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ABSTRACT

This thesis studies the application of simplified analytical models for predicting ground
deformations caused by tunneling. The analytical models are principally based on the assumption
of linear elastic ground mass response. Complete solutions are presented for ground movements
in a 2-D half-plane due to prescribed deformation modes at the circular tunnel cavity wall.
Preliminary 3-D solutions are also presented for the case of a tunnel heading with a uniform rate
of ground convergence. The results show that approximate models based on point ground losses
and distortions provide a good approximation to solutions from analyses that model the exact
tunnel geometry. Further analyses show how deformations around a rectangular tunnel drift can
be modeled by a series of line sinks. Deformations occurring close to the tunnel cavity are
influenced by soil plasticity. The thesis proposes a simple correction factor that should be
applied to measurements of cavity convergence in order to estimate far-field elastic ground
movements. An alternative approach, proposed by Sagaseta (1988), assumes an average dilation
rate due to plastic behavior in the soil mass. This average dilation model produces significant
differences in the predicted far-field deformation pattern.
The proposed analyses have been validated using data from published case studies of tunnels
constructed using different techniques and soil properties. A simple procedure is proposed for
estimating the three model input parameters based on surface settlement and inclinometer data.
Three of the examples show encouraging agreement with the proposed analysis. However, data
from a fourth project, a deep NATM tunnel in stiff London Clay, is not consistent with either the
proposed elastic or average dilation models. The proposed analysis is now available for
comparison with monitoring data from the on-going Tren Urbano project in San Juan.
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Title: Associate Professor of Civil and Environmental Engineering
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NOTATION

Chapter 1

Vf Deformed volume of tunnel

V0  Initial volume of tunnel

V L Ground loss volume

u" max Maximum surface settlement

R Tunnel radius

H Depth to centerline of tunnel

x1 Inflection point of Gaussian curve

Ko Coefficient of earth pressures at rest

x, Horizontal coordinate

y Vertical coordinate

Chapter 2

R Tunnel radius

J'yo In-situ vertical effective stress

Ko Coefficient of earth pressures at rest

'oh0 In-situ horizontal effective stress

Effective stress

Total stress

uW In-situ pore pressures

PO In-situ average total stress

qo In-situ deviatoric stress

M One dimensional elastic modulus

Elastic constant

us Horizontal displacement

u1, Vertical displacement

x Horizontal coordinate
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Ur

r

a,.

00

A, B, C, D

us

0EC 0

F

n

Q1, Q2, gl, q2

us

us*

p

p*

pr

r,5

P

OCR

Tunnel radius

Depth to centerline of tunnel
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Vertical coordinate

Poisson ratio

Elastic shear modulus

Radial displacement

Radial distance from tunnel centerline

Radial stress

Hoop stress

Integration constants

Uniform radial convergence at the tunnel wall

Uniform radial displacement parameter

Angular coordinate

Shear stress

Airy's stress function

Radial variation of Airy's stress function

Coefficient

Auxiliary functions

Distortion displacement

Ovalization parameter

Apparent distortion displacement

Relative distortion

Pore pressure ratio

Apparent relative distortion

Internal pressure inside tunnel

Internal pressure ratio

Overconsolidation ratio

Chapter 3
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Ko

V

G

Uz

Ic

Ut

y

kaj ic d

6

Ak

Us

27

Coefficient of earth pressures at rest

Poisson ratio

Goursat Functions

Elastic shear modulus

Complex displacement vector

Complex coordinate vector

Elastic constant

Horizontal displacement

Imaginary constant

Vertical displacement

Horizontal coordinate

Vertical coordinate

Mapped complex coordinate

Embedment ratio parameter

Subscript

Laurent series coefficients

Arbitrary index for Laurent series coefficient

Mapped coordinate at the surface

Mapped angular coordinate

Fourier expansion coefficient

Uniform radial convergence at the tunnel wall

Error norm

Surface vertical displacement in the far field

Surface horizontal displacement in the far field

Integration interval to define error norm

Vertical translation

Angular coordinate in the z plane

Distortion displacement

Shear tractions

Radial coordinate from tunnel centerline

U,

L

Au,

#,



VL

F

ZXY

a)

QI, Q2, q, q2

W1

W2

Rc

.(2

r,,

r,

OCR
0U',

MILX
ux

(v=O

Ground loss volume

Airy's stress function

Fourier transform of the corrective shear tractions at the surface

Auxiliary variable

Auxiliary functions

Volume expansion at the tunnel springline

Volume contraction at the tunnel crown

Distortion parameter

Vertical coordinate of the center of the circular area where heaving

occurs

Radius of circular area where heaving occurs

Area of settlement trough

Pore pressure ratio

Internal pressure ratio

Overconsolidation ratio

Vertical surface settlement above the crown

Maximum horizontal displacement

Location of maximum horizontal displacement at the surface

Horizontal displacement at the surface

Chapter 4

Ko

H

VL

x

y

U

fg

Coefficient of earth pressures at rest

Depth to centerline of tunnel

Volume of ground loss

Horizontal coordinate

Vertical coordinate

Horizontal displacement

Vertical displacement

Functions that govern the spatial distribution of displacements due to

a cavity contraction
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T;, Y Green functions due to a cavity contraction

X, Y Vertical and horizontal coordinates of the point cavity

s Parametric coordinate

e(s) Local thickness of the cavity

a, b, c, d Geometric coordinates of the drift

/C Elastic constant

B Width of rectangular drift

D Height of rectangular drift

Req Equivalent radius of the drift

Chapter 5

Ko Coefficient of earth pressures at rest

Dilation angle

R, Radius of the plastic zone

u Equivalent elastic displacement at the tunnel wall

u8" Critical yield displacement at the tunnel wall

R Tunnel radius

No Flow factor

p' Drained friction angle

Y Mohr-Coulomb parameter that depends on cohesion

c' Drained cohesion intercept

G Pre-yield average shear modulus

p'o In-situ effective stress

u4 Plastic displacement at the tunnel wall

T Function of the internal pressure

Coefficient that depends on the dilation angle

VL Ground loss volume

OCR Overconsolidation ratio

RF Reduction factor

x Horizontal coordinate
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y Vertical coordinate

uX Horizontal displacement

u, Vertical displacement

a Dilation parameter

usc Uniform convergence displacement

H Depth to centerline of tunnel

u,5 Distortion displacement

Appendix I

F Airy's stress function

x Horizontal coordinate

y Vertical coordinate

z Complex coordinate vector

p, y, Goursat Functions

G Elastic shear modulus

uX Horizontal displacement

uv Vertical displacement

u, Complex displacement vector

Imaginary constant

c Elastic constant

Total normal stress in the horizontal direction

Total normal stress in the vertical direction

Shear stress

Integral of tractions along tunnel wall

Traction along tunnel wall in the horizontal direction

tv Traction along tunnel wall in the vertical direction

s Parametric coordinate along tunnel boundary

C Integration constant

Mapped complex coordinate

H Depth to centerline of tunnel
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Appendix III

x

y

F

Cxy

S

A, B,C, D

Embedment ratio parameter

Tunnel radius

Subscript

Laurent series coefficients

Mapped coordinate at the surface

Mapped angular coordinate

Arbitrary index for Laurent series coefficient

Fourier expansion coefficient

Horizontal coordinate

Vertical coordinate

Airy's stress function

Fourier transform of Airy's stress function

Fourier transform of the normal stresses at the surface

Fourier transform of the shear stresses at the surface

Auxiliary variable

Auxiliary parameter

Integration constant

Appendix IV

Ko

(Tyr

r

pi

p '0

R

Coefficient of earth pressures at rest

Effective radial stress

Effective hoop stress

Radial coordinate from the center of the cavity

Effective pressure inside cavity

In situ effective stress

Radius of the cavity

31



Ur

M

A, B, C, D, J

V

G

N,

Y

C

R,

T

pEr

uE Y

Radial displacement

One dimensional elastic modulus

Elastic constant

Integration constants

Poisson ratio

Pre-yield average shear modulus

Flow factor

Drained friction angle

Cohesion ratio

Drained cohesion intercept

Radius of the plastic zone

Function of the internal pressure

Plastic radial strain

Plastic hoop strain

Coefficient that depends on the dilation angle

Dilation angle

Plastic displacement at the tunnel wall

Critical yield displacement at the tunnel wall
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1. Introduction

The steadily growing demand of modem society for public transportation systems in congested

urban areas has encouraged innovations in underground construction techniques. Due to the fact

that soft ground conditions are found in many of these urban areas, soft-ground excavation

techniques have experienced a particularly remarkable advance. In the past fifty years the

number of soft-ground tunnels has steadily increased, primarily due to the technological advance

in tunnel machinery, grouting techniques and groundwater flow control. It is believed that this

trend will continue to grow in the future since underground construction provides a solution for

the need of space in densely populated urban areas. The technological advance has made

possible the successful excavation of tunnels in a wide range of soils, under different

groundwater conditions (Peck, 1969).

Section 7 of the Tren Urbano alignment in San Juan de PR is being constructed underground

over a total length of 1.5 km trough the town of Rio Piedras (extending from Villa Nevarez to

Hato Rey). The tunnel passes trough deep alluvial deposits of interbedded stiff clays and sandy

clays, referred to as the Hato Rey fromation (often referred to as 'old alluvium'). Three

construction methods are being used in order to excavate the tunnel; i) New Austrian Tunneling

Method (NATM), for the alignment south of Calle Georgetti ; ii) stacked drift construction to

support the excavation of the main cavern of the Rio Piedras station using a series of 15 drifts;

and iii) twin bored tunnels excavated by means of a Earth Pressure Balance (EPB) Tunneling

Boring Machine (TBM) from the Rio Piedras station towards the University of PR (UPR)

station. The entire underground alignment is built underneath existing buildings (mainly masonry

structures) and other facilities sensitive to ground deformations. Hence, ground deformations

produced by the excavation activities are of great concern.

Ground deformations arise due to the fact that the initial state of stresses is altered by the

excavation, generating a new state of equilibrium and mobilizing the shear strength of the soil in

the near field around the excavated cavity. This strength mobilization leads to deformations at

the excavation face, which cause the volume of the excavated soil, Vo, to be larger than the

volume occupied by the tunnel, V. This difference between the excavated volume and the
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volume occupied by the tunnel is called "ground loss", VL = Vf - Vo, and is often expressed as a

ground loss ratio, VL = (Vf -Vo)/ Vo. -100 %. As the ground loss is a function of the amount of

deformations at the tunnel face, its value is inextricably linked to the construction method.

Hence, the prediction of ground deformations has to somehow take into account the effects of the

construction method.

The methods of modeling ground deformations due to tunneling, range in complexity; from

purely empirical results (e.g., Peck, 1969) to complex non-linear 3-D finite element analyses

(e.g., Lee and Rowe, 1990).

Empirical methods

Empirical methods have the obvious advantage that they fit a certain amount of case studies and

are relatively simple to use. Peck (1969) proposed an analysis method for estimating ground

deformations induced by tunneling based on data (mainly from the Chicago Subway) from 18

tunnels excavated in cohesive and granular soils by means of shields or hand mined. Although

the method has no theoretical basis, it has been widely adopted in engineering practice. Many

case studies have been analyzed by this approach in the past 30 years (e.g., Attewell and Farmer,

1974; Oteo and Sagaseta, 1996, Bowers et al., 1996). Peck's approach characterizes the

distribution of surface settlements using a Gaussian distribution curve (Figure 1.1). There are

two parameters that define a particular curve; i) the surface settlement above the crown, u"

and ii) the inflection point xi. These parameters were obtained for several case studies by means

of matching Gaussian curves to measured surface settlements. By then correlating these

parameters with geometric characteristics for each tunnel, design charts were developed for

predicting ground displacements due to tunneling. The settlement at the inflection point (for the

Gaussian distribution curve) coresponds to 0.61-u,"' (Figure 1.1). Hence, the inflection point

was defined as the abscissa at which the observed settlement is 0.61 times the maximum. The

inflection point, normalized by the tunnel radius', R, was then correlated with the embedment

depth ratio, H / 2-R, to form a chart such as Figure 1.2, where the dotted lines delineate different
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soil types. Since Peck's original work, more data has been included in such charts (e.g., Oteo and

Sagaseta, 1996). This method, also assumes that the over-excavated volume V = Vf - Vo (i.e.,

ground loss) had the same magnitude than the volume of the settlement trough (i.e., the area

enclosed by the original and deformed ground surface). However, it will be shown in this work

(also Verruijt and Booker, 1996), that the over-excavated volume coincides with the volume of

the settlement trough only if the material is incompressible2 (e.g., undrained behavior of clays).

Once the inflection point and the volume of ground loss per unit length, V, are known, the

maximum displacement at the surface can be evaluated by matching the volume of ground loss

with the area of the settlement trough. The volume of ground loss in this approach is left

unknown and is calculated by means of assuming empirical values for u,"". This method has the

disadvantage that it cannot take into account complex construction activities (e.g. compensation

grouting) and produces only one displacement pattern that can only be scaled by means of the

inflection point, xi. Another disadvantage is that it does not predict either vertical or horizontal

displacements within the soil mass3 . However, this method has been able to mach many case

studies since the practitioner has the option of shifting the width of the trough by means of the

inflection point as needed in order to match each particular case.

Finite Element Models

Finite Element models provide the most general framework for analyses of ground deformation

due to tunneling. Different soil models can be incorporated in the analysis (e.g., Oettl et al.,

1998), thus improving the modeling of real soil behavior. 3-D Construction activities and tunnel

geometries can also be included in the analysis (e.g., Lee and Rowe, 1992). FEM models can

also analyze staged construction, such as NATM (e.g., Dasari et al., 1996), EPB tunnel-soil-

tunnel interactions (Bernat et al., 1999) and ground treatment, such as compensation grouting

(e.g., Kovacevic et al., 1996). In order to perform such analyses the soil properties at the site

(stiffness, strength, permeability, etc.) must be obtained by means of a comprehensive

1It will be shown in this work that the parameter that normalizes the spatial coordinates (i.e., x and v) is the depth to
centerline, H, rather than the tunnel radius, R. If R is used in order to normalize x and v, the R/H ratio effect needs to
be taken into account separately.
2 If the behavior is drained, the volume at the surface could be either larger or smaller, depending on Poisson ratio
and dilation angle.
3 Attewell and Farmer (1974) extended this method in order to predict displacements within the soil mass.
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laboratory-testing program, which sometimes is not readily available. Ground water conditions

(hydrostatic, steady state or transient seepage, etc.) also need to be included in the analysis,

which requires sophisticated site investigation (e.g., piezometers and observation wells). The

construction sequences-sometimes very complex or not known in advance-also influence on

the model predictions. One advantage of these methods is that they are 'complete' in the sense

that it is possible to estimate all the input parameters. Another advantage is that, by means of

FEM, it is possible to model details of the tunneling process. However, the set up of the model is

very time-consuming and, in many cases, the actual 3-D problem must be analyzed by 2-D

approaches in order to simplify the model. Model predictions are also highly dependent on the

constitutive model assumed in order to approximate the real soil behavior.

Analytical models

These methods make gross approximations to the real soil behavior but otherwise fulfill all other

axioms of continuum mechanics. Analytical methods can predict ground displacements

throughout the soil mass with a very few input parameters. Moreover, the input parameters

needed for the analysis are relatively simple to estimate, for which these methods are very useful

in preliminary design. Most of these methods are readily extendable to 3-D and can predict both

vertical and horizontal displacements throughout the soil mass. Another advantage is that they

provide a framework for studying complex construction procedures, such as the stacked drift

construction of the Rio Piedras cavern by direct superposition of solutions. Grouting activities

can also be taken into account by assuming cavity expansions, rather than contractions. In situ Ko

conditions, soil-lining interaction and construction procedure effects can also be conceptually

taken into account by shifting the relative contribution of basic deforming modes at the tunnel

wall. However, one major drawback of these methods is that they can not model the soil-

structure interaction of pre-existing structures at the surface, which in some cases may lead to

large differences in ground deformations due to local yielding effects. These models may also

miss some features associated with complex soil behavior.

Sagaseta (1987) proposed simplified analytical expressions for evaluating short-term ground

displacements around tunnels in clays. His solution considered a point cavity contraction (which
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represented concentrated ground loss at the tunnel axis) from an initial isotropic state of stresses

(i.e., Ko = 1) in an elastic half-plane (Figure 1.3). The settlement trough, evaluated by means of

this solution, has a similar shape as the Gaussian distribution curve proposed by Peck (1969).

However, the resulting settlement trough is wider than the empirical distribution proposed by

Peck (see Schmidt, 1988). Verruijt and Booker (1996) extended the method for arbitrary Poisson

ratios and included a second deformation mode of the tunnel wall corresponding to an elastic

cavity distortion from an anisotropic initial state of stresses (i.e., Ko # 1). It was found that the

deformation at the tunnel wall has a significant impact on the displacement distribution at the

surface and inside the ground. The distortion mode reduces the width of the settlement trough

due to the isotropic compression alone. Thus, by combining both deformation modes, different

displacement patterns can be modeled. The aforementioned methods do not explicitly consider

the geometry of the tunnel wall in the analysis. In that sense, they are regarded as "point

solutions". Verruijt (1997) presented a more refined solution method by explicitly considering

the presence of the tunnel wall. His published results are limited to the isotropic case. Other

approaches have been pursued by Sagaseta (1999), who modified the point solutions in order to

account for dilation due to the drained shearing. The effect of the dilation is to reduce the width

of the settlement trough for cavity contraction4 . In practice, however, dilation is only likely to

occur in the near field aaround the tunnel (where soil yields). Thus, the selection of a single

dilation parameter represents a practical limitation of this approach.

Longanathan and Poulos (1998) proposed an empirical extension of the analytical solutions 5

proposed by Verruijt and Booker (1996) neglecting the distortion component due to Ko # 1. Their

analysis recognizes that settlement troughs are generally wider than experimental measurements

and assumes that Verruijt's solution accounted for a uniform convergence at the tunnel wall6 .

Hence, the solution was modified by arbitrary functions in order to match a set of case studies

and account for non-uniform displacements at the tunnel wall (larger at the crown and smaller at

the invert). Although based on correct concepts, this method has no theoretical justification and

4 Dilation has the opposite effect if a cavity expansion is considered
5 Their appproach ignores the distortion component as they argue that this does not occur in the short-term. This is

actually unrealistic since, as it will be shown in this work, distortion will occur whenever Ko is not unity.

6 It will be shown in this work that Verruijt's expressions include a vertical translation component, which is

responsible for the displacement at the tunnel crown being larger than the one in correspondence to the invert.
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can only predict one fixed displacement field. This limitation is of particular concern while

comparing inclinometer readings with measured data, since outward movements (likely to occur

when Ko < 1) at the tunnel springline cannot be modeled. However, this method seems to match

several case studies for a wide range of soil types.

Thesis Goals

This thesis focuses on the modeling of ground deformations by analytical methods derived from

continuum mechanics. Throughout this thesis, the available solutions are re-derived and studied

while some original solutions are proposed. Modeling considerations for different construction

procedures (e.g., NATM vs. TBM), ground conditions (e.g., normally consolidated vs.

overconsolidated), soil structure interaction (e.g., pre-cast lining vs. shotcrete), and ground

treatment (e.g., grout injection) are discussed. Effects of plasticity, proximity of tunnel heading

(i.e., 3-D effects) and tunnel geometry (e.g., circular vs. square) are also studied in the

framework of the analytical models. This thesis proposes a simple method for interpreting model

input parameters from in-situ monitoring data in order to assess the practical applicability of the

analytical models.

1.1. Thesis Outline

Chapter 2 shows the derivation of the elastic solution for the displacement field due to a tunnel in

an infinite elastic plane. The solution is subdivided into two basic deformation modes, and the

relative contribution of each mode is defined in terms of Ko and soil-structure interaction effects.

Chapter 3 studies the effect of a stress-free surface by considering the aforementioned basic

deformation modes separately. The exact solution for the isotropic deformation mode is re-

derived and an exact solution for the anisotropic (distortion) deformation mode is presented

following Verruijt's (1997) approach. The approximate solutions for both deformation modes are

also re-derived and compared with the exact ones. Ground displacement patterns obtained by

these solutions are studied and discussed.

38



Chapter 4 discusses the influence of the tunnel geometry by considering a rectangular drift. An

elastic solution for this problem is presented and compared with results from equivalent circular

tunnel solutions.

Chapter 5 addresses the influence of soil plasticity. Closed-form analytical solutions by Yu and

Rowe (1998) for the case of an isotropic cavity unloading problem in an infinite plane are re-

arranged in order to account for a cavity contraction problem. The author proposes a simple

method for relating convergence measurements at the tunnel wall to the proposed elastic

solutions that control far field deformations. Anisotropy of initial stresses and stress-free surface

effects are also discussed.

Experimental verifications of model predictions are given in Chapter 6 using a series of four case

studies. In each case, model input parameters are derived using a standard procedure for

interpreting field monitoring data. The procedure is summarized in the form of a series of design

charts.

