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Abstract

Internal seiches are basin-scale standing waves which oscillate within the body of a stratified lake
or bay. In thermally stratified mid-latitude lakes, for which the surface-to-bed density difference
is typically 0 (1 - 3kg/m 3) during summer, buoyancy within the water column supports rela-
tively large amplitude waves, with horizontal and vertical fluid displacements as large as ~10%
of the lake dimensions, depending on the strength of wind forcing. In strongly-stratified lakes,
seiching is often the only dynamic process occuring in the hypolimnion, since direct wind-driven
motions are constrained to the epilimnion, and small-scale (i.e. progressive) internal waves can-
not propagate outside the pycnocline. Internal seiches therefore provide the principal conduit
for converting wind energy into boundary, hypolimnetic, and effective diapycnal mixing.

We begin by investigating the dependence of internal seiche structure (i.e., the velocity field)
on lake bathymetry and stratification, using a two-dimensional linear, inviscid model to compute
numerical seiche solutions for a series of idealized configurations. This is followed by an analysis
of the fundamental seiche (V1H1) in the Upper Mystic Lake (UML; Winchester, Massachusetts),
including a comparison of model results to field observations (thermistor chain temperature
time series), and an assessment of the seasonal evolution of bed velocity distribution. We next
evaluate the viscous damping of internal seiches by modifying the inviscid formulation with
the addition of a benthic boundary layer flow. A generalized expression for the decay rate
(a) is derived through a perturbation analysis using the solvability condition on the combined
inviscid/first-perturbation-order system. The resulting a is equivalent in form to the integral
of seiche kinetic energy at the bed (as for surface waves), weighted by an additional coefficient
which accounts for effects of buoyancy and bathymetry. Comparison to other, physically-based
derivation methods reveals that a can be interpreted equivalently as the rate of stress working
by the seiche on the bed boundary. Finally, using numerical solutions for the three dominant
seiches in the UML, we find that buoyancy effects generate roughly an order of magnitude
increase in a for each mode. The estimated relative damping rates account for the apparent
rapid decay of the fundamental (V1H1) seiche, and are consistent with the observed persistence
of the dominant higher mode (V3H1). Buoyancy effects therefore appear to be an important
factor governing seiche climate in the UML.

Thesis Supervisor: Heidi M. Nepf
Title: Associate Professor, Civil and Environmental Engineering
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Chapter 1

Internal seiches

1.1 Introduction

Internal seiches are basin-scale standing waves which oscillate within the body of an enclosed or

semi-enclosed stratified fluid. In thermally stratified mid-latitude lakes, for which the surface-

to-bed density difference is typically 0 (1 - 3kg/m 3 ) during summer, the buoyancy within the

water column supports relatively large amplitude waves, with horizontal and vertical fluid dis-

placements as large as - ±5% of the lake dimensions (see, for example, Roget et al. 1997,

Milnnich et al. 1992, Wiegand and Chamberlain 1987). Seiche-induced vertical motions have

been shown to affect the distribution of both plankton (Gaedke and Schimmele 1991) and fish

(Levy 1991). The (nearly) horizontal bed motions enhance sediment resuspension (Gloor et

al. 1994, Pierson and Weyhenmeyer 1994, Shteinman et al. 1997) and the dissolution of nu-

trients and contaminants through pressure-driven porewater exchange. Experimental studies

have shown that boundary mixing generates horizontal buoyancy-driven flows (Ivey and Corcos

1982, Phillips et al. 1986). This process also occurs in lakes, where homogenized fluid within

the seiche-induced benthic boundary layer intrudes into the lake interior (Gloor et al. 1994,

Goudsmit et al. 1997), thererby broadening the pycnocline and enhancing net vertical mixing.

Internal seiches therefore provide a conduit for converting wind energy into boundary, hypolim-

netic, and effective diapycnal mixing. In fact, in strongly-stratified lakes, internal seiching is

essentially the only dynamic process occuring in the hypolimnion, since direct wind-driven mo-

tions are constrained to the epilimnion, and since small-scale (i.e. progressive) internal waves

12



cannot propagate outside the pycnocine.

In principle, the mathematical description of internal seiches is straightforward, since the

linear formulation simply corresponds to a spatial boundary value problem. However, these

eigensystems are difficult to solve in practice because the equation parameters (i.e. stratifica-

tion, p (z)) are not constant, and the spatial domain (bathymetry, z = h (x, y)) is not regular

for real lakes. Analytical solutions can thus only be obtained for simple configurations, which,

while adequate for illustrating the principal qualitative features of seiches, are not sufficiently

accurate for quantitative analyses. Because of these analytical difficulties, all numerical models

developed to date use a simplification or idealization of system configuration. A number of

these models are discussed in Section 1.2.2. Throughout this thesis, solutions for longitudinal

internal seiches are evaluated numerically using a two-dimensional stream function formulation,

which allows longitudinal depth variation and non-uniform stratification. The complete three-

dimensional problem, and some of the numerical difficulties associated with it, are outlined in

Appendix C.2.

1.1.1 Thesis outline

We begin in the present chapter by reviewing some fundamental concepts, and some of the more

popular models for describing and evaluating internal seiches. Each of the remaining chapters

has either been published (Chapter 2) or prepared for journal submission (Chapters 3 and 4);

the material is therefore presented very concisely, with supplementary information provided

in Appendices to the thesis. Chapter 2 is an analysis of the dependence of seiche structure

on bathymetry and stratification (i.e., the system configuration), with particular focus on bed

velocity distribution. As discussed above, seiche solutions are computed numerically using a

two-dimensional stream function formulation. A systematic investigation of seiches is performed

using a series of idealized configurations, and the structure, decay, and seasonal variation of

seiches in the Upper Mystic Lake (Winchester, Massachusetts) is explored.

Chapter 3 is an analysis of internal seiche damping due to viscous dissipation of energy

in the benthic boundary-layer. A generalized expression for seiche decay rates (a) is derived

through a perturbation analysis by applying a solvability condition. The mathematical analysis

is augmented with an exploration of the underlying physics, revealing that a can equivalently
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be derived using several physically-based arguments. The decay rate for internal seiches is

similar to the homogeneous fluid result, but includes an additional coefficient which accounts

for combined buoyancy and bathymetry effects. Damping rates for the fundamental seiche (i.e.,

V1H1; see Section 1.2.1) are computed for a series of ideal basins to explore the impact of

buoyancy and bathymetry on decay. The boundary-layer structure implied by the analytical

model is also explored.

Chapter 4 is an expansion of the analysis of decay and boundary-layer structure for longitu-

dinal seiches. Model predictions of boundary-layer thickness are supported through comparison

to recent field observations (Gloor et al. 2000). Numerical stream function solutions and decay

rates are computed for the three dominant seiches in the Upper Mystic Lake. Results reveal

that seiche damping (and therefore climate) in the lake is substantially affected by buoyancy.

Predicted decay rates agree well with field temperature data observations.

1.2 Review of Literature and Methods

Surface seiches were first studied by the Swiss engineer de Duillier at Lake Geneva in 1730.

In the 1870's, Forel (also at Lake Geneva) identified seiches as standing surface gravity waves,

and provided the first theoretical description of the phenomenon (Forel 1876). At the begin-

ning of this century, Chrystal (1905) investigated a series of analytical solutions for surface

seiches in regularly-shaped basins. His results matched observations quite well for lakes with

simple bathymetry, but broke down for more complex systems. Wedderburn began the study

of internal seiching by extending Chrystal's analyses to two-layer systems (Wedderburn and

Williams 1911, Wedderburn 1912, Wedderburn and Young 1915), but once again was restricted

to simple bathymetries. Beginning with the Defant technique (Defant 1918, 1960), a wide range

of numerical internal seiche models have been developed to improve the description of either

stratification or bathymetry. (In fact, an improved model of one generally requires an oversim-

plification of the other.) The most widely-used internal seiche models are outlined in Section

1.2.2.

During the 1980's, field studies began to focus on the observation of higher mode internal

seiches (which drove the development of more sophisticated models of stratification) and the
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excitation of specific modes through resonance with wind forcing (see, for example, LaZerte

1980, Lemmin 1987, Wiegand and Chamberlain 1987, Mtinnich et al. 1992). The study of

modal response has since evolved into a comprehensive investigation of seiche climate (Roget et

al. 1997, Saggio and Imberger 1998). Numerous laboratory studies have probed seiche-related

processes such as boundary and vertical mixing (Ivey and Corcos 1982, Ivey and Nokes 1989,

Heinz et al. 1990) and internal wave breaking on slopes (Helfrich 1992, Slinn and Riley 1996).

This research compliments the extensive body of field studies of seiche-induced resuspension

and sediment transport (Sheng and Lick 1979, Hagatun and Eidsvik 1986, MacManus and Duck

1988, Evans 1994) and boundary mixing (Wtiest and Gloor 1998, Gloor et al. 2000).

1.2.1 Background

The principal qualitative features of internal seiches can be described very easily using simple

models such as the two-layer rectangular basin. We begin by reviewing some of the techniques

which have traditionally been used to evaluate seiche solutions, begining with a slightly extended

analysis of the rectangular basin model, in order to introduce some standard concepts and

nomenclature. Later, however, we shall see that such overly-simplistic models are generally

inadequate for a quantitative analysis of seiches.

Rectangular basin model

For a two-dimensional formulation (in (x, z)), the velocity field can be written in terms of a

stream function 'i (x, z), i.e., (u, w) = (40/4z, -8@P/8x); see Appendix B.4. In a rectangular

domain the 2D governing equation for longitudinal seiches (see (B.21) in Appendix B.4) is

spatially separable;

4P(x, z) = X (z) sin kx , -1( Ix)' + -1)k2x=0 , (1.1)

with x' = dx/dz. For a basin with depth H and length L, the horizontal wavenumber is

k (= knh) = nh7rL- 1 , with nh = 1, 2, ... the mode number.

The first system we consider is the case of constant buoyancy frequency (N), which formally
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corresponds to T (z) = 7 (0) exp (-N 2z/g). The solution to (1.1) for this stratification is

= /(z) ~A
x(z) = (O) sin mz

where m (= mn,) = nrH-1, with vertical mode number n, = 1, 2, ... The dispersion relation

for this system is

N2  
k2 k2 (1.2)

N2 =k2+m2+ N4 m2=4g2

which provides the fundamental scaling w - pN for the seiche frequency, with p = H/L.

This scaling holds for essentially all seiche systems (i.e., basins and stratification). Each mode

Vnhn- " sin kx sin mz can be distinctly labeled using the horizontal and vertical mode numbers,

giving rise to the standard nomenclature VnHnh, which is also used in non-rectangular basins.

After the constant-N case, the second common idealization for stratification is the two-

discrete-layer system. This can be considered a limiting case of the continuous stratification

model, corresponding to equation (1.1) with the hydrostatic approximation (i.e., N 2 > W2 ) and

the step density profile

p (z) =pi + ApH (z - hi) -> 7 (z) N 2 (z) = gAp (z - hi)

Here Ap = P2 - P1, hi is the upper layer thickness, and H (z) is the Heaviside function. The

governing equation for this profile reduces to

W20

Integrating (1.3) within each layer we find <p'(z) = constant, and therefore write

z~~hX (hi) - 0 < z < hi
h (1.4)

x (hi) i <hi<z<H
h2

16



with h2 = H - hi. Next, integrating (1.3) across the interface gives

k 2
P2X' (H) - piX' (0) + gAp-2x (hi) = 0

0

which, along with (1.4) yields the dispersion relation w2 = k2gAphih 2 / (p 2 hi + pih2 ).

The 2-layer analysis above is appealing because it provides a description of the fluid which

is continuous over z. The same results can also be derived using a depth-averaged formulation,

based on the (static + dynamic) pressure field P1 = gpi (z + (1 (x, t)) in the upper layer and

P2 = gpi (hi + (1 (x, t) - ( 2 (x, t)) + 9P2 (z - hi + ( 2 (x, t)) in the lower, where (1 and ( 2 rep-

resent the free surface and interface displacements, respectively. This approach is somewhat

more useful for describing the response of the system to wind forcing and friction. Placing P1

and P 2 into depth-averaged (linear) continuity and momentum equations gives

89 B( )+h u~i 0Bui 48(1 1(15
((1 -(2)U+hi - 0 p i- =-gpi- + - (Tsurf - rint) (1.5)

8(2 u2 1a2 4(1 (2 1+ h 2  = p2 = -9p1 - g (rint -rbed) ,(1.6)

where ui, u2 are depth-averaged layer velocities. The boundary conditions for this system are

u (0) = u (L) = 0, 8(/&x (0) = 8(/Ox (L) = 0. Using the fact that (I << ( 2 , (1 can be neglected

in the upper layer continuity relation; adding the two continuity equations and integrating in

x then gives hiui + h2u 2 = 0.

The above set of equations can be solved for each of (1, u1, and u2 to give

1lBT 1 OT 1 BT
0 2(2 = - ,T 02U1 _ __ f--2U2 = -

gAp ax gAph1 at 'g ph2 oft

where we have defined

2 92 1 02 2 gAphih 2  Tsurf (i 1red
0x 2  c 2 &t 2  p1 h2 +P 2hi ' hi hi h2)Tn h2

The stress term T is comprised of both forcing (rsurf) and damping (rint, rbed); in general we
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expect Tint <Tbe. A reasonable parametrization for the interfacial shear is

H H
Tint = Cint (ui - U2 ) = Cin-i = -CinH-U2 ,

2 h1

with Cint a friction coefficient. The bed stress can be describe in numerous ways, but perhaps

the most convenient analytically is a linear relationship between r and u,

Tbed = CbedU2 = -Cbed -U1
h2

Finally, for the forced system the velocities and ( 2 can be taken as a sum over horizontal modes,

for example

00

U2 (x, t) = U2nh (t) sin kx

for the velocity in layer 2. This system is therefore equivalent to a sum of forced, damped

harmonic oscillators, with, for example, the U2 governing equation reducing to

+ 2a- + Wonh U2nh = --- tL. sin kd,
d dt ] p1 h 2 + p2h1 L 9tr

with inviscid (undamped) frequency WOnh = ck and decay coefficient

2a - hih2  Cnt Ce+ -- _ h1 h 2

p1 h 2 P2 h 2  h h2 + hi

which is apparently independent of mode number. The two-layer rectangular basin model thus

provides a reasonable (and familiar) qualitative description of the principal characteristics of

seiches. Heaps and Ramsbottom (1966) used a form of this method to compute the response

of seiches to wind forcing, both with and without friction.

Progressive internal waves: characteristic curves

In an open system, if the stratification does not change over time and space (even, perhaps,

as a local approximation), progressive internal waves can be described using the same two-
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dimensional stream function equation which applies for seiches (see (B.21) in Appendix B.4):

1Z 8, 89 N2 (Z) I 82V

(Z) Z 9z W2 X2 (1.7)

with x the direction of horizontal propagation. Within the water column, free internal waves are

confined vertically to the region in which N 2 (z) > W. In this region of space (1.7) is hyperbolic

(analogous to the classical wave equation, which is usually expressed in (x, t)), and as such

the wave motion can be described along characteristic curves (± = z & w/ N 2 (z) - w 2x. In

stratified natural water bodies there are typically two depths in the water column at which

N 2 (z) = W, i.e. the top and bottom of the pycnocline. Therefore, in an open sytem such as

the ocean, the pycnocine acts as a waveguide for internal wave energy. In lakes, even though

the waveguide model does not apply for standing waves, many of the associated concepts are

extremely useful for describing internal seiches, in particular the interaction of the waves with

the boundary.

Consider first the case of uniform stratification, N 2 = constant, and constant (or infinite)

depth. Recall from section 1.2.1 that (1.7) is separable, and the dispersion relation is

-- cos 9 . (1.8)
N |n\

Here 0 defines the angle of the wavenumber vector r = (k, m) away from the horizontal (see,

eg., Turner, 1973, §2.2.2). The implications of (1.8) become apparent whenever a progressive

wave encounters a solid boundary. Since 0 is determined solely by the properties of the waves

and the fluid, this angle must be maintained upon reflection instead of the angle of the ray with

respect to the surface. Internal wave ray reflection therefore differs substantially from optical

reflection.

Obviously, the above progressive wave results can be immediately applied to the constant

N, rectangular basin model, since the spatial domain of this system is simple (for example,

~P - sin kx sin mz ~ cos m(+ - cos m(_, with (a e z ± w/Nx; see Section 1.2.1). In addition,

Maas and Lam (1995) used the wave ray perspective to study seiches in lakes with constant N,

but with non-uniform depth. Their technique is described briefly in Section 1.2.2. Except for

a few limited cases, it is not possible to further generalize this method to obtain quantitative
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solutions for systems with non-uniform stratification. However, the wave ray picture does at

least provide useful qualitative information; in particular, since the slopes of the characteristic

curves are dz/dx ~ Aw/N (z) ~ ±p (i.e., the inverse of the wave ray slope ~ m/k ~ N/w),

we can predict that for most (possibly all) lakes there are locations on the lake bed where the

local slope (dh/dx ~ ip) matches the incident ray angle. The importance of these points with

respect to wave ray focusing is discussed in Chapter 2.

1.2.2 Summary of seiche models

Not surprisingly, since seiches are standing waves, whose features are determined by bathymetry

(the shape of the spatial domain) and stratification (coefficients in the governing equation),

analytical and numerical models of linear, inviscid seiches invariably have the form of a Sturm-

Liouville or eigenvalue problem. We now briefly summarize some of the most important models

developed over the past century.

Displacement field eigenvalue method

Wedderburn (1912) developed the first model for internal seiches by generalizing a surface seiche

method formulated by Chrystal (1905). Using a two-layer model (depths h; and densities pg,

for i = 1, 2), the seiche motion is described as the propagation of coupled dynamic transverse

((j) and longitudinal ((i) displacements. This method is similar to the depth-averaged model

in described Section 1.2.1, the main difference being the introduction of width variation. It

is also the prototype for other methods, particularly the Defant technique, which is discussed

below. We therefore provide a slightly more extensive description of the Wedderburn method.

Consider a vertical slice (with area A1 (z)) through and across the lake at horizontal position

X, running from the surface ((1 at z = 0) to the interface (C2 at z = hi). The volume of water in

a small horizontal region dx around x is V1 = A1 (x)dx. If this volume is displaced horizontally

a small distance (1, accompanied by a change in the height of both (1 and ( 2 , the volume of

water in its new position (X + 1) is

Vj = A1 (x + (1) d (x + 1) + B (x) (C1 (x) - (2 (x)) d (x + 1 )

= (A1 (x + (1) + B (x) (( -(2)) dz (1 + ,x)
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where B (x) is a representative width of the lake at x, measured, for example, at the interface

depth. Mass conservation requires that V1 = Vj; equating the two and rearranging gives

B (x) (C (x) - (2 ()) = A(x) A (x +
1+ -gj

Finally, using the expansions (1+ d(c1/dx) 1  1 - d 1/dx and A1 (x +(1) ~ A1 - (idA 1 /dx

we find

B 8(I - (2= -5x ('1A1)(19

after cancellations. This is equivalent to a depth-averaged continuity equation (see (1.5)) ex-

pressed in terms of displacement fields instead of velocities, and with the width of the lake

taken into account.

A momentum conservation equation can be derived from the simple force balance

p1 dV1ai = dP1 A1 (x) ,

in which dP = dP/dx - dx is the pressure difference over dx in Layer 1, and a1 is the fluid

acceleration. Expanding each term in this expression,

P1 dz (1+ A1l 892 =-gp 1 -dxz A1l

which simply reduces to

~9 - 49((1.10)

to leading order. Once again this is a depth-averaged, linearized equation, identical to the

momentum equation in (1.5).

