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REDUCTIONS OF TENSOR CATEGORIES MODULO

PRIMES

PAVEL ETINGOF AND SHLOMO GELAKI

Dedicated to Miriam Cohen

Abstract. We study good (i.e., semisimple) reductions of semi-
simple rigid tensor categories modulo primes. A prime p is called
good for a semisimple rigid tensor category C if such a reduction
exists (otherwise, it is called bad). It is clear that a good prime
must be relatively prime to the Müger squared norm |V |2 of any
simple object V of C. We show, using the Ito-Michler theorem
in finite group theory, that for group-theoretical fusion categories,
the converse is true. While the converse is false for general fu-
sion categories, we obtain results about good and bad primes for
many known fusion categories (e.g., for Verlinde categories). We
also state some questions and conjectures regarding good and bad
primes.

1. Introduction

In this paper we study good (i.e., semisimple) reductions of semi-
simple rigid tensor categories (in particular, fusion categories) modulo
primes. Namely, let C be a semisimple rigid tensor category over Q
(recall that any fusion category over a field of characteristic zero is
defined over Q by the Ocneanu rigidity theorem, see [ENO1, Theorem
2.28]) and let p be a prime. We say that p is a good prime for C if
there is a semisimple rigid tensor category Cp over Fp (with the same
Grothendieck ring as C) which admits a lift to a tensor category over
Qp (in the sense of [ENO1, Section 9.2]) that becomes equivalent to C
after extension of scalars from Q to Qp. In this case, the category Cp
is called a good reduction of C modulo p. Otherwise, if Cp does not
exist, we say that p is a bad prime for C.
It is not hard to show that for any fusion category C, there is a

finite set of bad primes. The goal of this paper is to find conditions
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2 PAVEL ETINGOF AND SHLOMO GELAKI

for a prime to be bad for C, and determine all such primes for various
examples of fusion categories.
The organization of the paper is as follows. In Section 2, we discuss

general properties of good and bad primes. In Section 3 we determine
the bad primes for group-theoretical categories, in particular for repre-
sentation categories of finite groups, using the Ito-Michler theorem in
finite group theory; namely, we show that a prime is bad if and only if
it divides the dimension of a simple object. In Section 4, we discuss bad
primes for the Verlinde categories (i.e., fusion categories coming from
quantum groups at roots of unity). Finally, in Section 5 we discuss
some questions and conjectures regarding good and bad primes.
Acknowledgments. We are very grateful to Noah Snyder for use-

ful discussions, in particular for contributing Example 4.5. The re-
search of the first author was partially supported by the NSF grant
DMS-1000113. The second author was supported by The Israel Sci-
ence Foundation (grant No. 317/09). Both authors were supported by
BSF grant No. 2008164.

2. Good and bad primes

Let p be prime. Let Zp denote the ring of integers in the field Qp (the
algebraic closure of Qp). Let m be the maximal ideal in Zp. Clearly,

Zp/m ∼= Fp.

Definition 2.1. Let C be a semisimple rigid tensor category over Q. A
good reduction of C modulo p is a semisimple rigid tensor category
Cp over Fp, categorifying the Grothendieck ring of C, such that there

is a lift of Cp to Zp (i.e., a semisimple rigid tensor category C̃p over Zp
which yields Cp upon reduction by the maximal ideal m) and a tensor

equivalence C̃p ⊗Zp
Qp

∼= C ⊗Q Qp. If a good reduction of C exists, we
will say that p is a good prime for C. Otherwise we will say that p is
a bad prime for C.
Example 2.2. A pointed fusion category VecωG, where G is a finite

group and ω is a 3−cocycle ofG with values inQ
×
, has a good reduction

modulo any prime, since ω can be chosen to take values in roots of unity.

Remark 2.3. Note that two non-equivalent fusion categories can have
equivalent good reductions modulo a prime p. E.g., for any 3−cocycle ω
on Z/pZ, the category VecωZ/pZ reduces to VecZ/pZ (with trivial cocycle)
in characteristic p (as ω can be chosen to take values in p−th roots of
unity). This cannot happen, however, if the global dimension of either
of these two categories is relatively prime to p (see [ENO1, Theorem
9.6]).
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The following proposition gives a necessary condition for a prime to
be good. Recall (see e.g., [Mu, ENO1]) that for any simple object V of
C, one can define its Müger’s squared norm |V |2, which is an algebraic
integer. Also recall that two algebraic integers are called relatively
prime if their norms (which are usual integers) are relatively prime.