Chapter 7 shows the effects of the proximity of the tunnel heading. Elastic solutions for a

spherical cavity unloading and contraction in an infinite and semi-infinite half space are re-

derived and studied. A closed form solution for the displacement field of a semi-infinite tunnel in

a half-space is obtained in order to assess the 3-D effects near the tunnel heading.
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Figure 1.3. Point cavity contraction, after Sagaseta (1986)
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2. 2-D Deformation Analyses for a Deep Circular Tunnel in an Infinite Elastic Soil

This chapter reviews theoretical solutions for displacement fields around an unlined

cylindrical hole of radius R, in an infinite elastic medium. The analyses simulate the case

of a deep tunnel in a soil medium with initial geostatic stresses characterized by an

average vertical overburden stress, o,, and an earth pressure coefficient, Ko=Y'hJ/'vo,

where U'ho and a'Uo are the effective stresses defined by Terzaghi (i.e., o=-uw, where u,

are the in-situ pore pressures). The stress state can be decomposed into two components;

i) uniform hydrostatic compression, po, and ii) uniform pure distortion, qo, as;

P =o (I +O) + uw {2-la}
2

(0~~ 1- ,. lK 0 ) {2-lb}

Figure 2.1 illustrates the problem representation, superimposing solution for the isotropic

compression and pure distortion stresses. This thesis assumes stresses are positive in

tension. This problem was first solved by Kirsch (1898) for a thin plate (plane stress)

with a pre-existing hole subjected to tensile stresses and is a classical solution in the

theory of elasticity. The solutions show that displacements are unbounded (i.e., do not

vanish at infinity), around a pre-existing tunnel/cavity. However, in tunneling problems,

it is the displacements due to the creation of the cavity within a pre-stressed medium that

are of concern. Hence, the displacements due to the pre-stressed infinite space need to be

subtracted from those corresponding to the infinite space with a hole at the origin. The

following sections describe the derivation of these solutions.
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2.1. Uniform hydrostatic compression

The displacements corresponding to the pre-existing state of stresses in an infinite plane

without the cavity (i.e., prior to tunneling) are found by the elastic constitutive relations

(assuming small strains and plane strain conditions) as follows:

M ax ~ {P {2-2}

where A and M are elastic constants related to the shear modulus, G, and Poisson ratio , v,

as follows:

M 2 G- (1-v )2-3a
1-2-v

2 -v -G {2-3b}
1-2-v

After solving equation {2-2} and integrating, the displacements can be expressed as

follows:

=- p 0 (12-v).x {2-4a}
2-G

P_ -- 2-v) {2-4bI
2-G

which can be expressed in polar coordinates as follows:
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P0 -(I-29) r 2v)
Ur ~2 -G .r

The next step is to introduce a cylindrical hole of radius, R (at the origin). Given the fact

that the boundary conditions at infinity and at the tunnel wall do not depend on the

angular coordinate, 6 (Figure 2.1), the problem is one-dimensional and can be solved

using the radial distance from the origin, r. The equilibrium condition in the radial

direction can be written in cylindrical coordinates:

D0' + ' 0
r+ O r 0 =0 {2-6}

ar r

The elastic constitutive equations become:

U- = M ru' +,- ur
ar r

{2-7a}

{2-7b I= M - + ,. .

r Dr

Replacing {2-7} in {2-6} and rearranging, the following ordinary differential equation

(ODE) is found:

2r - 0 {2-8}
2 

12

Dr2  r Dr r2

The general solution for equation {2-81 is given by:

B
u, = A -r+- {2-9}

r

45

{2-5}



where A and B are integration constants, which are evaluated by imposing the following

boundary conditions:

In the far field:

0-L. = -po

In tunnel wall:

- r=R =0

Hence, the radial displacements are given by:

U -- ( -2
2-G

-v)-r+
r]

Subtracting the displacements due to the pre existing state of stresses (equation {2-51),

the final expression for radial displacements around a cavity in an infinite, pre-stressed

plane is obtained:

Ur= -O' R {2-12}

which can be expressed in Cartesian coordinates as follows:

u=- - *R2 . {2-13a}
2-G x2+y2

u 2 - p - R {2-13b}
Y 2-G X-+ y2
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The radial displacement at the tunnel wall is defined as the radial convergence (ue):

UE {2-14}
2-G

The radial convergence is defined positive when the tunnel expands and negative when it

contracts. Introducing the radial convergence in {2-131, the displacements can be

expressed as:

ux(x, y) u - -R {2-15a}

u(x, y) = u -R 2 {2-15b}
x~ + y~

In principle, uE can be evaluated by solving equation {2-14}. However, in practice, u, is

regarded as an input parameter, regardless of its origin and is commonly related to the

amount of "ground loss" at the tunnel heading. Similar expressions were given by

Verruijt et al. (1996), who re-write the convergence parameter as a fraction of the tunnel

radius, and refer to this ratio as the "uniform radial displacement parameter", e.

E = _ s {2-16}
R

As can be seen, this definition implies that e is positive for a uniform contraction at the

tunnel wall, while it is negative for a uniform expansion. This is slightly inconvenient,

since it is a standard solid mechanics definition that a contracting volume is negative,

while an expansion is positive. Throughout this work, expansions will be treated as

positive, while contractions will be negative.
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2.2. Pure Distortion

The displacements corresponding to the initial state of stresses in the infinite plane

without the tunnel are found by the elastic constitutive relations as before (equation {2-

2}):

M A }tx q0} {2-17}

i y

After solving {2-17} and integrating, the displacements are found to be:

u = 2-G x {2-18a}
2-G

uV = - y Y{2-18b}
2-G

Figure 2.2 shows the Mohr circle representation of the far field stresses around the tunnel

based on the cylindrical coordinate system shown in Figure 2.1. It can readily be seen

that the far field stresses can be expressed as follows:

Or = qO -cos(2 .6 ) {2-19a}

09 = -q -cos(2 -) {2-19b}

Ir = -q -sin(2 -6) {2-19c}

The stresses are related to Airy's stress function as follows:
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1 DF 1 32F

r ar r2 a62

IrO-a (I aF

@r r 3r 6

{2-20a}

{2-20b}

{2-20c}

Equations {2-20} and {2-19} suggest that Airy's stress function can be expressed as:

F(r,6)= $(r). cos(2 -6) {2-21}

which can be regarded as a result of the method of separation of variables with only one

Fourier expansion term in the angular coordinate (0). Hence, the compatibility equation

in terms of Airy's stress function can be expressed as follows:

far2 rar

41.

r2

_# 1 D# 4-#_
+ 20

ar r ar r2

In order to solve the PDE, the following assumption is made:

(r)= rn

where n is a coefficient obtained by replacing {2-23} in {2-22}, which yields:

n -r" 4 (n3 -4. -4 n + 16)= 0

Solving for n yields:

49

{2-221

{2-23}

{2-241



-2

0
n= > {2-25}

4

Hence, the general solution of the ODE can be expressed as:

A
#(r) = -- + B + C r 2 + D -r {2-26}

r-

where A, B, C, D, are integration constants, which are found by imposing the stress

boundary conditions at infinity, given by (2-19}, and the stress-free condition' at the

tunnel wall. In order to impose the boundary conditions, the stresses are evaluated by

means of {2-20}:

A-2- + , +B C -cos(2.) {2-27a}r 4 r

-.3. A +-=2. i +C+6-
r

= . 3- A -B +
r, = 2.2

D-r 2 cos(2-0)

C+3- D- r2 | sin(2 -)

These expressions reduce in the far field to:

. =-2-C cos(2-6)

' Assuming there is no pressure inside the cavity.
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= 2 -(C+6 -D -oo)- cos(2 -6)

S =2- (C+3 D -oo)- sin(2-0)

Comparing {2-28} with {2-19}, the integration constants C and D are found to be:

C =-- -O-
2

D=O

The stresses at the tunnel wall are:

a, = -2 -3.A +2 - -cos(2 -0)
R R 2

3-A q cos(2 )2. R4 2 cs2-0

3. A
r = 2 -( -

2-28b}

2-28c}

{2-29a}

{2-29b}

{2-30a}

{2-30b}

- -- -sin(2 -0) {2-30c}

Since no lining is assumed, the radial (or) and shear (Try) stresses at the tunnel wall must

vanish. This condition is fulfilled provided that:

A = - q -R {2-31a}
2

B = q -R2

Hence, Airy's stress function is given by the following expression;
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- - R2+R 2 cos(2. 0)

or in Cartesian coordinates:

F(x,y)= qO
R' x~2 +2 (2-x2

- , g + R 2 2 + Y 2 . X 2

2- x + y2) 2 x~+ y

In order to evaluate the displacements, the following expressions derived from the theory

of elasticity are used (e.g.; Boresi and Chong, 1987):

{2-34a}

{2-34b}

u = (1- v)- q,
U 2-G ax

U Y = ' -(1-- v)- q, IF ]~
2 -G ~ay_

where:

q, +i -q = (Q +i- Q2)- dz

Q1 = V2F

z = x+i* y

{2-35}

{2-36}

{2-37}

and Q2 is the harmonic conjugate of Q1, i.e. they fulfill the Cauchy-Goursat condition,

given by the following expression:

aQ1 _ aQ2 .aQ1 _ Q2  {2-38}
ax IV 'ay ax
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F(r, 0) = qO {2-32}

-1 I



For this problem, Q, is found to be:

2_4 -R 2 -_ q O 2 - x -12

, x 2+ y2 X2+ y2

The harmonic conjugate, evaluated by means of the Cauchy-Goursat conditions is:

X. YQ2 =8 -R2 q40 .x ' -Y

Hence Q1+i-Q2 is given by:

Q +i. Q, -4- R -. q0

Replacing {2-41} in {2-35} and evaluating the integral produces:

q, +i q2
= 4-R 2 ' q0

{2-39}

{ 2-401

{2-41}

{2-42}

After separating real and imaginary components, the following expressions are found:

2 X
q, R q X2 +

x~y~

{2-43b}qx = -4 -R

Finally, the spatial derivatives of the Airy stress function are needed to calculate the

displacement components (equation { 2-341).
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(x2 + y2+ R2 .(x2 _3. (_2 j 2 

-(X

(2+ y2~

(x2 +y2 + R2 .(,2 _x2)

+r y -
3F _

x =

3F _

ay =oy (X2 + y2y

Hence, replacing {2-43} and {2-44} in {2-34}, the displacement field can be expressed

as:

u (X, y) =
G

x

x 2 + y_
{ 2.(1-v)-R 2 +

I ) _ +ujx - -G X 2 +y 2

( .-. ? ( 2

( 2

.(X2 + Y2 -R2)
2-(x2 + yj

Subtracting the displacements due to the pre-existing state of stresses (equations {2-181),

the final expression for the displacements due to a hole in an elastic infinite pre-stressed

plane can be written:

= q0  xujx, y G x 2 + y~ 2-(-v)-R

u x,y) = - 2-(1-v)-R
G x2 + v

+ (2 2 + R2. 2_ 3. Y2

2.(x2 + y 2

2( + y2 +R . (y2

(x 2+y2-R2)_-(x2)} +
2

{2-46a}I

(. + y2-R2
2 

)

2-(x2+y-

{2-46b}

54

( 2 - R2)

(2-44a)

{2-44bI

1x +y) + -kx -3-y

2.(x2 +v2

+ 2+yf+R-(y -3.x)

+Y 2 -R )

{2-45a}

{2-45b}



The maximum horizontal displacement at the tunnel boundary is defined as the distortion,

Uo:

us = q .-R .(3-4-v) {2-47}
2- G

Although us can be estimated from known values of G and v, it is standard practice in

ground deformation analysis to assume (or measure) a value of us, regardless of its origin.

Nevertheless, equation {2-47} gives an insight on the influence of the mechanical

properties of the soil (Ko = l-2qo/uc', G, and v) on the expected distortion at the tunnel

wall.

Displacements within the surrounding soil can be written as functions of us as follows:

R (3 -4 -v).(x2 + y2 (3. 2 X).(X2 + y2 - R 2) 2-48a
u,(x, y)= uy -x (x2v}

3-4-v 2+ 2-48

UY XY)= Ug R Y-(3 -4 -v)-. + 2 " _2 Y.X2 + y2 - R 2 2-48b
3-4v (X2+ yY

In the far field [i.e., neglecting O(R/r)3], these expressions reduce to:

x. x - -. y
4-(-v) -v {2-49a}

u, (X, y)= 4.0-V.u -15 R. -t24a
3-4-v (X2+ y2

V I 2

U (X, y)= 4 (- v) ' 1-v {2-49b}
3-4-v (2+V 
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Similar expressions were presented by Verruijt and Booker (1996). These authors

expressed the distortion as a fraction of the radius by means of the so called "ovalization

parameter" (8) as follows:

U 1{2-50}

R

where u*6 is the apparent distortion parameter (i.e., the maximum horizontal displacement

at the tunnel wall evaluated by equation {2-49 }, expression that is only accurate for the

far field). The apparent distortion parameter can be related to the true distortion

parameter (equation {2-47 }) as follows:

- 4. (1 v) 1 {2-51
3- 4v

Hence, the apparent distortion is always larger than the true distortion by 33-100 %. This

is important when comparing elastic solutions with published data, since most of the

former are based on the apparent distortion parameter, leading to larger and unrealistic

distortions at the tunnel wall. This is of particular concern while analyzing undrained

behavior (v = 0.5), since for this case there is 100% difference between the apparent and

the true distortion.

It is interesting to note that the absolute displacement vectors at the tunnel have a

constant magnitude, u,, and re-oriented at -6 (for points with initial orientation +6) as

shown in Figure 2.3.

2.3. Relative Distortion

The relative distortion of the tunnel can be defined as the ratio of the wall distortion to

uniform convergence as follows:
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p _U5 {2-52}
uc

where u, and us are given by equations {2-14} and {2-47} respectively. For the case of a

deep tunnel in infinite elastic soil subject to a Ko initial state of stresses and zero pore

pressures uW;

p 1-Ko .(3-4-v) {2-53}
1+Ko +2r

where r, = us/O'1( is the pore pressure ratio. Figure 2.4 shows the influence of Ko, r 1, and

v on the relative distortion. It can be seen that increasing Poisson and pore pressure ratios

leads to lower relative distortions. Higher Ko values also produce lower relative

distortions. Negative values of p are possible for Ko > 1 (e.g., OCR > 4). However, these

solutions do not consider the effects of the ground surface and stress gradient.

As mentioned before, Sagaseta (1998) defined the apparent relative distortion, p*, as the

ratio of the maximum horizontal displacement at the tunnel wall due to distortion as

evaluated by means of the far field approximation and the displacement at the tunnel wall

due to uniform convergence:

P* 4 -(1~ v) {2-54}
3-4-v

where it can be seen that p* is always larger (33-100%) than p. Sagaseta studied the

undrained deformations by considering v= 0.5. Hence, the reported relative distortion

values are 100% higher than the true relative distortion presented here.
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2.4. Influence of Internal Pressure Inside Tunnel

In many cases there is a certain amount of internal pressure inside the tunnel. In the

undrained case, and if the tunnel is excavated by a TBM, the pressure arises as a result of

grouting being injected in the gap between the lining and the excavated cavity, which is

standard practice. In the drained case, the pressure arises from soil-structure interaction

with the lining, which is much stiffer when compressed as a ring than when distorted.

Hence, this pressure can be assumed to be approximately uniform around the tunnel wall.

The influence of this internal pressure, pi, is to reduce the amount of displacement due to

the isotropic compression component as follows:

u() - (V-)p()-R 2  x__, {2-55a}
2- G X~+Vy

2G

_ (Po - Pi).- R V {25bu,( x, y ) - 2 -, t2-55bI

As the interior pressure is assumed to be uniformly distributed at the tunnel face, it has no

effect on displacements due to pure distortion. Hence, the relative distortion for the

general case of p, # 0 is given by:

_ 1-Ko 3-4- {2.56}
1+Ko +2r 1-r,

where r, = pi/p, is the internal pressure ratio. Figure 2.5 shows the effect of the internal

pressure ratio on the relative distortion, where it can be seen that high values of r,

increase very significantly the relative distortion. Normally consolidated deposits (i.e., Ko

=0.6) with r, =0.80, v = 0.33, and r, = 12 would have relative distortion p= 1 while

overconsolidated deposits (e.g., OCR = 10, Ko = 1.5) would have p = -1.

2 Ground water conditions hydrostatic with ground water table at the surface.
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In this work p will be considered large when larger than unity and low when less than

0.5. Hence, it can be said that it is a general trend that normally consolidated deposits

have large relative distortions, while overconsolidated deposits have low relative

distortions (even negative).
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3. 2-D Deformation Analyses for a Circular Tunnel in an Elastic Half-Plane

When the tunnel is relatively shallow, the pattern of ground deformations is strongly influenced

by proximity to the stress-free ground surface. This chapter considers the problem defined in

Figure 4.1 of a multiply connected elastic region, bounded by a horizontal line (ground surface)

at which the stresses are zero and a circle (unlined tunnel wall) at which loading takes place in

the form of prescribed displacements. The tunnel has radius, R, and is embedded at depth, H,

from the ground surface. The displacement boundary condition at the tunnel wall can be

subdivided into three basic mode shapes (after Sagaseta, 1999), i) uniform convergence (ground

loss); ii) pure distortion (ovalization); and iii) vertical translation (downward movement), as

shown in Figure 3.2.

3.1. Background

Mindlin (1939) first studied a similar problem but imposing a stress-free boundary condition at

the tunnel wall and considering the gradient of vertical stresses with depth. The problem was

solved using bipolar coordinates for three particular cases: i) an initial hydrostatic pressure (i.e.,

Ko = 1); ii) initial state of stress with no horizontal deformation [i.e., Ko = v/(1- v)]; and iii) zero

horizontal stresses (i.e., Ko = 0). Mindlin then analyzed the distribution of the azimuthal stresses

along the tunnel wall.

Sagaseta (1987) proposed an approximate solution method for this problem for the case of a

uniform radial convergence (ground loss) at the tunnel wall. His analysis solved the deformations

at the ground surface for the case of an incompressible material (v= 0.5, i.e., corresponding to

undrained conditions of a low permeability soil), assuming that the tunnel could be represented

by a point/line sink.

Verruijt and Booker (1996), following Sagaseta's approach gave an approximate solution for this

problem for the case when the displacements at the wall are a combination of a uniform

convergence and a distortion. This solution was reported for arbitrary Poisson ratio (i.e.,

corresponding to drained or undrained conditions in the surrounding soil).
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Verruijt (1997) subsequently solved the problem for an arbitrary displacement boundary

condition defined at the tunnel wall using functions of complex variables. To date, however,

results have only been presented for the case of a uniform convergence at the tunnel wall. The

following Sections re-derive and extend these "exact analyses" (i.e., exact tunnel geometry)

proposed by Verruijt (1997), and the approximate results using the singularity (point line/sink)

approach of Sagaseta (1987), and Verruijt and Booker (1996).

3.2. Exact Solutions

As mentioned in the above paragraph, the exact solution for the problem discussed in this chapter

was obtained by Verruijt (1997) using the complex formulation of planar elasticity. In this

formulation, the solution is expressed in terms of two functions (# and y) called "Goursat

functions", which are found by imposing the boundary conditions (Appendix I). The

displacements are related to these functions as follows:

2 - G -u (Z)= (z)- oy(z) {3-1}
dz

where G is the elastic shear modulus, i the imaginary constant, # and yr the Goursat functions,

the overscript"" stands for complex conjugate and:

u, =uX +i-uV {3-2}

z = x + i- y {3-3}

K =3-4-v {3-4}

The domain in the z-space is mapped onto an annular region in the -space by the following

transformation:
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;Z=i. z - (1+ a2)- H -I (1a2) {3-5}
i. z. (I + a2 )+ H (I- a2)

where H is the depth to centerline and a is given by:

a - rH -1 {3-6}
R R

where R is the tunnel radius (Figure 3.3). It can readily be seen that H can spatially normalize the

solution and that the key parameter is the embedment to radius ratio, R/H. The horizontal

boundary given by y=O in the z-space is mapped onto a circle of unit radius in the s-space and

the circular tunnel boundary given by (X2 )+ (H + y -R2 = 0 at the z-space onto a circle of

radius a in the ;-space.

As the Goursat functions are analytic, they can be expanded in Laurent series as follows:

p()=ao+ Xa +$b- {3-7a}
k ,kl

k=1 k=1

// C. + I Ck ~ k dk -k {3-7b
k=1 k=1

where the coefficients ak, bk, Ck, and dk are found by imposing the boundary conditions at both

boundaries. These coefficients are calculated by means of recursive relations derived from the

boundary conditions. Only the value of ao remains undetermined, but it is obtained as the value

that makes the coefficients of the expansions vanish for large k (a requirement for convergence).

This is done by means of taking advantage of the linearity of the recursive relations. Hence, two

tentative values of ao are used to calculate an approximate value of a, and the value that makes

a,= 0 is found by linear interpolation. Further details are given in Appendix I.
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In order to obtain the recursive relations, the displacement boundary condition needs to be

expanded in Fourier series as follows:

2-G-(1-a-a)-u (a)= XA, -a'

where a-a = a-e represent the mapped coordinate (at the tunnel boundary. The coefficients Ak

are obtained as follows:

{3-9}A, = f 2- G -(1-a- a)-u(a)- o- -dO
0

Once the values of these coefficients are known, they are replaced in the recursive relations in

order to calculate the Laurent expansion coefficients. Thus, the Goursat functions and their

derivatives are calculated and the solution for the problem can be obtained.

3.2.1. Uniform Convergence

Verruijt (1997) gives full details of the uniform convergence solution. The coefficients in

equation {3-9} are given by:

Ak =0

A0 = 2 -i -G-u, -a

A, =-2-i-G E

Ak =0

Vk <01

Vk > I

{3-10}

where uE is the radial convergence at the tunnel wall, defined positive as shown in Figure 3.4.

This definition is consistent with the convention adopted in Section 2.1.

The vertical displacements do not vanish at infinity for this solution. Instead they converge to a

finite value. This means that a rigid body motion must be subtracted in order to obtain physically
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meaningful far field conditions. Verruijt (1997) discusses this peculiar result, which is a

consequence of the half plane being unrestrained'.

A simple computer program has been written (Appendix II) in order to implement this solution.

The number of terms needed for the evaluation of the Goursat functions is determined by a

convergence criterion. The criterion is based on the following error norm:

E= L - (u - + (u, -3-111

j -+L Y=0, L-+oo

where u and u( are the ground surface displacement components in the far field (x -> oo). The

length, L, is taken as 8-H, u' and u'Y are evaluated with k = 150. The criterion consist of

selecting the minimum value of k that makes e < 10-8, which is the round-off error used in the

numerical evaluation of u' and ui. Results for different R/H ratios are shown in Figure 3.5. It

can be seen that the series converge faster for lower R/H ratios (i.e., deep tunnels), being the

absolute minimum number of terms needed dictated by the Fourier representation of the

displacement boundary conditions (which in this case is 2). The convergence rate appears to be

independent of the Poisson ratio.

The vertical translation is shown in Figure 3.6 as a function of the tunnel raidus to depth ratio

(R/H). In this figure, Au). are the corrective vertical rigid body displacement (equal to the vertical

translation of the tunnel) and u, is the convergence at the tunnel wall (Figure 3.4). The results

highlight the importance of Poisson ratio in controlling the vertical translation. The higher the

Poisson ratio the smaller the translation correction.

This result is explained by the fact that the spring constants (i.e., stresses due to a unit

displacement) at the tunnel wall are more uniform for higher Poisson ratios as can be seen in

The author has also verified that if a uniform vertical displacement boundary condition is applied at the tunnel

wall, the solution is a rigid body motion. Hence, after correcting the displacements at infinity, the solution is zero,
which is again a consequence of the half plane being unrestrained. Hence, the complex function solution cannot

separate the influence of the uniform convergence from the vertical translation deformation modes (Figure 3.2).
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Figure 3-7 (Verruijt, 1997). The ratio Auy/u, > 1 means that the vertical displacement at the

tunnel invert is negative (i.e., downward movement), while the vertical displacement at the

crown exceeds the assumed uniform convergence u, by more than 100%. This situation can only

takes place for shallow tunnels (R/H>0.65) and Poisson ratios lower than 0.2, approximately.

Figure 3.8 illustrates the combined effects of uniform convergence and vertical translation

predicted for selected R/H and v parameters for an assumed uniform convergence of uIR = 0.4.

The effects of vertical translation become minor for deep tunnels (R/H = 0.2) in incompressible

soils. Figure 3.9 and 3.10 illustrate typical predictions of the horizontal and vertical ground

displacements (ux, u,.) for a tunnel with R/H = 0.5 and v= 0.25.

3.2.2. Pure Distortion

Chapter 2 showed that an anisotropic initial state of stresses (i.e., Ko # 1) in an infinite elastic

plane can be represented by the superposition of solutions for hydrostatic compression and a pure

distortion. The displacements at the tunnel wall, given by the elastic solution (equation {2-48})

due to the pure distortion in an infinite plane are:

u( )=0 u . cos(J ) {3-12a}

uC( )= u -sin(- ) {3-12b}

where us is the distortion parameter, which can be obtained from equation {2-47} or taken as an

input parameter, regardless of its origin and # is defined in Figure 3.11. The deformation mode,

defined by us is defined positive as indicated in Figure 3.11. These displacements are imposed as

a boundary condition at the tunnel wall in order to obtain the exact ground displacements in

correspondence with this deformation mode.

