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It is unusual for both A and A−1 to be banded—but this can be a
valuable property in applications. Block-diagonal matrices F are the
simplest examples; wavelet transforms are more subtle. We show
that every example can be factored intoA ¼ F1…FN whereN is con-
trolled by the bandwidths of A and A−1 (but not by their size, so
this extends to infinite matrices and leads to new matrix groups).

Bruhat ∣ CMV matrix ∣ factorization ∣ wavelet ∣ permutation

1. Introduction
An invertible transform y ¼ Ax expresses the vector x in a new
basis. The inverse transform x ¼ A−1y reconstructs x as a combi-
nation of the basis vectors with coefficients from y. This matrix-
vector multiplication A−1y is best seen as a combination of the
columns of A−1 (which are the basis vectors).

In applications, the transform is often intended to separate
signal from noise, important information from unimportant. This
separation is followed by a divorce, when the full vector y is com-
pressed to ŷ.

This compressed form ŷ is all we keep in the reconstruction
step:

Input signal x → y ¼ Ax → ŷ → x̂ ¼ A−1ŷ Compressed signal:

The choice of transform (the choice of a good basis) is crucial.
It must serve its purpose, and it must be fast. This paper is
concerned most of all with speed.

The Fourier transform is nearly perfect, when noise is identi-
fied with high frequencies. Quick execution of A and A−1 comes
from the Fast Fourier Transform. And yet, we want to go further.
Clarity in the frequency domain means obscurity in the time
domain. For signals that change quickly, a “short time” transform
is needed.

This leads to banded matrices. The entries are aij ¼ 0 when
ji − jj > w. Nonzero entries are in a band along the main diagonal.
Then A acts locally and each yk comes quickly from xk−w;…;xkþw.
The challenge is to achieve a banded A−1, so the inverse trans-
form is also fast. Typical band matrices have full inverses, and the
exceptions to this rule are the subject of this paper.

Briefly, we want to factor A in a way that makes the property of
a banded inverse evident. The factors F will be block diagonal
(with invertible blocks, 2 by 2 or 1 by 1). Then F1⋯FN is clearly
banded with banded inverse.

We recall two constructions of A that are successful and useful:

1. Block Toeplitz matrices in which the matrix polynomial like
MðzÞ ¼ Rþ Szþ Tz2 has a monomial determinant ¼ czk:

A ¼
· ·
R S T

R S T
· · ·

2
664

3
775 ðoften doubly infiniteÞ:

2. “CMVmatrices” with 2 by 2 singular blocks Pi,Qi (r is 1 by 2):

A ¼
r
P1 Q1

P2 Q2

· ·

2
664

3
775 with rank ðPiÞ ¼ rank ðQiÞ ¼ 1.

Construction 1 is a “filter bank,” time invariant because A is
block Toeplitz. Suitable choices of the filters R;S;T;… lead to
wavelets (1, 2).

Construction 2 produced new families of orthogonal polyno-
mials on the circle jzj ¼ 1 (3). Here we drop the requirement that
A is orthogonal; the bandedness of A−1 is the important point.

For CMV matrices, the factors in A ¼ F1F2 are known. For
block Toeplitz matrices, the factorization of matrix functions
MðzÞ has an overwhelming history (including Wiener–Hopf).
By combining the two, the CMV construction extends to more
blocks per row. These “time-varying filter banks” may find appli-
cation in signal processing, using the factorization.

Beyond 1 and 2, our true goal is to factor all banded matrices
with banded inverses. Permutation matrices are a third example,
when no entry is more than w positions out of place. (Then each 2
by 2 block in each factor F executes a transposition of neighbors.)
Our main result is that a factorization of this kind is always pos-
sible, in which the number of factors in F1⋯FN is controlled by
the bandwidths of A and A−1.

Theorem. Suppose A has bandwidth w and A−1 has bandwidth W .
Then A is a product F1⋯FN of block-diagonal factors. Each F is
composed of 2 by 2 and 1 by 1 blocks, with N ≤ Cðw3 þW 3Þ.

We have not minimized N (but the low numbers N ¼ 2 for
CMVand N ¼ L for L blocks per row are potentially important).
The essential point is that N is independent of the matrix dimen-
sion n. In the proof, the bandedness of A−1 implies rank condi-
tions on certain submatrices of A. Together with the bandedness
of A itself, these conditions yield the factorization into Fs.

