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Abstract

This thesis presents an application of the Element Free Galerkin Method, or EFGM for

short, to elastic rods. The method employs the so-called Moving Least Squares Interpolants

as shape functions. This approximation method is reviewed together with the following top-

ics: numerical integration; the strong form of the problem, that is, the differential equation;

the weak form, which is derived using the Principle of Virtual Work; the method of La-

grange multipliers as well as the method of weighted residuals. A brief historical account

of the origin of the EFGM is also given. The EFGM is examined and similarities with

other field solution methods are outlined. A Matlab program, based on the forementioned

theory and employing Lagrange multipliers to impose essential boundary conditions, is de-

veloped. Several numerical examples are computed, with varying order of integration, for

smooth and CO-continuous solutions. The obtained results are compared with closed-form

solutions, indicating conclusions similar to previously reported results.
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Chapter 1

Introduction

1.1 Solution Methods for Field Problems

Solution methods for field problems are widely used mathematical tools in engineering

analysis. These methods are applied in such areas as the anaysis of solids and structures,

heat transfer, fluids and almost any other area of engineering analysis.

One of the best known and most widely used methods is the Finite Element Method,

or FEM in short. Its first occurence, or the roots of its development, date back to over four

decades ago [3]. Since then, significant changes have taken place. Nowadays, there seems

to be almost no field in which the FEM is not present.

Much of the success of the FEM is due to its intuitively physical approach and its great

versatility. Indeed, the FEM may be applied in almost any area, its underlying mathematical

structure enabling widespread use.

But despite - or even because of - this generality, there are certain areas in engineering

analysis that are not well suited for analyses by the FEM. One example is the area of fracture

analysis. Even three dimensional dynamic crack growth may be simulated, but at rather

high expenses. Remeshing, at least locally, is necessary and results in loss in accuracy and

computational cost.

Recently, especially in the last decade, interest has grown in so-called meshless methods.
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CHAPTER 1. INTRODUCTION

These methods are not based on the notion of an element, as in the FEM, but instead

attempt to approximate the given geometry through other procedures. One of them is the

Element Free Galerkin Method, or EFGM.

1.2 Meshless Methods

The area of research of meshless methods is in a developing state and much has been done

already. An extensive, but already somewhat outdated review is given by Belytschko et al.

in [6], which also mention the EFGM. The formulation of the EFGM is similar to that of

the FEM in that it is based on a Galerkin weak form of the problem; however, instead of

using fixed, local interpolants, it uses Moving Least Squares Interpolants.

1.3 Development of the EFGM

The name Element Free Galerkin Method was first coined by Belytschko et al. in [7]. It

is an improvement of the diffuse element method, which was introduced by Nayroles et al.

[34]. They did not note that the employed interpolants are in fact Moving Least Squares

Interpolants, for example as studied in [30]. Belytschko et al. improved the diffuse element

method significantly: accurate evaluation of the derivatives, high order of integration and

exact enforcement of essential boundary conditions enabled the method to pass the patch

test [7].

Since then, improvements to, and analyses of the method itself have been made (see

Chapter 3). EFGM has been extensively applied to various field problems. The method

performs especially well in the area of fracture analysis [8, 10, 32, 35, 36, 41], due to its

dynamic connectivity of nodes. Further, it seems to exhibit no volumetric locking (provided

appropriate basis functions are employed) [7, 28].

20



1.4. ABOUT THIS THESIS

1.4 About this Thesis

1.4.1 Intention

The objective of this research is to evaluate and examine the Element Free Galerkin Method.

The method is applied to elastic rods subject to point forces and body forces. Its accuracy,

characteristics and computational effort are examined.

1.4.2 Structure

The structure of this thesis is designed such that the EFGM is gradually developed. In

Chapter 2 the fundamental utility in the EFGM is described, the Moving Least Squares

Interpolants. Lagrange multipliers and numerical integration are mentioned, different math-

ematical forms of the problem statement and error-distribution methods are reviewed.

Chapter 3 gives an introduction to the EFGM, describing its characteristics in dis-

cretization, imposition of boundary conditions, numerical integration and post processing.

Convergence of the method is mentioned with respect to the conforming and nonconform-

ing EFGM. This Chapter closes with some relationships of the EFGM with other meshless

methods and the FEM.

Chapter 4 describes the implementation of the EFGM using Matlab for the case of

elastic rods subject to point and body forces, imposing essential boundary conditions via

Lagrange multipliers.

Chapter 5 reviews numerical examples computed with the Matlab routines and examines

the accuracy of the obtained results. Further, some considerations with respect to different

weight functions are given.

Chapter 6 discusses the results.

Appendix A develops the mathematical-mechanical background of the Matlab imple-

mentation in Chapter 4. The amended weak form for a rod (essential for the EFGM

employing Lagrange multipliers) is derived.

Appendix B tabulates numerical examples. Rods subject to point forces at the tip and

in the middle and subject to constant and quadratic body forces are computed. In addition,

21
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typical weight functions, employed in this thesis, are outlined.



Chapter 2

Mathematical Background

2.1 Introduction

This chapter reviews some of the formulations and methods necessary for the Element Free

Galerkin Method. The Moving Least Squares Interpolants are at the core of the method.

These functions are gradually developed from the basics in interpolation.

Imposition of constraints by Lagrange multipliers is described, and some characteristics

of numerical integration are mentioned. Different mathematical formulations of problems

in elasticity are reviewed, including the weak form. The latter leads to error-distribution

methods, including the Galerkin method.

2.2 Moving Least Squares Method

2.2.1 Introduction

In the following, interpolation and approximation by a polynomial is reviewed, leading to

the method of Moving Least Squares Interpolation, which are interpolation functions with

adjustable support. The more general case of multiple variables can be found in [30]. In

the following only the one dimensional case is considered.

Note that:

23



CHAPTER 2. MATHEMATICAL BACKGROUND

* approximation in general is considered as the problem of representing some given

function f(x) by some function #(x), which comes close in value but may not be

exactly equal to f(x).

e interpolation, roughly-speaking, denotes the approximate representation of some

function f(x) in terms of N discrete data points (xi, f(xi)) and interpolation

tions #(X; X 1 , X2 , .. . , XN). In general, (; Xi, x 2 , - - - , XN) passes the value of

"through" when being evaluated at x = xi, that is:

given

func-

f (Xi)

#(xz; 1, X2 , .. . , XN) = f (Xi) Vzi = 1, ... , N.

Note, that eq. (2.1) is sometimes referred to as the interpolation condition, cf. eq.

(3.1). When#(X;z, x 2,.... , XN) does not satisfy eq. (2.1) exactly, #(; Xi, x2,... , XN)

is therefore non-interpolating and resembles an approximation function.

For ease of notation, in the following the dependency of # of Xi, x 2 ,... , XN is omitted.

2.2.2 Interpolation Using a Polynomial

An interpolation function approximates some given function by estimating its shape between

discrete data points (later referred to as nodes).

In Figure 2-1 some given function

f : D - R, f () = y (2.2)

with discrete data points

(Xi, yi), f (Xi) = yi, i = 1,. .. N (2.3)

(2.1)

24



2.2. MOVING LEAST SQUARES METHOD

1

0.8-

0.6-

0.4-

0.2

0
0
(a)

Figure

1

0.8 -

0.6 -

0

x

0.4

0.2 

1

0.8

0.6
-

0.4

0.2

1 2 0 1 2 0
x (b) x (c)

2-1: Interpolation of (a) f(x) based on (b) two points

1
x

by (c) # (x)

2

is approximated by a line #(x) interpolating the given two data points. In general (for 2.2),

0

#(x)= p(x) a

=ao +a 1 x+ a 2x 2 + - - - + am-1 lm-1

a = (ao ai a2 ... am-1 , p x 2 ...

where the ai C R determine the shape of the interpolant. Note, that in the following p is

said to be of order m = 2 when it contains at most the linear term: pT = (1 z).

In order to obtain a unique linear interpolation, at least two independent points are

required. For higher-order interpolating polynomials, obviously more data points are nec-

essary to obtain unique interpolants. In general, N = m points are required to obtain a

unique polynomial of order m.

with

(2.4)

(2.5)
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CHAPTER 2. MATHEMATICAL BACKGROUND

Determining the interpolation function reduces to solving a system of equations. One

may compute the coefficients a2 in eq. (2.4) by employing the Vandermondel matrix [2]:

Va = b, (2.6)

where

1

1

V= 1

\1

£1 2
£1 1

2
£2 £2

2
X3 £3

2
£N £N

... £1
rn-1

... £2
''' 13

Xmi1

a

/ ao

a,

a 2

Yi

Y2

b= y3

\YN)

2.2.3 Least Squares Approximation

Interpolation functions as presented in Section 2.2.2 are limited in applicability. In general,

N data points require the interpolating polynomial to be of order m = N. It is not possible

to interpolate an arbitrary set of points by a polynomial of fixed order2 . Mathematically,

the system of equations for N > m in eq. (2.6) is not solvable in general.

When the number of data points is high, approximation instead of interpolation is used.

The function #(x) (to be determined) no longer interpolates the data points. For example,

consider trend prediction and averaging in experimental data. Some error (called residual)

in approximation is accepted.

One method to obtain such approximations is the least squares approach3 , where the

error in interpolation at each data point is defined as:

ri q$) - yi, i=1,... ,N.

'Alexandre Th6ophile Vandermonde (1735-1796).
2This is similar to a desk with four legs (data points) rocking on an uneven floor (interpolation function).
3Problem definition and solution based on a method developed by Carl Friedrich GauB (1777-1855).

(2.7)
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The sum of these errors yields the residual of the approximation. In order to obtain the

best approximation in the least squares sense (that means, minimizing the square of the

residual) one has to determine the ai from eq. (2.4) such that

N

r 2 =11 r 12|= r'r
i=1

(2.8)

is minimized (11 - 112 is the Euclidean norm). Resorting to matrix notation, with:

1

1

1

\1

X1

x 2

x 3

XN

... i-1

-.. 13

m X-1-- N

ao

ai
al

, a= , b=

Y21

y3

\YN/

(2.9)

eq. (2.7) can be expressed as:

r = A a - b. (2.10)

Requiring rTr minimized leads to:

ATA a = ATb. (2.11)

Remark: Supposed, A E R(N,m) is of rank(A) = m, b E RN and N > m holds, then it

can be shown that eq. (2.11) has a unique solution a E R" .

2.2.4 Moving Least Squares Interpolation

Least squares approximation, as described in Section 2.2.3, minimizes the square of the

residual over the whole set of data points (Xi,y 2), i 1,... , N, equally weighted 4. The

4 The interpolation functions span the whole domain. Note the similarity to the Standard Ritz Method,
which spans over the whole region - in opposite to the Finite Element Method.
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approximating curve spans over the whole domain, or set of (xi, yt). It loses local accuracy.

However, loss in accuracy, and wide-spanned domains may be circumvented by introducing

localization terms in eq. (2.11).

Consider in eq. (2.11), instead of the moment matrix ATA, some weighted matrix

product:

ATW(x)A a(x) = ATW(x)b, (2.12)

with W(x) a diagonal matrix with N weight functions:

Wij (x) = w(di) o1-, (2.13)

and a(x) the coefficients of the approximation function, as before. Note that both terms

W(x) and a(x) are functions of x, while A, similar to the Vandermonde matrix, is a quasi-

constant matrix storing the basis vectors p(xi) of nodes with nonzero weights, cf. eqs. (2.15,

2.24). The weight functions in W(x) limit the influence of its nodes to the corresponding

domain of influence.

When computed by eq. (2.12), the coefficients ai(x) are not constant, as in eq. (2.4).

Instead, they change continuously over the whole domain, introducing the localized weight

of W(x) in the definition of #b(x). Note that due to the localization of the interpolation,

multiple interpolation functions exist, one interpolation function for each data point xi.

Eq. (2.12) is the definition of the Moving Least Squares Interpolant (or approximating

function) in one dimension 5 . The derivation for the general case may be found in [30].

Weight Function and Domain of Influence

The localization term W(x), defined in eq. (2.13), distinguishes the Moving Least Squares

Method from the standard least squares method. The choice of the weight function and

5 Note, that Moving Least Squares Interpolation implies the notion of the support moving with the
evaluation point x.
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the definition of the domain of influence is an important part in Moving Least Squares

Interpolation.