In order to expand {3-12} into a Fourier series, as required by the exact solution, the

displacements need to be expressed complex form. Hence, replacing equation {3-12} in {3-9}

and integrating yields:
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u,(f#)= U5 -e3 i.# {3-13}

The e-"' factor can be found by considering the complex vector decomposition in Figure 3.12,

where it can be readily seen that:

R-e =z+i H {3-14}

Hence,

e = -H
R

Finally;

u(f#)=

{3-15}

{3-16}
R

U z()i3)- iH

After mapping in the -plane by means of {3-5}, expression {3-16} becomes:

u (-) = us {3-17}
- i-

where a-o- = a-e represent the mapped coordinate ( at the tunnel boundary and a is given by

equation {3-6}. Hence, the Fourier coefficients are found as follows:
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l (1-ao)Ak 2-G -a -u. -9*i--o-- -d6 {3-18}
2 -;r f 0--ar

0

After evaluating the integral expression, the Fourier coefficients can be expressed as follows:

Ak = 2 -G . ut, -i -(k**) .0 -a Vk,<

AO =2.G-us -i-a (a-2) 13-19}
A, = 2-G -u, -i -a2

Ak =0 Vk > I

where a< 1.

At this point, it is important to remark that a has been defined as indicated in {3-6}, which is

slightly different from the original definition proposed by Verruijt (1997), and allows the square

root term to be either positive or negative in sign. This general definition would produce exactly

the same kind of conformal transformation, regardless of the sign. However, the convergence of

the Fourier series terms, given by equation {3-191, is only assured if a is less than unity, which

is fulfilled by the definition expressed in equation {3-61. The series converges in a few terms as

can be seen in Figure 3.13. The number of terms needed for the evaluation of the Goursat

functions is determined by the same convergence criterion used for the uniform convergence

problem. Results for different R/H ratios are shown in Figure 3.14. As for the case of a uniform

convergence boundary condition, the series converges faster for lower R/H ratios (i.e., deep

tunnels), being the absolute minimum number of terms needed dictated by the Fourier

representation of the displacement boundary conditions (which in this case is 2). As before,

Poisson ratio does not significantly affect the convergence rate.

Once again, the far field vertical displacements do not vanish and a rigid body vertical translation

correction is required (as in Section 3.1). The magnitude of this rigid body translation is smaller

than that obtained in Section 4.1 for the uniform convergence boundary condition. Figure 3 15

summarizes the correction as a function of R/H ratio and v. A significant influence of the Poisson
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ratio is again observed, with larger corrections occurring for higher Poisson ratios, in contrast to

the uniform convergence case.

Figure 3.16 illustrates the combined effects of pure distortion and vertical translation predicted

for selected RIH and v parameters for an assumed radial distortion u/R = 0.4. Figures 3.17 and

3.18 illustrate typical predictions of the horizontal and vertical ground displacements (u, uy) for

a tunnel with R/H = 0.5 and v= 0.25.

3.3. Approximate Solutions

Sagaseta (1987) proposed an approximate method for estimating the ground displacements by

representing the ground loss due to a line sink in an incompressible medium (i.e., v = 0.5) at

shallow depth. The solution method, outlined in Figure 3.19, uses the fundamental solutions for a

line sink (ground loss due to tunnel) in a full space. The stress-free ground surface is obtained by

superimposing solutions for i) an image sink, which cancels out the normal stress at the surface,

and ii) applying corrective surface shear tractions, T (in order to balance the stress component

that was not cancelled by the virtual image). This procedure is illustrated in Figure 3.19.

3.3.1. Uniform Convergence

This solution was first obtained by Sagaseta (1987) for the case of a contracting cavity in an

incompressible medium (i.e., v= 0.5) at shallow depth. This problem is often called "ground

loss" due to the fact that there is an amount of volume that is lost in the contraction, or "point

sink" due to its similarity with the fluid dynamics problem. The solution obtained is exact

provided the contracting cavity collapses to a point (i.e., the problem domain is a half plane

without a hole). In that sense, the solution is regarded as a "point solution". This solution has

found application in several geotechnical problems, yet its most remarkable contribution has

been in the analysis of ground deformations due to tunneling. Verruijt et al. (1996), following

Sagaseta's method, extended the solution for a general value of Poisson ratio.

71



Sagaseta obtained the displacement field due to the point sink and its image by starting from the

incompressibility condition and assuming that the direction of the displacement vectors was

radial from the point sink (i.e., a one-dimensional problem). The solution, thus obtained, is

independent of the constitutive model of the material, provided that it is incompressible.

Nevertheless, the solution is the same as the one discussed in Section 2.1. which considers the

displacements field due to a hole in an infinite pre-stressed medium subjected to isotropic

compression. Hence, both conceptual approaches are valid for the solution: i) the isotropic

compression due to a hole in an infinite pre-stressed medium and, ii) a contracting cavity.

The displacement field due to the line sink is given by:

x -R
u(X, )= U, - {3-20a}

X +(y+Hy

(y+H)- R
U (X, y) = u {3-20b}

X +(y+H f

where us is the radial convergence at the tunnel boundary (r = R). Equations {3-20} can also be

expressed in terms of the ground loss volume (VL ), which is related to the radial convergence as

follows:

U V {3-21}
*2-)7-R

The displacements field due to the negative mirror image (located at y = H, Figure 3.19) is:

u,(x, V) = -U, - , {3-22a}
x~ +(v-Hf

72



u,(x,y) U (yH).R {3-22b}
x +(y-Hy

By adding equations {3-20} and { 3-22} both the horizontal displacements and normal stresses at

the surface vanish. However, it should be noticed that the displacement field, resulting from the

addition of {3-20} and {3-22}, would be exact only for the case of a cavity which collapses into

a point (since each solution does not consider the presence of the cavity created by the other).

The unbalanced shear stresses, r, at the surface are calculated by the following classical

expression derived from theory of elasticity:

z, =G - + I {3-23}
ax ay j

Replacing equations {3-20} and {3-22} into {3-23} yields:

x)= -8- G -u- R -H - ?H {3-24}
(x" + H

Hence, in order to balance the shear stresses at the surface, a stress boundary condition opposite

to { 851 has to be applied at the surface. In order to evaluate the displacement field due to these

stresses, Airy's stress function (F) needs to be obtained by the following expression (Appendix

III):

F(x,y)= (m)- el' e"' -do {3-25}
2 -r fo th F

where Zxy(co) stands for the Fourier transform of the shear stress boundary condition, given by:
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Z ()=J 8-G-u -R -H - X+ -e-* -dx

f~(x 
2 + H 2

{3-26}

Equation {3-25} is the exact solution for the stress Function of a half plane (i.e., without a hole)

subjected to shear stresses at the surface (i.e., it is only exact if the cavity collapses into a point).

After the evaluation of the integral, equation {3-26} becomes:

%(a)= -4 -c. - o - i -G -u, -R -e-I"' H {3-27}

Hence, replacing equation { 3-271 in { 3-25} and evaluating the integral yields:

{3-28}F(x,y)=4-G-u,-R-y. , H-v
X +(y-Hy

In order to evaluate the displacements, equations {2-34} to {2-38} are used. For this problem, Q'
is given by:

Q,(x, y)= 8 -G -u, -R - { 3-29}
(y-Hy+x2

and the harmonic conjugate Q2 by2 :

{3-30}Q2(x,y)=16-G-uE R -x (y -H)

((y - HY +x2

74

2 ie Q 2 dx



Q1 +i.Q 2 =-8-Gu, - R

(z -i H)

Replacing {3-31 } in {2-351 and evaluating the integral yields:

q, + i -q=

{3-31}

{3-32}
8-G-uHR
z-i-H

After separating real and imaginary components of { 3-321 the following expressions are found:

{ 3-33a}q,=8-G-u -R- ,
X +(y-H

q 2 =-8.G-u- R {3-33b}(y-H)

x-)+ (y- HY

Differentiation of the Airy stress function (equation

coordinates:

F G
ax

{3-28}) with respect to the spatial

y-H
Ryx ( + (y -H f) { 3-34a}

{3-34b}
_F 2 H-)(y-H)- +H - -(y-HY]

-4yR2 (x2+(y-Hyf

Replacing equations {3-33} and {3-34} in {2-34} leads to the displacement field due to the

corrective shear stresses at the surface:
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U,(x,y)=4-u, -R {2+v).y (y{H)x } y 3-35a}
IX2+(y-Hy (x2+(y-Hff

H2(y-H)- x2 +H -[x2 -(y]-HY 2-(1-v).(y -3-35b
2+(y - Hf X2+(y - HYf

The final solution is found by adding equations {3-20}, {3-221, and {3-35}. Verruijt et al.

(1996) obtained the same solution by using a positive mirror image.

With this approach, a uniform vertical translation at the tunnel wall is also obtained, primarily

due to the negative mirror image. The vertical translation is defined as the vertical displacement

at the springline, Au,, the resulting expression is:

8- (1- v)- (1 - 2 v). - 3
Ati = 4. { 3-36}

4+ -
H

This result is in remarkably close agreement with the exact solution (Section 3.2.1.), as can be

seen in Figure 3.20.

Figure 3.21 summarizes deformations of the tunnel wall for different Poisson ratios and radius to

depth ratios. It can be seen that the deformed shapes are very similar to results presented

previously in Figure 3.8 using exact modeling of the tunnel cavity. The approximate solution

generates slightly higher displacements at the tunnel crown as can be seen in Figure 3.22, which

corresponds to the case of a shallow tunnel. Figure 3.23 and 3.24 illustrate typical predictions of

the horizontal and vertical ground displacements (ut, u,) for a tunnel with RIH = 0.5 and v=

0.25. It can be seen that the results are similar to those presented previously in Figures 3.9 and

3.10 using exact modeling of the tunnel cavity.
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It is important to notice the singular nature of this solution. If the tunnel radius tends to zero, but

keeping the amount of ground loss volume (given by equation {3-21}) finite, the displacement

field remains finite.

3.3.2. Pure Distortion

This solution was first obtained by Verruijt et al. (1996) using the same approach as Sagaseta

(1987) for the line sink. In this case, the fundamental solution used is the one corresponding to

the distortion of a circular hole in an infinite plane, derived in Section 2.2. Verruijt and Booker

(1996) used the far-field approximation for the fundamental displacement solutions, which

simplifies the mathematical expressions. In this work, the exact solutions are used for the

distortion of the unlined tunnel and its mirror image, while the far field approximation is used in

order to correct the shear tractions at the surface.

The displacement field due to the distortion of the unlined tunnel at depth H (equations {2-48 })
is given by (full space solution):

u]x,y)=u R -
3-4-v x2 +(y+H ]

{3-37a}

(X(yH)R )(3-4-v).x2+(y+ H y]-3-x2-(y+Hy]. x2+(y+Hy-R
3-4.v (x2 +(y+ HY]

{3-37b}

where ua is the distortion parameter. Assuming small displacements (i.e., u/IR << 1) the

distortion parameter can be related to the volume of the expansion at the tunnel springline

(Figure 3.25) as follows:
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W, =u-R 

This volume Wi is equal in magnitude and opposite in sign to the volume of the contraction at

the tunnel crown and invert (W2, Figure 3.25, assuming small displacements).

Following the method of Sagaseta (1987), the displacement field due to the negative mirror

image is:

R__ (3 -4.-v).[x2+(y -H2]2-[3.-(y --H -x2-.[x2+(y -H)K -- R2]
u (X, y) = -Us - - 3 xy(

3-4-v X2+(y - H y

{3-39a}

U R vH (3 -4 -v)-. + (y -H - [ -3 -x - (y - HY]- x +(y - H -RO
u,(x,Y)=u. -3 -( -- H)3-4-v (y+H-H)

{3-39b}

By adding {3-37} and {3-39}, the horizontal displacements and the normal stresses cancel out at

the surface (y = 0). It should be noticed that this direct superposition of the solutions neglects the

influence of the holes. Hence, the superposition is only exact for the case of an infinitesimal

tunnel.

The unbalanced tractions at the ground surface are calculated by replacing the equations {3-37}
and {3-39} into {3-23}:

16 -u, H- R -G x (x2 - H?). [2(x2+ H -3 R 3-40
3-4-v (x2+H 2Y

Assuming that H2 >> R 2, equation {3-40} reduces to:
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32-u*H-R-G-x x 2 -H 2  {3-41}

3-4-v (X2+H2

Hence, in order to balance the shear stresses at the surface, a stress boundary condition opposite

to {3-41} must be introduced at the surface. The displacements are evaluated by means of

expressions {2-34} to {2-37}, for which Airy's stress function needs to be evaluated as outlined

above (equation {3-25}).

The Fourier transform for the shear stress boundary condition at the surface for this case is:

32-uH)RG - -.X {3-42}
f 3-4-v (xT2 +H 2

After the evaluation of the integral expression, equation {3-421 becomes:

S8-u .7R-G _i. -w em|- H -1) {3-43}
3-4-12

Hence, replacing {3-43} in {3-251 and evaluating the integral, the Airy stress function is

obtained as:

F (x, y)= 825RG {[HY+ -3-44
3-4-v X2 +(y-Hyr

The displacements are obtained using the derivatives of the Airy stress function and harmonic

functions Q, and Q2, as indicated in {2-34}. For this problem, Q, is given by:
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Q 16-u-R. -G H +2-Hy - -H 2 )+6.X2 -H-(y-H

[x2+(y- H J

Its harmonic conjugate Q2 by:

32- uS- R -G

3-4-v

2-H .(H2 -x 3 2 + Y. (x2 +V2)

and the sum, QI+i-Q2:

Replacing equation {3-46} in {2-35} and evaluating the integral we obtain:

q, + i -q,=
16-u 5-R-G [ i -H I

3-4-v 1 1-i-H (z-i-Hf

After separating real and imaginary components of { 3-47 }, q, and q2 are found as:

16 -u8-R-G
q 3-4-v

16-u- R -G
q2 = 33-4-v

x X2 +y H2?

12(x2+(y - 2H} {3-48a}

{3-48b}
x2 -(2- H - y)- y -(y - H

I2G?- , y]

Differentiation of the Airy stress function (equation

coordinates yields:

{3-44}) with respect to the spatial
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Q2 {3-45b}

Q, + i - Q2 =
16-u -R-G z+i-H

3-4-v (z-i-Hf
{3-46}

{3-47}

IX2 +(y -H Y

35-4-v V



aF 16-u3- R-G * ** y-(x2+y2)+2.H -(H2 _X2)3.y-H 2 3-49a
ax 3-4-v 2 +(y-HYj 3

3F =16-u-R.G (y-H)-H -y-(y-H _ x2.[(X2+y2)+H -+H)% (49)
ay 3-4-v [X2+(Y H y3

Replacing equations {3-49} and {3-49} in {2-34} produces the displacement field due to the

corrective shear stresses at the surface:

8 uU -H y-x+ y")++2- H -( ,)3- y -Hu = - x) -(1-v)-x.y. 3
3-4-v X2 + (y-HY] Ix2 +(y- HY

{3-50a}

x 2-(2-H- -y)-y-(y-Hy2* ( H y) v.v~H2 -(-v)-...1

8-u15-R x 2 +(y-Hy ) 1-0
u= {3-50b}{ [x2±&~HX]2 [(2 + +

3-4-v (y -H). -y -(y - H Y + H. (y+H)

x 2+(y-H] H

The final solution is found by adding equations {3-37}, {3-39}, and {3-50}. Verruijt and Booker

(1996) obtained similar expressions by using a positive mirror image. However, Verruijt et al.

used the far field approximation for the image and its mirror image and defined a relative

ovalization parameter (3) which is related to the distortion parameter (us) as follows:

us 4.(1-v ){3-51}
R 3-4-v

With this approach, a uniform vertical translation at the tunnel wall is also obtained (primarily

due to the negative mirror image). The vertical translation, Auy, is defined as the vertical

displacement at the springline, the resulting expression is:
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R + I1 ) .R 2
Au~ - 2 R(1-8-v).~-J+(11-8-v)-4-- -32 {-2AUV 2 R H fH

= - . - 3{3-52}
uS 3-4-v H R

H

which is again in close agreement with the solution for the exact geometry as shown in Figure

3.26 except for very shallow tunnels with R/H >0.75 and v= 0.5.

Deformed tunnel walls for different Poisson ratios and R/H ratios are shown in Figure 3.27. It

can be seen that the deformed shapes in correspondence to the approximate solution are in good

agreement with the ones in correspondence to the exact tunnel geometry (Figure 3.17), especially

for the case of deep tunnels. The approximate solution generates higher displacements at the

tunnel crown, as can be seen in Figure 3.28 for the case of a shallow tunnel. Typical ground

deformation patterns are shown in Figures 3.29 and 3.30. These patterns will be discussed in a

subsequent chapter.

It is important to notice the singular nature of this solution. If the tunnel radius tends to zero, but

keeping the amount of contracting volume at the sides of the tunnel (given by equation {3-38})

finite, the displacement field remains finite.

3.4. Comparison of Displacement Solutions for Shallow Tunnels

The previous Sections 3.2 and 3.3 have presented two sets of analytical solutions for shallow

tunnels, the first modeling the exact circular tunnel geometry (with radius R) and the second

assuming that the problem can be approximated by point/line solutions. This Section compares

results from both exact and approximate solutions in order to assess whether the simpler

approximate solutions can be applied in order to model ground displacements around tunnels.
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3.4.1. Uniform Convergence Mode

Figures 3.32 to 3.49 summarize comparisons of ground displacements around a shallow circular

tunnel for selected embedment (R/H) and Poisson ratios (v). In all cases, the vertical

displacements are symmetric with respect to the y-axis, while horizontal displacements are anti-

symmetric. The ground displacements distribution-but not their magnitude-evaluated by

means of the approximate solution do not depend on the R/H ratio, since the displacement field is

given by a function of the dimensionless coordinates x/H and y/H multiplied by R/H.

3.4.1.1. Horizontal Displacements

A uniform contraction (i.e. negative ue) along the tunnel wall, plus the corresponding vertical

translation, causes horizontal ground movements towards the tunnel. The horizontal

displacements at the surface are given by:

x

u . =4-(1-v)- R H {3-53}
uE H X

H

This equation implies a maximum inward displacement at x = ±1H, independent of the Poisson

ratio. The maximum horizontal displacement, evaluated by the approximate solution, is given by:

xI = 2 R( -V) {3-54}
uE H

Increasing the Poisson ratio has the effect of a faster attenuation of the horizontal displacements

with distance, thus reducing the horizontal displacements at the surface.

Similar horizontal displacement patterns are given by both the exact and simplified solutions.

However, the approximate solution, predicts slightly higher horizontal displacements (up to
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20%) than the exact solution for the case of shallow tunnels (i.e. RIH = 0.7), especially at points

near the surface.

3.4.1.2. Vertical Displacements

A uniform contraction along the tunnel wall, plus the corresponding vertical translation, leads to

downward displacements everywhere, except in an approximately circular region with a center at

y = ye and radius Rc where:

vC - 2-(1-v)+1+ l+4.(1-vY {3-55a
H 4.(1-v)

R 1+4-(1-vY -(1-2.v)
(I -) {3-56b}

H 2-(1-v)

These equations have been derived by means of the approximate solution, hence the R/H ratio

has no effects. However, both exact and approximate solutions show the same zone of heaving,

defined by equations {3-55}. Increasing the Poisson ratio has the following effects:

e The heaving zone is increased, since the vertical translation decreases (Figure 11).

" There is a larger attenuation of displacements with distance, leading to smaller vertical

displacements at the surface.

There is a critical radius to embedment ratio (function of Poisson ratio) for which the heaving

zone lies inside the region occupied by the tunnel. Hence, if the R/H ratio exceeds this critical

ratio, there is no heaving associated with the contraction of the tunnel. The critical R/H ratio is

given by:
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R

H
{3-571(2 -V -1)+ 1+4 -(1 - v)

2 -(1-v)

Equation {3-57} is plotted in Figure 3.31, where it can be seen that for realistic tunnel

embedment (i.e., R/H<0.7) there is always a heaving zone for v> 0.1.

The vertical displacements at the surface are given by:

u R 1
=4-(1-v). - 2 {3-58}

u H x
+1

The maximum surface displacement occurs at:

UE

R
=4. .(1-V)

H
{3-591

Hence, the maximum vertical displacement is two times larger than the maximum horizontal

displacements. This is also observed in the results obtained by the exact solution.

The area (D) enclosed by the original surface and the deformed settlement trough can be

evaluated using the approximate solutions, assuming only vertical displacements contribute to

this area, given by:

D =4-;z -*u -R -(I - v) {3-60}

Equation {3-601, together with {3-21}, indicate that the amount of ground loss at the surface (D)

is equal or bigger than the amount of ground loss at the tunnel wall (V). For the undrained case

(i.e. v = 0.5), S2= V, while for v = 0, S2 = 2-V. This was pointed out previously by Verruijt and

Booker (1996).
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Similar vertical displacement patterns are given by both the exact and simplified solutions.

However, the approximate solution, predicts higher vertical displacements (up to 50% at the

surface) than the exact solution for the case of shallow tunnels (i.e. R/H = 0.7), especially at

points near the surface. This difference is reduced with increasing Poisson ratios.

3.4.2. Pure Distortion Mode

Figures 3-50 to 3.67 summarize approximate and exact predictions of ground displacements for

the pure distortion of the tunnel wall at the same selected R/H and v parameters. As for the

previous case, vertical displacements are symmetric with respect to the y-axis, while horizontal

displacements are anti-symmetric. In this case, the ground displacements evaluated by means of

the approximate solution do depend on the R/H ratio since the displacement field is given by a

function of the dimensionless coordinates x/H, y/H, and R/H, multiplied by R/H.

However, if the far field approximations are used (following Verruijt and Booker., 1996), this

dependence is lost, since the displacement field is given by a function of the dimensionless

coordinates x/H and y/H, multiplied by R/H.

3.4.2.1. Horizontal Displacements

A positive distortion at the tunnel wall leads to:

e Inward movements in an approximately triangular zone bounded by a horizontal line from (x

= 0, y = 0) to (x = ±H, y = 0) approximately, and a line from (x = 0, y = 0) to a point at the y

axis which depends on the R/H and Poisson ratios. This point is near the crown for v= 0.5,

and is moved upwards with decreasing Poisson ratios. Increasing R/H ratios have the same

effect.

" Inward movements occur in an approximately parabolic area underneath the tunnel invert.

The vertex of the parabola is located at the y axis at a certain distance from the tunnel invert

wich decreases with increasing Poisson ratio. This distance is approximately equal to R for v

= 0.25, and is approximately zero for v = 0.50. The distance between the vertex of the
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parabola and the tunnel invert increases with increasing R/H ratio. The parabola tends to

open with increasing Poisson ratio, hence leading to a larger area of inward movements.

* Outward movements at the entire ground, with the exception of the areas mentioned above.

Horizontal displacements attenuate less with distance with increasing Poisson ratios.

