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Abstract

The alkali-silica reaction (ASR) is an expansive chemical reaction that occurs between
certain reactive aggregates and the alkaline pore solution surrounding them. In the
presence of water, the volume of ASR products greatly exceeds that of the reactants,
resulting in the generation of internal pressures that can cause substantial damage to civil
engineering structures. This thesis aims to develop a model that employs principles of
chemistry and mechanics to accurately predict the severity of ASR expansion with regard
to material parameters and other relevant variables.

In this first chapter, the mechanisms of ASR expansion are first addressed and elucidated.
Then, in Chapter 2, a literature review of past modeling attempts is presented. Finally, in
Chapter 3, a new chemoplastic model of these mechanisms is formulated. Starting from
energy considerations, this model includes a description of ASR kinetics, that is, an
account of how the chemical reaction proceeds through time. Additionally, the model
provides a link between reaction kinetics and material mechanics that finally can be
extended to a structural level. This aspect of the modeling requires an understanding of
the interaction between internal and external stresses that drive the expansive strain, by
which the magnitude of ASR is measured. The chemoplastic model also incorporates
another phenomenon observable in laboratory tests but not addressed in past literature,
that of stress-induced anisotropy, which essentially states that the uniaxial restraint of
ASR gel growth induces directionally preferential expansion of the gel. In other words, if
the gel is restrained in one direction, it expands primarily in the stress-free directions.

Based on a chemomechanics approach, using the chemoplastic model and available
experimental data, it is shown that the micromechanisms that lead to ASR swelling are
the same as the ones activated during concrete fracture under macroscopic load
application. This combined experimental-theoretical identification confirms both the
model basis (chemoplasticity) and the capacity of the model to actually predict
deleterious effects induced by the alkali-silica reaction in concrete structures. Finally, by
way of conclusion, the model is calibrated with respect to test data obtained in the LCPC
ASR test campaign by Larive, and the calibration is subsequently verified by a
comparison of predicted and experimentally measured expansion curves.

Thesis Supervisor: Franz-Josef Ulm
Title: Assistant Professor, Department of Civil and Environmental Engineering



Acknowledgments

I would like to thank Professor Ulm, my thesis supervisor and advisor, for his guidance,

encouragement, and enthusiasm. He always found the time to assist me with this

research and answer my many questions, and his confidence in me was a great source of

both motivation and inspiration.

I would also like to thank my family for providing me with support in this thesis and

throughout my academic career.

Finally, I want to thank my fiance, Amanda, for her infinite patience and support.



Contents

1 ASR Mechanisms

1.1 Historical Perspective . . . . . . . . . .

1.2 Mechanisms of ASR . . . . . . . . . . .

1.3 Alkalis in Cement . . . . . . . . . . . . .

1.4 Reactive Silica in Aggregates . . . . . .

1.5 Mechanisms of the Alkali-silica Reaction

1.5.1 Attack of the Silicate Network .

1.5.2 Soluted Monomers . . . . . . . .

1.5.3 Mechanisms of Gel Formation .

1.5.4 Mechanisms of Gel Expansion.

2 Modeling of ASR

2.1 Introduction ......

2.2 Mesoscopic Approach

2.2.1 Furusawa et al.

2.2.2 Xi et al. (1999)

(1994) . . . .

6

6

7

8

9

10

12

16

19

23

28

28

32

32

37

4



2.2.3 Bazant and Steffens (1999) . . . . . . . . . . .

2.3 Macroscopic Approach . . . . . . . . . . . . . . . . . .

2.3.1 Chatterji and Christensen (1990) . . . . . . . .

2.3.2 Coussy (1995)-Larive (1998)-Ulm et al. (2000):

2.3.3 Huang and Pietruszczak (1999) . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . -.

. . . . . . . . . .

Chemoelasticity

. . . . . . . . . .

3 ASR Chemoplasticity

3.1 A 1-D Think Model for Chemomechanical Couplings

3.1.1 1-D Chemoelastoplasticity ..............

3.1.2 1-D Chemoplastic Expansion .............

3.2 3-D Chemoplasticity of ASR Expansion .........

3.2.1 Formulation . . . . . . . . . . . . . . . . . . . . .

3.2.2 Stress-Induced Anisotropy of Chemical Expansion

3.2.3 Larive's Stressed Expansion Tests . . . . . . . .

3.2.4 Model Calibration . . . . . . . . . . . . . . . . .

3.3 Verification of the Calibration Process . . . . . . . . . .

4 Conclusions and Perspectives

5

42

47

48

50

57

64

65

65

71

75

75

76

79

83

89

92



Chapter 1

ASR Mechanisms

In this chapter, the topic of ASR expansion is introduced first through a brief history of

research on the phenomenon. Thereafter, based on a review of current literature, the chem-

istry of the reaction is examined. Finally, the mechanisms by which the reaction proceeds

and causes structural damage are elucidated.

1.1 Historical Perspective

Of the three known types of deleterious alkali-aggregate reactions in concrete, the alkali-

silica reaction is the most common. The other reactions, alkali-silicate and alkali-carbonate,

can cause cracking and deterioration of concrete, but these reactions have not been as care-

fully studied and are not fully understood. Since alkali-silica reaction predominates alkali-

aggregate reactions, this particular phenomenon has been examined more closely and is
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better-understood [1]. T.E. Stanton first recognized and described the problem in a 1940

paper, following the observance of excessive expansion and cracking in a number of Califor-

nian structures in throughout the 1920's and 1930's. He attributed the deleterious reaction

to the presence of specific mineral constituents within aggregates combined with a Portland

cement rich in alkalis [2]. Stanton's discovery inspired much research over the next twenty

years, but this work slowed substantially through the 1960's and the early 1970's. Due to

increasing alkali contents in cement, new concrete manufacturing technologies, and the lack

of superior quality aggregates, a resurgent interest in the problem has grown over the last

twenty-five or so years [3]. During this time, a great deal of work has been done on the

subject, and much has been learned.

1.2 Mechanisms of ASR

The ability of the ASR to proceed depends on the presence of three main variables:

1. Available alkalis from the cement clinker or other sources;

2. Reactive forms of silica within the aggregate;

3. Water.

Each of these criteria must be met for the reaction to occur [4]. The mechanism by which

this reaction damages concrete is through the formation of a hydrophilic gel that swells

and creates localized regions of great pressure that can initiate cracks [5]. Individual cracks

tend to interconnect in larger networks in a pattern known as "map cracking" [6]. Since
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the alkali-silica reaction can take ten years or better to develop [1], it may be many years

before macrocracking in a concrete structure is observable. By this time little can be done

to inhibit the onward progression of the reaction. Thus, it is advantageous to understand

the mechanisms and chemistry of ASR, so deleterious occurrences of the reaction can be

anticipated and prevented through judicious choices of materials.

1.3 Alkalis in Cement

The alkali-silica reaction actually takes place between reactive silica and hydroxides. How-

ever, the presence of alkali metals increases the hydroxide (OH-) concentration, thus indi-

rectly driving the so-called alkali-silica reaction [7]. Since the alkalis (namely K+ and Na+)

are only partially incorporated into the hydration products of the cement, they are easily

soluble in pore water [8]. Though the pH of the pore water during hydration is high (12 or

greater), the alkalis dissolved from the cement clinker increase the hydroxide concentration

even more (pH between 13 and 14) [7]. The presence of the alkalis can be traced in part

to the calcination process in which the clinker is produced from raw materials. During this

high-temperature procedure, K+ and Na+ (amongst some other materials) are vaporized due

to their relatively high vapor pressures. While the clinker is slowly transported through

the kiln, the vapor flows and eventually condenses onto the clinker, coating it with alkalis.

Though the alkalis comprise a minor fraction of the resulting material, they ultimately play

a most significant role in the alkali-silica reaction. While some of the alkalis remain on the

surface of the clinker, others are locked within the structure of the clinker. Of those alkalis
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within the hydrating concrete, the ones coating the clinker surface will become available

most quickly. The alkalis locked inside the clinker structure will become available after some

degree of hydration has occurred [9]. The majority of alkalis in the cement are in the form

of sulfates [10].

1.4 Reactive Silica in Aggregates

Determination of which aggregates will be silica-reactive in the field can be a challenging

undertaking. Testing of aggregates begins with a full petrographic examination to determine

the presence of certain reactive constituents. Though a necessary first step, this phase of

aggregate testing may not provide much information, as the process of constituent identi-

fication can be quite arduous [11]. Further testing may provide more helpful data, but in

fact there exists no reliable way of determining an aggregate's reactivity in the field. Many

factors come into play in the characterization of the degree of reactivity. Such morpho-

logical traits as crystallinity and surface area can have great influence on an aggregate's

reactivity to alkalis. In some aggregates, water molecules may substitute for silica within

the framework due to their compatible geometries. This phenomenon effectively weakens

the structural integrity of the aggregate, because the new hydrogen bonds (Si-OH... OH-Si)

are much weaker than the original siloxane bonds (Si-O-Si). Thus, such a substitution tends

to make an aggregate more reactive [9].

Over the years, several ASTM standardized tests in conjunction with field experience have

made it easier to identify the presence of reactive forms of silica. It has been determined
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that only certain forms of silica are notably reactive. Known reactive forms of silica include

amorphous silica, quartz, tridymite, cristobalite, opal, chalcedony, and chert [4]. In general,

two broad categories of reactive silica can be observed: the crystalline polymorphs of silica

such as tridymite and cristobalite as well as the non-crystalline, more disordered forms, which

include opals and glasses. The former materials are more reactive than typical quartz because

of their low-density frameworks. In both classes of reactive aggregate, the susceptibility

to alkali reaction is related to the amount of available sites for hydroxide attack to occur.

While a well-crystallized aggregate may not be very reactive (Fig 1.1(a)), a poorly crystalline

aggregate (Fig 1.1(b)) has more sites exposed to the attacking hydroxide ions. Thus, the

reaction becomes increasingly likely to occur in these aggregates [9].

D. W. Hobbs introduced the concept of a pessimum proportion of aggregate, which is the

percentage of reactive aggregate that leads to maximum expansion when exposed to an

alkaline environment [1]. If the pessimum proportion is exceeded, the alkalis are so well

absorbed by the aggregate that the hydroxide concentration is reduced [10].

1.5 Mechanisms of the Alkali-silica Reaction

To understand the macroscopic effects of the alkali-silica reaction in concrete, it is imperative

to understand the micromechanics of the reaction. Thermodynamic and kinetic processes,

which ultimately lead to a lowering of the chemical potential of the entire system, control the

mechanisms of the reaction on this level. Within the study of ASR, there is much uncertainty

and disagreement as to certain aspects of the process, most of this confusion relating to
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(a) (b) @>e

0 NoorK) OH

Figure 1.1: Diagrammatic representation of alkali attack (a) on well-crystallized and (b) on poorly crystallized

silica [81

the formation of the deleterious gel. Although a number of theories have been forwarded

through the years, it is convenient to place each of these ideas into one of two categories.

In the first category, gel formation is modeled as a topochemical process occurring at the

aggregate-cement interface; and the second model suggests the possibility of ionic transport

through the pore solution with gel formation occurring elsewhere. The two camps disagree

in fundamental ways about the chemistry of the reaction as well as the relative importance

of the particular ions involved. However, certain points are generally agreed upon [12, 30].
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1. The reaction is sensitive to temperature in that its rate is accelerated with temperature

increase.

2. The reaction is sensitive to the relative humidity within the concrete. Moisture is

essential for the reaction to occur, and the magnitude of (and damage caused by) the

reaction increases with the amount of moisture present.

3. The reaction is limited not by the products but by the reactants. This statement is

of great importance, because it suggests that as long as reactants are supplied, the

reaction will continue regardless of how much gel has been formed.

1.5.1 Attack of the Silicate Network

As described by Chatterji [13] the alkali-silica reaction in portland cement concrete occurs in

several stages. The attack of an aggregate's silicate framework is believed to be the first step

in this process. Additionally, it is commonly accepted that aggregate attack is initiated by

the hydroxyl ions that accompany alkali cations in a highly alkaline solution rather than by

the cations themselves. Descriptions of aggregate attack vary somewhat due to the reaction's

dependence on pH in forming the products. This stage of the reaction however is clearly

topochemical in nature, as it occurs entirely at the interface of the aggregate and alkaline

solution [14].

