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Chance-Constrained Optimal Path Planning
with Obstacles

Lars Blackmore, Masahiro Ono and Brian C. Williams

Abstract—Autonomous vehicles need to plan trajectories to knowledge of the vehicle’s state is perfect, and that thendd
a specified goal that avoid obstacles. For robust execution, path can be executed perfectly. In practice the executdd pat
we must take into account uncertainty, which arises due 10 i deviate from the planned path and can collide with obsta
uncertain localization, modeling errors, and disturbances. Prior . . .
work handled the case of set-bounded uncertainty. We presén cles, even if t_he pla_nned path did no_t. For a vehlc!e such as a
here a chance-constrained approach, which uses instead aq- UAV, uncertainty arises for three main reasons. First,raftc
abilistic representation of uncertainty. The new approachplans location is not usually known exactly, but is estimated gsin
the future probabilis}ic d!stribution of thg yehicle state SO. that g system model, inertial sensors and/or a Global Posiujpnin
the probability of failure is below a specified threshold. Falure  gyctem Second, system models are approximations of tee tru
occurs when the vehicle collides with an obstacle, or leavemn .
operator-specified region. The key idea behind the approach system model, and the sy_stem dynamics themselve_s areyusuall
is to use bounds on the probability of collision to show that, not fully known. Third, disturbances act on the aircraftttha
for linear-Gaussian systems, we can approximate the noncen make the true trajectory deviate from the planned trajgctor
vex chance-constrained optimization problem as a Disjuncte The problem of path planning under uncertainty was pre-
Convex Program. This can be solved to global optimality usig ;in,gly addressed for the case of set-bounded uncertainty
branch-and-bound techniques. In order to improve computaton . .
time, we introduce a customized solution method that returs moc_iels[g]. In the case of dlsturban_ces this Corre_zsponds to
almost-optimal solutions along with a hard bound on the leve having a known bound on the magnitude of the disturbance.
of suboptimality. We present an empirical validation with an Robustness is achieved by designing trajectories thabgtes
aircraft obstacle avoidance example. feasibility of the plan as long as disturbances do not exceed
these bounds. In the present paper, we use an alternative ap-
proach that characterizes uncertainty in a probabilisaoner,
and finds the optimal sequence of control inputs subject to

Path planning for autonomous vehicles such as Unmanrteé constraint that the probability of failure must be belaw
Air Vehicles (UAVs) has received a great deal of attentionser-specified threshold. This constraint is known abance
in recent years [1][2][3][4]. A UAV needs to be able to plarconstrain{10].
trajectories that take the aircraft from its current logatio In many cases, the probabilistic approach to uncertainty
a goal, while avoiding obstacles. These trajectories shouhodeling has a number of advantages over a set-bounded
be optimal with respect to a criterion such as time or fuelpproach. Disturbances such as wind are best represented
consumption. This problem is challenging for two principalising a stochastic model, rather than a set-bounded one[11]
reasons. First, the optimization problem is inherently -noWhen using a Kalman Filter for localization, the state eaten
convex due to the presence of obstacles in the feasible spas@rovided as a probabilistic distribution specifying thean
Second, there are a number of sources of uncertainty and covariance of the state. In addition, by specifying the
the problem, such as disturbances, uncertain localizatiwh probability that a plan is executed successfully, the dpera
modeling uncertainty. can stipulate the desired level of conservatism in the plan

Previous approaches addressed the first of these challenges. meaningful manner, and can trade conservatism against
In our work we build on [5], which uses a Mixed-Integeperformance.
Linear Programming (MILP) approach to design fuel-optimal A great deal of work has taken place in recent years relating
trajectories for vehicles modeled as linear systems. Theeti to chance-constrained optimal control of linear systenxgesi
Integer Linear Programming approach uses highly-optithizéo Gaussian uncertainty in convex regions[12], [13], [145],
commercial software[6] based on branch-and-cut and a tios{b6], [17], [18]. In the present paper we extend this to the
other techniques to make the non-convex optimization grabl problem of chance-constrained path planning with obssacle
tractable[7]. Throughout this paper we similarly assumedr i.e. in nonconvex regions. The key idea is to bound the
system dynamics. Prior work (for example [5] and [8]) hagrobability of collision with obstacles to give a conseivat
shown that linear system models can be used to desigpproximation of the full chance-constrained problem. We
trajectories for vehicles such as UAVs and satellites. provide a new bound that approximates the chance-constrain

The MILP approach of [5] does not explicitly take intoproblem as a Disjunctive Convex Program. This can be solved
account uncertainty. That is, it is assumed in [5] that tHe global optimality using branch-and-bound techniques. |

order to make the computational complexity practical for
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sion, one of which provides a lower bound on the optimgbarticles’, to approximate the planning problem. The joéat
cost of the Disjunctive Convex Program, while the secorthsed approach approximates the chance constraint, and hen
provides an upper bound on the optimal cost. Using thedees not guarantee satisfaction of the constraint. By asntr
bounds with highly optimized software for Disjunctive Lare the approach in the present paper uses an analytic bound
Programming[6], the customized solution approach is able tb ensure satisfaction of the constraint. In addition, ehil
reduce the solution time required dramatically and, in &imathe particle-based approach applies to arbitrary unceytai
all cases, provide tight bounds on the suboptimality inticeti  distributions, rather than only Gaussian distributiortsjsi
by not solving the full Disjunctive Convex Program. Wesignificantly more computationally intensive than the baing
demonstrate our approach in simulation and show that tapproach proposed in the present paper. In Section XI-C we
conservatism introduced by the approach is small. provide an empirical comparison of the new approach and
the approach of [33], which demonstrates these points.elhes
results also show that the new approach introduces velsy litt
conservatism, unlike the set conversion techniques pezpos
A large body of work exists on the topic of path planningy [34], [35], [36].
with deterministic system models, including [1], [2], [3#], Early forms of the results in this paper were presented
[19]. We do not intend to provide a review of this field, buin [37], [38]. The present paper extends these results by
instead refer the reader to the review [20] and the booksifying the bounds presented in [37], [38] and deriving a
[21] and [22]. Of this work, in the present paper we extendew suboptimal solution algorithm that reduces computatio
[5], which introduced a Mixed-Integer Linear Programmingime while providing, in almost all cases, tight bounds oa th
approach that designs fuel-optimal trajectories for uelic suboptimality introduced.
modeled as linear systems. The MILP approach has the ad-
vantage that the resulting optimization problem can beesblv I1l. PROBLEM STATEMENT
to global optimality using efficient commercial solvers[6]