6- E) 6- e
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ja) 2 X 4 6 c b) 2 X 4 6

Figure 2-2: Domains of influence in (a) least squares approximation, (b) Moving Least

Squares Approximation

The size of the domain of influence is determined by the definition of the weight function.

Constant weight functions, which have unit value over the whole domain, yield the regular

least squares approximation. Smooth weight functions with circular domains 6 and limited

radius are employed in general. The circular domain (or in three dimensions: the ball-

shaped domain) degenerates for one dimension to a line, where the weight function of the

i-th node may be defined as:

Jw(di) if di < dmi,
w (di) =(2.14)

0 if di > dmi,

with dmi the radius of the domain of influence [7] and di the distance of the i-th node

6 Rectangular domains may also be used [17].
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from the evaluation point x:

di = Ix - xi|.

It is important that the domain of influence is chosen such that ATW(x)A is not a

singular matrix. This requires that at least m nodes have nonzero weights. The process of

determining the domain of influence (di varies in general with x and is not constant for

irregular meshes) consists of the following steps:

" determine some ci defining the distance di of the most remote node in the domain for

a minimum set of nodes,

* enlarge this minimum domain by defining dmi = df actor ci, where df actor may be chosen

to be 1 and higher 7 . With dfactor = 1, piecewise linear interpolants are obtained,

leading to the linear FEM as a special case of the EFGM [36]. Note that values

dfactor > 3 may yield too smooth interpolants, leading to underestimation of results.

Moving Least Squares Interpolants may be interpolating and non-interpolating, depend-

ing on whether the weight function is singular at x = x,. In general, the non-interpolating

version is employed.

Some weight functions used for Moving Least Squares Interpolants are given in Ap-

pendix B. Note the difference between the singular weight functions in Figures B-1 and

B-2 by Lancaster et al. [30] and the smooth weight functions in Figures B-3 and B-4, re-

spectively, by [20, 41]. Employing the latter gives non-interpolating Moving Least Squares

Interpolants, while using the singular weight functions yields interpolating Moving Least

Squares functions. Note that the singularity requires some attention in numerical methods.

7 Organ [36] recommended dfactor values (denoted as da,) ranging from 2.01 to 2.51, while Belytschko
et al. mentioned 2.0 < df actor < 3.0 for elastodynamics [8].
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Formulation

It should be noted that the Moving Least Squares Interpolants are not polynomials, but

rational functions. Furthermore, due to the complexity, #i(x) may not be computed analyt-

ically. One has to resort to numerical evaluation of the interpolants at the required points.

For the case of the interpolant #i(x) itself, a (x) has to be computed from eq. (2.12). That

is, a set of linear equations has to be solved.

To obtain dP"(x) - #i,x(x), some attention may be required. Employing the following

definitions:

A(x) = ATW(x)A, (2.15)

B(x) = A T W(x), (2.16)

U = b,

where U contains the nodal unknowns, one arrives at the definition of the Moving Least

Squares interpolants for the EFGM. The basic approach is similar to eq. (2.4), where the

analytical solution u(x) is approximated as follows:

u(X) 4(x) U = pT(x) a(x), (2.17)

u(x(x) ~ ,x(x) U = p T (x) a(x) + pT(x) a,x (x), (2.18)

where

a(x) = -1 (x) 5(x) U, (2.19)

a,(X) = (A1(x) (x) + k (x) 5,(X)) U.

Avoiding the computationally intensive term A,- (x) leads to:

a,X(x) =( - (x) ,(x) A-1(x) S(x) + A1 (x) 5,i(X) U. (2.20)
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The shape functions (and its derivatives) for the EFGM may be computed from eqs.

(2.17, 2.18) by substition of eqs. (2.19, 2.20), respectively.

Note that:

* the dimensions of the matrices are A( R) E R(m,") and B(x) E R(mN), where m

denotes the order of the basis vector p(x) and N is the number of nodes, which

weights are nonzero. For one dimensional problems choices for p(x) are:

P = (1 X), m = 2, (2.21)

pT = x x2), m = 3, (2.22)

pTWx = (1 x 2 X 3), m= 4, (2.23)

etc.

* In the routines in Sections 4.2.7 and 4.2.8 A(x), N(x), A,x(x) and N,x(x) are com-

puted as follows:

N

A (x) = w (di) p (xi) pTMx) ( 224

N(z) = (w(di) p(zi) w(d2) p(X2) ... w(dN) p(zN) , (2.25)
N

AI(x) = w,x (di) p(xi) pT(zi), (2.26)

Bx(X) = (w,(di) p(xi) w,x(d 2 ) p(X2) ... w,x(dN) P(XN)) (2.27)

2.3 Lagrange Multiplier

The method of Lagrange 8 multipliers is a convenient way to solve problems subject to some

given constraints. As an example, consider the problem of obtainig stationary values of

8Joseph Louis Lagrange (1736-1813).
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some function f (x), x C R7:

Of
df = dx 1 +Oxi

subject to the two constraints

ci(x) 0,

c2 (x) = 0.

By amending f(x) with the given constraints:

f*= f + Ai ci =f + A1 ci + A2 c2

and taking the variation of f* yields:

Of + A, Oci

Oxi Oxi

0c2
+A 2  =0

Oxi

Note that the conditions in (2.31) are the conditions of f* be stationary [21].

To show that eq. (2.31) is in fact equivalent to eq. (2.28), subject to eqs. (2.29, 2.30),

consider the following relations:

i=1

0ci dxi = 0,

Oc2 dxi = 0.

(2.32)

(2.33)

They follow directly from eqs. (2.29, 2.30). Multiplying eqs. (2.32, 2.33) by A1 and A2 ,

respectively, and adding both equations to eq. (2.28) gives:

±Of

i=1 x1

+ A1  + A2  dzi = 0.
Oxi Ox2)d 1 0

(2.34)

Of
Ox 2 dX2
822

Of
-+- + dx 1, = 0

Oxn
(2.28)

(2.29)

(2.30)

Vi = 1, ,n. (2.31)
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From eq. (2.34), it can be seen that eq. (2.31) indeed holds. In general, the method of

Lagrange multipliers may be used with more than two terms.

In Section A.3.2 Lagrange multipliers are employed to impose essential boundary con-

ditions.

2.4 Numerical Integration

Numerical integration (in the following only for the case of one dimension) is the process of

approximately integrating some function numerically, that is, based on the function itself

instead of the analytical expression of F = f f dx. For example, one basic method is

Simpson's Rule.

The most widely-used method of numerical integration is Gaussian quadrature, but as

mentioned in [37], in some cases even more accurate formulas with less sampling points

have been developed. In Gaussian quadrature polynomials #(x), as defined in eq. (2.4),

may be integrated exactly, provided the required number of sampling points (sometimes

called Gauss stations) is used.

The basic assumption in Gaussian numerical integration is that the integral can be

approximated by a finite number of weighted sampling points:

b

If (x) dx = w 1 f (xI) + w 2 f (x 2 ) + ... + w, f (x,) + Ry, (2.35)
a

where the last term, R., is the error in the approximation.

Consider some polynomial, #(x), x C R, as defined in eq. (2.4). It can be shown, that

polynomials of order (2p - 1) are integrated exactly, provided p sampling points are used

[3]:

b

#(x) dx = wi#(xi). (2.36)
a i
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Eq. (2.35) is not used in practice. Instead, the weights and sampling points are transformed

to normalized representation, based on the following expressions:

b m

f (x) dx ~wif (xi), (2.37)
a j:

a+b b-a
X = + r, r E [-1; 1] (2.38)

2 2

wi = b -a ci. (2.39)

The sampling points r. may be determined employing the Legendre-Polynomial [2]. An

extensive collection of sampling points and weights may be found in [1].

So far only integration of polynomials is considered. However, rational, or nonpolyno-

mial functions may be integrated using Gaussian quadrature. Obviously, no exact results

are obtained, only approximations. Section 3.3 deals with the accuracy in integration of

rational functions, like Moving Least Squares Approximations.

2.5 Problem Formulation

The following Sections are concerned with the various formulations and expressions which

are involved in processes such as the development of the weak form as in the Appendix A or

the convergence of the EFGM itself [29]. Most of the following departs from the well-known

statement in eq. (2.40).

2.5.1 Differential Form

Consider some given boundary value problem. For the sake of simplicity, only one dimen-

sional problems in the region 93 { x 10 < x < L } are considered:

d duiadEA d +fb=0 (2.40)
dx ( dx

where the displacements are prescribed on Su and tractions / forces act on Sf.
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Note that boundary conditions in general may be distinguished by the order of their

differential operations [24], where 2m is the order of the differential operator in eq. (2.41):

* 0 ... m - 1: essential, geometric or Dirchlet boundaries,

* m ... 2m - 1: natural, additional or Neumann boundaries.

2.5.2 Operational Form

The differential form of eq. (2.40) may be formulated as follows [37]: Find a unique corre-

spondence, that is, find some relation between some given inhomgeneous term f and some

u for the region B, each of them members of some spaces of functions, which satisfies the

given differential equation and boundary conditions.

This process of matching spaces of functions is generally written by using differential

operators:

L2mU= f in the region B C R, (2.41)

where L2m is a differential operator of order 9 2m which in general establishes a unique one-

to-one mapping of some f to some u. L2m acts on a certain class of functions - those which

in some sense satisfy the boundary conditions, prescribed on 93 = S, U Sf, and which can

be differentiated 2m-th times (denoted as C2m functions).

Note that eq. (2.41) is the Euler10 equation.

Consider the class of admissible functions of u and f. Only f with finite energy are

admitted:

(f) 2 dx < oc. (2.42)

In this case, the integral expression in eq. (2.42) is the square sum over all body forces

applied to the rod, therefore it is reasonable to require this integral to be finite. The space

91f not otherwise mentioned, the order of the differential operator is 2m = 2.
' 0 Leonhard Euler (1707-1783).
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of functions which satisfy eq. (2.42) is often denoted Z 2 , which here is defined as:

2 = {w I w defined in M and f (W)2dV < oo}. (2.43)

M

It follows that the space of admissible functions for eq. (2.41) is the Sobolev space 5f.

That is, where: (1) the interpolation function, (2) its first derivatives and (3) its second

derivatives are required to be in Z2 [22, p. 267]. Obviously, only functions in 552 are allowed

which satisfy the given boundary conditions.

Once these requirements on u and f are satisfied, and L2m is in fact a one-to-one

transformationil, it can be shown that the given boundary-value problem has a unique

solution u. Physically, the existence of a unique u for the operator L2m expresses the

following: For a problem within the linearized theory of elasticity there exists one unique

deformed shape u for each load f.

2.5.3 Variational Form

An alternative form to the statements in Sections 2.5.1 and 2.5.2 is the variational form.

Consider eq. (2.40), weighted by test functions v and integrated over the domain T12:

a(L 2 m,) = a(f, v) for every v. (2.44)

This equation is the result of varying the quadratic I(v) = a(L 2mo, v) - 2 a(f, v), that is

minimizing 1(v).

Note that due to integration by parts, eq. (2.44) does not contain second derivatives of

u, see eq. (A.15). In fact, the space of admissible solutions in the minimization is 551, where

the functions are only required to satisfy the essential boundary conditions in advance.

The fundamental enlargement of admissible functions to piecewise linear C0 -continuous

"This requires L2 m to be self-adjoint and positive definite.
1 2 Here a(., -) is a bilinear form corresponding to the considered model problem. "Bilinear" denotes that

this form is linear in both elements on which it operates.
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functions13 enables, for example, the use of two-node elements in elasticity problems in the

Finite Element Method.

In EFGM this enlargement by piecewise linear C 0 -continuous functions of the space of

admissible functions is not necessary. However, the admissible functions have to satisfy the

essential boundary conditions. This is not satisfied in general by the interpolation functions

employed in EFGM, the Moving Least Squares Interpolants.

2.6 Method of Weighted Residuals

2.6.1 Introduction

The method of weighted residuals seeks to determine a best approximate solution to a differ-

ential equation, subject to boundary conditions, through the use of trial (and test) functions

[11]. It focuses on the error in satisfying the given problem, similar to the interpolation in

Section 2.2.3.

Error-distribution methods yield results which in some sense are the best approximations

to the exact solution. Different methods are available [11], where T = 8T + 9a, so that

8% denotes the boundary and 9o is the interior of 93:

" boundary method: The differential equation is satisfied exactly in the interior 90, and

the unknowns are selected to fit the boundary conditions in some best sense.