The first requisite of the reaction is a reactive aggregate, having a disordered or poorly

crystallized silica network (Fig 1.2(a)). Such an amorphous structure is more open to attack

by the hydroxide ions of an alkaline pore solution, which is also essential to the reaction.
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(a)

00

Figure 1.2: Schematic drawing of amorphous silica network. (a) Representative sample of network; b)

Simplified version. Note that arrows symbolize siloxane bonds to additional silica atoms, each with three

further siloxane bonds, etc.

This framework is conveniently represented by two silica atoms connected to one another by

a single oxygen atom, each silica atoms further attached to the network by three siloxane

bridges, respectively (Fig 1.2(b)). The six siloxane bonds on the sides form the basis for

repetition of the unit, which can be written as ->Si-O-Si<-. It is assumed that the following

process may occur at arbitrary points within the network, given that the siloxane bridges

are sufficiently exposed to the alkaline solution.
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(a) si Si O
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00

()OSi OH- Si O0

0O

Figure 1.3: Attack of the first siloxane bridge. (a) Approach of hydroxyl ion; (b) Rupture of siloxane bridge

and replacement with silanol bridge.

In certain reactive aggregates immersed in pure water, hydroxyl groups, forming ->Si-OH

silanol bonds, may replace oxygen atoms on the outer surface of the aggregate. This substi-

tution merely has the effect of accelerating the hydroxide attack when exposed to alkaline

solution. This effect having been neglected, the first hydroxyl group ruptures one of the

siloxane bridges connecting the two silicon atoms (Fig 1.3 (a) and (b)). This hydroxide ion

replaces the siloxane bond with a silanol bond, and the unit is essentially split in half.
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The process thus far can be represented stoichiometrically as [13]:

Si-O-Si +- +OH~ : Si-0- + OH-Si <- (1.1)

Negative charges are balanced by the alkaline cations present in solution (Na+ or K+). Since

both halves are subsequently attacked in a similar fashion, only the right half will be further

considered (OH-Si--). Another hydroxide ion may (or may not) react with the silanol bond,

replacing the bonded hydroxyl group with a single oxygen atom (Fig 1.4 (a) and (b)).

This reaction is represented by:

OH-Si -+- OH O- -S<--+H 20 (1.2)

In essence, this reaction is the same as that which occurs when the hydroxylated surface silica

mentioned earlier undergoes hydroxyl attack, except that it would precede the previously

given reaction in such cases.

At this point the silica is still attached to the network by three siloxane bridges, and the

disintegration of the second and third bridges proceeds in much the same way as the first

(Fig 1.5 (a) and (b)).

Assuming that silanol bonds remain following the last two reactions, the breakage of the

fourth and last siloxane bond (Fig 1.6 (a) and (b)) culminates in the release of the monomer

SiO 4 H3 -.

The chemical representation as such is[15]:

OH- - SiO 3 H2 -> SiO 4 H3 (1.3)
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(a)

(b) O2

Si O0

Figure 1.4: Further reaction of ruptured siloxane bond. (a) Approach of hydroxyl ion; (b) Replacement of

hydroxyl group with oxygen and release of water.

1.5.2 Soluted Monomers

In reality, the monomer that is released depends on how many of the four remaining bonds

contain a hydroxyl group, and the number of hydroxyl groups depends in a complex way

on the pH of the surrounding solution. Consequently, one must examine the solubility

products of the possible species. Dron, Brivot and colleagues [15, 16, 17] have approached this

problem by investigating the equilibrium of surface hydrates of silica and the possible soluted
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(a) ''

Si O

OOOOH-

(b) Si O

OH-

Figure 1.5: Rupture of the second and third siloxane bridges. (a) Approach of hydroxyl ions; (b) Rupture

of siloxane bridges and replacement with silanol bridges.

species: SiO 4 H4 , SiO 4 H3-, and SiO 4H2
2 . Two reactions can be written to characterize the

possibilities [18, 19]:

SiO 4H4 e SiO 4 H3 + H+ (1.4)

SiO 4H- - SiO 4 H2- + H+ (1.5)

For the first reaction pK1 = 9.8, and for the second pK 2 = 11.8. Concentrations of each of

the species present can then be determined based on these equilibrium constants:

[SiO 4 H3-][H+] =1-9-8 (1.6)
[SiO 4 H4 1
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(a)

Si O

OH

(b) Si OH-

Figure 1.6: Rupture of the last siloxane bridges. (a) Approach of hydroxyl ion; (b) Rupture of siloxane

bridges, replacement with silanol bond, and release of monomer.

[Si0 4 H2-][H+) -11.8 (1.7)
[Si0 4 H3

Thus, if the pH (log[H+]) and the concentration of one species are known, the concentration

of the remaining species can be easily computed with these equations. Clearly, the concen-

trations present in solution are dependent on the acidity (or alkalinity) of the solution itself.

The reactions detailed above (as well as those described in the previous section) have been

simplified for clarity. It should also be noted that the anions in solution are balanced by

cations, such as sodium and calcium.
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1.5.3 Mechanisms of Gel Formation

Much of the uncertainty mentioned previously relates to the mechanisms by which the dele-

terious gel is formed within concrete. In the following sections, the main points of the two

primary theoretical camps will be investigated. Although even those within a certain camp

may disagree, no distinction between mechanisms appears to be more substantial than that

between these two schools of thought.

Recently, researchers have begun to agree that calcium ions, Ca++, play an important role

in the alkali-silica reaction. The importance of this ion may help explain why evidence of

alkali-silica gel has been observed at locations removed from reactive aggregates. Chatterji

[13] proposes that the diffusion of silica to other locations is controlled by the concentration

of Ca++ locally. If the concentration of Ca++ is low, the tendency for silica to diffuse is

increased, thus implying that the reaction requires the presence of Ca++. These ions (having

established in the pore solution equilibrium with Portlandite cystals, Ca(OH) 2) may provide

the supply of hydroxide that is eventually taken up the alkali ions. West and Sibbick [20]

give a simplified example of this type of interaction as follows:

Ca(OH) 2 + 2NaCl > 2NaOH + CaCl2  (1.8)

From here, the alkalis apparently begin the hydroxide attack of the silica bonds. The exact

nature of calcium's role in ASR is still the subject of debate. However, an understanding

of this process may provide the key to determining which of the following mechanisms best

describes the reaction.
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'Ibpochemical Mechanism

While there is little disagreement that the reaction begins with the topochemical attack of

hydroxyl on the siliceous framework of aggregates, the location of the subsequent formation

of the deleterious gel is the source of some emerging controversy. The perception that

the alkali-silica reaction is primarily topochemical in nature is so common in past research

literature that it is practically assumed. Many of the most prominent papers on the subject

of ASR have made this assumption that gel formation and expansion always occurs at the

aggregate-cement interface [2, 18, 21, 22].

Powers and Steinour [21] describe the surface penetration of the aggregate by the caustic,

alkaline pore solution, further noting that this penetration may be visually observed as a

"reaction rim". They go on to specify the reaction product as being solid in the absence of

water but becoming more fluid with the addition of sufficient water. Following the caustic

attack of the siloxane bonds detailed above, molecules are released in solution, possibly in

the form of orthosilicic acid, SiO 4 H4 . As noted earlier the exact species of monomer is highly

dependent on the local pH of the surrounding solution. The molecules freed by the hydroxyl

attack then condense to form colloidal particles or a silica sol. Then, the silica sol may

condense further, releasing more water and resulting in the formation of new siloxane bonds.

Eventually, this ongoing process culminates in the transformation of the silica sol to a silica

gel, which is initially weak and brittle but becomes stronger with more siloxane formation.

Even in 1955 [21], it was recognized that calcium ions played some part in the reaction, but

excess concentrations of calcium were believed to produce a hard, non-expansive precipitate
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(C-S-H) rather than the silica gel [23]. Powers and Steinour have postulated that a zone

of this precipitate builds at the surface of silica gel and impedes the diffusion of additional

calcium ions into the gel. Such a scenario would lay the groundwork for the osmosis or imbi-

bition theories of expansion to be detailed later. Additionally, this explanation is somewhat

similar to the one described in the trans-solution mechanism, although some believers in the

topochemical process tend to downplay the importance of calcium.

Trans-solution Mechanism

The trans-solution or through-solution mechanism emphasis the role of the pore solution

in the production of the damaging gel. Whereas the topochemical mechanism is controlled

in a kinetic sense by the diffusion of the alkali pore solution into the siliceous aggregate,

the trans-solution mechanism is controlled by the dissolution of the aggregate into the pore

solution [24]. Dron and Brivot are prominent proponents of this theory and have provided

a detailed account of the stages of ASR in several papers [15, 16, 17, 25]. The following

descriptions will draw heavily from their work.

Released by the alkali attack of the aggregate's silica lattice, the monomer species (e.g.

Si04H 4 , SiO 4 H3 -) tend to accumulate at the silica surface forming a transitory "silica gel".

This particular gel is not the deleterious gel that forms later but instead is a more soluble,

metastable form. The monomers comprising this ionized gel are negatively charged, thus

attracting the alkaline cations from the surrounding solution. Because the gel is soluble,

the solution becomes locally saturated with monomeric silicate ions and cations. The local

state of saturation creates a diffusion gradient between this area and locations of lower ion
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concentrations. Thus, the anionic silicate ions and the cationic alkali ions tend to diffuse

away from the silica surface.

The other ingredient essential to gel formation is the calcium ion (Ca++), although the

significance of this ion is a subject of debate amongst the two mechanistic camps. The

film of monomer species that forms at the aggregate surface has been found impenetrable

to calcium cations. Clearly, the harmful C-K-S-H (or C-Na-S-H) gel cannot form at this

surface if calcium is not allowed into the soluble gel[15]. Furthermore, calcium plays a very

important role in determining where exactly the damaging gel will form.

The source of calcium in concrete is the Portlandite crystals, Ca(OH) 2, which is obviously a

vast resource. However, in highly alkaline solutions the dissolution of portlandite is greatly

inhibited due to its solubility product:

For the dissolution reaction:

Ca(OH)2 <* Ca++ + 20H~ (1.9)

[Ca++][OH-]2 = K. (1.10)

where K, = 10-4.5.

This relationship has the effect of determining the concentration of calcium ions present when

portlandite is partially dissociated in solution. Since the solubility product is a constant,

an increase in the alkalinity (hydroxyl concentration) of the solution reduces the quantity

of calcium ions dissolved in solution (the common ion effect). Thus, in a highly alkaline

solution the calcium ion concentration is very low, and locally the solution becomes rapidly

saturated. Again, a diffusion gradient is achieved in which calcium ions diffuse into the pore
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solutions away from saturated zones.

At this point the monomeric anions, the alkaline cations, and the calcium ions are all trans-

ported in solution from their respective saturated sources to lower concentration sinks. When

the silicates encounter the calcium, provided the local pore solution is rich in alkaline cations

and hydroxyl anions, the insoluble compound C-K-S-H (or C-Na-S-H) precipitates. This

compound attracts many of the local ions due to its insolubility and effectively reduces local

concentrations of calcium and silicate ions, thus maintaining the diffusion gradient for these

ions. The compound rapidly coagulates, becoming a gel. Though gel formation tends to oc-

cur near the silica sources, where this formation occurs ultimately depends on the presence

and location of calcium.

Should the insoluble gel happen to form between respective ion sources, the gel may act as a

semipermeable membrane, limiting (not eliminating) the diffusion of the ions. Consequently,

the side of the gel having the lower ionic flow becomes the precipitation front, and the gel

continues to build on this side [16].

1.5.4 Mechanisms of Gel Expansion

The reaction of certain forms of silica from aggregates with hydroxide ions from the pore

solution culminates in the formation of a gel that induces stresses and subsequently cracking

in concrete structures. In a general sense, there exist at least five hypotheses to explain

the considerable pressure generated by the gel: simple enlargement, unidirectional pressure,

enlargement of the viscous gel by absorption, osmotic cell pressure, and imbibition [26].
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These five hypotheses are by no means completely distinct from one another, and certainly,

they may not be mutually exclusive.

Simple enlargement assumes the formation of the gel within the aggregate itself, which would

preclude the possibility of a trans-solution mechanism. Apparently, this theory supposes that

the hydroxyl attack of the aggregate breaks up the siliceous framework to an extent that

allows the alkaline pore solution to infiltrate the aggregate and continue the attack within.

Again assuming that gel formation occurs at the site of the attack, the gel grows within the

aggregate causing the aggregate itself to become enlarged. Given limited space to grow, the

aggregate may then induce expansive pressures (and possible cracking) on its surroundings.