The independence from n suggests an entirely algebraic state-
ment for n ¼ ∞: The invertible block-diagonal matrices F gener-
ate the group of singly infinite banded matrices with banded
inverses.

2. Factorizations in Constructions 1 and 2.
Before the general case of banded A and A−1, allow us to develop
the block-matrix factorizations. If A starts with L blocks per row,
the first step is to reach factors with two blocks per row.

For our block Toeplitz A with L ¼ 3, we remove from MðzÞ ¼
Rþ Szþ Tz2 a linear factor P þQz of a special form. The 2 by 2
matrices P and Q are complementary projections on column
vectors r and t:
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Pr ¼ r; Pt ¼ 0; Qr ¼ 0; Qt ¼ t;

PQ ¼ QP ¼ 0; P þQ ¼ I:

Knowing those eigenvalues 1 and 0, it follows directly that

ðP þQzÞr ¼ r; ðP þQzÞt ¼ zt; and

ðP þQzÞ−1 ¼ P þQz−1:

We want to factorMðzÞ ¼ Rþ Szþ Tz2 when its determinant is a
monomial. It is this property that makes A−1 banded. For doubly
infinite Toeplitz matrices, A−1 is associated with the matrix func-
tion ðMðzÞÞ−1. That inverse requires division by the determinant.
So ðMðzÞÞ−1 is a polynomial (in z and z−1) only when detðMðzÞÞ is
a monomial czk. Polynomials correspond to banded matrices.

This could not be achieved in the scalar case, where the inverse
of 1 − 1

2
z (for example) is an infinite series. The inverse of the

Toeplitz matrix with diagonals 1 and − 1
2
will have diagonals

1; 1
2
; 1
4
; 1
8
;… from 1∕ð1 − 1

2
zÞ. This inverse matrix is not banded

—the reciprocal of a scalar polynomial is not a polynomial. It is
the extra flexibility in the block-matrix case that allows detM to
be a monomial and A−1 to be banded. This leads to wavelets.

To factor Rþ Szþ Tz2 when R and T have rank 1, choose r and
t in the ranges of R and T. (More explicitly, R ¼ ruT and T ¼ tvT

and S turns out to be a combination of rvT and tuT. We assume r is
not parallel to t; degenerate cases are not included here.) Then
PT ¼ 0 and QR ¼ 0 give the required separation of the quadratic
MðzÞ into linear factors:

ðP þQzÞ−1ðRþ Szþ Tz2Þ ¼ ðP þQz−1ÞðRþ Szþ Tz2Þ
¼ ðPRþQSÞ þ ðPSþQTÞz:

The infinite Toeplitz matrix with blocks P, Q on two diagonals
times the new one with blocks PRþQS and PSþQT equals
A (with three blocks R, S, T). Because A and the P,Qmatrix have
banded inverse, so does the new one. The two new blocks will
then have rank 1—also as a consequence of the z and z3 zero
terms in detðMðzÞÞ.

Of course far more general factorizations of matrix functions
come from the classical theory. Their form isM ¼ MþDM− where
D is a diagonal block of monomials (those powers are the “partial
indices” of MðzÞ). After G. D. Birkhoff’s proof, he gave prece-
dence to Hilbert and to Plemelj. For singly infinite systems
Ax ¼ b, theWiener–Hopf factorizationA ¼ UL (andnotLU) pre-
serves the Toeplitz structure. Recent progress was led byGohberg,
and the exposition in ref. 4 is particularly clear.

In the time-varying non-Toeplitz case, blocks Ri, Si, and Ti in
row i will interact with neighboring rows in A−1A ¼ I. Inverting
MðzÞ or MiðzÞ no longer yields A−1. But a matrix multiplication
parallel to the symbolic one displayed above shows how to con-
struct the complementary projections Pi and Qi:

·
Qi Pi

Qiþ1 Piþ1

· ·

2
664

3
775

Ri−1 Si−1 Ti−1
Ri Si Ti

· · ·
· ·

2
664

3
775

is to be bidiagonal. The outer blocks along row i are QiRi−1 and
PiTi. Those are zero if Pi and Qi are complementary projections
on the ranges of Ri−1 and Ti, which must be rank-one blocks if the
complete R, S, T matrix has banded inverse. (Again we treat only
the nondegenerate case.) This rank-one requirement comes from
the rank conditions for a banded inverse, described below in the
proof of our general theorem.

