressed as a condi-
tion on the ratio of the viscosity at infinite shear rate and
the zero-shear viscosity η ≡ η∞/η0, where η0 ≡ G0λ [5].

Shear-banding occurs if η < ηc, for instance ηc = 1/8
for the Johnson-Segalman model [5, 12, 33]. In a TC
flow with only the inner cylinder rotating, the domains
of high shear rate form a band of width αd near the in-
ner cylinder. The new base flow is a shear-banded base
flow. It is influenced by wall slip [12, 39], but most im-
portantly by the second nonlinearity. We call this sec-
ond nonlinearity ‘elastic’ [98]. In a TC flow of a fluid
that lacks the first structural nonlinearity, like Boger flu-
ids [2, 56, 58], or in simple models like the upper con-
vected Maxwell model or Oldroyd-B model, the elastic
nonlinearity leads to the emergence of secondary flows,
first vortex flows, eventually turbulent flows. In small
gap and with only the inner cylinder rotating, secondary
flows emerge for Σe & 1. Similarly, in the same shear-
ing conditions, for the flow of shear-thinning semi-dilute
surfactant solutions, the elastic nonlinearity leads to the
emergence of secondary flows. If η < ηc and α 6= 1, then
secondary flows are mainly localized in the band of width
αd, if Σ & 1. The secondary flows are first coherent (vor-
tex flow) and eventually become turbulent. Otherwise
secondary flows occupy the entire gap if Σe & 1. In this
case, secondary flows appear to be mostly turbulent. For
more general cases, see the various subsections in sec-
tion III.

The convergence of the structural and elastic nonlin-
earities demonstrated in this article calls for a precision
to bring to a general concept running deep under our un-
derstanding of non-Newtonian fluids flows. In the field
of soft matter, almost by definition, we study the feed-
back between the structure of a fluid and its flow. The
flow can influence the structure. But the structure, even
just by its elasticity, can influence the flow. Our study
brings up one possible asymptotic solution of this feed-
back mechanism. But the general conclusion is that if we
talk about the ‘feedback between flow and structure’ we
must consider ‘secondary flows’ as well.
In general, if one is faced with the flow of a non-

Newtonian fluid, the particular outcome of the feedback
between flow and structure in a given geometry can be
investigated by the convergence of the answers to the fol-
lowing questions:
1) What is the base flow for Wi ∼ 0 and Re ∼ 0 ? (i.e.

the linear regime.)
2a) When does the base flow become hydrodynamically

unstable, elastically via Wi, inertially via Re, or both?
2b) When does the base flow become structurally un-

stable? The very general criteria recently developed by
Moorcroft and Fielding could be particularly instrumen-
tal in finding the answer to this question [99].
3) If 2a or 2b lead to a laminar flow, this laminar flow

is the new base flow. Then ask again questions 2a and
2b.
This reaches much beyond the case of semi-dilute sur-

factant solutions. Note that the elastic nonlinearity
should be present in any fluid with viscoelasticity, i.e.

any fluid that has a non-zero first normal stress differ-
ence [2, 41]. This represents a very large class of materi-
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als. Elastic instabilities have been shown in polymer so-
lutions and now in surfactant solutions. Notwithstanding
the proximity between surfactant solutions and polymer
solutions, the elastic instability phenomenology was only
recently brought to help the understanding of the former.
This fact calls for a greater awareness of the emergence
and effects of secondary flows on non-Newtonian fluids in
general: foams, emulsions, colloidal suspensions, etc [2].
The fact that secondary flows have been shown to emerge
in only a handful of non-Newtonian fluids may come
from two different reasons. On the one hand, many non-
Newtonian fluids can be both hydrodynamically unstable
and structurally unstable. The interactions of the two
nonlinearities may be unfavourable to secondary flows in
many cases. It is known that a second difference of nor-
mal stresses can kill the elastic instability if it is of op-
posite sign to the first normal stress difference [56]. On
the other hand, secondary flows in many non-Newtonian
fluids are yet to be probed.
In any case, the development of new experimental ap-

paratus allowing a better grip at the spatiotemporal dy-
namics of flows is essential.
To conclude back on surfactant solutions–our ‘model

system’ [1], let us mention one recent progress which
transcends the discussion of the present paper. Some-
thing that is even unclear in the case of elastic instabil-
ities in polymer solutions is the role of elongation and
stagnation in elastic instability mechanisms [100]. A few

recent studies around polymer solutions recently drew
the attention of the community toward flows with curved
streamlines but that are dominated by extension rather
than shear. The milestone is the discovery of purely elas-
tic bifurcation in the cross-slot geometry by Arratia et

al. [101]. Subsequent numerical simulations of viscoelas-
tic models confirmed this instability [102, 103]. A similar
instability has also been seen in micellar fluids, where the
presence of shear-banding seems to affect the nature of
the transition [104–107]. Surfactant solutions would not
be constructive model systems if they were not always
slightly more complicated than expected.
Fluctuating gradient and vorticity banding, elastic

instability and elastic turbulence, bulk and interfacial
modes, shear-thinning and shear-thickening, shear in-
duced structures and concentration fluctuations, and
rheochaos : We hope that this article has helped to ad-
vance the convergence of phenomena we associated to
those words, and the understanding we gain from it.
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