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ABSTRACT

Submerged aquatic vegetation can dramatically alter the drag, turbulence and

diffusivity characteristics of flow in aquatic systems. As a result, the diffusion and advection of

contaminants and particulates are greatly influenced. However, modeling efforts generally treat

submerged vegetation merely as a source of drag. This study explores the idea that flow

through submerged aquatic vegetation resembles that of a mixing layer and can not be

regarded simply as a perturbation of the bottom boundary layer.

A dynamically accurate experimental model of a submerged eelgrass canopy was

created in a laboratory flume. The appropriateness of the mixing layer analogy was examined,

with specific emphasis on the generation of large, coherent vortices above the vegetation. The

vortices result in a strongly oscillatory flow and are responsible for the coherent waving

phenomenon (monami) observed in terrestrial and aquatic vegetation. High frequency velocity

records enabled the examination of the periodicity and turbulence characteristics of the

vortices. These structures represent a very prominent feature of the flow and have the potential

to dominate transport in vegetated areas.
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Chapter 1. Introduction

Aquatic vegetation can dramatically alter the hydrodynamics of an aquatic system and

strongly affect the advection and diffusion of both dissolved and particulate species.

Consequently, aquatic vegetation can have a dramatic influence on water quality and has

become an important parameter in constructed wetlands and coastal modeling; as sediments

have such a strong influence on wetland physics, chemistry and biology, the understanding of

near-bottom flow regimes is of utmost importance. The extent of research into the

hydrodynamic effects of submerged aquatic vegetation, however, does not reflect the

importance of the topic.

The majority of research into vegetated flows has examined the effect of terrestrial

vegetation on atmospheric flows and the transport of momentum and scalar quantities into the

canopies. While this situation is analogous to that of submerged aquatic vegetation, it must be

noted that atmospheric flows are essentially unbounded vertically. The same is obviously

untrue for aquatic flows that are bounded by the free surface. Of particular interest in this area

of research, therefore, is the transition from fully bounded flow (emergent vegetation) to

essentially unbounded flow (thoroughly submerged vegetation). Due to tidal effects, coastal

vegetation can experience wide variability in its degree of submergence every day.

Seagrasses are a very prominent form of submerged aquatic vegetation, binding

millions of acres of shallow sediments in the coastal waters of the United States (Fonseca,

1998). Eelgrass (Zostera marina), a species of seagrass, is abundant along the East coast of

the United States and forms important ecological habitats in coastal regions (den Hartog,

1970). Zostera marina was thus chosen as a representative form of submerged aquatic

vegetation for examination in this study.
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The impact of depth and current variation on vegetated flow forms the basis of this

study. Specifically, however, this research was prompted by the observation of strong, coherent

waving in seagrass meadows, both in the field and in the laboratory. This large-amplitude

periodic waving is present under unidirectional flow and progresses smoothly along the

canopy. The significance of such a prominent plant motion was expected to be great and the

mechanism behind the plant waving represented an area of research of great importance and

interest.

The underlying theme of this study is the analogy between flows through submerged

vegetation and mixing layer flows developed by Raupach et al. (1996) for terrestrial canopies.

Using this framework, the prominent features of flow through aquatic vegetation will be

examined using an experimental eelgrass canopy constructed in a laboratory flume. The results

of this study are applicable to all forms of flow through submerged vegetation, from aquatic

vegetation of different flexibility and geometry to terrestrial vegetation. The limitations of the

experimental model and its application to other vegetated flows cannot be stressed too heavily,

however. This study focuses solely upon the interaction of the vegetation with a unidirectional

flow, ignoring (for the time being) the potentially important role of surface waves. This,

however, represents a critical area of future research.

This thesis is separated into four chapters. Chapter 1 gives insight into the motivation

behind this research and a brief literature review on related topics that have been directly useful

in this work. Chapter 2 discusses the experimental methods used in this study, from the

experimental configuration in the laboratory to the benefits of the instrumentation that was

employed. Presented in Chapter 3 are the complete set of results for this experimental study,

along with explanatory discussion. Chapter 4 provides additional discussion on some

particularly interesting discoveries and attempts to tie various aspects of this study together.

14



1.1 Literature Review

1.1.1 Hydrodynamic effects of submerged vegetation

Aquatic vegetation can greatly affect the fate and transport of sediment, nutrients,

contaminants, dissolved oxygen and fauna by altering the hydrodynamic conditions (Fonseca

and Kenworthy, 1987; Nepf, 1999). Currents bend the seagrass into a streamlined shape,

resulting in re-direction of the flow over the canopy (Fonseca et al., 1982; Gambi et al, 1990).

The drag provided by the vegetation creates low velocity regions within the vegetation and

promotes sediment deposition (Fonseca and Kenworthy, 1987; Gambi et al., 1990). Seagrass

cover also decreases physical stress on the sediment-water interface, thus reducing erosion and

stabilizing the benthos (Murota et al., 1984; Gambi et al., 1990; Fonseca, 1998). In addition,

under most conditions, the leafy canopy inhibits resuspension of fine particles and traps

suspended material, cleansing the water column of both sediment and nutrients (Fonseca,

1998). The local hydrodynamics can, in turn, have a strong influence on seagrass production,

growth rate and photosynthesis (Fonseca and Kenworthy, 1987). The population dynamics of

macrophytes are themselves important since these plants comprise about two-thirds of oceanic

biomass and may serve as a considerable global carbon sink (Ackerman and Okubo, 1993).

The vertical inhomogeneity of the exerted drag leads to the development of strong

velocity shear at the top of the vegetation canopy (Gambi et al., 1990; Grizzle et al., 1996;

Vivoni, 1998; Wallace et al., 1998). Strong velocity shear therefore exists at the canopy-water

interface, resulting in greatly increased turbulent intensities in this region, relative to

unobstructed flow (Gambi et al., 1990; Vivoni, 1998; Wallace et al., 1998). Vertical turbulent

transport of momentum into seagrass canopies has tremendous physical implications as it

governs oxygen exchange, seed dispersal, sediment deposition and scalar fluxes within

seagrass beds (Wallace et al., 1998). The presence of large-scale turbulence above seagrass

15



canopies has been noted by Ikeda and Kanazawa (1996) and Wallace et al. (1998); similarly,

organized, coherent structures above terrestrial canopies have been identified by Raupach et al.

(1996). Murota et al. (1984) concluded that turbulent motions produced immediately above the

canopy dominate the structure of turbulence in vegetated open-channel flows. Consequently,

these coherent structures are expected to dominate scalar and momentum transport in flows

through aquatic canopies.

Studies of atmospheric flows through terrestrial vegetation are prevalent (e.g. Finnigan

and Mulhearn, 1978; Finnigan, 1979a; Finnigan 1979b; Raupach et al., 1996) and provide a

fairly extensive knowledge base for vegetated fluid flows. Raupach et al. (1996) confirmed that

canopy turbulence is far from random with coherent eddies of canopy scale contributing greatly

to the turbulent motions. Gao et al. (1989) found that coherent structures above a forest,

consisting of a weak ejection from the canopy followed by a strong sweep into the canopy,

contributed up to 80% of the momentum and heat fluxes at the canopy height. Similarly,

Finnigan (1979b) revealed the dominant role of strong sweep events in momentum transfer into

a terrestrial canopy. Furthermore, Raupach and Shaw (1982), showed that wake generation

does not constitute a significant fraction of the turbulent kinetic energy (TKE) inside an

atmospheric canopy. Wake turbulence is dissipated rapidly due to its small length scale, and

the TKE inside the canopy is dominated by larger scale turbulence from above.

However, in atmospheric canopies the fluid layer is essentially unbounded vertically,

meaning that the vegetated flow is superimposed upon an atmospheric boundary layer of a

much larger scale. Conversely, in aquatic flows the ratio of water depth to plant height (y) is

generally sufficiently small such that the vegetation affects flow throughout the entire water

column. Vivoni (1998) examined the transition of thoroughly bounded flow (emergent

vegetation) to essentially unbounded flow (high values of y), as may be encountered in a typical

tidal cycle. He found that there can be considerable depth-limitation on the turbulent structure
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of the flow through the aquatic canopy. The penetration of Reynolds stress into the canopy

increases little above y ~ 2, indicating this value as important in the depth-limitation transition.

Traditional treatments of the effect of aquatic vegetation on flow deal primarily with the

drag exerted by the plants and the discharge capacity of vegetated channels (e.g. Kouwen and

Unny, 1973; Kouwen and Li, 1980). Such analyses consider the vegetation as perturbation of

the bottom boundary and set about estimation of boundary layer properties such as friction

velocity and Manning's n. Similarly, models of wetland hydrodynamics limit the effect of

vegetation on the flow to the drag exerted by the canopy (e.g. DePaoli, 1999). While such an

analysis has undoubted applications, it does not describe the effect of submerged vegetation on

the turbulence structure and vertical momentum transport in the flow.

1.1.2 Coherent waving of vegetation

Seagrasses exhibit a synchronous, large-amplitude waving in response to water

currents (e.g. Fonseca and Kenworthy, 1987; Grizzle et al., 1996). Accordingly, Ackerman

and Okubo (1993) named this phenomenon 'monami'; the prefix mo- is Japanese for 'aquatic

plant', the suffix -nami meaning 'wave'. This is the aquatic equivalent of the honami (coined

by Inoue, 1955), the coherent waving of terrestrial vegetation, such as crop fields. Finnigan and

Mulhearn (1978) found strong oscillations of velocity and Reynolds stress occurring at the top

of a terrestrial canopy at the same frequency as plant waving. Finnigan (1979a) estimated,

from video footage, that the velocity of the progression of the honami was approximately 1.8

times the mean velocity at the top of the canopy. The author proposed that as strong sweep

events progress along the canopy, they depress a series of plants in their downwind passage.

The plants then spring back and vibrate at their natural frequency.

Ackerman and Okubo (1993) identified the coherent waving of an eelgrass canopy at

Woods Hole, MA. Grizzle et al. (1996) identified the same coherent waving in eelgrass beds at

17



the mouth of the Jordan River, ME (at frequencies between 0.12 and 0.19 Hz) but,

significantly, only under maximum velocities within a tidal cycle. The reader is referred to

Ackerman and Okubo (1993) for a photograph of coherent waving in a seagrass meadow in

Craig Key, FL. Several researchers (Murota et al., 1984; Ackerman and Okubo, 1993; Grizzle

et al., 1996; Wallace et al., 1998) have also identified significant, characteristic peaks in the

spectrum of streamwise velocity through aquatic vegetation, ranging between 0.12 and 0.6 Hz.

Wallace et al. (1998) demonstrated a maximum energy of such oscillations at a height

immediately above the canopy. Ackerman and Okubo (1993) postulated that the periodic

velocity fluctuations were caused by the waving of the plants. However, this study

demonstrates the presence of the converse causal relationship, specifically that the coherent

waving of the plants is a response to strong oscillations in streamwise velocity.

Given the prominence and coherence of plant waving, the effect of the monami on the

turbulence structure in vegetated flow was expected to be significant. Several researchers (e.g.

Grizzle et al., 1996) have alluded to such a relationship, invariably, however, in the absence of

conclusive evidence. Vivoni (1998) found the monami phenomenon had no effect on the

turbulence structure in a model seagrass meadow, the monami considered a response to the

system forcing rather than a dynamically significant interaction between the flow and the

flexible plants. However, the waving of the stiff model plants of Vivoni (1998) was of a much

lower amplitude than is expected in real eelgrass meadows (Grizzle et al., 1996). Therefore,

the effect of pronounced, coherent waving on the turbulence structure in a seagrass meadow

remains undetermined.

1.1.3 Mixing layer flow

The mixing layer consists of two regions of constant velocity, separated by a confined

region of shear with an inflection point in the mean velocity profile. A schematic diagram of a

mixing layer is shown in Figure 1.1.
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U2

h m

U1 3

Figure 1.1. Definition sketch of mixing layer variables.

U, and U2 are the mean low- and high-stream velocities respectively, AU is the

difference between the two and hm is the height of the mixing layer, with nominal end-points

U-U1 U2 -U
defined by U 0.01 and 2 U = 0.01. In this study, U is defined as the

AU AU

arithmetic mean of U and U2 and - as the height above the bottom at which U = U . Note

that the velocity profile of a typical mixing layer is approximately that of a hyperbolic tangent

(e.g. Ho and Huerre, 1984). It is thus symmetrical, with an inflection point in the profile at Z.

Rayleigh proved that a necessary (but not sufficient) criterion for instability of an

inviscid parallel flow is that the basic velocity profile has a point of inflection (Kundu, 1990).
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Fjortoft subsequently discovered a more stringent, necessary condition for inviscid instability,

namely that the magnitude of the vorticity must have a maximum within the region of the flow,

not at any boundary (Kundu, 1990). Note that in free shear flows, viscous effects are not

significantly stabilizing and the inviscid analysis describes the stability characteristics of the

viscous flow well (Kundu, 1990). Both criteria are satisfied by typical mixing layer velocity

profiles (e.g. hyperbolic tangent, error function). Mixing layers are commonly found in

environmental flows; strongly stratified flows and the merging of two coflowing streams often

have mixing layer profiles.

Mixing layers are subject to Kelvin-Helmholtz instability at every stage in their development

(Holmes et al., 1996). This wave instability grows until it billows to form two-dimensional

rollers (Ho and Huerre, 1984; Holmes et al., 1996). This has been visually demonstrated by a

host of experimentalists (e.g. Brown and Roshko, 1974). Figure 1.1 shows the advanced

nonlinear stage of the Kelvin-Helmholtz instability in a tilting tube experiment and in a

shadowgraph of a gaseous mixing layer.

(i)

94
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(ii)

Figure 1.2. (i) Kelvin-Helmholtz instability generated in a tilting tube experiment. Mean

flow in the lower layer is downslope and upslope in the upper layer (i.e. zero

net flow) -from Thorpe (1971).

(ii) Shadowgraph of mixing layer between two gaseous streams (positive net

flow from left to right) -from Brown and Roshko (1974).

After the generation of these vortices, neighboring rollers amalgamate under a

stochastic pairing process (Winant and Browand, 1974; Brown and Roshko, 1974). This

amalgamation, along with the entrainment of surrounding fluid by the vortices, is the

mechanism behind the growth of mixing layers (Ho and Huerre, 1984). After two or three

vortex pairings, a "mixing transition" occurs leading to fully-developed three-dimensional

turbulence superimposed upon the coherent structures of the mixing layer (Brown and Roshko,

1974; Dimotakis and Brown, 1976). Beyond this transition, classical vortex pairings are no

longer observed (Rogers and Moser, 1994), and 'tearing' (the destruction of a vortex by the

engulfment of its vorticity by its neighboring vortices) is the mechanism of amalgamation. The

thickness of laminar mixing layers increases with the square root of distance, while their

turbulent counterparts grow linearly in space (Winant and Browand, 1974; Browand and

Troutt, 1985); developed turbulent mixing layers evolve in a self-similar manner (Rogers and

Moser, 1994). These vortices dominate the mass and momentum transfer through the mixing

layer (Ho et al., 1991), although Browand and Troutt (1985) suggested that the vortex
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structure in turbulent mixing layers is comparatively weaker than the laminar instability, due to

the turbulent diffusion of vorticity.