Refs. [8] and [3] extended this approach to solve problemslnthis work, we consider the case where there is uncertainty
in aircraft and spacecraft trajectory planning. By inchai In the problem that can be described probabilistically. We

temporally flexible state plans, [23] was able to genera?éms'der three sources of uncertainty:

optimal trajectories for UAVs with time-critical missioigms. 1) The initial position of the vehicle is specified as a
Optimal planning under set-bounded uncertainty has re- p_rob.ab|I.|st|c dlstrlbutlpn over possible pos[tlons. Th|.s
ceived a great deal of attention in the robust Model Pradicti distribution would typically be generated with an esti-
Control (MPC) community[24], [9], [25], [26], [27]. We refe mation technique suc_:h as Kalman filtering, using noisy
the interested reader to the review [28] and the references Measurements from inertial sensors and global position-
therein for a more extensive survey. The majority of work in  INg data. In this work we assume that the initial position
the MPC literature assumes a convex feasible region. Haweve  ©f the vehicle is specified as a Gaussian distribution.
the case of obstacle avoidance, i.e. nonconvex feasibieneg ~ 2) Disturbances act on the vehicle. These are modeled as
was handled in [9]. In recent years the MPC community has & Gaussian noise process added to the system dynam-
generated a number of results relating to chance-conettain €S- In the case of an aircraft, this process represents
optimal control of linear systems in convex regions. The  accelerations caused by wind. o
problem of designing optimal feedforward control sequence 3) The system model is not known exactly. Uncertainty in
for a fixed feedback structure was considered by [12], [14], the system model may arise due to modeling errors or
[15], [17], [18], [29]. This work was extended to the problem linearization. We assume that mc_>de| uncertainty can be
of coupled feedforward and feedback control by [30], [31],  Modeled as a Gaussian white noise process added to the
[32]. This extension enables the variance of the futureestat ~ SYStem dynamic equations [41].
distribution to be optimized, which is not the case with just Throughout this paper we assume a linear, discrete-time
feedforward control. Non-Gaussian uncertainty was hahdlgystem model. Linear system dynamics are valid for vehicles
by [16], [18], [33] using sampling approaches. such as satellites operating close to a reference orbit, or a
For chance-constrained planning in nonconvex feasible /dAV operating with an inner-loop feedback controller. Ireth
gions, early results in the literature suggested simplyenn latter, the key idea is that, while the low-level dynamics of
ing the problem into a set-bounded one, by ensuring that the system are nonlinear, the controlled plant from refegen
3-sigma confidence region does not collide with obstactjs[3Position to true position can be approximated as a low-grder
[35], [36]. Once this is done, standard approaches for séfiear system for the purposes of path planning[5].
bounded uncertainty can be employed. This approach has been
shown to be conservative by orders of magnitude, meaning
that in many cases, the approach will fail to find a feasibldere, x; is the system state at time stépand u, is the
solution even if one exists[18]. To the authors’ knowledfe, control input at time steg. The variablew; is a Gaussian
only prior literature to handle nonconvex chance-cons&@i white noise process that represents disturbances and model
planning without resorting to over-conservative set-@sion uncertainty, and is distributed accordingdp~ A (0, Q). The
techniques is the authors’ own work[37], [38], [39], [40]assumption of zero mean, white noise is made to simplify the
[33]. The approach in [39], [40], [33] uses samples, amotation;the methods described in this paper apply eqt@lly

II. RELATED WORK

Xi41 = AXt + But -+ we. (1)



. . . . . . Fig. 2. Polyhedral obstacle O encoded as a disjunction of linear equality
Fig. 1. Polyhedral stay-in region Z encoded as a conjunction of linear  ¢onstraints. The vehicle must avoid the shaded region.
inequality constraints. The vehicle must remain in the unshaded region.

Gaussian colored, non-zero-mean noise as long as thdisgatis

are k”F’W”- . ] ] min  g(ug,...,Ux-1,%0,...,Xk) (4)
In this paper we consider polygonal convatay-inregions Uo;.- s Uk—1
in which the system state must remain, and polygonal convex  subject to: (5)
obstacles, outside of which the system state must rémain Rp = Xooal (6)
A stay-in regionZ is defined as a conjunction of linear 9o
. i Xt4+1 = AXt + But =+ wi (7)
constraints as follows: N
XONN(XO,PO) Wt NN(O,Q) (8)

teT(T)ieG(T)

Te= N\ N\ axs<b @) p<(/\ ) A (/\O))Zl—A, ©)

i=1
where G(Z) is a set containing the indices of the linear

constraints defining the region, afdZ) is the set of time whereg(-) is a piecewise linear cost function such as time or
steps at which the stay-in region applies. We u¢o denote fuel, and Nz and No are the number of stay-in regions and
the transpose of vectov. An obstacle® is defined as a obstacles respectively. We usdo denote the expectation of

disjunction of linear constraints as follows: We assume throughout this paper tdat< 0.5.
The key difficulty in solving Problem 1 is the non-convex
0 <~ /\ \/ aix; > b;, (3) chance constraint (9). There are two difficulties in hargilin
teT(0) ieG(0) this constraint. First, evaluating the chance constraquires

the computation of the integral of a multi-variable Gaussia
where agairt:(O) is the set containing the indices of the lineagistribution over a finite, non-convex region. This cannet b
constraints defining the obstacle, aidO) is the set of time carried out in closed form, and approximate techniques such
steps at which the obstacle must be avoided. In this notatigg sampling are time-consuming and introduce approxima-
we useA to denote logical AND and to denote logical OR. tion error. Second, even if this integral could be computed
Stay-in constraints and obstacles are illustrated in Eigur efficiently, its value is non-convex in the decision varébl
and 2. We state the probabilistic path planning problem @ge to the disjunctions i¥;. This means that the resulting
follows: optimization problem is, in general, intractable. A typica
Given a probability distribution for the initial approach to dealing with non-convex feasible spaces is the
vehicle position, and given a desired goal position, branch and bound method, which decomposes a non-convex
design a finite, optimal sequence of control inputs ~ Problem into a tree of convex problems. However the branch
wp...uz_1 such that the expected final vehicle and bound method cannot be directly applied, since the non-

position corresponds to the goal position, and such ~ convex chance constraint cannot be decomposed triviaity in
that the probability that the vehicle leaves a stay-in ~ subproblems.
region or collides with an obstacle is at moat In order to overcome these two difficulties, we propose
a bounding approach to decompose the non-convex chance
constraint conservatively into a set of individual chanoe-c
straints, each of which is defined on a univariate probabilit
Problem 1 (Chance-constrained path planning problem). distribution. Integrals over univariate probability dibtitions
can be evaluated accurately and efficiently, and the decompo

INote that nonconvex obstacles can be created by composieaseonvex  Sition of the chance constraint enables the branch and bound

obstacles. algorithm to be applied to find the optimal solution.

The problem is defined formally here:



IV. EXISTING RESULTS

In this section we provide some important definitions and

review known results to be used later. p(X<0)=0.1

| p=1.163

A. Disjunctive Convex Programs 0
Problem 2. A Disjunctive Convex Prograns defined as: Fig. 3. Univariate Gaussian distribution with mean p and variance 1. For
fixed variance, the chance constraint p(X < 0) < 0.1 is satisfied if and
min h(X) only if x> 1.163
X
subject to:

Fo(X) =0 2) The covariance_ of the state at times not a function of
nedi o the_the c_on'_[rol inputs, . . U This means that for
s \/ 6 (X) <0 (10) a given initial state covariance, and with _knovyn noise
IS J -7 covariances, the covariance at a future time is known
exactly.

wheref.,(X) is a linear function ofX', thec;;(X) are convex  These two properties enable the obstacle avoidance problem
functions ofX, andnq;s andn.; are the number of disjunctions;y pe framed as a Disjunctive Convex Program, as will be
and clauses within each disjunction, respectively. shown in Section VI.