According to the unidirectional pressure hypothesis, the gel is damaging primarily in the

early stages of its formation when it is still somewhat rigid.1 At this time the gel is able to

exert a unidirectional stress on its surroundings, and, in this way, causes detriment to the

concrete. Although a plausible explanation, it seems that the gel, even in the more fluid

stages of its development, is capable of exerting pressure over a long period.

Hobbs [1] describes gel enlargement (Fig 1.7) or the absorption theory as a four-stage process

resulting in concrete cracking. In the first stage, the gel forms at the aggregate-cement

interface, and its growth creates localized internal stresses. Due to the increasing internal

stresses, microcracking begins in the second stage of the process. In the third stage the

gel, having absorbed so much water, becomes less viscous and flows into the newly formed

microcracks. Finally, in the fourth stage the continued expansion of the gel within the

1Strictly speaking, the phrase "unidirectional pressure" is a contradiction in terms, as pressure is omnidirectional by defini-

tion. Thus, the hypothesis is assumed to refer to a unidirectional stress rather than a pressure.
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Figure 1.7: Idealization of the absorption theory of gel expansion [1].

microcracks induces more stresses, causing existing cracks to grow and new cracks to form.

Whether cracks will form as a result of gel expansion is a function of several variables, such

as composition, concentration, and growth rate of the gel.

In the osmotic cell pressure theory, expansion of the alkali-silica gel is related to the difference

in chemical potentials inside and outside the gel. According to Diamond [27], the pore

solution outside the gel has a higher free energy than that inside, and therefore water flows

into the gel.

In a technical sense, osmotic pressure is generated when two solutions of differing ionic
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concentration are separated by a semipermeable membrane [21]. Initially it was postulated

that cement paste could act as the membrane separating the pore solution from the gel.

Critics of the concept have argued that once cracking has begun, the cement is no longer

a membrane, yet stresses have been known to increase even after the start of cracking [1].

Regardless of what acts as the membrane, alkalis and hydroxides are permitted to diffuse

into the gel while certain silicate reaction products are not allowed to pass through the

membrane. In this way, a pressure gradient across the membrane is achieved, inducing the

gel to expand [6].

Dent-Glasser has made the point that this process does not occur by osmotic pressure per

se, but instead is achieved by imbibition [26]. The mechanism of imbibition is closely related

to that of osmotic pressure in that a lowering of free energy in the system drives both.

Imbibition, however, need not involve a semipermeable membrane at all. Although cement

paste is capable of acting as a membrane, it is not necessary to separate the outside pore

solution and the gel, since the gel itself is insoluble. The insolubility of the gel in itself

provides the required barrier between the interior of the gel and the solution. Additionally,

the liquid of the pore solution is soluble in the gel, and its chemical potential is lowered by

this dissolution. That the gel produced in ASR is a polyelectrolyte consisting of negatively

charged silicates and alkaline and calcium cations further enhances the imbibition process,

since hydration of the charge-bearing gel also lowers the free energy of the liquid.

Even within the frameworks of these theories, there are differing opinions of what actually

transpires during the expansion of the gel. The mechanisms described above are simply

representative of what is to be found in the literature. In some cases distinctions seem to
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be drawn between certain mechanisms by some authors, while others claim that these same

methods are virtually synonymous. For example, Diamond [27] speaks of the difference

between osmotic and imbibition pressure as being "purely formal".

27



Chapter 2

Modeling of ASR

The possible micromechanisms of ASR expansion having now been described, the next step

in this investigation is the development of a mathematical model that characterizes the

observable macroscopic behavior of an ASR-subjected structure. In this chapter, the review

of ASR literature continues with the examination of past attempts to model the phenomenon

from the perspective mechanics. As will be seen, one of two broad approaches is typically

enlisted in these models: either a mesoscopic or a macroscopic framework.

2.1 Introduction

Though the alkali-silica reaction was identified over sixty years ago, little work has been done

to generate a numerical model that describes the effects of ASR progression within a struc-
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ture. Moreover, the work that has been done has been fairly empirical in its approach. As

such, it does not always examine the interaction between the ASR chemical micromechanisms

and the material mechanisms that culminate in macroscopically observable deformation. In

fact, most modeling of the past has involved the application of imposed thermal loads in

some numerical simulation to reproduce structural deformations equivalent to those caused

by ASR [28]. Such modeling requires a trial-and-error approach essentially neglecting the

relationship between thermochemical conditions and structural behavior. Consequently, this

type of approach has met with minimal success.

The history of this past experience exposes the need to develop numerical models that

relate observed structural behavior to the physical and chemical factors that influence the

course and extent of ASR. The first step in the process of developing such rational models

is to examine actual data regarding the reaction. A good way to begin is to first look at

the case of unrestrained ASR expansion, that is the case in which ASR expansion is not

inhibited by confining stresses or pressures other than those of the concrete skeleton itself.

An idealized plot of expansion versus time is s-shaped for the stress-free case (Fig 2.1). The

plot consists of three fairly well-developed regimes, which can be identified as periods of

initiation, development, and rest [29].

Among the other remarkable observations that can be made of experimental ASR data is the

dependence of the reaction on both temperature and water content. Given the overview of

the previous chapter, clearly these parameters should enter the formulation of a robust ASR

model, as they affect both kinetics and magnitude. It should also be noted that ASR cracking

is by definition an irreversible process. That said, the majority of the following models take
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Figure 2.1: A typical plot of stress-free ASR expansion consisting of regions of I) initiation II) development

and III) rest

a first order, elastic approach that does not account for macroscopic expansion beyond

the elastic regime of the concrete. The last model, however, does extend to a plasticity

formulation.

A final aspect of ASR expansion that is not explicitly addressed in any of the models is the

issue of stress-induced anisotropy, the effect of uniaxial or biaxial restraint on the volumetric

expansion of the gel. This phenomenon was brought to light by Catherine Larive in her

PhD test campaign, which shows this anisotropy in dramatic fashion [30]: Whereas pure

volumetric expansion is nearly constant for any case of uniaxially applied stress, the strain

in the direction of the stress is always reduced, while the strain is increased in the stress-free

directions (Fig 2.2). This observation will also be modeled in the next chapter.
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Figure 2.2: Anisotropy of expansion under applied compressive stress [301

In the following sections a number attempts at mechanism-based modeling that have ap-

peared in recent literature will be examined. The aim in presenting these models is to

explore the issues of ASR research previously addressed in the literature, as well as to eluci-

date the need for coherent, mathematical depictions of both the kinetics and the magnitude

of this deleterious phenomenon. For the purposes of this thesis, each of these models has been

placed into one of two categories that define the modeling scale: the mesoscopic approach

and the macroscopic approach.
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2.2 Mesoscopic Approach

The term mesoscopic is used here to describe a modeling approach that examines a material

at the largest scale at which it is still recognizable as heterogeneous in composition. The

use of this definition implicitly requires that terms such as homogeneous and heterogeneous

be defined for the particular application. For the relevant case of ASR and concrete, this

scale is the one of the concrete aggregate. Such an approach involves the analysis of a single

representative aggregate particle and its immediate surroundings.

2.2.1 Furusawa et al. (1994)

The mesoscopic model presented by Furusawa et al. in 1994 [31] aims to explain the macro-

scopic expansion of mortar bars by examining first a porous, reactive aggregate exposed to

a highly alkaline pore solution. As such, the model emphasizes the dependence of expansion

on the diffusion of ions into the aggregate and the ability of the aggregate to accommodate

the subsequent increase in volume of the reaction products. To the author's knowledge, this

model is the first to employ such a mechanistic approach to the problem of ASR, and it

produces fairly accurate values as compared to experimental data.

This mesoscopic model has been developed at the scale of the aggregate. Accordingly, a

representative sample of concrete is envisioned to contain many aggregates of some equivalent

radius, R,. The behavior of the concrete on a macroscopic scale is essentially determined by

summing the effects of the individual aggregates within. Thus, the model considers only a

single aggregate and a small amount of space surrounding it. The qualitative explanation of
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the initiation regime of the s-shaped curve is that this period represents the time in which

the expansion of the ASR reaction product is accommodated by the available aggregate pore

space.

Several additional key assumptions have been made in the development of the model that

greatly simplify mathematical manipulations:

(1) Since the consumption of hydroxide occurs at a much greater rate than

its diffusion, diffusion controls the variation of hydroxide concentration with

time.

(2) There exists a porous zone at the periphery of an aggregate that is accom-

modates reaction products and becomes the reaction product layer.

(3) The capacity of an aggregate to accommodate reaction products is propor-

tional to its surface area.

Clearly, the above assumptions are derived from the larger assumption of a topochemical

mechanism, as discussed previously. Most of the following derivation is dependent on this

framework. The first assumption was directly employed with Fick's law to obtain the follow-

ing mass balance from diffusion theory, which gives the variation of hydroxide concentration

with time:

OC OC(
= V - (DVC) + (2.1)

where Da is the diffusion coefficient, and accounts for the consumption of hydroxides

(OH-) by ASR.

Assuming a uniform and small reacted layer with regard to the size of the aggregate and
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assuming the aggregate is comprised completely of reactive silica, the authors then obtained

the following relation:

dx Co(2.2)
d7 x

where x represents the thickness of the reaction layer, k is apparent diffusion coefficient of

hydroxide into the aggregate, and Co is the hydroxide concentration at the aggregate-cement

matrix interface.

The authors additionally found that k depended on temperature through Arrhenius' equa-

tion:

k = Ae- E|(R9 T) (2.3)

where A, E, R 9 , and T are the frequency factor, the activation energy, the gas constant, and

temperature, respectively. The values of A and E are constants which depend on the par-

ticular aggregate and can be determined experimentally. Typical values for these constants

are E = 15 kcal/mol and A = 9 kcal/mol.

If equation (2.2) is integrated, one obtains:

x = (2kCot)0 -5  (2.4)

Though the progression from (2.1) to (2.4) is not made more explicit in the literature,

it appears that the derivation is that of a 1-D semi-infinite, half-space diffusion problem.

Indeed, the well-known, dimensionless solution to this problem closely resembles (2.4). Upon

rearranging this equation, the dimensionless Boltzmann variable is obtained:

X (2.5)
VYko~t
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Figure 2.3: Definition of the reaction ratio; after [31]

However, this self-similar aspect of the dissolution process is not pursued by the authors. In

return, the progress of the reaction is monitored by the reaction ratio (Fig. 2.3), which is

defined as the volume of reacted aggregate per total volume of aggregate of radius R,:

ai = 3I~('-) 1 - (1 - x/R)3 (2.6)
Ri

The volume of reaction products per volume of concrete can then be obtained:

Vt = V.Eai3 (2.7)

where V is the volume of reactive aggregates per volume of concrete and a3 is the volume

fraction of aggregates having an equivalent radius RX. From this result the molar amount of

reaction products per volume of concrete, Pt, can be directly obtained:

Pt = VtP./Msi (2.8)
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where pa is the specific gravity of the aggregate, and MSi=60.08 g/mol is the molecular

weight of silica.

Next the value of Co can finally be obtained:

C0 = (Cini - CunitW3E - PtRS)/Wf (2.9)

where Cunit is the total amount of hydroxides initially consumed per unit surface of aggregate,

RS is the alkali-to-silica ratio of the reaction products, and Wf is the total free water content.

Cjnj is the initial water soluble alkali content, and its value is calculated from the total alkali

content and the unit cement content, assuming that 50 percent of the total alkalis are water

soluble.

Expansion does not occur until the volume of the porous zone is too small to accommodate

the volume of the growing reaction products. This can be expressed by:

E=B< P - Pabs > (2.10)

where < x >= I(x + xj), e is the volume expansion, B is an experimentally determined

constant, Pt is the amount of reaction product formed, and Pabs is the capacity of the porous

zone, which is proportional to the overall surface area of the aggregate.

Equations (2.4) through (2.10) give all the relevant parameters for a given time-step. The

values of these parameters can be computed with respect to time by repeating the compu-

tation iteratively. At t = 0, Co is set to Cjnj.

Some important issues of ASR modeling addressed here include the dependence of the re-

action on water content and temperature, which both enter the kinetic law given by (2.2).
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What appears to be a limitation of the model is that the volume of the reaction products

(gel) is assumed to be equal to the volume of the reacted aggregates. Such an assumption

does not account for the volume increase of reaction products with respect to the reactants.

ASR is generally considered to be a structural problem precisely because volume of the

product gel exceeds that of the reactants (i.e. alkali, silica, water). Expansion results from

the products requiring more space than is available in adjacent pore space. Without the

volume increase, expansion could simply not occur. The model could easily be modified to

incorporate this increase in the volume of the reaction products.