" interior method: The trial functions are chosen such that they satisfy the boundary

conditions exactly, and the residual is minimized over the whole interior 9o.

* mixed method: Neither the differential equation in 30, nor the boundary conditions

on &Z are satisfied. Here, the unknowns to be determined are selected to satisfy both

the differential equation and the boundary condition in some best sense.

13 Slope discontinuity allowed, but discontinuities in u itself prohibited.
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2.6.2 Formulation

Given some problem statement, cf. eq. (2.41):

L2 mU -f = 0 in the region 9 (2.45)

with boundary conditions prescribed on 8o = Su U Sf. Consider the following approach by

the interior method: Some approximate solution of the differential equation is assumed:

N

Uu '- Z qOi W ui,
i=1

where the ui are the unknowns to be determined, and the #j(x) are trial functions which

are chosen to satisfy all boundary conditions. This approximation, employed in eq. (2.45),

is not likely to satisfy the differential equation exactly. Some error, called residual, remains:

r(x) = L2mii - f.

This residual is required to vanish or being minimized over the interior 9o, appropriately

weighted by test functions14 :

Jvi(x) r (x) dxO = 0, Vi = 1, ... , N, (2.46)

where the vi(x) are N linearly independent functions. The exact solution is obtained if

eq. (2.46) holds for any complete set of functions v,(z), with N -* oc. In practice, only a

limited number of functions is chosen.

The various choices of test (or weight) functions gave birth to several methods within

the class of error-distribution methods. In the following, some widely-used methods are

described.

"In [13], r(x) is said to be orthogonalized to vi(x) over the interior o.
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2.6.3 The Galerkin Method and other Error-Distribution Methods

Next to the Galerkin method1 5 , which is "the obvious discretization of the weak form" [37,

p. 117]16, other error-distribution methods have been established and used.

Collocation Method

In the collocation method 17 the residual is required to vanish at N points. That is, the

vi(x) are chosen to be the Dirac delta function 6(x-xi). However, the approximate solution

does not coincide at the points xi with the exact solution [24]. Furthermore, the obtained

results may fluctuate widely between the xi [11].

Least Squares Method

This method was first mentioned by Picone in 1928 [18]. Here, the integral of the square of

the residual is not forced to be zero, but instead required to be a minimum with respect to

the unknown ui. However, the involved integrations may often be complicated [21].

Subdomain Method

In the subdomain 18 or partition method the region is divided in subdomains. The integral

of the residual is required to be zero over each subdomain. Hence, the weight functions may

be considered unit step functions, which are unity in the i-th domain and zero elsewhere.

Galerkin Method

In the Galerkin method the test functions vi(x) are chosen to be the trial functions #j(x)
themselves. That is, the residual is forced to be orthogonal to the space of trial functions.

Strang and Fix [37] expressed Galerkin's rule as follows (note that the approximate solution

space Vh, determined by the interpolation functions, is denoted Sh, where ii E Sh):

1 5 Boris Grigorewitsch Galerkin (1871-1945) mentioned this method in 1915 [18].
16 Note that eq. (2.45) is the differential form, or strong form, and not the weak form.
1 7First mentioned in 1937 by Frazer, Jones and Skan [18].
18Finlayson et al. [18] name Biezeno and Koch as the first to mention this method in 1923.
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The residual Lu-f will not be identically zero unless the true solution u happens

to lie in the trial space Sh, but its components in Sh should vanish.





Chapter 3

Element Free Galerkin Method

3.1 Introduction

This Chapter describes the characteristics of the Element Free Galerkin Method and gives

an overview of the EFGM and some already examined features.

The Element Free Galerkin Method is a numerical method for approximate analysis.

Some notes on its development are given in Section 1.3. Descriptions of the EFGM may be

found in most of the publications named in the Bibliography. It should be noted that the

area of research of meshless methods, and therefore of the EFGM, is steadily developing.

The following descriptions do not claim to be "state of the art" or "cutting edge". But they

may be satisfactory as an introductory approach to the EFGM, mentioning limitations

without lacking reasonable accuracy and some actuality. The reader may miss some of

the mathematical notation. This is outlined in parts in Chapter 2 and not repeated here.

Additionally, Appendix A describes the complete derivation of the formulation for an elastic

rod.

Possibly the most significant drawback of the EFGM is that the computational effort

is high, the method is expensive. But the whole area of meshless numerical methods is

still developing, and when considering the computational effort spent on Finite Element

Analyses with millions or more degrees of freedom, this disadvantage may fade in future.
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3.2 Discretization and Boundary Conditions

As in all meshless methods, the difficulties arising from essential boundary conditions are

directly related to the interpolation functions [25, 29]. Moving Least Squares Interpolants

are generally employed in the EFGM, which directly affect the process of meshing.

3.2.1 Meshing

The EFGM belongs to the class of so-called meshless methods. That is, there exists no

consideration of elements as in the FEM. The region of the field problem, 9, is not required

to be subdivided into separate cells, or elements. The procedure of "meshing" reduces -

in the pure sense of a meshless method - to distributing nodes in an arbitrary shape over

the domain

The difficulties in meshing, and especially, in remeshing2 , are avoided. For example,

even adaptive schemes (variable node density based on interpolation error estimation) have

been developed to automate and accelerate the solution of some time dependent problems

[20].

3.2.2 Shape Functions

In the EFGM in general Moving Least Squares Interpolants are employed as shape functions

(also called interpolation functions).

They span the space of discrete solutions Vh (note that V denotes the total solution

space, including the exact solution). Alternatives or modifications may be used, like pseudo-

derivatives of Shepard functions [26] or modified Moving Least Squares Interpolants with

orthogonalized basis functions [31]. Even accelerated computation of derivatives [5} and

enrichment of the basis to improve the representation of crack tip fields have been developed

'Obviously, the density of nodes should be based on the expected field solution.
2 For example, remeshing is of importance in field problems with time-dependent domains, that is, chang-

ing geometry. This advantage explains much of the success of the EFGM in the area of fracture analysis
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[40]. In this thesis Moving Least Squares Interpolants, as described in Section 2.2, are

employed.

Moving Least Squares Interpolants are superior to finite element shape functions with

respect to adaptivity. Nodal connectivity is not defined in advance, but may change to-

gether with the geometry. Nodes may also be added and subtracted from the region quite

easily. This advantage comes along with the disadvantage of high computational cost in

evaluating the shape functions at the quadrature points 3 . Another drawback, next to this

computational burden, is the loss of the physical meaning of the nodal unknowns 4 . The

displacement at node i does not represent the displacement at this location . As mentioned

in Section 2.2.4, Moving Least Squares Interpolants, as used in the EFGM, do not satisfy

the interpolation condition:

Oi(zj) 6ij. (3.1)

Instead:

N

u(Xi) = #3 Oj(Xi) Uj # Ui. (3.2)
j=1

This disadvantage affects the imposition of boundary conditions.

3.2.3 Imposition of Constraints

Approximation functions used in the weak form are required to satisfy the essential bound-

ary conditions. Similar to the principle of virtual work, the virtual displacement has to

vanish at supports, while natural boundary conditions do not have to be satisfied in ad-

vance.

3Noted in Section 2.2.4, a linear set of equations (2.17, 2.18) has to be solved for each evaluation point.
4As long as non-singular weight functions are employed (which is recommended, since the singularity

imposes certain difficulties in the numerical implementation of the interpolants), the interpolation condition
is not satisfied.

45



CHAPTER 3. ELEMENT FREE GALERKIN METHOD

Essential Boundary Conditions

Essential boundary conditions, which are prescribed displacements, have to be satisfied in

advance by the approximation functions. As in other meshless methods, this requirement

is not satisfied exactly by the Moving Least Squares Interpolants, as long as no additional

constraints are present. In the EFGM, prescribed displacements may not be imposed di-

rectly on the system of equations, for example by eliminating rows and columns, or by the

penalty method. Instead, Lagrange multipliers [7] , coupling with finite elements [25, 38, 39]

or modified variational formulations [31] have to be used. Note that the accurate enforce-

ment of essential boundary conditions is one of the differences between the Diffuse Element

Method and the EFGM.

In this thesis, for the one dimensional case, Lagrange multipliers are used to satisfy

essential boundary conditions. For problems with increased complexity, coupling of EFGM

with FEM domains using ramp functions should be used to avoid the difficulties arising

from essential boundary conditions acting on meshless domains.

Natural Boundary Conditions

Natural boundary conditions, like tractions in the case of elasticity problems, do not have

to be satisfied in advance by the shape functions (in opposition to essential boundary

conditions). The process of obtaining the best approximate solution employing the weak

form of the given problem includes already the imposed natural boundary conditions.

Note, that in the case of point forces , some considerations on the accurate formulation

are necessary. A point load may be seen as some distributed load with the Dirac delta

function as weight function [23]. Suppose within some EFGM discretization, the source

point of a point load may coincide with the position of a node. Still the point force has to

be distributed using Moving Least Squares Interpolants.
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3.3 Integration

The underlying error-distribution method in EFGM is the Galerkin method. Integration is

an essential part in Galerkin methods, but it increases the computational burden.

Integration in meshless methods, as in the EFGM, may be some source of confusion.

Despite its meshless character, there exists in EFGM at least some subdivision of the domain

required for integration. These integration cells, also called background mesh, however, are

in general not related to the nodal distribution [7]. But there exist implementations which

connect the quadrature cells to the nodes [41].

Integration in the EFGM is performed numerically. In general, Gaussian integration is

used. But determining the required order of integration is not as straightforward as in the

FEM. In FEM, there exist exact definitions of the terms "full" and "reduced integration",

and one can easily determine the required amount of quadrature points for full integration.

As mentioned in Section 2.2.4, the interpolation functions in the EFGM are rational,

and therefore cannot be integrated exactly. Still, numerical integration is sufficient, as long

as the error in integration is small enough not to deteriorate convergence. The effects of

integration on accuracy and convergence have been mentioned [16, 17]. For a too low order

of integration, meaningless (oscillating) results were obtained (see also Appendix B).

Attempting to reduce the computational cost of integration, Beissel and Belytschko

implemented a nodal integration scheme of the EFGM, but failed for the case of the unsta-

bilized form [4].

3.4 Post Processing

As noted in [7], the EFGM relaxes the requirements on smoothing of results during post

processing. The highly smooth Moving Least Squares Interpolants do not exhibit any jump

discontinuities (as it is the case in the FEM with linear shape functions) in derivatives, not

considering fracture analysis.

However, since the Moving Least Squares Interpolants do not satisfy the interpolation
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condition (see eq. (3.1) in Section 3.2.2), the solution U lacks some physical meaning.

In order to obtain the smoothed interpolated solution <b(x)U, the Moving Least Squares

Interpolants have to be evaluated. Again, as in the integration process, this increases

computational cost.

3.5 Convergence

Convergence of the EFGM may be shown as in [37, p. 18] for the FEM:

Consistency and stability imply convergence.

Krysl and Belytschko adapted some of Strang and Fix's approach in [29].

From a less mathematical point of view, Hughes' notes of the requirements on shape

functions for convergence in FEM may be considered [22]. The shape functions are required

to be:

" smooth (at least C') on each element interior,

" continuous across each element boundary and

" complete.

Not all three requirements are directly applicable. One of them is satisfied in advance, the

smoothness criterion 5 . The completeness criterion, however, requires more attention:

Completeness requires that the rigid body displacements and constant strain

states be possible. [3, p. 377]

Completeness requires that the element interpolation function is capable of ex-

actly representing an arbitrary linear polynomial when the nodal degrees of

freedom are assigned values in accordance with it. [22, p. 111]

5 Note that in fracture analysis the discontinuous shape functions, constructed by the visibility criterion
[8, 10, 29] do not satisfy this requirement in advance. However, this study is not concerned with fracture
analysis, and therefore, the interpolation functions are smooth over the entire domain.
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That is: an element / mesh / discretization must exactly represent all rigid motions (rigid

translations and rotations) and constant strain states. Both descriptions of completeness 6

are formulated for the FEM, but are also applicable to the EFGM.

Patch Test

A well-known (but in its numerical implementation not sufficient) test for completeness is

the patch test. Krysl and Belytschko showed the following [29]:

a(ii, dj) = a (ii, #i),

where a is the analytical bilinear operator, ah the discrete operator (the EFGM formulation),

4 as again the Moving Least Squares Interpolants and ii any arbitrary linear polynomial:

ii E P1 , Pi ={ pp = co + ci x, co, ci const. E RI

Rigid motions may be represented in this case with ci = 0, while the constant strain state

requires ci : 0.