The analysis in the lower layer is the same as the upper, and yields

1 9 a22 P1 8 (1 1P (2
(2 = - (2A) ,2 9 (1.11)

B 8 8t P2 aX P2 Cx
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The boundary conditions for both layers are ( (0) = ( (L) = 0, 8(/8x (0) = D(/&x (L) = 0. The

system (1.9), (1.10), and (1.11) is equivalent to the two-layer system (1.5)/(1.6); the derivation

of governing equations for the ( and C therefore proceeds as in Section 1.2.1. Making the rigid lid

approximation ( 2 > (1, we first obtain the volume (~flux) conservation relation Q1 + Q2 = 0,

where Qj = (iAj, with i = 1,2. Then, assuming sinusoidal time variation 8/&t -+ iW, the

governing equations for the transverse and longitudinal displacements are

1 8 /(2 ) 1 8Q0
B A x ax +x K22=0, 8 B 8~x + 2i

in which A (x) = A 1 A 2 / (P2 A1 + p1 A2) and K (x) = w/ gApA (x). The cross-sectional areas

are generally taken as Ai(x) = B(x)hi(x), with layer depths hi.

Two-layer Defant Procedure (TDP)

Defant (1918, 1960) developed a technique for evaluating surface seiches using a formulation

similar to the equations of Chrystal (1905). The system is solved numerically by partitioning

the lake volume with a series of cross-sections, and then varying the seiche frequency until the

volume fluxes across the sections balance. Mortimer (1979) adapted the method to internal

seiches using a two-layer formulation, based on the lower layer equations

-- (a 2 ( S2 () = -Bi (x) (i (x) , 2 P2 -P1 1 19(i
49x Bt2 P2 S1 + S2 ax

with Bi and (i the width and vertical displacement of the interface, respectively (compare to

equations (1.9), (1.10), and (1.11) above, from Wedderburn (1912)). The numerical procedure

is described in more detail by Lemmin and Mortimer (1986), who studied eight lakes in Switzer-

land. Roget et al. (1997) have since developed a three-layer Defant procedure, in order to study

the second vertical mode in Lake Banyoles, Spain.

Separable eigenvalue methods (and wind forcing)

For simple domains such as rectangular or cylindrical basins, the seiche governing equations

are spatially separable, and the problem reduces to a set of one-dimensional spatial eigenvalue

problems (see (1.1) for the rectangular basin, for example). In general the basin shape is chosen
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such that the horizontal solutions are simple analytic functions (eg., sin kx or Bessel functions);

the only portion of the problem which poses any analytical difficulty is the vertical function,

due to the stratification (see, eg., (1.1)). Although the method is somewhat simplistic, it is

useful for studying the response of seiches to wind forcing, because the overall lake response

can be decomposed analytically into a sum of orthogonal modes (see, eg., Csanady 1968, 1972,

Birchfield 1969, Monismith 1987). We discuss this approach in more detail in Section 1.3.

Two-layer Equivalent Depth (TED) and Variable Depth (TVD) Models

This method, developed by Schwab (1977) (following the work of Charney (1955)), is based

on depth-averaged equations in two horizontal dimensions in which the bathymetry is approx-

imated by a constant, effective epth he = hih2/ (hi + h2 ). Momentum (including Coriolis)

and continuity in the lower layer are thus given by

OM 8C$ 8N OC DC OM ONfN=-gEhe ,± +fM=-gehe , + +--=0.
t fax at ay 8t + x + y

Here ( is the interface displacement, M and N are the depth-integrated horizontal flows in

the lower layer, and e = Ap/po. This system was solved numerically by Schwab (1977) for an

irregular horizontal domain to evaluate internal Kelvin and Poincare waves in Lake Ontario.

Bauerle (1985) performed the same analysis in Lake Geneva. Horn et al. (1986) subsequently

generalized the method to include variable depth, to study the seiches in Lake Zurich.

Matrix multilayer

As described in Section 1.2.1, the two-layer depth-averaged (rectangular basin) model is con-

venient for describing the response of lakes to wind forcing. Csanady (1982) generalized the

method to a multilayer formulation to describe coastal upwelling. Monismith (1985) and Mtun-

nich et al. (1992) later applied the technique to lakes. For a multilayer system, the momentum

and continuity relations within each layer can be summarized as

BUi BCj - C -9( dU -
--- -Aij-a +i , a =-Big-j , (1.12)
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where Ui and (i are the layer velocities and interface displacements, respectively, T are the

surface, interfacial, and bed stresses, and

9
Pi - Pj-1Aij= 

Po

0

j=1

i>j, j 1

i<j

, Bij={

h0

0

j=1

j=i+1

j <i or j > i +1

Solutions for the eigenvalues # (=

from the determinantal equation

c = w/k, the modal phase speed) for this system are found

Aij -3B =0.

There is no particular advantage to this technique for computing seiche frequencies, since w

can be determined much more precisely using a continuous, one-dimensional vertical eigenvalue

method. However, to describe the response of seiches to forcing, (1.12) can be summarized

succinctly as (using the notation in Monismith (1985))

'9
8 (Qm +3mrm) = Fm , - (QM - m7rm)= Fm ,

where we have defined the characteristics 'm± = x ± #mt, and

Qm = amiUi , 7rm = ami(i , Fm = amiTi

are the modal velocities, displacements, and forcings, respectively. The mode vector am is

determined from the condition

ami ( Aij -#3B = 0.

Monismith (1985) used this formulation to simulate the initiation of seiching (i.e., the unsteady

problem) in Wellington Reservoir, Western Australia.
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Two-layer matrix eigenvalue formulation

From the seiche stream function formulation (1.7), which is valid for continuous, non-constant

stratification, we see that within a homogenous layer the equation reduces to Laplace's equation

82v) a 2 v

Yang and Yih (1976) used this simplification to evaluate solutions for a two-layer fluid in non-

uniform basins. With 4 = $1 and 02 in the upper layer and lower layers, respectively, the

formulation is completed by adding boundary conditions at the interface

28 82
W 2a (P202 - P101) - 9 (P2 -P1) z2 = 0 , 01 = #2,

as well as the dynamic free surface

2&'1 t924

az 9 -z2 =

and solid boundary conditions,

=0.

Yang and Yih (1976) solved this system numerically as a matrix eigenvalue problem. The

same technique can also be used to solve the continuous problem (i.e., equation (1.7); Munnich

(1996)); this method is described in greater detail in Chapter 2 and Appendix C, and is used

throughout the thesis to compute seiche solutions in systems with non-uniform stratification

and bathymetry.

Wave ray tracing

Recall from Section 1.2.1 that internal wave motion can be described using characteristic curves.

Maas and Lam (1995) used a wave ray tracing technique based on the characteristics ± =

z i N/wx to compute seiches in basins with uniform stratification (constant N, and using

both the hydrostatic (N 2/W 2 - 1) -4 N 2/W2 and Boussinesq -1 8/z ( /z)~2/8z2
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approximations; see (1.7)). They showed first that, as a condition for the existence of coherent

seiches, all wave ray paths in the system must be closed over a finite number of reflections.

When this condition is satisfied internal seiches can be evaluated as the sum of all possible

paths throughout the basin. However, for most bathymetries Maas and Lam found that the ray

paths do not form closed loops, but instead become progressively focused along specific limiting

lines. In Chapter 2, even though we use non-uniform density profiles, the Maas and Lam (1995)

results help explain the focusing behavior observed in certain limiting cases. Stated another

way, our results demonstrate the role of stratification (and not just bathymetry) in determining

whether or not wave ray focusing occurs, i.e., whether coherent seiches exist.

1.3 Excitation of seiches: continuous stratification

In Sections 1.2.1 and 1.2.2 we briefly outlined some of the homogeneous-layer or depth-averaged

methods which can be used to describe the response of seiches to wind stress. We now discuss

the excitation of seiches in systems with continuous stratification. In principal, since the (linear)

internal seiches in lakes correspond to orthogonal eigenmodes of a boundary value problem (see

Appendices B.3.1 and B.4.1), the seiche solutions can be used to describe the baroclinic response

to wind forcing as a Fourier sum, provided we have a description of the displacement field or

a realistic force balance equation. As described in Section 1.2.2, this technique has been used

in analytical studies by Csanady (1968, 1972) and Birchfield (1969), and in the experimental

work of Monismith (1983, 1987). We shall also review a number of problems associated with

the technique.

1.3.1 Amplitude evolution

To explore the response of seiches to wind forcing we use a generalization of the method de-

scribed by Monismith (1982, 1987). (Csanady (1968, 1972) and Birchfield (1969) also used this

technique, but for rotational waves instead of longitudinal seiches.) An equation describing the

evolution of internal seiche modal amplitudes can be derived from continuity relations

Du a2( _ T-+ =0 p= T( (.3x +8 zoat z ' 1.3
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and the linear, hydrostatic (8w/8t = 0) two-dimensional momentum equations

B~u 8P 89r
-49 U = - - + a = P + p (1.14)

Following Monismith (1987) we use the vertical displacement field C instead of the velocity w to

simplify the density-continuity relation, so that p can be easily eliminated from the z-momentum

equation. To expand the fields C, u, and r in a Fourier sum

(= Z An(t) (x, z)
n

n= A (t) (~x, z)
n

T= EFn() (:,z
n

(1.15)

we use the stream function eigensolutions On (x, z) to the hydrostatic form of equation (1.7)

(i.e., with N 2 W2 ):

1 a (8f@ N2 a 2 n- 0

:8z B z w2 8x2
(1.16)

With the hydrostatic approximation, the streamfunction solutions satisfy the modified orthog-

onality relations

f 8#a 90b dxdz = 2Ea6ab
9aBz Bz

1 f 8@~a 89~
-- j7N 2190aOb dxdz = 2Ea6ab

w a ax 89X

where Ea is the total energy of the linear inviscid seiche (see Appendix B.4. 1). Since the forcing

ar/8z is known, we immediately compute the coefficients Fn as

Fn (t) = - - (x, z, t) * (x, z) dxdz
2 En in B9z az

(1.17)

Eliminating the pressure from (1.14) and rearranging yields

A"(t) Fn(t) _r _ {an -1 9a82-n
An(t) An(t) [Oz (a j 9 Z ax2
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confirming that the time and space portions are separable as the expansions 1.15 require.

Substituting (1.16) into this equation then yields

A'l' (t) + w!A (2 =An(t (1.18)

This result is appealing because it introduces the forcing through a linear amplitude evolution

equation. According to (1.18) seiches can be described as forced harmonic oscillators, analo-

gous to the two-layer results (without damping) in Section 1.2.1. Viscous damping is some-

what difficult to incorporate into this formulation, however, because the constitutive equations

(1.15)/(1.16) are continuous (as opposed to depth-averaged, say). Specifically, at leading or-

der, viscous effects are localized in small regions near the boundaries, as opposed to being

distributed throughout the water column, and the impact of these boundary layers must be in-

corporated through some form of asymptotic expansion. This is discussed in much more detail

in Chapters 3 and 4. For the moment, we anticipate the results in Chapter 3 and claim that

the addition of a viscous benthic boundary layer leads to a modification of the seiche frequency

Qn = WnO + Wnl + ..., where wnO is the original inviscid frequency in (1.18), e = 6/H is the

boundary-layer thickness normalized by the lake depth, -wnl = (1 + i) an is the first-order fre-

quency shift due to viscosity, and the decay rate for each seiche mode is an = Im(ewn1). A

modified amplitude evolution equation is thus obtained simply by replacing W -+ Qn in (1.18).

The resulting equation

A" + 2ianonoAn ± (+ 0 + 2anWno) An =

matches the exact damped harmonic oscillator equation

A" + 2anA' + wo An = Fn

to first order in a.
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Application to a rectangular basin

Following Monismith (1987), we apply the above analysis to a rectangular basin. The model

stratification we consider is arbitrary (and unspecified), except for an epilimnion of constant

density and thickness hi. Using the scalings

x~L, z~H , -o Wpo, ,~p,

the rectangular basin solution reduces to

pVmn (x, z) = #n (z) sin kmx km= 7nr m = 1, 2, ...

where the On (z) satisfy the Sturm-Liouville problem (see (1.7) or (1.16))

d -dg 1 2dz "n n(1.19)
- p * + -TN2# = 0 , n(0) = #O1)=0 1.9

dz kd+ c ? n

with cn = Wmnk-'. The #n can be normalized by the factor 4H/ (Lpo) En so as to satisfy

the conditions

2fdz = 1 2 5N
2 #dz = 1

(see Appendix B.4.1). (Note that the total seiche energy Enm => En is independent of horizontal

mode number for the rectangular basin.) With these definitions, the force coefficients in (1.17)

become

Fmn(t) = f -(x, z, t) az (z) sin kmxdxdz

Monismith (1987) and Csanady (1968) considered the specific case of constant, horizontally-

uniform wind forcing, with &r/8z = r,/h1 over 0 < z < hi/H, which can be written as

Br/Bz = r,/hi [7L (z) - R (z - hi)], with H (z) the Heaviside function. This choice for ar/az

is discussed in Section 1.3.1. For this stress distribution the Fmn are simply

1 r=
Fmn 7 --- 42(hi) , m odd .
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According to Monismith (1987), the solutions to (1.18) which satisfiy the inital value problem

A' (0) = Amn (0) = 0 are

1 T 8
Amn (t) = 1 -,-#n (hi) (COS Wmnt - 1)

omnkm hi

and the displacement and shear stress fields are

((x z t) = #q (hi) #. (z) cos kmx [cos Wmnt -1 (1.20)
POn C m odd

(Z) = . E W(z)#n (hi) (z) . (1.21)

These expressions have been simplified using the sum

4sin kmx =I1

m odd m

Csanady's (1968) results are analogous to (1.20) and (1.21), but for a circular basin.

The 'steady' displacement

Even though we have readily obtained solutions for this system, the results are unsatisfying for

several reasons. The limitations of this approach are most easily outlined by considering the

time-invariant or 'steady' portions of C, u, and r. Eliminating the dynamic pressure from the

steady momentum equations (1.14), Monismith (1987) derived the steady force balance

g - - = - -- .(1.22)
(9z Ox 09z2

Since B-/&z = 0 in the epilimnion, we know that 92 7/aZ2 must also vanish over 0 < z < hi.

Very little is known about current-induced shear stresses at the base of the epilimnion in real

lakes, but it seems likely that the shear diminishes rapidly below z = hi, since the stratification

is extremely strong there. Therefore, the choice &r/B9z = r8 /hi [H (z) - H (z - hi)] for the

stress gradient seems a reasonable approximation to the real physical system.
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Monismith defines the time-invariant portion of ( in (1.20), i.e.,

-/ 1\ ~ 1
(( x -#,- (hi) # (z) , (1.23)

poh1  2 c

as the steady solution to the governing equations (1.13) and (1.14). This expression follows

from (1.20) using

4cos km2 =-x - .
m odd m

(Formally, steady state can be defined either as the solution to the 'steady' form of the governing

equations, i.e., setting 9/t = 0, or as the solution to the full equations as t -+ oo. The

former definition is somewhat weaker because it does not require that the governing equations

include any physical mechanism, such as viscous dissipation, which moves the system toward

a steady state. The steady solution in (1.23) conforms to the weaker definition.) Monismith

also argues that since 92 T/8Z2 = -r/hi6 (z - hi), equation (1.22) implies that Z must also be

a representation of the delta function, i.e., the displacement field diverges at the base of the

epilimnion. In fact, this is not quite correct; there are two representations of the delta function

associated with equation (1.19):

2 22 4o a 9 n z

6 (z - a) = p;N2 I:cn#n (a) #n (z , 6 (z - a) =5 p 9 (a)9z)

This clearly shows that Z itself is not divergent, but instead, from the z-momentum equation

and 1.23,

OP &p- r 1\-- =g-(= x--6(z-h1).B5 z az( hi (X-2

Integrating this equation simply gives

P (X, z) = x - {H (z) - H (z - hi)] ,(1.24)

which is consistent with the steady x-momentum equation (1.14) and the modal expansion

solutions (1.20) and (1.21).
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The problems with this method are clearly illustrated by (1.24). This relation implies that

the baroclinic pressure field is extinguished at z = hi. This is explicitly incorrect: apart from

violating continuity, the baroclinic response which compensates the barotropic displacement

must necessarily involve fluid below z = hi, since this is the region of the water column which

is stratified (i.e. fluid displacements generate buoyancy forces). At first glance it might seem

that this erroneous result is a consequence of the assumed form for ar/az, which also vanishes

at z = hi. However, the problem is more fundamental; it is a consequence of the linearization

process, and the fact that the steady state baroclinic displacement field cannot be described

using dynamic fields (i.e. (, u, and p).

Summary

Recall the full density continuity relation for p (x, z, t) = p (z) ± p' (X, z, ),

Dp - p
-- =T- + u-V p= 0Dt at

In the steady state limit a/at - 0 this becomes

u.Vp=0

since the velocity field u does not vanish if the wind forcing continues indefinitely. Given this

relation, the linearized result for the dynamic field

ap' 87 ,
-- =---W -+4 p=--C
8t Z &Z

is clearly not valid in the steady state limit, and the steady baroclinic response to the wind-

induced surface displacement is thus not equivalent to the seiche modal response of the system

as assumed by Monismith (1987). The dynamic response to wind forcing can potentially still be

described in terms of seiche modes by using the amplitude evolution equation (1.18), especially if

attention is restricted to short timescales, or if viscous effects are included (i.e., using w -+ Q,).

Unfortunately, at early times (i.e. shortly after the onset of winds) there is likely a lag between

the forcing and the baroclinic response, because of the time required to generate surface currents
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and the barotropic setup.

1.3.2 Reformulation

The steady state baroclinic displacement field Z (X, z) can be described in terms of seiche modes

if we forego the force balance method, and instead decompose i itself as a Fourier sum. The

drawback to this approach is that we must employ on a somewhat ad hoc description of .

Surface setup and currents

We begin by exploring the relationship between the steady surface setup and currents in the

epilimnion. For a homogeneous surface layer (depth hi, with constant density p, and viscosity

v), using the far-field approximation (i.e., neglecting vertical velocities) the steady surface

current u (z) can be found from the x-momentum equation

The solution to this equation which conserves mass and satisfies a free-slip condition at the

(undisplaced) base of the mixed layer,

udz = , 09-(hi)= 0

is simply

U()=r.9hi 3z 2 _6z +

u(z)= A 3z -6-+2).6p,v hi1 hi

Note that the free surface condition r, = pvau/cz (0) leads to the requirement

8P B9r 7-,- - . (1.25)ax oBz hi

This is conventionally regarded as a depth-averaged momentum balance, but in fact we see

that it also corresponds to a steady state condition. Therefore, neglecting the impact of the

fluid displacement at z = hi, the assumption of constant stress in the surface layer which was
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used by Csanady (1968) and Monismith (1985) in fact corresponds to a fully-developed (steady

state) current profile. Clearly, using 9r/Sz = T,/hi [H (z) - H (z - hi)] beginning immediately

at t = 0 neglects the time required for the epilimnetic currents to fully develop, as noted at the

end of Section 1.3.1. The time scale for the baroclinic response is often taken as one-quarter

wave period of the fundamental (V1H1) mode. However, as discussed in Section 1.3.1, wind-

driven fluid displacements in the epilimnion are not related to the seiche response at leading

order. The time scale for the development of surface currents is governed by numerous other

factors, such as the strength of wind forcing and the thickness of the surface mixed layer, and

is only indirectly affected by the seiche response, i.e., due to the tilting of the base of the

epilimnion.