Problem 3. A Disjunctive Linear Prograns defined as (10)
wheref.,(X) andc;;(X) are linear functions oX. C. Linear Chance Constraints as Deterministic Linear Con-

The key difficulty in solving a disjunctive convex programStra'nts

is that the disjunctions in (10) render the feasible region !N this section, we show that linear chance constraints on

nonconvex. Nonconvex programs are, in general, intragtadhe state of the vehicle at timg can be expresseexactly -

In the case of a disjunctive convex program, however, V@S deterministic linear constraints on the mean of the \ehic
can decompose the overall optimization problem into a finiféate at timet [10]. In general, a chance constraint on a
number of subproblems that are convex programs. Convex piglevariate Gaussian random variable~ N (., o*) with
grams can be solved to global optimality with analytic basindixed variance but variable mean, can be translated into a
on the number of iterations required for convergence[4Z/€terministic constraint on the mean:

[43]. The numbgr of convex subproblems is exponen.tial in p(X <0) <6 w>e (13)

the number of disjunctions ;s. However, for many practical

problems, a branch-and-bound approach has been showrThés is illustrated in Figure 3. The value of the determiist
find the globally optimal solution while solving only a smallconstraintc is calculated as follows:

subset of those required in the theoretical worst case[48], —1
. . =20 -erf (1 — 26), 14
In Appendix A we describe a branch-and-bound approach for c=v20 ( ) (14)
solving a general disjunctive convex program. where erf is defined as:
2 z
_ _ _ o erf(z) = — / et dt. (15)
B. Propagation of Linear Gaussian Statistics VT Jo

In this paper we assume that the initial state has a Gaussldi® inverse of erf can be calculated using a look-up method.
distribution A/ (%o, P,), that the system dynamics are lineafNote that only one look-up table is required for any Gaussian
and that there are additive Gaussian white noise procesgigdribution. For (14) to be valid, we assume that the proba-
corresponding to model uncertainty and disturbances. tUnddlity J is less than 0.5.
these assumptions, the distribution of the future statdsis a Now consider the case of a multivariate Gaussian random
Gaussian, i.ep(X¢|uo,. x-1) ~ N(u:,%:). By recursive variable X, corresponding to the position of the vehicle at
application of the system equations the distribution of tH#éne ¢, which has meam; and covariance’;, and the linear

future state can be calculated exactly as: chance constraint(a” X; < b) < 4. The eventa” X; < b is
equivalent to the evernit’ < 0, whereV is the singlevariate
1 random variable that corresponds to the perpendiculaartist

g = Z A1 Bu, + Algg (11) between the constraimt’ x = b andx, as shown in Fig. 4.

The random variabl®& is a derived variable of the multivari-

=0
ate random variabl&;. It can be shown thdt” is a univariate
t—1 Gaussian random variable, with meap and variancer,,
D= A'QAT) + A'Py(AT)". (12) where:
=0

_ T
There are two important properties to note here: fy = a’ piy — b, (16)

1) The equation for the mean of the state at tinie linear and
in the control inputsug, ..., u;_1. o, = vValY;a. a7)



N
e Lemma 1 (Disjunctive Convex Bound).
Y (Disj )
G Nz No
Y P (/\I)/\(/\ oj) >1-A
G vV = J=
G X, N
| v (A A A besli (i)
g a) J=1€T(T;) i€G(Z;)
vzid
'.-’:.-",";.f.-'.-" A
F |
)/{'f'i:':,&/

alTx = bl N
(/\ /\ \/ a;fp,ut — bi Z Ct,i (5(0J,t))>
Fig. 4. Linear constraint and vehicle position X;. V is the distance J=1teT(0;)ieG(0;)

between the constraint and the vehicle, defined as positive for values

of X; for which the constraint is satisfied, and negative for value of X; A

for which the constraint is violated. The vector a; is the unit normal in

the direction of positive V. % Z Z 5(Ijv tvi) + % Z 6(07"t) <A,

j=1 tET(Ij)iEG(Ij) j=1 tGT(Oj)
(20)

The linear chance constraipta” X; < b) < § is therefore
equivalent to a chance constraipfl’ < 0) < ¢ on the
univariate Gaussian random varialife This can be expressed YA . 1
as a deterministic constraint on the mean, of the fon® c, ci(€) = \/2af Ta, - erf 1 1-2¢ ). (21)
wherec is given by (14), witho = o,,.

where:

. . L L Proof: Using DeMoivre’s theorem we have:
Expressing this deterministic constraint in terms of the

original variableX; yields: Nz No Nz No
P((Az)n(Ae))-1-r((A) ¥ (Ne.)),
= j= = j=
p(@’X, <b)<d<=aly —b>c, (18) (22)

where A denotes the logical complement of evefit From
the definitions ofZ and O we can write:

where:
I \/ \/ alx; > b;
c=+/2aT%a-erf (1 - 20). (19) teT(Z;) i€G(Z;)
Oie= \/ N\ ax<b (23)

This calculation requires knowledge &f;, the covariance 1eT(0;)1€6(05)

of the state at time. In Section IV-B we showed that; Boole’s bound shows that for any two evemtsand B:
does not depend on the control inputs, and therefore given

an initial state covariance and the noise process covasanc P(AV B) < P(A) + P(B), (24)
we cana priori calculateY; using (12). Furthermore, the
right hand side of (18) is linear in the meap. Hence linear
chance constraints on vehicle state can be expresstahut

approximation as deterministic linear constraints on the mean P(\/ Ai) < ZP(Ai)- (25)
of the vehicle state. i i

and hence for any number of events we have:

In addition, for any two eventd and B it is well known that:
P(AANB)<P(A) P(AAB)<P(B), (26)

V. DISJUNCTIVE CONVEX BOUND FORNONCONVEX and hence for any number of events we have:
FEASIBLE REGIONS

P(/\Ai> < P(Aj) Vi (27)

In this section we describe our main te<_:hn|cal result, Hhe bounds (25) and (27) form the core of our disjunctive
novel bound that enables the chance constrained path p&nni; ey bound. Using these two results, we can show that:
problem (Problem 1) to be approximated as a Disjunctive

Convex Program. This extends the bound in [46] from convex Nz No Nz No .
polytopic feasible regions to nonconvex polytopic feasibl (/\ L-) A (/\ Oj) > 1= ZP(L‘) - ZP(OJ)-
regions. i=1 j=1 i=1 j=1

(28)

1=



Applying Boole’s bound again, and the result in (23) we hav@roblem 4 (Path Planning as Disjunctive Convex Program).