In [29] it is shown that for the case of discontinuous shape functions (see Section 3.5) this

requirement is only satisfied in the limit, but it is said that convergence is demonstrated.

Continuous shape functions, however, though being rational, can interpolate polynomials

of certain order exactly. See Belytschko et al. [7] and Nayroles et al. [34].

3.6 Relations of Field Solution Methods

Without any intention of completeness, some relationships within the area of approximate

field solution methods are described.

6Note, that the term "consistency" is equivalent to "completeness" [37, p. 175].
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3.6.1 EFGM - DEM

The EFGM is an improved formulation of the diffuse element method [7]. The formulation

of derivatives, the imposition of essential boundary conditions and the integration accuracy

have been modified to yield the EFGM.

3.6.2 EFGM - FEM

The Finite Element Method with linear interpolation functions may be considered a special

case of the Element Free Galerkin Method with piecewise constant weight functions and

limited domains of influence [36], see also Figure 5-4.

One main advantage of the EFGM is the simplified process of remeshing. This advantage

is clearly visible in the case of fracture analysis [8, 10, 32, 35, 36, 41]. Arbitrary crack

growth, simulated by FEM, involves extensive remeshing, including an additional source of

error and computational cost. However, the computational burden induced by the Moving

Least Squares Interpolants in EFGM may balance this disadvantage of the FEM. There are

attempts to decrease this cost [5, 26, 31], but it seems to be certain that the EFGM will

not reach the efficiency of the FEM.

In the EFGM, there are no single elements which may be examined in the patch test.

Instead, the disretization in its entirety may be examined.

One of the more subtle but important differences between FEM and EFGM may not

be assigned directly to some characteristics in the computational process. The maturity of

the FEM, its long history and the abundant amount of experience gained with the FEM,

in comparison to the EFGM, is the most important argument voting for the FEM. The

EFGM has to "compete" with the established rival FEM - and obviously, this situation is

difficult for the newcomer.

3.6.3 EFGM - hp Clouds

In some cases the construction of a signed partition of unity, like in the method of hp clouds,

leads to identical shape functions as in the EFGM [5].
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3.6.4 EFGM - RKPM

The resulting shape functions of the EFGM and the Reproducing Kernel Particle Method are

equivalent [16]. Belytschko et al. showed that in general, when the consistency requirement

is imposed, approximations constructed by Kernel methods and Moving Least Squares

Interpolants are identical [6].

3.6.5 EFGM - SPH

In the Smooth Particle Hydrodynamics Method, where in general the governing differential

equations are usually imposed directly at the nodes, no quadrature is needed [32]. However,

minimizing the residual essentially by a collocation method, as in SPH, yields less accurate

results than Galerkin methods, since in the latter the residual is minimized over the whole

domain. But due to quadrature, the EFGM is substantially more expensive than SPH [6].

It is shown in [32], that the EFGM with Shepard interpolants (Moving Least Squares

Interpolants with a constant basis), is almost identical to the SPH method.
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Chapter 4

Implementation

4.1 Introduction

In this thesis the Element Free Galerkin Method is applied to elastic rods using Matlab.

General considerations of this implementation are given, followed by pictorial and textual

descriptions of the routines.

4.2 Program Description

Flowcharts of most of the routines are shown here. Oval boxes represent subroutines and

rectangular boxes represent steps performed within the routine. A summary of the required

input is given in Section 4.3.

Flowcharts of the routines weight .m, pbase .m and gausstable .m are not shown. These

routines are straightforward in computation, work simply like functions and need not be

described below.

The routines are not designed with the aim of superior efficiency. Some of the applica-

tions may be designed faster, like:

" accelerated computation of the Moving Least Squares Interpolants as in [5].

" efficient storage of discretizaion data and employing search algorithms as mentioned

53



IMPLEMENTATION

in [7].

computation of weight functions in normalized coordinates using di =

START

Read Input

interior.m

lagrange .m

pointforce .m

bodyforce .m

Enforce u*

Solve K*U* = F*

Post Processing

END

compute K in 9o

compute Lagrange multiplier term G

compute contributions to F

compute contributions to F

amend K and F by Lagrange multiplier term

compute numerical Patch Test etc.

Figure 4-1: Flowchart of process.m

4.2.1 process.m

The routine process.m is the main part of the program, it reads the input data, calls all

subroutines, assembles and solves the whole system and processes the output.
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START

Initialisation

gausstable.m
0M

defdom.m

dphi.m

Add to K

END

55

read ri, and o, from table

determine domain for quadrature point

compute P,2 (xip)

add stiffness contribution to associated kij's

Figure 4-2: Flowchart of interior.m

4.2.2 interior.m

The function interior .m computes the stiffness matrix of the rod under consideration. It

loops over each quadrature point, denoted xip, within each integration cell. Each contri-

bution is added to the total stiffness matrix K using the LM vector defined by def dom. m.

Note that this K matrix is not amended yet by constraints placed by essential boundary

conditions.

START

defdom.m

phi . m

END

determine domain for S,

compute @(x)|s.

Figure 4-3: Flowchart of lagrange .m
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4.2.3 lagrange. m

The function lagrange.m computes the terms imposing the essential boundary condition

within the mathematical model, see eq. (A.28). It employs, as in the definition in eq. (A.28),

the interpolation function, phi. m, evaluated at S..

START

defdom.m

phi.m

END

determine domain for Sf

compute <1(x)Isf

Figure 4-4: Flowchart of pointforce .m

4.2.4 pointforce.m

The function pointf orce .m determines the contribution of a point force applied to the rod,

see eq. (A.30). It is similar to lagrange.m, since both functions determine the influence

of some point load on the system (cf. the physical meaning of the Lagrange multiplier in

Section A.3.2).

4.2.5 bodyforce.m

For the case of a distributed load, bodyforce.m computes the contribtutions of this load

to the vector F. It is similar to interior .m, but integrates over the product of the shape

function of the force with <D(x), while interior.m integrates over the product <Dj(x)<D,2(x).

4.2.6 defdom.m

This routine computes the domain of influence and the LM vector (relating the node num-

bering in the domain of influence to the global node numbering) for the evaluation point
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START

Initialisation

gausstable.m

defdom.m

ct

phi.m

C3
Add to F

END
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read rip and ai, from table

determine domain for ip-th Gauss station

compute <b(xip)

add body force contribution to associated F

Figure 4-5: Flowchart of bodyforce .m

x. def dom.m sorts, in essence, the nodes by distance from the evaluation point, cuts off the

sorted vector after m elements: it computes ci (in general the distance between x and the

m-th next node), assures interpolation instead extrapolation. Then it determines dmi and

establishes the domain vector containing all nodes with nonzero weights.

Some computational effort is spent for this routine. Subdivision of 93 prior to dis-

cretization (the assignment of nodes to cells enables shortened neighborhoodlists), storage

of neighborhood data, or as mentioned in the introduction, employing other search algo-

rithms, may reduce this effort.

4.2.7 dphi.m

dphi.m computes the first derivative of the interpolation functions <bx(x). It employs the

subroutines weight .m and pbase .m and is a subroutine itself for interior .m, enabling the

computation of the stiffness matrix.

'Belytschko et al. expressed this (for two dimensions) by requiring that the minimum set of neighboring
nodes construct a polygon around point xi [7].
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START

determine order of neighboring nodes of x

cut off after m-th element

ensure interpolation

dmi df actor C o

establish domain of influence

V1

END

Figure 4-6: Flowchart of defdom. m

Note that di is not computed as the absolute value, IX - xil, as mentioned in Section

2.2.4 and in [7]. Instead, di in dphi.m and phi.m may also be negative. However, this is

not erroneous. Consider the first derivative of the weight function:

dw dw dd

dx dd dx'

dd -1 ifd<0,

dx +1 if d>O.

Note that w(d) is axially symmetric, w(d) = w(-d), and that w,x(-d) = -w,x(d) holds for

the employed weight functions. Therefore, the formulation of the one dimensional case of

the Moving Least Squares Interpolants as in dphi.m and phi. m is correct.
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START

compute p(xz)

compute w(di)

compute '- (di)

add contributions to A(x), B(x), A,x(x), B,x(x)

Figure 4-7: Flowchart of dphi.m

4.2.8 phi.m

The routine phi. m computes numerically (similar to dphi. m) the Moving Least Squares

Interpolants <b(x). It calls the subroutines weight .m and pbase .m. Note the remarks on

the definition of di for dphi.m.

4.2.9 weight.m

The weight functions defined in Section B.5 are computed here. This routine also computes

the derivatives of the weight functions necessary for <bz(x).

4.2.10 pbase.m

This Matlab function is rather short and only determines the i-th derivative of the basis

vector p(x).

-21

END
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START
Ce

0 pbase.m compute p(xi)

weight.m compute w(di)

For i-th node add contributions to A(x), $(x)

Compute <b(x)

END

Figure 4-8: Flowchart of phi. m

4.2.11 gausstable.m

The normalized coordinates and weights for Gaussian quadrature, up to order six, are stored

in this function.
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4.3 Program Input

The routine process .m is the main routine. It solves the final system of equations and

produces an output sheet containing results. The following data has to be input by the

user.

" boundary: 2 x 1 vector containing x-coordinates of ends of rod.

" nodes: N x 1 vector containing x-coordinates of nodes.

" approxcelllength: approximate integration cell length (exact cell length to be de-

termined by routine).

" integrationorder: order of Gaussian quadrature in each cell.

" essbc: x-coordinate of essential boundary condition (by default set to first element

of vector boundary).

" ustar: prescribed displacement at essbc.

" pointforceswitch: if point load is applied, this value has to be set to one.

" pointforcex: x-coordinate of point force (by default set to last element of vector

boundary).

" pointf orcevalue: value of point force.

" bodyforceswitch: has to be set to 1 if distributed load is applied.

" bodyforceboundary: 2 x 1 vector containing interval in which bodyforce is applied.

" bodyf orcevalue: value of distributed load.

" bodyforcetype: shape of applied distributed load:

- 0: constant load.

- 1: linear load, with fb = 0 at x equal to first element of bodyforceboundary.
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- 2: quadratic load, with fb = 0 at boundaries of distributed load.

" mlsdfactor: factor determing dmi, in general: 2.0 < df actor 3.0.

" mism: dimension of basis, m. Determines basis vector p and minimum amount of

nodes required in domain of influence.

" miswtype: type of weight function:

- 2, 4, 6, 8, 10: singular weight functions from [30]. As mentioned in Section 2.2.4,

some approximation required for the case x = xi.

- 11: weight function defined in [41].

- 14: weight function defined in [20].
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Computation

5.1 Introduction

This Chapter summarizes some of the numerical examples stated in Appendix B. The nodal

distribution, nodal density and integration accuracy are varied, numerical Patch tests are

performed, examples with different weight functions are computed.

In general, the rod in Figure A-1 with unit stiffness (EA = 1) is discretized with one

node on each boundary B9 = S, U Sf and nodes in the interior 93. The background

quadrature cells are distributed regularly with constant cell length.

The total strain energy of the EFGM solution is computed as:

h= 'UTKU= UTF.
2 2

Note that K, U and F do not include the additional terms stemming from the Lagrange

multipliers.

Several examples with rods subject to point loads and distributed loads are examined.

In each case, various node distributions are employed. These distributions are shown in

Figure 5-1. If not otherwise mentioned, in general dfao, = 2.0.
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0:

.0
4-

0z

2 regular

3 regular

5 regular

9 regular

Pattern A

Pattern B

Pattern C

Pattern R

Pattern S

1 1.2 1.4
Rod

1.6 1.8 2

Figure 5-1: Node distributions employed in numerical examples

5.2 Accuracy of Results

The numerical examples stabilize with increasing order of integration. In general, the com-

putations, employing an at most quadratic basis (m = 3), perform better than computations

with m = 2, while the former require more operations. All examples stated in Appendix B

converge to the exact solution, except for two node distributions in the case of a point load

in the middle.

Consider Figures 5-2, 5-3 and 5-6 to 5-13. In general, the EFGM seems to perform

well for smooth solution fields, while discontinuities deteriorate the accuracy of the method.

Moving Least Squares Interpolants are unable to represent jump discontinuities (for example

due to point forces) exactly1 .