This criticism aside, this model does present a logical argument for the description of ASR-

kinetics. From a micromechanics perspective, clearly the overriding assumption here is that

diffusion controls the progress of the reaction with respect to time. With regard to the

magnitude of expansion, the model does not specifically consider such concrete material

parameters such as strength and modulus. Instead, these properties are included in the

empirical constant, B in (2.10), which is not further developed.

2.2.2 Xi et al. (1999)

The model of Xi et al. (1999) [32] aims at estimating macroscopically observable ASR

strain by means of a micromechanics approach operating at the mesoscopic level. In this

regard, it extends many of the same concepts addressed in the previous and adds to them.

By the same logic employed in the previous model, the kinetics of ASR is assumed to be

governed by the diffusion of alkali and hydroxide ion into the aggregate. Additionally, based
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on the assumption that gel then migrates from the cement-aggregate interface out into

the porous cement matrix, a second process-that of gel permeation-is also modeled. This

phenomenon, which controls the growth of the product layer, is described through concepts

of fluid mechanics. Finally, these two opposing processes are related and incorporated into

a framework of composite theory.

In this model, the cement-aggregate system is envisioned as a composite material that con-

sists of a spherical aggregate center surrounded by a cementitious layer of uniform thickness.

With this two-phase system in hand, a simplified equation (which is analogous to that of

composite thermal expansion) for the magnitude of macroscopic ASR expansion can be

written1 :

KasaVa(3Km + 4Gm) (2.11)
Km(3Ka + 4Gm) - 4VaGm(Km - Ka)

where Ka and Km are the bulk moduli of the aggregates and the concrete matrix, respectively;

Ga and Gm are the shear moduli of the aggregates and the concrete matrix, respectively; and

ea is the expansion of the aggregate. The quantity of interest in equation (2.11) is ea, is

defined as:

E" = E4Ej (2.12)

where $j is the volume fraction of aggregates with equivalent radius, R,, and ej is the ASR

expansive strain of aggregates also of radius, R,.

To compute ei, the two processes of ion diffusion and gel permeation are next considered.

First the ion diffusion of alkalis and hydroxides is represented by the mass balance equation

1This result is derived from results obtained by Hashin and Shtrikman (1962) who employed variational principles in the

computation of bounds for the effective magnetic permeability of multiple-phase homogeneous and isotropic materials [33].
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with Fick's law as the conduction law. Similar to (2.1), this mass balance reads:

ac
Bioa = V (DaVC) (2.13)at

However, in contrast to (2.1), a factor Bion is included to represent the binding capacity

of the aggregate. Although a similar form of this equation appeared in the last model, its

solution is approached somewhat differently in the present model2 . Based on the assumption

of low aggregate angularity, the aggregate-cement composite is approximated as a perfect

sphere, and a spherical coordinate system is employed. This coordinate system eases the

analytical solution to the differential equation, which is presented in the form:

2RCo (-1)" -Kn 2 r2 t .n nrr (2.14)
C(r, t) = Co + 7r n exP 2 sm--,2.4

nR

where K = Da/Bion. The solution was derived using the following boundary conditions: at

t =0, C =-0; at r = R,, C=Co; and C =0 at r= 0.

The minimum hydroxide concentration required for ASR to occur can be determined experi-

mentally, and this value is then used in (2.14) to solve for the radial distance from the center

of the sphere at which ASR is first initiated. Subsequently, the depth of ASR, x = Rt - r, is

computed.

In second step, a quantity similar to the reaction ratio of the previous model, the reacted

volume of aggregate, VRi, is calculated. With ASR depth x, VRi is obtained from the spherical

geometry in the form:

VR3 [ R]- (1 - (47rR ) (2.15)

2 Equation (2.13) can be derived from (2.1) by assuming an equilibrium relation between C, and C, i.e. C, = Cc(C). Then,

ac cBi,0 . = 1 + -- accounts for the binding capacity, which controls the variation for free hydroxide ions.
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Since the total reacted volume of one aggregate has now been found, the formula is extended

to the rest of aggregates in the form:

VR VaqfjVRi (2.16)

Finally, the total volume of gel produced is found by a ratio relating gel volume to total

reacted aggregate volume:

Vge1 = VR (2.17)

where r > 1 is the reacted aggregate volume; this ratio 17 may depend on age t, but this

dependency is not explicitly given.

The volume of gel having now been established, the gel permeation aspect of the model can

be presented. Essentially, a fluid mechanics argument is employed to this end, considering

the gel to be a viscous fluid forced into the cement paste pores by building pressure within

the aggregate. Accordingly, the gel permeation of the viscous gel is described by Darcy's

law:

&Cge - 17 (2.18)
at ?gel I

where C,,e is the concentration of gel in the cement pore, gel is the gel's viscosity, Kgel is the

permeability of the cement paste to the gel, and P is the pressure generated at the cement-

aggregate interface. The solution to this differential equation is complicated by coupling

between Cgei and P. Thus, these parameters, as well as temperature T, are now related by

an equation derived in ASTM C1260. For a constant temperature (80CC), this equation is

expressed as follows:

C
Cgei = P (2.19)

ft
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where C, is the porosity of the interfacial cement paste, and ft is the tensile strength of

the paste. This form is obtained by the assumption that the gel has saturated the pores of

the cement paste, giving Cgel = Cp. Finally, equation (2.18) is solved with the aid of three

boundary conditions. Initially (t = 0), Cgel = 0. For any time t, C9e1 = -P(t) at the cement-

aggregate interface, and Cge ~ 0 at the average half-distance between two aggregates, Rif.

With these initial boundary conditions and (2.19) in hand, the analytical solution of (2.18)

is obtained:

20 -un [ 12t n r(r - Ri) -nv1rR vn 2  -T2A
&gei(r) 0=- 2_ (R sin~r~ ]:?f R,) (Pi- R, (Ri-Rif )'PA

C(7(f t),) =: exp R )2sin exp )A

(2.20)

where v = Kgei /r7ge. This equation is also coupled due to the dependence of P on time and

must be solved numerically.

Lastly, the total volume of surrounding an average-sized aggregate at any time t is given by:

1R5V , R 4Kr 2Cgeldr (2.21)

and the total volume of gel absorbed in the pore of the aggregate is:

Vg =VaqiVpgi (2.22)

The expansive strain resulting form one aggregate can be expressed directly:

< Vci - V > (2.23)
p7 iVa

where < x >= I(x + lxi). Essentially, the numerator of this equation expresses that volumetric

expansion results when the aggregate pore space can no longer accommodate the growing

gel.
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Whereas it was not apparent in the model of Furusawa at al. (1994), the increase in volume

resulting from gel formation is made clear in this model. Here the treatment of ASR kinetics

is similar to that of the previous model, the notion of diffusion controlling the reaction again

providing the key assumption. Under the apparent additional assumption of complete water

saturation and constant temperature, absent here is any description of reaction dependence

on water content and temperature. The model of gel permeation introduced here also sug-

gests the perspective that the gel is fluid-like as it moves from the aggregate out into the

cement pore space.

2.2.3 Bazant and Steffens (1999)

This last mesoscopic ASR model [14] aims to describe the kinetics underlying observable

ASR expansion without examining the structural effects of the reaction. As in the previous

two models, the aggregates are assumed to be perfectly spherical and composed entirely of

reactive silica. Rather than examining a single aggregate embedded in an infinite medium

of cement, this model considers a representative cube of concrete containing one spherical

aggregate (Fig 2.4).

For the representative cube, the following relation holds concerning the mass of the silica:

3 rD 3  
(2.24)6

where , is the mass of reactive silica per unit volume of concrete (kg/m 3) and , is the mass

density of reactive silica (kg/m 3); D and s are the length dimensions of the model (Fig. 2.4).

As with the previous models, it is assumed here that the rate of diffusion through the gel
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Figure 2.4: Representative cube containing a single aggregate; after [141

product into the aggregate is very slow compared to the rate of silica consumption at the

aggregate surface. Hence, a relation governing the diffusion is required, and again Fick's law

is used to this end. This model clearly distinguishes between the formation of gel and its

subsequent expansion through the uptake of water. It is noted that the mere production of

the gel is not an expansive process in itself. Thus, the first part of the derivation leads to

the mass of gel produced per volume of concrete before expansion occurs.

Because the topochemical attack of the reactive silica is essentially immediate, it is postulated

that the formation of a gel layer around the aggregate is nearly instaneous. It follows that

further reaction is hindered by the gel layer surrounding the aggregate, and the alkaline pore

solution must diffuse through this (growing) layer. The shape of the gel layer is approximated
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as a spherical shell, and the radial flux of solution into the gel is given by Fick's law:

w. = -aV(w (2.25)

where ww is the flux vector of water out of a given volume Q containing the reaction front,

a, is the permeability (treated here as an apparent diffusivity coefficient by the authors) of

the gel to water in (m2 /s) and , is the water concentration of the gel, which varies radially.

Mass conservation dictates that:

+ V- w =0 (2.26)

Combining the two equations and assuming constant permeability gives:

-a,V2 , = 0 (2.27)

As a consequence of the slow diffusion of solution through the gel, the radial profile of , is

assumed to be of a steady state. Thus, the following Poisson differential equation holds for

spherical coordinates:

v2  Lx [2_L (X2 )= 0 (2.28)

Integrating (2.28) gives:

wF (2.29)

where w is pore water concentration outside of gel layer (kg/m 3) and:

(g) - 12(x/D)4 - 16(x/D)3(z/D) + 16(z/D) 4  <X<(2.30)
D / 3(x/D)2 - 8(x/D)2(z/D) + 16(x/D)2(z/D)4 D - D - 2)

As can be seen in (Fig 2.2), x represents the radial coordinate of the spherical reference

system, and x = z gives the position of the reaction front. Next, the authors implicitly invoke

the Rankine-Hugoniot condition of mass balance for water at the surface of discontinuity
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existing at the reaction front; this conditions reads:

[wW - rp,VI - n = 0 (2.31)

where rg, is the amount of water present at the reaction front, r is the stoichiometric con-

version ratio specifying the fraction of moles of water to moles of silica, Q, is mass density of

reactive silica, and V is the velocity of the front in the normal direction n. Indeed, substi-

tution of Fick's law (2.25) across the discontinuity into the Rankine-Hugoniot formulation

(2.31) gives the jump condition at the discontinuity surface, presented by the authors in the

form:

dz 0og,re.- + a, - 0 (2.32)
dtOx

Now solving for the rate of reaction front movement and plugging (2.29) into (2.32) gives:

dz 2a, a x
-~ = -xF (2.33)

dt rgD [Ox D - (.

Assuming a mole of pre-swelling gel formed per mole of silica dissolved, the mass of pre-

swelling gel is given by:

47r D 3 m ) 0g 1 (.4~(g -z3)psn 3 (2.34)
3 (8 _m, s3

where m. is the molar mass of gel, and m, is the molar mass of silica. The gel becomes

expansive through the imbibition of water and can be accommodated to a certain extent by

space in the vicinity of the aggregate. In addition to the capillary pore space within adjacent

cement paste, there is a highly porous interstitial layer of cement around the aggregate

that can contain gel. Any amount of gel beyond the capacity of this space will induce

stresses in the surrounding cement paste. This model focuses on the swelling kinetics without

considering the effects of expansion on the surrounding concrete matrix. The growth of the
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gel is assumed here to be independent of its initial formation and to occur only through the

imbibition of water. The form of this volumetric growth is given as:

Wi
tr(e9 ) (2.35)

where tr(e,) is the volumetric strain of the gel, wi is the mass of water imbibed by the gel,

and g, is the density of water. In other words, the volume increase of the gel is equal only

to the volume of the water imbibed. The evolution of the imbibition process is described in

a discrete micro-diffusion rate equation:

wi = H2A (2.36)

where A, is the reaction affinity, ri is the imbibition halftime, a time constant that reflects

the ability of the porous layer to accommodate water, and HO is a constant that represents

the fact that the thickness of the interstitial layer around the aggregate cannot exceed the

space available in the representative cube.

Based on a set of simplifying assumptions, which will not be detailed here, an approximate

form for the affinity is developed:

Ai = n(p)m(p) g - wi (2.37)

where the empirical functions m(p) and n(h) represent the dependence of the affinity on the

internal pressure of the gel and the relative pore humidity, respectively.