The surface displacements distribution, evaluated by the approximate solution, do not depend on

R/H or v. However, the magnitude of the displacements do depend on the embedment and

Poisson's ratios. The surface displacements, evaluated by the approximate solution, are given by:

u,(x) - 2 R 4- (1-v) H 3-61

u1 H 3-4-v ~

H

The maximum horizontal displacement at the surface is then obtained as:

u V-_=+ R 2 -(1- v) {3-62}
u5 H 3-4-v

occuring at the point:

- 1 T_ {3-63}
H

Hence, the maximum inward movement at the tunnel surface (at x/H = ±0.4142) is equal in

magnitude and opposite in sign to the maximum outward movement (at x/H = ±2.4142).

However, the exact solution does not show this symmetry of maximum-minimum values. To the

contrary, for very shallow tunnels (i.e. R/H = 0.7), the exact solution predicts that the maximum

inward movemert is close to zero, thus leading to a zone of almost no horizontal displacements at

the surface.

87



Nevertheless, similar horizontal displacement patterns are given by both the exact and simplified

solutions. The approximate solution, predicts higher horizontal displacements than the exact

solution for the case of shallow tunnels (i.e. RIH = 0.7), especially at points near the surface. This

difference is increased with increasing Poisson ratios, especially for very shallow tunnels.

3.4.2.2. Vertical Displacements

A positive distortion at the tunnel wall leads to:

* Downward displacements in an approximately rectangular area delimited by two horizontal

segments from (x = -H, y = 0,-1) to (x=0, y=O,-1) and two vertical segments from (x = 0,-1, y

= -I) to (x = 0,-I, y = 0). Increasing Poisson ratios tend to distort this rectangular area, and

increase the downward movement zone.

* Upward displacements at the entire ground, with the exception of the above mentioned

rectangular area.

The surface displacement distribution, evaluated by the approximate solution, does not depend

on the R/H and Poisson ratio. However, the magnitude of the displacements do depend on the

RIH and Poisson ratio. The surface displacements, evaluated by the approximate solution, are

given by:

-l + -( 1-3-
uW=x R 4-(1-v)_ H 4-(1-v) H H

US H 3-4-v 2  j3

+1Hf

{3-64}

where it can

displacements

displacements

readily be seen that the RIH and Poisson ratios do affect the distribution of

at the surface. However, if the far field approximation is assumed, the

at the surface are given by:
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2 R
H

- -1
4- (1v) H 2

3-4-v ~ - 2

-- +1

{3-65}

where it can be seen that the RIH and Poisson ratios do not affect the distribution of

displacements at the surface. This expression is also given by Verruijt and Booker (1996).

Equation {3-65} generates a minimum value (i.e. a maximum surface settlement) at x=O, given

by:

u """-2 R 4.(1-v)
u15 H 3-4-v

1 1

4.(1-v)

R

H

If the far field approximation is used, equation {3-66} can be simplified as follows:

um = -2- R 4-(1-v)

Us H 3-4-v

{3-66}

{3-67}

Conversely, there is also a maximum value (i.e. a maximum surface heave) at:

x

Hf

3

4-(1-v) H

1

2. 1-v

R

H

If the far field approximation is used, equation { 3-681 can be simplified to:

- 3~ -
H

The maximum value of the vertical displacement is given by:

{3-68}

{3-69}
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u, R 32.(1-vy

u5 H 3-4-v

R 2R 4 R 2 R4

H)+8-(1-v) +8- -- + 3- H -8-(1-v).- 64-(1-ivy+9- --

3.( R +8-(1-v)+ F64--,vy+9-
H H

{3-70}

which can be simplified by using the far field approximation as follows:

UJ _ R 1- v {3-71}
us H 3-4-v

By comparing equations {3-71} and {3-67}, it can be seen that the maximum heaving is

approximately (since the expressions correspond to the far field approximation of the

approximate solution) one half of the maximum settlement.

Similar vertical displacement patterns are given by both the exact and simplified solutions. The

approximate solution, predicts higher vertical displacements than the exact solution for the case

of shallow tunnels (i.e. R/H = 0.7), especially at points near the surface. This difference is

increased with increasing Poisson ratios, especially for very shallow tunnels.

3.4.3. Conclusions

Both exact and approximate solutions give similar ground displacement patterns due to both

uniform convergence and pure distortion modes. For very shallow tunnels (i.e., R/H > 0.45) the

magnitudes of the ground displacements evaluated by means of the approximate solution differ

from the ones corresponding to the exact modeling of the tunnel geometry. Nevertheless, for

deep tunnels (i.e., R/H < 0.45), the difference is negligible for practical purposes.
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In order to model ground displacements due to very shallow cavities (such as the Rio Piedras

Station in the Tren Urbano), the complex variable solution can be used in order to obtain more

realistic results. However, for deep cavities (such as grouting activities and the Twin Bored

Tunnels of the Tren Urbano) point solutions should be used, since they are much simpler and the

results do not differ (for practical purposes) from the ones corresponding to the exact modeling

of the tunnel geometry.

3.5. Relative Distortion

This Section considers the ground displacement patterns due to a combination of a uniform

convergence and distortion (and the associated vertical translation). The relative amount of

distortion and uniform convergence is given by the relative distortion parameter, p, defined in

equation {2-531. If the surface effect and the gradient of stresses with depth are neglected ,

elastic theory indicates that this parameter is a function of K0, Poisson's ratio, the pore pressure

ratio, r, and the inner pressure ratio r,.

The inner pressure arises due to the compression of the lining (in the drained and undrained case)

and/or injection pressure of the grouting in the tail void (undrained case). The pressure is

assumed to be uniform, since the lining is much stiffer when compressed isotropically due to the

ring effect, which is controlled by the axial stiffness, in contrast to the distortion, which is

controlled by the bending stiffness. The sign of the relative distortion parameter, as evaluated by

means of elasticity theory, is controlled mainly by the Ko value (p negative for Ko > 1). Hence, it

would be expected that only highly overconsolidated deposits (i.e., OCR > 4) would show

negative p values.

Figures 3.68 to 3.85 show the normalized ground displacements for R/H = 0.2-0.7, p = -0.5, 0.5

and 1.0, and v= 0.25. It can be seen that the difference between the results obtained by means of

the exact and approximate solutions is small. However, the difference increases for very shallow

tunnels, especially in the region above the tunnel springline, as discussed in Section 3.4.

3 Sagaseta (1999), using Verruijt's (1996) solution for the case of a shallow tunnel in an isotropically pre-stressed
elastic half plane, has shown that a distortion component also arises from the stress free surface effect. This is
explained by the fact that the spring constants along the shallow tunnel wall are non-uniform.
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Increasing the relative distortion has the following effects:

e The vertical displacements at the surface have a faster attenuation with distance, hence

leading to a narrower width of the settlement trough (i.e., uy at the surface vs. x). This effect

is stronger at low relative distortions.

" The magnitude of the vertical displacement at x = 0, y = 0 is increased.

" The horizontal displacements at the surface have a faster attenuation, producing a narrower

horizontal displacement trough. This effect is much more noticeable at low relative

distortions.

e The magnitude of the horizontal displacements at the surface are slightly reduced for

negative p and increased for p > 0.

" The ground vertical displacement patterns change dramatically in the region of p < 0 (e.g.,

Figure 3.69 vs. Figure 3.71), whereas there is a less dramatic change on the region of p > 0

(e.g., Figure 3.71 vs. Figure 3.73).

" The ground horizontal displacement patterns change dramatically. If a contraction at the

tunnel wall is considered (i.e., negative us), the inward movements near the sides of the

tunnel are decreased, leading to a lateral expansion zone for p > 0.8 (e.g., Figure 3.71 vs.

Figure 3.73).

3.5.1. Effects of Relative Distortion on Surface Displacements

This Section studies the effects of p, v, and R/H on the surface displacements. In order to present

results in simple equations, the approximate solutions will be used. Nevertheless, it has been

show in previous Sections that both exact and approximate solutions show similar results for

deep tunnels (i.e., R/H < 0.7). However, if a more refined evaluation of ground displacements is

needed, the exact solutions can be used.

The effects of relative distortion on the surface displacements will be studied by means of

examining its influence on the following:
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* General features

e Vertical displacement at x=O (uy)0

e Maximum horizontal displacement (u,""")

e Width of the settlement trough

3.5.1.1. General Features

The surface displacements are given by:

-2-p - f + +1

eH HHu R x 3-4-v H H
-1 4 -- v). -

uE H H
+1

H

-2-p x _ 1 -3 -1 -( + +1
3-4.v H 4-(1-v) H H H

uE H

H

{3-72b}

From these equations it can be noticed that:

* Poisson ratio affects both the magnitude [due to the term 4.(l-v)] and distribution of vertical

and horizontal displacements [due to the term (3-4- v) for the case of the horizontal

displacements and due to both (3-4.v) and 4-(1-v) terms for the vertical displacements].

e The R/H ratio affects the magnitude and distribution of vertical displacements. However it

only affects the magnitude of horizontal displacements, but not their distribution. The

horizontal displacements are linear in R/H.
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It should be noticed that in order to balance the shear stresses at the surface for the pure

distortion case, the far field approximation has been used for the point and its mirror image. This

involves the approximation that, at the surface, the term (r/R)3 has a negligible influence. If the

far field approximation is used for the point and its mirror image, equation {3-72b } becomes:

-2p - + +
u R 3-4-v H H

S4. (1 - v)- -3-73}

+1
H

It can readily be noticed that if the far field approximation is used for the point and its mirror

image, the R/H ratio does not affect the distribution of the vertical displacements. It can also be

noticed that the vertical and horizontal displacements at the surface are related as follows:

X
Ux = -u {3-741

H '

Hence, in the region where -H < x < H, the vertical displacements are larger than the horizontal

displacements, and the horizontal displacements are larger than the vertical displacements

elsewhere.

3.5.1.2. Vertical Displacement at x = 0

The vertical displacement at x = 0 ,u,., is given by:

u. 4.(1-v) R { R
2-p- 1- - +3-4-v {3-75}

U 3-4-v H 4-(1-v) H

If the far field approximation is used for the point and its mirror image, u, can be expressed as

follows:

94



u* 4. (1-v) R {3-76)
u, 3-4-v H

Figures 3.86 to 3.87 show the effects of v, p and R/H in uY0 using both approximate and far field

solutions. It can be seen that increasing v reduce the vertical displacement uf0, while increasing

RIH and p has the effect of increasing the vertical displacement u)0 . The results obtained by

means of the far field approximation are very close to those given by the approximate solution,

especially at low embedment ratios, R/H.

3.5.1.3. Maximum Horizontal Displacement

The absolute maximum horizontal displacement occurs at:

x1 + j32. p2 +98. (3- 2 -v)-6. p 377
H 3 -4 -v - 2- p,

From which it can be seen that x2 is a function of the relative distortion and the Poisson ratio.

Figure 3.88 shows the influence of relative distortion p on the location of maximum horizontal

displacement. It can be seen that an increase in the relative distortion has the effect of decreasing

the location of the maximum horizontal displacement. For p = 0, xV/H = 1. The value of xl/H

increases for p < 0 and higher Poisson ratios, and decreases for positive values of p and smaller

Poisson ratios. For very large relative distortions, the location of the maximum horizontal

displacements tends to a constant value, which is independent of Poisson ratio and is given by

{3-63}.

Figure 3.89 shows the value of the absolute maximum displacement, u,"'/u,, for different p and

v values, where advantage has been taken of the fact that the horizontal displacements are linear

in R/H. It can be seen that the absolute maximum horizontal displacement increases with

increasing absolute values of relative distortion. Poisson ratio has a strong influence, being the

absolute maximum horizontal displacement larger for lower Poisson ratios.
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3.5.1.4. Width of the Settlement Trough

Equation {3-72b} shows that the width of the settlement trough is affected by v, p and R/H.

However, if the far field (equation {3-73 }) approximation is used, R/H does not affect the

settlement trough shape. Hence, it can be expected very little influence of RIH on the width of

the settlement trough.

Vertical displacement distributions for different R/H ratios are shown in Figure 3-90, where it

can be seen that R/H has indeed very little influence for positive relative distortions. Figure 3-91

shows the vertical displacement distribution for different Poisson ratios, from where it can be

seen that Poisson ratio does affect the surface settlement distribution. Increasing the Poisson ratio

has the effect of decreasing the width of the settlement trough. Figure 3-92 shows the vertical

displacement distribution for different relative distortion parameters. In these curves, p has a

very strong influence on the width of the settlement trough, producing a narrower trough at

higher p ratios. It can also be seen that the maximum vertical displacement does not occur at x=0

for negative p values.

Figure 3.93 shows horizontal displacement distributions for different Poisson ratios, from where

it can be seen that v has a strong influence at the far field (i.e., tx/HI > 1). Increasing Poisson

ratios leads to a larger attenuation of the horizontal displacements with distance. However, its

influence is negligible in the near field. Figure 3.94 shows horizontal displacement distributions

for different relative distortions, from where it can be seen that p has a strong influence.

Increasing relative distortion leads to a faster attenuation of the horizontal displacements with

distance. However, if only positive relative distortions are considered, its influence is negligible

at the near field.
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3.5.2. Effects of Relative Distortion on Horizontal Displacements on a Vertical Line Inside

the Ground

This Section considers the effects of the parameters p, v, and RI/H on the horizontal

displacements along a reference vertical line at x=2-R. The vertical line could represent an

inclinometer installed near the tunnel.

Figure 3.95 shows the influence of R/H ratio on the normalized horizontal displacements,

u/ux'), where u, xO) is the horizontal displacement at the surface. It can be seen that deeper

tunnels (R/H = 0.2) show more pronounced inward movements at the springline elevation. It can

also be seen that the far field approximation shows slightly different results, especially at the

tunnel springline.

Figure 3.96 shows the influence of Poisson ratio, where it can be seen its variation strongly

affects the magnitude of the horizontal displacements, especially at the tunnel springline. As for

the previous case, the far field approximation shows slightly different results, especially at the

tunnel springline.

Figure 3.97 shows the influence of p, where it can be seen that it has a strong influence on the

horizontal displacement distribution. The horizontal displacement at the tunnel springline and at

the surface have opposite signs for high relative distortions (p = 1). The far field approximation

over-estimates the horizontal displacement at the springline for p < 0 and under-predicts it for

p > 0 .
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Figure 3.2. Basic deforming modes for tunnel wall (after Sagaseta, 1999)
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Figure 3.3. Conformal mapping (after Verruijt, 1997)
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Figure 3.4. Uniform Convergence, definition of u,
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Figure 3.7. Springs constants along tunnel wall, R/H = 0.5 (Verruijt, 1997)
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Figure 3.13. Fourier coefficients (equation {3-19})
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Figure 3.17. Surface displacements, R/H = 0.5, v= 0.25
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Figure 3.23. Normalized surface displacements. R/H = 0.5, v = 0.25
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Figure 3.39. Ground displacements due to uniform convergence mode, R/H = 0.45, v= 0.00
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Figure 3.45. Ground displacements due to uniform convergence mode, R/H = 0.70, v= 0.00
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Figure 3.48. Surface displacements due to uniform convergence mode, R/H = 0.70, v= 0.50
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Figure 3.53. Ground displacements due to pure distortion mode, R/H = 0.20, v= 0.25
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Figure 3.55. Ground displacements due to pure distortion mode, R/H = 0.20, v= 0.50
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Figure 3.57. Ground displacements due to pure distortion mode, R/H = 0.45, v= 0.00
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Figure 3.59. Ground displacements due to pure distortion mode, R/H = 0.45, v = 0.25
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Figure 3.61. Ground displacements due to pure distortion mode, R/H = 0.45, v= 0.50
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Figure 3.62. Surface displacements due to pure distortion mode, R/H = 0.70, v= 0.00
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Figure 3.63. Ground displacements due to pure distortion mode, RIH = 0.70, v= 0.00
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Figure 3.65. Ground displacements due to pure distortion mode, R/H = 0.70, v= 0.25
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Figure 3.66. Surface displacements due to pure distortion mode, R/H = 0.70, v= 0.50
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Figure 3.67. Ground displacements due to pure distortion mode, R/H = 0.70, v= 0.50
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Figure 3.68. Surface displacements, R/H = 0.20, p = -0.5, v= 0.25

V

Figure 3.69. Ground displacements, R/H = 0.20, p = -0.5, v= 0.25
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4. Influence of Tunnel Geometry. Rectangular Drift

This Chapter investigates the effects of tunnel geometry on the ground displacement field by

analyzing the behavior of a rectangular tunnel in an elastic half-plane. This analysis method

considers the displacement field due to an arbitrarily shaped cavity that collapses into a line

(similar to the approximate model proposed by Sagaseta, 1987). The solution is obtained by

means of integrating the Green functions (defined as the displacement functions due to a unit

volume cavity contraction/expansion) over the line to which the cavity collapses. It should be

noticed that this is an exact approach, since the Green functions are exact in the differential level

(i.e., infinitesimal cavity contraction). However, its application for ground deformation analysis

due to a deforming rectangular drift is approximate. The geometry of the drift is exactly

represented, but the displacement field is constrained by the Green functions.

The displacement field due to an equivalent distortion could also be modeled by assuming that

the net volume change is zero, i.e., superimposing a cavity contraction and an expansion.

However, this seriously under-predicts the effects of the distortion component, since the obtained

solution will not be singular (Sections 3.3.1 and 3.3.2) in the sense that if the distance between

the cavities is reduced to zero (i.e., a point solution), but keeping the volume

expansion/contraction finite, the displacement field vanishes at the far field. Hence, in order to

take into account the distortion effect-due to Ko # 1-the point solution for the pure distortion

case (given in Section 3.3.2) should be used.

4.1. Green Functions due to a Cavity Contraction/Expansion in an Elastic Half-Plane

The analytical expressions describing the distribution of displacements due to a

contracting/expanding cavity embedded at depth H in an elastic half-plane can be written as (see

Section 3.3.1):

U.(y)- f(x,y,H) {4-la}
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V
u,(xy)- g(x,y,H)

2-
{4-lb}

where V is the ground loss volume and f(x,y,H), g(x,y,H) are continuous functions given by the

following equations:

f(x,y,H)=

g(x, y,H)=

x x

x2 +(y+HY x2+(y-H )+ j

+4 (1 -v)- x _(y - H).x -y

x + +(y-H [Xf x +(y-H t_

(y + H) (y - H +
x +(y+Hf x 2 +(y-H 2

-(y-H)-x +H. -[x-(y-H 2-(1-v)-(y-H)

Ix2?+ (y- HY ]2 x )+ (y -HY

If the cavity has an arbitrary position (X, Y), equations {4-1} become:

V
u, (x, y, X, Y)=V f (x - X, yV,-Y)

V
uHe, (x X,eY) g(x- X, y,-Y)

2 -;z

Hence, the Green functions, T, and 1,, are:

F,(x, y, X,Y) =
1

2 i f (x - X, y,-Y)

T (x, y, X, Y) - gx - X, y,-Y)
2 -;z
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where f and g are given in equations {4-21. The displacement field due to an arbitrary shaped

cavity contraction can be obtained by integrating the Green functions over the line to which the

cavity collapses, as illustrated in Figure 4.1. The displacements due to the contraction are given

by equations {4-5}.

u, (x,y)= IF,x,y,X(s)Y(s)}e(s)- + .ds {4-5a}

S

Sf

u,(xy)= F,{x,y,X(s)Y(s)-e(s)- f +(ayf -ds {4-5b}

S

where s is a parametric coordinate (i.e., s'=0 and s=1), X(s) and Y(s) describe the geometry of the

line, and e(s) is the local thickness of the cavity. Hence, equation {4-5} is the general solution of

the distributed ground loss problem for a given cavity geometry, i.e., given e(s), X(s), and Y(s).

4.2. Uniformly Distributed Ground Loss Along a Rectangular Line

The problem is outlined in Figure 4.2, where it can be seen that u, is defined for this case as the

half-thickness of the cavity. For the sake of convenience, this problem is subdivided into four

sub-problems corresponding to the two horizontal segments (indicated as 1 and 2 in Figure 4.2)

and two vertical segments (indicated as 3 and 4 in Figure 4.2)

The functions that define the cavity geometry [i.e., e(s), X(s), and Y(s)] for each segment are

summarized in Tables 4.1 and 4.2 for the horizontal and vertical segments, respectively. Once

these functions are established, the displacement field due to the ground loss distributed over the

segment in consideration is found by means of equations {4-5 }. Results are summarized in

Tables 4.1 and 4.2 for the horizontal and vertical segments, respectively. The parameters that

appear in the aforementioned equations are defined as follows:
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D
a, = --

2

b =y-H-

B
c =x+-

2

B

2

a2 = y + H

D

2

{4-6a}

{4-6b}

{4-6c}

{4-6e}

{4-6f}

{4-6g}

{4-6h}

+DE

Db2 =y-H +-
2

k =3-4-v

The final solution for the rectangular drift is found by adding the contribution of each individual

segment.

4.3. Comparison of Displacement Solutions

Figures 4.3 to 4.12 summarize the comparison between displacement fields for the uniformly

distributed ground loss along a rectangular drift (Section 4.2) versus an equivalent point/line sink

solutions (i.e., having the same total volume of ground loss) located at the center of the drift, for

different embedment, D/2H, and aspect ratios, BID. It can be seen that both solutions show quite

similar results in the far field, especially for deep (i.e., D/2H < 0.45) square tunnels (i.e., BID =

1). However, the difference increases for the case of shallow (i.e., D/2H = 0.7) and rectangular

152



tunnels (i.e., BID # 1). It can also be seen that the distributed ground loss solution provides a

more correct representation of the displacement singularities at the corners of the drift.

Figures 4.13 and 4.14 show comparisons between the settlement troughs predicted by distributed

ground loss and point/line sink solutions for different embedment, D/2H, and aspect ratios, BID,

respectively. It can be seen in Figure 4.13 that the shallow tunnels (i.e., D/2H < 0.45) produce

very similar shapes of the settlement trough to the equivalent point/line solutions (which produce

a settlement trough shape independent of the embedment ratio when plotted against the

normalized coordinate x/H). It can also be seen that the distributed ground loss solution predicts

wider settlement troughs for shallow tunnels. Figure 4.15 shows that the aspect ratio, BID,

modifies the width of the settlement trough predicted by the point/line sink solutions. The

distributed ground loss solution predicts narrower troughs for BID < 1 and wider for BID > 1.

However, if nearly square tunnels are considered (i.e., BID ~ 1), the trough shape can be fairly

well approximated by point solutions.

Figures 4.15 and 4.16 show comparisons between the horizontal displacements at x = 2 -Reg

(where Req is the equivalent radius of the drift,R = B D ) predicted by distributed ground

loss and point/line sink solutions for different embedment, D/2H, and aspect ratios, BID,
respectively. Figure 4.15 shows that the point/line sink solution predicts very similar results to

the distributed ground loss solution, regardless of the embedment ratio, D/2H. The difference

between both solutions is about 3% at the tunnel springline. It can be seen in Figure 4.16 that the

distributed ground loss solution predicts higher horizontal displacements than the point/line sink

solutions at the tunnel springline for BID > 1 and lower for BID<l. The difference ranges from

-20% for BID = 0.5 to +10% for BID = 2.