Integrating (1.25) (which corresponds to the steady x-momentum equation; see (1.14))

within the surface layer, we find

P , - pg2(x

where we have defined the surface setup

( (x)=- -- |(S|Y(x) , (1.26)ghl

with |I u!L/ (2ghi) and y (x) = 2x/L - 1. Note that the displacement field within the

surface layer is indeterminate (or may not in fact be a meaningful concept), since the vertical

(dynamic) pressure gradient vanishes over 0 < z < hi.

Baroclinic response revisited

Below the epilimnion, integrating the z-momentum equation (see (1.14)) gives

P (x, z) = g 2 ((x,7z') dz' + pg(, (x) . (1.27)

This solution satisfies P (x, z < hi) = pog(, (x) = - (pSu2L/hi) -/ (x). In order for the steady

baroclinic displacement field to uniformly compensate the barotropic setup throughout the
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z=0

z(z= (hi)+h+)=

x=0 x=1

Figure 1-1: Descriptive diagram of the vertical displacements 4P (z) = 4) (hi) + hi - z associated
with the steady state baroclinic displacement field Z (x, z) = 4D (z) y (x).

water column, i must have the same horizontal structure as P, i.e.,

((x, z) = P (z)Y (X) . (1.28)

The maximum isopycnal displacement occurs at the base of the epilimnion, i.e., 4) (z = hi).

Below z = hi, the isopycnal tilts become progressively smaller, until the dynamic pressure

gradient vanishes at some depth in the pycnocline. Since adjacent isopycnals cannot cross one

another, the displacement 4) (z) at the edge of the lake (i.e., at x = 1) at depth z below hi must

be the same as the displacement 4D (z = hi); see Figure 1-1. The equilibrium state can thus be

described by 4 (z) + z = 4 (hi) + hi for Vz E (hi, hi +4) (hi)). Rearranging this expression,

the displacement field 4) is simply

4P(z) = 4) (hi) + hi - z . (1.29)

The depth at which the baroclinic response cancels the pressure gradient established by the

barotropic setup is then z = hi + (0, hi), i.e.

S(X, hi + ( (0, hi)) = 0 Vx
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Since P and T are separable, using (1.26) and (1.27), and (1.28) this condition simply reduces

to

hi+-4(hi) d-
((z') dz' = p,|,|.(30

In other words, at steady state the baroclinic response integrated over the pycnocine compen-

sates and cancels the wind-induced surface setup pressure gradient. Equation (1.30) can be

further rearranged through partial integration to give

h1++)(hi) p , 4 z p1 h d1
(- p8) pj~dz' = -p|,| ,I

using the fact that

[(P - p9) ]phi++(hi) -0

since 4D (hi + <P (hi)) 0, and T(0) = p8. With d4'/dz = -1 (see (1.29)), this further reduces

to

/ h1+O(hi)h (P (z') - p) dz' = p,|1 . (1.31)

As an example, consider the simple linear stratification

=p + Ap z - hi h<z< i + Ah,

where we explicitly require that the baroclinic displacement does not extend beyond the bottom

of the pycnocline, i.e., Ah > 4 (hi). From (1.31) we find

p h1+(h21)

- (z' - hi) dz' = p,|(.9 -+ (4) (hi))2 = 2-- -(, I A h

which completely specifies the baroclinic response to the wind stress -r, = pul,

(X, z) = T_ _tLg h + hi - z) (2 - 1 . (1.32)
Apgh L
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This displacement field can be described in terms of seiche modes using the solutions X (x) to

the seiche vertical equation (1.1), i.e.,

(x,z)=Z anm(z) N2 (Z) k2 Xm(z)Cos nrx
m n nm

Using the fact that

L 1 cos 'dx = -2L 1I-
T L p27r2

the coefficients anm are given by

1 - (-1)P 1 p u2L
apq =- 2 --- hih - z p(z) Xq (z) dz

p 272 EpqL Ap gh1

(see Appendix B.4.1). This expression can be solved numerically after specifying the values of

the parameters (p8 , Ap, u*, hi, Ah, L), and solving the vertical structure function eigenproblem

(1.1) to evaluate the Xm (z).

1.4 Summary

In this chapter we have briefly outlined some of the fundamental concepts associated with

internal seiching, as well as the analytical and numerical techniques most commonly used to

evaluate seiches. Even though seiches are adequately described qualitatively as forced, damped

harmonic oscillators, it is difficult to obtain realistic quantitative results because of the math-

ematical difficulties which arise due to the irregular bathymetry and continuous, non-uniform

stratification in real lakes. The summary of models in Section 1.2.2 is designed to highlight

these difficulties, and to preface the discussion of the analysis methods used in the remaining

chapters.

In the remainder of this chapter we discussed the generation of internal seiches by wind forc-

ing. In Section 1.3 we showed that, for a continuous stratification, seiche amplitude is described

by a linear evolution equation (1.18), and that viscous damping is easily included through a

modification of the inviscid frequency (as described in Chapter 3). However, solving the evolu-
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tion equation for a rectangular basin revealed that the steady state baroclinic response cannot

be easily described through a direct force balance as a sum of seiche modes. We concluded

in Section 1.3.2 by presenting an alternative approach, base on an ad hoc formulation for the

baroclinic displacement field generated by a steady wind-induced surface setup.
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Chapter 2

Bathymetry, stratification, and

internal seiche structure

Abstract'

Internal seiches play a significant role in a broad range of physical, chemical, and biological processes

in lakes. A detailed assessment of the impact of seiching requires an understanding of seiche structure,

which is determined by bathymetry and stratification. In this study, internal seiche solutions are eval-

uated for arbitrary bathymetry and continuous stratification using a 2D numerical model. Formulated

in terms of a streamfunction, the model produces a finite set of linear internal wave eigenmodes, and

allows the computation of the complete velocity field (over a grid) associated with each seiche mode.

Several idealized configurations of continuous stratification and variable bathymetry are used to explore

the effect of non-uniform systems on internal wave structure. In particular, we focus on bed velocity

distribution and the resulting potential impact on scalar fluxes, sediment transport, and internal wave

damping. Model results are also compared to thermistor chain data collected in the Upper Mystic Lake

(UML, Winchester, MA). Using an idealized description of the UML bathymetry, and density profiles

which emulate the seasonal variation of stratification in the lake, the evolution of bed velocities during

the autumnal breakdown in stratification is assessed, providing insight into the fate of the contaminants

entering the lake.

'This chapter has been published as:
P. D. Fricker and H. M. Nepf, 2000. Bathymetry, stratification, and internal seiche structure, J. Geophys. Res.

- Oceans 105(C6): 14,237-14,251.
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2.1 Introduction

Internal seiches play a significant role in a broad range of physical, chemical, and biological

processes in lakes. By mediating exposure to light and nutrients, the vertical excursions of

fluid associated with the wave motions have been shown to affect the spatial distribution of

macro- and microscopic organisms (Levy et al. 1991, Haury et al., 1983). The sustained

oscillations of water over the bed contribute to the generation of a benthic boundary layer,

which enhances the dissolution, resuspension, and transport of nutrients, contaminants, and

sediment (Gloor et al. 1994, Pierson and Weyhenmeyer, 1994), and contribute to effective

vertical mixing through horizontal buoyancy-driven flows (Ivey and Corcos 1982, Heinz et al.

1990). For example, MacManus and Duck (1988) showed that seiche-induced resuspension was

responsible for the sediment scouring patterns observed along the sides of Loch Earn. Because

of the lake's relatively simple shape, they were able to model the spatial (i.e. nodal) properties

of the seiches using a simple rectangular basin model. Assessing the impact of seiching in lakes

with more complex bathymetry is more difficult, because the internal seiches themselves are

modified by the basin. In the present study we use a numerical method to evaluate the internal

seiches in lakes with non-uniform bathymetry and stratification, focusing attention specifically

on the V1H1-type mode. The principal objectives of this work are to examine the effect of

bathymetry and stratification on seiche structure, and ultimately to determine the potential

impact of seiche motions on resuspension and dissolution of bed material.

Since the earliest studies of internal seiching, the spatial characteristics and oscillation

periods of individual internal wave modes have been evaluated using simplified analytical for-

mulations. Lakes were originally modelled as rectangular basins with a two-layer density profile

(e.g. Wedderburn 1907, 1912, Heaps and Ramsbottom 1966). A principal drawback to this

formulation is that it can only describe the first vertical mode (i.e. V1Hn, n=1,2,...). This can

be a serious limitation, because higher vertical modes, particularly V2H1, are now known to

be present in many systems (LaZerte 1980, Wiegand and Chamberlain 1987, MUnnich et al.

1992).

Increased computing power has allowed the development of progressively more sophisticated

models of internal seiching. The advances in modelling have generally fallen into two categories:

improved descriptions of stratification, and the generalization to arbitrary bathymetry. With
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regard to the former, wave modes for a continuous stratification were computed numerically

by Csanady (1968a,b), Birchfield (1969), and Monismith (1987), and pseudo-analytically by

Csanady (1972) as one-dimensional eigenvalue problems in an idealized rectangular or cylindri-

cal basin. Csanady (1982) and Monismith (1985) also used a multiple-layer matrix formulation

to approximate continuous density proffles. Although these models yield improved estimates of

internal seiche period, they do not provide a realistic picture of spatial structure, due to the use

of over-simplified bathymetries. Conversely, most models which incorporate a more accurate

basin shape use an overly simplistic two-layer density profile. For example, methods such as the

two-layer Defant procedure (TDP), which is an adaptation by Mortimer (1979) and Lemmin

and Mortimer (1986) of a surface seiche model (Defant 1918, 1961), as well as the two-layer

variable depth (TVD) model (Schwab 1977, Horn et al. 1986), only describe vertical internal

seiche motion in the horizontal plane at the interface.

In the present study, internal seiches are evaluated for systems with both irregular bathymetry

and realistic continuous stratification, using a two-dimensional numerical eigenvalue technique.

The method can be considered a generalization to two dimensions of the procedure used by

Csanady (1968a,b), Birchfield (1969), and Monismith (1987) described above. A similar eigen-

value method was first used by Yang and Yih (1976) to investigate waves in a basin with

semicircular bathymetry. However, their analysis was performed for a two-layer fluid, and dis-

cussion was therefore restricted to horizontal modes. More recently, Mttnnich (1996) studied

the effect of varying topography on internal seiches using a formulation similar to that presented

here, but only considered uniform stratification.

As a test case, internal seiche solutions are computed for the Upper Mystic Lake (UML,

Winchester, MA). Thermistor chain data has been collected in the UML for several field seasons

as part of an ongoing investigation of the mobilization of contaminants in the system. These data

allow direct comparison between the model results and real internal seiche behavior. The Mystic

Lake bathymetry is comprised of a deep main basin and a shallow shelf which extends over one

third of the lake. This feature is typical of many systems; lakes with similar bathymetries,

although larger in scale, include Lakes Geneva and Zurich. Many of the results presented here

are therefore directly applicable to these systems.

The model results demonstrate that large-scale bathymetric features lead to the magnifica-
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tion of flow at specific locations along the bed. The resulting spatially non-uniform bed stress

will give rise to enhanced localized mixing in the benthic boundary layer, which in turn can

cause localized increases in nutrient and contaminant fluxes due to both resuspension and en-

hanced dissolution. For the UML bathymetry, the model shows that the velocities on the shelf

are substantially magnified, even when the mixed layer is very shallow and the thermocline

region is relatively high above the bed. Furthermore, as the position of the thermocline varies

seasonally, the modification of the internal waves due to the bathymetry also changes, with the

greatest magnification of flow occuring as the bottom of the surface mixed layer approaches the

depth of the shelf.

2.2 Numerical Method

Internal seiche solutions are evaluated for arbitrary bathymetry and continuous stratification

using a 2D numerical model. Formulated in terms of a streamfunction, the model produces

a finite set of linear internal wave eigenmodes, which allows the computation of the complete

displacement and velocity field (over a grid) associated with each seiche mode.

A linearized governing equation for internal waves in two dimensions can be derived from the

full (2D) inviscid momentum (Euler) equations and continuity. The velocities (u, w), pressure

(P), and density (p) are decomposed into mean and perturbation fields,

u(X, z, t) -+ u'(x, z, t) P(x, z, t) -+ P(z) + P'(X, z, t)

w(x, z, t) - w'(x, z, t) p(x, z, t) -+ (z) + p'(x, z, t)

with the perturbation terms corresponding to the seiche motion. In the momentum equations,

the mean pressure and density are found to satisfy the hydrostatic relation

PZ = -

and therefore cancel one another. In this expression, and throughout the paper, we use the

notation fx = a.
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In the usual way, the velocity field may be expressed in terms of a streamfunction,

u = Z = , (2.2)

which can be summarized as q = (U, w) = V x [, with = (0, 4, 0). Since we seek wave

solutions, we assume oscillatory behavior in the perturbation fields, i.e.

where # = (p, P'). Neglecting nonlinear terms, which is valid for small wave amplitudes,

this formulation yields the governing equation (see e.g. Yih 1980, page 70)

N 2  N 2 _W2
zz z- 2 xx = 0 N 2 (z) = -_pz , (2.3)

9 W2 )X=0P

where N 2 is the buoyancy frequency. The boundary conditions that complete this system are

found from the no-flux requirement on the velocities:

n - q= 0 - n-(Vx F)=p-V0=0 , (2.4)

where n and p are unit vectors normal to and parallel with the boundary, respectively (i.e.

n - p = 0). Since p - VV) = ' is zero everywhere along the boundary, denoted by co-ordinate

s, we are free to take V) (s) = 0 without loss of generality. Finally, for simplicity we also make

the rigid lid approximation, and set V) (x, 0) = 0.

Other than linearization and the rigid lid, no additional approximations were made in this

derivation. Additional simplifications are possible, however, the most common being the hy-

drostatic and Boussinesq approximations. For example, Thorpe (1968) presented an analysis

of first-order nonlinear expansion terms for progressive internal waves, using the zeroth-order

solution in a Boussinesq fluid. Mulnnich (1996) numerically evaluated linear eigenmodes using

both approximations. The resulting governing equation,

N 
(2.5)

22 - 2 VXX = 0 , 25
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has the advantage that the eigenvalues vary linearly with the dimensions of the system, and

are, in that sense, scale-independent. The principle benefit of this is that round-off errors in the

computations can be avoided, which might otherwise result from the small vertical-to-horizontal

aspect ratio in the discretization of a real lake system. The possibility of round-off error does

arise when working with (2.3), and may lead to a steppiness in the computed solutions. For the

systems we consider, the hydrostatic and Boussinesq terms are exceptionally small, and could

justifiably be neglected. However, since the inclusion or omission of these terms has no impact

on the difficulty or tractability of the problem in our calculations, we have no need to exclude

them. We therefore employ equation (2.3) for all the analyses.

For a non-regular basin, (2.3) is not separable, and the eigensolutions for the full 2D system

must be evaluated numerically. The equation may be rewritten as

N2 2 Ozz - ± , (2.6)
9

which, along with the boundary conditions, are discretized such that the matrix formulation of

the problem has generalized eigenvalue form,

NW[=w 2 MW.

N denotes a matrix whose elements are determined in part by the buoyancy frequency (the

left-hand-side of (3.55)), while M corresponds to the discretization of the right-hand-side. If

either of the matrices M, N has an inverse, which is generally the case, then (3.55) can be put

in standard eigenvalue form. In the present study, the problem is solved in standard form using

a finite difference formulation.

The velocities are evaluated by taking derivatives of the numerical streamfunction solution

(see equation 3.52). In general, grid points in the computational mesh do not lie on the bound-

ary, but instead are located a fractional distance from the bed, in both the x and z directions.

To improve the estimate of velocity at the bed, the numerical solution is interpolated over a finer

grid, exploiting the known condition 0 (s) = 0, to generate data closer to the boundary (s). A

slight steppiness is still observed in the final result, but this effect can be arbitrarily minimized

by using an even finer grid. To compare the model results to thermistor chain observations, we
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calculate the vertical fluid displacements,

= 1. , (2.7)

which only differ from the vertical velocities by the factor (iw) l. This factor will be ignored,.

since we are interested in the envelope of the seiche motion and not the absolute magnitude.

The eigensolutions which correspond to the fundamental modes, for example the V1H1 or

V2H1 analogues, appear mid-way within the manifold of computed solutions to (3.55). In other

words, their eigenvalues are neither the largest nor the smallest in the solution set. The reason

for this is illustrated by the analytical solution to (2.3) for a rectangular basin and constant N 2

(e.g. Turner, 1973, page 23):

. n NrX mrz
(x, z) = b0 sin - e 2z sin , (2.8)

L H

in which the horizontal (n) and vertical (m) mode numbers are related to the frequency by

Wx2 n 2 n, M = 1, 2, 3, ....Wnm = ______ ~ ~ ,, (2.9)
N 2  n2 + j-2m2 + 4L p2 H2

The maximum and minimum values of wnm correspond respectively to n -- oo and m - 4o, with

the other mode number bounded. The seiche modes of greatest interest, for which n m a 1,

do not correspond to an extremum eigenvalue. As a result, it is necessary to compute all of

the eigensolutions for the discretized system, and then identify the desired oscillations from

among the entire set by inspection, using their nodal properties. This makes the analysis

computationally expensive, thereby limiting the possible size of the discretization. However,

the structural features of the numerical seiche solutions presented in this paper were generally

found to be unaffected by the size of the discretization employed. In most of the computations,

the square domain overlying the basin was discretized in a 40x40 grid, resulting in 1045 wet

points (and 1045 x 1045 matrices) for the parabolic basin and 869 wet points for the model UML

basin. A 30x30 grid was used for the series which included the largest (nearly-rectangular)

basin, due to the prohibitive size of the resulting matrices.

Lastly, the use of a 2D model in this study raises the issue of attempting a 3D formu-
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lation. While a 3D formulation is possible (in terms of the seiche-related pressure deviation

field P' (x, y, z, t)), it was found to be prohibitively difficult for three reasons: 1) Adding an

extra dimension generates larger matrices, and hence a larger eigenvalue computation; 2) The

eigenvalue problem is quadratic (and is also complex), requiring that the size of the matrix

system be doubled in order to reduce it to a linear form; 3) The boundary conditions for the

system are Neumann conditions, so that the resulting matrices tend to be singular. This means

that the eigenvalue problem cannot be recast in standard form, and must be solved as a more

expensive generalized problem. Fortunately, the 2D formulation presented here provides mean-

ingful results for longitudinal seiches in small to mid-sized lakes, for which Coriolis effects are

unimportant. The excellent agreement between model results and field observations supports

this conclusion, as demonstrated in the next section.

2.3 Test case: the Upper Mystic Lake

2.3.1 Site description

The Upper Mystic Lake (UML, Figure 2-1) is located in greater metropolitan Boston, at the

southern end of the Aberjona Watershed. The lake is relatively small, roughly 1000 m long

and 600 m wide, with a maximum depth of 25 m. The principal axis of wind forcing is almost

aligned with the major axis of the lake (also shown in Figure 2-1), with winds predominantly

from the south in summer, and from the north in winter. This is due to a combination of local

ambient weather conditions and the presence of low hills which flank the UML on its eastern

and western sides. Stratification conditions at midsummer are consistently strong, with typical

surface and bottom temperatures of 27-3 0 'C and 5-6 C, respectively, and a surface layer depth

of roughly 4 m. The bathymetric cross-section along the major axis (Figure 2-2) shows that

the northern third of the lake consists of a shoal with maximum depth 9 m. The stratification

profile shown at the right is derived from thermistor chain data collected in late summer. Later

results will show that the location of the thermocline relative to the shelf has a major impact

on the internal seiches in the lake.