<(/\ ) A (/\o)) min g, Ko %) (32)

=1

Nz subject to (11), (12), (21), and: (33)

1= Z Z Z P(a/ixt > bz) Xy = Xgoal (34)

J=1teT(Z;) i€G(Z;) Nz
/\ /\ /\ b; — aiTut > (5(Ij,t, z)) (35)

No
B (p(agxt <b)Vie G(oj)). (29) TN e i)
J=1t€T(0;) No
From (18) we know that: AN NV alm—bi>cy (5(03', t)) (36)

J=1teT(0;)i€G(0;)
b; — a;-T,LLt > cm(f) — P(a’ixt > bz)

<
al py —b; > ¢4(€) = Palx; < b;) <

Z Y. Y 0Tt +Z S 80t <A

Hence: J=1teT(Z;) i€ G(T;) i=1teT(0y)
(37)

</\ A N\ bi-a lut>c“(5(IJ,t,z)) S(T;ti) >0 8(0;,t) >0 Vi t,i. (38)

I=1HET(Z;) i€G(Ty) Lemma 2. Any feasible solution to Problem 4 is a feasible

solution to Problem 1.

/\ /\ \/ alj, — b; > ctz(é((? t)) Proof: Lemma 1 shows that the constraints (35)
=1 teT(0,) i€G(O;) 7 through (38) imply the full chance constraint (9). All other

constraints are identical between Problem 1 and Problem 4,

A

A

N N which completes the proof. ]
z o
Z Z Z 8(Z;,t,4) + Z Z 5(0,t) <A Lemma 3. For A < 0.5, Problem 4 is a Disjunctive Convex
J=1teT(Z;) i€G(Z;) J=1teT(Z;) Program.
= dI(j,?) such that: Proof: The fact thatA < 0.5 implies thaty(Z;, ¢,7) < 0.5
and 6(0;,t) < 0.5. The functione, ;(§) is convex in¢ for
Z Yo PlEx > b) ¢ < 0.5. This implies that each of the scalar inequalities:
j=1 teT(I ) i€G(Z;) T .
by —a; pt >t (6(Ij,t, z)), (39)
+ Z > Plajgyx <bign) is convex in the decision variablé§Z;,t,4) and u;. Hence
J=1tET(0;) the conjunction of inequalities (35) is convex in the demisi
Nz No . " ! .
variables. In addition the scalar inequalities:
< 0(Z;,t L) <A
_Z Z Z 79 7Z +Z Z 6(037 )— T
J=1teT(Z;) i€G(Z;) J=1teT(0;) aj iy —bi > ¢y (6((9,7-, t)), (40)
N-
P (/(L) (/\ O, ) >1- (31) are convex .in thg decision variablés(?j.,t) a|jd Lbt- Her_me
i (36) is a disjunction of convex inequalities. Since the digua

constraints and the inequality (37) are linear, Problem 4 is
which completes the proof. B Dijsjunctive Convex Program. [

In (20) the parameter§(Z;,¢,i) and 6(O;,t) are referred  Since Problem 4 is a Disjunctive Convex Program, we can
to as therisk that is allocated to each of the univariate ChanQﬁse the existing approaches reviewed in Appendix Ato solve i
constraints. By ensuring that these risks sum to at Moste  to global optimality in finite time, and from Lemma 2 we know
ensure that the overall probability of failure is at mdstas that the resulting sequence of control inputs is guaranteed
required. We refer to the Optimization of the individualkgs be feasible for the Origina| chance constrained path ph]J"“
é(-) asrisk allocation whereas the process of choosing whicroblem. Solution of the full Disjunctive Convex Program,
of the disjunctions in (20) to satisfy is calleibk selection  however, is slow. In the following sections we propose an

approach to solve Problem 4 approximately, in order to reduc

V1. PATH PLANNING USING DISJUNCTIVE CONVEX the computation time dramatically.

PROGRAMMING

VII. FIXED RISK TIGHTENING
In this section we approximate the chance constrained

path planning problem (Problem 1) as a Disjunctive Convex N this section we provide a tightening of Problem 4, where
Program using the bound introduced in Section V. each of the risks allocated to each chance constraint has a

fixed value. Thidixed risk tightenindFRT) is used to give an



upper bound on the optimal cost of Problem 4. The tightenimglue, however the fixed value is now chosen so that the
is a Disjunctive Linear Program, and hence can be solvadw approximation is a relaxation of Problem 4. We use this
efficiently using highly optimized commercial solvers[6].  relaxation to provide a lower bound on the optimal cost of
. . ! . Problem 4. Since the relaxation given in this section is a
Problem 5 (Fixed Risk Tightening). Disjunctive Linear Program, it can be solved efficientlyngsi

u mil? g(ug, ..., up_1,%g,...,Xk) (41) highly optimized commercial solvers.

0reer U1

subject to (11), (12), (21), and: (42) Problem 6 (Fixed Risk Relaxation).

)_ckN: Xgoal (43) uo,?,ilrxlk,l g(ug,...,up—1,%X0,...,Xk) (49)

< /< A A b el > e 5)> (49) subject to (11), (12), (21), and" (50)
J=1teT(T;) i€G(T;) Xk = Xgoal (51)

No Nz
</\ NV alm—bi> ctyi(6)> (45) </\ A N bi—alw> Ct,i(A)> (52)

J=1teT(0;) i€G(0;) J=1teT(Z;) i€G(Z;)

A No

b= o (46) </\ AV a?ut—bizct,xm) (53)
> X GE)+ Y IT(0)) J=11€T(0,) 1€6(0;)
j=1teT(Z;) j=1

\/ J(A) =/2aT'Sa, - erf (1 — 2A). 54
c,i(8) = /2al S, - erf H(1 — 26). (47) ct,i(A) a; 2a ( ) (54)
The key difference between Problem 6 and Problem 5 is that in

We use| - | to denote the number of elements in a set. Theaplem 6 the risks associated with violation of each cairstr
main difference between Problem 5 and Problem 4 is that ipe 4 priori set to a fixed and equal valua, whereas in

Problem 5_the risks as_sociated with violation c_)f each caitr pyoplem 5 they are set to a smaller value given by (46).
are a priori set to a fixed and equal valug given by (46), ) ) )
whereas in Problem 4 the risks are optimization variables. Lemma 6. The optimal cost obtained by solving Problem 6

] ] ] _is a lower bound on the optimal cost obtained by solving
Lemma 4. Any feasible solution to Problem 5 is a feasiblgsyqpjem 4.

solution to Problem 1.
Proof: It follows from (37) and (38) thab(Z;,¢,i) < A

_Proof: Setting4(Z;,¢,i) = 6(0;,t,4) = 0in (20) and and §(0;,t) < A Vj,t,4. Sincec,:(€) is a monotonically
noting that: decreasing function of, all scalar chance constraints in (52)
Nz No and (53) of Problem 6 are looser than the scalar chance
Z Z Z 0+ Z Z 0=A, (48) constraints in (35) and (36) of Problem 4. Therefore, the cos
i=1teT(Z;) i€G(Z;) Ji=1teT(0;) of the optimal solution of Problem 6 is less than or equal to
q_optimal cost of Problem 4. [ ]

we see that Lemma 1 shows that the constraints (44) throdl : . . : - :
(44) B he Fixed Risk Relaxation (Problem 6) is a Disjunctive