4.4. Conclusions

This Chapter has shown that the influence of the tunnel drift geometry is confined to a region

very close to the tunnel wall. As plastic behavior is very likely to take place in the region where

both solutions show considerable differences (i.e., near the tunnel, Chapter 5), either solution
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would lack accuracy in that region. Hence, point solutions can be used in order to model the far

field distribution of ground movements around a rectangular drift. This conclusion can be

extended for geometries other than rectangular.

In order to model a stacked drift construction, as the Rio Piedras cavern in the Tren Urbano

Poject, point/line sink and distortion solutions can be used in order to model the displacement

field associated with each individual drift. The displacements produced after excavation of the

core material (i.e., the soil inside the cavern) can be modeled either by point/line solutions (or

functions of complex variables if the cavern is very shallow) considering the stacked drift as an

equivalent circular tunnel.
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e(s) Displacements

u (xy)= u n c2+b c2+a 8-B-b- y-x

Ue ~ 2 -t d- +b d +a (d + b C2+

u(x,Y)=e {tan -- tan { J+ tan -tan - K+ ( 2  cbd-2  }
u (x,) 2 +b c2 8-B-b 2 -y x

2-gc d-+b) d d2 +b c2 +b2

u,(xy -) tan- tan , + tal tan -, +
Tae 4. Dipac +suo du tCo hb 2ots

Table 4. 1. Displacement solutions due to horizontal segments
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Seg. X(s) Y(s) e(s) Displacements

tan-' -tan- .2 + tan_1- a2 -tn_ - + .

u, (Xy)= - -Y7 2 -

1T + c+y2 Y c2 b2 c -+b

B- -H+D- s--|Iti -[2+ 2  -. ~h3 2 u2 22 c2 +a2 c2+b2

uE In c 2+a, c 2+b]

A) 2. 4-y (c2-y-b
2 ).(y-b 2 _(c2 y b)(y -b

C2 + y2 c2 +b2 c2+b 2

tan-K tan+ tan {aj.

4-_ a, +2- y y2-b y2-b. tan-' + -

B ~ ~ d d _( 1 +y-1, d 2+b: d 2+ b,

2 2d2+a d2+

Ul(,Y = ui d 2+a, 22+b 2 _

uK (xy) . (y -b)
2 .x + - y (d2 - y b2. (Y - b2) (d2 y - - b

d 2+y2 d/2+ b| d 2 + b

Table 4.2. Displacement solutions due to vertical segments
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5. Influence of Soil Plasticity

This Chapter focuses on the effects of plastic behavior on the displacements around a cylindrical

cavity in a half-plane. Section 5.1 discusses an exact analytical plastic solution obtained by Yu

and Rowe (1998) for the case of a cylindrical cavity in an isotropically (i.e., Ko = 1) pre-stressed

infinite plane. By comparing predictions for elastic and elasto-plastic displacementsit is possible

to modify the elastic solutions in order to account for a local zone of plastic failure near the

tunnel wall. Section 5.2 discusses an approximate solution given by Gonzales (1999) in order to

include the effects of plastic behavior for the case of shallow tunnels in an anisotropically (i.e.,

Ko # 1) pre-stressed half-plane.

5.1. 2D Deformation Analyses for a Deep Circular Tunnel in an Infinite Soil

Yu and Rowe (1998) obtained closed-form solutions for the soil stresses and displacements by

considering a cylindrical cavity unloading from a Ko = 1 initial state. Both drained and undrained

solutions were obtained. The analyses for the drained case model the soil as an elastic-perfectly-

plastic Mohr-Coulomb material with a non-associative flow rule and constant dilation angle, y.

For tunnels causing deformations in clay, the soil was modeled by both the original and modified

Cam-Clay models. In order to improve the modeling of highly overconsolidated materials-for

which these Cam-Clay models seriously over-predicts the peak shear strength-a Hvorslev

envelope was also introduced. In this Section, these solutions are re-arranged in order to account

for a displacement (rather than pressure) controlled cavity contraction.

5.1.1. Undrained Plastic Deformations due to a Cylindrical Cavity Contraction

In the undrained case, the displacement field due to a contracting cavity is found by kinematic

considerations (i.e., regardless of the constitutive model) provided that material compressibility

is neglected (e.g., Sagaseta, 1987). The solution coincides with the elastic solution presented in

Section 2.1 (equations {2-15}). Hence, in order to perform undrained deformation analyses, the

elastic solution can be used.
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5.1.2. Drained Deformations due to a Cylindrical Cavity Contraction

The solution obtained by Yu and Rowe (1998) shows that the displacement field due to a

cylindrical cavity contraction is plastic in an annular region defined by a plastic radius, R,, and

elastic elsewhere. Figure 5.1 illustrates the distribution of radial displacements from the elasto-

plastic analysis. The parameter u, corresponds to the equivalent elastic displacement at the

tunnel wall.

The critical yield displacement for which the onset of plasticity occurs, u,, can be written as (see

Appendix IV for further details):

u (NO' - 1)+ Y -E- - -{5-1}
R 2-G (1 5N

where:

NO' 1+ sin(#') 15-2
1 - sin($')

- 2 -c' cos($')
Y = {_ - 5-3}

p'O I1- sin(#')

G = {5-4}

and c', O' are the Mohr-Coulomb cohesion and friction angle, respectively, G is the average

pre-yield elastic shear modulus of the soil, and uj is always negative, since a cavity contraction

(or unloading) is considered.

There will be a plastic region whenever the displacement at the cavity wall, u, is such that the

following condition is fulfilled:
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uC < I
R R {5-5}

In the foregoing analysis it will be assumed that {5-51 is fulfilled, i.e. plastic behavior takes

place. If {5-5} is not fulfilled the solution is purely elastic and coincides with the one given in

Section 2.1.

The displacement at the cavity wall can be expressed as:

R

V ]+_____3_

- T
R {5-6}

where T is a function of the internal pressure (see Appendix IV for full details) and # is a

function of the dilation angle (0/) as follows:

1+sin(y )
1-sin(f)

The plastic displacement at the cavity wall is related to the ground loss, V, as follows:

u, = 2~l~
2-, -R

Hence, for a prescribed displacement at the tunnel wall, T is given by:

I-NO

l+#s-/

The radius of the plastic zone, R,, is related to T by the following equation:
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{5-81
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-- = TI-N' {5-10}
R

By combining {5-10} and {5-6}, the radius of the plastic zone can be related to the displacement

at the cavity wall:

-- = - {I+#5-11}
R u E

Figures 5.3 to 5.8 show the influence of the displacement at the cavity wall, u,, on the radius of

the plastic zone, RP as functions of the soil properties (G/p'o, #') for selected values of cohesion

(c'/p'o = 0.0 to 0.5) and dilation' (V =00 to 100). As a first approximation, the normalized

cohesion can be related to the overconsolidation ratio of the clay, OCR, as proposed by Mesri

and Abdel-Ghaffar (1993)2:

C
=0.1 -OCR {5-12a}

P,0

where 0.1 is an average value for several clays in the range 1 < OCR <5 (Figure 5.2) or:

C-= 0.024 OCR {5.12b}
P 0

where 0.024 is an average value for the range 10 < OCR < 20. In any case, the maximum

cohesion ratio for the reported OCR range is approximately c'/p'o ~ 0.5. It can be seen

parameters that have the stronger influence on the radius of the plastic zone are the shear

modulus ratio, G/p'o, and the dilation angle, . Stiffer materials produce more plasticity for a

The dilation angle, / is given by the difference between the peak friction angle, #'p, and the critical state friction

angle, s. Considering that 'es 300 and #'p 5 400, the range for the dilation angle is V= 00 to 100.
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given cavity contraction, uP. Increasing the dilation angle, , tends to reduce the plastic zone.

Friction angle has little influence on the value of R, in the range considered herein (#' = 250 to

400). The influence of cohesion is negligible. The magnitude of the cavity contraction, uE', has a

very strong influence on the radius of the plastic zone, especially at low values of ul (i.e., near

the initial yielding, u,).

The plastic displacement at the tunnel wall, uf, is mainly a function of the construction method

and the final state of stresses supported by the lining. For example., if the NATM excavation

method is used, large deformations can be expected. By allowing large (but controlled)

deformations to occur, the final pressures acting onto the tunnel lining will be lower, leading to a

large radius of the plastic zone. On the other hand, if the tunnel is excavated by means of a TBM

and the tail void filled with pressurized grouting, deformations will be smaller and high pressures

will occur at the lining, leading to a smaller plastic zone.

For an average material, having the following mechanical properties: c'/p'o = 0.1; #' = 30'; G/p'o

= 100; y= 5' and a ground loss V = 2% to 3% (i.e., ufiR = -0.015 to -0.01), the radius of the

plastic zone is R, = 2-R. Hence, as a first approximation, the plastic zone extends one radius

away from the tunnel wall.

The equivalent elastic displacement at the tunnel wall is related to the radius of the plastic zone

as follows:

R R R

Combining equations { 5-131 and { 5-111, the equivalent elastic displacement, u , can be related

to the elasto-plastic displacement at the tunnel wall, uf:
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e v ' p 2

- u_ u~1 ~ {5-14}
R R u.)

A reduction factor, RF, can now be defined as the ratio between the equivalent elastic

displacement, ue, and the plastic displacement at the cavity wall, u ':

e

RF = u" 15-15}

Replacing equation {5-14} in {5-13} and rearranging yields:

RF = Ejs "1 5-16}

It can be seen that if no dilation is assumed (i.e., y = 0'), the reduction factor, RF = 1 (i.e.,

plasticity has no effect on the predicted displacement field). Hence, it can be noticed that the

dilation angle, y, has a strong influence on the reduction factor and the displacement patterns in

the plastic region.

Figures 5.9 to 5.14 show the influence of the displacement at the cavity wall, ui, on the

reduction factor, RF, as functions of the soil properties (G/p'o, #') for selected values of cohesion

(c'/p'o = 0.0 to 0.5) and dilation (yf=5' to 100). As for the radius of the plastic zone, it is found

that the parameters that have the stronger influence on the reduction factor, RF, are the shear

modulus ratio, G/p'o, and the dilation angle, . Stiffer materials produce lower values of the

reduction factor for a given cavity contraction, u P. Increasing the dilation angle, y, tends to

reduce the reduction factor. Friction angle has little influence on the value of RF in the range

considered herein (#' = 25' to 40') and the influence of cohesion is negligible. The magnitude of

the cavity contraction, uf, has a very strong influence on the reduction factor, especially at low

values of uf (related to the amount of ground loss by equation {5-8}). Hence, the construction
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method has a strong influence on the actual displacement at the tunnel wall, u. , and the

equivalent elastic displacement that would reproduce the far field displacements (i.e., RF).

For a typical soil, having the following mechanical properties: c'/p'o = 0.1; #' = 300; G/p'o =

100; y/= 5' and a ground loss V = 2% to 3% (i.e., uf/R = -0.015 to -0.01), the reduction factor

is RF = 0.9. Hence, as a first approximation for drained behavior, the displacements measured at

the tunnel wall should be reduced by 10% in order to predict the far field dispalcements by

means of elastic solutions. As mentioned before, for the undrained case, both solutions predict

the same displacement patterns (i.e., RF = 1).

5.2. Approximation of Dilation Effects for a Shallow Tunnel

It has been shown in Section 2.1 that the variation of the displacements in the elastic region for

an isotropic cavity contraction is of the form 1/r:

x -R
u, (x, y)= u, - 2-15a}

uj(x, y) =u-; , {2-15b}
x + V

In the plastic region, the variation of displacements are governed by the flow rule (neglecting the

elastic component within the plastic region and vary as lri3 , where # is given by equation {5.7}.

Hence, the displacement field is given by:

u(x, y)= u, . { 5-16a}
(2 + V2 2
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u1(x, y)= u, - y -R6 {5-16b}

(x2 + y2 2

Sagaseta (1988) introduced the a parameter, which is related to # as follows:

13+1
a = 1{5-17}

2

and hence, re-writes equations {5.16} as:

U( x, Y )=U - {5-18a}
(x2 + y2

u(x,y)=uE ' {5-18b}
(x-+ y-)

It can readily be seen that expressions {5-18} and {2-15} are similar and coincide for the case

where a= 1 (i.e., Vg= 00). Gonzalez (1999) introduced the a parameter in the elastic solutions

for the uniform convergence and distortion by modifying the terms of the form 1/(x2+y2) to

1/(X 2 +Y2 )a and assuming v= 0.5. Hence, an approximate solution including dilation due to

plastic behavior is obtained. Assuming a maximum dilation of V= 15'-20', leads to a = 1.35-

1.50, and corresponds to a practical upper limit for real soil behavior (i.e., elastic-plastic and

strain dependence of the dilation angle, 0). Sagaseta (1999) recommends values for a to be a=

1.0 to 2.0 (i.e., y = 0'-30'). The modified displacements for the uniform convergence case

considering dilation due to plastic behavior are:
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u,(x,y)=u, -R 2

( a-)
u-,( x,y ) =u,- R-

x x
2+(y+HY x 2 +(y- HYa

2-x 4 (y-H)-x-y
2 -i-(y-Hj 2y-

{5-19a}

(y+H) (y-H)

J 2 +(y+H [ x 2 +(y-H +

4-(y-H x2+2-H.X -(y -HY] 2.(y-H)

[x 2+(Y-HY a+x +(y-

{5-19b}

The modified displacements for the pure distortion case are:

+(y +H ) 1-[3 (y + H -x + (y +H )2 - R2]

[x2+(y<-I2a+H

x2+(y -Hyl -[3.(y-H y -2 [x +(y-Hy -

2 +(y - Hja+

... +4 x2 + y - H 2
x2 +(y -HY

y.(x2+y2 )+2-H. (H2_ 2 )-3y-H2

[2+(y-Hy]a+2

{5-20a}
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y x +(y +H )1 -[3. -(y+H] x+(y+Hy -R2]

H+ (y+

(yH) 2 +(y -H Y 1 -[3. x2 -(y -H Y]- 2 +(y -H y - R2

U,(X, y)= -uj -R 2 "~-< L 2 +(y-HY]a+1

4-x2 -(2- H -y)- y (y - HY

[2+(yH2]+1

(y-H) -y-(y-Hf -x2 2. X + y2)+H -(y+H)

x2 +(y-H]a+1

{5-20b}

The effect of a> I is a faster attenuation of the displacements with distance, while the basic

features of the elastic solution are kept. Figures 5.15 and 5.16 show the influence of a on the

surface settlements distribution. It can be seen that increasing the a value has the effect of

reducing the width of the settlement trough. Figures 5.17 and 5.18 show the influence of a on the

horizontal displacement distribution at a vertical line inside the ground. It can be seen that

increasing a has the effect of a faster attenuation of the displacements with distance.

5.3. Conclusions

It has been shown that elastic solutions can be used in order to model the actual elastic-plastic

displacements around infinitely deep tunnels under an initial isotropic state of stress. For the

undrained case, the displacements are independent of the constitutive model, provided material

compressibility is neglected. For the drained case, elastic solutions can be used in order to

predict displacement patterns at points outside the zone of plastic failure around the tunnel wall.

The magnitude of the radial displacement, measured at the tunnel wall, is always equal or larger

than the equivalent elastic displacement that would be predicted by elastic theory. This chapter

proposes a simple reduction factor that can be applied to measured tunnel wall convergence in

order to use elastic solutions for computing far field displacements.

For the general case of a shallow tunnel with Ko # 1 initial stresses, an approximate solution can

be obtained by including the dilation parameter, a, in terms of the form /r of the elastic solution
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for v= 0.5. If the radius of the plastic zone is such that the plastic zone is likely to extend near

the surface, this approximate solution can be used in order to model the soil dilation due to

plastic behavior throughout the medium and taking into account the pure distortion component as

well. However, dilation is likely to occur only at large strains.

177



Ce

RRP

R/r
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6. Comparison with Field Monitoring Data

This Chapter discusses the application of the ground deformation analysis for single tunnels. A

simple method is proposed for obtaining the ground deformation parameters, us, p, v or a and its

practical application is assessed by considering four case studies. The methodology of analysis is

described in Section 6.1 and the case studies are presented in Section 6.2.

6.1. Design Charts for Estimating Model Input Parameters

It has been shown in Chapter 3 that there are three input parameters defining the analytical

predictions of ground displacement distribution (but not the magnitude): i) the embedment ratio,

R/H; ii) the relative distortion, p; and iii) the Poisson ratio, v (if purely elastic), or the a

parameter (considering average dilation within the soil mass). Hence, for a given tunnel

geometry (i.e., a given R/H ratio), the ground displacement distribution is a function of p and v

or a. The magnitude of the displacements is defined by the amount of ground loss that takes

place, which is related to the convergence parameter, u,.

A series of charts have been developed in order to interpret in situ measurements of ground

displacements due to tunneling. The purpose of these charts is to provide a practical method for

computing values of u, p, and v (or a) parameters from a small number of field measurements.

These charts are based on three measured parameters': i) the surface settlement at x/H = 0, uy0 , ii)

the surface settlement at x/H = 1, u , and iii) the horizontal displacement at a reference offset, x

= 2-R away from the tunnel springline, ul' (Figure 6.1).

Surface settlements are routinely measured at offsets from the tunnel axis in most tunneling projects, while the
lateral displacement requires data from an inclinometer installed at (approximately) the reference offset
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These parameters have been selected so as to provide maximum information on the effects of p

and v or a on the displacement patterns. The surface settlement ratio, uy//uyj, is a measure of the

width of the settlement trough, which is highly sensitive to variations in p and a and somewhat

affected by variations in v (see Sections 3.5.1.4. and 5.2.). The horizontal displacement ratio,

ux0/u0, is highly sensitive to both variations in p and v (see Sections 3.5.2.). Hence, for a given

horizontal and vertical displacement ratios, there is a unique set of p, v or a values that would

reproduce the displacement patterns. Once the p, v or a values are obtained, the absolute

magnitude of the displacements can be calculated by matching the observed surface settlement at

x/H = 0, uj, by means of the u' 0/ue ratio, which is a function of p, v or a. Following this

reasoning, Appendix V presents a series of design charts for computing the p, v or a values from

the displacement ratios ujo/u. and u,'/u, and the u./ue ratio from the selected values for p, v (or

a).

In order to obtain the parameters p, v or a, and u, from field measurements, the following

procedure is proposed:

e Measure u, , u.j, and u\'

" By means of the horizontal and vertical displacements ratios, obtain p and v (or a) from the

proposed design charts.

" Using the selected parameters (p, v, a) obtain u, from the proposed design charts.

In the Appendix V charts, plasticity has only been included for R/H > 0. 1, since deeper tunnels

are unlikely to produce plastic behavior near the surface. The maximum vertical displacement

ratio considered in these charts is 0.5, which would correspond to p = 0 and a = 0. These value

was selected in view that most of the published data-if not all-falls in the range where

u,'/u, <0.5.

6.2. Case Studies

This Section shows the practical application of the above discussed analysis method for four case

studies in a variety of soils and construction methods.
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6.1. Case 1: Metro de Madrid (Sagaseta et al., 1999)

The Madrid Metro extension is constructed within tertiary deposits, covered by quaternary

sediments. Man-made fills are also frequent in the area. The tertiary soils comprise mainly very

stiff, heavily overconsolidated clays. Some sections are excavated by conventional hand-

excavation methods (Belgian method) and hence, significant deformations can occur before

placing the lining.

The cross section considered in this example was excavated by means of conventional methods

and has a horseshoe-shaped cross section of 62 m2 (equivalent radius Req = 4.44 m) and a depth

to the centerline, H = 15.2 m. Hence, the embedment ratio for this case is R/H = 0.292. Figures

6.2 and 6.3 summarize the measured surface settlements and lateral displacements in an

inclinometer located 2 m from the tunnel, respectively. The surface settlement at x/H = 0, uj = -

11.4 mm and the average surface settlement (found by linear interpolation, Figure 6.2) at x/H = 1

is u"' = -4.1 mm. The horizontal displacement measured at the springline is ux = 4.1 mm (towards

the tunnel). However, the inclinometer is located at x/Req= 1.8, and not at x/R = 2, as defined in

the design charts. Nevertheless, it can be shown readily that the elastic horizontal displacements

in an infinite medium (due to a combination of distortion and uniform convergence) are given

by:

u,(x, y = -H) _4. -(1- 16-lR
uE 3-4-v x

while the plastic horizontal displacements in an infinite medium due to a combination of

distortion and uniform convergence are given by:

u (x, y=-H) = _R2a
-2-(1-p)- a {6-lb}

u6  x

Hence, in order to estimate a value for u.(2-R,-H) = uxo from a measured value u(#-R,-H), the

following equations can be used:
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Elastic: u 0 = -u(# -R,-H) {6-2a}
2

Plastic u 2 -u(# -R,-H) {6-2b}

For this case, = -1.804 and u,(#3-R,-H) = 4.1 mm. Therefore, assuming elastic behavior,

ux0 = -3.7 mm.

Figures 6.4 and 6.5 show the displacement ratios plotted in the design charts for R/H = 0.25 and

R/H = 0.30, from which v and p can be estimated by means of linear interpolation 2. The results

lead to estimated values, v = 0.48 (corresponds to almost undrained conditions), and p = 0.22,

which is consistent with the expected Ko conditions and a low inner pressure at the lining. The

uniform convergence displacement, us, is obtained from Figures 6.6 and 6.7, in which u/uE =

0.84 - 0.85. Hence, the convergence displacement is u1E = -13.5 mm, and the corresponding

ground loss VL = 0.6 %.

Once the ground deformation parameters p, v, and us, have been obtained, the complete

displacement field can be generated reproduced by the analytical model, as shown in Figures 6.8

and 6.9. In this example, the model is in excellent agreement with both the measured settlement

trough and inclinometer measurements. Figure 6.10 shows contours of ground displacements

predicted by the model.

2 The results in Figures 6.4 and 6.5 show [p = 0.27, v= 0.39] for R/H = 0.25 and [p = 0.21, v= 0.50] for R/H = 0.30,
respectively.
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6.2 Case 2: Sewer-Line Tunnel in Mexico City (Romo, 1997)

This tunnel is part of the sewerage system of the Metropolitan area of Mexico City. Construction

was carried out by means of a 4 m diameter shield and a pressurized slurry at the tunnel face in

order to increase stability. Pre-cast segmental lining was placed behind the shield and the tail

void was filled with pressurized grout. The soil profile at the section considered herein is

composed of a soft clay deposit underlying some inter-bedded silt and clay strata. Given the

construction procedure, it is expected that the ground loss will be rather low and the relative

distortion high, as the in-situ Ko is low (less than 1) and the internal pressure ratio, r,, high.

The tunnel cross section is circular with a radius, R = 2 m, and embedment depth, H = 12.75 m.