Proposition 2.4. Let C be a semisimple rigid tensor category over Q.
If p is a good prime for C then p must be relatively prime to |V |2 for
any simple object V ∈ C.
Proof. If p is not relatively prime to |V |2 then |V |2 would have to be
zero in the reduction Cp. But Müger’s squared norm of any simple
object of a semisimple rigid tensor category must be nonzero (see [Mu,
ENO1]). �

Remark 2.5. One may ask if the converse of Proposition 2.4 holds.
It turns out that the answer is negative in general (see Example 4.5
below). However, in the next section we will prove that the answer is
positive for group-theoretical categories.

Recall that a fusion category C is called pseudounitary if the Müger’s
squared norm |V |2 of every simple object V coincides with the square
FPdim(V )2 of its Frobenius-Perron dimension. Recall also that ev-
ery weakly integral fusion category C (i.e., such that FPdim(C) is an
integer) is pseudounitary.

Corollary 2.6. If C is a pseudounitary fusion category then any good
prime p for C is relatively prime to the Frobenius-Perron dimension
FPdim(V ) for any simple object V ∈ C. �

Proposition 2.7. For any fusion category C, there are finitely many
bad primes.

Proof. If we write the structure morphisms of C in some basis, there
will be only finitely many primes in the denominator, and all the other
primes are automatically good. �

Remark 2.8. Note that Proposition 2.7 is not true for infinite se-
misimple rigid tensor categories. For example, if C is the category of
representations of SL(2,Q) then all primes are bad for C, since Müger’s
squared norm of the n−dimensional representation Vn−1 of SL(2,Q) is
n2.

Recall ([DGNO], [ENO2]) that a fusion category is called weakly
group-theoretical if it is obtained by a chain of extensions and equiv-
ariantizations from the trivial category.
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Proposition 2.9. If C is a weakly group-theoretical category of Frobenius-
Perron dimension d then any bad prime p for C divides d.

Proof. The proof is by induction on the length of the chain. The base
of induction is clear, and the induction step follows from the following
lemma.

Lemma 2.10. Let D be a fusion category of global dimension n, and
let G be a finite group. Let C be either a G−extension of D, or a
G−equivariantization of D. Let p be a prime, which is relatively prime
to both n and |G|. If D admits a good reduction modulo p, then so does
C.

Proof. Let Dp be a good reduction of D modulo p. Since p is relatively
prime to n, this is a non-degenerate fusion category (i.e., its global
dimension 6= 0), so the lifting theory of [ENO1, Section 9], applies.
In particular, it follows from the proof of [ENO1, Theorem 9.6] that
the lifting map Eq(Dp) → Eq(D) between the groups of tensor auto-
equivalences of Dp and D, defined in [ENO1, Section 9], is an isomor-
phism (i.e., any auto-equivalence of D has a reduction modulo p). This
implies that we have an isomorphism of the corresponding categorical
groups Eq(Dp) → Eq(D) (see [ENO3, Section 4.5]). Since G−actions
on a fusion category E correspond to homomorphisms G→ Eq(E), we
find that G−actions on D and Dp (and hence the corresponding equiv-
ariantizations) are in bijection. Moreover, since |G| is coprime to p, it
is easy to see that all the G−equivariantizations of Dp are semisimple.
Thus, any G−equivariantization of D has a good reduction modulo p
(which is the corresponding G−equivariantization of Dp).
Also, we see that the lifting map defines an isomorphism of Brauer-

Picard groups BrPic(Dp) → BrPic(D) (see [ENO3, Section 4.1]). This
follows from the fact that by [ENO3, Theorem 1.1], for any fusion
category E the Brauer-Picard group BrPic(E) is naturally isomorphic
to the group EqBr(Z(E)) of braided auto-equivalences of the Drinfeld
center Z(E), and from the proof of [ENO1, Theorem 9.6]. This implies
that we have an isomorphism of Brauer-Picard groupoids BrPic(Dp) →
BrPic(D) (see [ENO3, Section 4.1]). Since for any fusion category E ,
G−extensions of E are classified by homomorphisms G → BrPic(E),
we conclude that G−extensions of Dp and D are in bijection. Thus,
any G−extension of D has a good reduction modulo p (which is the
corresponding G−extension of Dp). �

The proposition is proved. �
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3. Bad primes for group-theoretical categories

Let G be a finite group and let ω ∈ Z3(G,Q
×
) be a normalized

3−cocycle on G. Let VecωG be the fusion category of finite-dimensional
G−graded Q−vector spaces with the associativity defined by ω. Let
H be a subgroup of G such that ω|H is cohomologically trivial, and

let ψ ∈ C2(H,Q
×
) be such that ω|H = dψ; then the twisted group

algebra Q
ψ
[H ] is a unital associative algebra in VecωG. The group-

theoretical category C = C(G,H, ω, ψ) is defined as the fusion category

of Q
ψ
[H ]−bimodules in VecωG (see [ENO1, Definition 8.40], [O]).