(47) imply the full chance constraint (9). All other conétita . P
are identical between Problem 1 and Problem 5, which cmln'-near rogram.

pletes the proof.
IX. SOLVING THE DISJUNCTIVE CONVEX PROGRAM

Lemma 5. A solution to Problem 5 is a feasible solution to The Disjunctive Convex Program for Path Planning given

Problem 4, and the optimal solution to Prob{em 5 hag CaalProblem 4 can be solved to global optimality using exgstin
greater than, or equal to, the cost of the optimal solution ffanch and bound techniques. In Appendix A we give an

Problem 4. overview of these techniques. Applying this approach to
Proof: Comparison of the constraints in Problem 4 anBroblem 4, however, is time-consuming, since it requires
Problem 5 shows that the feasible set of Problem 5 is corttairife solution of a (potentially) large number of nonlinear
in the feasible set of Problem 4, from which the results follo convex programs. Hence its applicability to onboard trtajgc
m generation is limited. Instead, we propose in this section a
Problem 5 is a Disjunctive Linear Program since we hawistomized solution method that, using the bounds in Sec-
assumed a linear cost, the equality constraints are limeartions VII and VIII, dramatically improves computation spiee
the decision variablesy, ..., u;,1, and the disjunctive con- while providing solutions that are suboptimal by a known
straints (44) through (47) are linear in the decision vdeab amount. In Section XI we show empirically that, for a UAV
path planning example, the level of suboptimality is veryaim
VIII. FIXED RISK RELAXATION in almost all cases.

In this section we provide a relaxation of the full Disjuneti )
Convex Program given in Problem 4, which we call fhed A. Customized Approach
risk relaxation (FRR). As in Section VII, each of the each The main idea behind the customized approach is to solve
of the risks allocated to each chance constraint has a fixadt the fixed risk relaxation and the fixed risk tightening to



provide, respectively, lower and upper bounds on the optima 5) Solve fixed risk tightening (Problem 5). If feasible, assign
cost of Problem 4, and then use the returned solutions te iden  optimal cost toJyy g and assign optimal solution ¢m! *,

tify convex regions in which to look for improved solutions. otherwise sefiyp = +o00 and stop.

The approach requires the solution of, at most, two Disjuact 6) Assign to H(t,O;) the set of constraints in (45) that
Linear Programs and two Convex Programs, and hence can be were, for each timestey for each obstacl®;, satisfied
solved quickly to global optimality. with the greatest margin in Problem 5.

First, we introduce another tightening of Problem 4. 7) Solve risk allocation in convex region (Problem 7). As-

) o ) sign optimal cost tdly g and optimal solution tsol *.
Problem 7 (Risk Allocation in Convex Region).
Theorem 1. Upon termination of the customized approach,

min g(uo,...,ux_1,%o,...,Xx) (55) any solutiorsol * returned is a feasible solution to Problem 4
U0 Uk—1,0(:) andJ.g < J* < Jyg, whereJ* is the optimal cost to Prob-
subject to: (56) lem 4. In additionsol * is a feasible solution to Problem 1, and
Xk = Xgoal (57) Jus is an upper bound on the optimal cost for Problem 1.
Xi41 = Axy + Bug +wy (58) Proof: From Lemmas 5 and 7 we know that the solutions
xg ~ N (X0, Py) wi ~N(0,Q) (59) assigned tesol * in Steps 4, 5 and 7 are feasible solutions

(60) are upper bounds od*. From Lemma 6 we know that the
value assigned td g in Step 2 is a lower bound af*. From
) Lemma 2, the rest of the proof follows. [ ]

to Problem 4, and hence all of the values assigned;ig
)))

</\ /\ /\ bi_azT,UtZCt,i((S(IJ,t,z

J=1teT(Z;) ieG(Z;)

</\ /\ aH t,0; )/Lt — bH( ;) > Ct,H(t,0;) (6(077t))

Jj=1teT (O

The customized solution approach therefore provides
bounds on the suboptimality of the solution that it returns.
(61) In Steps 4 and 7 we choose to solve the risk allocation in
No the convex region defined by the set of constraints that were
Z Z Z 8(Z;,t,1) Z Z 5(0;,1) < A sat_isfied by the_greatest mar_gin in Steps 2 and 5,_resp_ey:tivel
i=1teT(T,) ieG(Z,) i=1teT(0)) This is a heuristic thqt We.cla|m leads to gooc_j sollutlons_|r$lmo
(62) casles_,. When aII]?catmgfnsk ]‘tr)?m the f|xt()ed rlzk tlgh:]enlrh@;-t |
S goal is to start from a feasible upper bound on the optima
0(Z;t,3) 20 6(0;,1) 20 Vj,t.i. (63) cost and push the state mean closer to the obstacles to reduce

Here H(,0) is a mapping from an obstacle-timestep paﬁOSt' Hence choosing constraints that the mean is furthest a

{O,} to the index of a single constraint within obstacke rom is reasonable heuristic. Similarly, when allocatirngkr

The main difference between Problem 4 and Problem 7fr§m the fixed risk relaxation, the goal is to find a feasible

that in Problem 7, the disjunction of constraints has be lution itartlpg from a:n m{ea&bls Itc;]w;artr?ounq otr;]the CO‘:‘t i
replaced with a single constraint to be satisfied for ea gnee choosing constraints suc at there is the greates

obstacle, for each time step. As a consequence, Problem 7 Psogsible margin to each constraint is an intuitive approach

Convex Program, rather than a Disjunctive Convex Program,
and Problem 7 is a tightening of Problem 4. B. Discussion of customized approach

Lemma 7. Any feasible solution to Problem 7 is a feasible Unlike the full branch and bound algorithm given in Ap-
solution to Problem 4, and the optimal cost of Problem 7 Rendix A, it is possible for the customized approach to retur

an upper bound on the optimal cost to Problem 4. no solution, when one does exist, along with the trivial bagin
—oo < J* < oo. Note, however, that this only occurs if

Proof: By comparison of constraints, we see that Prokhe fixed risk relaxation (Step 2) returns a feasible soiytio
lem 7 is a tightening of Problem 4, from which the proopyt none of the subsequent steps returns a feasible salution
follows. B |ntuitively, this occurs only when an optimal solution esis
The customized solution approach is as follows: but in a different convex region from both the fixed risk
relaxation and the fixed risk tightening. In Section Xl wewho
that, for a UAV path planning problem, this situation occurs
very infrequently in practice By the same token, it is pokesib

Algorithm 1 (Customized solution approach).