Hence, the embedment ratio for this case is R/H = 0.157. Figures 6.11 and 6.12 summarize the

surface settlements and lateral deflections (in an inclinometer located at x = 4.5 m from the

center of the tunnel). The reference surface settlements are u,. = -28.6 mm (at x/H = 0) and u,/= -

7.2 mm (at x/H = 1). The horizontal displacement measured at the springline (Figure 6.12) is u, =

9.4 mm (outwards the tunnel), at x/R = 2.25. Hence, using equations {6-2}, the reference

displacement at x/R = 2 is found to be u, 0 = 9.4-(2.25/2.0) = 10.6 mm (assuming elastic

behavior).

Figures 6.13 and 6.14 show the displacement ratios plotted in the design charts for R/H = 0.15

and R/H = 0.20, from where the Poisson ratio, v, and relative distortion, p, can be estimated by

linear interpolation. These charts generate a Poisson ratio, v = 0.0, which seems unrealistic, and

a relative distortion, p = 1.53, which is also unrealistically high. The uniform convergence

displacement, us, is obtained by means of the design chart shown in Figures 6.15 and 6.16, from

which u, = -22.2 mm, corresponding to a ground loss VL = 1.1 %. A careful review of the

measured data suggests that the estimation of input parameters may be strongly biased by the

inclinometer data (i.e., by u, 0). Figure 6.12 shows that the inclinometer data are reported over a

depth range from y = -3 to -17.5 m. The source reference gives no details of the methods used to

benchmark (i.e., set the zero position) for this device. As a result, the data show no well defined

zero position, raising the strong possibility that there is a zero shift in the measurements, given

the lack of bearing strata at this site. Figure 6.10 considers the effects of a 3 mm shift in the zero
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position of the inclinometer (leading to a rigid body translation of the reported data). Considering

this adjustment of the inclinometer data (see Figure 6.12), the model input parameters can be re-

computed using u4 (corr.) = 6.2 mm (Figures 6.13 to 6.16). The revised parameter set is found p

= 1.16, v = 0.12 and u, = -26.5 mm (ground loss, VL = 2.7 %). These parameters are much more

consistent with expected behavior, but are difficult to justify without further information to

explain the assumed rigid body inclinometer correction.

Figure 6.17 summarizes comparisons between model prediction and vertical displacement

measurements at three elevations (y = 0, -5, and -10.15 m) within the overlying clay. The

proposed adjustment of the inclinometer has minimal effect on the predicted settlements at these

three depths. The results show excellent agreement between computed and measured settlements

at the surface. The models tends to overestimate measured movements above the crown of the

tunnel at y = -5 m (by 10-20%), and gives a substantial overestimate (up to 70-100%) at y = -

10.15 m. This latter result can be largely discounted due to the very close proximity of the

measurements to the tunnel lining, where the proposed method is unlikely to replicate accurately

the soil behavior or construction process.

Figure 6.18 compares the computed and measured lateral displacements for the inclinometer

(both the reported data and adjusted values are shown). Both the measurements and model

predictions show outward movements (i.e., away from tunnel) at the tunnel elevation. Both sets

of analyses show inward movements for depths less than 8-10 m, while the original

measurements show small outward movements even close to the surface. There is a definite

improvement in the agreement between predictions and measurements after adjusting the data for

a probable zero shift in the reference location of the inclinometer.
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6.3. Case 3: Heathrow Express Trial Tunnel (Deane and Basset, 1995)

The soil deposit, outlined in Figure 6.21, comprises a made ground 0.5 m thick, terrace gravel

1-4 m thick, and London Clay at least 45 m thick. The range of moisture content is between 24%

and 32% (Atzl and Mayr, 1994). This tunnel was excavated using three different NATM-types of

excavation sequences. For the section considered herein, Type 3 sequence of excavation was

used. This sequence consists on a top heading and bench sequence with the bottom of the

shotcrete arch of the heading supported on inverted shotcrete arches (Figure 6.22). Reported Ko

values for this site are in the range of 1.5 (Longanathan and Poulos, 1998). Hence a very low

value of relative distortion (even negative if evaluated by means of equation {2-53 1) and a

considerable ground loss volume can be anticipated.

The section considered in the analysis has an average diameter of 8.5 m and a depth to

centerline, H = 19.1 m. Hence, the R/H ratio for this case is R/H = 0.22. Figures 6.23 and 6.24

show the observed surface settlements and lateral (inclinometer) movements at x = -9 m at three

stages of the construction, together with the interpretation of the pertinent model parameters. The

three stages correspond to; i) face of the tunnel on instrument line (19-May-92), ii) completion of

face (25-May-92), and iii) completion of invert (28-May-92). Figures 6.25 and 6.26 show the

displacement ratios plotted in the design charts for R/H = 0.20 and RIH = 0.25. It can be seen that

the points fall outside the region spanned by the elastic solutions. It can also be noticed that the

last two stages coincide and will be analyzed together. Two criteria are followed in order to

estimate model input parameters from the design charts; 1) consider that the clay is in an

undrained condition with no dilation (i.e., a = 1 or v = 0.5) assuming that the horizontal

displacement ratio is reliable, but the settlement trough is unreliable (i.e., errors in measured ui),

and 2) consider dilation using the average dilation model. Results obtained by both criteria are

given in Table 6.1 (after linear interpolation).

It can be seen that criterion 2 (assuming that all measurements are consistent and accurate)

estimates totally unrealistic ground losses, while the values obtained by means of criterion 1 are

within the expected range. Using the parameters obtained following criterion 1, ground

displacements are evaluated and compared with the measured values in Figures 6.31 and 6.32. It
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can be seen that the inclinometer readings are well reproduced (particularly for the 19-May-92

readings), while the settlement troughs given by the model are wider than the measured values.

Figures 6.33 and 6.34 show the comparison between the model prediction following criterion 2

and the measurements. In this case, the settlement troughs are very well characterized (at all

three stages of construction), while the lateral deflections at stages II and III are poorly predicted

above and below the tunnel elevation. Figures 6.35 to 6.37 show contours of ground

displacements predicted by criterion 1 for the three stages of construction.

Criteria I Criteria 2

p v U E Ground Loss j p U uE Ground Loss
[mm] [%] [mm] [%]

19-May-92 0.18 0.5 -15.9 0.8 0.43 1.80 -129.9 6.1
25-Ma -92 0.26 0.5 -46.7 2.2 0.50 2.00 -701.8 33.0
28-May-92 0.26 0.5 -58.5 2.8 0.50 2.00 -879.4 41.4

Table 6.1. Ground deformation parameters

The lack of agreement between the model predictions and measurements is primarily due to the

fact that the narrowness of the measured settlement trough and the measured inward horizontal

displacements at the tunnel springline are inconsistent with the elastic solutions. The elastic

solution shows that the effect of increasing relative distortion leads to a narrower settlement

trough and lower inward movements at the tunnel springline (even outward movements if

relative distortion is high). Given the fact that Ko ~ 1.5 for this case, it is expected that the

relative distortion would be low, thus leading to wide settlement troughs and inward movements

at the tunnel springline. The monitoring data do show inward movements at the tunnel

springline, however, the settlement trough is quite narrow. Hence, there is an inconsistency in the

predicted vertical displacements. This may be either due to limitations of the model for this type

of soils (heavily overconsolidated and fissured) or due to errors in the measurement of the

vertical displacements (unlikely). For example, it is well known that London Clay exhibits quite

strong elastic anisotropy with EI/E, = 1.3 - 1.4 (Bishop et al., 1960; Wroth, 1971; Simpson,

1999), while recent studies have focused on small strain non-linearity of clay (e.g., Stallebrass,

1990).
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In order to assess the consistency of the data from the Heathrow Express Trial tunnel, other

reported cases in London Clay are considered. Mair and Taylor (1992) compiled measurements

of sub-surface vertical and horizontal movements from several tunnels in London Clay. Most of

the reported data corresponds to the Green Park and Regents Park tunnels. These tunnels have an

embedment ratio, R/H = 0.07-0.10 (i.e., deep tunnels) and reported ground losses, VL 1.3-1.4 %

(Macklin, 1999). It was found that the vertical and horizontal displacements normalized by the

tunnel radius, R, follow a linear trend when plotted against R/r (see Figure 6.38). Figure 6.38

shows the data from the Heathrow Express trial tunnel (corresponding to the completion of the

invert, 29-May-92) and the prediction of the analytical model (criteria 1) plotted together with

the linear regression by Mair and Taylor (1992). It can be seen that there is a remarkable

agreement in the normalized horizontal displacements (both measured and predicted) by the

model, while the vertical displacements (both measured and predicted values) are larger than the

linear regression. Hence, the horizontal displacements at the Heathrow Express Trial tunnel are

consistent with other data, while the vertical displacements are 100% larger. This might serve to

explain the discrepancy of the model predictions and monitoring data at the Heathrow Express

Trial tunnel. However, most of the reported data for tunnels in London Clay (e.g., Attewell and

Farmer, 1974) show very narrow settlement troughs and inward movements at the tunnel

springline, which is inconsistent with the elastic solutions.
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6.4. Case 4: N-2 Contract for the San Francisco Clean Water Project (Clough et al., 1983)

This tunnel was the first constructed in the U.S. with an Earth Pressure Balance machine (EPB).

The soil profile at the site consists of an average 6.6 m thick of rubble fill underlain by 7.1 m of

soft sediment (known as Recent Bay Mud) followed by a stratum of colluvial and residual sandy

clay (Figure 6.39). The tunnel was driven entirely trough the soft sediments, which are normally

consolidated except near the top of the stratum, where they have been lightly overconsolidated

by desiccation. Given the fact that the soil is normally consolidated, a high value of relative

distortion, p, is to be expected. The tail void was around 7.6 cm thick (assuming no pitching of

the TBM) and was filled with pressurized grouting. However, during construction, it was noticed

that the soil tended to fill the gap before grouting was injected (Clough et al., 1983). Hence, the

expected displacement at the tunnel crown, uc = Us - us+ A uZ (see Figure 3.2) is in the range of 7

cm. The depth to centerline is H = 10 m and the radius, R = 1.78 m, hence. the embedment ratio

is, R/H = 0.178.

Figures 6.40 and 6.41 show the observed surface settlements and lateral deflections measured by

an inclinometer located at an offset of x/R = 2.02 (=2.0). It can be seen that surface settlements

were only measured in the range where -5 m < x < 5 m, for which u, cannot be obtained.

However, the analysis method can still be applied if a Poisson ratio is assumed. Given that the

soil is a soft clay, a Poisson ratio of v = 0.5 (i.e., undrained behavior) will be used. The

horizontal displacement 2.R away from the tunnel springline is found to be uIO = 20.8 mm and

the surface settlement at x = 0, uvo = -30.6 mm. Figures 6.42 and 6.43 show the horizontal

displacement ratio plotted in the design charts for R/H = 0.15 and R/H = 0.20, respectively. By

assuming v= 0.5, the relative distortion is found to be (after linear interpolation) p = 1.66, which

is consistent with a low value of Ko. Figures 6.44 and 6.45 show the value obtained for the

relative distortion and the assumed Poisson ratio plotted in the design charts, from where the

uniform convergence displacement is obtained as us = -20 mm, with a corresponding ground

loss, VL = 2.2%.

It is interesting to see the value of the crown displacement predicted by the model and compare

its value with the estimated tail void thickness. The uniform convergence displacement, us = -20
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mm, which implies a downward movement of A uz (e) = -3.5 mm (see Figure 3.20). The pure

distortion displacement, us = 33.2 mm, which implies a downward movement of A uz (5) = -5.6

mm (see Figure 3.26). Hence, the displacement at the tunnel crown is uc = 6.2 cm, which is

comparable to the tail void thickness.

Figures 6.46 and 6.47 show comparisons between model predictions and measurements, where it

can be seen that there is excellent agreement with the measured surface settlements and

inclinometer deflections. Figure 6.48 shows contours of ground displacements predicted by the

model.
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Figure 6.23. Case 3: Heathrow Express Trial Tunnel - Measured surface settlements
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Figure 6.26. Case 3: Heathrow Express Trial Tunnel - Derivation of parameters p, v
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Figure 6.33. Case 3: Heathrow Express Trial Tunnel - Surface settlements, criterion 2
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Figure 6.40. Case 4: N-2 Contract tunnel - Measured surface settlements
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Figure 6.47. Case 4: N-2 Contract tunnel - Horizontal displacements at x = -3.6 m
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7. 3-D Effects. Semi-Infinite Tunnel

This Chapter derives 3D distributions of ground deformations due to a semi-infinite tunnel in

elastic half-space. Section 7.1. presents the derivation of the displacement field due to a cavity

unloading in an elastic infinite space, while Section 7.2. uses the method of Sen (1950) to obtain

the solution for a cavity in an elastic half-space. In Section 7.3., the solution for the

displacements due to a cavity in a half-space is used as a Green function in order to obtain an

analytical solution for a uniformly distributed ground loss along a semi-infinite tunnel in an

elastic half-space. The displacement field due to the semi-infinite tunnel is studied by

considering the effects of the proximity of the tunnel heading in the settlement trough and a

reference inclinometer located two radii away from the tunnel axis.

7.1 3-D Deformation Analysis due to a Cavity Contraction/Expansion in Elastic Infinite

Space

This Section presents the derivation of the displacement field due to a 3-D spherical cavity in an

elastic infinite space subjected to an initial hydrostatic state of stresses, po. The problem is

outlined in Figure 7.1, where R is the initial radius of the cavity. For complete spherical

symmetry, the equilibrium equation in spherical coordinates is:

'0' +2.r00 =0 {7-1}
ar r

where ar and ao are the radial and hoop stress, respectively. The boundary conditions are:

Or(R)= pi {7-2a}

G,(oO)= pO {7-2b}

where pi is the internal pressure of the cavity and po the in-situ stress. After introducing the

constitutive and kinematic equations, the radial and hoop stresses are given by:
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a-, = M ' +2-A. Ur
ar r

o= aur +
ar

(M + )u-
r

{7-3a}

{7-3b}

{7-4}

Introducing equations {7-3} in {7-1}, the following ODE is found:

dzu 22du 2U+--2 ---. U,=0
dr2  r dr r2

for which the solution is:

Ur=A B

r

where A and B are integration constants that are found by imposing the boundary conditions:

A=- 0 1-2-v
2-G 1+v

B=-Po-P.R 3
B- -R3G4- G

Hence, the displacement field is found:

p0 1-2-v P0-Pi R3
U ,= - -. r -- 22-G 1+v 4- G r"

{7-5}

{7-6}

{7-7}

{7-8}

As the displacements due to the cavity are of interest, the displacements due to the initial state of

stresses (i.e., pi = po) must be subtracted. Hence, the displacement field due to the cavity is found

to be:
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U.=p 0 -pt R_U,.=- 0Pi -- 3

4-G rI

The displacement at the cavity wall, U., is:

U = -PO .-R

Introducing u, in equation {7-91:

Rur = U - -R

r

{7-9}

{7-101

{7-11}

where u, can either be evaluated by means of equation {7-10} or regarded as an input parameter.

7.2. 3-D Deformation Analysis due to a Cavity Contraction/Expansion in Elastic Half Space

This Section shows the derivation of the analytical solution for a 3-D cavity

expansion/contraction in elastic half-space. This solution is a classical solution of the theory of

elasticity and can be found in Sen (1950) or Mindlin and Cheng (1950). The problem outline is

shown in Figure 7.21.

Equation {7-11 can be expressed in terms of a potential function, V, as follows:

T = U,. -dr = -u r - {7-12}

from where it can readily be seen that:

The vertical coordinate for 3-D analysis is z, while for the 2-D analyses presented in previous Chapters the vertical

coordinate is given by y.
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x DT dr aT
ur =u - = -- =

'r ar dx ax
{7-13}

Equation {7-13} can be generalized for x, y, and z. Hence, the displacements can be obtained as

the gradient of the potential T in the direction of interest. By considering a cavity at depth, H,

beneath the surface,P is given by:

R2
T x2 + V2+(z+H {1

This potential implies the following state of stresses at the surface (where advantage has been

taken from the fact that there is no volumetric strain component, i.e., 0i = 2-Gei for i = x, v, z):

22.3(z+Hy -x2+v +(z+Hj]
a-=2-G , =-2-G-u£-R [],IX+Y2 tpH

r =2-G. =-6-G.uE-R2(z+H).

=2- =-6-G u u-R2.(z+H).
ax- az

[X I + V
2 + -1z +)

x

[X2 + + (z+H 2

{7-15a}

{7-15b}

{7-15c}

In order to model a stress-free surface, corrective stresses equal in magnitude and opposite in

sign must be applied at z = 0. The corrective stresses are:

2 3-H -_ x 2+yV2+HWad0 = =2-G-u,-R . 22]

[2+y+H 2

{7-15a}
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,CO=6-G -u, - R2 -H . 2 2Y 2]

Ix2 y+ H 2

SZ=O =6-G-u, -R2 -H .

IX [x2 +y 2 +H 22

{7-15b}

{7-15c}

where the overscript """ stands for "corrective". The stresses inside the ground due to the

boundary condition {7-151 must fulfill the following equations derived from the theory of

elasticity (e.g., Timoshenko and Goodier, 1970):

V2
e + -.- 2 =0 {7-16a}

1+v az~

V2 " + I - a2 e = 0 {7-16b}
1+v ax -z

+0 {7-16c}
1+v ay -az

where the volumetric stress, CkC = -c + ,*, + oj, must be a harmonic function. The general

solution for equations {7-16} (neglecting the boundary condition at the tunnel wall):

{7-17a}

{7-17b}

2.(1+v) z

C I z. akkC
2 =- z +v)
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1 V = - {. z - a + # 7-17c
S 2-(1+v) y

where #x, #,, #, are harmonic functions. Evaluating equations {7-171 at the surface (i.e., z = 0):

Cj= = OZIz {7-18

Tx =O { 7-18

z0 7 =#. { 7-18

By comparing equations {7-18} and {7-15}, it is found that:

I

a}

c}

=O = 2 -Gu,-R

0:I~ 6-G.u,-R2

S = 6- G -u,-R2
SZ=O

3-H2_x2 +y? +H

x+y2 +H 11

H 
x

[x2+y2+H2]

12+Y+H2

H-

x2 +y +H2]2

By defining the following potential:

R2
c =-u

x + y 2 +(z - HY
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{7-19a}

{7-19c }

{7-19b}

{7-20}



it can be shown that by defining:

{7-21a}Oz=-2 -G - ^a2

2 -2 * G -
aJx -a

{7-21b}

{7-21b}

equations {7-18} are fulfilled and the $ functions are harmonic. It is interesting to note that the

gradient vector of the ' potential coincides with the displacement vector of a positive mirror

image.

The equilibrium equation in the z direction reads:

x+ I ,Z+ -7Z=0 {7
ax ay az

Replacing equations{7-17} in {7-22} and taking advantage from the fact that Of is harmonic:

1 =---,+ + - {7
2.(1+v) az ax ay az

Introducing equations {7-21} in {7-231 yields the following PDE for f:

zUkk = 4.(1+v).G
az

(V2Vw)-2.2 3 Tc

Considering that T' is harmonic (i.e., V2Tc = 0) and integrating one time in z:
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-23}

{7-24}
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a"' = 0 + U," + a = -8. -(+v)- G - " {ZL 7-25}
az2

The stress field due to the corrective stresses at the surface is found by replacing equations {7-

211, and {7-25} in {7-17}:

C4 -G . z - 2 -G - {7-26a}

'T4G {7-26b}-±1-2 G7

=4Gz - 2. {7-26c }G -
ay -az

The displacement field due to the corrective stress is henceforth obtained by means of the elastic

constitutive equations. The constitutive equation for a7 is given by:

2 G
-G ( Cz

V

+ V k" =2-z
~33'w 32wc
- , -- + 4-
az @Z2

V. ,a z~T

Integrating with respect to z:

u =2 a - T-(3-4-v)

{7-27}

{7-28}

where it can be verified that for an incompressible material (i.e., v = 0.5) the corrective vertical

displacements at the surface (i.e., z = 0) correspond to a negative mirror image. Introducing

equation {7-20} in {7-28}:
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- 2-z
3-(z-HY [x2+y2 +(z-H

[x2 + y 2 +(z- H 2

Y2] (3-4.v).(z-H)

[x2 + y 2 +(z-HY]

{7-29}

The constitutive equation for rxz is:

au- C

aJx

a2
-2.-- z

z
{7-30}(3-4-v a

j x.-a

Integrating with respect to z yields:

z - +(3--4-v ) ( {7-31}

where it can be verified that the corrective horizontal displacements for an incompressible

material at the surface corresponds to a positive mirror image. Introducing equation {7-20} in

{7-31}:

(z - H)z -x
R2 { -4.v)-x

{7-32}

x2 + y 2 +(z -H 2 [x2+y2+(z-HY]

similarly:

(z - H). z -'y (3-4-v)- y-6 - ~ + T

Ix2 + +(z - H Y]' + +(z -- H y i

{7-33}

Finally, the displacement field due to a cavity contraction/expansion in elastic half-space is

obtained by adding equations {7-13} and {7-29}, {7-32} and {7-33}:
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u x =U' R2 {X -6- (z-H)-z-x + (3-4-v)-x 7-34a}
u2 = u, -F2--6

Ix2+2(z+HY] x2+(z - HY] + x+2(z - HY

u, =U,.R y6. (z-H)-z-y 5+ (3-4.v).y } 7-34bI
-+22 X2+Y2] 2 X2 + Y2 {7-4b

x +(z +HY] x +2(z - HY] + x+2(z - H

(z+H)

x +y 2 +(z+HY>

(3-4.v). (z-H)
3

[9 + Y2 + (z-Hy]1

3-(z-H -[x +y +(z-HY]

x + y2 +(z-H {7-34c}

and us is related to the ground loss volume, V, as follows:

u L {7-35}

7.3. 3-D Deformation Analysis due to a Semi-Infinite Tunnel in Elastic Half-Space

This Section considers the effects of the 3-D deformations produced near the tunnel heading. In

order to account for the effects of the tunnel heading, a distributed ground loss approach is

followed. The ground loss is uniformly distributed along the tunnel axis (parallel to y) from y = -

oo to y = 0. The solution is obtained by means of the Green functions in correspondence to a 3-D

spherical cavity contraction/expansion in an elastic half-space (Section 7.2).