1.1.4 The mixing layer nature of vegetated flows

The publication that introduced the mixing layer analogy of flow through and above

vegetation was that of Raupach et al. (1996). Until this point, vegetated flow was regarded as a

perturbation of bottom boundary layer flow. The authors noted the similarity between mixing

layer flow and flow through terrestrial canopies, by looking at several mean and turbulent

velocity parameters. The inflection point in the mean velocity profile, the increased correlation

between horizontal and vertical turbulent fluctuations and the strong skewness of the turbulent

fluctuations in terrestrial canopies all pointed towards the mixing layer nature of flows through

submerged vegetation. The momentum transfer of a mixing layer is dominated by sweeps on

the low-velocity side of the flow, and by ejections on the high-velocity side; this corresponds

with the turbulence structure observed in terrestrial canopies (Raupach et al., 1996) and

submerged aquatic canopies (Vivoni, 1998).

Ikeda and Kanazawa (1996) built upon this analogy and examined the generation of

organized vortices above flexible, aquatic vegetation. The three-dimensional vortices were

found to be elliptical in cross-section; the flow field above their model vegetation is shown in

Figure 1.3. The authors also proposed that as a vortex migrates downstream it generates the

wavy motion of the vegetation.
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Free surface

Vegetation
layer

Figure 1.3. Vortex generated above a flexible vegetation layer (center of vortex indicated by

cross). The flow visualization is accomplished with polystyrene beads (from Ikeda and

Kanazawa (1996)).

1.1.4.1 Analysis of published data under the mixing layer framework

The momentum thickness of a mixing layer is defined as:

1~l U -U 2z6=J(-- ~UUJ)dz (1.1)
__O 4 AU

(Rogers and Moser, 1994)

and is an integral measure of the mixing layer thickness, although it certainly does not

correspond to intuitive, visual estimates of that quantity. The linearized analysis of Ho and

Huerre (1984) found that the frequency of the Kelvin-Helmholtz instability in a mixing layer,

fKH, was given by:

23



fKH = 0.032 (1.2)

Equation (1.2) is conceptually reasonable; as the mean velocity increases, the advection

speed of the vortices (and thus the observed frequency) will increase. Similarly, because the

thickness of the mixing layer is linked to the size of the (momentum-transporting) vortices, a

greater momentum thickness implies a greater vortex size. Therefore, fewer vortices will pass

an observer per unit time if the momentum thickness is large.

Several publications on flow through aquatic vegetation provide a mean velocity profile

from which the momentum thickness can be calculated. In several such publications, additional

information has been provided regarding either:

(i) the frequency of the characteristic peak in the spectrum of streamwise velocity (Grizzle et

al., 1996; Wallace et al., 1998),

(ii) the frequency of vortex generation above the canopy from flow visualization experiments

(Ikeda and Kanazawa, 1996), or

(iii) the observed monami frequency (Vivoni, 1998). Note that the monami frequencies were

obtained from this author's observation of video footage and differ from his published

values.

Given this information, a comparison between the expected frequency of the mixing layer

instability and the various observed frequencies can be made, as shown in Figure 1.4. The

striking agreement demonstrated by this figure implies that not only are peaks in streamwise

velocity spectra due to the Kelvin-Helmholtz instability of the shear layer, but also that this

velocity oscillation causes the monami motion in aquatic vegetation. This appears to confirm

the thoughts of Ikeda and Kanazawa (1996), who postulated that the downstream progression

of the generated vortices was responsible for the wavy motion observed in their model canopy.
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The experiments of this study will seek to confirm this through analysis of spectra and

observed monami frequencies. Note that the only field measurement of monami frequency

shown in Figure 1.4 is that of Grizzle et al. and agrees with the field observations of Ackerman

and Okubo (1993); namely, that a typical field monami frequency is of the order of

0.10-0.15 Hz.

0.8--

0.7--

-A
A Ikeda and Kanazaw a (1996)

m Grizzle et al. (1996)

* Wallace et al. (1998)

o Vivoni (1998)

E

I I I I -- I I I

0.1
, ,,

0.2 0.3 0.4

Predicted instability

0.5 0.6

frequency (Hz)

0.7 0.8

Figure 1.4. Comparison between observed frequencies and the expected frequency of the

generated Kelvin-Helmholtz instability of a mixing layer. The dashed line represents

perfect agreement. Vertical bars are indicative of uncertainty in the observed frequency.
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1.2 Objectives

The specific objectives of this study were to:

e Create a dynamically accurate model eelgrass canopy in the laboratory flume, for present

and future use.

* Explain the observation of the monami phenomenon and determine the conditions required

for its presence.

e Examine the appropriateness of the mixing layer analogy to flow through flexible,

submerged aquatic vegetation.

e Determine the effect of plant waving on the turbulence structure, and specifically the

vertical turbulent exchange, within and above the canopy.
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Chapter 2. Experimental Methods

2.1 Experimental Configuration

The experiments for this study were performed in a recirculating flume, in the Parsons

Laboratory at M.I.T.. The glass-walled flume was 24 m long, 38 cm wide and 58 cm deep. The

current in the flume was driven by a Weinman 3G-181 pump, whose flow rate could be

adjusted between 10 and 240 gpm using a diaphragm valve. Flow rates were estimated using a

Signet flow gauge, with an error of ± 3 gpm. The experimental configuration is shown in

Figure 2.1 (note the vertical exaggeration). For the Cartesian coordinate system employed,

x = 0 was designated as the front of the model meadow, y = 0 as the center of the flume and

z = 0 as the bottom of the model eelgrass bed.

HORSEHAIR
z

x=0

INLET
II
II
II
II
Ii
II

'I Iii iii

58 cm

BRICK DOWEL FLOW FLOW I NDDELEELGRASS MEADOW DRAIN
ARRAY ARRAY STRAIGHTENER GAUGE

---------------------- 7-----

3.5 m 6.0 m 7.5 m 3.9 m

RECIRCULATION PIPE

Figure 2.1. Experimental configuration in the recirculating laboratory flume.
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2.1.1 Inlet Conditions

Strong modifications were made to the flume near the inlet in an attempt to remove any

inlet characteristics that may have persisted in the flow. To achieve this, the following

modifications were made, as shown in Figure 2.1 :

* Three sheets of rubberized coconut fiber ('horsehair') were stacked immediately under the

inlet to rapidly dissipate turbulence generated at the inlet.

" Immediately downstream of the inlet, an array of 12 household bricks was put in place.

This was done to provide a source of drag at the height of the inlet. The sheets of horsehair

had the effect of diverting the discharge as a horizontal jet at z = 8 cm and the extra drag

assisted in destroying the jet structure with the ultimate aim of achieving a smooth,

monotonic velocity profile by the time the flow reached the model seagrass meadow.

" An 0.5 m long array of 100 surface-piercing dowels was placed downstream of the bricks.

The function of the dowel array was two-fold: to break up any large scale turbulence signal

imparted at the inlet and also to promote lateral and vertical uniformity in the flow

conditions.

" A set of 0.45 m long flow straighteners (an encased array of long, thin tubes) were the last

modification put in place. They were employed to eliminate any secondary currents and

produce unidirectional, longitudinal current in the flume. On the upstream side of the flow

straighteners, a vertical sheet of horsehair that spanned the entire flume cross-section was

set in place. When the discharge was high, the sheets of horsehair underneath the inlet

failed to prevent surface disturbance; the horsehair in front of the flow straighteners

prevented the progression of surface waves further downstream.
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2.1.2 Experimental model of aquatic vegetation

The model eelgrass plants were attached to a series of six 1.2 m long Plexiglas boards;

each board had two thousand 0.64 cm diameter holes drilled in random positions, with the

restriction of being at least one diameter apart (Vivoni, 1998). The 38 cm wide boards were

wedged in place with wooden dowels and affixed to the sidewalls of the flume using duct tape.

The boards sat nicely on the flume bottom throughout the experiments. A small toe (1:8 slope)

was placed at the front of the most upstream board to provide a smooth transition over the

bottom displacement of 1.5 cm.

Each model plant consisted of a stem region and six thin blades, based on the typical

morphology of Massachusetts Bay eelgrass (Chandler et al., 1996). Short wooden dowels

(0.63 cm in diameter, 2.0 cm in height) were used to mimic the eelgrass stem, these dowels

fitting snugly into the drilled holes. The model blades were cut from clear polyethylene film

(AIN Plastics of New England) of thickness (t) 0.10 mm . The blades had a height (h) of 13.0

cm and a width (b) of 3.0 mm, following the scaling arguments presented in Section 2.6.2. The

lowest 3 mm of the blades were attached, with even spacing, to a small strip of duct tape,

measuring 2.0 cm in length (i.e. exactly one circumference of the stem). A thin layer of

waterproof glue was placed on the tape, the tape was wrapped around a dowel and secured

with a small elastic band. This constituted the model eelgrass plant utilized for these

experiments.

The model meadow consisted of 850 constructed plants, based on the scaling of

densities of real eelgrass meadows, as discussed in Section 2.6.2. The plants were placed

randomly into the holes in the Plexiglas boards, deliberate care being taken to avoid the

creation of ordered arrays or staggered patterns. Real eelgrass meadows rarely have such

structure, although localized clustering of eelgrass plants is prevalent. This clustering,

however, is unlikely to affect the bulk, laterally-averaged velocity characteristics of the
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vegetated flow and plant placement in the model meadow was as random as possible. Once

submerged, the wooden plant stems swelled, making their removal by the flow impossible.

2.2 Instrumentation

In this study, two forms of velocimetry were employed, namely acoustic doppler

velocimetry and laser doppler velocimetry. Limitations of both techniques necessitated the

concurrent use of the two methods during the experimental work.

2.2.1 Acoustic Doppler Velocimeter (ADV)

In fluid mechanics, studies of turbulence require current meters that can accurately

measure all three velocity components with a sampling rate that is high enough to capture all

turbulent fluctuations. The Acoustic Doppler Velocimeter (ADV), a versatile instrument

capable of operating under both laboratory and field conditions, is widely used in studies of

flow through aquatic vegetation for these reasons (e.g. Lopez and Garcia, 1997; Vivoni, 1998;

Wallace et al., 1998).

The ADV probe consists of three receivers positioned in a horizontal circle around a 10

MHz transmitter. The receivers are slanted at 300 from the axis of the transmitter, focusing on a

cylindrical sample volume located approximately 5 cm below the probe.
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Figure 2.2. Schematic diagram of the ADV probe (from SonTek, 1996).

The probe is submerged in the flow and operates by transmitting short acoustic pulses; as the

pulses propagate through the water, a fraction of the acoustic energy is backscattered by small

particles, bubbles or suspended sediment (SonTek, 1995). When a moving particle scatters an

acoustic signal, the frequency of the scattered signal is shifted; this is known as the Doppler

shift. Whilst a particle or bubble remains in the sample volume, it is bombarded with a series of

pulses. The three receivers detect the backscattering from the sample volume, with Doppler

shifts proportional to particle velocities. The ADV probe is connected to a waterproof data

processing module, which calculates the particle velocities from the measured Doppler shifts,

using the Doppler relation:
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V (d, (2.1)
47r fT dt

where V is the velocity along the axis of the beam emanating from the sample volume towards

each receiver (ms'),

c is the speed of sound in water (ms'),

fT is the transmission frequency (s-), and

is the phase of the backscattered signal (radians)

(Voulgaris and Trowbridge, 1997)

The speed of sound in water varies with water temperature and salinity; the former was

measured with a Temprite alcohol thermometer and the latter was assumed to be zero. In this

study, c varied between 1469.4 ms' (T = 16 *C) and 1488.3 ms' (T = 21 *C). The particle

velocities along each beam axis are converted to the velocities along the Cartesian axes using

the transformation matrix for the probe, which is based solely on probe geometry (SonTek,

1996).

The ADV system offers the advantage of being inherently drift-free, whilst requiring no

routine calibration. The bottom edge of the ADV sampling volume can be placed within about

0.5 mm of a boundary (SonTek, 1995).

2.2.1.2 Use of the ADV in this study

In this study, a SonTek ADVField probe was used, the velocity resolution of which is

0.01 cms1. Data output from the ADV probe can be varied between 0.1 and 25 Hz. As we are

interested in various aspects of the turbulence structure of the flow, high frequency data is
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required to examine rapid velocity fluctuations. Consequently, data was obtained at 25 Hz

during all experiments.

Before data collection, the ADV measures the distance (with an accuracy of about

1 mm) to the flume bottom by measuring the time taken for strong reflection of an acoustic

pulse (SonTek, 1995). The probe then corrects for all bottom reflection during data collection.

For this reason, a small gap in the plant canopy directly below the probe was required at all

times. This was achieved by the removal of up to 4 plants, creating a vacant area of up to 40

2cm2. Ikeda and Kanazawa (1996) showed that such a removal of model plants has no

significant effect on the flow conditions.

The underlying assumption of all forms of doppler velocimetry is that the velocity of

the particle or bubble is equal to the velocity of the water. This assumption is generally valid,

except in the presence of rapidly rising bubbles, which were absent in the flume during the

experimental runs. For flume studies, the water must be 'seeded' with small particulates to

achieve a sufficiently strong scattering signal. The relative strength of the signal is monitored

by the signal-to-noise ratio (SNR), which is the strength of the backscattered signal minus the

instrument noise level, in units of dB (SonTek, 1995). For this study, the SNR was maintained

above 15 for all experiments, as recommended by SonTek (1996). This was achieved by

periodic additions of a 1:5 w/v slurry consisting of fine titanium dioxide particles (provided by

SonTek) in water. These particles are approximately neutrally buoyant in fresh water and are

three orders of magnitude smaller than the length scales of the ADV sampling volume. This

validates the underlying assumption of acoustic doppler velocimetry; namely, that the particles

passing through the sample volume have an identical velocity to the water that carries them.
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Figure 2.3. Photograph of the method of data collection using the ADV. The probe is

linked to the processing module, which is in turn linked to a desktop PC for data retrieval.

The ADV probe was mounted on a trolley straddling the flume as shown in Figure 2.3.

The probe was strapped (using tie-wraps) and affixed with duct tape to a vertical column, so as

to prevent any twisting of the probe as it was moved vertically during the experiments. As

shown in Figure 2.3, the data processing module was in turn linked to the serial port of a

desktop computer for data retrieval. The interface program 'adfsx.exe', provided by SonTek,

was used to adjust all settings and to visualize the time series of all three velocity components

during the experiments.

The limitations of the ADV for resolving turbulent fluctuations is determined by the

strength of the instrument-generated noise relative to the turbulent energy density. For vertical

velocities, the instrument noise level is generally below typical turbulent energy densities over
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the entire frequency range. For horizontal velocities, it is common to see the beginning of a

dominance of noise at a frequency of around 5-10 Hz for a sampling volume of this size

(SonTek, date unknown). Fortunately, this study will concern itself primarily with velocity

fluctuations of frequency ~ 0.1 Hz.

The SonTek ADV system allows the prescription of a velocity range setting. Because

of the nature of the ADV Doppler processing, for each setting there exist maximum velocity

levels above which the instrument cannot be relied upon to make accurate measurements

(SonTek, 1995). However, the instrument noise increases with the nominated velocity range, as

discussed in Voulgaris and Trowbridge (1997). Table 2.1 details the characteristics of the two

lowest velocity ranges, ' 3 cms 1 and '+ 10 cms-' .