The solution of equation (2.36), which can be integrated numerically, yields the solution to

equation (2.35), which gives the volume increase of the gel. Again, the goal of this model

is a mathematical description of the kinetics of ASR, not the structural consequences of
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the expansion. Some of the theory behind the model extends the work presented in the

previous two models, particularly the assumptions about diffusion. However, some new

ground covered here would include the distinction between gel formation and expansion,

as well as the introduction of thermodynamic affinity. Additionally, it should be noted

that the temperature dependence of the reaction is not explicitly addressed here. However,

its inclusion should be straightforward, as the model employs elementary notions of fluid

properties.

2.3 Macroscopic Approach

The term macroscopic is used here to describe a modeling approach that examines materials

at the scale of a representative volumetric element [34]. The element is representative in

that it should have properties similar, in an a average sense, to those of any other like-sized

element taken from elsewhere in the structure. The approach is that employed in continuum

mechanics, and it can be more tangibly illustrated by a comparison of typical dimensions of

some characteristic structure. For a Civil Engineering structure, typical dimensions might

consist of B, W, and H, for the base, width, and height of the structure, respectively. Keeping

in mind the level of governing heterogeneity defined as mesoscopic previously, the dimensions

of a representative volume can be chosen. To illustrate, if the volumetric element is selected

as a cube of side, 1, and the average size of aggregate is D (mesoscopic dimension), the

following should hold true:

D < l < B,W, H
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Once one element has been identified, part or all of the structure can be envisioned as being

composed of identical representative elements. If, for the case of ASR, D is considered the

aggregate size, then 1 defines the typical scale of laboratory test specimens (e.g. cylinder

q16 cm) , which-in general-is much smaller than the size of structural elements, B, W, and

H. Since the model accounts for the behavior of one element, the addition of other elements

allows the prediction of the behavior of the whole structure.

2.3.1 Chatterji and Christensen (1990)

The following model [36] attempts to predict the observable expansion of mortar prisms due

to ASR. Presumably, this work with mortar prisms is extendable to larger scale concrete

structures, although there is clearly a difference in the size of aggregates. In this sense,

the model does not strictly fit into the category of macroscopic modeling as defined here.

However, since the dimensions of the mortar prism are much larger than the diameter of an

average aggregate particles, this model can be considered macroscopic as previously defined.

Because only small aggregates (sand particles) are used in mortar, it should be remembered

that the prism is not a representative elementary volume as such, but rather a scaled-down

version of a larger structure.

Unlike the previously examined models, this one is concerned with the ultimate expansion

due to ASR, not its variation with time. Here, time dependence is not considered, except

insofar as it pertains to the maximum expansion. The equation for expansion was attained

first through the identification of the relevant parameters, namely the alkali concentration, C,
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and the temperature, 0. Expansion data were then obtained for various value of C and 0 and

for a number of different sands. Equations were then fit to the data sets using least-square

methods. The equations had the following form:

e=SK[1 - M < C-Co > -N( -0o)+ P < C-Co >< G-O0 >] (2.38)

where < x >= 1 (x + lxi), and the "0" subscripts indicate threshold values below which ex-

pansion is believed not to occur. S and K are experimentally determined constants that

apparently have some dependence on the type of sand used in the mortar. Further depen-

dence of these constants is not explored. The constants M, N, and P are also experimentally

determined. Another form of equation (2.38) is presented that assigns physical meaning to

some of these constants:

£ SK[1 - -- AC - -AG + ACAG)] (2.39)
DC 0 5C50

in which the A operator indicates a change in the parameter that follows it. The validity of

this relation is not pursued in the literature, and its derivation is unclear. Accordingly, the

model is treated here as an equation fit to data with many experimental constants of unknown

dependencies. Additionally, the variation of expansion with time is not investigated, which

likely is a crucial point in any enduring mechanistic model. However, this line of research

might be useful if more were discovered about what the various terms represent in a physical

sense and of what parameters they are functions.
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Figure 2.5: Mesoscopic mechanism for ASR expansion [34]

2.3.2 Coussy (1995)-Larive (1998)-Ulm et al. (2000): Chemoelasticity

The chemoelastcity model [24, 30, 34] of ASR expansion predicts the macroscopic behavior of

ASR-subjected concrete by considering the underlying chemical micromechanisms involved

in the reaction. It is based on Coussy's theory of reaction in porous media [35]. In this

first approximation of material behavior, the expansion of the gel is assumed to elicit an

elastic response by the surrounding concrete. Furthermore, this model addresses the chemical

evolution of ASR, as well as incorporates the effect of an externally applied load. To elucidate

all the mechanisms at work, a simple 1-D rheological representation is employed, consisting

of a pressure cell and elastic springs. In the extension to three dimensions, a thermodynamic

argument is invoked in which the energy state and dissipation of the system are examined.
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Figure 2.6: Rheological representation of chemoelasticity [34]

1-D Chemoelasticity

The problem of ASR expansion can be envisioned as a concrete sample containing a gel-filled

void that exerts pressure on the surrounding concrete matrix. In turn, the concrete skeleton

resists this pressure with tensile stress. This mesoscopic system, including an externally

applied load, is sketched in Figure 2.5. For the purposes of understanding and modeling, a

1-D think model (Fig. 2.6) is developed to represent the relevant aspects of ASR expansion.

In this device, E, and Em are elastic stiffnesses, e is the overall strain of the system, p, is

the swelling pressure exerted by the gel, -, is the resisting stress provided by the concrete

skeleton, and o- is the externally applied stress. The expansive strain of the gel itself is

represented by <g, in which , is a dilatation coefficient that quantifies the gel growth with

respect to the reaction extent, e[0,1]. The reaction extent measures the progress of the
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reaction, = 0 indicating the beginning of the reaction, and (= 1 representing the completion

of the reaction. Within this quantity is expressed the underlying chemistry of the model,

which will be later detailed.

From the rheological scheme, equations describing the stress equilibrium of the system are

readily obtained. The externally applied load must be balanced by the difference between

the restraining stress of the concrete skeleton and the swelling pressure of the gel:

PS (2.40)

This equation can be further advanced by noting that o, = Eme and p., = E,(< - e):

o = EmE + E,(e -s ) (2.41)

Now, the case stress-free expansion (a = 0) is considered in order to establish a parameter

called the chemical dilatation coefficient, 0:

E, r, E , (.2
Em + E, Em + E,

The chemical dilatation coefficient relates the progress of the reaction directly to the ob-

servable strain. As might be inferred, this coefficient is a function of the total stiffness of

the concrete and the intrinsic chemical dilatation of the gel, r'. All that is needed now in

this formulation is a quantitative description for the evolution of the chemical reaction. The

form of this evolution can be determined from the difference in chemical potentials of the

reactants, the affinity.

From thermodynamics, the affinity, Am = Am( ), constitutes the driving force of a chemical

reaction. The reaction proceeds when the affinity has a non-zero value, beginning with some
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initial value, Amo. As the affinity approaches zero, the reaction approaches completion. Thus,

for Am = Amo, = 0, and for Am = 0, = 1. Identification of the affinity of the driving force

of the affinity as the driving force of the reaction immediately allows for the formulation of

the reaction's kinetic law:

- - F(Am) (2.43)
dt

Assuming a linear kinetic law for the stress-free case (a = 0):

kd L = Am() kd > 0 (2.44)
di

where kd is a chemical kinetic coefficient. Lastly, for this case, a time constant, tc = kd/Amo,

is defined such that (2.44) becomes:

1-= te' (2.45)
dt

At this point, the kinetic law has been developed for the case of stress-free expansion; however

the thermodynamic argument of the next section will show the validity of the law for all

stress cases. The time constant, tc, depends on temperature and reaction extent the following

experimentally determined way [30]:

t,- 61 + exp(-TL(O0)/r(O0] (2.46)
(+ exp[-t/Tc + TL /rc]

where the time constants TL and rc are the latency time and the characteristic time, respec-

tively, while 0 is the temperature. 'rL is associated with the dissolution of silica from the

aggregate, while Tc is associated with the mechanism of gel formation. Integration of the

kinetics law (2.45) with (2.39) yields the reaction extent directly:

1 - exp(-t/r) (2.47)
1 + exp(-t/rc + -TL/Tc)
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Figure 2.7: Predicted and measured reaction kinetics

With the above formulation and the assumption that TL/Tc = 3, a plot (Fig. 2.7) of reaction

extent as a function of normalized time can be produced and compared with actual test

data.

From the plot it can be seen that this model produces as s-shaped curve that matches the

test data very closely. A more in-depth description of the process of generating the predicted

expansion curve follows in Chapter 3.

1-D Chemoelasticity: Energy Considerations

Approaching the same problem from the perspective of thermodynamics offers a robust

view of the chemoelastic model, which is employed for the extension of the 1-D model to
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three dimensions. The first step of the derivation involves application of the First Law of

Thermodynamics. This law states that the variation of the system's internal energy, dU, is

the incremental sum of external work, dW = ade, and the externally supplied heat, Q dt:

dU = de + Qdt (2.48)

To supplement the information provided by the First Law, the Second Law of Thermody-

namics is applied. This law states that the variation of internal entropy, dS, of a homogeneous

system must always equal or exceed the entropy externally supplied by heat, (2) dt:

dS > 0 dt (2.49)

where 0 is the absolute temperature. The Second Law expresses whether or not the energy

put into a system can be recovered. For instance, if dS = (2) dt all the energy supplied

to the system is subsequently recoverable, while if dS > ( d at, some energy is lost due

to dissipation, the irreversible transformation of useful work into heat. The evolution of

dissipation over time, dt, can be determined by combining and rearranging (2.48) and (2.49):

pdt = de - (dU - OdS) > 0 (2.50)

This expression can be made yet more useful through the introduction of the Helmholtz

energy (or free energy), @, a measure of the maximum capacity of a system to do work:

V = U - OS (2.51)

the differential of which is under isothermal conditions (i.e dO = 0):

db = dU - OdS (2.52)

Substitution into (2.50) gives the Clausius-Duhem inequality:

pdt = odE - dV > 0 (2.53)
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From the rheological scheme developed in the previous section, the Helmholtz energy can be

expressed as:

1
-[Emez + E,(E - <()2)] + g( )2

(2.54)

where g( ) is the free energy of the pressure cell. In incremental form, (2.54) becomes:

dVb = [EmE + E,(e - t()]d + g () + [-E 8 (e - <)K+ ]d (2.55)

With (2.55), (2.53) consequently is written:

pdt = [a - ( Ems + E,(e - K<))]de - x E,(E - i<) -9 d< 001

A comparison of (2.41) and (2.56) reveals that:

o- - - Es + E,(E - n)

From this relationship, the driving force of the reaction can be identified as:

Am - ng) - = 1pg-Lg OPs

(2.56)

(2.57)

(2.58)

and the dissipation can be expressed as:

pdt = -xp (2.59)

For this dissipation, it turns out that the energy consumed in the chemical reaction, 4,

is much larger than the energy supplied by the pressure, -ps.,. Thus, this term can be

neglected in the computation of the dissipation, as well as for the affinity:

Am= - O (2.60)

the linear form of which would be:

Am = Amo(1 - () =

56

(2.61)

- d< = Amd< > 0



This equation corresponds to the kinetic law developed in the previous section for the 1-D

case. However, the preceding derivation was not limited to a particular load case, and thus

the relation holds for any load, -. The approach described above will be applied in Chapter

3 to the case of chemoplasticity.

2.3.3 Huang and Pietruszczak (1999)

The following macroscopic scale ASR model was first presented in 1996 [37] to describe the

macroscopic expansion and subsequent degradation of ASR-subjected structures. The model

was later refined in several other papers [38, 39]. In this model, the time evolution of macro-

scopic strain is initially defined mathematically for the elastic regime of deformation. The

key parameters affecting the reaction are identified and incorporated into this mathematical

formulation. Special attention is given to the influence of temperature on the reaction ki-

netics. To this end, it is postulated that below a certain threshold temperature the progress

of ASR is very slow. This idea is expressed in the thermal activation time, a function that

relates time and temperature. Following the development of an elastic expression for the

expansive strain, the model is extended to include plastic effects through the application of

standard plasticity procedure.

This model is the first in attempting to address the irreversibility of ASR expansion through

concepts of plasticity. As will be shown in the proceeding review, the evolution of plastic

deformation here is caused applied stress only. For instance, the model does not allow

permanent deformation for stress-free ASR expansion. It does however hint at the concept

57



of chemoplasticity that will be introduced in Chapter 3. Therefore, the deficiencies of this

model will serve as motivation for the development of the new chemoplastic model.