The Aberjona Watershed is highly contaminated with organic and metal industrial wastes,

the legacy of an industrial period which spanned approximately 150 years (Durant et al. 1990,
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Figure 2-1: The Upper Mystic Lake (Winchester, MA), with depth contours plotted in 3 meter
increments. The positions of the thermistor chains are labelled A,B,C, and the predominant
wind forcing axis (oriented at approximately 340'/1600) is denoted by the solid arrow.

Spliethoff and Hemond 1996). The Aberjona river continues to bring contaminants such as

arsenic, chromium, and lead into the Mystic Lake system at a rate of hundreds of kilograms

per year (150 kg/year As, for example; Solo-Gabriele, 1995). Chemical studies of the UML

have found concentrations of As and Cr on the order of 5 g/kg in the sediments (Spliethoff and

Hemond, 1996), and As concentrations up to 0.1 pM in the water column (Trowbridge, 1995).

The objective of the present study is to assess the potential contribution of internal seiching to

the fluxes of contaminants in the UML. In particular, we investigate how the seasonal variation

of seiche structure, especially at the bed, can lead to a temporal variation in these fluxes.
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Figure 2-2: The bathymetry of the UML along the wind axis, with projections of the approx-
imate locations of the thermistor chains. Wind data was collected at the Medford Boat Club
(MBC) at the southern end of the lake.

2.3.2 Data collection and analysis

Temperature data was collected in the UML using thermistor chains at three locations (labeled

A,B,C in Figure 2-1). Each chain consisted of six thermistors, with vertical spacings of 1.5 m

for the chains at A and B, and 1.0 m at C. Based on previous studies (Trowbridge 1995, Aurilio

et al. 1994), and using an understanding of typical mid-summer stratification conditions in the

UML, the thermistors at A and B were placed to span an optimal region of the thermocline for

observing seiche motions, running from the bottom of the surface mixed layer (approximately

4 m) to a depth of nearly 12 m. Below this depth the density gradient becomes sufficiently

small that estimates of seiche amplitude based on thermistor records are unreliable. Chain C

was located in the shallower part of the lake, and was therefore placed higher in the water

column, from 2 m to approximately 6.5 m in depth. After deployment the bottom thermistor

was found to be lying on the sediment. The exact depth of each system was determined using a

pressure transducer mounted on the datalogger unit located at the top of each chain. The three

systems were placed in a staggered arrangement to allow assessment of three-dimensional seiche

motion. However, no transverse or rotational motion was detected in any of the data collected.

Although transverse seiching can occur in principle, these modes did not feature in the UML

internal wave spectra, most likely because the wind forcing consistently aligns with the major

axis of the lake (see Figure 2-1), as discussed above. Temperature measurements were recorded
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every five minutes. Concurrent wind (speed and direction) measurements were recorded at ten

minute intervals by an anemometer placed roughly 12 m above the water surface atop a flag

pole, at the Medford Boat Club at the southern end of the lake (MBC, Figure 2-1).

Previous thermistor chain studies (Trowbridge, 1995) have shown that the V1Hi (~0.6 cph)

and V2H1 (~0.09 cph) modes are the dominant seiches in the UML. Since the VIH1 seiche is the

focus of the current paper, motion associated with this mode is isolated from the temperature

data by filtering around 0.6 cph (bandpass 0.3-0.9 cph). A sample of raw and filtered data

from Chain C (i.e. over the shelf), along with the corresponding wind record, is presented in

Figure 2-3 for a seven-day period in midsummer. The data show both the presence of sustained

ViH1 and V2H1 oscillations, and the response to a transient forcing event. For example, the

strong burst of wind at Jday 195.6 generated a sudden increase in the amplitude of the VIH1

mode. Comparison to the data collected at Chain A (Figure 2-4) shows that this response is

substantially greater in the shallow part of the lake (Chain C) than in the main basin (Chain

A), indicating localized magnification of fluid displacement in this region.

Thermistor chain data can be used to identify the internal wave modes present in a lake

by matching observed seiche frequencies to model predictions, and (for the gravest modes) by

comparing the phases of motions recorded at different locations in a lake. However, the overall

sparsity of data, particularly in the horizontal, makes it difficult to develop a clear picture of

the spatial structure of the seiches. The numerical model, however, provides a description of

seiche structure over the entire longitudinal and vertical cross-section of the lake. Once the

model solutions have been validated through comparison to the field data, they can be used to

infer more detailed information about the structure and impact of the seiches.

To determine seiche amplitude from the thermistor data, a mean temperature profile T (z)

is first constructed by averaging the time series temperature measurements in the selected time

period and pooling the data from the three chains (Figure 2-5). An RMS temperature deviation

ATma is then computed for the VIH1 mode from a selected length of filtered thermistor record

(N points),

ms [TXi n) - T XI2, T (xi) N T (Xi, in), (10A)
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Figure 2-3: A sample of temperature data from thermistor chain C in the UML. a) Raw data
for a seven-day period in July, 1996. The bottom thermistor in the chain was resting on the
lake bed, giving rise to a damped signal. b) The same temperature record as a), after bandpass
filtering (0.3-0.9 cph) around the V1H1 internal seiche period (0.6 cph). c) The simultaneous
wind record, measured at the southern end of the UML. The wind direction is plotted in the
inset at the top of the figure; 0' is North.
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Figure 2-4: Thermistor data at Chain A, for the same time period shown in Figure 2-3. a) Raw
data. b) The data in a), after bandpass filtering (0.3-0.9 cph).
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Figure 2-5: Mean temperature data derived from thermistor chains ABC for the time period
shown in Figures 2-3 and 2-4 (Jday 191-197). a) Mean temperature at each thermistor on
Chains A (*), B (0), C (o). Chains A and B were positioned at the same depth in the water
column. b) Mean densities at each thermistor, calculated from the data in figure a). The data
from the three chains are assembled in a single profile (solid line); the data points at Chains A
and B are averaged. The profile is extrapolated to the surface and to the bed (dashed lines).
c) Buoyancy frequency profile derived from the temperature data in a).
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where xi denotes the position of thermistor i. The factor of 2 in this expression eliminates the

factor of .1 introduced by the summation, which is analogous to period averaging. Finally, RMS

seiche amplitudes are determined as

(* - Trhms (10B)rms aT/8z'

in which the local gradient DT/Bz is estimated from the composite temperature profile (Figure

2-5). Note that the computed ATrma profiles represent the envelope of wave motion for the V1

modes only, because for these modes the vertical fluid motions at any horizontal location are in

phase throughout the water column, and the sign of [T (t,) - T] at any instant in time t is the

same for all the thermistors on each chain. For higher vertical modes, the ATrms represent the

absolute value of the wave envelope. Finally, note in equation 10AB that the RMS temperature

deviations are assumed to correspond entirely to vertical fluid motions. In the thermistor chain

data, however, horizontal displacements can also contribute to the observed ATrms at locations

where a strong vertical temperature gradient impinges on a sloping boundary. We therefore

anticipate a divergence between the observed (rms and the simulated ( near the bed at Chain

C.

2.4 Results and Discussion

2.4.1 Comparison to the model

The streamfunction contour plot shown in Figure 2-6 is the numerically-evaluated V1H1 seiche

in the UML for the time period shown in Figure 2-3 (Jday 191-197). The basin shape used

to compute this solution corresponds to the bathymetry along the major axis of the lake (see

Figure 2-1), and the density profile, shown on the right, is an idealization based on the com-

posite temperature profile shown in Figure 2-5. Simulated vertical profiles of C derived from

this solution (Figure 2-6) using (2.7) are shown in Figure 2-7 for three longitudinal positions

corresponding to the approximate locations of the three thermistor chains (see Figure 2-1, 2-2).

The model profiles match those from the lake data. For the main basin profiles (A,B) the model

correctly predicts two local maxima, one at the base of the surface mixed layer, and another
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Figure 2-6: Streamfunction contours of the simulated V1HI mode in the UML. The density

profile used to generate this solution, shown on the right, is derived from the profile in Figure

2-5.

at an intermediate depth within the pycnocline. The RMS amplitudes at Chain A are slightly

greater than those at B for the higher-lying peak, while the opposite is true for the deeper

peak. The simulated profiles mirror this behavior. Over the shelf, the RMS amplitude at Chain

C increases down to the bed in both the observed and modelled profiles. The differences in

magnitudes directly at the bed probably arises because (10B) overpredicts the (rms by neglect-

ing the contribution of horizontal motions to the observed temperature variations, as discussed

previously. The differences between the simulations and the data in the vertical positions and

magnitudes of the peaks, are most likely due to differences between the real lake bathymetry

(Figure 2-1) and the idealization (Figure 2-6), and to the low spatial resolution of the temper-

ature measurements. Overall these results suggest that the numerical model provides a good

description of the structure of the ViHI internal seiche.
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Figure 2-7: RMS vertical displacements at Chains A,BC in the UML, using the data in Figures
2-3 and 2-4 for Chains C and A respectively, and the corresponding data for the same time
period for Chain B. The bars indicate the estimated error, which primarily results from the
computation of BT/&z from the temperature profile. The model simulation, computed from
the solution in Figure 2-6, is shown in the lower plot.

2.4.2 Stratification and bed velocities

To assess the potential impact of seiching on contaminant fluxes and resuspension, we focus

on the structure of the V1H1-type seiche at the lake bed. In this section we use a parabolic

basin to investigate the relationship between stratification and seiche-related bed velocities.

The relative importance of other processes which affect sediment transport, such as river inflow

and surface wave action, is not assessed here.

As lakes lose heat in the autumn, the breakdown in stratification can be characterized as a

decrease in surface layer temperature and a deepening of both the epilimnion and the pycnocline.

During this process, internal seiche structure (and climate) in the lake also changes. Although

it was assumed that 7 (z) is not a function of time in the derivation of the governing equation

58



(2.3), the model may be used for this analysis if the timescale for significant changes in the

density profile Ar (~10 days) is much longer than the internal wave periods 27rw-1;

V- (ptVV1 t) Aio/Ar S 1
(TVtt) Pow wA-r<

where e = . ~ 0.003. For modeling purposes, we describe the evolving stratification using aPO

sequence of idealized density profiles comprised of a homogeneous epilimnion and hypolimnion

connected by a linearly-varying pycnocline (see Figure 2-8, for example). These profiles can be

parameterized in terms of the thicknesses of the epilimnion (hepi) and pycnocline (hpyc), and

by the surface and hypolimnion densities. In this analysis we focus on the impact of changing

layer thicknesses on seiche structure. Changes in surface temperature have a direct impact

on seiche frequency, but only weakly affect seiche structure (on the order of the Boussinesq

approximation), and are not considered here.

Figure 2-8 shows a series of V1H1 seiche solutions evaluated in a parabolic basin (h (x) = 1-

(2x - 1)2) for three different density proffles. As described earlier, the governing equation (2.3)

is not scale-independent. In order to have the magnitudes of the Boussinesq and hydrostatic

terms be of correct order it is necessary to use a vertical-to-horizontal aspect ratio which is

typical of real lakes. The calculations are performed using the UML dimensions (H = 25m, L =

1 r000m) and densities (7 (0) = 997 kg/rn3 and ;(H) = 1000 kg/rn 3 ), but the solutions are

presented in normalized spatial coordinates. All of the solutions in Figure 2-8 were computed

for an epilimnion depth of hepi = 0.15H. The pycnocline thickness is broadened sequentially

by one grid point (Az = -), with hpyc = 0.18H , 0.20H, and 0.22H for figures a, b, and c

respectively. The profiles are denoted pi, P2, and p3 for convenience.

To demonstrate the connection between these streamfunction solutions and the more familiar

velocity field, u and w are computed for the solution in Figure 2-8a, and plotted in Figure 2-9.

The plot represents the spatial envelope of a standing wave, with the arrows reversing direction

sinusoidally in time with the seiche frequency. This solution corresponds to the VIHi mode in

the rectangular basin. As this example illustrates, the V1H1 analogue can be identified in more

complex basins by the absence of nodes (i.e. changes in sign) in the streamfunction contours in

either the horizontal or vertical direction.
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Figure 2-8: ViHI seiche solutions evaluated in a parabolic basin. The density profiles used
to compute each solution (shown on the right) are comprised of a surface mixed layer with

thickness hepi = 0.15H, and a pycnocline region which is broadened sequentially by one grid

point (Az = -H), from hpe = 0.18H to 0.22H. The lines show the V) = 0.25, 0.5, 0.75
contours. 60
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Figure 2-9: Velocity field derived from the VIH1 streamfunction solution in Figure 2-8a (see
equation 3.52). The solution is computed for a 40x40 grid, but presented on a 20x20 grid for
clarity.

The bed velocity distributions for the three solutions in Figure 2-8 are shown in Figure 2-10

(solid lines, labelled P1, P2, and p3), along with three additional curves. The fourth solid line

(P2L) is the two-layer solution for hepf = 0.15H. The dashed curves represent the two-layer

solutions for epilimnion thicknesses of hepi = 0.25H and 0.35H, and will be discussed below.

In all cases the Ubed are normalized by the total energy of the seiche,

Ubed =_ E , qbed= bed +Wbe, (11)

where (due to equipartition of energies)

E = |Ekin| = -p (u2 + w2 ) dxdz and pOV j5dxdz , (12)

to allow direct comparison among the six cases. They are then rescaled to set the mid-lake

maximum of the P2L curve to unity, for convenience in illustrating the magnification of the flow.

The velocity structures shown in Figure 2-10 clearly differ from rectangular basin solutions, for

which Ubed (~ sin ') has a maximum at the center of the lake regardless of stratification.

For the parabolic basin considered here, the maximum Ubed only occurs at mid-lake when

the pycnocline is exceptionally thin, as the two-layer solution shows (P2L). As the pycnocline

thickness increases, Ubed makes the transition to the two-peaked profiles seen for pi to P3-
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Figure 2-10: Bed velocities derived from the solutions in Figure 2-8, plus three additional
solutions. To generate the curves, the streamfunction contours were first interpolated onto

a finer grid and then used to compute gbed = ub ± we using equation 3.52. Residual

steppiness was smoothed with five-point averaging. The curves were normalized as in equation
11, and then rescaled by the maximum value of the P2L solution. The solid lines were all
computed with hepi = 0.15H, and show the evolution of bed velocity with increasing pycnocline
thickness (hryc = 0 (P2L), 0.18H (pi), 0.2H (P2), 0.22H (p3)). The dashed lines were computed
using two-layer density profiles (hryc = 0), with hepi = 0.25H and 0.25H. Along with the P2L
solution, these curves show the changes in Ubed with increasing epilimnion depth.

Making the simple assumption that sediment is scoured from regions of high bed velocity and

deposited in locations of lower bed velocity, the off-center maxima imply that sediment will be

carried not just toward the 'edges' of the lake, but also toward the center. Furthermore, moving

from Pi to P3 (i.e. increasing hpyc), we see a substantial increase in the maximum value of Ubed

around x = 0.1 and 0.9, and a dramatic decrease in velocity at mid-lake, as the bottom of the

lake is progressively cut off from the seiche motion. In fact, the results in Figure 2-10 suggest

that there is a density profile for which Ubed at the center of the lake drops to zero. In this

respect, the bed velocity structures in the (more realistic) parabolic basin differ substantially

from the corresponding rectangular basin solutions for these stratification profiles.

To estimate the damping rate for the internal seiches, we assume that the seiche energy

is dissipated predominantly through bed shear. The E defined in 12 is the energy (per unit

width) for an inviscid system, and is therefore constant over time. If we assume that the viscous
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Profile k/k 2 L

P2L 1-0
p1 2.4

p2 3.4

p3 4.2

Table 2.1: Damping coefficients for the six density profiles in Figure 2-10. The k are evaluated
as in equation 13 and normalized by the two-layer solution. The rate of seiche damping increases
both as the pycnocline is broadened and as the epilinmion depth is increased.

damping of the seiches has small magnitude, we can permit a small transient component to E

and estimate the dissipation of energy using a first-order model,

dE

This is then balanced by the work done at the bed (coordinate s):

-kE = TbedUbedds .

The bed stress can be taken as -rbed = pCbUim (i.e. U at 1m) with Cb = 0.005 (Dimai et al.,

1994). Using the bed velocities in Figure 2-10 as representative of Uim, we then find

Cb fa Pandsk= G f U (13)
V 7 (U2 +w 2 ) dxdz

The relative damping coefficients for each of the six cases is shown in Table 1. Each k is

normalized by the two-layer (hepi = 0.15) solution. We see that the damping rate for the

seiches increases four-fold as the metalimnion is broadened and the bed velocities at the base

of the pycnocline increase. Likewise, for the two-layer profiles, as the interface moves closer to

the bed we see a substantial increase in k. These results illustrate the effect of internal seiche

structure on energy dissipation, and show that the attenuation of the seiching is controlled in

part by stratification and bathymetry. This clearly has an impact on the seasonal variation in

seiche activity.

Returning to Figure 2-8, note that the seiche develops a ray-like structure as the thickness
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of the pycnocline increases (P1 to P3 ). Figure 2-8c in particular suggests that the model system

is approaching a critical behavior, as the seiche energy is confined to a narrow conduit within

the water column, i.e. along the streamfunction contours. These observations are suggestive

of the results obtained by Maas and Lam (1995), in which internal waves were evaluated using

a geometric wave ray technique. For uniform stratification (constant N), they concluded that

for most bathymetries the internal wave rays (i.e. energy) generated within the lake become

focused along specific lines, called attractors. The trend in Figure 2-8 suggests that the system

may be converging toward such focusing behavior. Maas and Lam demonstrated that wave ray

focusing is typical in constant-N systems, so that coherent internal seiches are the exception

rather than the norm in a uniform stratification. For the systems we consider (N ~ constant

in the pycnocline and N = 0 in the surface and lower layers), when the pycnocline is thin

the shape of the 'waveguide' region in which the wave rays can propagate approximates an

elongated bucket with slightly rounded sides. From Maas and Lam, the bucket-shaped basin

(flat bed with linear sloping side walls) is one of the few constant-N systems which permits

seiche solutions. Although these two configurations are not exactly equivalent (because they

have different boundary conditions; the BC 0 = 0 applies at the free surface and the bed, not

at the boundary of the pycnocline), the geometric similarity strongly suggests a correspondence

between their seiche solutions. In addition, in our numerical calculations, as hac is increased

beyond that in P3 by one or more additional grid points and the system makes the transition to

wave ray focusing, we no longer obtain smooth V1H1 solutions like those in Figure 2-8. This is

consistent with the conclusions of Maas and Lam (1995), who contend that systems which are

subject to focusing are poorly described by discretization methods. It is not possible to make

a direct comparison between the cases considered here (i.e. profiles for which focusing does

not occur, and coherent seiche solutions are found) and the results of Maas and Lam, however,

since these authors only considered uniform stratification.

Regarding the above observation of an apparent approach toward a critical behavior, viscous

and nonlinear processes, which were omitted from the present formulation, will likely prevent

this behavior from occuring in real systems (as Maas and Lam (1995) also note in their analysis).