The displacement field due to a spherical cavity contraction/expansion embedded at depth, H, in

elastic half-space can be written as:
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V
u = L f(x,y,z)

VL
u= g (x, y, z)

V
4.L h(x, y, z)

{7-36a}

{7-36b}

{7-36c}

where VL is the ground loss volume and the patterns obtained from equations {7.34} are given

by:

x

x2 + y2+(z+H2]1

(z - H) -z -x

x:+y2+(z-HY]'

y (z-- H)- z- y
3 - 6 - 5

x+ y2+(z+H 2 V2 +y2 +(z-HYf2

+ (3 -4 -v)- x
I2+ Y2+(-y[x +y2 +(z-HY]2

+ (3-4-v)- y

[X2 + 2 + (z

(z+H) -2-7

h(x, y, )+ (z +

(3 - 4. v)- (z -H)

[x2+y2+(Z-HY2

3-(z-Hf -x2 y +(z-HJ

[x2 y2+(z-HY], {7-37c }

If the cavity is located in an arbitrary position along the tunnel axis, y = (see Figure 7.3),

equations {7-36} become:

V,u = f(x, y -, z)
4 -)z

I-3a}
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f (x, y, z)=

g(x, y,z)=

{7-37a}

{7-37b}



{7-38b}

{7-38c }

VL
u= - g(xy -{z)

4-n
V

uZ = L h(x, y -, Z)
4 -iz

The Green functions are defined as the displacement field due to a unit ground loss (i.e., V = 1)

occurring at a cavity with coordinates (x, y, z) = (0, , -H):

F (x, y, z()- f(x,y - , z)
4 -17

{7-39a}

{7-39b}Y (x, y, z.()= i g (x, y - {,7)

1
(X, y, Z,)= h(x, y -, z)

4 -)z
{7-39c }

Hence, the displacements due to a ground loss distributed along the tunnel axis from y = -oo to y

=0 is given by (see Figure 7.4):

0
=, fT x ,z, -Q -d

0
=Y f -(,Y '0 ( -d

0
f~ = X ,-', -Q -d

{7-40a}

{7-40b}

{7-40c }
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where )-d4 represents the ground loss volume. For a uniformly distributed ground loss, a4)

= V2-D, where V2-D is the two-dimensional ground loss volume, defined in {3-21}. Hence, the

displacement field due to a uniformly distributed ground loss2 is found to be:

x -z-(z - H). [2. y -(3. R|-y2Ix-(R-y) )-X-(R2 -Y) 
r2 -R,r|- R2

R

)-4-R2
3

r2 -R2

2.z(z-H )

R,

{7-41a}

{7-41b}

Sy2)-2 R3

{7-41c}
2R r -R

[K -(z - H)- 2 -H]. (R2 - y)- 2 (R2 - y) (z - H)

r 2 R. 2I

where:

{7-42a}

{7-42b}

{7-42c }

{7-42d}

{7-42e}

2 More refined predictions of ground loss at tunnel headings can be specified based on finite element models such as
Panet and Guenot (1982).

252

U =V 2-D

4.z.

V 2 _D
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r2 = VXz + (z - HY

K = 3-4-v
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- HY - - -(3 -R|2
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It can be shown that this solution tends to the one presented in Section 3.3.1. for y -> -oo.

The displacements at the surface are:

V2-.(1-v)-x x 2 ±y2 +H2 -y
f x2+H 2  2 y 2 +H 2

V 01-v)
. 2-D (y-+H

Z PrI T

UI V?-D (1-v)-H
)T x 2+H 2

It can be seen that the

follows:

x+ y + H 2 -

+ 2 + H 2
{7-43c}

vertical (z) and lateral (x) displacement at the surface are related as

|x
1z=O H Z=0

where it can readily be seen that horizontal displacements are smaller than vertical in the region

where -H < x < H and larger elsewhere. This result coincides with the 2-D analysis discussed in

Section 3.5.1.1.

Contours of surface displacements are presented in Figure 7.5. It is found that the lateral

displacements, ux, are essentially two dimensional at the region where y < -2-H, while the 3-D

effects are important for y > -2.H. The longitudinal displacements, uY, decay at the same rate in

all directions from the tunnel heading. The vertical displacements, uz, are essentially two

dimensional at the region where y < -2-H, and again the 3-D effects are important for y > -2-H (as

for the case of lateral displacements). Figure 7.6 shows the deformed ground surface for R/H

=0.2 and v= 0.25.
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Figure 7.7 shows the effects of the proximity of the tunnel heading (i.e., 3-D effects) on the

surface settlements, where it can be seen that the trough is wider ahead the tunnel face and

slightly narrower at a distance H behind the heading. The troughs have essentially the same

shape for y <0 (i.e., behind the tunnel heading). However, the absolute magnitude of the surface

displacements are almost independent of the distance to the tunnel heading, y, only for y < 2-H

(i.e., two embedment depths behind the tunnel heading).

Figure 7.8 shows the 3-D effects on the lateral displacements, ux, inside the ground at a vertical

line two radii away from the tunnel centerline. It can be seen that the shapes are almost the same

for y < 0 (i.e., behind the tunnel heading). However, as for the surface settlements, the absolute

magnitude of the lateral displacements are almost independent of the distance to the tunnel

heading, y, only for y < 2-H (i.e., two embeddment depths behind the tunnel heading). The lateral

displacements decrease almost linearly with depth ahead the tunnel heading.

Figure 7.9 shows the 3-D effects of on the longitudinal displacements, uy, inside the ground at a

vertical line two radii away from the tunnel centerline. It can be seen that the displacements

decrease almost linearly with depth for -H < y < H, and present a maximum value at z = -H

elsewhere. By comparing Figures 7.10 and 7.11, it can be seen that the longitudinal

displacements are larger than the lateral for y > -H, while the lateral displacements are

predominant elsewhere (i.e., at a distance larger than H behind the tunnel heading).

7.4. Conclusions

It has been shown that is possible to generalize the 2-D solutions in order to take into account the

proximity of the tunnel heading in the displacements field for the uniform convergence mode.

This allows the evaluation of out-of-plane movements (i.e., in the longitudinal direction), which

are not taken into account by the 2-D solutions. It is found that the 3-D effects are confined to a

region 2-H behind from the tunnel heading.

A 3-D solution can be obtained for the pure distortion case following a similar approach than the

one used for the uniform convergence case by superimposing Neuber (Neuber, 1946) solutions
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for a sphere in an infinite space. In order to correct the surface stresses an approach similar to the

one followed in Section 7.2. could be used3 .

3 Fares (1987) proposed a generalized mirror image technique in order to convert any infinite-space solution in to a
half-space solution. This approach is particularly interesting since it also allows to model a layered medium by
direct superposition.
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Figure 7.1. Spherical cavity contraction in infinite space - Problem outline
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Figure 7.2. Spherical cavity contraction in half space

256



z, uz

x, ux

y, U,

tunnel axis

Figure 7.3. Spherical cavity contraction along tunnel axis in half space - Green function
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Figure 7.4. Modeling of semi-infinite tunnel - Distributed ground loss
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8. Summary, Conclusions, and Further Recommendations

8.1. Summary

This thesis has re-derived and studied analytical solutions to model ground displacements due to

tunneling based on continuum mechanics. Some solutions have been modified and some others

have been proposed. Ground deformation patterns, resulting from the deformation of a tunnel

have been studied and the factors that affect the distribution of displacements inside the ground

have been identified and, in some cases, re-defined in a more consistent form.

" A comparison of exact and approximate solutions for the displacements due to a 2-D circular

tunnel in elastic ground has been drawn. It has been found that both solutions yield similar

results in the far field for relatively deep tunnels (i.e., R/H < 0.45).

* Geometry effects have been investigated by comparing the displacements due to 2-D square

vs. circular tunnels in elastic ground. It was found that geometry effects are confined to a

region near the tunnel wall, though both solutions predict similar displacement patterns in the

far field (one radius away from the tunnel).

* Effects of plasticity have been studied. It was found that a local zone of plasticity is likely to

develop around the tunnel wall. However, the displacement patterns in the far field are

controlled by the elastic solution. A simple reduction factor that accounts for plastic behavior

has been proposed in order to correlate convergence measurements at the tunnel wall with

ground loss predicted by elastic solutions.

* Ground displacements predicted by the elastic solutions have been compared with in-situ

measurements for a total of four case studies of single tunnels in an variety of soils and

excavated by means of different construction methods. A simple set of charts has been

proposed in order to obtain the input parameters for the elastic and average dilation models.

It was found that the input parameters obtained from the aforementioned case studies are

within the range expected for three of these cases. Good agreement between predicted and

observed displacements was found, except in the case of a deep NATM tunnel in heavily

overconsolidated and fissured London Clay. For this particular case, the measured settlement

troughs predicted by the elastic solution are much narrower than those predicted.
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e Effects of proximity of the tunnel heading (i.e., 3-D effects) have been studied by

considering a semi-infinite tunnel in elastic half-space. It was found that 3-D effects are

important in a zone up to 2H behind the tunnel heading. 2-D and 3-D solutions predict

essentially the same displacement patterns elsewhere.

8.2. Modeling Considerations

The parameters that control the distribution of ground displacements are: i) uniform convergence

displacement, us, which is related to the ground loss; ii) relative distortion, p, which is related to

the ground conditions (Ko), the construction procedure, soil-structure interaction (r,), and

Poisson ratio, v, and iii) Poisson ratio, v, if elastic or average dilation parameter, a. The factors

that influence the parameters controlling the ground displacements are summarized below:

Influence of Ground Conditions

e Nearly normally consolidated deposits are likely to have more anisotropy of the initial state

of stresses (since Ko < 1) than lightly overconsolidated deposits (OCR ~ 4, Ko ~ 1). This

initial stress anisotropy leads to a larger contribution of the pure distortion mode. This results

in a narrower settlement trough and smaller inwards horizontal movements (in many cases

even outwards) at the tunnel springline.

e Poisson ratio strongly affects the ratio between the relative magnitude of the surface

displacements and the displacements inside the ground.

e The friction and dilation angles, cohesion intercept, and shear stiffness control the plastic

behavior of the soil. A simple reduction factor has been proposed in order to correlate the

ground loss measured at the tunnel wall in order to predict the far field displacements by

means of elastic solutions.
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Influence of Construction Method

* NATM construction method leads to a larger volume of ground loss, since large

deformations at the tunnel head are allowed. Lower values of relative distortion are also

expected, due to the fact that the internal pressure ratio, r,, is close to zero.

* Excavation by means of TBM machines leads to higher values of relative distortion since the

internal pressure ratio is likely to be high, especially if the tail void gap is filled with

pressurized grouting. If stability is improved at the face either by means of a slurry (Slurry

shield machines) or earth pressures (EPB machines), the ground loss is likely to be reduced,

which increases even more the contribution of the distortion mode relative to the uniform

convergence.

Soil Structure Interaction

* Soil structure interaction effects can only be conceptually taken into account by the relative

distortion parameter. It is assumed that the internal pressure arises from the ring effect of the

lining while compressed. This pressure is assumed to be distributed uniformly along the

tunnel wall, since the lining has a very high axial stiffness in comparison to its bending

stiffness. If the lining is placed without allowing large deformations to occur (e.g., pre-cast

segmental lining expanded behind the shield), the internal pressure ratio is likely to be high,

thus leading to a high relative distortion. On the other hand, if large deformations are allowed

before placing the lining (e.g., shotcrete if NATM is used), the internal pressure ratio is likely

to be low, thus leading to a lower value of relative distortion.

8.3. Further Recommendations

* An elastic solution for the 3-D distortion problem can be obtained by superimposing Neuber

(1946) sources. The solution can be used as a Green function in order to model the 3-D

effects of the distortion component by integrating the functions over the tunnel axis. This

would serve to complete the set of 3-D solutions needed in order to model ground

displacements near the tunnel heading for normally consolidated deposits (likely to have
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relatively high contribution of the distortion mode). A technique proposed by Fares (1987) is

particularly interesting in this regard, since it provides a straightforward algorithm in order to

convert infinite space solutions (e.g., Neuber sources) into half-space solutions.

e 3-D plastic solutions can be introduced in the solutions presented in this thesis by following a

similar approach than for the 2-D case.

* In order to model complex 3-D construction procedures, the basic solutions presented

throughout this thesis can be directly superimposed. Grouting activities can be introduced in

the analysis by means of 2 or 3-D cavity expansions. The stacked drift construction of the

main cavern at Rio Piedras station can be modeled by superimposing either point or square

ground losses and point distortions at each drift and for the cavern as a hole after the

excavation of the core material. This direct superposition of solution, straightforward on its

own sake, needs to be experimentally validated.

* It is believed that layered media and non-linear soil stress-strain behavior can affect the

displacement patterns around tunnels. However, the effect of the aforementioned issues

remains uncertain on its quantification.

* Although three of the four examples have shown encouraging results, further experimental

validation of these methods is needed from well-documented case studies that include both

inclinometer and surface settlement data.
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Appendix I

Complex Variable Solution for a Deforming Circular Tunnel in an Elastic Half-Plane

Complex variable formulation of the theory of planar elasticity

The governing equation of the plane elasticity can be expressed in terms of Airy's stress function

as follows:

V 2 -V 2 . F =0 {I-}

where the V2 operator in Cartesian coordinates is given by:

V 2 a2
V2 = ,2+ ,2 {1-2}

Introducing the following transformation:

z = x+i - y {I-3}

the V2 operator can be expressed as follows:

az -az

where the overscript " " stands for the complex conjugate of the variable.

Introducing {1.4}, the governing equation of plane elasticity yields:
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{I-5}

Hence, it can readily be seen that Airy's stress function is given by the following general

expression (e.g. Muskhelishvili, 1962):

2. F = z. #(+ z -# 0)+x(z)+ X z ) {I-6}

where #, X, #, and X, are arbitrary functions which are found by imposing the boundary

conditions of the problem. In order for Airy's stress function to be real, #, X, #1, and X1, the

following condition must be fulfilled:

0,0 ) {I-7 }

Hence, the general solution for the problem is:

2 -F = z -(z)+ z -(z) +X(z)+X(z) {1-81

The functions # and X are called Goursat functions. The displacement components are given in

terms of the Goursat functions as follows:

2-G-u = -o(z)-z d {1-91
dz

where:

{1-101
dz
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U =U +i-u {I-11}

x 3 - 4 -1 {1-121

On the other hand, the stresses can be expressed as derivatives of the Airy stress function:

cT+ a,-=2- d + d 11-131
dz dz)

d 2p dyrfQ -oU+2-i-,. = 2 jz.tF + 1-141

The boundary conditions are usually in terms of either displacements or stresses. In the first case,

the boundary conditions are imposed on equation {I-9}. In the second case, it is most convenient

to express the boundary condition in terms of the integral of the tractions along the boundary:

S

1= I1 +i-12 = i - (tv+ i- t~ ds {I-15}
0

where s is a parametric coordinate which describes the position along the boundary and tx, t, are

the traction boundary conditions. It can be shown that equation {1-151 can be rearranged as:

00= #(z)+Oz - /(z)+ C {1-161
dz

where C is an integration constant. For the problem discussed herein (i.e., deforming circular

tunnel in a half-plane), the constant C can be omitted (i.e., C = 0 since it can be incorporated into

a rigid body motion of the entire plane.
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Conformal mapping

The problem domain is outlined in Figure I. 1, where it can be seen that the domain boundaries

cannot be mathematically expressed in one term of the Cartesian variables, x and y. In order to

circumvent that problem, the z-plane is mapped onto the -plane by means of the following

transformation:

i- z (I +a2) H (1 -a2)1-171

i Z + a 2 )+ H ( -a2)

where H is the depth to centerline (Figure 1.1) and a is given by:

H H f
R R

where R is the tunnel radius. This conformal transformation has the effect of transforming the

problem domain in a much simpler domain, bounded by two concentric circles (Figure 1.2) that

can be defined by means of only one coordinate (the angle, 6). The horizontal boundary given

by y=O in the z-space is mapped onto a circle of unit radius in the -space and the circular tunnel

boundary given by (x2)+(H +y -R = 0 at the z-space onto a circle of radius a in the G
space. Because the conformal transformation is an analytic function in the problem domain, the

Goursat functions, # and y, which must be analytic in the z-plane, can be expressed in terms of

the mapped coordinate (:

#(Z)= #(z( ))= #( ) {I-19a}

JP(7) z)= = ) (() I-19b}

As both Goursat functions are analytic in the mapped domain, they can be expanded in Laurent

series:
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{1-20a}ao+Yak .{* + bk -{-"
k=1 k =1

V|f(= C. + Ck ' k
k=1

11-20b I+Idk . ;-k

k=1

where the coefficients ak, bk, Ck, and dk, must be determined by applying the boundary conditions.

Boundary conditions

The stress free boundary condition at the boundary y = 0 (i.e., the stress-free surface) is applied

by means of equation {I-16}:

$(z)+ z d#
dz

v=

= 0

after conformal mapping, equation {1-21} becomes:

{I-21}

#({)+ - dd (2 d{
=0 {I-22}

where a= e represents the mapped coordinate at the outer boundary (i.e., stress free surface).

Hence, after straightforward algebra, the boudary condition {1-221 can be expressed in terms of

the Laurent series coefficients:
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Xa k +Xk k I 0 -k 7l a - k b -+ (k+1)-kak,12-- $ - bk-1
k=1 k=1 2 k=1 2 k=2

1- 1- -
+--b+co +...

2

.. + +XCk (7k+ dk -O
k=I k=1

from where the Laurent coefficients Ck and dk can be obtained by setting the coefficients of all

equal powers of oequal to zero:

-1 1
cO = -ao- - - a,- b, {-24a}

2 2

- 1 1
Ck = -bk + - (k -I)- a{J (k + 1)- a {I-24b}

2 2

- 1 1
dk = -ak +- (k -1)- bk-- (k +1). b+ {I-24c}

2 2

The prescribed displacement at the tunnel wall boundary condition is applied by means of

equation {1-9 ),after conformal mapping:

2 -G .u (a -a
-a---(1-2-a2)+a- (2-a 2). U-1 -a 2 . -2

2. (1-a -a)
Y(a -a)

{I-25}

where a.o= ( at the tunnel boundary and a= e'O (see Figure 1.2). It is convenient to rewrite the

boundary condition {I-25} as follows:
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2 k=2

1 k0
+ -- (k +1)-bksi- l

2 k=1
+ao +-- ai

2
11-231

)= K, -Oa -a)-



1C -#0(a -a)- y/(a -a-.
2 -- )a. 1-2-a2 )+a -(2- a 2). a-1- _a2. -2 d {I-25}

2 d{)

It can readily be seen that the right-hand side of equation {1-251, after Laurent series expansion,

will be expressed in Fourier series terms, since at that boundary the terms of the Laurent series

are of the form k = a.ek . Hence, it is convenient to expand the displacement boundary

condition (left-hand side of equation { 1-25 }) in Fourier terms:

2-G-(1-a-)-u ()= XA .a' {1-261

where the coefficients Ak are obtained as follows:

Ak = .2 2-G-1ao--f0)-J -d {I-27}
Ak fJ2.G.(1~a).u4Y).a-k *dO 1-7

Introducing equation {1-261 in {1-251 and expanding the right-hand side in Laurent series and

introducing equations {I-24} yields a relationship between the Laurent coefficients ak and bk and

the Fourier expansion coefficients Ak:

(1-a2).(k +1-ak. _ (a2 +.a-2-k).bk+l (1- a2). k -a -(1+K .a-2-).bk +A_ -a -k

{I-28a}

(1+-a2k+2-).1k+l +(1-a2). (k +1).bk+l = ( a2)-k bk +a- +(+c -a24)- ak + Ak+k -ak+

{I-28b}

From equations {1-28 }, the coefficients ca be calculated recursively. The starting values, a, and

b; can be determined from the coefficients of the powers d and d:

275



{I-29a}

(1+ C -a2). al +(1-a2)-b, =1, -a+(C +1). a 2 -ao {I-29b}

It can be seen that only the ao value remains indeterminate and is found by requiring that the

Laurent coefficients vanish for k -> oo.This is done by means of taking advantage of the linearity

of the recursive relations (equations {I-28}). Hence, two tentative values of ao are used to

calculate an approximate value of a,,. and the value that makes a. = 0 is found by linear

interpolation.
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R

y, u,

x, ux

z = x + i-y

Figure 1.1. Problem outline

y,, u

ri

Figure I.2. Conformal mapping (after Verruijt, 1997)
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Appendix II

MATLAB Subroutines

File: tunnel.m

clear

% 2-D TUNNEL

% Generates the ground displacements due to a combination of uniform

% convergence and distortion at the tunnel wall using the exact and

% appproximate elastic solutions

% G = shear modulus, nu = Poisson ratio, H = depth to centerline, r Radius

% N, NA = number of terms used to obtain the Laurent coefficients for

% infinite order, NC = number of terms needed for the Laurent series,

% ud = maximum horizontal displacement at the tunnel wall due to distortion,

% ue = displacement at the tunnel wall due to uniform convergence,

% plot.dat = input data file for Techplot

G=1;

nu=0.25;

H=1;

r=.45;

kg=3-4*nu;

alpha=H/r-((H/r)^2-1)^0.5;

N=150;

NA=150;

NC=ceil(8-11.75*r/H+31.25*(r/H)^2)

ud=1;

ue=-l;

[AP,ANI =gena(NA,alpha,G,ud,ue);

AP (N+1) =0;

AN(N+1)=0;

ai0=0;
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[ai,bi,ci,di]=genl(AP,AN,N,kg,aiO,alpha);

ALi=ai(N+1);

af0=li;

[af,bf,cf,df]=genl(AP,AN,N,kg,afO,alpha);

ALf=af(N+1);

aO=(af0-ALf/(ALf-ALi)*(afO-aiG));

[a,b,c,d]=genl(AP,AN,N,kg,aO,alpha);

[nx,nnod,nel,con,x,y]=zdom(H,r);

[ux,uy]=calcu(x,y,a,b,c,d,alpha,H,kg,G,NC);

[uxa,uya]=calcua(-x,y,r,H,nu,ue,ud);

X=x(l:nx);

Y=y(l:nx);

UX=ux(l:nx);

UY=uy(l:nx);

UXA=uxa(l:nx);

UYA=uya(l:nx);

fid=fopen('c:\plots\plot.dat','w');

fprintf(fid, 'VARIABLES = "x/H", "y/H", "ux/uO", "uy/uO"\nZONE T="EX-MESH",

N=%g, E=%g, F=FEPOINT, ET=QUADRILATERAL\n',nnod,nel);

fprintf(fid,'%g %g %g %g\n', [x; y; ux; uy]);

fprintf(fid,'%g %g %g %g\n',transpose(con));

fprintf(fid,'ZONE T="AP-MESH", N=%g, E=%g, F=FEPOINT,

ET=QUADRILATERAL\n',nnod,nel);

fprintf(fid,'%g %g %g %g\n', [-x; y; uxa; uya]);

fprintf(fid,'%g %g %g %g\n',transpose(con));

fprintf(fid,'ZONE T="EX-SURF", I=%g, F=POINT\n',nx);

fprintf(fid,'%g %g %g %g\n', [X; Y; UX; UY]);

fprintf(fid,'ZONE T="AP-SURF", I=%g, F=POINT\n',nx);

fprintf(fid,'%g %g %g %g\n',[-X; Y; UXA; UYA]);

fclose(fid);

fid=fopen('c:\plots\plotxt.txt','w');

fprintf(fid,'SETTINGS:\n ue=%g ud=%g H=%g r=%g nu=%g\n',ue,ud,H,r,nu);

fclose(fid)

File: gena.m

function [AP,AN]=gena(N,a,G,ud,ue)
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% Generates the Fourier coefficients

A2p(1:N)=0;

for k=2:N;

Aln(k)=li*a^(k-1-1)*(1-2*a^2+a^4);

end

Alp(l)=1i*(-2*a+a^3);

Alp (2) =li*a^2;

A2p(l:N)=0;

A2n(l:N)=0;

A2p (1) =li*a;

A2p(2)=-li;

AP=(ud*Alp+ue*A2p)*2*G;

AN=(ud*Aln+ue*A2n)*2*G;