1) SetJyp = +00, Jup = —oc andsol * = 0. _ for the algorithm to return very loose (but nontrivial) baisn
2) Solve fixed risk relaxation (Problem 6). If infeasible, seén .j*. Intuitively, this occurs when the fixed risk relaxation
Jip = +oc and stop, else assign optimal costltgs. step finds a solution in a different convex region than the

3) Assign to H(t,0;) the set of constraints in (53) thatselution found in the fixed risk tightening step, but no fbéesi
were, for each timestelp for each obstacl®;, satisfied solution is found in Step 4. This occurs when there are very
with the greatest margin in Problem 6. different corridors through the obstacle field, at least tfo

4) Solve risk allocation in convex region (Problem 7). If feayhich have probabilities of failure close to the requireman
sible, assign optimal cost th; g, assign optimal solution Again, in Section XI we show that, for a UAV path planning
tosol * and stop. problem, this situation occurs very infrequently in preeti
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Fig. 6. Obstacle from Figure 2 and illustration of bounds. The lines
show the feasible regions for a given value of A for the various bounds
introduced in this paper. Note that since we have a single obstacle and
time step, the convex bound, FRT and FRR are identical.

Fig. 5. Stay-in region from Figure 1 and illustration of bounds. The lines Lo
show the feasible regions for a given value of A for the various bounds ~ constraint is at mosh. Away from the corners of the obstacle,

introduced in this paper. the probability of collision with the obstacle is very cldsehe
probability of violation of a single linear constraint. Hanthe

dthat dJ lose in almost all H true feasible region is close to the FRT feasible region away
and thal/z s ahd.Jy s are very close In aimost all cases. NeNC, , e corners, as can be seen in Figure 6. Again the Fixed

n almost. all cases the custom|zeq S.O'““OF‘ approach e'tq’%rsk Relaxation (Problem 6) has a larger feasible region tha
correctly identifies that Problem 4 is infeasible, or refum

. . . . the true problem and the feasible region is a polytope since
solution that is very close to the optimal solution to Probk. the FRR is a linear program.

X. ILLUSTRATION OF BOUNDS XI. SIMULATION RESULTS

The various bounds introduced in this paper are illustratedin this section, we demonstrate, in simulation, the new
for a single timestep for the case of a single stay-in region inethod for chance-constrained path planning, using a UAV
Figure 5 and for the case of a single obstacle in Figure 6. path planning example. In this example a UAV is operating in
Figure 5 it can be seen that the FRT used in Problem 5 has thivo-dimensional obstacle field, subject to uncertainlinaa
smallest feasible region, since it is the most conservatiies  tion and wind disturbances. The UAV must plan a path from its
feasible region is generated by backing off from each of theitial state, to a goal location, subject to a chance cairstr
linear constraints so that each is violated with probab#it that ensures the probability of collision with any obstaslat
mostA/|G(Z)|. Note that in the figure, the backoff distance isnostA. This problem is an example of the chance-constrained
equal for all constraints indicating thatx,) is symmetric, but path planning problem (Problem 1). We solve this using the
this is not necessarily true in general. The convex bound ussustomized solution approach (Algorithm 1), which invave
in Problem 4 is significantly less conservative. This bourttie solution of the FRT (Problem 5), the FRR (Problem 6),
uses risk allocation to assign different risks to each of ttand risk allocation in convex regions (Problem 7). We use the
linear constraints. Away from the corners of the stay-irarg YALMIP interface for Matlab[47], with CPLEX[6] used to
virtually all of the available riskA is allocated to a single solve the MILPs generated by the FRR and FRT steps, and
constraint. Since in a one-dimensional case, the conversisith SNOPT[48] used to solve the nonlinear convex programs
from the chance constraint to a deterministic constrainthen generated by the risk allocation steps.
mean is exact, away from the corners the feasible region withThe UAV is modeled as a double integrator with an inner-
the convex bound is very close to the feasible region of the trloop velocity controller and maximum velocity constrajrdas
problem (Problem 1) shown in red. At the corners, howevatoposed by [5]. The state and control inputs to this system
the convex bound still has noticeable conservatism. This dse defined by:
because, at the corners, a similar amount of risk is alldcate

to more than one linear constraint, and in doing so we incair th z‘; o
conservatism of Boole’s bound. Finally, it can be seen that t x = | h us Lﬁjdes] , (64)
Fixed Risk Relaxation (Problem 6) has a larger feasibleoregi ]Zz t,des

t

than the convex problem since it is a relaxation of Problem 4,
and that the feasible region is a polytope since the FRRviderep? andp] are the positions of the UAV along the x and y
a linear program. In Figure 6 it can be seen that the FRikes at time, v{ andv; are the UAV velocities at timé, and

is again conservative, and gives a polytopic feasible regithe desired velocities to be tracked by the velocity cofgrol
as expected. For a single obstacle and time step, the consex denotedv;, . and ”f,des- We implement a maximum
bound, FRT and FRR are identical. The FRT feasible regiaelocity constraint of3m/s as a constraint on the 2-norm of
is generated by backing off from each of the edges of thiee mean velocity, approximated as a 32-sided polygon. This

obstacle such that the probability of violation of a singhe&r is illustrated in Figure 7. We discretize the closed-loopWUA
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- = 2-norm constraint
— Polygonal approximation

2.6

1.6 1.8 2, 2.2 24 2.6
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t,des

Fig. 7. Approximation of 2-norm constraint as 32-sided polygon. This
approximation is used both in bounding the velocity of the UAV to 3m/s
(as shown here) and in computing the cost of the planned path, which is
proportional to the 2-norm of velocity.

dynamics with a time step ot = 1s, giving the dynamics:

1 0.7869 O 0 0.2131 0
A— 0 0.6065 0 0 B 0.3935 0
0 0 1 0.7869 0 0.2131
0 0 0 0.6065 0 0.3935
(65)
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sian with covariance:

0.3555 0 0 0
A 0 0.6320 0 0
@= 0 0 0.3555 0 (68)
0 0 0 0.6320

For all maps in this section we uge= 20 time steps and the
goal is given by:

Xgoal £ |:1OO:| . (69)

In Section XI-A we give results for a single obstacle field,
designed to be challenging for a chance-constrained path
planning algorithm. In Section XI-B we give statistical uéis
using randomized obstacles fields.

A. Hard map results

In this section we consider the map shown in Figure 8.
This map is chosen in order to be challenging for the chance-
constrained path planning algorithm, because for certaines
of A there is a path through the narrow corridor(atl, 5)
that barely satisfies the chance constraifigure 8 shows
an example of the path planned by the customized solution
algorithm for A = 0.001. For this particular path, the cost
is 10.37, the estimated probability of collision4ss x 104,
which satisfies the chance constraint, and the solution time
is 16.4s. The lower bound on the cost is 10.27, hence the
suboptimality introduced by using the customized apprpach
rather than full Disjunctive Convex Programming, is at most
0.97%. Figure 9 shows the planned path for a range of differen
values of A. As the user-specified allowable probability of
collision decreases, the planned path becomes more canserv
tive, and eventually changes from passing through the warro
corridor to taking a significantly longer, but safer, pathiard
the outside. Figure 10 shows that, Asdecreases, the cost
increases monotonically. This illustrates an importaoperty
of chance-constrained planning, where the operator cale tra
optimality against conservatism.