Nominal velocity Maximum horizontal Maximum vertical Instrument noise Velocity error

range (cms-') velocity (cms-) A velocity (cms-1) A (cm2 s-2) B (mms') B

+3 +30 +8 9.1 x 103  +0.95

+10 +60 +15 9.5 x 10' +0.97

Table 2.1. Important features of the nominal velocity ranges for the ADV.
A (Sontek, 1995)

B (Voulgaris and Trowbridge, 1998)

Even allowing for strong turbulent fluctuations, the maximum velocities expected to be

encountered in this experiment were well below those listed in Table 2.1. Consequently, the

lowest velocity range (with the lowest velocity error and instrument noise) was chosen for all

experimental runs in this study.
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Vivoni (1998) performed some tests on the same ADV probe as was used in this study

and decided upon the optimal set of operating conditions for the probe. His findings are

summarized below:

e In order to accurately estimate turbulent parameters such as the Reynolds stress and

turbulence correlation coefficient, a critical parameter in this study, it is recommended that

ADV records be 10 minutes long (i.e. 15000 points at a sampling frequency of 25 Hz). For

10 minute records, the estimated mean square errors associated with mean velocity and

Reynolds stress estimates are 0.6% and 1.2% respectively.

e As expected, the lowest velocity range setting resulted in improved probe performance. For

velocity records taken upstream of the canopy, utilizing the + 3 cms' setting gave the

lowest value of unns (i.e. the lowest standard deviation of the longitudinal velocity record).

It was assumed that this was due to the lowest setting having the lowest amount of

instrument noise.

2.2.2 Laser Doppler Velocimeter (LDV)

As the ADV control volume is located approximately 5 cm below the probe tip,

velocities in the region immediately below the free surface could not be measured using this

method. In this region, laser doppler velocimetry was required. For shallow water depths in the

flume, the mixing layer can extend to within ~1 cm of the free surface, making velocity

measurements in this area critical.

Laser doppler velocimetry is, unlike its acoustic counterpart, an unintrusive method of

measuring the instantaneous velocity of tracer particles suspended in the flow as they pass

through a small sampling volume. Laser doppler velocimetry is based upon the photodetection

of the backscattering of laser light by these particles while they remain within the sampling

volume (Durst et al., 1981). The 60X Dantec Measurement Technology LDV employed in this

study was two-dimensional, being able to measure longitudinal and vertical velocities only.
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The first component of the LDV system is the 300 mW blue-green argon ion laser

(from Ion Laser Technology, Salt Lake City, UT). Within the Dantec optics system, the laser

beam is split into two 488 nm blue beams (for the measurement of horizontal velocity) and two

514.5 nm green beams (for the measurement of vertical velocity). The beams are then focused

into a fiber optic cable and travel along to the LDV probe; the blue beams exit the probe

separated horizontally by 4.0 cm, the green beams are separated vertically by the same

distance. A lens within the probe focuses all four beams to a small sample volume (within the

flow field) located approximately 20 cm from the lens. Due to the spatial Gaussian distribution

of intensity of the laser beams, the sampling volume is elliptical; for this LDV system, it is 0.64

mm in length and 76 gm in diameter (Dantec Measurement Technology, 1990a). The probe

also detects backscattered light from the sample volume, whilst filtering out light scattering

from outside the sample volume (Buchhave et al., 1979). Light backscatter is directed to the

photomultipliers via the same fiber optic cable, and then to the burst correlation processor

within the FVA (Dantec Measurement Technology, 1990a). At the intersection of two coherent

laser beams, a fringe pattern is formed, as shown in Figure 2.4. Therefore, within the LDV

sampling volume, the pairs of horizontally spaced blue beams and vertically spaced green

beams each form a separate fringe pattern; the axis of the fringe pattern being perpendicular to

the axis of the two beams. The spacing between the fringes (df) is 2.18 gm for the horizontal

pattern formed by the blue beams and 2.07 jm for the vertical pattern formed by the green

beams (Vivoni, 1998).
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Figure 2.4. Fringe pattern within the sample volume of the LDV.

For each pairing, the frequency of one of the beams is shifted by 40 MHz in a Bragg

cell. This causes the fringe patterns to move within the sample volume, at a constant velocity

much greater than that of any particle passing through the sample volume (Dantec

Measurement Technology, 1990a). This allows the resolution of positive and negative particle

velocities from the backscattering observed within the sample volume, since all particles will

have velocities in the same direction relative to the rapidly moving fringe pattern.

As particles within the fluid pass through the fringe pattern within the sampling

volume, the light scattered back towards the probe varies in intensity; obviously, the strength of

the backscattered signal is stronger as the particle passes through a light band, and lower as it

passes through a dark band. This cycle of backscattering intensity is known as the Doppler

burst (Dantec Measurement Technology, 1990a). The particle velocity relative to the velocity

of the fringe pattern (vs) in each direction is given by

v S= fD.df (2.2)

wherefD is the frequency of the Doppler burst (Vivoni, 1998). Correction for the velocity of the

fringe pattern enables calculation of the particle velocity as it passes through the sampling

volume.
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The LDV settings shown in Table 2.2 were employed in this study. The high voltage

level (HVL) determines the amplification of the scattering signal in the photomultipliers. As the

HVL is increased, weaker Doppler bursts are identified, leading to an increased sampling

frequency; however, the amount of background noise also increases. From the preliminary tests

of Vivoni (1998), an HVL level of 1296 V would provide a decent sampling rate (expected to

be > 60 Hz) without incorporating excess background noise. The bandwidth controls the

measurable velocity range; the next lowest setting (0.12 MHz) corresponded to a velocity

range of only ± 13 cms , which may have been exceeded frequently during several runs.

Consequently, the higher setting was used. The validation setting determines the signal-to-noise

ratio above which a Doppler burst is considered to be due to a particle passing through the

sampling volume. For the fringe spacing in the sampling volume of this LDV system, the

minimum acceptable value is -3 dB (Dantec Measurement Technology, 1990b); this value was

consequently used throughout this study.

LDV setting Value

Bandwidth 0.40 MHz

Velocity range - 41.cms-1 to + 41 cms-'

High voltage level 1296 V

Validation -3 dB

Table 2.2. LDV settings employed in this study.

The LDV probe was mounted on a tripod immediately adjacent to the sidewall of the

flume at x = 6.5 m. Again, this necessitated the removal of some of the model plants to prevent

the blocking of the laser beams by the eelgrass blades. Up to 5 plants were removed in a thin

sliver along the axis of the LDV probe such that all four beams arrived at the sampling volume

with full intensity. The optics system was connected to a Dantec 58N40 Flow Velocity

Analyzer, which uses a burst correlation processor to convert the optical signals into velocity
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data. The processor was in turn connected to a 58G130 Dantec FVA/PDA interface board,

which allows the transfer of data to a PC with a Pentium processor. The interface board was

installed in an IFA slot of the Dell PC used to collect and process the ADV data. The Flow 3.3

program, provided by Dantec Measurement Technology, was used to alter the sampling

duration and to observe the histogram of velocity measurements during the sampling period.

Due to the method by which a velocity estimate is obtained, it was expected that slight

seeding of the flume water would increase the sampling frequency without strongly

diminishing the intensity of the laser beams at their confluence. When tested, this was observed

to be true and the LDV measurements immediately followed the ADV measurements, without

requiring replacement of the flume water.

The LDV offers the advantage of having a much smaller sampling volume thereby

strongly reducing the amount of noise due to mean velocity shear within it. In addition, the

mean sampling frequency of the LDV is significantly higher than that of the ADV. The

recording of velocity data by the LDV is, however, very irregular, leading to data points

unevenly separated in time.

The height of the LDV sampling volume above the flume bottom was measured with a

ruler; the location of the sampling volume, at the confluence of the four laser beams, being

immediately obvious. Heights were recorded with an error of + 0.05 mm. Due to the vertical

separation of the green laser beams as they exit the probe, vertical velocities could not be

measured within 1.5 cm from the free surface or bottom boundary. Longitudinal velocities

could be measured to within 0.2 cm from the free surface or bottom boundary. For consistency,

all velocity records taken with the LDV were 10 minutes in length.
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2.2.3 Comparison of the two methods of velocimetry

For this study, the ADV was the instrument of choice for the bulk of the velocity

measurements, except in the 6-7 cm region immediately beneath the free surface. This decision

was based on the work of Voulgaris and Trowbridge (1997) comparing the performance of an

ADV and an LDV with semi-empirically predicted results for open channel flow. The authors

showed that :

e The ADV sensor can measure both mean velocity and Reynolds stress to within 1 % of the

estimated 'true value'. While the LDV has a similar accuracy in the measurement of mean

velocity, it tends to overestimate the Reynolds stress by a factor of two.

" Although some discrepancies were observed in the ADV measurement of longitudinal

velocity variance, this was only for high velocity range settings, with a correspondingly

high amount of noise. Vertical velocity variance was measured accurately using the ADV,

especially at the lower settings.

" For boundary layer applications, the most significant noise term of the ADV is associated

with the mean velocity shear within the sampling volume, which can become significant

(compared to turbulent fluctuations) in regions of strong shear. However, even in regions

very close to the boundary (z - 1 cm), the ADV provided sufficiently accurate estimates of

the Reynolds stress, when compared to the 'true values'.

* Frequency spectra derived from ADV records agree well with theoretical spectra after

correction for the spatial averaging within the ADV sample volume and the presence of a

noise floor. For this study, the only quantitative feature of the frequency spectra that will be

examined is the peak frequency. Although ADV spectra require some correction before

agreement with theoretical prediction, the peak frequency is not compromised and will be

accurately represented in all ADV spectra without any correction.

e Eddies smaller than 2.2 cm in the vertical and 1.5 cm in the horizontal are not fully

resolved by the ADV sensor. However, given the canopy-scale coherent structures present

in flow through submerged vegetation, eddies of this size are unlikely to significantly affect
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the flow in the mixing layer that develops. In the future, however, studies concerning stem-

and blade-generated wakes may require the use of the LDV.

For these reasons, the ADV was chosen as the main velocimeter for these experiments.

For each run, measurements within 9 cm of the free surface were taken with the LDV. The top

7 cm were inaccessible using the ADV; two other records were taken at the same height as the

uppermost ADV records to provide a means for comparison between ADV and LDV data.

2.3 Additional equipment

For each set of flow conditions, three 3-minute video recordings were taken of the

eelgrass meadow (at x = 6.5 m, under well-lit conditions) using a Hitachi Super 8 video

camera. The first recording encapsulated up to 1 m of the meadow, in an attempt to obtain

visual estimates of the progression speed of the monami. As a reference, transparent tape with

5 cm markings was placed along the sidewall of the flume. The second recording focused in

upon 20 cm of the meadow in order to estimate the frequency of the monami, by observation of

the progressive waving of a small longitudinal section of the canopy. The third recording was

made with transparent tape, complete with 1 cm height markings, on the side wall of the flume.

This was done so as to estimate the average height of the canopy; not only was there spatial

variability in this parameter but also a strong temporal variation due to the presence of the

monami. An approximate temporal and spatial average of the canopy height was estimated for

all runs, by noting the height of 10 model plants during several different stages of the monami

cycle. Given the intermittency and low frequency nature of the monami phenomenon, the

recorded canopy height was never significantly less than the maximum canopy height during its

waving cycle.

A Kodak DC50 digital camera was used to obtain the photographs seen in this thesis.

The digital images were viewed and edited using the Kodak Picture Easy 2.0 software

42



provided with the camera. All ADV and LDV data were extracted using a Dell 450 MHz

Pentium II PC, with Windows 98 platform.

2.4 Data processing

Data from the ADV is initially stored in binary files (*.adv), which can then be

converted into tabular ASCII files (*.vel) using the 'getvel.exe' program provided by SonTek.

These files were then ready for immediate import into MATLAB, where the bulk of the data

analysis was performed (refer to Appendices A-C for the MATLAB codes that were

generated). All data obtained using the aforementioned MATLAB codes was then exported

into Microsoft Excel for presentation. Velocity data obtained by the LDV had to be extracted

from the data file generated by the processor and was then exported into ASCII format, prior to

analysis in MATLAB.

Before analysis of the velocity data, two separate corrections to the raw data were

required. Firstly, correction for tilt of the ADV probe was employed. Even though the probe

was aligned visually such that the longitudinal axes of the probe and flume coincided, with as

little vertical tilt as possible, small angles of tilt were invariably introduced through the shifting

of the probe. Consequently, small components of the longitudinal flow velocity were

incorporated into the comparatively small lateral and vertical velocities, leading to significant

errors in both. To counteract this, after each vertical profile of velocity records had been taken,

a control velocity record was taken at a point 0.6 m in front of the canopy (Point A). Under the

assumption that we have purely unidirectional flow before the canopy is encountered, a tilt-free

probe should record zero mean lateral and vertical velocities at A. The mean velocities

recorded in front of the canopy were therefore used to estimate the tilt in the probe, assuming

that the probe had not undergone any rotation. Letting Uraw, Vw and Wa, denote the

longitudinal, lateral and vertical velocities measured at A (with corresponding mean values
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U,,,, V,,, and W, a), the horizontal and vertical tilt angles of the ADV probe (a and #,

respectively) were determined from simple trigonometric relationships:

a= tan -raw (2.3)
U ra,

/#= tan -raw (2.4)

Note that a and # are defined positive in the direction of positive y and z, as shown in Figure

2.1. Accordingly, the following corrections to the measured velocities in and above the canopy

were made, as per Vivoni (1998):

V = V, cosa - Uraw sin a (2.5)

W =W ,,cos -Uaw sin# (2.6)

U =Uraw cos a +Vaw sin a (2.7)

U =U cos + Wa,, sin# (2.8)

Application of these corrections to the velocity records gathered at A leads obviously to

corrected mean velocities of zero in both the lateral and vertical directions. Note that the tilt

angles of the ADV probe remained fairly small throughout the experimental runs; the average

values of a and # were 1.5" and 1.10 respectively. Tilt correction was not required for the LDV

data since visual alignment of the LDV probe was much simpler and significantly more

accurate than for the ADV probe. The reflection of the laser beams from the back wall of the

flume indicated quite clearly whether the probe was properly aligned. Before every individual

velocity record was taken, the probe was carefully adjusted so that the blue and green beams

were reflected at exactly the same height and longitudinal position (respectively) at which they

were emitted.

44



As a second correction, all LDV data had to be resampled, as this method records data at

uneven intervals, as discussed in Section 2.2.2. Spectral analysis of data collected at a single

frequency is much simpler and as shown by Vivoni (1998), this resampling has no significant

effect on the evaluation of any turbulence parameters. Therefore, all velocity records were

resampled at their mean sampling frequency (fsamp), such that the total number of data points was

conserved. That is, the i-th time data point of the of the resampled record (t) is given by:

t = (2.9)
Ifsamp

Each new velocity data point was obtained by linear interpolation between the two velocity

measurements taken at times surrounding t in the raw velocity record.

2.5 Error analysis

Based on still water experiments, Vivoni (1998) showed that ADV estimates of mean

velocity, Reynolds stress and vertical turbulent velocity would not be significantly affected by

instrument noise. Horizontal turbulent velocity estimates showed evidence of contamination by

noise but this was likely to become insignificant in turbulent flows. In addition, the spatial variability

of these velocity statistics within and above a model seagrass canopy is much higher than

instrument noise levels (Vivoni, 1998). Similarly, Zavistoski (1994) estimated the total error of an

LDV mean velocity measurement as 1.4 mms-1, again expected to be negligible with respect to

the spatial variability within and above the model canopy.

In the experiments of this study, all velocity statistics were laterally averaged; velocity

records at three lateral positions in the flume were taken at each height under each flow scenario.

This was done to capture the lateral variability in the flow, as the proximity to individual plants and

their wakes varies considerably across a lateral traverse. Given the insignificance of instrument
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noise, any error quoted with velocity statistics represents solely the standard deviation of these

three measurements.