In Figures 5-4 and 5-5 the size of the domain of influence is changed. Shortening the

'Note that the Moving Least Squares Interpolants which are used here are continuous and in general not
employed in fracture analysis (see conforming EFGM in [29]). Instead, employing the visibility criterion,
fracture analyses are performed in general with the non-conforming EFGM using discontinuous Moving
Least Squares Interpolants.

* 0 e ' e e e

- O O -0

- 0 0 0 O e O
- O O OG

- 0 0 0 O 0 0

- I O O
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domains to their limits by employing dfactor ; 1.0 yields results similar to the FEM. But

the obtained solution is smooth, since the weight functions are not discontinuous as in the

FEM (1.0 in the neighboring elements and 0 elsewhere).

The case of a widened domain of influence is shown in Figure 5-5. The displacements

and strains are underestimated and too smooth, as mentioned in [36].

5.2.1 Numerical Patch Test

For each discretization, the sum over each row is computed. This sum is a numerical patch

test for rigid motions, at best it should be equal 0, but errors due to roundoff etc. have to

be accepted.

The sum of the rows of the unconstrained stiffness matrices K are: (1) for the regularly

spaced discretizations in all examples in Appendix B always below 10-11, and (2) for the

irregular spaced patterns always upper-bounded by 10-8. Therefore, it seems that the patch

test for rigid body displacements is passed.

The examples in Section B.2.1 are in essence a Patch test for the constant strain state.

A linear displacement shape and constant strain are the exact results for this load case. All

examples with a point force applied at the tip converge to the exact strain energy, that is,

the constant strain state can be represented (see also [7]).

5.2.2 Point Force Applied in the Middle

Not all results in Appendix B converge to the exact solution. An exception is the case of a

point force applied in the middle of the rod, while supported at the left end. Neither the two

node regular pattern nor the irregular node distribution Pattern A converge to the exact

strain energy (Tables B.3, B.4). Instead, the two node discretization converges to 1/2 of the

exact solution. However, this erroneous result, due to the coarseness of the discretization,

has to be accepted. The result is equivalent to solutions obtained with the FEM employing

a single two node truss element.

In the case of nodes distributed in the shape of Pattern A and employing a linear basis
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(m = 2), the strain energy oscillates with increasing order of integration near Ch ~ 0.1866.

This result is not acceptable. However, as in the forementioned case, this result is similar

to the solution of a finite element discretization employing the same node distribution. The

strain energy obtained from two node linear truss elements is exactly (Eh = 0.1900. As

expected, neither FEM nor EFGM are able to pick up exactly a point load when no nodes

are in the proximity.

5.2.3 Effects of Discretization

The employed discretizations:

" regularly spaced grid with 5 nodes,

" Pattern B, Pattern C (moderately irregularly spaced) and

" Pattern A (highly irregularly spaced)

employ the same number of nodes.

Neglecting the exceptional case of a point force applied in the middle, Section 5.2.2,

the Element Free Galerkin Method does not exhibit significant changes in strain energy for

modest variations of the node distribution.

5.3 Computational Effort

The total number of flops (floating point operations, see Matlab documentation) increases

significantly with increasing order of basis. Computations with m = 3 in general require

2.0 ... 2.5 as many flops as computations with m = 2.

Holding the amount of nodes, dimension of basis, m, and the type of weight function

fixed, the computational cost remains constant.

66



5.4. VARIATION OF WEIGHT FUNCTION 67

5.4 Variation of Weight Function

All of the results stated in Tables B.1 - B.8 are obtained using the exponential weight

function defined by Belytschko et al. [7] and refined by Hussler-Combe et al. [20]. However,

various weight functions have been employed within the EFGM, especially polynomials,

splines as in [14, 25, 28].

Within this research, three weight functions are compared. They are defined in Section

B.5. The results are given in Tables B.9 - B.11. As expected, the singular weight functions

L2, L4 and L6 perform rather poorly. The results obtained with the weight functions Ta

and HC do not differ much, but improved results are obtained employing weight function

type HC for the case of m = 3.
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Figure 5-2: (a) Strain, (b) displacement of rod subject to point force in the middle (x = 1.5),
3 nodes, regularly distributed, m = 2
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Figure 5-3: (a) Strain, (b) displacement of rod subject to point force in the middle (x = 1.5),
3 nodes, regularly distributed, m = 3
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Figure 5-4: (a) Strain, (b) displacement of rod subject to point force in the middle (x = 1.5),
3 nodes, regularly distributed, m = 2, df actor = 1.01
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Figure 5-5: (a) Strain, (b) displacement of rod subject to point force in the middle (x = 1.5),
3 nodes, regularly distributed, m = 2, dfactor = 3.0

69

2



COMPUTATION

-.-.- EFGM
-exact -

(a) 1. 1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9

- EFGM-
exact

1 (b) 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

Figure 5-6: (a) Strain, (b) displacement of rod subject
9 nodes, regularly distributed, m = 2
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Figure 5-7: (a) Strain, (b) displacement of rod subject to point force in the middle (x = 1.5),
5 nodes, Pattern R, m = 2
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Figure 5-8: (a) Strain, (b) displacement of
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Figure 5-9: (a) Strain, (b) displacement of rod subject to quadratic body force, 5 nodes,
regularly distributed, m = 3
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Figure 5-10: (a) Strain, (b) displacement of rod subject to quadratic body force, 9 nodes,
regularly distributed, m = 2
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Figure 5-11: (a) Strain, (b) displacement of rod subject to quadratic body force, 9 nodes,
regularly distributed, m = 3
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Figure 5-12: (a) Strain, (b) displacement of rod subject to quadratic body force, 7 nodes,
Pattern C, m = 2
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Figure 5-13: (a) Strain, (b) displacement of rod subject to quadratic body force, 7 nodes,
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Chapter 6

Conclusion

6.1 Summary

The intent of this thesis is to implement and examine the Element Free Galerkin Method,

a meshless method, for the analysis of elastic rods.

First, in Chapter 1, an introduction to approximate field solution methods was given,

followed by a brief overview of the EFGM. Then, in Chapter 2, the mathematical tools,

like Moving Least Squares Interpolation, Lagrange multipliers, numerical integration and

error distribution methods were reviewed. Chapter 3 developed specifics of the Element

Free Galerkin Method and explained relations between different numerical field solution

methods. Chapter 4 described the specific structure of the implementation of the EFGM

employing Matlab. The mathematical formulation for these routines was developed in

Appendix A. In Chapter 5 numerical examples, stated in Appendix B, were summarized

and significant results outlined.

6.2 Results

The EFGM has been successfully applied to elastic rods. The implementation of the EFGM

in this thesis uses Lagrange multipliers to enforce essential boundary conditions and employs

continuous Moving Least Squares Interpolants (also referred to as the conforming EFGM).
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The following characteristics of the EFGM have been shown:

" In general, the EFGM (neglecting any considerations with respect to fracture and

similar analyses) is well-suited for smooth problems. However, jump discontinuities

in derivatives (for example induced by point forces) may result in deficient performance

of the method. This erroneous behaviour can in general be circumvented by employing

appropriately highly refined disretizations and by the accurate imposition of natural

boundary conditions [23].

" In accord with other research [7, 16], the EFGM requires a rather large order of

integration to assure convergence and accuracy.

" Excluding discontinuous solution fields, the EFGM seems rather insensitive to modest

changes in nodal spacing (also noted by Belytschko et al. [7]).

" The accuracy of the EFGM is in general superior to the accuracy of a Finite Element

solution employing the same amount of nodes (due to the smoothness of the Moving

Least Squares Interpolants).

Recently much advance took place in the area of the EFGM. However, despite acceler-

ated computation [5], the method is still computationally expensive. But its FEM-exceeding

accuracy may offer new possibilities. And with the ever-increasing capabilities in computa-

tion, the detriment of high computational cost of the EFGM may fade in future.
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Appendix A

Rod in Tension

A.1 Introduction

In this Appendix the mathematical formulation of the EFGM for the case of a rod, con-

strained by Lagrange multipliers, is developed. Departing from fundamental considerations,

the differential equation of equilibrium for a rod and its weak form, amended by additional

constraints, is derived. Approximating the displacement field u(x) by Moving Least Squares

Interpolants leads to the formulation of the EFGM for an axially loaded rod.

A.2 The Differential Equation of Equilibrium

A.2.1 Introduction

In this Section the basic equations of the linearized theory of elasticity for a one dimensional

problem (rod) is derived. As far as the generalized theory is concerned, the notation of [19]

is used. For an extensive and accurate derivation the reader may refer to [19, 33].

A.2.2 Fundamental Principles in Linearized Elasticity

In the following, the mathematical problem statement of a rod subject to axial forces is

derived from the general principles in the theory of linearized elasticity. Note that this
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section does not intend to give some rigorous derivation.

Consider the constitutive law , or stress-strain-relationship, within the linearized theory

in three dimensions:

S = CE, (A.1)

with S denoting the first Piola-Kirchhoff stress tensor1 , C the elasticity tensor and E the

infinitesimal strain tensor. E is defined as the symmetric part of the displacement gradient:

1
E = -(Vu + VuT). (A.2)

2

The strain-displacement relationship in eq. (A.2) assures compatibility of the fields E and

U.

In general, C is a fourth-order tensor with 3 x 3 x 3 x 3 = 81 elements. But in the linearized

theory it is assumed that S ~ T, that means the Cauchy stress tensor is a sufficiently

accurate representation of the first Piola-Kirchhoff stress tensor. The Cauchy stress tensor

T and the infinitesimal strain tensor E (by definition) are symmetric. Therefore, with no

loss of generality, it is acceptable to assume 6 x 6 = 36 independent coefficients in C.

For the case of an isotropic material 2 , the constitutive relationship, eq. (A.1), may be

represented by only two independent coefficients, the Lam6 constants

S 2pE + A(tr E)I, (A.3)

where

Ev

(1 + v)(1 - 2v)'

E
yP G = E

2(1 + v)'

'Note: In general, the first Piola-Kirchhoff stress tensor is not symmetric.
2 Isotropic materials have no preferred direction.
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with E the modulus of elasticity, or Young's modulus, v the Poisson ratio and G the shear

modulus.

Note that the preceding assumptions were considering an infinitesimally small element

only. Neither have assumptions been made yet on the homogeneity of the material, nor on

the geometry of the body. For a homogeneous body, A and p are constant throughout the

whole body. But for the case of inhomogeneities it is important to include the material

properties exactly in eq. (A.4).

The differential equation of equilibrium enforces equilibrium of the external forces /

tractions and internal forces / stresses. It is based on the equation of motion, which, for

the case of negligible inertia effects, or the static case (when ii = 0) reduces to:

Div S + bo = 0. (A.4)

This can be written, using eqs. (A.2, A.3), in the form:

p Au + (A + p)V Div u + bo = 0. (A.5)

Now consider the case of a rod subject to tension,

lem. The stress tensor is required to take the form:

o- 0 0

S= 0 0 0

0 0 0

simplified to a one-dimensional prob-

with some o-.

To obtain the corresponding strain field, eq. (A.3) has to be inverted:

E = 1 S_ - (tr S)I.
2p 2p, + 3A I

(A.6)
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This yields the following result:

E

E= 0

0

-ve

0

0

0

-vsJ

with

Ox '

1
E

dn

ay 0z

Using these results for the strain field in eq. (A.5) leads finally to:

(A.7)
d du b

dx dx)

where the integration perpendicular to the axis degenerates to the cross section A. It should

be noted that eq. (A.7) has to be amended by:

" essential boundary conditions in order to obtain a unique (particular) solution of the

differential equation, that means to eliminate rigid body modes and

" natural boundary conditions, if necessary.

A.3 The Weak Form

A.3.1 Introduction

The formulation of eq. (A.7), amended by boundary conditions is the differential form of

the problem. An error distribution method, see Section 2.6, may directly be applied to

the differential form. For this case (called the strong form), the approximating functions

are required to satisfy all boundary conditions [15, p. 231]. However, as in the FEM,

the mathematical framework in the EFGM is the underlying variational principle. This is
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equivalent to the differential form (Section 2.5), but includes a lower order of differentiation

of u. It is called the weak form [37, pp. 3-16, 299-300], where "weak" represents in some

sense the constraints imposed on the admissible space of solutions of u. In eq. (A.7) the

second derivatives of the field u are required to have finite energy. However, in the weak

form, the space of approximate admissible solutions is much larger, since only the first

derivatives are required to have finite energy. The restrictions on the approximate solution

space are weaker than in the strong form of eq. (A.7).