Figure 11 illustrates how the customized solution for cleanc
constrained path planning described in Section IX operates
In this case we sef\ = 0.001. Figure 11 shows that the

The cost functiong(-) is defined to be proportional to thefixed risk relaxation (Step 2) finds a path through the corido

magnitudes of the commanded velocities, such that:

k—1 T
— _ v
g(uo,...,uk,l,xo,...,xk) é Z |:U§jdes:| s (66)
+—0 t,des

however since this is a relaxed solution, we do not know that i
satisfies the chance constraint. In Step 4 the method then use
risk allocation to find a solution that does satisfy the cleanc
constraint, in the vicinity of the fisked risk relaxation. rFo
illustration we also show the solutions that would be given

where the 2-norm is approximated using a 32-sided polygbg the fixed risk tightening (Step 5) and risk allocation in
as in Figure 7. The initial state of the UAV is modeled as the vicinity of the fisked risk tightening (Step 7). While hot

Gaussian random variable as in Problem 1, where:

0 0.052 0 0 0
o |0 pa| 0 000052 0 0
0= 1o o= | o 0 0.052 0

0 0 0 0 0.00052

(67)

of these solutions are feasible for the chance-constrgatud
planning problem, the conservatism of the bounds used means
they fail to find the path through the corridor, even though on
exists. This example is chosen to illustrate the value afigisi
the fixed risk relaxation to initialize the search for a fbbesi
solution. Figure 12 compares the true probability of callis

2Note that a map for which no feasible path exists is easietHerpath

The disturbance process is modeled as a zero-mean Gausplanning algorithm, since that infeasibility can typiyabe detected quickly.
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Fig. 8. Example solution with hard map and A = 0.001. The goal is  Fig. 10. Cost of returned solution against A. As the maximum allowable
shown as the small blue square at (0, 10). The dots show the mean of  probability of failure specified by the operator increases, the cost de-
the planned UAV position at each time step, and the ellipses give the

creases monotonically. The sharp drop corresponds to finding the path
99% certainty region for the position. through the narrow corridor.
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—A=0.1 Il \ A Risk allocation from FRR (Step 4)
A — 1r A K- — & —Fixed Risk Tightening (Step 5)
2l A=0.001 | \ /,@/’ 2 Risk allocation from FRT (Step 7)
. . . ; T
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Fig. 11. lllustration of custom solution method for A = 0.001. Fixed risk
relaxation finds a path through the corridor, which may not satisfy the
chance constraint. Risk allocation is able to find a solution that does
satisfy the chance constraint, in the vicinity of the fisked risk relaxation.
The solutions given by the fixed risk tightening and risk allocation in

the vicinity of the fisked risk tightening fail to find the path through the
corridor, even though one exists.

estimated using0% Monte Carlo simulations, with the max-

imum allowable probability of failure\. This shows that the Programming approach was unable to find the optimal solution
bounding approach introduced in this paper is conservatiyf o » 103s of computation time. This demonstrates that
by a factor of approximately 2, and does not dependn the cystomized solution approach is at least two orders of
This conservatism is many orders of magnitude better thathgnitude more computationally efficient than solving thié f

the values reported in [49], [18], [50], [33] on the boundingjisjunctive convex program, and we show in Section XI-B that
approaches of [30], [34], [35], [36], [29]. Furthermore $80 he suboptimality introduced is very low in most cases.

approaches apply only to convex feasible regions, unlike th
new disjunctive convex bound.

To compare the computational efficiency of the customiz&d Randomized map results

solution approach against full Disjunctive Convex Program In this section we perform a statistical study over 500
ming, we posed the same chance-constrained path planmagdomly generated maps. The maps each contain 10 square
problem as a full Disjunctive Convex Program (Problem 4qbstacles, with the center of each obstacle chosen from a
The YALMIP branch-and-bound solver was used with SNOPUniform random distribution over the spaees < y < 5,

as the solver for the convex subproblems. First, we solved< y < 10. The side length for each obstacle was chosen
the problem removing all obstacles except the one centefedim a Gaussian random distribution with mean 1.5 and
at (0.5,5). In this case the optimal solution was found irstandard deviation 0.5, and the orientation was chosen &om
112.04s. Then we attempted to solve the problem with aliniform distribution betwee® and 360°. In order to avoid
obstacles, however in this case the full Disjunctive Convaenerating trivially infeasible maps, any obstacles aeatet

x(m)

Fig. 9. Solutions with hard map for range of different A values. The dots
show the mean of the planned UAV position at each time step.
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-1 ‘ ‘ only 2.3% of cases. The main result from Table | is that in
—— Optimal path ' e almost all cases, the algorithm returns nontrivial costriats,
- - - Zero conservatism line e and when it does, the returned solution is known to be
1 suboptimal by at mosg.4% (averaged over all cases) and
by at most21.6% (3-sigma). We conclude that for this UAV
example, the customized solution approach returns a ealuti
very close to the global optimum to the full disjunctive cerv
program posed in Problem 4.

|
IS
T

[y
o

Estimated probabilty of failure

Average cost 13.02
s Standard deviation of cost 3.54
10 Fraction returning feasible solution 89.4%
Fraction returning nontrivial bounds 97.7%
10° ‘ ‘ ‘ Suboptimality bound 4) mean = 2.4%, s.d. = 6.4%
10° 107 107 1072 10" MILP solution time mean = 8.6s, s.d. = 11.8s
Maximum probability of failure (4) Convex program solution time | mean = 10.26s, s.d. = 13.21

Fig. 12. Estimated probability of failure against maximum allowable  TABLE I. Summary of study over randomly generated maps. We use
probability of failure A. For comparison we show the line with unity gra- 5 d. to mean "standard deviation”.

dient that corresponds to zero conservatism. The chance constrained
plan is conservative by a factor of approximately 2.

C. Comparison with Particle Control

In this section we compare the new approach with our
previous approach[33], which we refer to as ‘particle cohtr
1 Figure 14 shows a typical solution generated by the particle
control approach for the hard map in Figure 8. For this case
8 we setA = 0.01, and used 100 particles. There are three
important differences between the approach introducetien t
8 present paper, and the particle control approach. First, th
approaches use two different strategies for handling thach
2l constraint. The new approach bounds the chance constraint,
which guarantees that any solution satisfies the constitamnt
il introduces conservatism. By contrast, particle contrgrag-
imates the chance constraint, by ensuring that the fractfon
] particles violating the constraints is at mast As the number
of particles approaches infinity, the approximation become
e i i ‘ i i ‘ ‘ L] exact. For a sufficiently large number of particles, this nxea
xm) that, on average, the true probability of failure is close\o
Second, the new approach applies only to Gaussian distribu-
tions, while particle control applies to arbitrary distrtlons.
Fig. 13. Typical randomly generated map and path generated by cus- This generality comes, however, at the cost of computationa
tomized solution method. The dots show the mean of the planned UAV. complexity. The particle control approach requires thertioh
position at each time step, and the ellipses give the 99% certainty region . .
for the position. of a MILP that scales with the number of particles, and the
number of obstacles. Hence for large particle sets in noreon
regions, the approach becomes intractable. Finally, thickea
a distance of 2.5 or less away from the goal location or tl@ntrol approach is stochastic, in the sense that each Lime t
expected initial state of the UAV are removed and regendratelgorithm is run, it will generate a slightly different plafihe
For all examples in this sectio) = 0.001 and all other new approach, by contrast, is deterministic.
parameters are as in Section XI-A. A typical map, along with For the hard map example, we generated 30 particle control
the solution returned by the chance constrained path pignngolutions, with 100 particles and with = 0.01. CPLEX
algorithm, is shown in Figure 13. Table | summarizes theas used to solve the resulting MILP, with a maximum
results from the randomized study. The suboptimality bournghtimality gap of1%. The average solution time was 413s.
p was computed as: Using 106 Monte Carlo simulations, the average estimated
probability of failure was0.041, and the standard deviation
(70) was0.025. This compares to the new approach, which solved
the same problem in 10.78s with an estimated probability
When averaging this value across all cases, we remowadfailure of 0.0051. Note that, by increasing the number
instances where the algorithm returned the trivial costndgu of particles used, the probability of failure achieved gsin
[—00,00]. Empirically we found that this happened inparticle control could be made to approach 0.01, but thisldvou