File: genl.m

function [a,b,c,d]=genl(AP,AN,N,kg,aO,alpha)

% Generates Laurent Coefficients

a(l)=aO;

a(2)=conj((1/((l-alpha^2)/(kg+alpha^2)+(l+kg*alpha^2)/(1-

alpha^2)))*(AP(1)/(kg+alpha^2)+conj(AP(2))*alpha/(1-

alpha^2)+conj(a(1))*(kg+l)*alpha^2/(l-alpha^2)-a(l)*(kg+l)/(kg+alpha^2)));

b(2)=(AP(1)-(kg+1)*a(1)-(1-alpha^2)*conj(a(2)))/(-(kg+alpha^2));

for kp=2:N

k=kp-1;

Ql(kp)=(l-alphaA2)*(k+l);

Q2(kp)=-(alphaA2+kg*alphaA (-2*k));

Q3 (kp)=(l-alphaA2)*k;
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Q4(kp)=-(l+kg*alpha^(-2*k));

Q5(kp)=AN(kp)*alphaA (-k);

Rl(kp)=(l+kg*alpha^(2*k+2));

R2(kp)=(l-alpha^2)*(k+l);

R3(kp)=alpha^2*(l+kg*alpha^(2*k));

R4(kp)=(l-alphaA2)*k;

R5(kp)=conj(AP(kp+l))*alpha^(k+l);

b(kp+l)=1/(Q2(kp)/Q1(kp)-R2(kp)/Rl(kp))*(conj(a(kp))*(Q3(kp)/Ql(kp)-

R3(kp)/Rl(kp))+b(kp)*(Q4(kp)/Ql(kp)-R4(kp)/R1(kp))+Q5(kp)/Ql(kp)-

R5(kp)/Rl(kp));

a(kp+l)=conj(1/(Q1(kp)/Q2(kp)-R1(kp)/R2(kp))*(conj(a(kp))*(Q3 (kp)/Q2(kp)-

R3(kp)/R2(kp))+b(kp)*(Q4(kp)/Q2(kp)-R4(kp)/R2(kp))+Q5(kp)/Q2(kp)-

R5 (kp) /R2 (kp))

end

c(1)=-conj(a(1))-1/2*a(2)-1/2*b(2);

for kp=2:N

k=kp-1;

d(kp)=-conj(a(kp))+(k-1)/2*(b(kp-1))-(k+l)/2*b(kp+l);

c(kp)=-conj(b(kp))+(k-1)/2*(a(kp-1))-(k+1)/2*a(kp+1);

end

File: zdom.m

function [nnx,nnod,nel,con,x,yl=zdom (H,r)

Generates the mesh

be evaluated

(and connectivities) at which the displacements are to

Nx1=30;

Nx2=12;

Nyl=12;

Ny2=2*Nyl;

Ny3=Nyl+Ny2;

dxl=(2*H+r)/Nxl;

dyl=(H-r)/Nyl;

dy3=(H+r)/Ny3;
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n=1;

nnx=Nxl+Nx2+1;

for nylK:Nyl+l;

for nx=1:Nxl+1;

x(n)=(nx-l)*dxl-(2*H+2*r);

n=n+1;

end

for nxl:Nx2;

x(n)=Nx1*dx1+r*(1-cos(nx*pi/2/Nx2))-(2*H+2*r);

y(n)=-(ny-1) *dyl;

n=n+1;

end

end

Nxf=Nx2-1;

for fyl:Nx2;

for nx~l:Nx1+l;

x(n)=(nx-l)*dxl-(2*H+2*r);

y(n)=-H+r*cos(ny*pi/2/Nx2);

n~n+l;

end

for nx~1:Nxf

x(n)=Nx1*dx1+r*(l-cos(nx*pi/2fNx2))-(2*H+2*r);

y(n)=-~H+r*cos(ny*pi/2/Nx2);

n~n+1;

end

Nxf=Nxf-1;

end

Nxf=Nxf+2;

for ny=1:Nx2;

for nx=1:Nxl+1;

x(n)=(nx-l)*dxl-(2*H+2*r);

y(n)=-~H+r*cos(ny*pi/2/Nx2+pi/2);

n=n+1;

end

for nx=l:Nxf

x(n)=Nx*dxl+r*(1-cos(nx*pi/2,/Nx2))y(2*H+2*r);
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y(n)=-H+r*cos(ny*pi/2/Nx2+pi/2);

n=n+1;

end

Nxf=Nxf+l;

end

for ny=l:Ny3;

for nx=l:Nxl+1;

x(n)=(nx-1)*dxl-(2*H+2*r);

y(n)=-(ny)*dy3-H-r;

n=n+l;

end

for nx=l:Nx2;

x(n)=Nxl*dx1+r*(l-cos(nx*pi/2/Nx2))-(2*H+2*r);

y(n)=-(ny)*dy3-H-r;

n=n+l;

end

end

nnod=n-1;

% CONNECTIVITY

n=1;

for ny=l:Ny1;

for nx=1:Nxl+Nx2;

nodl=(ny-i)*(Nxl+Nx2+1)+nx;

nod2=nodl+l;

nod3=nod2+Nxl+Nx2;

nod4=nod3+1;

con(n, 1) =nod1;

con(n,2)=nod2;

con(n,3)=nod4;

con(n, 4) =nod3;

n=n+l;

end

end

Nxf=Nxl+Nx2-1;

Nxstartl=(Nxl+Nx2+1)*(Nyl)+1;
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for ny=1:Nx2;

Nxstart2=Nxstartl+Nxf+2;

for nx=1:Nxf;

nodl=Nxstartl;

nod2=Nxstartl+1;

nod3=Nxstart2+1;

nod4=Nxstart2;

con(n, 1) =nodl;

con(n,2)=nod2;

con(n,3)=nod3;

con (n, 4) =nod4;

n=n+1;

Nxstartl=Nxstartl+1;

Nxstart2=Nxstart2+1;

end

nodl=Nxstartl;

nod2=Nxstart1+1;

nod3=Nxstart2;

nod4=Nxstart2;

con(n,1)=nodl;

con(n,2)=nod2;

con(n,3)=nod3;

con(n,4)=nod4;

n=n+1;

Nxf=Nxf-1;

Nxstartl=Nxstartl+2;

end

Nxf=Nxf+1;

for ny=1:Nx2;

Nxstart2=Nxstartl+Nxf+1;

for nx=1:Nxf;

nodl=Nxstartl;

nod2=Nxstartl+1;

nod3=Nxstart2+1;

nod4=Nxstart2;

con(n, 1)=nodl;

con(n,2)=nod2;
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con(n,3)=nod3;

con(n,4)=nod4;

n=n+1;

Nxstartl=Nxstart1+1;

Nxstart2=Nxstart2+1;

end

nodl=Nxstartl;

nod2=Nxstartl;

nod3=Nxstart2+1;

nod4=Nxstart2;

con(n,1)=nodl;

con(n,2)=nod2;

con(n,3)=nod3;

con(n,4)=nod4;

n=n+1;

Nxf=Nxf+1;

Nxstartl=Nxstartl+1;

end

for ny=1:Ny3

for nx=1:Nxl+Nx2

nodl=Nxstartl;

nod2=Nxstart1+1;

nod3=Nxstartl+Nxl+Nx2+2;

nod4=nod3-1;

con(n, 1) =nodl;

con(n,2)=nod2;

con(n,3)=nod3;

con(n,4)=nod4;

n=n+1;

Nxstartl=Nxstartl+1;

end

Nxstartl=Nxstartl+1;

end

nel=n-1;

File: calcu.m
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function [ux,uy]=calcu(x,y,a,b,c,d,alpha,H,kg,G,NC)

% Evaluate Laurent Series

si=size(x);

NX=si(2)-1;

z=1000000000*H;

dz=(li*z*(l+alpha^2)-H*(1-alpha^2))/(li*z*(l+alpha^2)+H*(l-alpha^2));

fipc=O;

fi=a(l);

psic=conj (c(1))

for kp=2:NC

k=kp-l;

fi=fi+a(kp)*dz'k+b(kp)*dz^(-k);

fipc=fipc+conj((a(kp))*k*(dz^(k-1))-k*b(kp)*dz^(-k-1));

psic=psic+conj(c(kp)*dz^k+d(kp)*dz^(-k));

end

uf=1/2/G*(kg*fi+1/2*(l+dz)*((-1+conj(dz))^2)/(1-dz)*fipc-psic);

uyf=imag(uf)

for j=l:(NX+l)

z=x(j)+1i*y(j);

dz=(li*z*(l+alpha^2)-H*(1-alpha"2))/(li*z*(l+alpha^2)+H*(l-alpha^2));

fipc=O;

fi=a(l);

psic=conj (c (1))

for kp=2:NC

k=kp-l;

fi=fi+a(kp)*dz^k+b(kp)*dz^(-k);

fipc=fipc+conj((a(kp))*k*(dz^(k-1))-k*b(kp)*dz^(-k-1));

psic=psic+conj(c(kp)*dz^k+d(kp)*dz^(-k));

end

u(j)=1/2/G*(kg*fi+1/2*(l+dz)*((-l+conj(dz))^2)/(l-dz)*fipc-psic);

ux(j)=real(u(j) );

uy(j)=imag(u(j))-uyf;

end
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File: calcua.m

function [ux,uyl=calcua(X,Y,r,H,nu,ue,ud)

% Evaluate displacements using the approximate solution for uniform

% convergence and distortion

kg=3-4*nu;

si=size(X);

NX=si(2)-1;

for N=1:NX+l

x=X(N);

y=Y(N);

uxme(N)=ue*x*r/(x^2+(y+H)^2)-ue*(x*r)/(x^2+(y-H)^2);

uyme (N) =ue* (y+H) *r/ (x^2+(y+H) ^2) -ue* ( (y-H) *r) / (x^2+(y-H) ^2)

uxte (N) =4*ue*r* ( (1-nu) *x/ (x^2+ (y-H) ^2)- (y-H) *x*y/ (x^2+ (y-H) ^2) ^2);

uyte (N) =2*ue*r* ((2* (y-H) *x^2+H* (x^2- (y-H) ^2)) /(x^2+(y-H) ^2) ^2-2* (1-nu) *(y-

H) / (x^2+(y-H) "2));

uxmd(N) =ud*r/ (3-4*nu) *x* (((3-4*nu) * (x"2+ (y+H) "2) "2)- (3* (y+H) "2-

x^2) * (x^2+ (y+H) ^2-r^2) ) / (x^2+ (y+H) ^2) ^3-ud*r/ (3-4*nu) *x* (( (3-4*nu) * (x^2+ (y-

H) ^2) ^2) -(3 * (y-H) ^2-x^2) * (x^2+ (y-H) ^2-r^2) ) / (x"2+ (y-H) "2) "3;

uymd(N)=-ud*r/(3-4*nu)*(y+H)*((3-4*nu)*(x^2+(y+H)^2)^2-(3*x^2-

(y+H)^ 2) *(x^2+(y+H)^2-r^2))/(x^2+(y+H)^ 2)^3+ud*r/(3-4*nu)*(y-H)*((3-

4*nu) * (x^2+ (y-H) ^2) "2- (3*x^2- (y-H) "2) * (x^2+ (y-H) ^2-r^2) ) / (x^2+ (y-H) ^2) ^3;

uxtd(N)=8*ud*r/(3-4*nu)*(x*(1-nu) * (x^2+y^2-H^2) / (x^2+(y-H) "2) "2-

x*y*((y*(x^2+y^2)+2*H*(H^2-xA2)-3*y*HA2)/(x^2+(y-H)A2)A3));

uytd(N)=8*ud*r/(3-4*nu)*((l-nu)*(x^2*(2*H-y)-y*(y-H)^2)/ (x"2+(y-H)^ 2)^2-

((y-H)*(H*y*(y-H)A2-xA2*(xA2+y^2+H*(y+H))))/(xA2+(y-H)A2)A3);

ux(N)=uxme(N)+uxte(N)+uxmd(N)+uxtd(N);

uy(N)=uyme(N)+uyte(N)+uymd(N)+uytd(N);

end
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Appendix III

Elastic half plane subjected to a shear stress boundary condition at the surface

The problem, outlined in Figure I-1, can be solved by means of the Fourier transform method.

This implies that the shear stress distribution at the surface and its first derivative vanish for

x -a oo. The boundary conditions are that the normal stresses at the surface are zero, the shear

stresses at the surface are prescribed, and that the stresses (or displacements) at infinity must

vanish.

The governing equation of the plane elasticity can be expressed in terms of Airy's stress function

as follows:

V2 -V 2 -F = 0 {1.11

The solution is sought in terms of the Fourier transform of F, defined as follows:

= F(x,y)- ** -dx

Hence, the V2 operator can be expressed as:

V2 = 2 -C2

The Fourier transform of Airy's stress function is assumed to be of the following form:

F(y,c)= e6

{1.2}

{I.3}

{1.4}

289



Replacing {1.4} in {1.1} yields the values of the parameter c-

(62 -2) 2 _ 2)= {I.5}

As can be seen, there are two double roots; c and -c. Hence, the Fourier transform of Airy's

stress function can be expressed as:

(c, y)= ew -(A+ B - y)+e-*Y -(C +D y) { .6}

where A, B, C, D are integration constants. Imposing the boundary condition at infinity, 3 can be

reduced to:

3(oi, y) = ed'" -(A + B -y) {1.7}

where A and B are integration constants which are found by imposing the boundary conditions at

the surface. The Fourier transform of the normal stress at the surface is given by:

{I.8}

Introducing {I.7} in {1.81, it can readily be seen that:

A = 0

The Fourier transform of the shear stress at the surface is given by:

{1.91

,(a) = i -0 -B {I.10}

Introducing (.10} and {I.9} in {I.7}, the Fourier transform of Airy's stress function is found to

be:
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(0, y) -i - )-1 -1

Hence, the general solution for Airy's stress function can be found by an inverse Fourier

transformation as follows:

F(x, y)- .
2z f

-- " - -d
CO

where y(c) is given by:

=x = T,(x)- e-'*x -dx

1.12}

{ . 13}
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A y, UY

x, u7

Figure I-1. Problem outline
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Appendix IV

Elasto-Plastic Solution for Drained Displacements Around a Contracting Cavity

This Appendix shows the derivation of the analytical solution for the drained (i.e., no excess pore

pressures) displacement field around a contracting cavity of radius, R, in an infinite plane

subjected to an initial hydrostatic (i.e., Ko = 1) state of stresses. Yu and Rowe (1998) obtained

this solution by assuming an elastic-perfectly-plastic material, a Mohr-Coulomb failure criterion

and a non-associative flow rule.

Total stress equilibrium in the drained case is fulfilled if:

d',. '-O' =0 {IV-1}
dr r

where -', is the radial effective stress, o-'s the azimuthal stress, and r is the radial distance from

the center of the cavity. The stress boundary conditions are:

o', (R)= -p' {IV.2a}

0',. (oo) = - p' { IV.2b}

where p'; is the effective internal pressure (positive if tends to expand the cavity) inside the

cavity and p'o is the in situ stress in the soil mass (positive if compressive).

Elastic response

Assuming the soil follows linearly elastic behavior, the stresses and displacements fulfill the

following relationships derived from elastic theory:
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,'=M u +
ar

-"
r

{IV-3a}

{ IV-3b}O'= M -u'+ aur
r ar

where M and A are the elastic Lame constants, defined in equations {2-31. Replacing equations

{IV-3} in {IV-1 } and solving the PDE yields (see Section 2.1):

B
Ur r) =A - r +--

r
{IV-4}

where A and B are integration constants that are found by means of imposing the boundary

conditions {IV-2} as follows:

A = - (1- 2 -v) {IV-5a}
2 G

B= - POP -R2 {IV-5b}
2. G

Hence, the radial displacements and stress components, a,.' and co' are:

ur(r)= -

p'-(1-2- v)+ (p'-p'o). R

r -r
2-G

{IV-6}

{IV-7a}
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o-', (r)= -p' 0-(PO-p' {IV-7b}
r),

It is important to notice that in order to evaluate the displacements due to the presence of the

cavity, the displacements due to the initial state of stresses (i.e., p'; = p'o) must be subtracted,

leading to:

u,(r)= ) .. r {IV-8}
2-G r

Failure criterion

The elastic stresses, given in equations {IV-7}, cannot always be developed by the soil. The

Mohr-Coulomb failure criterion can be written:

NO' - 'r-O' =Y {IV-9}

where:

No. = I+±sin(O') f{IV- IOa}
I- sin($')

Y = 2{ c'-cos(05) {IV-10b}
1- sin(#')

and #' and c' are the drained friction angle and cohesion, respectively. It is assumed that after

initial yielding, a plastic zone within the region R < r < R, will develop around the cavity. In the

elastic region, equations {IV-3} and {IV-4} are still valid. As the integration constant, A, is

evaluated by considering the derivatives of the displacements at infinity (i.e., elastic region),

equation {IV-5a) is also still valid. However, the value of B is indeterminate, and must be

evaluated by imposing equilibrium in the limit between plastic and elastic regions (i.e., at R,).
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The stresses in the elastic zone are given by:

C
r

C
a',(r)=- 's ,

r-

where C is an integration constant related to B as follows:

C = -2 -G -B

{IV-1 la}

{IV-l lb}

{IV-12}

Plastic response

The stresses in the plastic zone must fulfill both equations {IV-1 } (i.e., equilibrium) and {IV-9}

(i.e., failure criterion):

U', (r)= - - D -r""-I

a', (r)=- -x D-N, *r N-l

{IV-13a}

{IV-13b}

where D is a constant which is found by imposing the boundary condition at the cavity wall:

p'i -(N, .- 1)+Y -N
D = .R' 'IV- 14}

The radius of the plastic zone, Rp, and the constant C, are found by imposing continuity, of

stresses at r = R,:
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R- - T I-N' {IV-15a}
R

1I (+ N,,)- [(N, . -1)- p',+Y ]
T = --- *{V1b

2 (N, -1)- p'0 +Y

p's -(N.-)- p' +y - 1)+ Y ,
C = 0 RP {IV-15c}

The displacement distribution in the elastic zone due to the cavity unloading (i.e., subtracting the

displacements due to the initial state of stresses, p'o) is given by:

Ur= p'0 -(N, -1)+Y R
2u -G-(NO,+1) r

The determination of the displacements in the plastic region requires the use of a plastic flow

rule that define the relative contribution of the plastic strains in different directions. The soil is

assumed to dilate plastically at a constant rate with a dilation angle, yr

-p { IV- 161

where # is given by:

I + sin(Vu 1+sin~y )JV-17}
1 - sin(V/)

If # = N, (i.e., #' = i/) the plastic flow is associative to the Mohr-Coulomb yield criterion. By

considering that elastic strains are negligible in comparison to plastic strains (i.e., elastic-

297



perfectly-plastic), equation {IV-16} and introducing the kinematics relations for strains as a

function of displacements, the flow rule yields:

dur dr

U, r

Solving the ODE yields:

I
Ur = r

{IV-18}

{IV-19}

where J is an integration constant that is found by imposing the continuity of displacement in the

limit between the plastic and elastic zones:

p'(N, -1)+ Y +"
2 G .I(N ,.+ 1) "

Hence, the displacement in the plastic zone is found to be:

{IV-20}

{IV-21}
p'o-(N,.-1)+Y R *+'

Ur =- Y
2 -G - (N,+1) r8

As a special case, the displacement at the cavity wall uf is given by:

U -

R
I{IV-21}Ip' .(N . 1)+Y_ 0 - T -

2 -G -(N,,+1IT

The minimum displacement at the cavity wall that would produce plastic behavior, u2', is found

for T = I (i.e., R, = R) as follows:
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R 2-G-(N,.+1) {IV-22}
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Appendix V

Design Charts for Ground Deformation Analysis
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0.5

0.45 p=0.25 -

0.4 p=0.50

0.35 75

p=1.00

0.3 =.25

p=1.50

0.25
p=2.00

p =2.50

0.2 p =3.00

0.15

0.1

0.05

0

-6 -4 -2 0 2 4 6 8 10 12

F i u 0 V ea , 0

Figure V. 1. Design chart for p and v, k/H =0.025
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3

2.5

2

A .5

u,"/u =0. 12

U, ")/u ,=0.08

0.2 0.3 0.4

V

Figure V.2. Design chart for uj"/u., R/H = 0.025, no dilation
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0=2.00
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P=3.00
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0 1.5 34.
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Figure V.3. Desi gn chart for p and 1/, R/H =0.05
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V

Figure VA4 Design chart for uf/u 1., R/H = 0.05, no dilation

305



0.5

0.45 Iplastic solution -----

0.4 p =0.50

p =0.75
0.35

a=1.2
p=1.00--

0.3 25.-
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0
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Figure V.5. Design chart for p and v', R/H = 0. 1
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Figure V.6. Design chart for lt 0 /Ou,, R/I = 0. 1
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it /u,.=0.025

0.5 it A.U1 /t =0.010

0

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

a

Figure V.7. Design chart for Uu u, R/H =0.1, dilation
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0.35

0.3

0.25

0.2

0.15

0.1

p=2.00

=2.50-- - .4

-----------------------------------------------------

-- .--------------- a=l.8

- ------- ---- - - --- a=2.0 - - - - -

-0.75 -0.5 -0.25 0 0.25 0.5

0 0ui /u,

0.75 1 1.25 1.5

Figure V.8. Design chart for p and v, R/H = 0. 15
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Figure V.9. Design chart for ujY/uF, R/H = 0. 15, no dilation
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Figure V.10. Design chart for uj/ue, R/H = 0.15, dilation
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Figure V. 11. Design chart for p and v, R/H = 0.2
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Figure V. 12. Design chart for uYj/uE, R/H = 0.2, no dilation
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Figure V. 13. Design chart for u 0/, RH=02diaion
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Figure V. 14. Design chart for p and v, R/H = 0.25
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Figure V. 15. Design chart for it,,/it,, R/H =0.25, no dilation
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Figure V. 16. Design chart for uY0/u~, R/H = 0.25, dilation
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Figure V.l17. Design chart for p and v, R/H = 0.3

318



3

2.5

2

u y l/u , =2.40

q l.5

uit /u , =2.00

u 4/it =1.60

0.5

u, "/u 1.20

0 y I =0._80

0 0.1 0.2 0.3 0.4 0.5

Figure V.18. Design chart for uJ/u,, R/H = 0.3, no dilation
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Figure V.19 Design chart tor u, /ue, R/H = 0.3, dilation
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Figure V.20. Design chart for p and v, R/H = 0.35
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Figure V.21. Design chart for uj/uF, R/H = 0.35, no dilation
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Figure V.22. Design chart for u /ue, R/H = 0.35, dilation
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Figure V.23. Design chart for p and v, R/H =0.4
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Figure V.24. Design chart for uj/ue, R/H = 0.4, no dilation
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Figure V.25. Design chart for uY0/u., R/H = 0.4, dilation
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Figure V.26. Design chart for p and v, R/H = 0.45
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Figure V.27. Design chart for u Y/u, R/I = 0.45, no dilation
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Figure V.28. Design chart for uv/ue, R/H = 0.45, dilation
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