2.6 Dimensional analysis

As with any experimental model, satisfaction of dynamic and geometric similarity with the

prototype was critical. In this particular study, where the motion of the model plants had to be

matched very closely to that of real eelgrass, dynamic similarity becomes very important. Note

that in this section, the subscript m refers to that parameter in the model eelgrass meadow, the

subscript p referring to that in the prototype O.e. in a real eelgrass meadow). The relevant

geometric scales of the model eelgrass blades are described in Figure 2.5.
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Figure 2.5. Important geometric parameters of the model eelgrass blades.
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Achieving similarity in this study did not consist of simple numerical equation of

several dimensionless parameters. Real eelgrass meadows exhibit wide ranges of many

important parameters, as detailed in Table 2.3.

Parameter Beaufort, Massachusetts Chincoteague Observed Representative

NC A Bay B Bay c range D value (*)

Areal density (m), - 1800 3800 400 - 6000 600

blades.m 2

blade height (h), cm 15 30 28 15 - 250 30

blade width (w), cm 0.30 0.36 0.26 0.25 - 0.5 0.35

blade height / blade 50 83 108 - 80

width (h/w)

Fraction of depth - 0.30 0.29 - 0.30

occupied by

seagrass (h/H)

Table 2.3. Important parameters of real eelgrass meadows.

A (Fonseca, 1998)

B (Chandler et al., 1996)

C (Vivoni et al., 1997)

D taken from (Vivoni, 1998) and then modified using data from Grizzle et al. (1996) and

Fonseca (1998)

* This value was not an arithmetic mean of the tabulated data, but simply a chosen value that

represented typical field conditions, with particular attention paid to Massachusetts Bay

conditions.

In addition, for many critical parameters (e.g. blade thickness, blade mass density) there have

been precious few field measurements. Prof. Evamaria Koch of Horn Point Environmental
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Laboratory guessed at an average blade thickness, t, of 0.1 - 0.2 mm (pers. comm., 12

November 1999), while Fonseca (1998) estimated the blade mass density (ps) as 760 kgm3 .

Hence, real eelgrass blades are positively buoyant in both fresh and saline water, imposing a

stringent criterion upon the material to be used.

2.6.1 Balance of governing forces

The motion of the plant blades is governed by a combination of a drag force (FD), a

buoyancy force (FB) and a restoring force (FR) due to the deflection of the blades by the

current. From the geometry of the blade,

FB ( - Pw)gV= (ps - p.)ghwt (2.10)

1 1 -
F = w A C U|~ -p,(hwcosp) CD U(2.11)D 2 wf 2

where p, is the density of water, V is the volume of an individual blade, Af is the frontal area of

the blade, Uc is the mean in-canopy velocity and CD is the drag coefficient of the blade. The

internal moment in a bent blade, MI, is given by

92 z
M d=J 2 (2.12)I dx2

where J represents the flexural rigidity of the blade and defines the resistance of the beam to

bending. Flexural rigidity is defined simply as the product of the modulus of elasticity, E, and

the moment of inertia, I, incorporating the stiffness of the material and the geometric resistance

to bending:
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J = EI

The moment of inertia, I, for a beam of rectangular cross section (with width w and thickness t)

bending about its y-axis is given by

(2.14)
12

where all dimensions and directions are defined just as for an eelgrass blade in the flume.

From Equation 2.12 therefor

Since

FR~ - ( 2)=h
h 12 hl 1

hd
1= =h.sino

tan #
for small deflections,

Equation 2.15 becomes

h sin sin ta )

- 12

sin #

The most important dynamic dimensionless parameters in this study are the two

independent ratios of the governing forces, namely:
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(2.15)

(2.16)

where

J

h2
(2.17)

1

cos#
(2.18)

(2.13)



FB (ps - p)g.h'.w.t
-- f (2.19)

FR 'A

and

FB 2(ps - p,)g.t (2.20)
FD PCosq5CDUc 2

As the angle of deflection of the eelgrass blades cannot be predetermined, it can simply be

matched by adjusting the flow velocity.

Note that the drag coefficient of a plate aligned normal to the flow displays a very weak

dependence on Reynolds' number (Gerhart et al., 1992); thus, the drag coefficient of

eelgrass blades can be treated as a constant. Under the assumption, therefore, that

fi(M ( ~ f1 (0) and cos , = cos , is automatically prescribed, and ignoring the other

parameters that are approximately equal in the field and in the model (i.e. g, p, and CD), the

dynamic parameters (now dimensional) become, respectively:

( ps - p, )h'. w. t

S ) (2.21)

A U 2  (2.22)
2 C2

The material chosen for the construction of the eelgrass blades was polyethylene film,

supplied by AIN Plastics of New England. This material was chosen because not only was it

positively buoyant in the fresh water of the flume (ps = 920 kgm-3) but it had a modulus of

elasticity (E = 3.0 x 108 Pa) that would allow construction of suitably sized plants with a

flexural rigidity comparable to that of real eelgrass plants. It was deemed that X, more so than
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A2, was the determinant of plant motion; A12 depends upon the square of the canopy velocity

which can be altered as required.

Given the uncertainty of several field parameters, a direct numerical matching of AL

was not sufficient to ensure similarity. Using our only set of field data that included J,

(= 8 x 10-8 kgm-3s 2 from Fonseca (1998)), the preliminary estimate of ALp is 3, but the value

could conceivably range between 0.1 and 10. To find the most realistic plant behavior, six test

plants with 8 cm long blades and with a range of values of /11 (0.07 to 1.1) were constructed.

As a stringent examination of the model plants, the constructed plants were placed in

the flume and subjected to a wave environment. The wave generator was used to generate

sinusoidal waves of period 0.5 Hz and amplitude 2.0 cm, both of which are appropriate scaled

values for the laboratory flume. Video footage of actual eelgrass meadows in the open ocean,

taken in April 1989, was obtained from Prof. Koch. This footage showed that eelgrass blades

have a whip-like oscillation in a wave environment; the motion is certainly unlike that of a rigid

beam oscillating about a pivot. Within the constructed plants, a range of behavior was

observable, the stiffer plants (lower values of X) lacking the whip-like motion of the real

plants. The model plant with the most realistic behavior was that with A = 0.66.

2.6.2 Further similarity criteria

As shown by Vivoni (1998), dimensional analysis involving all system variables in the

modeling of a seagrass canopy yields the following important dimensionless parameters (where

pi represents the set of {h, w, t} and v is the kinematic viscosity of water):

UH H p1-,ha, and ,v h H
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given that matching the Froude number is both unimportant (Vivoni, 1998) and impossible if

any form of Reynolds number similarity is desired.

Whilst matching of the blade height Reynolds number, Reh (= Uh/v), is desirable, it is

difficult to do so with such a range of velocities experienced in the field and in these

experiments. As a rough numerical comparison, the Reynolds number in the field (using the

depth-averaged current) ranges from 0 to 5 x 106 (Vivoni, 1998). In this experiment, the range

of Reh was 1100 to 6000, well within the observed range in the field. In addition, a simple

matching of the flow regime in the open channel of the flume was also required. For all runs,

the depth Reynolds number (UH/v) was above 2000, meaning the flow in the flume was

always turbulent; one would always expect to see turbulent flow in the field.

The choice of the model blade height was constrained by the limited height of flume

(Hf = 58 cm); a significant canopy height was desirable, as was a sufficiently deep surface

layer above the canopy. Considering that an H/hd value of approximately 2 has been observed

to be a point of transition in the turbulence structure of vegetated aquatic flow (Vivoni, 1998),

an Hfh value of 3-4 was desired. Consequently, a blade height of 12.7 cm was chosen. Despite

a representative h/w ratio of 80 in the field (Table 2.3), the polyethylene film could only be

consistently cut into 3 mm wide strips, giving h/wl, = 42, which is not a huge deviation from

the range observed in the field.

Scaling the areal plant density of the eelgrass meadow was based on the dimensionless

parameter ha. The plant density parameter, a, describes the total frontal area per unit volume

occupied by the plants:

a = mb (2.23)
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where m is the number of blades per unit area. From Table 2.3, a typical value of m in the field

-2is 600 blades.m , a typical blade width 0.40 cm, and a typical height 0.30 m. Therefore,

(ha), = 0.72. Matching this parameter in the model, with a blade height of 12.7 cm and width

of 0.30 cm, meant mn was required to be 1890 blades.m 2 , or 315 plants.m . With the canopy

having an area of 2.7 M2 , 850 model plants were required.

Maintaining a A value of 0.66, the scaling of the 8 cm blades of the preliminary model

plant to a height of 12.7 cm gave a required blade thickness of 0.10 mm; polyethylene film of

this thickness was, fortunately, commercially available. Thus, the dimensions of the model

eelgrass meadow had been finalized.

2.7 Plant properties

A rigid beam clamped at one end has a fundamental, natural frequency of oscillation

(fiat) given by

(1.875)2 El 12
fnat = 2 L mlb4 (2.24)27c mig

(Niklas, 1992)

where m is the mass per unit length of the beam (kgm-')

and lb is the beam length (m), which, in this case, corresponds to the blade height.

To determine m, a small section (11.25 cm x 30.40 cm) of the polyethylene film was weighed.

3 2The mass of the section was 3.18 g, giving a mass per unit area of 9.30 x 10- gcm- . With the

blades cut to a width of 0.30 cm, their mass per unit length would therefore be 3.10 x 10-2

gcmI (= 3.10 x 10~3 kg.m 1̂). Therefore, given the value of J in Table 2.4,ffna = 0.18 Hz.
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It is expected, however, that the monami frequency is independent of the natural

frequency of oscillation of the blades. The model plants of Vivoni (1998) had a natural

frequency of 3.1 Hz, yet video footage revealed a maximum monami frequency of just 0.18

Hz. The video footage also showed a mild lateral vibration under strong currents; the frequency

of this vibration was observed to be of the order of 2-3 Hz, and may represent the natural

frequency of the blades. No such lateral oscillation was observed in this study.

The important physical parameters of

summarized in Table 2.4.

Blade properties

Mass density

Flexural rigidity

Blade height

Blade width

Blade thickness

Natural vibration frequency

Bulk canopy properties

Undeflected plant height

Areal plant density

ps

J

h

w

t

fiat

hund

mM

the constructed eelgrass meadow are

920 kgm 3

8.0 x 10-8 kgm-3s-2

12.7 cm

3.0 mm

0.102 mm

0.18 Hz

13.5 cm (*)

-2315 plants.m

Table 2.4. Important physical parameters of the model eelgrass meadow.

* This value differs from that expected based on the height of the blades and dowels. Even in

still water, blades were rarely fully erect, leading to a diminished undeflected height as seen

here.

In summary, due to a dearth of field information, the dynamic dimensionless

parameters (shown in (2.19) and (2.20)) were not used to directly obtain the model
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specifications. Rather, they were used to create a set of plants in the ballpark, the correct plant

being chosen based on video footage of an actual eelgrass meadow. All observers thus far have

commented on the realism of the plant behavior in the flume, generating confidence in the

scaling methods used. A photograph of the model eelgrass meadow is shown in Figure 2.6. As

more information on eelgrass meadows is published, the aforementioned dimensionless

parameters may be used for simple numerical scaling.

Figure 2.6. Photograph of the constructed model eelgrass meadow.

2.8 Flow scenarios of the main experiments

The main set of experiments performed in this study consisted of nine flow scenarios;

each scenario distinguished from the others by changes in water depth (H) and flowrate (Q).

The flow scenarios, detailed in Table 2.5, were chosen so as to be able to:

(i) observe conditions with and without the monami, and
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(ii) encompass a range

on the monami.

Table 2.5.

this study.

of H/hd values, to observe the effect of decreasing surface layer depth

Flow and plant height parameters for the nine experimental runs comprising

2.8.1 Mean velocity profiles

For each flow scenario, two sets of measurements were taken. The first data set

consisted of vertical profiles of velocity records, taken using either the ADV or LDV as

described in Chapter 2. All velocity records were taken at x = 6.5 m, at heights separated

vertically by approximately 1 cm. Measurements could be taken to within 0.2 cm of the canopy

bottom (with the ADV) and to within 0.5 cm of the free surface (LDV). For each scenario, a

vertical profile was taken at three lateral positions in the flume, namely at y = -3 cm, 0 and +3

cm. Measurement at 3 lateral positions, separated by a distance much greater than the lateral

scale of an individual plant, was expected to encompass the lateral variability in the canopy.
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Scenario H (cm) Q (±5 gpm) hd ( ±0.2 cm) Observable Amplitude of

monami ? waving (± 0.2 cm)

A 35.9 176 8.5 YES 2.9

B 35.9 73 11.3 YES 1.0

C 35.9 20 12.9 NO -

D 29.0 155 6.4 YES 2.3

E 29.0 63 9.4 YES 2.8

F 29.0 12 12.7 NO -

G 16.4 76 6.2 YES 1.6

H 16.4 17 9.4 NO -

I 12.3 20 9.0 NO -



Note that analysis of lateral variability in mean and turbulent velocities by Vivoni (1998), above

a model canopy in this flume, showed that the interior 20 cm were devoid of wall effects.

2.8.2 Comparison of statistics obtained by the ADV and LDV

Given that profiles of both mean and turbulent quantities incorporated data obtained by

the ADV and by the LDV, it was hoped that the two forms of data would be consistent, if not

identical. Using the two ADV and LDV records obtained at the same point during each run,

empirical comparisons between the mean velocity measurements (generated using the

MATLAB codes in Appendices Al and A2) were obtained. The differences between the mean

velocity estimates obtained by the two instruments were much larger than expected, and cause

for concern. While Voulgaris and Trowbridge (1997) report differences of less than 1 %, results

from this study showed much greater discrepancies (up to 1.2 cms' and occasionally up to

30%). The empirical relationship between the two estimates was:

U ADV = 1.067 ULDV +0.282 (2.25)

where UADV is the mean velocity estimate obtained by the ADV (cms') and Uwv is the mean

velocity estimate obtained by the LDV (cmsI). Fortunately, the relationship between the two

estimates was consistent (r2 = 0.997). Therefore, all LDV estimates of mean velocity were

'converted' to ADV estimates using Equation 2.25.