Including the effects of temperature and ASR expansion, the total elastic strain is defined

as follows:

1
e = A': a + IEA1 + Eo (2.62)

3

where A' is the fourth order elastic compliance tensor, the scalar EA gives volumetric strain

due to the expansion of the alkali-silica gel, and Eo is the thermal strain. The thermal

expansion term simply accounts for expansion (or shrinkage) experienced by concrete due to

temperature change and is defined as:

1
EO a(O - 00)1 (2.63)

3

where a is the coefficient of thermal expansion for the concrete, and (0 - O) represents the

change in temperature incurred for the period of measurement. Assuming the additivity of

elastic and plastic strain increments, equation (2.62) is written in an incremental form for

the elastoplastic regime:

1 1
dE = A' : do + dA' : o + I deA1 + I adOl + deP (2.64)

3 3

which can be rearranged as follows:

1 1
do = Ce[de - dA* : 0 - 1deA1 + IadOl - deP| (2.65)

3 3

where Ce = (Ae)-. The terms including the elastic compliance imply that this material

property is not constant. Indeed, the compliance is expected to degrade as a consequence of

ASR expansion resulting in an overall loss of stiffness. The exact form employed to simulate

this degradation of stiffness, as well as of strength, will be detailed later.
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The evolution of the chemical reaction is described by the swelling rate, sA = , and the

development of this term requires the introduction of a number of new functions that consider

time-temperature effects of ASR expansion and local constraints to this expansion. This

scalar rate term is defined as follows:

A = 91 (t')92( (2.66)

where 91 = g1 (t') quantifies ASR expansion free of external constraint, g2 = 92(om) is related to

the constraint of hydrostatic pressure induced by the confining concrete with om = tr(u) the

mean stress, and t' is a thermal activation time or "equivalent time", similar to the maturity

concept employed in cement chemistry, and is given in the form:

dt' = g3 (0)dt (2.67)

where 93 = 93(0) represents constraints on expansion imposed by temperature 0, and t is

real time. The functions, 91 , 92, and 93, were empirically chosen from experimental test data

found in the literature. These three functions are formulated as follows:

g1(t') = et' (2.68)
A1 +t'

3A 29m
g2 (m) exp 3 fo ) (2.69)

I30 + tanh 0-0 (2.70)

where A1 , A2 , and A3 are material constants, and 0o is a reference temperature for which time t

coincides with activation time t'; E is the maximum strain for stress-free ASR expansion, and

fco is the initial compressive strength of concrete. A closer examination of these functions

reveals several interesting characteristics.
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The function, g1(t'), asymptotically approaches the maximum expansive strain, e, as time

progresses. Thus, this function gives directly the value for free gel expansion for a given time

and temperature. Furthermore, gi (t') can be normalized, yielding a reaction extent term that

varies between zero and one. To illustrate:

( = E [0, 1] (2.71)
E

where = 0 represents the beginning of the reaction, and 1 signifies the completion of the

reaction. Now, the evolution of the reaction is derived as follows:

I g1 , 1t' (1 )2 (2.72)
E at' 06t Ir

which appears as the kinetics law of ASR in this model [to be compared with (2.61)]. Here

a latency time is defined as T = A1 /g3 (0). Furthermore, it also holds that 0 < g2 (-m) < 1.

The smaller the value of g2(0m), the greater the confining hydrostatic pressure at the site

of expansion. A value of unity for g2(Um) would mean that the concrete skeleton offers no

restraint to expansion, and consequently p1(t'), the free expansion term, would provide the

only contribution to SA in equation (2.66). Lastly, the function, 93(0) is defined hyperbolically

as varying between zero and one. This function controls the thermal activation time, such

that very low temperatures cause the reaction to essentially stop (dt' - o), and at high

temperatures the reaction proceeds in real time (dt' - dt).

Finally, integration of this expression with = 0 at t =0 yields:

t (2.73)

Equation (2.73) gives the reaction extent for any time t. With T = 83 days (as observed

in experimental data for stress-free expansion [30]), a plot can be constructed showing the
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Figure 2.8: Predicted and measured reaction kinetics

extent of the stress-free reaction over time. The resulting curve can then be compared to

actual test data to elucidate the effectiveness of the model at predicting reaction kinetics

(Fig. 2.8). From this plot it can be seen that the model does not account for the initiation

period at the beginning of the reaction, as the development period is shown to begin almost

immediately. Additionally, the asymptotic expansion is approached in the model much more

slowly than in the experimental data. A more accurate prediction of kinetics was shown

in the previous model and will be incorporated into the chemoplasticity model of the next

chapter.

The reaction kinetics having been established, the degradation of the concrete's mechanical

properties can next be derived. The degradation of material properties depends on the
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materials themselves and the extent of the ASR reaction:

E = Eop 1  (2.74)

fc = fcop2 (2.75)

where E and ft are the current Young's modulus and compressive strength, respectively,

the "0" subscript indicate original pre-reaction values, and pj = [1 - (1 - B4) ]. The material

constants, Bi depend on both the material and the mechanical properties in question. Clearly,

as ( - 0, E -> B1 Eo and fc -* B 2fco.

The condition for the onset of plastic deformation is defined by the yield surface, f(o-) = 0:

f = -,3(-Y)&c = 0 (2.76)

in which J 2 is the second invariant of deviatoric stress, 0(-y) is a function that accounts for

damage to the concrete matrix, and a is the maximum value for \/T in compression. The

evolution of plastic deformation de is determined by application of a non-associated plastic

flow rule:

dE? = dA (2.77)
60-

where dA is the plastic multiplier, specifying the intensity of plastic deformation, and g(o-) is

the plastic potential function:

g = -\-// Iln = -0 (2.78)

where oc is a constant describing the point at which dilatation begins. Also, I= aofc+ 1 and

Io = eaofc., where I1 is the first invariant of the stress tensor, fc is the compressive strength

of concrete, while e and ao are material constants.
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It should be noted here that based on the yield surface given in (2.76), plastic deformation is

not possible in the stress-free case of ASR expansion. When a- = 0, clearly \/7= 7tr(s - s)

= 0, and the material parameters as defined in the literature, 3 and &c, are always greater

than zero. Thus, plasticity never occurs for this stress state, since f < 0. Intuitively, plastic

strains do result from ASR swelling, even in the absence of an externally supplied stress.

This point serves as further motivation for the new chemoplasticity model to be developed

in the next chapter.
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Chapter 3

ASR Chemoplasticity

The chemoplastic model of ASR expansion aims to predict macroscopic expansion by pro-

viding a link between the kinetics of the reaction and the irreversible structural deformation

caused by the expansion. Furthermore, the model seeks to quantify the phenomenon of

stress-induced anisotropy, as observed in test data. This chapter presents ASR chemoplas-

ticity by first formulating the problem in terms of a 1-D rheological scheme that can be

easily analyzed. A consideration of energy within the system then enables a straightforward

extension to three dimensions. The framework of the model is completed with the introduc-

tion of a Drucker-Prager plasticity criterion. With the expansion equations now developed,

the chemoplastic model is then completed with: (1) an identification of intrinsic material

parameters, (2) a calibration of expansion equations to test data, and (3) a verification of

the calibration procedure through a comparison of predicted and measured kinetics.
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3.1 A 1-D Think Model for Chemomechanical Couplings

Swelling of chemical origin results from the relative volume increase between the product

and reactant phases involved in the chemical reaction. The products expand in pores and

microcracks of the cementitious matrix. Once this free expansion space is filled, the swelling

is restrained, and the product phases exert locally a pressure on the surrounding concrete

skeleton. This mesoscopic mechanism is roughly sketched in Figure 2.5. For stress-free

concrete the internal swelling pressure p, of the expansive products is self balanced by tension

o,. in the skeleton. Consequently, the overall material swells.

3.1.1 1-D Chemoelastoplasticity

The first model to be examined here involves the case of chemoelastoplasticity [34]. This

model captures expansive material behavior at a macrolevel of material description, i.e. at

the typical scale of laboratory test specimens. The simplest rheological device that can

describe an irreversible skeleton deformation coupled with the swelling pressure is shown in

Figure 3.1, in the form of an elastoplastic spring device in parallel with a chemical pressure

cell. In this figure, o is the macroscopic stress due to external forces, and E the corresponding

overall strain. oa denotes the stress in the spring of stiffness Em, and p, is the swelling pressure

in the chemical pressure cell. is the extent of this chemical reaction, and it is assumed that

the volume increase of the products is proportional to the reaction extent, i.e. $5, = r. With

c as the displacement of the friction device of strength km associated with the permanent
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km

Figure 3.1: Rheological representation of ASR chemoelastoplasticity

strain in the matrix, the stress in this 1-D chemoelastoplastic model reads:

a = o-1L - , = (Em + Es)E - EmE - E,s< (3.1)

with:

1, = Em(6 - EP) (3.2)-p, = E,(E - <)

In addition, the stress exerted on the friction device is the stress ,, = o-+p,, and the plasticity

criterion can be written in the form:

f(o, Ps) = lo+p1 - km <; 0 (3.3)

To illustrate the effect of the swelling pressure p, on irreversible and total deformation of
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the reference system, a stress-free expansion test is considered. From (3.1) and (3.2), the

following formulation is obtained:

o- = 0; p. = E , [(r, - 0) -- OP); e- = 0 + OP (3.4)

where E = Em + E,, and 3 = KE,/E < ,. Furthermore, g = '- & denotes the expansion space

which is irreversibly formed when the swelling pressure reaches the material strength of the

matrix km. Now, the following can be concluded:

. For < o = km/[E,(K - Q)], the system behaves chemoelastically ( = 0):

( < o : = 0d (3.5)

In this chemoelastic phase, the total strain increment de is related through a chemical

dilatation coefficient = -KE,/E to the reaction extent d of the chemical reaction. This

chemical dilatation coefficient depends on the intrinsic dilatation coefficient K of the

reaction products, and on the stiffness of the overall material E = Em + E, [24]. Due to

the elastic stiffness of the matter restraining the free expansion of the reaction products

in the deformable medium, 3 is smaller than the intrinsic chemical dilatation coefficient

of the reaction products K.

. For (= o = km/[E,(K - 0)], the swelling pressure reaches the material strength, f = 0

1p, = km, which it cannot exceed for ( > (o in the considered case of a perfect plastic

behavior of the matrix. In order for the swelling pressure to remain constant, irreversible

skeleton deformation must occur, providing pressure free expansion space for the newly

formed products. This concept can be expressed by the 1-D chemoplastic consistency

67



condition:

T > o : df = dps sign(p.) = 0 <-> dop, = (K -0)d (3.6)

This chemoplastic deformation amplifies the chemoelastic response (3.5) according to:

> o : d= n (3.7)

which after integration becomes:

6=# + (s - )- o) (3.8)

where (x) = (x + IxI). The first term represents the purely elastic volume increase

caused by the expansion products in the deformable medium. In turn, the second term

represents the irreversible volume increase <p associated with a permanent deformation

of the matrix.