The conclusion is that if the matrix A with L blocks per row
(2 by 2 matrices Ri;Si;…) has a banded inverse, then A can be

factored recursively into a product of L − 1 block bidiagonal
matrices with rank-one blocks.

Already in the Toeplitz case, it is not required that each pair of
rows has an equal number of nonzeros. When the eight nonzeros
from the two blocks are the celebrated Daubechies coefficients,
F1 and F2 were computed in ref. 5. But there are 3–5 and 2–6
wavelet transforms as well as that 4–4 choice (and 9–7 is one
of the best). In all these cases time-varying versions become
feasible by using the new factorization.

Now we recall the final step to the Fs. Start with 2 by 2 blocks
Pi and Qi: Then F1 and F2 have 2 by 2 blocks along their diag-
onals, and the key is that the blocks in F2 are offset from the
blocks in F1.

F1 ¼
1 �

c2 c3
� �

c4 c5
�

2
4

3
5 F2 ¼

h
dT
1

dT
2

i
h
dT
3

dT
4

i
·

2
64

3
75

In F1F2, we multiply columns of F1 times corresponding rows of
F2 (and add those rank-one products). Because of the offset, c2
multiplies the second row dT2 of a block in F2, and c3 multiplies
the first row dT3 of the following block, to produce the P and Q
blocks in the CMV matrix A ¼ F1F2:

c2dT2 ¼ P1 and c3dT3 ¼ Q1:

This simple but revolutionary idea appeared in refs. 3 and 6.
Without an offset (a time delay), F1F2 would be block diagonal
again.

Multiplying two CMV matrices F1F2 and F3F4, we arrange for
F3 to share the form of F2. The overall product F1ðF2F3ÞF4 has 3
factors from L ¼ 3 blocks per row. Boundary rows are included in
the general theorem that we now prove.

3. Banded Matrices with Banded Inverses
To prove the theorem, A is made diagonal by a sequence of elim-
ination steps. We describe those steps when A andA−1 have band-
width w ¼ W ¼ 2. The consequence of bandwidth W for A−1 is
crucial: All submatrices H and K of A, below the W th upper
diagonal and above theW th lower diagonal, have rank ≤W . This
rank condition was discovered by Asplund (7), and the expository
paper (8) describes two proofs.

Proof of Theorem. Elimination begins on the first 2W ¼ 4 rows of
A. Separate those rows into submatrices H1 and K1 with ranks
≤W , as shown. They must each have rank equal to W ¼ 2, be-
cause those four rows of A are independent (A is invertible). Pos-
sible nonzeros are marked by x and X, with w ¼ 2.

The usual row operations will produce nonzeros in the first two
diagonal positions X and zeros elsewhere in H1. Because rows 3
and 4 of A remain independent, the new rows 3 and 4 of K1 must
be independent. Row operations will remove rows 1 and 2 of K1,
without changing H1. Then operations on columns 3, 4, 5, and 6
of A will produce nonzeros in the two positions X and zeros
elsewhere in K1.

X x x
H1 x X x x K1

x x X x x
x x X x x

x x X x x
H2 x x X x x K2

x x X x x
x x X x x
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Now move to rows 5–8. Again H2 and K2 must have rank
exactly W ¼ 2. The last two columns of (the new) H2 must be
independent, because those columns are now zero in K1. Use
these columns to produce zeros in the first two columns of
H2, without changing K1. Now H2 and K2 are in exactly the same
situation as the original H1 and K1.

Operate as before on rows 5–8 of the currentA and on columns
7–10, to produce nonzeros only in the diagonal positions X. All
row operations are left multiplications by elimination matrices
(which we factor below into products of our admissible Fs.)
The key point is that an operation on rows 1–4 and an operation
on rows 5–8 can be carried out together (in parallel by the same
Fs). Similarly, column operations on A are right multiplications,
and columns 3–6 can be changed in parallel with columns 7–10.