As opposed to the agreement between ADV and LDV estimates of mean velocity, the

agreement in the estimates of r, (i.e. the coefficient of correlation between horizontal and

vertical turbulent fluctuations) was neither good nor consistent. The discrepancy between the

estimates varied between each flow scenario, ranging from 2% to 50%. As a result, LDV

correlation coefficient estimates were converted to ADV estimates using the mean ratio

between the estimates obtained from the two records for that scenario only. Therefore, while
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correlation coefficient estimates from LDV records were indeed 'converted' to corresponding

ADV estimates, little faith should be placed in them.
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Chapter 3. Results and Discussion

3.1 Mathematical introduction

Firstly, the mathematical description of turbulent fluid flow is presented here as a

foundation for the following results and subsequent analysis. The Navier-Stokes equations, in

tensor notation, for an incompressible, Newtonian fluid are as follows:

-d -= 0 (3.1)
dxi

Du; 1 pV2-u Ip + gi + vVu (3.2)
Dt p dx,

where x; and u; represent the position and velocity vectors, p the pressure, p the fluid density, v

the kinematic viscosity and gi the gravitational acceleration vector. Substitution of the Reynolds

decomposition of velocities and pressure (i.e. ut = Ui + ui'; p = P + p') into Equations 3.1 and

3.2 gives, respectively:

dU = 0 
(3.3)

dx

dU dU + du,'u' 1 dP d 2U(

dt dx, d 22 -

The spatial non-uniformity of local plant density and thus local velocity characteristics

meant that lateral averaging of velocity statistics was required, as in Raupach and Shaw

(1982). The lateral averaging of velocities and pressure is expressed as:
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U, (U,)+ U, (3.5)

p= (p)+ p, " (3.6)

where the angular brackets denote the laterally-averaged quantity and the double primes the

deviation from the average. For steady, two-dimensional (x,z) flow through a seagrass

meadow, lateral averaging yields the following relationships for vegetated flow, using the

traditional parameterization of drag force:

d(U) d(W) =0 (3.7)
dx, dz

d(U) d(U) 1 d(P) 1 d(T) 1 2

(U) +(W) - - +- -- o()(3.8)dx dz p dx p d 2

where (3.8) is simply the x-component of the series of equations in (3.4) and T represents the

temporal average of shear stress. Neglecting the viscous and dispersive stresses, as is valid in

vegetated flows (Raupach and Shaw, 1982), the total stress is comprised solely of the Reynolds

stress:

T = -pu' w' (3.9)

Thus, changes in streamwise momentum are governed by the driving pressure force (due to the

setup of a surface slope above the model canopy), the imposed drag force due to the vegetation

and Reynolds stress.
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3.2 Preliminary test

As a preliminary test, the evolution of the vertical profile of the temporal mean of

longitudinal velocity, U, along the model eelgrass meadow was examined. This test was

performed for two reasons:

(a) to indicate where in the canopy the flow had become fully developed, thereby providing a

reasonable place to perform the main experiments, and

(b) to examine the vertical profile of U immediately upstream of the canopy. It was hoped that

the modification to the inlet conditions (shown in Figure 2.1) would result in the

development of a typical turbulent boundary layer velocity profile by the time the flow

encountered the meadow. The immediate aim was the prevention of a discharge jet,

whereby a region of anomalously high velocity exists at the height of the upstream inlet.

The flume was filled to a depth of 41.0 cm with a flowrate of 166 ± 3 gpm, providing

an intermediate depth-averaged velocity of 6.7 cms~1. Six vertical profiles of mean velocity

were taken in the center of the flume at x = -0.6 m, 0.5 m, 2.2 m, 3.5 m, 5.0 m and 6.5 m. For

each vertical profile, five minute velocity records were taken with the ADV, at locations

separated vertically by 1 cm. As can be seen from Figure 3.1, the shear layer never extended

up to the 7 cm region immediately beneath the free surface; consequently, the LDV was not

employed. Note that although hd is a weak function of x (due to the longitudinal variation of the

mean velocities to which the plants are exposed), the average value of hd was approximately

8.8 cm.
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Figure 3.1. Evolution of the vertical profile of mean

encounters the model eelgrass meadow.

8.0 9.0 10.0

longitudinal velocity as the flow

The velocity profile immediately upstream of the canopy indicates that the prevention

of a discharge jet had been moderately successful, although the profile still differed

significantly from that of fully developed turbulent flow in an open channel. However, the

memory of upstream conditions is clearly lost once uniform flow is attained within the canopy.

The drag exerted by the canopy causes a spatial deceleration of the fluid near the bottom. By

continuity, the overlying fluid must undergo a spatial acceleration, associated with the partial

redirection of the flow over the top of the meadow. This leads to the creation of a region of

strong shear, characterized by the presence of an inflection point.

Figure 3.1 demonstrates that approximately uniform flow conditions had been reached

well before the end of the canopy, with little development of the velocity profile beyond
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x = 5 m. Consequently, x = 6.5 m was deemed to be an appropriate sampling point for future

experiments as it was expected to be representative of uniform in-canopy conditions in the

field.

Figure 3.2 shows the development of U, AU and 6 as the flow progresses into the

canopy. The results are in stark contrast to the typical mixing layer generated in the laboratory

(i.e. that between two free streams separated initially by a splitter-plate). Such a mixing layer

has a constant, prescribed value of AU and a momentum thickness that increases continually,

by diffusion of momentum, until boundaries prevent further development. In this case, AU is

initially zero and grows similarly to 6 as the (vertically non-uniform) vegetation drag is exerted

on the flow. In addition, the momentum thickness tapers off even though the mixing layer never

fully extends to the free surface. The absence of continued mixing layer growth is further

discussed in Section 3.2.1.
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Figure 3.2. Development of three fundamental mixing layer parameters as the flow

progresses into the model canopy.

The coherent waving (monami) of the plants was observed to begin approximately

0.7 m into the canopy and became more pronounced as it progressed along the canopy. By the

end of the canopy, the vertical excursion of the plants during their waving cycle was

approximately 3.0 cm.

The monami was separated into three streamwise channels. Each channel underwent

the cycle of coherent, progressive waving but was noticeably out of phase with the other

channels, such that at any point in time, the deflected plant height exhibited significant

variability across the model canopy. This is in agreement with Ikeda and Kanazawa (1996) and

Vivoni (1998) who estimated the lateral scale of the coherent vortices generated above a plant
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canopy to be of the order 1.5 - 3 hd. The flume in question is 38 cm wide, giving a monami

channel width of 12.7 cm (or ~ 1.4 hd).

3.2.1 Presence of secondary circulation

As previously noted, the momentum thickness of mixing layers grows continually in

the absence of boundary effects. Our observation of the momentum thickness growing

asymptotically is therefore somewhat anomalous, although the same phenomenon can be seen

in the flume experiments of Gambi et al. (1990). The roughness created by the vegetation, and

the comparative smoothness of the flume walls, can set up outward lateral currents. This is

known as differential roughness secondary flow (DRSF) and is discussed further in Pantin et

al. (1981). The presence of the sidewalls can therefore result in secondary circulation (see

Figure 3.3 (a)).

To check for the presence of strong secondary circulation in the flume, two lateral

transects of ten minute velocity records were taken with the ADV at z = hd (- 8.8 cm). Records

were taken every 3 cm in the lateral direction and the transects were taken at x = 2.5 m and

x = 4.0 m. Special care was taken to straighten the probe before the records were taken, to

avoid incorporating any component of the longitudinal velocity into the measured lateral

velocities. Nevertheless, at the completion of both transects, a velocity record was taken

upstream of the canopy to determine the tilt in the probe; the lateral and vertical tilt angles were

both less than 0.20. The secondary flow in the flume is shown in Figure 3.3 (b). Note that this

figure indicates the presence of outward lateral flow on both sides, as one would expect.
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Figure 3.3 (a) Schematic diagram of expected secondary circulation above model vegetation.

(b) Evidence of mild secondary circulation generated in the flume. Vertical

bars represent uncertainty in V based on the estimated uncertainty in

determining the tilt of the probe (± 0.10).

Taking an estimated circulation velocity of 0.2 cms', a water particle would take

S51 Os to complete one circulation; this is equivalent to the time taken for the flow to progress
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more than 30 m into the canopy. Given that the mean velocity profile changes very little after

x = 5 m, it seems unlikely that the induced secondary circulation accounts fully for the

asymptotic behavior of the profile.

3.3 Triggering the monami phenomenon

Preliminary visual observations of the model eelgrass meadow and the field

observations of Grizzle et al. (1996) indicated that the coherent waving of the plants was not

present under all flow conditions. From six observations, the authors indeed observed the

presence of the monami only once, under maximum flow depth and flow velocity. Similarly,

Fonseca and Kenworthy (1987) indicated that the monami generally occurs at higher flow

velocities. Consequently, a simple experiment was undertaken to determine the flow conditions

required in the flume for the observation of coherent waving.

The flume was filled to a water depth of 41 cm and the valve was opened up fully, such

that the pump was operating at its maximum flowrate. The monami phenomenon was clearly

present under these conditions. The valve was then progressively closed until the coherent

waving could no longer be observed. At this point, the flow velocity at the canopy-water

interface (Uh) was measured with the LDV. The transition from an observable monami to a

lack thereof was surprisingly rapid and consistent; the reverse transition always occurring at the

same flowrate. The flume was then drained of 2 cm of water and the entire process repeated.

For every water depth, the monami was observed at the highest flowrate and disappeared as

the mean flow speed decreased. The interface velocities required to trigger the monami, along

with the H/ha ratio at that critical value of Uh, at the various flow depths are shown in Figure

3.4. In this figure, the domain of depth and/or velocity greater than the dashed line represents

where the monami is present.
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Figure 3.4. The conditions required for observation of the monami in the laboratory

flume. The dashed line represents the transition from the monami to a lack thereof.

The curve shown in Figure 3.4 consists of two regions; water depths where the

interface velocity required to trigger the monami is constant and shallower depths where the

trigger velocity increases as the depth is reduced. It should be stressed that the relationship

shown in Figure 3.4 is valid only for our specific experimental model of an eelgrass meadow.

Changes in plant density, dimensions and stiffness would undoubtedly result in a different

curve; the emphasis here is on the qualitative nature of the curve. Indeed, Grizzle et al. (1996)

speculated upon a trigger interface velocity of 10 cms ' for real eelgrass meadows when H/hd

was approximately 2; at this H/h value, the observed trigger velocity in the flume was

1.2 cms I. This is discussed further in Section 3.5.1.
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3.4 The appropriateness of the mixing layer analogy

Reassuringly, the presence (or lack thereof) of the monami phenomenon in all flow

scenarios agreed with expectation, based on Figure 3.4. The final column of Table 2.5 details

the maximum vertical excursion exhibited by the plants whilst waving, estimated from the

video footage; clearly, the monami phenomenon can be very pronounced, given that the waving

excursion of the plants is up to 35% of the mean plant height.

The initial, and most obvious, means of comparison between flow through submerged

vegetation and that of a mixing layer lies in the examination of the mean velocity profile. The

mean (laterally averaged) velocity profiles of these experiments are shown in Figure 3.5.
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Figure 3.5. (a) Laterally averaged mean velocity profiles for flow scenarios with the

monami.

(b) Laterally averaged mean velocity profiles for flow scenarios without an

observable monami. In both cases, horizontal bars indicate the standard

deviation of the measurements at multiple lateral locations.

The mean velocity profiles in Figure 3.5 demonstrate the strong mixing layer nature of

the flow, with some peculiarities particular to open channel flow through submerged

vegetation. Particularly in the case where there exists no monami, there appears to be a region

of reverse shear (i.e. where the velocity increases as the bed is approached) in the lower half of

the canopy. In addition, in the region near the free surface there is a reduction in streamwise

velocity, as is typical in open-channel flow.

70

(b)

4.5

4

0l



All velocity profiles, however, have strong mixing layer characteristics. This is further

exemplified by Figure 3.6, in which the height and velocity axes of the mean velocity profiles

are shifted by their average values (Z and U , as defined in Section 1.1.3) and normalized by 0

and AU respectively. The comparison to the traditional hyperbolic tangent profile of a mixing

layer, namely:

z-OihU-U
= 0.5 x tanh( ) (3.10)

6 2AU

is favorable, with some slight yet important differences.

z-z
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Figure 3.6. Comparison between the observed velocity profiles and the traditional

hyperbolic tangent profile of a mixing layer.
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3.4.1 Quantification of the mixing layer analogy

In accordance with the mixing layer analogy that forms the basis of this study, several

parameters associated with pure mixing layers can be estimated for vegetated flow.

Specifically, the parameters introduced in Table 3.1 are:

AU
e R = . This quantity represents the overall shear in the mixing layer, and influences

several aspects of mixing layer behavior, such as the growth rate (Brown and Roshko,

1974; Ho and Huerre, 1984; Rogers and Moser, 1994).

* Rehm - the mixing layer thickness Reynolds number, defined by:

Rehm = (3.11)
V

This parameter governs the transition of mixing layers from laminar to turbulent; although the

coherent vortices are present in both, this transition is accompanied by a dramatic increase in

small-scale mixing (Moser and Rogers, 1991).
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Scenario U AU R 0 (cm) h. (cm) h/hd h./ 6 Rehm

(cms-') (cms~')

A 7.12 10.49 0.74 4.51 32.2 3.79 7.1 33800

B 3.14 5.03 0.80 3.62 25.5 2.26 7.0 12800

C 0.89 1.66 0.93 2.71 19.9 1.54 7.3 3300

D 7.40 10.12 0.68 3.74 25.6 4.00 6.8 25900

E 3.37 4.66 0.69 2.90 20.0 2.13 6.9 9320

F 0.88 1.51 0.86 2.38 17.3 1.36 7.3 2600

G 6.96 7.71 0.55 2.00 13.8 2.23 6.9 10640

H 2.70 2.84 0.53 1.43 11.2 1.19 7.8 3180

I 3.38 3.68 0.54 0.91 5.8 0.64 6.4 2130

Table 3.1. Important mixing layer parameters of the mean velocity profile for all flow

scenarios.

The consistency of the h 1/6 ratio (7.1 ± 0.4) is useful, as it provides a relatively simple

means of estimating the momentum thickness without the requirement of obtaining a complete

velocity profile.

Given that all profiles were taken at x = 6.5 m, the value of hm in Table 3.1 is indicative

of the spatial growth rate of the generated mixing layer. The inverse relationship between R and

the mixing layer growth rate (e.g. Rogers and Moser, 1994), is therefore apparent from Table

3.1 when comparing scenarios of the largest flow depth (e.g. Scenarios A-C). The complicating

effects of the free surface, which may restrict mixing layer growth, limit the correlation

between the two parameters, however. The magnitude of AU (and hence the value of R) is a

function of the exerted vegetation drag (which in turn scales upon the square of the mean
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velocity) and the flow depth. Unlike in the typical splitter-plate experiments, R can not be

prescribed a priori in vegetated flow, and indeed it changes along the length of the canopy

(Figure 3.2).

3.4.2 Important vertical length scales

With reference to Figure 3.6, the point of inflection of the experimental mean velocity

profiles is not at z = Z, but is situated significantly below that point; this is further

demonstrated in Table 3.2. In this table, four important vertical length scales in the mixing

layer analogy of flow through aquatic vegetation are compared:

e hd, the deflected height of the vegetation.

e z, the height above the bottom of the center of the mixing layer,

e Zinfl , the height at which the inflection point in the velocity profile is situated (i.e. where

dU/dz is maximized). This was estimated from the values of AU/Az between each data

point in the profile. In profiles where a single, clear maximum was not present, a three-

point moving average was applied to identify the inflection point.

e zwrms , the height at which the standard deviation of the vertical velocity record (i.e. the

vertical turbulent velocity, wrms) reached its maximum value. This was assumed to be the

height of the central axis of vortex propagation, as one would expect w' to be maximized

along the central longitudinal axis of an elliptical vortex. Vertical profiles of wrms,

normalized by the mean mixing layer velocity, U , for Scenarios A and C are shown in

Figure 3.7 (ADV data only). The asymmetry of the profiles about zwrms, is indicative of a

reduced kinematic influence of the vortices within the canopy; this is discussed further in

Section 3.5.3.
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Figure 3.7. Vertical profiles of wrms (normalized by U ) for Scenarios A (monami) and C

(no monami). The dashed line indicates the deflected height of the vegetation.

As demonstrated by Table 3.2, the inflection points of the velocity profiles lie at or just

below the canopy-water interface (zinfl/hd = 0.95 + 0.08), in accordance with the findings of

Vivoni (1998). In fact, the location of the inflection point may be a better indication of the

effective height of the canopy, as indicated by Raupach et al. (1996), rather than a temporally

and spatially averaged visual estimate. The relationship between zwns and i also suggests that

the vortices are essentially located in the center of the mixing layer ( zwmKZ = 1.07 ± 0.08).