As in the chemoelastic case, the evolution of ( is defined by a kinetics law of the form (2.45),

which is here recalled:

1 - tc (3.9)
dt

where tc is a characteristic time of the reaction, to be determined experimentally. Larive's

formula (2.48) was determined from the relative stress-free expansion = e(t)/e(oo), here

recalled:

t- T(O)1 + exp[-rTL(O)/Tc(O)] (3.10)
+ exp[-L(0)/r(O)]

with TL and Tthe latency time and the characteristic time, respectively, sketched in Figure

3.2. These time constants follow the Arrhenius concept as shown in Figure 3.3 [24, 34].

TL(O) = TL(Oo) eXp[UL(1/O - 1/00] (3.11)
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Figure 3.2: Stress-free ASR expansion curve showing TL and rc [34]

-r,(0) = Tc(0o) exp[Uc(1/O - 1/Go] (3.12)

where -rL(Oo) and T(Oo) are the time constants at reference temperature 0o, and UL 9, 400i500

K and Uc = 5,400 ± 500 K are thermal activation constants. A comparison of these thermal

activation constants of macroscopic ASR expansion to the activation constants of microscopic

in vitro silica dissolution and in vitro ASR gel formation reveals the nature of the two time

constants. As such, TL and T are found to be associated with the dissolution of reactive

silica and with the mechanism of gel formation, respectively. At constant temperature,

0 = 0o, Larive's kinetics law (3.9) with (3.10) integrates to the characteristic s-curve of

ASR-expansion (2.47), which is recalled:

e(t) 1 - exp(-t/rc)
E(oo) 1 + exp(-t/Tc + TL/T,) (3.13)
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Figure 3.3: Arrhenius plot of TL and rc 124, 34]

This function together with the experimental values is shown in Figure 3.2. Finally, it is

instructive to study the limit cases of (3.8): For to -- 1, the chemomechanical response is

governed by chemoelastic evolution, i.e. E = 3g and O -- 0. This approach has been used

to determine the macroscopic reaction kinetics (3.10) and is based on the assumption of a

pure elastic skeleton behavior. For the case in which 0 ; o < 1, and rK >3 +- ES/E < 1, free

expansion space is primarily generated by the irreversible skeleton deformations associated

with microcracking and fracture in the matrix, i.e. in a stress free experiment O =- E- ~E

and E Fm. The rheological scheme associated with these two limit cases are sketched in

Figures 3.4 and 3.5. The first case (Fig. 3.4) of a pure chemoelastic coupling was considered

in the previous chapter[24, 30, 34], while the second case (Fig. 3.5) is the focus of this

chapter.
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Figure 3.4: Rheological representation of chemoelasticity [34]

3.1.2 1-D Chemoplastic Expansion

The rheological device (Fig. 3.5) corresponding to the second limit case of chemoelastoplas-

ticity forms the basis for the chemoplasticity model. By means of this device, the energy

transformation that occurs during chemoplastic evolutions is examined. As was the case for

the chemoelasticity model of the previous chapter, the starting point here is the Clausius-

Duhem inequality, which for the 1-D reference system reads:

pdt = ode - d@o > 0 (3.14)

where -de is the strain energy and V) is the Helmholtz (free) energy. For the chemoplastic

think model, the Helmholtz energy can be written in the form:

V)=I[E(E - EP)2 + E,(#P - <()2] + g ()(3.15)
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Figure 3.5: Rheological representation of ASR chemoplasticity

The first term in the bracket of (3.15) represents the free energy of the overall elasticity and

the second term the elastic energy of the hardening spring of modulus Es. Finally, function

g( ) corresponds to the free energy in the chemical pressure cell. Use of (3.15) in (3.14)

yields:

<pdt = o-de + psd@ + AdT > 0 (3.16)

together with:

C e Der E(e - EP) (3.17)

ps =- = Es [< - #P} (3.18)

Am -p (3.19)

The first term in (3.16) is the standard term of elastoplasticity, which identifies the stress -

as the driving force of the permanent deformation increment deP. In the same way, the second
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term in (3.16) identifies the swelling pressure p, as driving force associated with the plastic

expansion space dg. This formal identification implies that the complementary evolution

laws of plastic strain and permanent expansion both relate the driving force to the rate. In

the framework of chemoplasticity, these complementary evolution laws read [40]:

Of .Of
de= dX- = dAsign(a + ps ) dP, = d Of- dAsign(o- + ps) (3.20)

Ooa Op8

where dA is the plastic multiplier and f(u,p,) <; 0 the chemoplastic loading function (3.3).

A loading point defined by stress o and swelling pressure p, that is situated at the loading

surface (i.e. f(o-, p) = 0) remains on it (i.e. df = 0). This is expressed by the consistency

condition,

Of Off -do, + -dpS = 0 (3.21)
Ou Op,

Use of the state equation (3.18) and of the plastic expansion rule (3.20)2 in (3.21), delivers

the plastic multiplier in the form:

1 ~Of Of 1 [do E l.
dA-= I -do-+ -E, d = u + EKd sign(u+p8 ) (3.22)

H [O0a OP. I [ H HIJ

where H appears as a hardening modulus, defined by:

H =E = E, (3.23)

Hence, the swelling pressure in this chemoplastic model plays the role of a hardening force,

which depends on both the hardening variable 0 and on the reaction extent . This type of

chemoplastic model has originally been proposed in Coussy and Ulm (1996) [40].

Finally, the last term of the formulation in (3.16) represents that part of the dissipation

associated with the chemical reaction, and affinity Am (3.19) is the driving force associated
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in this dissipation (3.16) with the increase in reaction extent a<:

Amd - [ps + d > 0 (3.24)

The first term -pnd( represents the expansion work of the newly formed products in the

porous medium. In a stress-free experiment, according to (3.20) and (3.22), this work is

consumed by the plastic dissipation pod4% = pand, = kmdeY, and the effective transformation

of useful mechanical work into heat form during time interval dt reads:

-= 0, p = km : <pdt = - > 0 (3.25)

With (3.25), A( )= -Og/&O is formally identified as the driving force of the chemical reaction

in a stress-free experiment and has been implicitly used when writing the chemical kinetics

law (3.9). This identification still holds when a constant stress Uo is applied during ASR-

expansion (i.e. do = 0 +-<pdt = oodEP+A( )d 0) and can be generalized to an arbitrary stress

history a = o(t), provided that the macroscopic chemical affinity Am depends significantly

only on reaction extent . In this case, the linear kinetics law (3.9) still applies under

macroscopic stress application:

Vo- : Am ~ A(_) - = Ao(1 - k t = (3.26)
0D dt dt

where tc = kd/Ao of the form (3.10) is the characteristic time of the chemical reaction. Once

t, is known, the 1-D chemoplastic model is complete.
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3.2 3-D Chemoplasticity of ASR Expansion

3.2.1 Formulation

The extension of the chemoplasticity model to the 3-D case involves replacing the scalar

quantities of the 1-D model by their tensorial counterparts. Hence, the dissipation (3.16)

reads:

<pdt = - : de? + psd pg + Ad > 0 (3.27)

The state equations (3.17), (3.18), and (3.19) become in the isotropic case:

0* -- ~ -KDeP
2 G) (6 - EP)i + 2G (E - EP)

04'
p= = K. [3r< - #P]

0$S

Am - [pP + ~ j Og- Ao(1 -

where e = tr(E), E = tr(eP), while K and G are the overall bulk and shear modulus, respectively.

From standard plasticity theory, a loading function f defines the elasticity domain DE:

(3.31)

The complementary evolution laws are the plastic flow rules:

Oh Oh
dE = dA-5- d#P = dA-

0.' OPs
(3.32)

and the kinetics law (3.26). In (3.32), h is the plastic potential, and dA is the plastic multiplier:

(3.33)dA = I odo + Of3Kd
H.: OPs Ij
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(3.29)

(3.30)

(C, PS) E DE +- f (0, P,) < 0



and H the hardening modulus,

(3.34)

where K' = -ps/ag. In the case of a linear plastic hardening behavior K' = K.. In turn, a

non-linear plastic hardening corresponds to K, = K,(g) and K'= K, -p,/K,(OK,/80).

Once the loading function f and the plastic potential h are specified, the 3-D model is

complete.

3.2.2 Stress-Induced Anisotropy of Chemical Expansion

To illustrate chemoplasticity, a simple, hydrostatic pressure-dependent yield criterion, the

Drucker-Prager loading surface is considered in the form:

f(o, p,) = V2+ a(07m + p) - C ; 0 (3.35)

where J 2 and a.m are the invariants J 2 = ltr(s . s) and om = ltr(a), respectively; s is the stress

deviator, a is the friction coefficient of the concrete, and c is the cohesion.

The requisite condition for plastic deformation having been established by (3.35), the evo-

lution of this deformation can then be described by the plastic flow rules. Assuming an

associated plastic potential (f = h) the flow rules (3.32) read:

dEP = dA [ s =
.2/A7

+ al] d(9 = dA = dAa = de
OPs

where EP = tr(eP) is the volumetric strain, and the plastic multiplier is:

dA = d'+ a(dom, + 3Ksd)]
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(3.37)

H = K' _f (0h
OpN OpN



where H = a 2K,. In the equation (3.36)1, the first term in the brackets physically represents

the deviatoric portion of expansion, while the second term accounts for pure volumetric

expansion. With all the necessary relations in hand, the incremental strain tensor (3.36)1

can be now studied for different loading cases. Because cylindrical test samples were used in

testing, only two directions need to be examined due to symmetry about their longitudinal

axes.

Under stress-free conditions, for o = c/3nKa <-+ f = 0, the following relations are obtained

from (3.28), (3.36) and (3.37):

de = dE = Rd1 dO = 3d = dcE (3.38)

where =

Next a uniaxial stress state (an = a) is considered. This stress is applied at t = 0 and

held constant in time. The deviatoric stress tensor, s, defined as the difference between

the overall stress tensor and hydrostatic stress tensor, omi, takes the following form under

uniaxial stress:
2o- 0 0

(sgj 0 -7 0 (3.39)

0 0 -0-

It follows directly that the second invariant of the stress deviator is:

1 02
J2 = tr(s - s) = - (3.40)

2 3

For t > 0 and with dA = 3kd/a, independent of stress application, the plastic volume expan-

sion still reads:

d- = 3kd = dEP (3.41)
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The strain increments in the direction of stress application read:

den = de[ sign(o-) + 1 (3.42)

and normal to direction 1:

22 = de-2 =d sign(o-) + 1 (3.43)
2a

and d6 P3  = de 2 2 . The previous equations show the stress induced anisotropy of expansive

reactions which provokes irreversible skeleton deformation at a mesoscopic level. In the

macroscopic chemoplastic model, this results from the dependency of the plastic strain on

the deviator stress. Hence, letting y = d 1 1/de 22 the slope of two strain components measured

in a stressed ASR-expansion test, the friction coefficient a can be determined:

a = -N1+/2sign(u) (3.44)
1 - -Y

At the same time, the relevance of the modeling can be checked through the determination

of the friction coefficient a of a non-reactive control specimen, from the uniaxial compressive

strength fj and the uniaxial tension strength fl. For p, = 0, friction coefficient a and cohesion

c can be assessed from (3.35) by:

a = _ - c 2 3.45)
1 + fl/f' ft v'(1 + ft/f) (3f45)

Hence, provided similar values of a determined from (3.44) and (3.45), not only will the

consistency of the determination process be verified, but simultaneously the relevance of

the proposed chemoplastic model: the expansive reaction in the concrete sample activates

the same fracture processes as a macroscopic stress application which reaches the material

strengths, ft and f,.
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Stress-Free Case
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Figure 3.6: Anisotropic expansion of stress-free specimen

3.2.3 Larive's Stressed Expansion Tests

In a recent test campaign [30], Larive performed expansion tests on stress-free and compression-

stressed cylinder samples. In all tests, the longitudinal strain el and the radial strain 622

were recorded as a function of time. It was checked that both follow the same kinetics. How-

ever, under stress-free conditions, a surprising anisotropic behavior was found (Fig. 3.6).

The slope -,_o = den/de22 shown in Figure 3.6 is not unity, but approximately ya=o = 2.

This anisotropy was explained by the molding process of the cylinder samples, with water

being trapped in pockets below the aggregates in the direction of the cylinder axis, which

corresponds to direction 1, the direction of load application.