Let R be a set of representatives of double cosets of H in G. In
[O] it is explained that there is a bijection between the isomorphism
classes of simple objects Vg,ρ in C and isomorphism classes of pairs
(g, ρ), where g ∈ R and ρ is an irreducible projective representation of
Hg := H ∩ gHg−1 with a certain 2−cocycle ψg. (See also [GN].) The

dimension of Vg,ρ is
|H|
|Hg|

dim(ρ).

Assume now that H ⊆ G contains an abelian subgroup A which is
normal in G. Let K := H/A, and assume that the orders of K and A
are coprime (so that H is isomorphic to A⋊K).

Proposition 3.1. Suppose that ψg|A is cohomologically trivial for any

g ∈ G. Then there exist cocycles η ∈ Z2(G/A,A∨), ω̃ ∈ Z3(G̃η,Q
×
)

and a 2−cochain ψ̃ ∈ C2(K,Q
×
) such that C ∼= C(G̃η, K, ω̃, ψ̃), where

the crossed product G̃η := A∨ ⋊η G/A is the extension of G/A by A∨

using η.

Remark 3.2. Note that since the order of K is relatively prime to the
order of A, we have an embedding of K into G̃η defined canonically up
to conjugation. In Proposition 3.1, we can use any such embedding.

Proof. In the special caseK = 1, this is [N, Theorem 4.9]. This theorem
claims that there exist η and ω̃ such that C(G,A, ω, ψ) is equivalent

to C(G̃η, {1}, ω̃, 1). Now consider the module category M(H,ψ) over
C(G,A, ω, ψ). It is shown by a direct computation that under the above
equivalence, this module category goes to a module category of the form

M(K, ψ̃). Passing to the dual categories, we get the statement of the
proposition. �

Example 3.3. Consider the symmetric group on three letters S3. Then
Rep(S3) = C(S3, S3, 1, 1) = C(S3, S2, 1, 1), which shows that 3 is a good
prime for Rep(S3).

We will use the following deep theorem, whose proof relies on the
classification of finite simple groups, in an essential way.
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Theorem 3.4. (Ito-Michler, [Mi], see also [It]) Let G be a finite group
and let p be a prime number dividing the order of G. Suppose that p
does not divide the dimension of any irreducible representation of G.
Then the Sylow p−subgroup S of G is both normal and abelian, so (by
a theorem of Schur) G = S ⋊K, where the order of K is not divisible
by p.

We can now state and prove the main result of this section.

Theorem 3.5. Let C = C(G,H, ω, ψ) be a group-theoretical category.
A prime number p is bad for C if and only if p divides the dimension
of some simple object of C.
Proof. The “if” direction follows from Proposition 2.4.
Let us prove the “only if” direction. Assume that ω and ψ take

values in roots of unity (which we can do without loss of generality).
Take a prime p. If p does not divide the order of H , the category
Cp := C(G,H, ωp, ψp) (where ωp, ψp are the reductions of ω, ψ modulo

p) is semisimple over Fp, so p is good for C.
Therefore, it suffices to consider the case when p divides the order

of H . Suppose that p does not divide the dimension of any simple
object of C, and let us show that p is good. Since Rep(H) is a fusion
subcategory of C, Theorem 3.4 implies thatH = A⋊K, where the order
of K is not divisible by p and A is an abelian normal p−subgroup of
H .
We claim that in fact A is normal in G, not only in H . Indeed, by

our assumption, p does not divide |H|/|Hg|, which implies that the
order of Hg is divisible by the order of A, so Hg must contain A. So
for any g ∈ G we have g−1Ag ⊆ A⋊K, hence g−1Ag = A (since K is
a p′−group).
Finally, we claim that ψg|A is trivial. Indeed, a projective representa-

tion of A with 2−cocycle ψg|A is a simple object of C, so its dimension
must be coprime to p. But the dimension of this object is a power of
p, which is 1 only if ψg is trivial, as desired.