A.3.2 Derivation

In the following, the weak form of eq. (A.7), subject to some boundary conditions, is derived.

The steps are based on the rather physical approach of the method of virtual displacements,

or Principle of Virtual Work. For the case of essential boundary conditions the variational

formulation is used to incorporate the prescribed displacements via Lagrange multipliers.

Method of Virtual Displacements

Consider the following rod:

F

U,0 X

X=0 X

Figure A-1: Rod, axially loaded
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with:

E

F

A

93

SU

= Young's modulus, U

fb= point force,

= cross section of rod,

= { x |0 < x < L

= {xIx= 0} =

L

S9

Sf

Differential equation of equilibrium:

d
dx

with the following boundary conditions:

* essential boundary condition, prescribed on Su:

Ulx=O = U*,

* natural boundary condition, prescribed on Sf:

du
EA

dx=L

= displacement in x-direction,

= body force, in force per unit length,

= length of rod,

= SU U Sf,

= {x x= L}.

= F.

Rewrite eq. (A.9) as:

Ulr=O - U* = 0. (A.11)

In the principle of virtual displacements, the total virtual work of the system is computed

by considering a virtually deformed shape. The assumption that the performed virtual work

is at some minimum with respect to displacement leads to variational considerations. In

mathematical terms, eq. (A.8) is pre-multiplied by some virtual displacement 6u, provided

( du\EA- +fb=O,
dx)

(A.8)

(A.9)

(A.10)
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the virtual displacement vanishes on S, (but is not required to satisfy the natural boundary

conditions, see Section 2.5.3):

U d EA du+ ufb = 0. (A.12)
dx ( dx)

Eq. (A.12) holds for the whole region 9, and therefore may be rewritten as:

L L

]u ( EA udx + u fb dx =0. (A.13)

0 0

In order to lower the order of differentiation of u, the following identity (integration by

parts) is employed:

L ~LLf d ( du\ dux 6u du

dx dx d dx = f dx dx
0 0

Rewriting eq. (A.13):

L L

IduE dx - 6uEA du duEA - 6u fb dx = 0. (A.15)
d dx dx dx X=L dx =0 0

0 0

The second term in eq. (A.15), by using eq. (A.10), can be rewritten as 6Ux=L F.

It should be noted that it is assumed, that 6u vanishes on Su. Therefore the third term

in eq. (A.15) is zero. But, as mentioned in Section 2.2 and 3.2.3, this assumption is not

valid for Moving Least Squares Interpolants <O (x). In other words, prescribed essential

boundary conditions are not satisfied exactly by the weak formulation of eq. (A.8), if the

test and trial functions are represented using Moving Least Squares Interpolants. Therefore

eq. (A.15) has to be amended by additional constraints satisfying the essential boundary

conditions. Lagrange multipliers are employed to impose the prescribed displacements.

Roughly-speaking: the stiffness matrix obtained from eq. (A.15) is employed to satisfy eq.

(A.8) in the interior of region (the rod), while Lagrange multipliers are used to satisfy
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the boundary conditions in eq. (A.9).

Therefore, to be consistent with the variational principle, or method of virtual work, it

is valid to neglect the third term in eq. (A.15).

Variational Formulation

The variational principle and principle of virtual displacements are consistent and lead to

identical results. Resorting to the variational form, considering 6u in the following as a

variation of u (instead of some virtual displacement) and employing the following identity

(chain rule):

du 2 du du du d6u

dx dx dx dx dx

yields:

LL
6 EA du)\2bd~~xF

6 A 2 dx b d fx -ux=L F = 6H. (A.16)
.0 0

Eq. (A.16) is the variation of the functional H and equivalent to eq. (A.15). This functional

is amended by additional constraints imposed by Lagrange multipliers (where ci denotes

the i-th constraint equation):

H* = H + A cz. (A.17)

Here, eq. (A.11) is the only constraint:

2 1 d
L - -fj~(.8

0 -

The functional in eq. (A.16) may be denoted as the total strain energy of the body un-

der consideration. Requiring the minimum strain energy with respect to displacements is
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equivalent to invoking the stationarity of eq. (A.18):

J1I* = 0. (A.19)

Note that the variation of the additional constraints requires some attention:

L L
Sd 6u dudx - Ufb dx - 6uIx=L F + 6A(ulx=o - u*) + A A uIx=o = 0. (A.20)

dx dx f
0 0

Resorting to the principle of virtual work: Eq. (A.20) has to hold for any arbitrary virtual

displacement 6u and any variation of the Lagrange multiplier 6A. Employing the description

of S, for x = 0 and Sf for x = L, eq. (A.20) finally leads to:

L L
d u dudx + A = 6ufb dx + us; F, (A.21)
dx dx

0 0

us, = u*. (A.22)

Eqs. (A.21, A.22) are the weak form of the mathematical model stated in eqs. (A.8, A.9,

A.10), amended by constraints. The well-known variational statement of a one-dimensional

structure is a special case of eq. (A.21), where the Lagrange multiplier term is not present.

Eq. (A.21) reveals the physical meaning of the Lagrange multiplier A: A is the negative

value of the reaction force, acting at x = 0, necessary to prevent rigid body motion.

A.4 Discretization

A.4.1 Introduction

In Section A.3 the continuous formulation of the physical problem is developed. However,

the weak form in eqs. (A.21, A.22) of the problem includes only first derivatives of field

variables and is therefore more suitable for approximate solution methods than the system

of eqs. (A.8, A.9, A.10).
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A.4.2 Formulation

Eqs. (A.21, A.22) are only equivalent to eqs. (A.8, A.9, A.10) if they hold for any arbitrary

virtual displacement 6u, this is for an infinite number of independent test and trial functions.

However, in practice, only a finite number of test and trial functions are employed, obviously.

But as mentioned in Section 2.6, in the Galerkin method the residual, in satisfying eq. (A.8),

is orthogonalized with respect to the solution space Vh. Therefore, the obtained solution is

the best approximation in Vh to the exact solution u in V.

Once the expressions in eqs. (A.21, A.22) are obtained, the problem of determining the

displacement field u C V reduces to employing the appropriate solution space Vh which

should be at best equal to V or at least be able to come arbitrarily close to functions in V.

In Finite Elements, this solution space is determined by the type of elements. In EFGM,

Moving Least Squares Approximations are employed to form the space Vh:

N

U ~ #i(X) Ui = @ U, (A.23)
i=1

with

(= #(X) #2(X) ... #N(x)) (A.24)

where #(x) is defined in eq. (2.17). As in the Galerkin method, orthogonalizing the residual

to Vh leads to:

L L

I, EA<,x dzU + |s A=JGTfbdx Ts F, (A.25)
0 0

()sU U =U*. (A.26)

In accord with the direct stiffness approach 3 N equations concerning the interior are ob-

3 The direct stiffness approach - in opposite to the flexibility approach - may be described as [24] :

* Prevent any motion in the discretized system by considering all degrees of freedom (U) to be fixed,

86



A.4. DISCRETIZATION

tained, amended by one additional equation enforcing the essential boundary condition:

K G T U F
(A.27)

(G 0 ) A) U*

with the following definitions:

G = (A.28)

L

K f= 'i EA 4,X dx, (A.29)

0
L

F = J fb dx + CIs; F, (A.30)
0

U = U1 U2 ... UN) (A.31)

A = the negative of the reaction force acting on Sf. (A.32)

For ease of notation, let eq. (A.27) be written as:

K* U* = F*,

where K*, U* and F* represent the stiffness matrix, amended by the constraint equation,

the vector of unknowns and the inhomogeneity terms, respectively.

Note that the point load F in eq. (A.30) is not directly added to the resulting force

vector, but instead distributed by the interpolation term 1T I s, since in the case of Moving

Least Squares Interpolants, #i(xj) # 6j, see Jirdsek [23] and Section 3.2.3.

Eqs. (A.27 - A.32) represent the discrete formulation of the weak form in terms of the

* Release, one at a time, each degree of freedom, and impose a unit displacement at this degree of
freedom. The forces (or moments) required to impose the unit displacements form the elements of
the stiffness matrix.

This rather physical approach is in essence the same as variational considerations, or the method of vir-
tual work. The applied unit displacements coincide with the applied virtual deformations, or variations,
respectively.
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Element Free Galerkin Method, similar to eq. (2.44), with u, v approximated by Moving

Least Squares Interpolants. Once established, the system of equations (A.27) has to be

solved for the Uj and the (negative) reaction force A. In order to determine the displacement

shape, the solution U has to be introduced in eq. (A.23) to obtain the deformed shape.



Appendix B

Numerical Examples

B.1 Introduction

Computational examples, rods subject to point loads and distributed loads are presented

here. The order of integration, the basis vector p and the type of weight function are varied.

The employed node distributions are shown in Figure 5-1. In Section B.5 typical weight

functions are stated.

Highly erroneous results (results like "not a number" given by Matlab), due to a too

low order of integration, are marked with a - in the column for total strain energy.

B.2 Point Force

B.2.1 Point Force Applied at Tip

e Rod Geometry and Boundary Conditions:

EA = 1, 9 = {x11 < x < 2},

U* =0, SU={xIX=1},

F = 1, Sf = {x I x = 2 },

fb = 0.
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Moving Least Squares Approximation: The weight function defined by Hsussler-

Combe et al. [20] is employed, with df actor = 2.0.

Table B.1: Results: point force applied at tip, regular node distribution

Nodal
Distribution

Basis
m

Integration
Cell Length Order

Floating Point
Operations

Exact Solution 0.5000
2 regular 2 1.000 1 1323 0.5000
2 regular 2 1.000 2 1766 0.5000
2 regular 2 1.000 4 2656 0.5000
2 regular 2 1.000 6 3546 0.5000
3 regular 2 1.000 2 1844 0.5000
3 regular 2 1.000 4 2738 0.5000
3 regular 2 1.000 6 3908 0.5000
5 regular 2 1.000 4 3211 0.5521

3 6990 0.5054
5 regular 2 1.000 6 4111 0.5022

3 9994 0.5003
5 regular 2 0.500 2 2943 0.5000

3 7452 0.5013
5 regular 2 0.500 4 5009 0.5000

3 13000 0.5001
5 regular 2 0.500 6 7355 0.5000

3 18090 0.5000
regular

regular

regular

regular

regular

regular

regular

0.500

0.500

0.250

0.250

0.250

0.125

0.125

4 6385
13816
8201
20310
5577
15230
10015
26812
14737
37934
11135
25430
20313

90

Number
of Nodes

Strain
Energy Eh

9 0.5521
0.5062
0.5022
0.5003
0.5000
0.5009
0.5000
0.5002
0.5000
0.5002
0.5000
0.5002
0.5000
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continued from previous page

Number Nodal Basis Integration
of Nodes Distribution m Cell Length Order

Exact Solution
3

regular 2
3

0.125 6

Floating Point
Operations

48132
27561
73182

Table B.2: Results: point force applied at tip, irregular node distribution

Nodal
Distribution

Exact
Pattern A

Pattern A

Pattern A

Pattern A

Pattern A

Pattern A

Pattern A

Pattern A

Pattern A

Pattern A

Pattern A

Pattern A

Basis Integration
m Cell Length Order

Solution
2
3
2
3
2
3
2
3
2
3
2
3
2
3
2
3
2
3
2
3
2
3
2
3

0.500

0.500

0.500

0.250

0.250

0.250

0.125

0.125

0.125

0.062

0.062

0.062

Floating Point
Operations

4004
7453
6641

13005
9441

18557
6653
13015
12107
23888
17410
34536
12125
23910
23018
45654
34052
67623
23062
45700
44966
89865
66868
133805

9

Strain
Energy Eh

0.5000
0.5001
0.5000
0.5001

Number
of Nodes

5

5

5

5

5

5

5

5

5

5

5

5

Strain
Energy Ch

0.5000

0.5880
1.4390
0.5143
0.6115
0.5086
0.5572
0.5098
0.5044
0.5007
0.5123
0.5008
0.5087
0.5018
0.5111
0.5008
0.5112
0.5008
0.5115
0.5007
0.5067
0.5007
0.5051
0.5007
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continued from previous page