101

y(m)

pa Jup —JLB
Jup
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B ‘ Q | /\ /\
) Node 3 Node 4 Node 5 Node 6
6 ; 1 en(X) <0 en(X) <0 c12(X) <0 c12(X) <0
z A A A A
£ 4l : e1(X) <0 c22(X) <0 en(X) <0 22(X) <0

Fig. 15. Example search tree for general disjunctive convex program.

3t : Q : 1 In this case ng4;s = ne = 2. Shown in the boxes are the inequality
constraints applied at that node. Nodes are expanded to their children

2r ﬂ il by branching on disjunctions and adding constraints to those imposed

1k | at the parent node. The equality constraints (not shown) are applied at
all nodes.

U ; b

-8 -6 -4 -2 0 2 4

x(m)

imposed conjunctive clauses one of the disjunctive claises
Fig. 14. Typical solution generated by particle control approach for the imposed. The root node of the tree (Node 0) corresponds to the

hard map, with A = 0.01. The black dots show the 100 particles used ~Subproblem where only the equality constraints are imposed
in the plan. At most one particle can violate the constraints. The blue
ellipses show the 99% certainty region for the position. Problem 8 (Root node subproblem).

min h(X) subjecttof.q(X)=0. (71)

further increase computation time. Hence the new approach X

is significantly more computationally efficient than paeic Nodes in the tree are expanded by adding constraints to the
control and ensures that the chance constraint is satisfied.subproblem. The main idea behind the branch and bound
approach is that the optimal solution for a node is a lower

XIl. CONCLUSION bound on the cost of any subproblem below that node. Hence

We have presented a new method for chance-constraij‘é-y node with an optimal cost greater than or equal to the best
gps

path planning with obstacles. The method optimizes a ¢ ible solution found so far (the incumbent solution)chee
function, such as fuel, while ensuring that the probabitfy not be expanded. The tree is explored as follows:

collision is below a user-specified threshold. Using a new 1) Initialize: Set.J; . = +oo and X}, = infeasibleand
bound on the probability of collision with the obstacles,  solve the root node subproblem. Add the root node to
the method approximates the nonconvex chance-constrained the stack.

optimization problem as a Disjunctive Convex Program. This 2) Node selectionif the stack is empty, stop and return
can be solved to global optimality using branch-and-bound ~ X};,.. Otherwise select a nodecurrently on the stack
techniques. We introduce a customized solution method that and solve its corresponding subproblem to find its opti-
improves computation speed, and returns hard bounds on the mal solutionX;" and optimal cost/;". Remove the node

level of suboptimality. We show empirically that, for a UAV from the stack.
path planning problem, the level of suboptimality is veryaim  3) Check constraintsCheck if the constraints in (10) are
in almost all cases. satisfied byX;. If so, go to Step 4. If not, go to Step 5.
4) Fathom checkCheckifJ; < J7, .. If so, setX? == X
ACKNOWLEDGEMENT and set/j,, = J;. Goto Step2.

) , , i 5) Node expansionChoose one disjunction in (10) not
This research is funded in part by Boeing Company grant ¢ rrently in subproblen and add nodes to the tree for
MIT-BA-GTA-1 and was carried out in part at the Jet Propul-  ¢50h of the clauses in the disjunction. Each new node
sion Laboratory, California Institute of Technology, unde adds the chosen clause to the conjunction of existing

contract with the National Aeronautics and Space Admin-
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California Institute of Technology. All rights reserved.

clauses. Go to Step 2.

An example of a subproblem, in this case corresponding to
Node 5 in Figure 15, is:

APPENDIX Problem 9 (Node 5 subproblem).
A. Branch and Bound for Full Disjunctive Convex Program .
min A(X)

Branch and bound for the general disjunctive convex pro- ) _X
gram defined in Problem 2 works by exploring a search tree subject to:
such as the one depicted in Figure 15. Each node of the tree feq(X) =
corresponds to a convex subproblem, in which a subset of the < <
conjunctive constraint clauses are imposed, and for eattreof (ClQ(X) = 0) A (CQI(X) 0)' (72)



Since (72) is a conjunction of convex constraints, Problem §]
is a convex program. This is true of all the subproblems
represented by nodes in the search tree. Since each sutaprobl
is convex and can be solved to global optimality in finite time[5]
and there are a finite number of possible subproblems that

can be added to the tree, the branch and bound process[d']s

guaranteed to return the globally optimal solution to PeabP
in finite time.

A great deal of research has been carried out that builds (5?']
the basic branch and bound algorithm to improve efficiency.
Strategies include variable ordering, the use aoiflicts [°]
heuristics for node selection, and the addition of constsai
to remove parts of the search tree. We do not claim to revige]
this work here, but refer the interested reader to [44], ,[45}!]
[7], [51].

(7]

[12]

B. Disjunctive Convex Programming using Binary Variabled13]

The general Disjunctive Convex Program in Problem 2 can
be encoded in an alternative form using binary variabless TH4
encoding has been particularly popular in the special case
of disjunctive linear programs, which become Mixed Integé#5]
Linear Programs (MILP) in this encoding. The MILP encodingm
allows the use of a great deal of performance-improving
results in the literature, as well as highly-optimized waite
dedicated to solving MILPs[6]. We do not intend to review! ]
this body of work here, but refer the interested reader tp [7]
[52]. Instead we show how the encoding is carried out in th&s]
case of a disjunctive convex program.

The following Mixed Integer Convex Program (MICP) isj19]
equivalent to the Disjunctive Convex Program in Problem 2:

Problem 10 (Binary Variable Encoding). [20]

min A(X)
X
subject to:
feq(X) =10 g%}
e (X) < M(1=25) Vi,j (73) (23]
Nel
Zzij >1W (74) [24
j=1
zij € {0,1} Vi, j, (75) [25]

where M is a large positive constant. The binary variable[%]
in Problem 10 determine whether a particular constraint is
imposed or not, while (73) ensures that at least one constrai

in each disjunction is imposed, as required. [27]
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