Specifically, as the seiche energy becomes more focused and velocities are increasingly magnified,

nonlinearity and viscosity become important and lead to greater damping. This can be seen
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from the results above (Table 1), in which the increases in hpyc led to a four-fold increase in the

decay rate k. The impact of nonlinear terms can be inferred from the curves in Figure 2-10;

as Ubed increases at the base of the pycnocline, the advective terms ~ Ubed - Dbed/s grow

substantially.

Along with the P2L curve, the dashed lines in Figure 2-10 show the evolution of bed ve-

locities with changing surface layer depth, hepi. Two-layer density profiles were used in these

calculations to isolate the changes in bed velocity structure due to increasing hepi. The trends

were found to be qualitatively similar for all values of hpyc. As the epilimnion deepens, the bed

velocities show a steady increase in the deepest part of the lake. This result is easily explained

using a simple depth-averaged perspective. As the thickness of the lower layer decreases, con-

servation of mass requires that the flow at the bottom of the lake increases relative to the upper

layer, u 2 = -- ui. Normalizing by the system energy then gives ,U21 h which pre-

dicts increases in |u 21 (~ |Ubel) of 40 per cent and 75 per cent as hepi is increased respectively

from 0.15H to 0.25H, and from 0.15H to 0.35H. These increases are very close to the results

in Figure 2-10.

We conclude by noting that the 2D model used in the present study effectively reduces to

the method of Yang and Yih (1976) when a two-layer stratification is used. Therefore, the

results in Figure 2-10 (i.e. the qualitative and quantitative differences between the two-layer

and P1, P2, P3 curves) also illustrate some of the differences between two-layer models and the

numerical technique used here (with continuous stratification). For example, the magnification

of Ubed associated with the development of a ray-like seiche structure clearly cannot occur in

two-layer systems. The figure thus demonstrates the importance of an accurate description of

vertical structure, and of the limitations of a two-layer perspective.

2.4.3 Bathymetry and bed velocities

In this section we investigate the dependence of bed velocities on bathymetry, using a series of

basins ranging from rectangular to parabolic. The bathymetry in each case is given by

cosh a - cosh a (2x - 1) h (0) h(1) = 0
cosh a - 1 h () 1
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Figure 2-11: Bed velocity versus horizontal distance for six basins of varying concavity (a =

1,2, 3, 5, 10, 100). The corresponding bathymetries are shown in figure b). The curves were

generated and processed the same way as those in Figure 2-10, and subsequently were rescaled
by the maximum (i.e. mid-lake) value for the rectangular basin soution (a -+ o).

and is parametrized in terms of the variable a, which corresponds to an index of concavity. The

two extreme basin shapes are given by a -+ 0 (parabola h (x) -+ 1 - (2x - 1)2) and a -+ oo

(rectangle). The density profile is the same as the profile in Figure 2-8a.

Figure 2-11 shows the bed velocity profiles computed for six configurations (a = 100, 10, 5,3,2, 1).

The corresponding basin shapes are also shown. The Ubed are once again normalized as described

in equation 11, and then rescaled to set the mid-lake maximum Ubed of the rectangular basin

solution to unity. Moving from a = 100 (r-rectangular) to a = 1 (~parabolic), a region of

substantially enhanced velocities develops at two locations, where the base of the pycnocline

reaches the bed. While Ube at the center of the lake decreases by 20 per cent, the velocities

at x f- 0.1 and 0.9 increase by approximately a factor of 5, ultimately becoming as much as

50 percent greater than Ube at mid-lake. We anticipate substantially different sedimentation
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patterns for each of the six cases. In particular, for the nearly-rectangular bathymetry the ob-

served distribution of Ubm will tend to carry sediment away from the center of the lake, causing

a build-up at the 'corners' of the basin. For the parabola, on the other hand, the off-center

maxima cause sediment to be carried both toward the edges of the lake, and to the center. Fur-

thermore, for the same total seiche energy, the scouring is greatest in the metalimnion region

of the parabolic basin because the highest bed velocities are generated in that system.

2.4.4 Seasonal variation of bed velocities in the UML

Because of the high level of contaminants in the sediments of the UML, the enhanced benthic

mixing, dissolution, and transport associated with the internal seiches can be an important

factor contributing to the water quality of the lake. And because the seiches vary seasonally (in

structure and climate), their contribution to contaminant (and nutrient) fluxes will also vary

with time. In this section we assess the temporal changes in bed velocity for the V1H1 seiche

arising from the autumnal changes in stratification in the UML.

Bed velocities for three different stratification profiles are shown in Figure 2-12 (solid lines).

The representation of the UML bathymetry (dashed line) which was used to compute these

solutions is laid over the velocity curves. The velocities are again normalized by the total

seiche energy (equation 11), and subsequently rescaled by the overall maximum value of the

three solutions. The density profiles are comprised of a surface mixed layer, a linearly-varying

pycnocline, and a homogeneous hypolimnion (inset, Figure 2-12), and represent an idealization

of the autumnal breakdown in stratification, based on profiles measured on 8/21, 10/13, and

11/4, in 1992 (Aurilio et al., 1994). When the pycnocline is relatively high in the water column

(08/21), the region of magnified flow extends over a broad region of the shoal in the northern

end of the lake (right side of the plot). As the lake cools and the mixed layer deepens (10/13),

the maximum amplitude of Ubed remains essentially unchanged, but the region of amplified

flows becomes localized to a much narrower region of the shelf. This suggests that the fluid

further up on the shelf becomes disconnected from the seiching motion. Finally, when the lake

cools still further and the pycnocine drops below the level of the shelf (11/4), the amplified

flows over the shelf disappear, and an increase in. main basin flows is observed. At this point

the entire shelf is disconnected from seiche-induced flows.
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Figure 2-12: Bed velocities for three different density profiles which simulate the seasonal
evolution of stratification in the UML (from Aurilio et al., 1994); the curves are labeled with
the dates on which the density profiles were measured. The idealized density profiles used to
generate these solutions are shown in the inset figure, and the model UML bathymetry used
in the computations is also shown (dashed line). The data were generated the same way as in
Figures 2-10 and 2-11, but rescaled in this case by the maximum overall value on the data set
(8/21 curve, at x ~ 0.75).

The observed temporal evolution of the maximum Ubdi and the migration of the magnified

flow region can play significant roles in the annual influx of contaminants to the UML. Metal-

laden sediments enter the system from a river inlet near the northern end of the lake (right

side, Figure 2-2), arriving first at the shelf. The seasonal strong winds that begin in the

autumn coincide with the changes in Ubd described above. Although an exact prediction of the

magnitude of the V1H1 seiche (or indeed any seiche) requires specific information about wind

forcing, we nonetheless know qualitatively that the VIH1 seiche is strongly excited in the UML

during the fall. We therefore conclude that the bed motions outlined in Figure 2-12 may have

a substantial impact on the initial deposition and subsequent mobilization of contaminants in

the lake. Future field studies of sediments in the UML will explore the link between seiching

and sediment distribution.
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2.5 Conclusions

The results presented here show that internal seiche structure is highly dependent on both

bathymetry and stratification. Simpler lake models which use a rectangular basin and/or two-

layer stratification formulation, which are frequently used for convenient characterizations of

seiche motion, provide poor descriptions of even the basic qualitative features of seiches. For

example, the V1H1 vertical motions observed and modeled in the UML differ substantially from

rectangular basin structure functions. The accurate modeling of seiches therefore requires the

use of realistic density profiles and basin shapes.

In this paper we have assessed the effects of bathymetry and stratification on seiche struc-

ture. A 2D numerical model was used to compute a finite set of seiche eigensolutions in systems

with variable bathymetry and continuous stratification. Each solution yields a description of

the entire velocity or displacement field of the seiche, and can thus be used to augment the ex-

tremely limited spatial information provided by thermistor chain data. The model can therefore

be a valuable tool for interpreting field observations. In addition, the entire set of computed

eigenmodes can also be used as a basis for describing the composition of internal seiche data,

both in the field and from hydrodynamic model simulations.

The dependence of seiche structure on stratification was investigated using a series of density

profiles in a parabolic basin. The results show that the depth of the epilimnion (hepi) and

the thickness of the pycnocline (hpyc) affect both the magnitude and the distribution of bed

velocities. The observed variation in Ubde as a function of hpi is easily explained by conservation

of (horizontal) volume flux throughout the water column. The dependence of Ubde on hpye is

somewhat more complicated, however. Except for cases where the pycnocline is exceptionally

sharp (tending to a discrete interface), the maximum bed velocities occur where the base of

the pycnocline intersects the bed, and the center of the lake corresponds to a local minimum in

Ube. Furthermore, as the pycnocline thickness increases, the Ube maxima are magnified while

the velocity at mid-lake drops toward zero, and the deepest part of the lake becomes cut off

from the seiching motion. The net effect of this evolution in bed velocities is an increase in

the damping rate of the seiches (k) with increasing hpyc. This is in complete contrast to the

rectangular basin model results, which predict a single velocity maximum at mid-lake for the

V1H1 mode (i.e. U oc sin ZR) for all stratification conditions. This implies that basin shape
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also plays an important role in determining seiche structure. The dependence on bathymetry

was confirmed by computing the V1H1 seiche solutions for a single density profile in a series

of basins of varying concavity. As the basin shape was changed from rectangular to parabolic,

the computed Ube evolved smoothly from the single mid-lake maximum curve into the two-

peaked distribution described above. By altering the magnitude and spatial distribution of the

boundary shear, the basin shape influences the long-term fate of sediments and the damping of

internal seiche motion.

Application of the model to the UML demonstrated the potential impact on bed velocities

of the autumnal stratification breakdown. The most important consequence of the changing

conditions in the lake is the migration of the magnified bed-flow region. During the summer

the maximum bed velocity peak is located on the shelf, and is relatively broad. Moving into

the fall, as the surface layer deepens and the pycnocine begins to broaden, the region of

elevated velocity narrows. Ultimately, as the base of the pycnocline deepens and drops below

the shoal, the flows over the shelf disappear altogether . This variation in Ubde has potentially

important consequences for the transport of contaminants in the UML. Contaminant-laden

sediment entering the lake is initially deposited over the shelf. The timing and magnitude of

the remobilization of these contaminants depend strongly on the bed velocities over the shelf,

and therefore on the spatial structure and temporal evolution of the seiche.
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Chapter 3

Viscous damping of internal seiches

Abstract

We present an analysis of the viscous damping of internal seiches in lakes, using a perturbation

technique based on the addition of a benthic boundary-layer flow to the inviscid velocity field. The

resulting expression for the decay rate (a) can be interpreted physically as the rate of bed stress working

by the seiche on the bed, and corresponds to the integral of seiche kinetic energy at the bed (or more

accurately, within the benthic boundary layer) modified by a coefficient which describes the effects

of buoyancy and bathymetry. Numerical (inviscid, two-dimensional) V1HI seiche solutions are used to

compute a for a series of idealised basins. We find that the buoyancy factor gives rise to a ~20% increase

in a, except for the rectangular basin model, in which buoyancy effects are confined to vanishingly small

contributions at the vertical end walls. Further exploration of the boundary layer structure shows that

the magnification of the a is caused by a decrease in the shear length (6'), the distance over which the

outer flow velocity drops to zero at the bed. The relationship between 6' predicted by our model and

stratification is also explored.
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3.1 Introduction

The decay of standing waves in containers and basins has been studied extensively over the

past few decades. Johns (1968) evaluated the damping of interfacial waves for a two-layer fluid

system, using a perturbation technique based on the addition of a viscous boundary-layer flow

to the inviscid velocity field. The decay rate (a) is computed as the complex portion of the

leading-order perturbation of the wave frequency (w). Dore applied the same method to the

decay of both surface waves (1968a) and internal waves in an arbitrarily stratified fluid (1968b,

1969). However, he restricted attention to constant-depth systems, and thus gained no insight

into the effects of bathymetry. Mei and Liu (1973) computed damping rates for surface waves

in an arbitrarily-shaped basin, and included the effects of a meniscus region to resolve problems

with singularities which arise in the asymptotic expansion at the basin walls on the free surface

(Ursell, 1952). Kerswell and Barenghi (1995) used the method to evaluate decay rates for

inertial modes in a rotating cylinder. The perturbation method employed in these studies is

summarised concisely by Mei (1989; page 395) for surface waves, with results computed for

several examples, including seiches in simple basins.

A number of researchers have computed wave and seiche decay rates using a simplified

linearised bed stress relation (- cc u) with friction coefficient, with a resulting perturbation

analyses similar to the boundary-layer method described above. For example, Orlio (1984)

computed decay times for rotational waves in a two-layer fluid in a rectangular channel, using

depth-averaged equations and a linear bed stress relation in the momentum. Hukuda (1986)

used the same method to study surface seiches in 3D parabolic and elliptical basins, for which

the zeroth order systems can be solved analytically. And Craig (1991) studied the damping of

internal waves in open systems using both conventional stress terms in the momentum equa-

tions as well as a linearised stress relation for the bed boundary conditions. In addition to

these perturbation techniques, a can also be computed using physical arguments based on

the assumption of linear energy decay. Henderson and Miles (1994) evaluated the damping of

surface waves in cylinders as the rate of stress working by the wave system on the boundary.

Mei and Liu (1973) showed that the results of their perturbation analysis could be interpreted

equivalently as the rate of pressure working by the surface waves on the top of the bed/wall

boundary layers.
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Here, we begin by presenting a generalised analysis of the damping of longitudinal (two-

dimensional) internal seiches in lakes with arbitrary bathymetry and non-uniform stratification.

An expression for seiche decay rates is first derived using the boundary-layer perturbation

analysis described above. This is followed by a comparison to several physically-based derivation

methods, which reveals the equivalence of the different techniques. We find that the decay

rate for internal seiches is similar to the homogeneous fluid result, but includes an additional

factor which accounts for effects due to buoyancy and bathymetry. Since a is proportional

to the kinetic energy at the bed (i.e. within the benthic boundary layer) at leading order,

determination of the damping rate requires an accurate estimate of bed velocity structure. As

we shall see, simplified models such as the rectangular basin provide inadequate description

of Ubed. We therefore compute a series of numerical two-dimensional seiche solutions (for the

VIHI mode) using an eigenvalue method (Fricker and Nepf, 2000).

The increase in the damping rate for internal seiches (versus a when buoyancy effects are

neglected) is most easily interpreted using the bed stress perspective (Henderson and Miles

1994). Within the pycnocline, the magnitude of the pressure gradient at the boundary increases

due to enhanced buoyancy forces in this region of the water column. This in turn requires a

magnification of the boundary shear stress (r) in order to satisfy the momentum balance.

Further analysis reveals that the increase in r corresponds to a decrease in shear length (8'),

the distance over which the free-stream velocity drops to zero at the bed.

3.2 Analytical formulation

The complete velocity field in the lake q (x, t) (where x = {xj, i = 1, 2, 3) can be decomposed

into a flow U (x, t) in the viscous benthic boundary layer and a flow u (x, t) throughout the rest

of the water column:

q=u+U. (3.1)
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Neglecting nonlinear terms, which is valid for small wave amplitudes, the momentum equations

are thus

qj OP OBrju

p qj - gjp + , (3.2)

written in tensor notation. The (incompressible) continuity relations are

V-q=0 +q-Vp=O.

For small amplitude waves, the velocities u = (u, v, w), pressure P, and density p can be

decomposed into mean and dynamic fields,

u(x, t) -+ '(x, t) P(x, t) - P(z) + P'(x, t) ()
U(x, t) -+ U'(x, t) p(x, t) -+ T(z) + p'(x, t)

where the perturbations correspond to the seiche motion. Since we are interested in periodic

solutions, we assume the temporal variation of the fields f = (u', U', p', P') is sinusoidal,

f (x, t) -+ Re [f (x) eiwt] , (3.4)

with w the internal seiche frequency.

From (3.3) and (3.4), the linearised density-continuity relation can be written as

iWP' + d (w' + W') = 0 .(3.5)
dz

In the momentum equations, the mean pressure and density are found to satisfy the hydrostatic

relation dP/dz = -gp, and therefore cancel each other. (Hereinafter we drop the primes

on the perturbation fields for convenience.) Dimensional analyses reveal that shear stresses

throughout the water column scale on v, while stresses near solid boundaries are ~ v (see,

for example, Ursell 1952). In addition, recent field observations by Gloor et al. (2000) support

the assumption that the dissipation of seiche energy occurs at leading order within the benthic

boundary-layer. We therefore neglect viscosity in the water column, and consider the rjk near
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the bed alone. Because of the partitioning of the flows we are free to separate (3.2) into two

sets of equations (after using (3.5) to eliminate the density),

iWPU = -VP i .+ g. w iwPUj = - 1gdpW 6 3 (3.6)
iwodz iodz Boyk(36

representing the outer inviscid and boundary-layer flows, respectively. Continuity is simply

V -u= 0 V-U=O . (3.7)

These two systems are coupled by the boundary/matching condition for the boundary-layer

and outer flows,

u+U=0 on , (3.8)

where 1 denotes boundary of the lake, i.e., the bed plus free surface z = 0; the surface makes

zero contribution to seiche damping at lowest order, i.e. U,..f = 0, but it is still convenient

to describe the entire boundary as o9 in the rest of this analysis. The partitioning in (3.6) is

effectively analogous to the conventional treatment of oscillating (thin) boundary-layer flows,

in which the pressure gradients inside and outside the boundary-layer are equal, and can be

cancelled to yield a boundary-layer equation such as the U-equation in (3.6). In the present

formulation the same result is achieved by associating the dynamic variations in P exclusively

with the outer flow u (first equation in (3.6)).

We next derive the governing equation for the outer flow, followed by a boundary-layer

analysis which provides the boundary conditions on u necessary to compute the viscous damping

coefficient for the seiches.

3.2.1 Outer flow

Outside the boundary layer, a linearised governing equation for internal waves in 3D can be

derived from the momentum equations (3.6) and continuity (3.7). The pressure and velocities
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are related by the modified momentum equations (3.6), which we rewrite as

1
iw-VP = w2 u-N 2 wk, (3.9)

P

where k is a unit vector in the z-direction, and N 2 (z) = -g/i-dp/dz is the buoyancy frequency.

For linear internal waves in 3D the problem is usually formulated in terms of the dynamic

pressure, because P is the only field which can be isolated in a complete governing equation

plus boundary condition system. Using (3.9) to replace the velocities in the u-continuity relation

(3.7) gives the governing equation

v~p W28 1 1 BP)=
-z (3.10)

where V2 a8 2 /&X2 + 92 /&y 2 . The boundary conditions are derived from the no-flux require-

ment on the velocities, again using (3.9);

89P 9P W 2 ap
n -u=0 -+ no-+ ny- -nz - lP 0(.1

x B9y N2 2 (3.11)

with n = (nx, ny, nz) the boundary unit normal vector. Finally, for the boundary-layer analysis

in the following section we note the following dimensional scalings for the outer flow. The

horizontal and vertical coordinates are on the order of the length (or width) and depth of the

lake, respectively, while the velocities follow conventional continuity scaling;

w w H
X, y ~ L z ~ H -, - ~ pL (3.12)

The mean density 7 is order po ~ 1000kg/m3

3.2.2 The boundaries

For convenience in describing both the boundary layer (i.e. U) and the boundary conditions

on u, we define unit vectors ti, t 2 which form a basis in the tangent plane at each point on a

(and are thus normal to n, n -ti = n -t2 = 0; ti -t2 = 0; see figure 3-1). The vectors (t1 , t 2 , n)
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x

Xt 2

xn

Figure 3-1: Definition sketch showing the absolute coordinates (x, y, z) and the boundary-fixed
coordinates (Xt1 , Xt 2 , xz). Both systems are defined with the same relative orientation.

have the same relative orientation as (ij, k):

tiXt 2 = n t2 xn= ti nxt 1 =t 2

in analogy to the cyclic relations i x j = k, j x k = i, k x i = j. If we specify x = (x, y, z) as an

absolute coordinate system (horizontal, vertical, with z positive down), we can then define

zn = n - x Xt, _ ti - x Xt2 = t2 - X ; Xr = (Xtl,, Xt 2 )

Even though the orientation of these new coordinates is defined by the boundary (so that

(xT, xz) are formally local coordinates which apply for the boundary-layer flow), we still treat

(xT, x) as an alternate, equivalent system to (x, y, z) in the outer flow analysis (i.e. for u).