Nodal
Distribution

Basis

m

Integration
Cell Length Order

Floating Point

Operations

Exact Solution 0.5000
5 Pattern A 2 0.031 2 45056 0.5053

3 89959 0.5007
5 Pattern A 2 0.031 4 88579 0.5053

3 177837 0.5007
5 Pattern A 2 0.031 6 132249 0.5054

3 265715 0.5007
5 Pattern B 2 0.500 2 2943 0.5200

3 7452 0.5008
5 Pattern B 2 0.500 4 5299 0.5209

3 13000 0.5019
5 Pattern B 2 0.500 6 8511 0.5121

3 18090 0.5005
5 Pattern B 2 0.250 2 5861 0.5046

3 12552 0.5020
5 Pattern B 2 0.250 4 10863 0.5018

3 22738 0.5005
5 Pattern B 2 0.250 6 15015 0.5000

3 32932 0.5010
5 Pattern B 2 0.125 2 10333 0.5000

3 23218 0.5014
5 Pattern B 2 0.125 4 18635 0.5001

3 44046 0.5009
5 Pattern B 2 0.125 6 27781 0.5001

3 64866 0.5010
5 Pattern B 2 0.062 2 19231 0.5002

3 43634 0.5011
5 Pattern B 2 0.062 4 37243 0.5007

3 86180 0.5010
5 Pattern B 2 0.062 6 54695 0.5009

3 128734 0.5010
Pattern C

Pattern C

2
3
2
3

0.500

0.500

4

6

6297
13538
8391

20026

Number
of Nodes

Strain

Energy Eh

7

7

0.5178
0.5057
0.5035
0.5011
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continued from previous page

Nodal
Distribution

Basis
m

Integration
Cell Length Order

Floating Point
Operations

Exact
Pattern C

Pattern C

Pattern C

Pattern C

Pattern C

Pattern C

Number
of Nodes

Strain
Energy Eh

Solution
2
3
2
3
2
3
2
3
2
3
2
3

0.250

0.250

0.250

0.125

0.125

0.125

6047
13548
10485
26048
14357
37154
10217
25610
18813
47360
28239
70030

0.5000
0.5104
0.5034
0.5026
0.5001
0.5005
0.5003
0.5006
0.5008
0.5008
0.5004
0.5005
0.5004
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B.2.2 Point Force Applied in the Middle

e Rod Geometry and Boundary Conditions:

B = {x| 1 x < 2},

Su ={xIx = 1},

Sf { x I x = 2

xFm = 1.5,

* Moving Least Squares Approximation: The weight function defined by Huussler-

Combe et al. [20 is employed, with dfactor = 2.0.

Table B.3: Results: point force applied in the middle, regular node distribution

Number Nodal
of Nodes Distribution

Basis
T Cell

Integration

Length Order
Floating Point

Operations

Exact Solution 0.2500
2 regular 2 1.000 1 1324 0.1250
2 regular 2 1.000 2 1766 0.1250
2 regular 2 1.000 4 2654 0.1250
2 regular 2 1.000 6 3542 0.1250
3 regular 2 1.000 2 1907 0.2103
3 regular 2 1.000 4 2799 0.2103
3 regular 2 1.000 6 3967 0.2071
3 regular 2 0.500 2 3075 0.2075
3 regular 2 0.500 4 5139 0.2247
3 regular 2 0.500 6 6927 0.2197
5

5

5

regular

regular

regular

2
3
2
3
2
3

1.000

0.500

0.500

6

2

4

4171
9881
3005
7341
5067

12885

EA = 1,

tt* = 07

Ft = 0,1

Fm = 1,

fb = 0.

Strain

Energy Eh

0.2298
0.2438
0.2301
0.2456
0.2354
0.2390
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continued from previous page

Nodal
Distribution

Basis Integra
m Cell Length

Lion
I Order

Floating Point
Operations

Exact Solution 0.2500
5 regular 2 0.500 6 7409 0.2375

3 17971 0.2440
5 regular 2 0.250 2 5627 0.2287

3 12437 0.2545
5 regular 2 0.250 4 10037 0.2374

3 23065 0.2458
5 regular 2 0.250 6 13623 0.2349

3 34151 0.2496

regular

regular

regular

regular

regular

regular

regular

regular

regular

regular

2
3
2
3
2
3
2
3
2
3
2
3
2
3
2
3
2
3
2
3

0.500

0.250

0.250

0.250

0.125

0.125

0.125

0.062

0.062

0.062

6 8255
20192
5635
15116
10065
26690
14779
37804
11185
25308
20347
47994
27579
73028
18479
50388
34861
98106
53185
143476

Number
of Nodes

Strain
Energy gh

9 0.2443
0.2451
0.2401
0.2498
0.2427
0.2468
0.2437
0.2498
0.2394
0.2556
0.2437
0.2510
0.2424
0.2523
0.2438
0.2532
0.2425
0.2527
0.2426
0.2529
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Table B.4: Results: point force applied in the middle, irregular node distribution

Nodal
Distribution

Exact
Pattern A

Pattern A

Pattern A

Pattern A

Pattern A

Pattern A

Pattern A

Pattern A

Pattern A

Pattern A

Pattern A

Pattern A

Pattern A

Pattern B

Pattern B

Pattern B

Pattern B

Basis Integration
m Cell Length Order

Solution
2
3
2
3
2
3
2
3
2
3
2
3
2
3
2
3
2
3
2
3
2
3
2
3
2
3
2
3
2
3
2
3
2
3

0.500

0.250

0.250

0.250

0.125

0.125

0.125

0.062

0.062

0.062

0.031

0.031

0.031

0.500

0.250

0.250

0.250

6

2

4

6

Floating Point
Operations

9627
18545
6843

13007
12289
23872
17584
34512
12307
23894
23184
45622
34202
67575
23228
45668
45100
89801
66970
133709
45190
89895
88649
177709
132255
265523
8697
18183
6051
12649
11045
22827
15189
33013

Number
of Nodes

5

5

5

5

Strain
Energy Eh

0.2500
0.3236
0.2984
0.2529
0.2809
0.1871
0.2442
0.1870
0.2452
0.1852
0.2386
0.1871
0.2457
0.1871
0.2449
0.1874
0.2459
0.1864
0.2464
0.1867
0.2478
0.1866
0.2475
0.1866
0.2476
0.1866
0.2476
0.2369
0.2460
0.2271
0.2565
0.2326
0.2442
0.2319
0.2506
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continued from previous page

Nodal
Distribution

Basis Integra
m Cell Length

ion
Order

Floating Point
Operations

Exact
Pattern B

Pattern B

Pattern B

Pattern B

Pattern B

Pattern B

Pattern B

Pattern B

Pattern B

Pattern C

Pattern C

Pattern C

Pattern C

Pattern C

Pattern C

Pattern C

Pattern C

Number
of Nodes

Strain
Energy Eh

Solution
2
3
2
3
2
3
2
3
2
3
2
3
2
3
2
3
2
3

0.125

0.125

0.125

0.062

0.062

0.062

0.031

0.031

0.031

0.500

0.250

0.250

0.250

0.125

0.125

0.125

0.062

10515
23307
18801
44119
27931
64923
19397
43707
37377
86221
54797
128743
36913
86773
72875
171357
109685
255483

8379
19802
6039
13328
10469
25820
14333
36918
10201
25382
18781
47116
28191
69770
19111
47622

0.2500
0.2346
0.2537
0.2317
0.2502
0.2316
0.2510
0.2314
0.2511
0.2317
0.2509
0.2318
0.2507
0.2318
0.2507
0.2317
0.2507
0.2317
0.2508
0.2444
0.2534
0.2410
0.2577
0.2437
0.2548
0.2416
0.2503
0.2394
0.2526
0.2418
0.2534
0.2415
0.2539
0.2428
0.2544
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continued from previous page

Nodal
Distribution

Basis
m

Integration
Cell Length Order

Floating Point
Operations

Exact Solution 0.2500
7 Pattern C 2 0.062 4 37111 0.2414

3 92482 0.2533
7 Pattern C 2 0.062 6 54267 0.2413

3 136408 0.2535
5 Pattern R 2 0.500 2 4552 0.9476

3 7337 0.6631
5 Pattern R 2 0.500 4 6914 0.2394

3 11973 0.2380
5 Pattern R 2 0.500 6 9244 0.2456

3 16151 0.2202
5 Pattern R 2 0.250 2 6626 0.2396

3 11525 0.2226
5 Pattern R 2 0.250 4 12174 0.2448

3 21245 0.2205
5 Pattern R 2 0.250 6 17752 0.2463

3 31423 0.2204
5 Pattern R 2 0.125 2 12494 0.2452

3 21725 0.2203
5 Pattern R 2 0.125 4 24198 0.2435

3 42521 0.2226
5 Pattern R 2 0.125 6 35876 0.2420

3 62859 0.2250
5 Pattern R 2 0.062 2 23946 0.2424

3 42109 0.2248
5 Pattern R 2 0.062 4 46468 0.2421

3 82333 0.2244
5 Pattern R 2 0.062 6 69288 0.2424

3 123015 0.2244
Pattern S

Pattern S

Pattern S

2
3
2
3
2
3

0.500

0.500

0.250

4

6

2

9003
17549
10537
24527
9021
17563

Number
of Nodes

Strain
Energy Eh

9

9

9

5.5489
0.2969
0.2570
0.2626

0.4110
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continued from previous page

Nodal
Distribution

Basis
m

Integration
Cell Length Order

Floating Point
Operations

Exact
Pattern S

Pattern S

Pattern S

Pattern S

Pattern S

Pattern S

Pattern S

Pattern S

Pattern S

Pattern S

Pattern S

Number
of Nodes

Strain
Energy Eh

Solution
2
3
2
3
2
3
2
3
2
3
2
3
2
3
2
3
2
3
2
3
2
3

0.250

0.250

0.125

0.125

0.125

0.062

0.062

0.062

0.031

0.031

0.031

15035
32461
21545
46903
15053
32483
31813
63753
48021
94985
31849
63301
61541
123903
91443
184007
61979
124503
117579
242765
173311
362031

0.2500
0.2572
0.2479
0.2532
0.2532
0.2577
0.2413
0.2438
0.2449
0.2429
0.2463
0.2418
0.2477
0.2431
0.2444
0.2425
0.2442
0.2429
0.2443
0.2437
0.2435
0.2449
0.2438
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B.3 Body Force

B.3.1 Constant Shape

e Rod Geometry and Boundary Conditions:

EA = 1,

U*= 0,

F=0,

93= {x1 x < 2

S {x x = 1},

Sf {xI x = 2 },

fb = 1.

Moving Least Squares Approximation: The weight function defined by Hhussler-

Combe et al. [20] is employed, with df actor = 2.0.

Table B.5: Results: constant body force, regular node distribution

Nodal
Distribution

Basis
m

Integration
Cell Length Order

Floating Point
Operations

Exact Solution 0.1666
2 regular 2 1.000 2 2006 0.1250
2 regular 2 1.000 4 3326 0.1250
2 regular 2 1.000 6 4646 0.1250
3 regular 2 1.000 2 2093 0.1473
3 regular 2 1.000 4 3421 0.1536
3 regular 2 1.000 6 5161 0.1540
3 regular 2 0.500 2 3833 0.1553
3 regular 2 0.500 4 6909 0.1597
3 regular 2 0.500 6 9573 0.1582
3 regular 2 0.250 2 6529 0.1604
3 regular 2 0.250 4 12261 0.1583
3 regular 2 0.250 6 18405 0.1584

regular

regular

2
3
2
3

0.500

0.500

2

4

3641
9521
6713
17705

Number
of Nodes

Strain
Energy Eh

5

5

0.1618
0.1671
0.1638
0.1669
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continued from previous page

Number Nodal Basis Integration
of Nodes Distribution m Cell Length Order

Exact Solution
regular 2

3
regular 2

3
regular 2

3
regular 2

3
regular 2

3
regular 2

3
regular 2

regular

regular

regular

regular

regular

regular

0.500

0.250

0.250

0.250

0.250

0.125

0.125

0.250

0.250

0.250

0.125

0.125

0.125

2

4

6

2

4

6

Floating Point
Operations

10205
25217
7553
17053
14129
32745
19477
49109
19477
49109
24869
65513
38029
96893
7199

20622
13815
37718
20859
54138
15495
35710
29191
69222
40007
106162

Strain
Energy Eh

0.1666
0.1640
0.1669
0.1637
0.1668
0.1652
0.1668
0.1647
0.1668
0.1647
0.1668
0.1648
0.1668
0.1648
0.1668
0.1655
0.1671
0.1660
0.1668
0.1661
0.1668
0.1659
0.1667
0.1663
0.1667
0.1662
0.1667