Conclusion. A block-diagonal matrix Br acts on 2W ¼ 4 rows at a
time. A block-diagonal matrix Bc acts on the columns, and BrABc

is diagonal. Note that Bc is offset so it starts on columns 3–6.
The reader might consider a permutation matrix with two non-

zeros in each submatrix H 1; K 1; H 2; K 2 :::. Exchanges of neigh-
boring rows and of neighboring columns will produce I. The row
exchanges within H1;H2;… and the column exchanges within
K1;K2;… can be carried out in parallel.

Br and Bc can be executed by block-diagonal Fs. The usual
elimination steps subtract a multiple of one row or column from
another (within the Hs and the Ks). Each operation can be
achieved by a product of 2d − 1 factors F, when the “x” to be re-
moved is d rows or columns away from the “1.” (For d ¼ 1, F is a
Gauss matrix G with a single nonzero next to the diagonal of 1s.
For d ¼ 2, the product F1F2F3 ¼ PGP moves that nonzero by
one position when the Ps exchange rows and exchange columns.)
Certainly W 3 factors will suffice to remove all the off-diagonal
nonzeros in each H and K .

This completes the proof when w ≤ W . In case w > W , we
operate instead on the matrix A−1. Its blocks H and K will have
2w rows. Again, it reduces to an invertible diagonal matrix X by Br

and Bc, and those factor into Fs. The number of Fs is independent
of n, and their construction still succeeds for n ¼ ∞.

4. Permutation Matrices
An n by n permutation matrix P has a single 1 in each row and
each column. Let the column number for that nonzero entry in
row i be pðiÞ. Then p ¼ ðpð1Þ;…;pðnÞÞ is the permutation of 1;…;n
associated with P. The bandwidth w of both P and P−1 ¼ PT is the
largest distance ji − pðiÞj.

The block-diagonal factors in P ¼ F1⋯FN can also be permu-
tation matrices. Because the diagonal blocks in F are 1 by 1 or
2 by 2, the associated permutation can only exchange
disjoint pairs of neighbors. A sequence of N ¼ 5F ’s acts on the
example p ¼ ð4;5;6;1;2;3Þ to produce the identity permutation:

456123 → 451623 → 415263 → 142536 → 124356 → 123456.

The original P from 456123 had bandwidth w ¼ 3. Every entry
must move 3 positions. The 6 by 6 matrix is P ¼ ½0 I ; I 0� with 3
by 3 blocks. The number of “disjoint exchanges in parallel” was
N ¼ 5 ¼ 2w − 1. We believe that this example is extreme, and
we conjecture that 2w − 1 factors F are always sufficient for any P.

The algorithm itself, forced by the limitation of 2 by 2
diagonal blocks in each F, is a “parallel bubblesort.” This problem
of sorting has had enormous attention in computer science. It
is fascinating that ordinary bubblesort is completely out of
favor. But the parallel version seems appropriate here, and our
2w − 1 conjecture was waiting for the right idea. Two proofs have
now been found, by Panova and by Albert, Li, and Yu.

5. Infinite Matrices
For a banded infinite matrix, the elimination steps still succeed.
When the inverse is also banded, the central ideas of linear
algebra are undisturbed. There are no issues of convergence
because all vectors have finitely many nonzeros.

But the crucial matrix theorem needed for this paper was
hidden in Section 3 above. For a matrix with bandwidth W , all
submatrices H below diagonal W of the inverse matrix have rank
≤W . In our application the banded matrix was A−1, and H was a
submatrix of A.

Proofs of this fact generally use the Nullity Theorem, so we
need to reconsider that theorem when n ¼ ∞.

Nullity Theorem. Complementary submatrices of A and A−1 have
the same nullity (dimension of nullspace).

If I and J are subsets of 1;…;n, then AðI;JÞ is the submatrix
containing the entries Aij for i in I and j in J. The complementary
submatrix contains the entries ðA−1Þij for i not in J and j not in I.

When a is the upper left submatrix using the first i rows and j
columns of A, its complementary submatrix Ca uses the last n − j
rows and n − i columns of A−1. When b is a lower left submatrix,
Cb is also lower left (but its shape is transposed):

A ¼
a �
b �

� �
i

n − i
j n − j

A−1 ¼
� �
Cb Ca

� �
n − j
j

n − i i
:

The Nullity Theorem states that nullityðaÞ ¼ nullityðCaÞ and
nullityðbÞ ¼ nullityðCbÞ. There is an equivalent statement for
the ranks, but that involves the size n of A and we want to allow
n ¼ ∞.