Now, by Proposition 3.1, C is equivalent to C(G̃η, K, ω̃, ψ̃). We can

assume that ω̃, ψ̃ take values in roots of unity. Since p does not di-

vide the order of K, the category C(G̃η, K, ω̃, ψ̃) admits a reduction

C(G̃ηp, K, ω̃p, ψ̃p) to a fusion category in characteristic p, so p is good
for C. �

Corollary 3.6. Let G be a finite group. A prime number p is good for
Rep(G) if and only if p does not divide the dimension of any irreducible
representation of G. �
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Example 3.7. Corollary 3.6 fails for reductive algebraic groups. In-
deed, consider the group G := PGL(2,Q), and let C := Rep(G) be
the category of rational representations of G. Its simple objects V2m
have dimensions 2m+ 1, where m is a nonnegative integer. Thus, the
prime 2 is the only prime that has a chance to be good for this cate-
gory, since any other prime divides the dimension (and hence, Müger’s
squared norm) of some irreducible object. Nevertheless, we claim that
the prime 2 is bad for Rep(G) (so in fact, for this category, all primes
are bad). Indeed, suppose we have a good reduction C2 of Rep(G) mod
2, and let us derive a contradiction.
Let X ∈ C2 be the reduction of the 3−dimensional (adjoint) repre-

sentation of G. Then we have a unique morphism m : X ⊗ X → X
and isomorphism b : X → X∗ up to scaling. Thus, if we fix the scal-
ing of these, we can attach an amplitude A(T ) to any planar trivalent
graph (allowing multiple edges but no self-loops), by contracting the
morphisms m corresponding to the vertices using b. Moreover, the am-
plitude A(T2) of the simplest planar trivalent graph T2 (with 2 vertices
and 3 edges, i.e., a circle with a diameter) is nonzero. Let us normalize
it to be 1. Then we get a well defined amplitude of any other planar
trivalent graph.
Consider the amplitude A(T4) of the next simplest graph T4 with 4

vertices - the square with diagonals (with one of the diagonals going
outside the square to avoid intersection and realize the graph in the
plane). It is supposed to be the reduction mod 2 of the corresponding
amplitude AQ(T4) over Q. But over Q, this is a computation in the
representation theory of the Lie algebra sl(2). Namely, if xi is an
orthonormal basis of sl(2), we get

(1)
∑

xixjxixj |V2 = AQ(T4)
(∑

x2i

)2

|V2 ,

where V2 is the adjoint representation. A direct computation then
shows that AQ(T4) is 3/2, which is a contradiction since A(T4) is sup-

posed to be the reduction of this number modulo 2. 1

1For the reader’s convenience, let us give explicit expressions of A(T2) and A(T4)
in terms of m and b. Let m∗ : X → X ⊗X be the map obtained from the dual of
m by identifying X∗ with X using b. Then we have

A(T2) = Tr(mm∗), A(T4) = Tr(m(1 ⊗m)(m∗ ⊗ 1)m∗).

Using that if X is the adjoint representation of sl(2) then m is the Lie bracket and
m∗ is its dual under the Killing form, we arrive at formula (1).
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4. Verlinde categories

Let g be a simple complex Lie algebra. For simplicity let us assume
that it is simply laced (so (α, α) = 2 for roots). Let h be the Coxeter
number of g, let θ be the highest root of g, and let ρ be half the sum
of positive roots of g.
Let l > h be a positive integer, and let q ∈ C be such that the order

of q2 is l. Set [n]q :=
qn−q−n

q−q−1 .

Following Andersen and Paradowski [AP], one can define the Ver-
linde fusion category C(g, q). Its simple objects are Vλ, where λ are
dominant weights for g such that (λ + ρ, θ) < l. The dimension of Vλ
is given by the q−Weyl formula:

dim(Vλ) =
∏

α>0

[(λ+ ρ, α)]q
[(ρ, α)]q

= q2(λ,ρ)
∏

α>0

(1− q−2(λ+ρ,α))

(1− q−2(ρ,α))
.

We will need the following elementary and well known lemma (whose
proof we include for the reader’s convenience).

Lemma 4.1. Let v be a primitive root of unity of order n. The norm
N(1− v) of 1− v is given by:

N(1− v) =

{
1, n is not a prime power
p, n is a power of a prime p

.

Proof. Let n =
∏m

i=1 p
si
i be the prime factorization of n. Then

N(1 − v) =
n∏

k=1, p1,...,pm∤k

(1− vk),

which is the value of the cyclotomic polynomial
∏n

k=1, p1,...,pm∤k(x− vk)
at x = 1. By the exclusion-inclusion principle,

n∏

k=1, p1,...,pm∤k

(x− vk)|x=1

=
(xn − 1)

∏
i<j(x

n
pipj − 1) · · ·

∏
i(x

n
pi − 1) · · ·

|x=1 =
n
∏

i<j
n
pipj

· · ·
∏

i
n
pi
· · · .