9

9

9

9

9

9
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Table B.6: Results: constant body force, irregular node distribution

Number
of Nodes

Nodal
Distribution

Exact
Pattern A

Pattern A

Pattern A

Pattern A

Pattern A

Pattern A

Pattern A

Pattern A

Pattern A

Basis Integration
m Cell Length Order

Solution
2
3
2
3
2
3
2
3
2
3
2
3
2
3
2
3
2
3

5 Pattern B 2
3

5 Pattern B 2
3

5 Pattern B 2
3

5 Pattern B 2
3

5 Pattern B 2
3

5 Pattern B 2
3

5 Pattern B 2
3

5 Pattern B 2

0.500

0.500

0.500

0.250

0.250

0.250

0.125

0.125

0.125

0.500

0.500

0.500

0.250

0.250

0.250

0.125

0.125

2

4

6

2

4

6

2

4

Floating Point
Operations

5172
9413
9082

17599
13236
25785
9106

17619
17192
33651
25058
49349
17228
33695
33382
65749
49736
98137
3641
9521
7141

17705
11909
25217
7985
17053
15413
32077
21585
47105
14633
32793
26985
63509

Strain
Energy Eh

0.1666

0.1917
0.6473
0.1725
0.2102
0.1704
0.1839
0.1702
0.1606
0.1669
0.1628
0.1668
0.1606
0.1673
0.1627
0.1668
0.1628
0.1668
0.1628
0.1696
0.1653
0.1674
0.1637
0.1668
0.1634
0.1672
0.1629
0.1668
0.1640
0.1669
0.1643
0.1671
0.1637
0.1669
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continued from previous page

Nodal
Distribution

Basis Integration
m Cell Length Order

Floating Point
Operations

Exact Solution 0.1666
5 Pattern B 2 0.125 6 40581 0.1636

3 1 94221 0.1670
Pattern C

Pattern C

Pattern C

Pattern C

Pattern C

Pattern C

Pattern C

Pattern C

Pattern C

0.500

0.500

0.500

0.250

0.250

0.250

0.125

0.125

0.125

2 4443
9278
8355
18150
11471
27714
7983

18170
14599
36602
20375
52990
14215
35970
27027
68066
41067
101514

Number
of Nodes

7

Strain
Energy Eh

0.1665
0.1684
0.1655
0.1671
0.1688
0.1684
0.1658
0.1668
0.1666
0.1669
0.1669
0.1671
0.1670
0.1669
0.1666
0.1669
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B.3.2 Quadratic Shape

9 Rod Geometry and Boundary Conditions:

EA = 1,

u* =0,

T = { x 1 x < 2},

Su = {x x = 1},

Sf = {x x = 2 },F=0,

fb = 4((x - 1)(2 -x)).

e Moving Least Squares Approximation: The weight function defined by Hiussler-

Combe et al. [20] is employed, with dfactor = 2.0.

Table B.7: Results: quadratic body force, regular node distribution

Number Nodal Basis
of Nodes Distribution m Cell

Integration
Length Order

Floating Point

Operations

Exact Solution 0.0825
2 regular 2 1.000 2 2018 0.0556
2 regular 2 1.000 4 3350 0.0556
2 regular 2 1.000 6 4682 0.0556
3 regular 2 1.000 2 2105 0.0655
3 regular 2 1.000 4 3445 0.0749
3 regular 2 1.000 6 5197 0.0755
3 regular 2 0.500 2 3857 0.0766
3 regular 2 0.500 4 6957 0.0794
3 regular 2 0.500 6 9645 0.0784
3 regular 2 0.250 2 6577 0.0800
3 regular 2 0.250 4 12357 0.0785
3 regular 2 0.250 6 18549 0.0785
5

5

5

regular

regular

regular

2
3
2
3
2
3

0.500

0.500

0.500

2

4

6

3665
9545
6761
17753
10277
25289

Strain

Energy oh

0.0797
0.0825
0.0812
0.0822
0.0813
0.0822
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continued from previous page

Number Nodal Basis Integration
of Nodes Distribution m Cell Length Order

Exact
regular

regular

regular

regular

regular

regular

regular

regular

regular

regular

regular

regular

regular

regular

regular

Solution
2
3
2
3
2
3
2
3
2
3
2
3
2
3
2
3
2
3
2
3
2
3
2
3
2
3
2
3
2
3

0.250

0.250

0.250

0.125

0.125

0.125

0.500

0.500

0.500

0.250

0.250

0.250

0.125

0.125

0.125

Floating Point
Operations

7601
17101
14225
32841
19621
49253
13053
33557
25061
65705
38317
97181
5282
10362
8443
18598
11179
28198
7247

20670
13911
37814
21003
54282
15591
35806
29383
69414
40295
106450

5

5

5

5

5

5

Strain
Energy (h

0.0825
0.0809
0.0823
0.0819
0.0823
0.0816
0.0823
0.0820
0.0824
0.0816
0.0823
0.0816
0.0823

0.0908
0.0836
0.0824
0.0825
0.0819
0.0826
0.0822
0.0826
0.0822
0.0826
0.0821
0.0827
0.0824
0.0826
0.0823
0.0826

I
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Table B.8: Results: quadratic body force, irregular node distribution

Nodal
Distribution

Exact
Pattern A

Pattern A

Pattern A

Pattern A

Pattern A

Pattern A

Pattern A

Pattern A

Pattern A

Pattern B

Pattern B

Pattern B

Pattern B

Pattern B

Pattern B

Pattern B

Pattern B

Basis Integral
m Cell Length

Solution
2
3
2
3
2
3
2
3
2
3
2
3
2
3
2
3
2
3

0.500

0.500

0.500

0.250

0.250

0.250

0.125

0.125

0.125

0.500

0.500

0.500

0.250

0.250

0.250

0.125

0.125

tion

Order

2

4

6

2

4

6

2

4

Floating Point

Operations

5196
9437
9130
17647
13308
25857
9154
17667
17288
33747
25202
49493
17324
33791
33574
65941
50024
98425
3665
9545
7189

17753
11981
25289
8033
17101
15509
32173
21729
47249
14729
32889
27177
63701

Number
of Nodes

Strain

Energy Eh

0.0825

0.1015
0.3530
0.0870
0.1063
0.0856
0.0906
0.0851
0.0767
0.0823
0.0776
0.0823
0.0766
0.0823
0.0776
0.0823
0.0776
0.0823
0.0797
0.0862
0.0815
0.0824
0.0805
0.0824
0.0803
0.0827
0.0803
0.0825
0.0809
0.0827
0.0812
0.0829
0.0808
0.0827

I
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continued from previous page

Nodal
Distribution

Basis Integration
m Cell Length Order

Floating Point
Operations

Exact Solution 0.0825
5 Pattern B 2 0.125 6 40869 0.0807

3 94509 0.0827
Pattern C

Pattern C

Pattern C

Pattern C

Pattern C

Pattern C

Pattern C

Pattern C

Pattern C

Pattern C

Pattern C

Pattern C

0.500

0.500

0.500

0.250

0.250

0.250

0.125

0.125

0.125

0.062

0.062

0.062

2 4467
9302
8403
18198
11543
27786
8031

18218
14695
36698
20519
53134
14311
36066
27219
68258
41355
101802
27727
69026
54779
135450
80575
200506

Number
of Nodes

7

Strain
Energy Eh

0.0825
0.0842
0.0817
0.0826
0.0831
0.0832
0.0821
0.0825
0.0826
0.0825
0.0829
0.0825
0.0828
0.0825
0.0826
0.0825
0.0826
0.0825
0.0825
0.0825
0.0824
0.0825
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B.4 Comparison of Weight Functions

Table B.9: Results obtained
regular node distribution

Number
of Nodes

Nodal
Distribution

with different weight functions, point force applied at tip,

Basis
m

Integration Weight
Cell Length Order Function

Strain

Energy Eh

Exact Solution 0.5000
2 regular 2 1.000 6 L2 0.5010
2 regular 2 1.000 6 L4 0.5010
2 regular 2 1.000 6 L6 -
2 regular 2 1.000 6 Ta 0.5000
2 regular 2 1.000 6 HC 0.5000
3 regular 2 1.000 6 L2 0.5010
3 regular 2 1.000 6 L4 0.5010
3 regular 2 1.000 6 L6 -
3 regular 2 1.000 6 Ta 0.5000
3 regular 2 1.000 6 HC 0.5000
5 regular 2 0.500 6 L2 0.5010
5 regular 2 0.500 6 L4 0.5010
5 regular 2 0.500 6 L6 0.5326
5 regular 2 0.500 6 Ta 0.5000
5 regular 2 0.500 6 HC 0.5000
9
9
9
9
9

regular
regular
regular
regular
regular

2
2
2
2
2

0.125
0.125
0.125
0.125
0.125

4
4
4
4
4

L2
L4
L6
Ta
HC

0.5010
0.5010
0.5010
0.5000
0.5000
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B.4. COMPARISON OF WEIGHT FUNCTIONS

Table B.10: Results obtained with different weight functions, point force applied in the

middle, regular and irregular node distribution

Number Nodal
of Nodes Distribution

Basis
m Cell

Integration
Length Order

Weight
Function

Strain
Energy Eh

Exact Solution 0.2500
5 regular 2 0.125 6 Ta 0.2256

3 0.2598
5 regular 2 0.125 6 HC 0.2353

3 0.2508

9 regular 2 0.062 6 Ta 0.2378
3 0.2624

9 regular 2 0.062 6 HC 0.2426
3 0.2529

5 Pattern A 2 0.062 6 Ta 0.1888
3 0.2413

5 Pattern A 2 0.062 6 HC 0.1867
3 0.2478

5 Pattern B 2 0.062 6 Ta 0.2174

3 0.2495
5 Pattern B 2 0.062 6 HC 0.2318

3 0.2507

7

7

Pattern C

Pattern C

2
3
2
3

0.062

0.062

6

6

Ta

HC

0.2357
0.2658
0.2413
0.2535
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Table B.11: Results obtained with different weight functions, quadratic body force, regular
and irregular node distribution

Nodal
Distribution

Basis Integration
m Cell Length Order

Weight
Function

Strain

Energy Ch

Exact Solution 0.0825
5 regular 2 0.125 6 Ta 0.0816

3 0.0822
5 regular 2 0.125 6 HC 0.0816

3 0.0823
9 regular 2 0.125 6 Ta 0.0823

3 0.0827
9 regular 2 0.125 6 HC 0.0823

3 0.0826
5 Pattern A 2 0.125 6 Ta 0.0801

3 0.0828
5 Pattern A 2 0.125 6 HC 0.0776

3 0.0823
5 Pattern B 2 0.125 6 Ta 0.0802

3 0.0824
5 Pattern B 2 0.125 6 HC 0.0807

3 0.0827
Pattern C

Pattern C

2
3
2
3

0.062

0.062

6

6

Ta

HC

0.0827
0.0825
0.0824
0.0825

Number
of Nodes

7

7
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B.5. WEIGHT FUNCTIONS 111

B.5 Weight Functions

Some typical weight functions, employed in the Moving Least Squares Method, are shown

in Figures B-1, B-2, B-3 and B-4. The domain of influence is set to dmn2 = 1.0. Note the

difference between the singular and smooth weight functions. Smooth weight functions, as

applied in the EFGM, yield noninterpolating Moving Least Squares Interpolants, while sin-

gular weight functions give interpolating Moving Least Squares Interpolants. The following

weight functions are implemented:

* Lancaster et al. [30], miswtype = 2... 10:

w(L")(d) = jx - x-, a C {2, 4,6,8, 10},

* Tabbara et al. [41], miswtype = 11:

2
2.5 di

w(Ta)(di) e~( dr 2

" Hussler-Combe et al.1 [20], miswtype 14:

2

eHecdmi j_ -e

w(HC)()-1

1-e Hc

'Note that this weight function is a special case of the exponential weight function WFA defined by
Belytschko et al. [7]. They do not recommend any value for He, while Hsussler-Combe et al. recommend
Hc = 1/3.
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Figure B-1: (a) Singular second order weight function, (b) derivative [30]
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Figure B-2: (a) Singular fourth order weight function, (b) derivative [30]
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Figure B-3: (a) Smooth weight function, (b) derivative [20]
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Figure B-4: (a) Smooth weight function, (b) derivative [41]
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