However, the center of the mixing layer lies well above the inflection point (Z/zingfl = 1.31 +

0.29), which is in stark contrast to the typical mixing layer profile which is symmetrical about

z . This concurs with the flow visualization findings of Ikeda and Kanazawa (1996) and is

symptomatic of the redirection of flow over the top of the canopy.
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Scenario hd (cm) Z (cm) Zinf (cm) Z.,,, (cm)

A 8.5 14.1 9.1 13.7

B 11.3 14.0 11.9 14.7

C 12.9 13.2 11.3 15.8

D 6.4 11.7 6.0 11.7

E 9.4 11.8 8.5 13.4

F 12.7 12.7 12.1 12.7

G 6.2 7.8 6.0 9.1

H 9.4 9.7 8.7 9.8

I 9.0 7.9 7.5 8.8

Table 3.2. Contrast between the vertical length scales of the mixing layer flow and plant

canopy.

In the initial stages of flow development, the inflection point, canopy height and mixing

layer center all correspond to the one height (Figure 3.1). As the flow is redirected over the

canopy, the mixing layer continues to evolve, but at an increasingly greater height. The region

of maximum shear is always fixed at the point where there is a transition from exerted drag to a

lack thereof (i.e. at the top of the canopy).

3.4.3 Comparison of frequency spectra and monami frequencies

As observed by several researchers (Ackerman and Okubo, 1993; Grizzle et al., 1996;

Wallace et al., 1998), the spectrum of streamwise velocity exhibits a strong, characteristic peak

at a frequency that is invariant over depth. All records of longitudinal velocity in this study

were resampled at a frequency (fr) between 1 and 4 Hz (>> fKH). These values of fr were
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sufficiently large such that the characteristic peaks in the spectra were observable and

sufficiently small such that computational time was significantly reduced. The autocorrelation

function of the resampled record was then calculated and smoothed using a Parzen window of

width (w,) of between 40fr and 60fr. From the smoothed autocorrelation function, the power

spectrum of longitudinal velocity was obtained (Appendix B). In the power spectra for each

flow scenario, peaks of an invariant frequency were observed throughout the generated mixing

layer. Not surprisingly, identification of spectral peaks was easier for the flows with lower

values of Rehm, where there is a lack of small-scale turbulence superimposed upon the coherent

structures that we are attempting to identify.

The strong peaks in the spectra of longitudinal velocity, and the constancy of the peak

frequency over depth, are demonstrated in Figure 3.8.
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Figure 3.8. Pronounced peaks in the spectra of streamwise velocity in and above the model

canopy.

(i) Scenario A ( -z/h= 1.37 , -- z/hs= 0.83 , -. z/h = 0.72 ); fr=1Hz, ww = 60.

(ii) Scenario C ( - z/hs = 1.06 , -- z/hd = 0.84 , -. z/hd = 0.84 );f f= 2 Hz, w,4 = 80.

(iii) Scenario G ( -z/h= 0.93 , -- z/hd = 1.02 , -. z/h=0.80 );f,=4 Hz, ww =240.

Obviously, these characteristic spectral peaks are indicative of strong, periodic velocity

oscillations. The streamwise velocity for Scenario G oscillates with a frequency of

approximately 0.11 Hz, demonstrated by the peak in the spectrum in Figure 3.8(iii). A raw

time series of longitudinal velocity (along with the 1 second moving average) for Scenario G is

shown in Figure 3.9, clearly exhibiting oscillations of period ~ 9 s.
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Figure 3.9. Time series of a strongly oscillatory streamwise velocity record, taken at z/hd =

0.93 for Scenario G.

raw time series of longitudinal velocity

- 1 second moving average of longitudinal velocity

Due to the roller-type nature of the generated vortices, oscillations of an identical

frequency were expected to be seen in the vertical velocity. Therefore, spectra of vertical

velocity were also analyzed. Characteristic peaks of frequencies identical to those in the spectra

of longitudinal velocity were indeed found. The presence of a strong peak at exactly double that

frequency was also noted, however, as demonstrated in Figure 3.10.
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noted by Ikeda and Kanazawa (1996). The authors found strong updraft velocities in front of

the vortices generated above their flexible, submerged vegetation and there is evidence of mild

downward velocities behind the vortices (Figure 3.11). Thus, at any given point, an oscillation

of vertical velocity at double the frequency of vortex generation may be observed, as

demonstrated by Figure 3.10.
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U

Figure 3.11. Schematic diagram of the sequence of vertical velocities in the vortex street in

vegetated flow, as observed by Ikeda and Kanazawa (1996).

The mean monami frequency was obtained from the video footage obtained during the

experiments, as discussed in Section 2.3. Over a period of between two and three minutes,

each 'monami channel' was observed and the number of waving cycles exhibited by the plants

in that channel were counted. The average frequency of the monami, with associated

uncertainty (the standard deviation of the three estimates), is shown in Table 3.3, along with the

peak frequencies in the spectra of both longitudinal and vertical velocity and the predicted

instability frequency of the generated mixing layer (from Equation 1.2). Note that all velocity

records were taken within the central monami channel.
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Scenario Mean monami Peak in streamwise Peaks in vertical Predicted mixing layer

frequency (Hz) velocity spectrum velocity spectrum instability frequency

(visual estimate) (Hz) (Hz) (Hz)

A 0.055 + 0.008 0.052 + 0.006 0.055 + 0.005 0.051 + 0.002

0.112 + 0.005

B 0.028 + 0.001 0.028 + 0.003 0.030 + 0.002 0.028 + 0.001

0.057 + 0.004

C - 0.012 +0.001 0.012 +0.001 0.010 +0.001

0.024 + 0.002

D 0.064 + 0.003 0.063 + 0.007 0.066 + 0.006 0.063 + 0.002

0.135 + 0.009

E 0.039 + 0.005 0.039 + 0.006 0.038 + 0.003 0.037 + 0.002

0.075 + 0.005

F - 0.014 +0.002 0.014 +0.001 0.012 +0.001

0.028 + 0.002

G 0.110 +0.007 0.109 +0.012 0.105 +0.004 0.111 +0.003

0.206 + 0.010

H - 0.062 + 0.006 0.064 + 0.004 0.060 + 0.003

0.126 + 0.003

I - 0.113 +0.007 0.116 +0.004 0.119 0.007

0.233 + 0.004

Table 3.3. Comparison of observed monami frequencies, predicted

frequency and the frequency of peaks in velocity spectra.

mixing layer instability

The strong agreement between the mean monami frequency, the predicted instability

frequency of the mixing layer and the frequency of oscillations in streamwise velocity confirms

the proposal of Ikeda and Kanazawa (1996), namely that all three are related occurrences. The

mixing layer profile that develops leads to the generation of vortices that propagate
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downstream. The stream of vortices are responsible for a strongly oscillating streamwise

velocity, that causes the progressive, coherent waving of the vegetation.

It is important to note that the lack of waving in the canopy does not imply a lack of

coherent structures in the mixing layer. The kinematics of the vortices in such situations

(Scenarios C,F,H and I) are insufficient to cause visible deflections of the plants; this is

discussed further in Section 3.5.1.

In summary, the data have shown that the monami is generated as follows: the

turbulent boundary layer flow encounters the canopy drag, resulting in the redirection of flow

over the top of the canopy and the deceleration of lower-lying fluid. This leads to the

development of a shear-layer profile, complete with an inflection point. Accordingly, the

Kelvin-Helmholtz instability develops and rolls over, creating three-dimensional vortices. In the

case of our experimental model, this all appears to occur within the first 0.7 m of the canopy.

These vortices are maintained by the velocity shear across the top of the canopy and progress

downstream. Therefore, each plant observes a stream of vortices and, resultingly, a oscillating

streamwise velocity. This oscillating velocity causes the coherent and progressive waving of

the vegetation.

It is interesting to note that the monami is visible as the propagation of forward plant

deflection along the canopy, indicating the progression of high streamwise velocity, as

represented in Figure 3.12.
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x=0.7 m
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x

Figure 3.12. Schematic diagram of plant response to the passage of the street of elliptical

vortices in the generated mixing layer. The monami is observed as a progression of

forward plant deflection.

This is counterintuitive, as the shear of the mean velocity profile would create a vortex rotating

clockwise in Figure 1.1. Therefore, the canopy would encounter lower velocities than usual as

a vortex passed, given that the canopy lies below the axis of vortex propagation. This is

commonly seen in pure mixing layers, where the vortex circulation can be so pronounced that

instantaneous reversal of the velocity can be seen as a vortex passes (Dimotakis et al., 1981).

Seemingly, this is not the case here and prompted the following study of the speed of

propagation of these coherent structures.

3.5 Vortex velocities

The second set of measurements in these experiments were taken to estimate the

longitudinal velocity of the coherent vortices (U,) generated in the mixing layer. This involved

the use of two ADV probes, as shown in Figure 3.13. The idea behind the measurement of

vortex velocity was that since individual vortices are maintained by the shear of the mixing
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layer, the change in velocity as an individual vortex passes can be measured at more than one

point along the canopy.

x=0 x=5m x=7.5 m

Figure 3.13. Experimental configuration for the measurement of the speed of progression

of the coherent vortices.

The two probes were separated by a distance ranging between 0.5 m and 1.6 m,

depending upon the mean velocity of the mixing layer region (U ). The separation distance was

chosen such that the travel time of a vortex from the upstream probe to the downstream probe

(tv) was large enough to make negligible any error incurred by the manual commencement of

both probe recordings, but small enough so that the characteristics of the vortex would not

change appreciably as it progressed along the canopy. The probes spanned a length of canopy

in which the mean velocity profile, and hence the momentum thickness, changed little. With

reference to Figure 3.13, this meant that the upstream probe was never placed less than 5.0 m

along the canopy. For each flow scenario, three vortex velocity estimates were obtained from

ten minute velocity records obtained simultaneously by the ADV probes. With both probes at

the same lateral position across the flume, estimates were obtained at y = 0, y = +3 cm and
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y = -3 cm for all flow scenarios. Since all these positions lay in the same 'vortex channel', this

was done more for repetition than to capture lateral variability.

This second set of measurements was performed after the completion of the first set.

Consequently, the valve had to be carefully adjusted to recreate the same flowrate that was

used initially. However, due to inaccuracies that might be incurred (especially at low flowrates

where the error in the estimation of the flow rate is comparatively high), the mean velocity of

the mixing layer (U) had to be re-estimated for all flow scenarios. Therefore, all

measurements were taken at T, the mean height of the mixing layer for each individual

scenario (as shown in Table 3.2). The average of the three mean values of longitudinal velocity

was designated as the new value of U . For the scenarios with a low flowrate (< 20 gpm) , the

disagreement between the two values was significant, ranging between 1% and 27%; for

higher flowrates, the new value of U always agreed with the old value to within 10%.

To obtain an estimate of vortex velocity, the crosscorrelation between the two

simultaneous velocity records was examined. The longitudinal velocity record of the

downstream probe was successively lagged against the same record of the upstream probe,

until the crosscorrelation between the two records (rk) was maximized.

N-k

/N I(u1 -U U)(u2 ,n+k -U2)

rk n=1 (3.12)
rms,1* rms,2

where the subscripts 1 and 2 refer to the upstream and downstream velocity records

respectively, k is the lag between the two records, n is the number of the data point in the

velocity record and N is the total number of points in the velocity record. The crosscorrelation

reflects the correlation between the two velocity records when the downstream record is shifted

forward by k data points. It is expected that the crosscorrelation between the two records would

be maximized when the lag is equal to the time taken for an individual vortex to travel from the
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upstream probe to the downstream probe (taw). Often, several peaks were present in the

crosscorrelation function, indicating that the separation distance of the probes was large enough

such that more than one vortex was present between them at any given time. However, there

was always one clearly dominant peak, invariably at a time lag that corresponded to a vortex

velocity in the vicinity of U. The lag associated with this peak was assumed to be the time

taken for a vortex to travel between the ADV probes. The MATLAB code used to compute the

cross-correlation functions is shown in Appendix C. Sample plots of the cross-correlation

between the two velocity records as a function of lag are shown in Figure 3.14.
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Figure 3.14. Examples of the cross-correlation between two lagged, simultaneous velocity

records taken at different points along the canopy.

(a) Scenario F, y = -3 cm, Ax = 0.62 m

(b) Scenario G, y = +3 cm, Ax = 1.55 m

As a form of quality control, measurements that produced a maximum crosscorrelation

of less than 0.08 (a nominal value) were rejected and the corresponding experiment was

repeated. The vortex velocity was calculated using the estimated travel time of the vortex:

AX
UV 

=
(3.13)

The resulting estimates of vortex velocity are shown in Table 3.4. Note that the uncertainty in

the vortex velocity is much greater than any uncertainty in the re-estimation of U ; the latter
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has thus been neglected.

Scenario y (cm) Ax (cm) t, (s) U, (cms-1) U~ (cms A) UV U
- U2

A 0 161.1 14.81 10.88
-3 154.6 15.17 10.19 7.12 1.45+0.07 0.84+0.04
+3 168.2 16.87 9.97

B 0 154.6 43.86 3.52
-3 153.6 43.21 3.55 2.79 1.27 +0.01 0.63 +0.01
+3 154.4 43.41 3.56

C 0 62.4 50.23 1.24
-3 52.7 44.95 1.17 0.973 1.22 + 0.04 0.69 + 0.02
+3 63.4 54.43 1.16

D 0 153.6 14.20 10.82
-3 157.5 14.04 11.22 7.45 1.47 +0.03 0.88 +0.02
+3 154.3 14.24 10.84

E 0 151.6 35.83 4.23
-3 153.7 35.83 4.29 3.03 1.25 +0.03 0.72 +0.02
+3 152.8 37.24 4.10

F 0 62.0 47.97 1.29
-3 61.5 49.22 1.25 1.12 1.16+0.03 0.79+0.02
+3 62.4 46.68 1.34

G 0 156.6 18.00 8.70
0 * 155.6 17.35 8.97 7.12 1.28 +0.05 0.84 +0.03
-3 156.9 16.62 9.44
+3 154.6 16.70 9.26

H 0 88.0 27.44 3.21
-3 88.0 27.94 3.15 2.69 1.18+0.01 0.77+0.01
+3 88.0 27.89 3.16

I 0 88.0 19.67 4.47
-3 88.0 20.17 4.36 4.03 1.09 +0.01 0.84 +0.01
+3 88.4 20.09 4.40

Table 3.4. Estimation of vortex velocity based on crosscorrelation of two velocity records at

different longitudinal locations.

* extra measurement taken due to high variability in the data
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3.5.1 Effects of the rapid convective velocity of the vortices

It is interesting to note that the ratio of vortex velocity to mean mixing layer velocity is

always greater than unity. This agrees with the flow visualization findings of Ikeda and

Kanazawa (1996) but contrasts measurements in pure mixing layers (i.e. those without the

vegetation drag) where the ratio is almost exactly unity (Dimotakis et al., 1981; Ho and

Huerre, 1984; Panides and Chevray, 1990). There exists a clear relationship between the

relative vortex velocity and the mixing layer thickness, as demonstrated in Figure 3.15. The

intercept of the curve is, interestingly enough, at a value close to unity. This suggests that in the

initial stages of mixing layer development, vortex velocities are similar to those in a pure

mixing layer. As the thickness of the layer grows, however, the vortices become

disproportionately affected by the high-stream velocities of the mixing layer, leading to

increased convective velocities of the coherent structures. This is highlighted by the fact that as

the mixing layer thickness (and hence the vortex size) grows, so too does the vortex velocity

relative to U . In other words, as the vortex is able to encounter more of the high-stream

velocities, it travels faster as a result. As expected, the vortex velocity never exceeds the

maximum velocity of the mixing layer, U2 (Table 3.4).
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Figure 3.15. Evidence of the linear relationship between the ratio of vortex velocity to

mean mixing layer velocity with the non-dimensionalized mixing layer height. Error bars

indicate one standard deviation from the lateral average. Data point labels indicate the

flow scenario in which the measurement was taken.