To explore Larive's tests, this initial molding anisotropy must be accounted for by considering
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for the stress-free experiment a relation of the form:

de = bd 

which results in a non-associated plastic potential h / f in (3.32) of the form:

h(o-, p,) = V'2+ a(b : a-+ ps) - c

In fact, use of (3.47) in (3.32) gives:

deP = dA s + ab] dOp = dA-
OPS

dAa

(3.46)

(3.47)

(3.48)

In the isotropic case, b= 11. For the molding anisotropy, we preserve the diagonal structure

of b=diag[buj, b2 2 , b 3 3 ], and tr(b) = 1 ensures that tr(deP) = d. For the stress free expansion

test, it can be seen that:

d = dAabj1 ; de2 = dAab2 2 = d -33 = dAab33 (3.49)

Thus,

de, 1  bnl

de22 b22
(3.50)

and with (3.46):

(3.51)bn = YO=0 ; b2 2 = b 33 = 1
7(,=o + 2 y,=o + 2

In Larive's stress-free expansion test on 34 samples, for which y,=o = 1.967±0.294, we determine

bn = 0.493 i 0.038 and b2 2 = 0.253 -F 0.019. Under uniaxial constant stress application, (3.48)

gives:

den e kd

dE2 2 dE2 = d

sign(u) + 3b11

2aN/-sign-(u) + 3b 2 2 1
2aJ
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(3.53)
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-5 MPa Case
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Figure 3.7: Determination of -y for 5 MPa compression case

and the slope dy de/dE22 leads to:

a = 1+-y/2 sign(o) (3.54)
3(bn - 'yb22 )

From Figures 3.7 and 3.8, the slopes 'y of Larive's stressed expansion tests can be determined,

and from (3.54) the friction coefficient a:

-=-5 MPa; 'y=-=0.217 - a =1.47±0.15 (3.55)

(3.56)o-= -10 MPa; -Y,=10 = 0.182 -+ a = 1.42 0.14

The results differ by about 4% indicating a fair amount of consistency of the determination

process. However, what is most remarkable is that this friction coefficient a = 1.45 is of

the same magnitude as the one to be determined from the material strengths of the non-

reactive samples (3.45). In Larive's series of tests, both the compressive strength and the
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-10 MPa Case
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Figure 3.8: Determination of -y for 10 MPa compression case

(Brasilian) tension strength were monitored over the entire test duration on non-reactive

control specimens kept under the same hygral and thermal conditions as the reactive test

samples. The experimental results shown in Figure 3.9 indicate an almost constant tension

strength to compression strength ratio of fj/f =0.072. Use of this value in (3.45) gives:

PA = 0; = 0.068-*a= 1.50 ± 0.03 (3.57)

This value determined from pure mechanical strength tests (almost) coincides with the one

determined from the stress induced expansion behavior (3.55) and (3.56), and proves that

the frictional mechanisms activated by the swelling pressure are the same ones which are

activated during concrete fracture, when the applied stress (in a non-reactive sample) reaches

the material strength.
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Figure 3.9: Tensile to compressive strength ratio

3.2.4 Model Calibration

The calibration process can now be completed through the determination of the intrinsic

chemical expansion coefficient K. This computation is somewhat more difficult to achieve,

as it involves strain amplitudes rather than strain increments. Indeed, for a constant stress

applied at t = 0, the volume expansion at t > 0 is given in the model by:

dc = dEP = d4 = 3Rd (3.58)

and integrates to:

(3.59)

where c(0) is the volume strain at load application (elastic and eventually plastic, i.e. &(0)),

to is the reaction extent at the onset of plastic deformation (i.e. f = 0), and $O denotes the
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Stress [MPa] 0 -5 -10 -20

SEl ln (oo) - En (0) [%] 0.199 0.023 0.014 -0.003

6E22 E E22(OO) - E2 2 (0) [%] 0.102 0.153 0.208 0.125

6E E(oc) - Eo 0.403 0.329 0.430 0.247

R =K/K' [%] 0.135 0.120 0.147 0.087

fi, [MPa] 3.1 6.2 9.3 15.5

r = K.,o/K, 1.08 1.35 0.98 1.66

o1 2 1 5

Table 3.1: Experimental values and model parameters of Larive's ASR-expansion tests under compressive

stress application.

initial plastic porosity in the material, which corresponds to the pressure free expansion space

for the reaction products in the cementitious matrix (i.e. flaws, cracks, pores). In (3.59), it

is implicitly assumed that F = rK/K' changes significantly only during load application, i.e.

= K(#o) and K = K[1 -K,] constant during chemoplastic evolutions; thus

OK, p. (3.60)
x = R 1 6#o K2 (360

where A, is the swelling pressure at the onset of plastic deformation, which, according to

(3.35), remains constant throughout the chemoplastic deformation process under uniaxial

stress application:

f = 0 + p8 (,' #/) =p - (3.61)
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Modified Dilatation Coefficient vs. Pressure
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Figure 3.10: Variation of dilatation with increasing confinement pressure

The values of p, determined with the help of (3.45) and (3.61) are given in Table 3.1. In

addition, if it is assumed that go < 1 in Larive's test, (3.59) can be rewritten in the form:

go < 1: e(t) - e(0) = 3k (t) (3.62)

With the same assumptions, (3.52) and (3.53) integrate to:

[Pinu + 33 bil (3.63)Enlt) - Ell(0) =l ef(t) - Elli(0) = sgt sign(o) + 3bn (.63

(- £22(0) =2(t) - E 2 (0) =g(t) [ a sign(-) + 3b2 2  (3.64)

In Larive's tests, strain measurements started after 14 days of curing (3 days storage in an

environmental chamber at 23 C and 98% RH, followed by 11 days of sealed storage at 23 C).

The samples were then put in a humidity chamber at 380 C, the load was applied and kept

constant in time. Additionally, strain measurements were carried out on non-reactive samples
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0= 0 o=-5MPa

Test [%] Model [%] Test [%] Model [%]

Ei (oo) - en (0) 0.199 0.198 0.023 0.035

622(00) - 622(0) 0.102 0.102 0.153 0.143

E(oo) - I(O) 0.403 0.402 0.329 0.321

a =-10 MPa a -20 MPa

Test [%] Model [%J Test [%] Model [%]

Ei (oo) - Ei (0) 0.014 0.048 -0.003 0.028

622(00) - E22(0) 0.208 0.197 0.125 0.116

c(oo) - c(0) 0.430 0.441 0.247 0.261

Table 3.2: Comparison of experimental values and fitted values of Larive's ASR-expansion tests under

compressive stress application

kept under the same hygral and thermal conditions as the reactive ones. The strain registered

on these samples (due to creep, which for sake of clarity is not considered in this model) was

subtracted from the strain measured on the reactive samples. The mean asymptotic strain

values, 6enI(oo) and 6E22(00) together with the volume strain 6E(oo), obtained by this operation,

are summarized in Table 3.1. In the calibration process of the chemoplastic model, these

values are associated with the (mean) asymptotic values of eni(o) - en1(0), E22(00) - E22(0)

and c(oo) - E(0) defined by (3.62), (3.63) and (3.64). With a and b known (see above), the

mean value of R = rK,,/K' can now be determined for the different stress levels (see Table

3.1). In addition, Figure 3.10 shows the mean value of R as a function of p,. Without the

anomalous result of the 10 MPa case, the trend line indicates that P decreases with increasing

86



K5, YK, = ic/ vs. Pressure
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Figure 3.11: Variation of K /K, with increasing confinement pressure

confinement pressure fi. According to (3.60), an extrapolation of this trend line to p, = 0

gives a first estimate of = R:

K = 0.145% ± 0.007% (3.65)

Use of (3.65) in (3.60) allows the determination of Ks/K, = K/K as shown in Figure 3.11. Now

(3.60) can be recast as (OK,/0#P )p,/K

dK 1- d/pP
K2 so

1 - K/R, which can then be integrated as follows:

K8 01+K, ((O) = Ko
1o + (K/R - 1)#O,/p

(3.66)

where K8 o is a reference value for K, at #o = 0, for which K/K = 1 <-+ ps - 0. Given the inherent

scatter of ASR-test results (e.g. Larive, 1998), the results of this calibration process given

in Table 3.2 are reasonably consistent and suggest the following comments:

1. Provided that K, > 0, K/k > 0 indicates that a plastic hardening phenomenon occurs
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according to (3.34):

H = a 2 K .K (3.67)
K

In the considered loading range with -u/f; < 50%, the plastic hardening modulus may

be assumed constant, i.e., H = a 2 K~o, and thus according to (3.66) and (3.67):

K, = Ko +-+ p, = K, 0$ol (3.68)

The assumption of a constant hardening modulus is equivalent to assuming a linear

increase of $O with p,. For o = 0, -5, -20 MPa, this is consistent with the constant

increase of K 8o/Ks = K/K with increasing swelling pressure p, shown in Figure 3.11. In

turn, for o-= -10 MPa, the low value of K/K ~1, seems to indicate that the samples had

a lower initial porosity on the same order as the stress-free swelling samples.

2. If the initial plastic porosity $O is associated with the volume occupied by the gel before

swelling occurs, which in Larive's stress free tests was found by SEM to be on the order

of $O ~ 1%, Ko can be estimated as 300 MPa. This order of magnitude confirms a

posteriori the assumption of a negligible chemoelastic deformation, i.e. /3/K = K,/K < 1,

where K denotes the overall bulk-modulus.

In summary, Eqn. (3.45), (3.61) to (3.64) and (3.67) allow the determination of the chemo-

plastic model parameters. These are the plastic parameters, a and c, and the chemomechan-

ical constants K and K,. The plastic parameters can be determined on non-reactive concrete

samples, while the chemomechanical parameters require some expansion tests under different

stress levels. The values obtained with this calibration process give quite a reasonable fit of

Larive's asymptotic strain values. A comparison of experimental and model values is given

in Table 3.2.
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3.3 Verification of the Calibration Process

The calibration process focused on the asymptotic expansion values. Hence the verification

will focus on a comparison of the expansion kinetics, i.e. on the time dependent strain

development due to the expansive reaction. The underlying assumption concerning the

reaction kinetics is (3.26): the chemical affinity is not affected by stress application. It is

written in the dimensionless form:

=1 - (3.69)at

where f = t/TL is the dimensionless time normalized by the latency time TL, and f, is the

normalized characteristic time function of ASR-swelling defined by (3.13):

= (L,) 1 + exp[-TL/Tc (3.70)
rL TL + exp[--rTLj/rc]

Integrating (3.69) and (3.70) gives:

1 - exp(-t) Lr (3.71)
1 + exp(1l -OTLT

This result indicates that the development of the reaction extent in time f = t/TL depends

only on the ratio of time constants TLr/cT.

Provided that go < 1, this implies according to (3.62)-(3.64) that the ASR-expansion also

depends only on the time constant ratio r/cT. The time constants, TL and -r, can be de-

termined graphically (Fig. 3.2) from expansion curves defined by the data for a given case

of uniaxial stress application at a given reference temperature (here 0o = 380C). Table 3.3

summarizes these results as determined from Larive's expansion tests.

The individual values of the time constants show some scattering, but the time constant
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Stress [MPa] 0 -5 -10 -20

rL(Oo = 38'C) [days] 83 66 70 98

Te(6o = 38'C) [days] 28 22 18 34

TL/Tc [1] 3.0 3.2 3.9 2.9

Table 3.3: Time constants of Larive's ASR-expansion tests under compressive stress application.

ratio TL/T appears to be of the same order of magnitude in all experiments, which were

carried out under same thermal and hygral conditions. This suggests that the ratio TL/Tr

is not strongly affected by macroscopic stress application, and confirms the relevance of

the made assumption of the independence of the expansion kinetics on stress application.

This is consistent with Larive's microscopic analysis, which showed evidence that the ASR

product formation is not affected by stress application. The comparison of experimental

values and model values for the longitudinal expansion e11 () and transverse expansion E2 2 ()

determined from (3.63), (3.64) and (3.71) is given in Figures 3.12a-3.12e. The model values

were determined with a time constant ratios shown in Table 3.3, along with the asymptotic

values from Table 3.2. Clearly, the predicted expansion matches quite closely with the

measured data, thus providing excellent verification of the model calibration process.
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Figure 3.12: Comparison of predicted and measured longitudinal expansion for the various load cases
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Chapter 4

Conclusions and Perspectives

Since its identification sixty years ago, the alkali-silica reaction has posed considerable prob-

lems for those involved in the construction and maintenance of structures. To date, a com-

prehensive model that explicitly addresses and accounts for all the chemical and physical

mechanisms associated with deleterious reaction has not been presented in the literature.

The purpose of this research has been to present a rational, mechanistic model that accu-

rately reproduces the experimentally observable characteristics of ASR with respect to the

parameters that affect those characteristics.

Most important among the contributions of this chemoplastic model are the inclusion of irre-

versible, plastic deformation and consequently the phenomenon of stress-induced anisotropy.

Anisotropic expansion resulting from externally applied stress is readily apparent in the ASR

expansion data of Larive, but until now has not been modeled in the literature. The chemo-
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plastic model employs standard plasticity theory with a Drucker-Prager plasticity criterion

to account for this anisotropic behavior. As mentioned at the outset of Chapter 3, the devel-

opment of this model has consisted of: (1) identification, (2) calibration, and (3) verification.

The next logical step in the continuation of this research is the process of model validation,

by which the validity of assumptions employed by the model can be checked.

Future research on ASR chemoplasticity might include a more sophisticated, higher-order

kinetics law that quantifies such parameters as the reactivity of silica in aggregates and the

water content of the concrete. Both of these variables have not been considered explicitly

in this model. Further study might involve a closer examination of these parameters and

their relative importance to macroscopic expansion. Additionally, a more complex failure

surface could be introduced to more precisely predict plastic deformation while continuing

to incorporate the effect of stress-induced anisotropy. Furthermore, more data might be

collected for in situ civil engineering structures, which could then be used to recalibrate the

model from application to large scale simulations.
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