Now, the power of pi on the right hand side equals

1− (m− 1) +

(
m− 1

2

)
− · · · = (1− 1)m−1 = 0

unless m = 1, in which case it equals 1, as claimed. �
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Theorem 4.2. Assume that l is odd.
(i) If l is a prime then any prime p is good for C(g, q).
(ii) If l is not a prime then a prime p ≥ h is good for C(g, q) if and

only if p does not divide l.

Remark 4.3. Note that the condition p ≥ h cannot be dropped in
(ii). For instance, assume that g = sl(n) (so h = n), and let l = h + 1
(which we assume to be odd). Then C(g, q) is a pointed category, so it
has no bad primes.

Proof. If p is relatively prime to l, then one can define the fusion cate-
gory Cp(g, q) over Fp (similarly to [AP]), so p is a good prime.

(i) For p = l, there is a symmetric category over Fp which lifts to the
braided category C(g, q) (see [GM1], [GM2], [AP]), so again p is good.
(ii) Suppose p divides l. By Proposition 2.4, it is enough to show

that at least one of the numbers dim(Vλ) is not relatively prime to
p or, equivalently, that its p−adic norm is < 1. To this end, pick

λ := ( l
p
− 1)ρ. Such λ is allowed since (λ+ ρ, θ) = (h−1)l

p
< l.

By Lemma 4.1, the p−adic norm of 1 − v is 1 if the order of v
is not a prime power, and is p−1/ps(p−1) if the order of v is equal to
ps+1. Now, the order of q−2(λ+ρ,α) = q−2l(ρ,α)/p is p for any α (since by
assumption, (ρ, α) < h ≤ p). Thus, the p−adic norm of every factor
in the numerator of the q−Weyl formula for dim(Vλ) is p

−1/(p−1), while
the p−adic norm of every factor of the denominator is at least that,
and the p−adic norm of [(ρ, αi)]q = 1 is 1 for any simple root αi. Thus,
the p−adic norm of dim(Vλ) is < 1, i.e., dim(Vλ) is not relatively prime
to p, as desired. �

Remark 4.4. If l is a prime then the dimensions dim(Vλ) are units.
Indeed, for any 1 ≤ s < l there is a Galois automorphism sending q2

to q2s, so the norm of [s]q =
qs−q−s

q−q−1 is equal to 1.

Example 4.5. The following example, due to Noah Snyder, shows that
the converse to Proposition 2.4 fails for general (and even for braided)
fusion categories. Indeed, consider the Verlinde category C(sl2, q),
where q := eπi/8 (i.e., l = 8), with simple objects V0 = 1, V1,. . . , V6,
and let D be its tensor subcategory generated by V0, V2, V4, V6. Then
dim(V0) = dim(V6) = 1, dim(V2) = dim(V4) = 1 +

√
2, which are all

units, so any prime is relatively prime to the dimension of any simple
object of D. Yet, considering the graph T4 as in Example 3.7, we get
by a direct calculation

AQ(T4) =
[3]q([3]q − 2)

[3]q − 1
=

1√
2
,
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which shows that 2 is a bad prime for D.
Also, as was explained to us by Noah Snyder, it follows from the

arguments similar to those in [MS] (computation of the “third twisted
moment”) that 3 is a bad prime for the 6−object Haagerup category,
even though the dimensions of all its simple objects are units.2

5. Conjectures and questions

Question 5.1. If a prime p is relatively prime to the global dimension
dim(C), does p have to be a good prime for C in cases (i)-(iii)?
(i) C is a general fusion category.
(ii) C is an integral fusion category, i.e., C = Rep(H) for a semisimple

quasi-Hopf algebra H .
(iii) C = Rep(H) for a semisimple Hopf algebra H .

Note that in (ii) and (iii), dim(C) = dim(H).
A positive answer in case (iii) would imply that any prime divisor

of the dimension of a simple H−module divides the dimension of H ,
which is a weak (but still open) form of Kaplansky’s 6−th conjecture.

Question 5.2. (i) Let C be an integral fusion category, and suppose
that p does not divide the (Frobenius-Perron) dimension of any simple
object. Does p have to be a good prime for C, i.e, does Theorem 3.5
hold for C?
(ii) Is this true for weakly group-theoretical categories?

Question 5.3. Does any fusion category C admit at most one good
reduction modulo any prime p?

Remark 5.4. The answer is “yes” if p is relatively prime to the global
dimension of C, by [ENO1, Theorem 9.6].

Question 5.5. Suppose that p is a good prime for C. Is p good for
any module category over C?
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