The observed vortex velocities, while in striking contrast to that expected based on

mixing layer theory, are in agreement with the flow visualization estimates of Ikeda and

Kanazawa (1996). In terrestrial canopies, an accepted value of U, is 1.8Uh, according to

Finnigan (1979a), where Uh is the mean velocity at the top of the canopy. In this study, the

average U/Uh ratio was 1.22. Assuming a similar ratio for terrestrial canopies, where the

center of the mixing layer is consistently above the top of the canopy (Raupach et al., 1996),

the relative vortex velocity (U /U ) is approximately 1.5. This is consistent with our findings,
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where in the cases most resembling the unbounded terrestrial flows (i.e. Scenarios A and D),

we see a very similar ratio. Although not suggested by the linear relationship in Figure 3.15

(which spans a narrow range of hhd), it is expected that as an unconfined canopy condition is

approached, the value of U, /U~ asymptotes to a value of approximately 1.5.

The observation of the monami as a downstream progression of a localized region of

forward plant deflection indicates that the speed of vortex propagation is sufficiently high, and

their circulation sufficiently slow, that as a vortex passes, the streamwise velocity at the top of

the canopy increases. This is easier to comprehend when it is considered that the top of the

canopy lies up to 1.50 below the axis of vortex propagation, and experiences a much lower

mean velocity than the center of the mixing layer. Given that the vortices are also travelling up

to 50% faster than the mean mixing layer velocity, the advection speed of these vortices,

relative to the mean velocity at the top of the canopy, is so large that its passage is accompanied

by a velocity increase, despite its circulation.

Given the data presented in Figure 3.15, the curve detailing the conditions required for

observation of the monami (Figure 3.4) can now be interpreted in more detail. For very large

water depths, the mixing layer thickness is not restricted by the free surface, allowing hm to

grow large, leading to a high vortex velocity. Consequently, a monami is observed for virtually

all flow rates, except when the mean velocity is so low that even the (comparatively) rapidly

propagating vortices are not strong enough to cause a deflection of the eelgrass blades. As the

free surface is lowered, the mixing layer thickness becomes restricted by the upper boundary.

As a result, the relative vortex velocity (U, / U) decreases as the water depth becomes

shallower (Figure 3.15). Consequently, greater velocities are needed to bend the plants over

sufficiently for the h/hAd ratio to grow large enough to result in sufficiently rapid vortex

propagation.
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3.5.2 Critical parameter for monami observation

Given that the flexibility of submerged aquatic vegetation varies widely, it seems

reasonable to attempt to develop a general criterion for the presence of the monami in

submerged aquatic vegetation. The lower portion of the curve in Figure 3.4 (i.e. that with an

increasing trigger interface velocity) corresponds to a maintenance of an H/hd value [= hA/hd for

such shallow depths] of 1.7. That is, the velocity must increase sufficiently to deflect the plants

such that H/hd > 1.7 before the monami can occur. Importantly, this ties in perfectly with

Figure 3.15, where the criterion for the observation of waving is h,/hd> 1.6 - 2.0. Additionally,

this compares favorably with the work of Vivoni (1998) who employed relatively shallow

water depths such that mixing layer thickness was consistently restricted by the free surface.

The monami was not observed until H/h (= h,/hd) reached 1.75.

Hence, there clearly exist two separate regimes of the mixing layer flow. The first

regime involves the shear layer not extending up fully to the free surface and therefore

remaining unconstrained by the limited depth. The second involves the shear layer being able to

grow no more, restricted by the presence of the boundary. The depth at which the transition

occurs depends on the growth rate of the mixing layer and the longitudinal distance into the

canopy. Although the qualitative nature of the curve in Figure 3.4 will be invariant, the

magnitudes of the trigger velocities will obviously be a function of plant flexibility (stiffer

plants will require a much greater current to exhibit the monami).
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3.5.3 Momentum transport by the coherent structures

The correlation coefficient r, is an important turbulent parameter in this study as it is

an indication of the efficiency of the turbulent vertical transport of streamwise momentum. It is

defined statistically as the correlation coefficient between the longitudinal and vertical turbulent

fluctuations:

u' W'
r, = U. wW (3.14)

This parameter can be used to infer size, location and strength characteristics of the generated

vortices. It is worth noting that in open-channel flow, the correlation coefficient reaches a

maximum (in magnitude) of approximately -0.32. However, in flows through terrestrial

vegetation, coefficients of up to -0.5 are observed (Raupach et al., 1996), indicative of the

importance of the coherent structures in momentum transport and by implication, scalar fluxes.

The negative signs of the correlation coefficients in these flows result from the predominance

of ejection and sweep events, causing a downward turbulent transfer of momentum.

Figures 3.16 and 3.17 show the vertical profiles of the correlation coefficient for the

flow scenarios with and without the monami respectively. Note that in these figures, hp , the

depth of penetration of Reynolds stress into the canopy, is shown. This quantity is defined as

the vertical distance into the canopy (from above) at which the Reynolds stress, and thus the

correlation coefficient, reaches zero.
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Figure 3.16. Profles of the correlation coefficient for flow scenarios with the monami.

Horizontal bars indicate one standard deviation from the lateral average. The dashed line

represents the top of the canopy and the solid line shows the extent of penetration of

Reynolds stress into the canopy. Data labels show the h,,hd ratio for each flow scenario.
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Figure 3.17. Profiles of the correlation coefficient for flow scenarios without the monami.

Horizontal bars indicate one standard deviation from the lateral average. The dashed line

represents the top of the canopy and the solid line shows the extent of penetration of

Reynolds stress into the canopy. Data labels show the h,,/hd ratio for each flow scenario.

Regardless of whether the monami is present, ru reaches a maximum magnitude at the

inflection point where the shear is maximized (i.e. just below the top of the canopy). In the case

of the waving canopy, the maximum value reached is approximately -0.5, in accordance with

the observations of Raupach et al. (1996) in terrestrial canopies. Above this point, the vertical

profile of ruw reflects the kinematic influence of the vortices, the size of which are restricted by

the thickness of the mixing layer. Figures 3.16 and 3.17 tie in to Figure 3.15 and demonstrate
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the importance of two vertical length scales: the canopy height and the mixing layer thickness.

The comparatively thick mixing layers of Scenarios A and D allow a much larger vortex to

develop, leading to a thicker zone of efficient downward transfer of streamwise momentum. In

all cases, the efficiency of momentum transfer is maximized at the top of the canopy, and

remains considerably larger than that in a turbulent boundary layer within the mixing layer, due

to the coherent structures that develop.

As with the vertical profiles of wrns (Figure 3.7), the profiles of r. are asymmetric

about their maximum value (at z - hd in all cases). The decrease of r" is much more rapid

below z = hd than it is above that point, highlighting the inability of the vortices to penetrate into

the canopy., due to the drag exerted by the vegetation. Comparison of Figures 3.16 and 3.17

demonstrates that plant waving, however, allows a considerably greater penetration of

Reynolds stress (associated with the vortices) into the canopy (hp,waving ~ 0.75 hd; hp,non-waving

- 0.4 hd). The relative drag force exerted by stationary blades is considerably greater than that

exerted by blades that deflect under strong sweep events. Consequently, the vortex structure is

broken up by the non-waving blades, leading to a diminished penetration of Reynolds stress.

The structure of the profile of r. above z = hd is similar, regardless of plant waving, with a

high value being maintained from the top of the canopy to the top of the generated mixing

layer.

It is also noticeable that, especially within the canopy, there is a much greater spatial

variability in ru, when the canopy is not waving. This results from the lack of penetration of

large, canopy-scale turbulence into the canopy. Thus, the Reynolds stress arises predominantly

from stem-scale turbulence, which would otherwise be superceded by the canopy-scale vortical

structures of the mixing layer. The spatial heterogeneity created by the distributed wakes

therefore creates strong lateral variability in ruv.
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The strong positive correlation in the lower halves of the canopies that do not exhibit

the monami is symptomatic of a region of 'reverse shear' (i.e. where the velocity increases as

the bed is approached). This is explored further in Section 3.5.4.

3.5.3.1 Vortex size

The correlation coefficient profiles within the generated mixing layers are shown in

Figures 3.18 and 3.19. These figures show essentially the same data as Figures 3.16 and 3.17,

but with a non-dimensionalized vertical axis, in an attempt to collapse the data. Figure 3.16

shows that in a waving canopy, the vortical structure has a vertical extent of approximately

1.5 - 3.5 hd, using -0.3 as the approximate (cutoff) value for the far less coherent boundary

layer turbulence. For the large-scale turbulence above the flexible canopy of Wallace et al.

(1998), the vertical Eulerian length scale was approximately 1.5hd. Allowing for the omitted

factor of 2n in his estimation of integral length scales - the inclusion of which yields length

scales corresponding more accurately to actual eddy sizes (Wallace et al., 1998) - Vivoni

(1998) found the vertical Eulerian length scale to be of the order of 1.5 - 2.5 hd. Ikeda and

Kanazawa (1996) observed the size of generated vortices to be approximately 1.5 - 2 hd. The

relationship between such an integral length scale and the canopy height is, however, secondary

and would be expected to vary considerably, especially in the initial stages of the canopy when

mixing layer growth is pronounced. The corresponding relationship with a mixing layer

parameter is more relevant and is expected to be more consistent between different canopies

and flow conditions, as confirmed by Figure 3.18.
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Figure 3.19. Correlation coefficient profiles through the mixing layer for all flow

scenarios without the monami. The dashed line indicates the maximum magnitude of r.w

observed in boundary layer flow (- -0.3).

Thus, regardless of the degree of plant submergence, the vertical extent of the vortices

in a waving canopy is approximately 66. This corresponds approximately to the mixing layer

thickness (Table 3.1), meaning that above a canopy exhibiting the monami, the structures

encompass (vertically) almost all of the mixing layer. In a non-waving canopy, however, the

inability of the vortex to penetrate into the canopy leads to a diminished vortex height of

between 30 and 50.

Figures 3.18 and 3.19 also confirm that the vortices are sitting slightly above the

geometric center of the mixing layer; the center of the region of Ir.,I > 0.32 lies approximately
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0.40 above Z. However, the resulting mean velocity increase due to this displacement is

only - 0.06AU (Figure 3.6). Since the average AU/U ratio is 1.4 + 0.3 (Table 3.1) this mean

velocity increase is not nearly large enough to explain vortex velocities of the magnitude

observed (1.1 - 1.5 U).

3.5.4 Reverse shear in non-waving canopies

The observations of an increase in velocity as the bed is approached within non-waving

canopies (Figure 3.5) is intriguing. Figure 3.20, a magnified look at the mean in-canopy

velocities, highlights the presence of this reverse shear within canopies that do not exhibit the

monami. The mean velocity profiles have been shifted by Umin, the lowest observed velocity in

the canopy (excluding the point nearest the bed) and normalized by U .

Given the significance of fluid motions immediately above the sediment-water interface

in governing chemical, biological and depositional/erosional processes, the near-bed maximum

velocity is an important physical parameter. The presence of reverse shear seemingly arises due

to the inability of the Reynolds stress of the vortices to penetrate deeply into a non-waving

canopy (Figure 3.17). Thus, ignoring small spatial accelerations, the resulting conservation of

streamwise momentum in the lower parts of the canopy (z < hd - hp) reduces to a balance

between the exerted drag force and the driving pressure force, supplied by the setup of a

surface slope. As the model eelgrass blades (and indeed, actual eelgrass blades) emerge from a

bundled stem region, the frontal area of the plants increases with height above the bed;

consequently, so too does the exerted drag force. As a result, this region is characterized by a

mean velocity that decreases with height above the bed.
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Figure 3.20. Evidence of reverse shear in the non-waving canopies of this study; the mean

velocity profiles have been shifted by the minimum velocity and normalized by the mean

mixing layer velocity. Vertical velocity profiles of non-waving canopies are highlighted

with lines.

Careful examination of the results of Vivoni (1998) shows a similar pattern; regions of reverse

shear (of a similar strength to those shown in Figure 3.20) limited to the cases where the

monami is nonexistent. However, high positive values of r., were not observed in his canopy.
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Chapter 4. Further Discussion

4.1 Differences between vegetated flow and laboratory mixing layers

There are several differences between this example of mixing layer flow with that

commonly generated in the laboratory - namely, that of two fluid streams initially separated by

a splitter-plate. The boundary layers that develop on either side of the splitter plate cause the

mixing layer to have a non-zero initial momentum thickness (6k). Downstream distances are

generally normalized by 6, and/or the resulting wavelength of the initial wave instability (which

scales upon 6j, according to Equation 1.2). For example, Winant and Browand (1974) detail an

initial zone of vortex amalgamation commencing at a distance (downstream of the splitter-

plate) of approximately 3 wavelengths of the initial wave instability. In the case of the mixing

layers generated by aquatic vegetation, the profile has no initial momentum thickness and

comparison to downstream distances in pure mixing layer experiments is difficult.

Additionally, AU is a function of x, meaning the most fundamental mixing layer parameter (R)

is not constant.

Preliminary investigations revealed clearly discernible, individual peaks in the

frequency spectrum of longitudinal velocity at x = 0.7 m, 2.0 m, 3.5 m and 5.0 m along the

model canopy, under the same flow conditions as employed in the preliminary test (Section

3.2). The distinct peaks indicate that vortex merging is not taking place for x > 0.7 m, as the

discrete nature of the merging would preclude the presence of a single frequency of velocity

oscillations in the domain where merging is occurring. Even if merging was completed over a

very small longitudinal distance, an almost instantaneous doubling of mixing layer momentum

thickness should be observed (Ho and Huerre, 1984); Figure 3.2 provides evidence that this is

not occurring. Seemingly, therefore, the flow field through submerged aquatic vegetation can

be thought of as a vortex street with increasing momentum thickness due to turbulent
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entrainment by the vortical structures, but without vortex amalgamation. .However, flow

visualization is required as confirmation of the lack of vortex interactions in the generated

mixing layer. Ikeda and Kanazawa (1996) made no mention of vortex merging in their flow

visualization experiments above a flexible submerged model canopy.

The lack of vortex amalgamation complies with the theoretical criterion of A/8, < 3.5

for amalgamation to occur by tearing (i.e. the merging mechanism after pairing is complete) in

an array of transverse vortices (Raupach et al., 1996), where A is the vortex spacing and 6, is

the vorticity thickness. The vorticity thickness is approximately equal to 4.5 times the

momentum thickness in vegetated flows (Raupach et al., 1996). An estimate of the vortex

spacing is obtained from:

A 31.20 -O (4.1)
f U

using Equation (1.2). Therefore,

A U
~7 - (4.2)

3, U

Since U, /U > 1, vortex amalgamation by tearing is not expected to be occurring at the point

of observation (i.e. x = 6.5 m).

As discussed in Section 3.5.3.1, the vertical extent of the vortices (&) in waving

canopies is approximately 6e. From Equation 4.2, the vortex spacing in these waving canopies

is between 8.8 - 10.3 &w, using the relative vortex velocities listed in Table 3.4. Since & ~ 4.50

and .= 60 in waving canopies, & /6~ 0.75. Therefore, the vortex spacing varies between

6.6 - 7.7 & in the waving canopies of this study. This corroborates the findings of Ikeda and
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Kanazawa (1996), whose flow visualization shows the vortex spacing to be, at the very least,

5, in a waving canopy. With the reduced size of the vortices above non-waving canopies, the

vortex spacing is as much as 12.7 4 (Scenario C).