Because the vertical-to-horizontal aspect ratio y < 1 for lakes, the two systems have essentially

the same scales, (XT, X) ~ (L, H). Boundary layer coordinates related to (xT, Xz) will also be

formally introduced below. Note that the boundary itself corresponds to X = 0, and we use
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the equivalent notations

f1a = f (XT, 0) f (s)

throughout this paper to describe functions on 8.

3.2.3 Benthic boundary layer

The boundary conditions which complete the formulation for u are derived from the analysis

of the boundary-layer flow. Viscous stresses dominate the momentum balance near the bed,

so that this region can be regarded as distinct from the rest of the water column. The motion

in the boundary-layer can be evaluated separately and then related to the outer flow as a

modification to the conventional inviscid boundary conditions. We describe the stresses r = r

in the boundary-layer by

Tjk= pv -. (3.13)

The viscosity v is likely to have a spatial dependence, especially along the bed, due to variations

in fluid velocity and to internal wave breaking at the bed within the pycnocline region (as

discussed by Imberger 1998). We therefore consider both constant v and v (s) in the analytical

formulation of the seiche decay rate. Across the boundary layer (i.e. in the normal direction)

we assume that variation in 7iv (and in the outer inviscid flow uo) is very small. In practice,

very little is currently known about turbulence or mixing parameters in lake benthic boundary

layers, and so ultimately we take v constant for the model systems investigated in this paper.

However, it is still useful to carry the spatial dependence through the analysis in order to observe

the potential impact of variations in viscosity and boundary-layer thickness on the decay.

Replacing &/8t with iw in the boundary-layer equation in (3.6) and substituting the rjk

(3.13) gives

iWUj = -iW_ W13 _ p~ u j + ,U (3.14)pw 2 dz (3.1 4) x 8xj

where j = 1, 2, 3, corresponding to x, y, z. The spatial variation of v in the boundary-layer can
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'p
U

4
q=u+IU

n

Figure 3-2: Definition sketch showing the boundary layer 6 and the BL coordinates ((, ) =
(L-lxt, -6-'Xn) (the coordinate (t denotes the pair (&,1 ,, 2 ) in the tangent plane to o).

be described by

Vi - vO2 (s) , max (o 2 )=1

Specific details concerning the form of 0,2 will be discussed later. Within the boundary-layer

we define the scaled coordinates (T, r,) (figure 3-2)

XT L T (3.15)

where 6 is the boundary-layer thickness and wo is a reference frequency; in the following analysis

wo corresponds to the inviscid seiche frequency. The spatial variation of v can equivalently be

incorporated into the definition of the boundary-layer thickness, 6 -+ 6 (s) = (2v/wo)2 o (s).

The horizontal scale L is once again the length of the lake (see 3.12). The minus sign in the

definition of n accounts for the fact that the boundary-layer normal coordinate is positive into

the fluid, while the unit vector n is positive outward by convention (see figure 3-2). Given the
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relationship between the inner and outer flows (3.8), the boundary-layer velocities scale as

UT ~ (U,V) , Un ~ w ; A ~p (3.16)
|UT|

where UT (t 1 - U, t 2 - U). With these scalings and assumptions, (3.14) becomes

w wN2 -2 62
2i-U = 2 i--W j3 o2 V + 0 (3.17)

WO wo W H 2

Although the coordinates and velocities in this equation are written in the absolute basis (i, j, k),

in the next section we use the fact that the Laplacian can be written in terms of the boundary

basis;

-2 82 62 -2 -2 _82 82
V -+ -VT, VT = - + 2.(3.18)

The Boussinesq-type terms from 8rjk/8Xk in (3.14) are somewhat difficult to scale because the

density gradients are not expressed in terms of the (x, y, z) co-ordinate system. Nonetheless, it is

safe to say they are within an order of magnitude of Ap/po -62 /H 2 , where Ap = Psurface - Pbed $
3kg/m 3 in thermally-stratified lakes, and are therefore exceedingly small relative to the leading-

order terms.

Continuity in the boundary-layer can be written in terms of (XT, x) as

8 8 8a(n - U) + (ti -U) + (t2 U) = 0. (3.19)

Defining the small dimensionless parameter

e - (2 < 1 (3.20)

continuity (3.19) can be non-dimensionalised as

(n - U) + - Ur = 0,(3.21)

where VT is defined as in (3.18). The boundary-layer system (3.17)/(3.21) forms the basis for
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the following perturbation analysis.

3.3 Perturbation

We now perform a perturbation analysis to evaluate the rate of viscous decay of internal seiche

amplitude. Using the small parameter e defined in (3.20), begin by making the expansions for

f = (u, U, P, w):

f fo + efi + (3.22)

We first evaluate the modification of the boundary conditions on u due to the presence of the

benthic boundary-layer. The perturbation of the governing equation (3.10) is considered in the

next section during computation of the frequency modification w1.

3.3.1 Boundary conditions

The continuity equation for the boundary-layer (3.21) reveals that the normal gradient of the

n-component of Uo is zero;

S(n - Uo) = 0 - n-Uo=0 . (3.23)

The integration constant is taken as zero because we require U ((, -+ oo, (r) = 0. The flow

within the boundary-layer is therefore exactly parallel to the boundary at lowest order, Uo =

T - Uo = UOT. The matching condition on u,U shows that the same is true for uo;

n UO (0, xT) = 0 , or uO (0, XT) = (t 1 ,t 2 )- uola = UOT (0, XT) . (3.24)

Note that this is simply the standard no-flux condition for an inviscid flow (eg., 3.11).

In order to write the zeroth-order boundary-layer momentum equations (3.17) solely in

terms of the 2-component tangential velocity field UOT we must rewrite Wo (see Appendix to
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this chapter),

2 2 =OT 2iof-2 (UO - -2WoT -k = 2io.- 2 Uo- - (UoT - (T - k)) T - k . (3.25)

This equation is simply the conventional Stokes system for an oscillating flow over a flat plate,

modofied with the addition of buoyancy terms on the right. Outside the pycnocline, where

N ~~ 0, (3.25) reduces to the Stokes system. Within the pycnocline, however, the leading-

order momentum balance is between the stresses on the left and buoyancy. As we see in §3.3.2

and §3.7.1, this has implications for the structure of the decay rate and the structure of the

boundary-layer.

The solution to (3.25) with Uo ((, -+ oo) -+ 0 is (see Appendix)

UOr ((t,() = - (Re-±+-- R'e-+4- n or (0,xT) , (3.26)

where

2 N 2  22)
77 2- (P 2+p)

p (s) = ti (s) - k is the projection of ti in the vertical, <p jsign (72), and the matrices R and

R' are given by

/ 2 /2
1 1 P2 -P1P2 1 Pi P1P2R (s) = 2 2 -l2R' (s) =1 PP

IL1S) 2 2 2~) 7)+7)2 21
-P1P2 Pi P 2( P1P2 P2

We define the 2-component UoT and uor (0, XT) as column vectors. (In principal we can always

choose a T-basis such that, for example, ti - k = 0 over the entire lake bed surface. However

for some simple basins, for example with spherical or elliptical geometries, it is often more

convenient to select a conventional basis, for which ti,2 - k # 0 in general.) The zeroth-order

flow for the entire system can thus be written as

qo = uo - (Re (1+)U - + R'e~(1++~i)a-1J7lJn) uo) o . (3.27)
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Some interesting and important properties of this solution are discussed in §3.8.

As stated earlier, it is not necessary to determine the governing equation and solution for

U 1 in order to evaluate the modification to the seiche frequency w1 . However we do need to

consider the 0 (e) continuity relation, since it allows us to manipulate the boundary condition

for u later in the analysis. From (3.21), first-order continuity in the boundary-layer gives

-9 (n -U1) + VT - UoT = 0 -+ n -U1|a VT - Uord1 .

Substituting the solution for Uo (3.26) into this integral, and using the matching conditions

n - - n 1 I, and uiTIa = - Ur1Ta, (3.8) then gives

n u1= VT (R e-(1+i)o-'] ±R' [J-(1+4i)'I Mud('] ) j)

2 VT - (1 - i) R + (1 - i#) R' uOT (0, XT)) (3.28)

using the fact that #2 = 1. Here we write the inviscid flow on a as uoT (0, XT) to make it clear

that VT is operating on noTa. This somewhat complicated procedure has ultimately allowed

us to write the boundary condition for ui solely in terms of no.

Finally, for the free surface condition we use the rigid lid approximation,

w(X,y,)=0 ,

which yields a simple homogeneous condition for the n - ul8 at every order i in e.

3.3.2 Governing equation and frequency change

Placing the expansions (3.22) for P and w into the P-equation (3.10), we obtain the zeroth-

and first-order governing equations (see Dore, 1969)

& (1 N 2  g Po
LPo = 0 , LP1 = 2wow 1  (3.29)

z (N 2 _ j2)2 &Z
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where L is the linear operator

a8 1 W2 09
L (*) = 7-V2 (*) - (* .

h z ) Z N2 _w W.z0

Therefore, once the boundary conditions at each order are known, the frequency change w1 can

be evaluated from the solvability condition on the Po/P1 system.

To determine the boundary conditions for Po and P1 , note that the boundary-layer pertur-

bation to the system appears as a modification of the velocity field at 0(e) (see 3.28). The

required conditions on P can thus be obtained by replacing u with P in (3.24) and (3.28). To

do this, first expand P, w, and u (3.22) in the momentum equations (3.9) to find expressions

relating P and u at both orders:

iWoVP 0  = 7 (w2uo - N2wok) (3.30)

iwoVP 1 = T (woui - N 2wik) ± E (wuo + N2 wok)

Using these, the boundary conditions on P are

FoPo = 0 on a

lFoPi = 2wowipyon - VP (3.31)
1.

- iwoTVT -0o (1 - i) R + (1 - iop) 1R' UOr (0, XT) ,

with Fo as defined in (3.11) (with w -+ wo). The last term in the 0 (e) expression, which is

the inhomogeneous term introduced by the boundary-layer perturbation, has been left in its

original form (i.e. in terms of uo). The conditions (3.31) complete the information required to

determine wi.

Although we can proceed with the solvability analysis using equations (3.29) and (3.31) as

written, it is possible to use a shorthand technique which exploits the connection between the

P- and u-representations of the various equations. Specifically, it can easily be verified that

the Po- and P1-equations (3.29) can also be derived by substituting (3.30) into the respective
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continuity equations

V -uo = 0 V-ui =0 .

Thus, both the governing equations and boundary conditions for the P-system can be derived

from their u counterparts by replacing u with P at each order. The Po/P1 solvability condition

(PO*LP1 - PiLPO*) dV = 2wowi PO* a ( N 2  dV
fna i z P (N2 _ ,2)2 Bz

(where dV = dxdydz and Q is the lake volume, and ()* denotes complex conjugate) can

therefore be written much more succinctly as

J(PO*V -ui + P1V -u) dV = 0.

From this relation it immediately follows (after rearranging and using Gauss' theorem) that

j(u1 - VPO* + u - VP1) dV= n - (PO*ui + Piu*) ds , (3.32)

where ds dxt, dzt2 is the surface element on the boundary. The free surface makes no

contribution to the surface integral because P = w = 0. At this point we can choose to

eliminate either u or P in favor of the other, using (3.30). Given that the 0(e) boundary

conditions are expressed in terms of the velocities, it is simpler to eliminate P. Using (3.30) in

the left-hand side of (3.32) and (3.24) and (3.28) on the right-hand side, after cancellations we

find

W1  (W2IU12 + N2 1WO2 )dV (3.33)
WO iWO ]~WI

- P (VT- ( (1 - i) R + I R'] UOT (0, XT) ds
2 a r/
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Now, integrating the right-hand-side of this equation by parts gives

PO*VT- (- [(1 - i) R + R1 RI]

= j VT ( 0

UOT (0, XT)) ds

[ (1 - i) R + 17RI PO*UOT (0, xT)) ds

UOr (0, XT)) -VTPO*ds .

The first integral on the right can be partially integrated up to the free surface, where it vanishes

because PO8urface = 0. This leaves

WI f7; (W2 IUo2 + N 2 IwoI2 dV
wo f 0

[(1 - i) R + 1 R uor (0, XT)) -VT (iwoPO*) ds .

Finally, replacing Po with uo in this relation (using 3.30) gives

S p (w Iuo|2 + N 2 1WO12 dV

(POT [(1 - i) R + 1 R uor (0, XT) ) (wsiuor - N 2woT -k) ds .

Dividing by wo and redimensionalising gives

- 2 woT -k ds

(3.34)

recalling the definition of e (3.20). Due to equipartition (linear waves), the zeroth-order system

energy

E =jftIuo12 dV (=4f 1 7 N w dV

represents the magnitude of both the total system kinetic (first integral) and potential (in
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2-

-AE = - 1 6 o (1 - i) R+ R' UOr (0, XT) - or
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brackets) energies, as well as the total (constant) energy of the seiche in the inviscid formulation;

Ekgn (t) = E cos2 (wot ± #$)
; Etotai = Ekin + Epot = E , (3.36)

Epot (t) = E sin 2 (wot + #)

with # an arbitrary phase. Once again we can replace wo with UOT in (3.34) using

N 2  N 2

UOTa 7 2 Wola T k = uorIa - 2(uoTIa (T -k)) T -k = M uoTra

where

(1 2 2 _2p P1P2 N2
-(p + p2) R

- 2pi 2 1 2M~~ ~W-7P1P2 1 u~ 2 (p± )R

(see Appendix). The desired decay rate is then computed from (3.34) as a Im (Ewi), defined

so that a is positive:

- . 4E = 6 (s) -7uoaT [R + Ir R'] UObds . (3.37)

This result is expressed in matrix notation, with uoTIO = uObed a column vector (T denotes

transpose), using the fact that RT = R, R'T = R', as well as the relations (end of Appendix)

RM=R R'M = r2R',

plus r/2 12 # and #2 
- 1. The boundary-layer thickness 6(s) = (2v/wo)2 r (s) appears

as a weight factor, clearly illustrating the potential importance of spatial variations in v. The

matrices R and R', whose elements are given by the relative orientation of the boundary tangent

plane and the vertical (i.e. (t1 ,t 2 ) versus k), are functions of the bathymetry of the basin.

Note that the boundary-layer contribution to surface seiche damping is found from (3.37)

by setting 7 = constant. Then, with N 2 -0, |r/| = 1, and R + R' = I, we have

j 4E = 6(s) lUObedi12 ds = 6 (s) Ekinds . (3.38)
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This is identical to the result obtained by Henderson and Miles (1994), and to the boundary-

layer portion of the damping rate computed by Mei and Liu (1973; see also Mei 1989). (Although

the Mei and Liu decay rate is expressed in terms of both the inviscid and first-order boundary-

layer velocities, it is easily verified that their result can be rewritten as in (3.38). Also note

that the free surface contribution, which is non-negligible for surface waves and seiches, can also

be determined in (3.37) and (3.38) if the rigid lid approximation is avoided from the outset.)

The decay rate for internal seiches (3.37) is therefore effectively equal to the kinetic energy

at the bed (normalised by the total seiche energy), weighted by a buoyancy factor. In fact,

the assumption of linear energy decay dE/dt oc E or EBL is often used as a starting point

for estimating seiche damping rates (see e.g. Fischer et al., 1979, page 186). Equation (3.37)

shows that it is necessary to include buoyancy and bathymetry effects in order to compute

a for internal seiches. Note that (3.37) is a generic result which is generalizable to any form

of basin-scale wave motion (i.e. two-dimensional, three-dimensional, rotational, surface and

internal). The only information required to compute a for a given system is a solution for the

inviscid flow field uo.

3.4 Physical interpretation

In the above analysis the decay coefficient a was derived from the mathematical condition of

solvability on the 0 (e)/0 (el) system. There are several other ways to derive the expression

for a in (3.37) based on energy arguments; these alternate- perspectives prove useful in making

the connection between the computed decay rate and the underlying physics.

3.4.1 Bed stresses

Henderson and Miles (1994, §3) showed that the damping rate for surface waves can be computed

from the (period-averaged) stress working on the boundary,

[ j Re uo ronds . (3.39)

In this expression the normal stresses at the bed ronj = niroij are evaluated using the modified

(inviscid plus boundary-layer) flow field qoj. Equation (3.39) can be applied to internal seiches
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by simply substituting the solution for qo given in (3.27). We thus compute the shear (in

dimensional form)

~ - + (1 + i) Re- + (1 + i) 17Re-1++0MJ uola , (3.40)
axi - "xn x6

recognizing that the leading-order terms correspond to the normal derivatives. Using (3.40),

the bed stresses are then

Ton I a = o.2 = ((1 + i) R + (1 + #i)|J| R') no .(3.41)
axn

Placing both (3.40) and (3.41) into (3.39) immediately gives

6 (s) UObed (R + |'A R') Uobdeds , (3.42)

using the definition of the boundary-layer thickness 62 (s) = 2v/wo -o 2 (s) and the fact that

uo = uo. This is the same result as (3.37), revealing that the decay rate for internal seiches

can be viewed as the stress working by the seiche on the solid boundary, just as in the surface

wave case.

3.4.2 Dissipation within the boundary-layer

Consider the general linearised governing equation (see 3.2)

a- aP 89j k
at = -T~ gjp

where f^(x, t) = Re [f (x) eiwt] for wave motion. The rjk represent viscous stresses, written

in terms of the q in general (^ = iq j + U, for example). Multiplying this equation by qj

and integrating over an unspecified volume V (bounded by surface S) gives (see, for example,

Acheson, page 216, and Landau and Lifshitz, page 50)

p q|2 q dV + pg ds + nijyig dsJ-ii dV . (3.43)
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This is a generalised equation for energy fluxes in a fluid flow. The left-hand side of (3.43) is

the rate of change of kinetic plus potential energy (i.e. g 0poo = 0/t (ijN 2

E = Ekin + Epot), and therefore corresponds to the total energy (E = constant) in the inviscid

formulation.