The history of this basic theorem is astonishingly recent. Our
expository paper (8) attributed it to Gustafson in 1984. Now we
find the equivalent theorem published by Kolotilina in the same
year. Fiedler–Markham provided a matrix proof, and our favorite
comes from Woerdeman (9). Horn and Johnson (10) give the
Nullity Theorem an early place in their next edition. All these
proofs start from block multiplication in AA−1 ¼ I ¼ A−1A.

Kolotilina’s second proof with Yeremin (11) is a new favorite.
It begins with permutation matrices, when P−1 is simply PT.

Nullity Theorem for Permutations. The nullity of an upper left sub-
matrix p in P equals the nullity of the complementary lower right
submatrix Cp in P−1 ¼ PT.

Proof: If the upper left i by j submatrix has rank r, the nullity is
j − r. Every row and column of P contains a single nonzero, so all
ranks and nullities come from counting those 1s:

P ¼
p �
b �

" #
has nullities

j − r n − i − jþ r

r i − r

" #

P−1 ¼ pT bT

Cb Cp

" #
has nullities

i − r n − i − jþ r

r j − r

" #
:

The nullities of p and Cp have the same value j − r, and the
nullities of b and Cb have the same value r. The Nullity Theorem
is proved for P by moving any submatrix PðI;JÞ into a corner.

Kolotilina’s insight was that the “Bruhat factorization”
A ¼ LPU immediately gives the Nullity Theorem for A. Here
U is upper triangular and L is lower triangular (we revise the stan-
dard Bruhat form by starting elimination at row 1). The key point
is that P is in the middle (12, 13), unlike the usual factorization
PA ¼ LU in numerical linear algebra. Then the upper left corner
of A ¼ LPU is exactly a ¼ lpu:
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A ¼ a �
� �

� �
¼ l 0

� �
� �

p �
� �

� �
u �
0 �

� �
:

Because l and u are invertible, a ¼ lpu has the same rank (and
same nullity) as p.

The twin lemma for A−1 ¼ U−1P−1L−1 says that
Ca ¼ ðCuÞðCpÞðClÞ. So Ca has the same nullity as Cp, which is
the same as for p and for a.

Our point is simply that all steps of the proof remain valid for
banded P and A and A−1 even when the matrices are infinite. We
avoid doubly infinite matrices like the shift with Pi;i−1 ¼ 1 for
−∞ < i < ∞, which could not be factored into a finite product
of Fs. An alternative proof of our main theorem factors L, P, and
U separately.

Summary
The two most active fields in applied linear algebra involve
structured matrices and data matrices. Operators that arise in
applications almost always have a special form—Toeplitz, Han-
kel, Laplacian, circulant, symplectic, …, Vandermonde, Hessen-
berg. Good algorithms (fast and stable) use those special
structures. At the other extreme, huge matrices come from the
floods of output in medical imaging and genomics and sensing
of all kinds. There the goal is to find structure where none is
apparent.

This paper and those to follow contribute to the analysis of one
particular structure (perhaps the simplest): banded matrices. In

this case ordinary elimination requires only w2n steps, a crucial
reduction from the familiar count n3∕3 for a full matrix. This
linearity in n (sometimes n log n) is typical of algorithms for struc-
tured matrices, and here it is easily recognized: w row operations
act on rows of length w to eliminate one unknown at a time (all
perfectly expressed by A ¼ LU). Our count in the theorem above
involved w3 because the theorem allowed only 2 by 2 blocks,
operating on adjacent rows.

In a future paper, one more group structure will be considered.
The matrices B ¼ Aþ UVT are banded plus finite rank, with the
requirement that A−1 is also banded. The Woodbury–Morrison
formula expresses B−1 as A−1 plus finite rank, so we still have
a group. This family is touching on the “semiseparable” and “qua-
siseparable” matrices that are now intensely studied.

Where banded matrices are the extreme case of rapid decay
away from the diagonal, finite rank is the extreme case of an
integral operator that is slowly varying. So we come closer to
discrete forms of differential and integral equations. Here the
model is Laplace’s equation. If any single structured matrix
can be identified as all-important in this corner of applied mathe-
matics (perhaps small but astonishingly widespread), it is the graph
Laplacian.
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