4.2 Effects of depth limitation

As discussed briefly in Chapter 1, an important aspect of this research is distinguishing

between vegetated flows in the atmosphere and those in aquatic systems. The imposition of the

free surface in aquatic flows represents the most important difference. The presence of the free

surface implies that we are frequently no longer dealing with, literally, a free shear layer.

Interestingly, even when the free surface clearly prevents further development of the shear

layer, the monami frequency is still in agreement with Equation 1.2 for a free shear layer. This

indicates that Equation 1.2 reflects purely a kinematic constraint and is independent of the

evolution of the mixing layer.

In contrast, in atmospheric canopies there is poor agreement between the observed

frequency of vortex generation and linear instability theory (Equation 1.2) and the estimated

streamwise separation of the vortices is approximately half that predicted, based on the

thickness of the mixing layer. The authors surmise that several high-Reynolds-number

processes are responsible for this discrepancy; the emergence of modes (due to nonlinearities)

other than the fastest-growing mode as predicted by linear analysis and the additional

entrainment in a turbulent mixing layer are possibly responsible. Because wind velocities and

terrestrial length scales are much greater than the currents and length scales found in aquatic

vegetated flow, it is reasonable to assume that such high-Reynolds-number processes are not

occurring in vegetated aquatic flows, and certainly not in the laboratory flume. In addition,

mixing layers generated by terrestrial vegetation are superimposed upon an atmospheric

boundary layer of much greater scale. There is therefore an interaction between the coherent

structures of the mixing layer and the turbulence of the atmospheric boundary layer. However,
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in the majority of vegetated aquatic flows (i.e. H/hd< -10), this is not the case, and the mixing

layer extends through most (if not all) of the water column.

4.3 Vortex kinematics

The signature of the monami as a localized region of forward bending of the plants

indicates that an increase in longitudinal velocity occurs at the top of the canopy as a vortex

passes. This implies that the convective speed of the vortices minus the longitudinal velocity

associated with vortex circulation is larger than the mean velocity at the top of the canopy. As

an example, consider the vertical velocity records at zwrns for Scenario A. The wnns at this

height, approximately 1.2 cms1, can be taken as an estimate of the circulation speed within the

vortex. In this flow scenario, the vortices are propagating at approximately 10.3 cms' (Table

3.4), and Uh - 4.5 cms1 (Figure 3.5). As the vortex passes, the streamwise velocity recorded at

z=h increases to (10.3 - 1.2) = 9.1 cms1, significantly greater than Uh. Although vortex

circulation does therefore not dominate streamwise velocity fluctuations, it is a significant

cause of vertical velocity fluctuations and is the mechanism behind the strong vertical

momentum fluxes in the mixing layer.

The rapid convective velocity of the vortices remains counterintuitive. Although the

canopy drag is continually present, it can still not explain the disproportionate effect of the

high-stream velocities on the vortex speed. The vortices are located, more or less, in the

vertical center of an approximately symmetrical mixing layer. This means that integration of the

mean velocity profile over the vertical extent of the coherent structure (as determined by Figure

3.16) gives an average velocity to which the vortex is exposed of almost exactly U . The

comparatively high velocity of the vortices (U,/U up to 1.5) is inconsistent with laboratory-

generated mixing layers without the vegetation drag, although a similar phenomenon is seen in

terrestrial canopies.
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The observation of several 'monami channels' in such a narrow flume is certainly

surprising. This lack of lateral uniformity of the monami is, however, consistent with waving

phenomena in terrestrial canopies (e.g. waving wheat fields) and the three-dimensionality of the

coherent structures observed by Ikeda and Kanazawa (1994) above a flexible model canopy.

Conversely, in splitter-plate-generated mixing layers the coherent structures have a quasi-two-

dimensional structure (Browand and Troutt, 1990).

4.4 Frequencies of plant vibration

Due to the low currents through aquatic vegetation, the monami frequency is generally

considerably lower than the natural frequency of vibration of the vegetation (0.18 Hz). Finnigan

and Mulhearn (1978) showed that terrestrial vegetation absorbs wind momentum preferentially

at the natural frequency of vibration of the plant structure. Thus, while the plant waving in this

study may have a minor component at the natural frequency, the instability frequency of the

mixing layer dominates plant motion. It is suspected that the low-amplitude lateral oscillation of

the model plants of Vivoni (1998) corresponded to their natural frequency. Spectra of both

longitudinal and vertical velocity in this study (examples of which are shown in Figures 3.8 and

3.10 respectively) show no evidence of oscillations at a frequency of 0.18 Hz. This is expected

given the forced nature of plant waving that is suspected.

4.4.1 Effect of plant waving

As demonstrated by Figures 3.16 and 3.17, there is minimal Reynolds stress

penetration into the non-waving canopies of this study (hp,,ving ~ 1.9 hp,non-waving). This

indicates that the monami cannot be thought of as a completely passive response to the flow.

Although Vivoni (1998) found no significant difference in the turbulence structure based on the

presence of the monami, his vegetation was very rigid and exhibited very low-amplitude

waving, in contrast to this study.
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4.5 Length scale prediction

The clear mixing layer nature of vegetated flows means that there are two sets of length

scales: those intrinsic to the system (e.g. plant height, water depth) and those that are functions

of the mixing layer flow (e.g. momentum thickness, mixing layer thickness). With

measurement of the latter being far from a trivial prospect, it is desirable to determine process-

based empirical relationships to obtain some predictive capability.

It is expected that the momentum thickness of the mixing layer will depend upon the

depth of the surface layer above the canopy (i.e. H - hd), as this is the region in which the

mixing layer is free to grow before the free surface can restrict further growth. Linear

regression of the observed values of 0 with H - hd , both non-dimensionalized by hd, shows an

excellent correlation, as demonstrated in Figure 4.1. When the regression line is forced through

the origin, since emergent vegetation (H - hd = 0) does not create a mixing layer in the flow,

6 ~ 0.16 (H - h).
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Figure 4.1. Evidence of the linear relationship between the observed momentum

thicknesses in this study and the depth of the surface layer above the canopy.

The ability to estimate the mixing layer momentum thickness from hd and H (two easily

obtainable parameters) using this relationship simplifies things enormously. Furthermore, two

velocity measurements (to obtain U and U2) allow the estimation of the mean velocity profile,

based on the collapse in Figure 3.6.

4.6 Future work

The results of this study have raised a

Firstly, the propagation of the generated vortices

number of questions that deserve attention.

is of particular interest, as their high velocity
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is as yet unexplained. A flow visualization study would complement the study of Ikeda and

Kanazawa (1996) and go a long way in determining the nature of the streamwise mass

transport associated with the vortices.

Secondly, the scalar fluxes that exist in and above the canopy must be quantified, with

particular attention being paid to comparison with pure mixing layers. In such a study, it is

critical that the generated shear layer be made turbulent (Rehm > 17000, in line with the

estimates of Koochesfahani and Dimotakis (1986)). As the transition from a laminar to a

turbulent mixing layer greatly increases the amount of small scale mixing, it is vital that we

have conditions representative of the field. For example, a rough field estimate of Rehm from

Grizzle et al. (1996) is 2 x 105 , well above the upper limit of the mixing transition; it is

expected that in the majority of cases in the field, the mixing layer would indeed be turbulent.

This is the Reynolds number criterion that should be satisfied in the scaling down of an

experimental model when focusing upon scalar fluxes. It is worth noting, however, that the

effect of the mixing transition on momentum transport and shear layer development is far less

pronounced than the effect on scalar fluxes (Moser and Rogers, 1991), so the work of this

study is certainly not invalidated.

Finally, the growth of mixing layers above real seagrass meadows must be evaluated.

Although it is suspected that the sidewalls of the flume are not responsible for the asymptotic

growth of the generated mixing layers, this must be confirmed by a field study. In horizontal

mixing layers generated along the edges of vegetated areas, the vortices that develop fail to

grow above a certain size, despite the lack of boundary influence (Pasche, E., pers. comm., 25

May 2000). The thickness of the mixing layer (and hence the size of the coherent structures

within it) is expected to strongly regulate vertical fluxes of momentum and scalar quantities in

the water column; consequently, knowledge of the fully-developed mixing layer thickness is

critical.
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Conclusion

Like terrestrial vegetated flows, aquatic flow through submerged vegetation can be

patterned nicely on that of a mixing layer. The vertical non-uniformity of the vegetation drag

creates an inflectional velocity profile, which compares very favorably to hyperbolic tangent

velocity profiles generated in splitter-plate experiments. Analysis of mean velocity and

turbulent statistics confirms the validity of a mixing layer analogy for these vegetated flows,

previously regarded as perturbed bottom boundary layers.

The inflectional profile created by the vegetation results in the development of a vortex

street of Kelvin-Helrnholtz instabilities. The instabilities are strongly three-dimensional, as the

presence of several 'monami channels' indicates. These vortices are responsible for very

efficient vertical transport of streamwise momentum in the mixing layer, as evidenced by the

strong correlation between horizontal and vertical turbulent fluctuations. This correlation is

invariably greater than that typically found in bottom boundary layers. Thus, these structures

dominate the vertical transport of momentum and it can be inferred that they also dominate

vertical scalar fluxes in the flow.

The advection speed of a vortex, greater than the mean velocity of the mixing layer, is

sufficient to cause an instantaneous velocity increase at the top of the canopy as it passes. Thus,

localized regions of forward plant deflection progress smoothly along the canopy. This is

indeed the coherent waving phenomenon known as the monami. The downstream advection of

this vortex street leads to strong, periodic oscillations in streamwise and vertical velocities, the

frequencies of which are invariant over depth and clearly discernible in power spectra. The

monami is not present under all flow conditions, restricted to flows where the velocity at the

top of the canopy is greater than some threshold value. This threshold velocity depends strongly

on flow depth and plant flexibility.
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APPENDIX Al : MATLAB code for calculation of mean and turbulent flow parameters from

ADV data files

time m fname(:,1);
uraw - fname(:,4);
vraw - fname(:,5);
wraw = fname(:,6);

points = length(uraw);

% Correcting for tilt

% al = atan(mean(vraw)/mean(uraw));
% be = atan(mean(wraw)/mean(uraw));

alpha - al;
beta - be;

%910901%%%%%%%%%00 "00%%%%%%%%%%%%%.9'''W %%

ubit = uraw*cos(alpha) + vraw*sin(alpha);
u = (ubit*cos(beta)) + wraw*sin(beta);
v = vraw*cos(alpha) - uraw*sin(alpha);
w = wraw*cos(beta) - uraw*sin(beta);

ubar =
urms -
vbar -
vrms -
wbar =
wrms -

uprime
vprime
wprime

mean (u) ;
std(u) ;
mean (v);
std(v) ;
mean W);
std(w);

- u - ubar;
a v - vbar;
= w - wbar;

RS - cov(uprime,wprime);
correl - RS(2)/(urms * wrms);

clear time uraw vraw wraw alpha beta ubit u v w uprime vprime wprime
clear ubar vbar wbar urms vrms wrms correl RS points
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APPENDIX A2 : MATLAB code for calculation of mean and turbulent flow parameters

from LDV data files

veldataw = fname(:,6);
veldatau = fname(:,5);
timedata = fname(:,3);

totalpoints = length(veldatau);
maf = totalpoints/max(timedata);

% interpolation, avoiding simultaneous data points

time(1) = timedata(l);

for j = 2:totalpoints
if timedata(j) == timedata(j-1)

time(j)= time(j-1)+0.0001;
else

time(j) = timedata(j);
end

end

for i = 1:totalpoints
timeseries(i) - i/msf;
u(i) = interplq(time,veldatau,timeseries(i));
w(i) = interplq(time,veldataw,timeseries(i));

end

u = u(l:length(u)-1);
w = w(1:length(w)-1);

% calculation of statistics

ubar = mean(u);
urms = std(u);
wbar = mean(w);
wrms = std(w);

uprime = u - ubar;
wprime = w - wbar;

RS = cov(uprime,wprime);
correl = RS(2)/(urms * wrms);
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APPENDIX B: MATLAB code for calculation of smoothed spectra

% Calculation of smoothed spectra from ADV data

time = fname(:,1);
u = fname(:,4);
w - fname(:,6);

points - length(u);

urms - std(u);
wrms - std(w);
ubar - mean(u);
wbar = mean(w);

meanfreel = u - ubar;
meanfree2 w w - wbar;

% u OR w ?

velo - meanfreel;

desiredf - 25;

% WINDOW PROPERTIES
MB - 1000;
FB = 3*MB;

9%FOR RESAMPLING ONLY

tote - max(time)*desiredf;

seriestime - (1/desiredf): (1/desiredf) :max(time);

for j - 1:length(seriestime)
velnew(j) = interplq(time,velo,seriestime(j));

end

apoints - length(velnew);

%calculation of autocovariance function

for k = 0:MB+1
bbb - velnew((k+1):apoints);
aaa - velnew(1:(apoints-k));
autocovariance = cov(aaa,bbb);
acca(k+1) = autocovariance(2);
end

autocorrel = acca/(std(velnew)A2);

96 Smoothing the spectrum (Parzen window)

for mu - -2000:2000
if abs(mu) <- (MB/2)
Pwindow(mu+2001) = 1 - 6*(mu/MB)A2 + 6*(abs(mu)/MB)A3;
elseif abs(mu) >= (MB/2) & abs(mu) <= MB
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Pwindow(mu+2001) - 2*(1 -(abs(mu)/MB))A3;
else
Pwindow(mu+2001) = 0;
end
end

% Smoothed spectral estimate

for i = 0:FB
for k = 1:MB-1
insidesum(k) = autocorrel(k+1) * Pwindow(k+2001) * cos(pi*k*i/FB);
finalsum(i+1) = sum(insidesum);
BsmC(i+1) = 2*(autocorrel(1) + (2*finalsum(i+1)));
end
end

vector = 1:FB+1;

for counter = 1:FB+1
fvector(counter) = desiredf*(vector(counter)/(2*FB));
end

f2vector=fvector(1:FB+1);
NB2=BsmC(1:FB+1);

figure
loglog(f2vector,NB2,'--')
grid on
title('Smoothed spectrum of velocity')
xlabel('frequency (Hz)')
ylabel('Normalised Spectral intensity (sA-1)')

clear all
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APPENDIX C: MATLAB code for estimation of vortex velocity

% Two .vel files : fnamel(downstream) & fname2(upstream)

timel = fnamel(:,l);
ul = fname1(:,4);
w1 - fname1(:,6);

time2 = fname2(:,1);
u2 = fname2(:,4);
w2 w fname2(:,6);

record - min(length(timel),length(time2));

u1bar - mean(ul);
u2bar = mean(u2);
ulrms = std(ul);
u2rms = std(u2);

w1bar - mean(wl);
w2bar - mean(w2);
w1rms - std(wl);
w2rms - std(w2);

meanfreel - ul - u1bar;
meanfree2 - u2 - u2bar;
meanfree3 - w1 - w1bar;
meanfree4 w w2 - w2bar;

% calculation of crosscorrelation function

for k - O:record-2
bbb = meanfree1((k+1):record);
aaa - meanfree2(1:(record-k));
covi - cov(aaa,bbb);
covar(k+1) - covi(2);
end

cocorrel - covar/(u1rms*u2rms);

xx 1: (record-200);
timea - xx/25;

figure
plot(timea, cocorrel(l:length(timea)), '*')
axis([O 50 -1 1])
title('')
xlabel('time lag (a)')
ylabel('Crosscorrelation')

clear all
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