For fluid in a basin, (3.43) reduces to

dE 8 rjd EfE .+ %~)d
dE 1E ± / Spoa) dV , (3.44)

since the velocities vanish on the solid boundary, and P = r = 0 at the free surface. This

relation simply states that the energy in the system (which has not yet been specified) decays

through viscous dissipation. Applying (3.44) to seiches, dimensional analyses reveal that the

dissipation term is of order vVw-1H- 2 _ 2 outside the boundary-layer (where vv is a vertical

viscosity), while the boundary-layer contribution to the integral is 0 (e). We can therefore

partition the total lake volume into an inviscid core plus a boundary-layer, Q = Qc + VBL,

and restrict attention solely to the boundary-layer. Retaining only the 0 (e) terms, and period

averaging, we write (3.44) as

1 19 1 [9f-2aE Re [jr dV c -- Re [ on dsd] . (3.45)2 [ in z9i 2 Vm, L x"n

Here we have defined the energy decay rate as 2a (i.e., seiche amplitude decay rate = a), and

again used the fact that the leading-order stresses and shears are in the normal direction. Now

using (3.40) we find

On IBL = PO2 2 +iRe-+ (1 + #)r Re(+4iUIl I

C9X BL/

using the fact that variations in 7 (z) and uo across the boundary-layer are small (i.e. Buo/&xnIBL

0). Substituting (3.40) and this expression for ron|IBL into (3.45) yields

a-4E=Re [j Ob (1+ i) Re-(1+i)' + (1 + #i) |r71 R'e- 0+0 U17 ObedadXnJ

since R = RT R'= R'T. Using the fact that R2 = R, R' 2 = R', RR' = 0, and r/2 = 1172 g (see

Appendix), this again reduces to (3.37) after integrating over the boundary-layer (from Xn = 0
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to o), and using the definition of 6 (s). The seiche decay rate can therefore be interpreted as

the rate of generation of turbulence energy in the benthic boundary-layer. This is an important

result because it not only shows the impact of seiches on near-bed mixing, it specifically describes

the energy transfer from the seiches to the benthic boundary-layer. As mentioned in §3.2, the

observations of Gloor et al. (2000) confirm that this transfer is the leading-order energy flux

for seiches.

3.4.3 Pressure working

Mei and Liu (1973) also related the decay rate for surface waves to the work done by the

wave motion on the boundary-layer, through a meticulous accounting of energy fluxes among

different regions of the fluid. Interestingly, because the decay rate (3.37) in the present paper

was evaluated using a mixed analysis of u and P, the parallel between the solvability and energy

flux approaches is more readily apparent here than for the velocity potential (#) formulation

used by Mei and Liu (1973). For surface waves, this equivalence is also clearer if the problem

is formulated using the dynamic pressure (i.e. P = -iwp#, with p constant).

Beginning with the energy equation (3.43)/(3.44), we once again make the distinction be-

tween the inviscid core and the boundary-layer, Q = Qc + VBL. The boundary between the

core and the boundary-layer is denoted oe, with 8 - ~9 , 6. Retaining only the 0(e) terms, we

write (3.44) as

d
j (ki + Ept) dV = - jP -nds (3.46)

0 = jP - nds - 9-dV. (3.47)
oc VBL ki

From 3.46 we immediately see the equivalence between the energy flux approach and the previ-

ous solvability analysis (see e.g. 3.32 and 3.33). Equation 3.46 describes the pressure work done

by the seiche on the boundary-layer, while 3.47 is the subsequent viscous dissipation within the

boundary-layer of the energy provided by the seiche. Adding these two equations eliminates

the pressure terms, which is consistent with the fact that the velocity field 'q vanishes on the

solid boundary (see 3.43, for V - Q, S -+ 9 lake), as well as the analysis in the previous section.
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To proceed, using the fact that n -no = 0, we find

Pi -nds=e LPi1 -nds = - PVT - (o-AioT) ds , (3.48)

where we have used the boundary condition for ui (i.e.3.28, written in dimensional form, and

with A = (1 - i) R+(1 - i#) pr '~1 R'). Using 3.48, the decay rate a (computed from w -> o'+ia)

is determined by period averaging 3.46 (see Mei and Liu, 1973, §3.5), and replacing Qc -+ and

c -+ a in the various integrals (which does not change the degree of accuracy of the result).

The analysis then proceeds exactly as before (i.e. from 3.33 to 3.34). This analysis therefore

returns the previous result (3.37), and reveals that the damping of the seiches can also be

regarded as the pressure working done by the seiche on the boundary-layer. More specifically,

according to Mei and Liu (1973), this result provides information about the energy transfer

mechanism from the inviscid core to the boundary-layer.

Interestingly, one drawback to this perspective is that, according to 3.46, the pressure

working is zero (and thus makes no contribution to a) at any location where n -iia = 0.

One example of this is the side walls in a longitudinal (two-dimensional) flow; despite the fact

that a viscous boundary-layer is present at the wall, and that energy transfer occurs within

this boundary-layer at leading order, according to the above pressure working arguments this

region makes no contribution to the decay of the waves. Mei and Liu (1973) account for

the leading-order transfer in the wall boundary-layer by considering the effect of the small

meniscus region which exists at the side walls on the free surface. This is valid for the systems

they considered (laboratory wave tanks), but for systems as large as lakes, the meniscus region

is essentially insignificant. Therefore, throughout the rest of the paper we rely more on the

physical arguments outlined in 3.4.1 and 3.4.2, particularly the energy dissipation perspective.

3.5 Applications 1: Simple systems

As discussed previously, analytical seiche solutions can only be found for a limited number

of simple configurations (bathymetry and stratification). Even though these systems provide

somewhat poor descriptions of real lakes, they still yield useful information about the depen-

dence of a on h (x, y) and p (z). We therefore begin by considering a few simple systems, and
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continue with a numerical evaluation of some more realistic cases in the next section. The

important characteristics of the behaviour of a can be conveniently illustrated for longitudinal

seiches. For the sake of brevity we restrict attention to the fundamental longitudinal mode, often

designated V1H1 in analogy to the rectangular basin solution. Previous work has shown that

longitudinal seiches can be modelled reasonably accurately using a two-dimensional treatment

(vertical, horizontal; Fricker and Nepf, 2000). This is particularly convenient for the numerical

computations in the next section, since the use of a stream function formulation allows the

problem to be cast in matrix eigenvalue form. The decay rates for other types of basin-scale

internal wave motions, such as rotational modes, can also be computed from the formula for a

in 3.37, since the only information required is a solution for the inviscid flow field uO. However,

the few available analytical 3D solutions (such as a cylindrical lake with a flat bed) do not

provide any more insight than the two-dimensional systems we consider. In addition, numerical

solutions to the 3D problem (3.29 plus 3.31) is prohibitively difficult to solve (Fricker and Nepf,

2000).

3.5.1 Cylindrical and rectangular basins (3D flows)

The decay rate for basins with vertical side walls is comprised of separate contributions from

the bed and wall boundary-layers. The flat bed portion is computed by setting pi = P2 = 0 (i.e.

T = (ij) or (e,, ee)), so that IrIbed = 1 and R +R' = I (note that we do not put R = R' = 0).

At the walls we can set pi = 1 (i.e. ti = k) and P2 = t2 -k = 0, with t 2 = ±i, j for a rectangular

basin, or t 2 = eo for a cylinder. From the definitions of R, R' and r (3.72, 3.69, and3.70), we

then find

u wall (R + 17lwau R') UOau = (|r/0 W$ + U)wal,

with r/7=wal = 1 N 2/W . The decay rate is then

- -4E = 6(s) T Iuobe|2 dAbed + 6(s) 1p (|71 wo2au u 2 dwall iO bed 2  iwalls

where UOt2 is the wall tangential velocity normal to WOwall (i.e. uo/vo or uoo).
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For a rectangular basin with constant N > wo and v, the dynamic pressure is given by

N 2 si --- z
Po (x) = cos kx cos ly - sm mz + m cos mz e 2 ,

where k = mx7r/L, 1 = my7r/B, m = mzir/H (with respective mode numbers m-, my, mz =

0, 1, 2, ... ); L, B, H are the basin length, width, and depth, respectively; and the frequency

satisfies the dispersion relation

N2  k2+12+m2+N
4

k + 4g2

W2 k2+ 12-

Assuming constant viscosity v (and 6), the decay rate for this system is

a 6 [6m,( k2  2 + +m /1 2  
2 11m 2 (

wo N 2  B k 2+12 L k 2 +l 2 2H k2 +12

with ,21 = N 2 /w2 - 1 and eo = j, em = 1 for m > 0. This result matches the rectangular

basin decay rate computed by Dore (1969, § 5) except for a factor of 2 in the bed term resulting

from the fact that Dore considered a system with a solid boundary at the surface. To compare

the relative sizes of the various contributions to 3.49, note that

2 N 2  1
wo 2pt2

for systems with lake-sized dimensions L > B > H. The decay rate for such systems reduces

approximately to

a 6[1i1]
wo 2 B L H

for mz - my ~ mz ~ 1. The bed contribution is clearly largest, suggesting that buoyancy

factors (which appear in the side wall terms) are of little importance in large rectangular

basins. (Note that this is not necessarily true for laboratory wave tanks, in which L ~ B ~ H.)
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3.5.2 Longitudinal seiches (modelled as two-dimensional flows)

Throughout the rest of the paper we focus on longitudinal seiches, using a two-dimensional

stream function formulation to compute both analytical and numerical solutions for the inviscid

velocity field. As in the previous section the decay rate for a two-dimensional flow in the xz-

plane (z vertical) is comprised of a bed component plus a contribution from the vertical side

walls. The bed contribution follows from the general expression for a (3.37) by setting t 2 = j
so that P2 = t 2 -k = 0 and Ut 2 = v = 0 (i.e. uOT = (uOt, 0)). The R-matrices in this case reduce

to

R=0 0
0 1

R I ( 1 0

0 0

so that

nObed (R + |r| R') UOb&e = 7bI IuObedI

The buoyancy coefficient evaluated at the bed is

2 )2N2 2N2

where nx is the i-element of the boundary-normal vector n = (nx, n 2 ) (i.e., t = (-nz, nx) in

the i, k-basis), and is equal to the local bed slope

dh [+ (dh\2 2

Xd dx
=sin Obed .

At the side walls the boundary normal is explicitly in the y-direction ((ti, t 2 ) = (i, k), (P1, P2) =

(0, 1)), so that

wowa u (R + of tR') towa = dec+|rae i

wih /2 =1 N/w.Putting all of this together, the decay rate is
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1

-4E = B 6(s) N2  ed -IUObed2 ds (3.50)
WO Jbed 02

+2L 6(x, z)2p (U+ 1 2 Nw) dxdz+ wall 6 X )2 0 Wo

where B is the width of the basin. Dividing (3.50) by 4E (using 3.35) gives

a_ _ a 1 f SwaU.P (U2 + 17w w2) &rdz
wo wo 2B f ( (U + W2) dxdz

where abed/wO denotes the bed term. Since wo/Uo ~ p and rw < 0 (t), the wall contribution

to a is 0 (6wau/B), and is therefore much smaller than abed/WO ~ 0 (6 ed/H). We therefore

neglect the wall boundary-layer in the analyses in section 3.6. For longitudinal seiches in a

rectangular basin, (3.50) reduces further to a sum of contributions from the bed (where r/2

since sin 9 bed = 0) and the vertical end walls (where r/2 = 1 - N 2/WO),

21a E 1N2 2S4 = 6 ~ d+2 6(z) N 2 endz (3.51)
WO B bed 2 end 1 o 2

For a basin with lake dimensions H < L, the end wall contributions vanish and a reduces to

the homogeneous fluid result.

3.6 Applications 2: Numerical calculations

To investigate the factors affecting the viscous damping of internal seiches, we compute VIH1

seiche (inviscid) solutions and their corresponding decay coefficients a (3.37) for a series of

idealised configurations. Three inputs are needed to fully determine a; to solve the governing

equation (i.e. 3.55) we must specify the lake bathymetry and the background stratification 7 (z),

and to compute a we require a representation or value for viscosity in the benthic boundary-

layer. We discuss these inputs below.

100



3.6.1 Numerical method

For a two-dimensional system the velocities can be expressed in terms of a stream function,

no = - -- , (3.52)
B9z 8 4X

which satisfies u-continuity. Eliminating the pressure and density from the momentum equa-

tions (see 3.6) yields the governing equation

-V- (PV4,) - N 2 2 00 = 0, (3.53)

with V = (8/ x, 8/8z). The no-flux boundary condition on uo gives

W O f dxtn-uoI0a (0, oxt) = 0 -+ 1,, =0 . (3.54)

Equations (3.53) and (3.54) complete the inviscid problem. For non-uniform bathymetry and

arbitrary stratification, it is not possible to find exact analytical solutions for this system.

Internal seiche solutions are therefore evaluated numerically using a finite difference technique.

To begin, (3.53) is rewritten as

22g. 20 N 2 04,0  g24,\
N 2  = W2 az2  g z± + 0x2) , (3.55)

in order to isolate the terms led by the frequency. Discretisation of (3.55) and the boundary

conditions (3.54) results in a generalised matrix eigenvalue formulation,

NTo = woMlo . (3.56)

N denotes a matrix whose elements are determined in part by the buoyancy frequency (the left-

hand side of (3.55)), while M corresponds to the discretisation of the right-hand side. If either

M or N has an inverse, which is generally the case, then (3.56) can be rewritten as a standard

eigenvalue problem. Solution of 3.56 therefore produces a finite set of inviscid internal seiche

eigensolutions, which can then be used to compute a (3.37). Solutions are initially computed

using a uniform grid, and then interpolated over a finer grid (using the condition 0ola = 0) for
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an improved estimate of bed velocity. The method is described in more detail by Fricker and

Nepf (2000).

Finally, note that the Boussinesq and hydrostatic terms in L4O (i.e., in -)

1 dp890) 2 427pandy
7 dz az ax2

are usually very small for lakes, and as such should perhaps be treated formally as perturbation

terms, the same as the r. However, there is no analytical reason for taking this approach,

since, unlike the stresses, these terms are easily incorporated into the numerical formulation for

the zeroth-order problem (3.56). In addition, such a perturbation analysis is not tremendously

illuminating, since we already have a more exact expression for a (3.37).

3.6.2 Model configurations and parameters

Basins

To explore the impact of bathymetry on the V1HI seiche we perform two sets of computations,

the first in a series of symmetric basins, the second in asymmetric basins. In all cases the length

L and depth H of the lake are 10 km and 50 m respectively; these dimensions are chosen as

typical, representative values, in order to have the Boussinesq and hydrostatic terms in (3.56)

be of correct magnitude.

In normalised coordinates (x <=> x/L), the function

cosh, - cosh/ (2x - 1) h(0) h(l) = 0
cosh#3 - 1 h (1) =1

describes symmetric basins ranging in shape from parabolic to rectangular. The parameter 3

essentially corresponds to an index of concavity, with the two extreme bathymetries given by

3 -+ 0 (i.e. h (x) -* 1 - (2x - 1)2) and 3 -+ oo (rectangle). Solutions are computed for a set

values of 3 which adequately span this range.
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For asymmetric basins we choose a set of skewed parabolas, given by (see Minnich, 1996)

1- 2 0 <x <xo
h (x) = zo2 (3.58)

- )2  X <z <1
(1 - zo)2

The deepest point in each basin is located at x = xo; the parameter xO, which ranges from 0 to

0.5, represents the degree of skewness (parabola is xo = 0.5). We compute 11 solutions which

span this range in steps of Axo = 0.05.

Stratification

As the governing equation (i.e. 3.55) suggests, to evaluate seiche solutions it is actually simpler

to specify the buoyancy frequency proffle instead of p. For typical summer stratification condi-

tions in mid-latitude lakes, the maximum value of N 2 (denoted by N2, at depth zo) is on the

order of 5 to 10 x 10- 3 s-2. Above and below zo, N 2 can be adequately simulated using linear

functions,

SN zo-A < z < zo

N2 z - z _-A+,_ (3.59)

as shown in figure 3-3. In this notation the base of the epilimnion is (zo - A_) and the bottom of

the pycnocline is (zo + A+). This piecewise linear profile describes the middle of the pycnocline

quite well, and is also generally adequate for the top of the pycnocline, where the gradient is

usually quite sharp. The density gradient at the bottom of the pycnocline frequently tails

off more slowly than described by 3.59, and may not fit the parametrization quite as well.

However, due to computational constraints we select a reasonable value for A+ by extending

the linear-gradient region near mid-pycnocline down to N 2 = 0 (see figure 3-3).
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Figure 3-3: Idealized buoyancy frequency and density profiles used in the numerical internal
seiche and damping coefficient computations.

The density profile corresponding to 3.59 is

PO-A 1-(Z - zo + A -)2

A- (+ + -.

(z - zo - A+)2
PA+A(A+ ±A-)

for N 2 defined using the Boussinesq approximation; N 2

zO- A <z < zo
(3.60)

Z</z. < ZuA+

=P gpJd/dz. The maximum N 2 is

thus given by

N2 Ap 2
No = g-.

Po A++±A-

We arrive at a convenient, consistent, and representative set of parameters by choosing N02

7.5 x 10-3s-2, with the profile geometry

zo = 0.15H A_ = 0.05H A+= 0.1H .
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For the chosen value of H = 50m, this corresponds to a surface layer which is O.1H = 5m

deep, and a gradient region which spans 0.15H = 7.5m. With po = 1000kg/m 3 , the required

surface-to-bed density difference is formally Ap 2.87kg/m 3 . This corresponds, for example,

to a strong midsummer temperature difference of ~ 6'C (hypolimnion) to ~ 28'C (surface).

Viscosity within the boundary-layer

There is relatively little available information about viscosities (v) or diffusivities in lake benthic

boundary layers. The analysis in sections 3.2.3 and 3.3 was performed using a parameterization

for bed stress (3.13) in which v was allowed to vary as a function of position (i.e. with bed

coordinates s). In the final expression for a (3.37), v is simply incorporated into the definition of

boundary-layer thickness 6 (s). Effectively, the dependence of a on v is replaced by a dependence

on 6; thus a can be computed using either parameter, with the formal relationship between the

two being of lesser importance.

Using a numerical model with a k -e closure scheme, Hagatun and Eidsvik (1986) estimated

boundary-layer viscosities for ocean surface waves (period ~ 10s) of the order Vt 10 4 u2 /W.

To apply this to much longer period seiches in the model configurations described above (without

justification, in order to get a crude estimate of vt), we estimate the magnitude of the free

stream velocity u from an estimated maximum seiche-induced vertical displacement, (ma, i.e.,

U ~ 0 (p-'wmax) " 0 (-o1wo(m). With H = 50m, a reasonable value for the displacement

is ( ~'xi 0 (0.5m), or 10% of the water depth. Using the VIHI seiche frequencies computed

below (wo ~ 1.4 x 10- 4 s~1), we find u ~ 0 (1.5cms'1) and vt ~ 0(3 x 10-4m 2 /s). With this,

from the scaling analyses the boundary-layer thickness is predicted to be 6 = (2v/w)i ~ 0 (2m).

In fact, in a real lake there is no basis for relating v to the velocity field or frequency of any

one seiche. In actuality the properties of the boundary-layer are determined by the overall

seiche climate, as well as numerous other physical processes (such as seiche energy focusing,

and progresive wave breaking), most of which are unsteady, and as yet poorly understood.

In one of the few field studies of boundary-layer viscosity, Gloor et al. (2000) estimated

vt ~ 3 x 10- 5m 2 /s in Lake Alpnach (depth = 35m; see also Wflest and Gloor, 1998). This is an

order of magnitude smaller than vt computed from the Hagatun and Eidsvik (1986) formula.

Gloor et al. (2000, 1994) estimated boundary-layer thickness (6obs) directly from temperature
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data, and observed substantial variations in 6obs over each wave period. They also found a

strong spatial dependence, with 6
obs ranging from 0 - 5m (inversely correlated with buoyancy).

In section 3.7.2, where we compute a for a series of model V1H1 seiche solutions, the results

are expressed both in units of c = 6/H and with 6 = 2m.

Finally, recall that we retained the spatial variation of v (s) (and hence 6 (s)) throughout

the analyses in §3.2 and 3.3. In lakes, viscosity and turbulence in the boundary-layer are likely

magnified within the pycnocline due to the focusing and breaking of small-scale internal waves.

(Note that this is distinctly different from the remainder of the water column, in which v or

Kz ~ N- 1 within the hypolimnion and the lower pycnocline; see, eg., Imboden and WUest 1995,

Michalski and Lemmin 1995.) In the epilinmion the boundary-layer is affected by wind-driven

currents, which can also increase v. In addition, near-bed diffusivities and the thickness of

the boundary-layer are both unsteady (Gloor et al., 2000). Unfortunatley, very little is known

about these processes, and it is thus difficult to take spatial and temporal variations of v,6 into

account when computing a. Nonetheless, by carrying v (s) through the analysis, the resulting

expression for a (3.37) at least qualitatively illustrates the effect of differential v,6 on seiche

decay.

3.6.3 Numerical solutions

Eleven numerical V1H1 stream function solutions are evaluated for each of the symmetric

(3 = (1, 1.5, 2, 3, 5, 10, 15, 20, 30, 50, 100)) and asymmetric (xo = nAxo, n = 0 to 10) basins (see

section 3.6.2). A sample of both sets are shown in figures 3-4 and 3-5, showing the evolution

of seiche structure with changing bathymetry. The solutions are computed from (3.55)/(3.56)

using a 40 x 40 (uniform) grid, and then interpolated over a finer grid (150 x 100 horizontal,

vertical) for better resolution of the velocity field near the bed. The corresponding ViHI seiche

frequencies (normalised by the maximum value of the buoyancy frequency, max (N 2 ) = 0.0075

s-2) are presented in figure 3-6. In both cases wo/Nmx is remarkably insensitive to changes in

bathymetry, varying by only -10 % over the range of computed parameter values. Note that,

for a rectangular basin (,3 -+ oo in the symmetric solutions), the governing equation and stream
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Figure 3-4: Streamfunction contours describing V1HI internal seiche structure as a function of
basin concavity 3 (from parabolic 3 -+ 0 to rectangular 3 - oo), for the symmetric bathyme-
tries defined in equation 3.57. The concavities are a) 3 = 1, b) 3 = 2, c) # = 3, d) # = 5, e)
3 = 10, f) 3 = 100. Five additional solutions were computed (0 = 1.5, 15, 20, 30, 50), but are
not shown. The contours range from 00 = 0 on the boundary to V)O = 1 in the center of the
fluid.

function are separable, i.e., 00 = X (z) sin kx, with k = n7r/L (n = 1, 2, ...), and

x" + - -x' + k2 1 = O (3.61)
g 2g

Specifying the horizontal mode number (i.e., n = 1 for the V1H1 seiche), accurate numerical

solutions to this system can be obtained very easily, since the location of each eigenvalue within

the manifold of solutions is known (in particular, the V1H1 frequency represents an extremum

eigenvalue; this is not the case for the two-dimensional problem, see Fricker and Nepf, 2000).

Using a discretisation of 500 points, we evaluate wo/Nma,, f 1.511 x 10- 3 0.302pi from (3.61),
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Figure 3-5: Streamfunction contours describing V1HI internal seiche structure as a function of
xo (the location of maximum depth) for the symmetric bathymetries defined in equation 3.58.
The figures correspond to a) xo = 0, b) xo = 0.1, c) xo = 0.2, d) xO = 0.3, e) xo = 0.4, f)
xO = 0.5. Five additional solutions (xo = 0.5, 1.5,2.5,3.5,4.5) are not shown. The contours
range from V)b = 0 on the boundary to V)O = 1 in the center of the fluid.

versus wo/Nmax ~ 1.512 x 10- 3 for # = 100 in the two-dimensional formulation (3.55). The

'exact' rectangular basin frequency is marked by a dashed line in figure 3-6.

3.7 Results and discussion

3.7.1 Buoyancy and the benthic boundary-layer

From the matching conditions for the boundary-layer and outer flows uoj, = - UoIa, the

velocity field throughout the entire fluid is given by

qo = uO - (Re~(1+i)O -'" + R'e-+'ei-17IC) Uo1a-
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Figure 3-6: VIH1 seiche frequency as a function of concavity # and eccentricity (1 - xo) for
the VIHI solutions shown in figures 3-4 and 3-5. In both cases the left-hand side represents
the parabolic (or nearly-parabolic) basin. The rectangular basin frequency is marked with a
dashed line in figure a).

From the results in section 3.4.1, where we showed that the decay rate can also be computed

as the integral of bed stress (Henderson and Miles, 1994), we see that the difference between

the surface and internal wave decay rates essentially corresponds to the difference between

the boundary-layer flow Uo for homogeneous versus stratified fluids. To explore the effect of

stratification on Uo and a, consider the decay rate for longitudinal seiches in the xz-plane

derived in section 3.5.2,

a 11N2 2
- = bed term + 6 (x (p No+w dxdz . (3.62)WO2E fjali\ Z2P~ W 2
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Although the side wall terms were shown to be 0 (6/B) < 1 for longitudinal seiches, it is

convenient to use the vertical wall portion of a to illustrate the impact of buoyancy on the

structure of the boundary-layer.

Note that the w-contribution to the wall boundary integral in (3.62) vanishes at locations

ze where the local buoyancy frequency matches the seiche frequency, N (z,) = wo. (In fact, the

bed integral vanishes entirely wherever w/N 2 = sin2 bed; see equation (3.50).) For a typical

mid-summer thermal stratification N (zc) = wo occurs at two depths in the water column,

at the top and 'bottom' of the pycnocline. Returning to the z-momentum equation for the

boundary-layer flow (3.14),

.N2(+Pv) (aWo+ 8 Uok100%i 1 - - Wo= 0V2o++,w2 8xk 8xk 9z)

we see that the integral vanishes when the leading-order acceleration and buoyancy terms on

the left-hand side cancel each other. Mathematically, the solution for Wo in (3.74) is not valid at

ze because 'higher-order' terms in the momentum equation are not negligible there as assumed

(or more accurately over a small region ze t e; Dore 1969). Fortunately, the error introduced in

a by neglecting these terms and simply applying Wo at ze is negligible at leading order, so that

no modification to Wo or a is necessary. It is easier to understand the physical significance of

this cancellation by considering the w-momentum equation for the outer flow, applied at the

wall,

aPo
iwoq2 Two1a = . (3.63)

At ze, where the buoyancy and acceleration terms match (72 (zc) = 1 - N 2 (ze) /w2 = 0), the

vertical pressure gradient is zero. In fact, since 72 (zc) changes sign at ze, the pressure gradient

at the wall has opposite sign inside and outside the pycnocline. This has important implications

for the structure of the boundary-layer flow in these two regions, as we illustrate next.

The velocity field at the vert cal side wall is

qowaui= ( : = wO (X, z) ,-)'2 ) (3.64)
gov ) (wo (X, z) - -(+01lo11
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Figure 3-7: Comparison of the boundary layer structure and shear length 3' for go, (3.64) at the
side wall, outside (jA e 1) and inside (|q| > 1) the pycnocline. The velocity profile corresponds
to the time of maximum free stream velocity.

where we have omitted spatial variations in viscosity for simplicity (i.e. - => 1, 6 = (2v/wo)=

constant). The horizontal velocity is simply the conventional Stokes solution for an oscillating

flow over a flat plate. The vertical velocity, on the other hand, is modified by the scale factor

|77|. In particular, note that the vertical component of shear at the wall is

aqo, - (1 + #i) Lwo (x, z) . (3.65)
9 wall

We can define a shear length 6' = 6/ || which describes the rescaled distance over which the

free stream velocity wo decays to zero at the wall (figure 3-7). The relationship between 6' and

the physical boundary-layer thickness oBL is unclear, since 6 BL at any location is obviously

the same for all components of the velocity field, and is determined by many physical factors.

Within the pycnocline the increased pressure gradient outside the boundary-layer due to large

buoyancy forces (BPo/Cz oc 72; see (3.63)) leads to a small 6' in this region. This in turn

means a substantially increased wall stress oc wo/3' (3.65), and a much larger contribution

to a (oc f u - rdo,, (3.39)). At points ze near the top and bottom of the pycnocline, go,

is indeterminate, 6' becomes very large, and the vertical pressure gradient, shear stress, and

contribution to a vanish. In reality, in the region zc ± e, higher-order terms are important in
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Figure 3-8: Evolution of the wall boundary layer over one wave period (the coordinate axes
are rotated so that y is vertical). The solid line shows the conventional Stokes BL (thickness
scale 6) which applies for the region where N < WO, while the dashed line shows the modified
structure (6') of the BL within the pycnocline (N > WO).

the momentum balance, so that qov is well-behaved, and 6' is bounded.

The structure of gov also depends on the phase coefficient #b, which changes sign at ze along

with BPo/Bz (3.63). Outside the pycnocline # > 0, jri|j 1, and 6' 6, and the boundary-layer

structure of gov is again the standard Stokes solution. However, within the pycnocline (#S < 0,

|r/ > 1, 6' < 6) the structure of the flow is modified; writing out the full solution for both cases,

Re~eW~~] - cos wot - e- cos - wot) outside pycnocline

L0 J cos wot - e~-' cos + wot) within pycnocline.

These solutions are plotted in figure 3-8 for several values of t to illustrate the differences

(over a wave period) in boundary-layer structure in the two regions. Note that, because of the
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relationship between the dynamic density field and the vertical velocity (3.5), i.e.,

gwo

the boundary-layer velocity profiles in figure 3-8 also describe the isopycnal displacements. The

negative phase coefficient # within the pycnocline causes the boundary-layer flow to lag the

free stream velocity instead of lead. Note that the acceleration of fluid inside and outside the

pycnocline differs by 1800. For example, moving from wot = 7r to wot = 27r, the conventional

Stokes profile (solid line) accelerates faster than the modified pycnocline profile during the first

quarter-period (until wot = 37r/2), but then accelerates slower, allowing the pycnocline flow

to catch up again at wot = 27r, i.e. when the outer flow reaches a maximum. Interestingly,

despite this change in boundary-layer structure the phase change has no impact on the decay

rate, since # does not appear in the expression for a (see 3.37); the magnitude of a is thus only

affected by the buoyancy factor r. This is a consequence of the fact that a is period-averaged,

as described in section 3.4. Using the notation f^(x, t) = Re [f (x) et] introduced in section

3.4.2, from (3.65) we find

IrUI wal [1±v/2sin (20wot+._7r)]S' * wau = Pv2 wl 1 +4 sn2wt+ g

The second term in the square brackets vanishes when averaged over a wave period, regardless

of the sign of 4. Describing the vertical outer flow in terms of the vertical displacement field,

WO = (( 0/8t, we can rewrite (3.63) as

fPo WTola outside pycnocline

7za -pN2(o 1 within pycnocline .

This clearly illustrates the relationship between the fluid motion and the pressure gradient at

the top of the boundary-layer. Outside the pycnocline, where the pressure gradient is simply due

to the oscillation of the fluid (pressure ~acceleration), BPo/9z and the dynamic displacement

( have the same sign. However, within the pycnocline an additional pressure gradient arises

because the water moves to a location of different buoyancy. For example, when an isopycnal

moves upward, buoyancy forces push it down; the pressure gradient thus has opposite sign to
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Figure 3-9: Decay rate (a) as a function of concavity 3 and eccentricity (1 - xo) for the V1HI
seiche solutions shown in figures 3-4 and 3-5. In both cases the left-hand side represents the
parabolic (or nearly-parabolic) basin. The decay rate for the rectangular basin (W -* oo in
figure a)) is a ~ 0.0582e. || = 1 corresponds to the the decay rate when buoyancy effects are
neglected.

(0 (and is also larger than the acceleration term), as (3.66) shows.

3.7.2 Decay rates

Decay rates for the 22 numerical V1H1 seiche solutions in section 3.6.3 are computed using (the

bed portion of) (3.50). The results are presented in figure 3-9 (solid lines). The dashed lines

correspond to a for I?| = 1, i.e., when buoyancy effects are neglected (denoted al 1 |=1 ). The

symmetric basin results in figure 3-9a) show that buoyancy causes a to be ~20 % larger than

alI=1 in the parabolic basin (3 -- 0). Interestingly, this is comparable to the contribution of

internal damping to the decay of surface waves in cylinders (Henderson and Miles 1994; Martel,

Nicol6s, and Vega 1998; Miles and Henderson 1998). As 3 increases and the basin becomes
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more rectangular we find a -+ a , because buoyancy effects are confined to the vanishingly

small vertical end wall contributions (see the rectangular basin result (3.51) in §3.5.2). The

rectangular basin decay rate is approximated by the 3 = 100 result, a/wo ~ 0.0582e. This

can again be compared to the separable rectangular basin solution, for which the decay rate

expression reduces to

a _ (H) x 2 (H) fbe 6 (x) sin 2 kxdx 3 bedP (H) (x'(H))2

2L fH 7i(12 + k2X2) dz 4 fo'7(z) (X (z)) 2 dz

assuming constant obed. Using the V1 eigenvector (i.e., X (z)) which was computed with wo in

section 3.6.3 (for 500 grid points), we find a/wo ~ 0.0588E, in excellent agreement with the

two-dimensional result. The results in figure 3-9a) clearly demonstrate the limitations of using

a rectangular basin model to describe the structure and decay of internal seiches. Not only do

the parabolic and rectangular basin decay rates differ by a factor of > 2, but also, since a and

ai|I=1 become equal as 3 -+ oo, the rectangular basin decay rate cannot adequately describe

the effect of buoyancy.

In the asymmetric basins (figure 3-9b)), in all cases buoyancy/bathymetry effects lead to

a 20-26% increase in a versus al.i1. In addition, both a and al.|=1 almost double as the

eccentricity increases from 0 to 0.5. This is primarily because the near-bed velocities increase

over the milder sloping region as the bed slope decreases. This can easily be seen in figure

3-5, which shows the contraction of the stream function contours (corresponding to an increase

in Ubed - 49/4x,) as the basin becomes progressively more skewed. Note that since wo is

essentially independent of basin shape (figure 3-6), the observed variations in a in both the

symmetric and asymmetric basins are due solely to changes in the velocity field and the factor

3.8 Conclusions

We have derived a generalised expression for the rate of viscous damping of internal seiches (a)

by modifying an inviscid formulation (velocity field u) with the addition of a viscous benthic

boundary-layer flow (i.e., q = u + U), and performing a perturbation analysis. The decay

rate is proportional to the integral of kinetic energy at the bed, modified by a coefficient
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(2n = 71 (T (z) , h (x, y) , wo)) which accounts for the effects of buoyancy and bathymetry. The

surface wave decay rate (i.e., homogeneous fluid; Mei and Liu, 1973) is retrieved from a by

setting 7 = 1. Physically, a can be interpreted as the rate of a) stress working by the seiche

on the bed boundary (Henderson and Miles 1994), b) viscous dissipation of energy within the

boundary-layer, or c) pressure working by the seiche on the boundary-layer (Mei and Liu 1973).

A series of ViH1 internal seiche numerical solutions were computed using a two-dimensional

(linear, inviscid) stream function model, formulated as a matrix eigenvalue problem. These

solutions were then used to compute a. The results show that bathymetry and buoyancy effects

(i.e. 77) give rise to a ~20% increase in a, except for basins with rectangular bathymetry, where

the 2-contribution becomes vanishingly small. This underscores the limitations of using a simple

rectangular basin model to describe seiche structure (particularly bed velocities) and decay.

Damping rates computed for a set of asymmetric basins show that a increases with increasing

basin eccentricity, due to the magnification of velocities over the progressively shallower bed

slope. This result suggests that bathymetries which include a region of convex bed slope, i.e., a

shoal over which velocities are substantially magnified (see, eg., Fricker and Nepf 2000), should

exhibit still greater magnification of seiche damping, especially when the depth of the shoal

coincides with the location of the pycnocline (maximum N 2 ).

Using the stress working perspective (Henderson and Mile 1994), bed stresses rbed are

computed using the leading-order inviscid-plus-boundary-layer velocity field, qo, which is a

modified form of Stokes' solution for an oscillating flow over a flat plate. The magnification of

a (versus a7=1) is caused by increasing bed shear ~ uola /6' due to decreasing shear length

6' ~ (2v/wo) 2 / (N sin Obed) within the pycnocline (v = viscosity, N = buoyancy frequency,

sin Obd = bed slope). For vertical or upslope motion, the structure of the boundary-layer within

the pycnocline is also modified by a phase factor # = sign (,q2) which changes sign (at depth(s)

ze) where the local buoyancy frequency matches the seiche frequency, N (zc) = wo. The change

in # causes the boundary-layer flow to lag the outer flow instead of lead. This results from the

fact that the dynamic pressure gradient at the top of the boundary-layer within the pycnocline

has opposite sign to the dynamic vertical displacement field (0 (i.e., BPo/9zja oC 0 (oa with

# = -1, where wo = 8a(/Ot).
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3.9 Appendix: Solution for the boundary-layer flow

In mixed vector/tensor notation, the boundary-layer governing equations are

N2  1 V aU - all
iwU = iw-jWk -+ pu + e, (3.67)

where ej is a basis vector (for example ej = {i,j, k} or {ti, t 2 , n}). Since the zeroth-order flow

in the boundary-layer is parallel to the boundary, i.e. {Uoj} = (Uot 1 , Uot 2 ), it is more convenient

to write (3.67) solely in terms of UoT and the T = (ti, t 2 ) basis. To begin, we can express k in

terms of the boundary basis trivially as

k= (ti-k)ti+(t2 -k)t 2 +(n.k)n=(T.k).T+(n-k)n.

The velocities U (or u) can be written using either basis, U = (U, V, W) = (Ul, Ut2 , Un). The

zeroth-order vertical velocity can therefore be expressed in terms of the T as

Wo = k -Uo = Uotik-tl+ Uot2 k-t 2 =UoT-(T-k) ,

since U = 0. This relation is used to eliminate W from (3.67) (as well as the boundary-layer

equation (3.25) and the expression for the decay rate a (3.37)).

To continue, using the scalings in (3.16) and the definition of the boundary-layer thickness

6 (3.15), the T-components of (3.67) become

W o N 2  1 862 2 UOr
2i-Ur = 2i--2 (Uor (T k)) ((T k) -T) ++ VrUo

w N 2  2,2 62
~l. 2i1-- W (Uor (T -k)) ((T -k) -T) + .V Ur + (H-2

(Note that the n-equation includes higher-order terms, and thus represents an inhomogeneous

governing equation for the U 1 , etc.) The 0 (E2 ) terms involve derivatives of 7 and U2, which

are assumed to be slowly-varying functions of space within the boundary-layer. Writing out
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the (zeroth-order) ti and t 2 equations separately

--2 - 2io- 2

2
- io -2

N2 tk2l( (t - k)2 Uoti
N2

1 2 (t2 -k)2 Uo2
Wo Ut

N2
= -2ic 2-- -2 (t 1 k) (t 2 k) Uot2

N 2

o2 (ti k) (t2 k) Uot,
0o

clearly shows that the pair is coupled, due to both buoyancy and bathymetry effects. For a

homogeneous fluid (N 2 = 0, i.e. for surface waves) the equations both reduce to the simple

Stokes boundary-layer problem for UOT = (Uotl, Uot 2 )- As written, they can be summarised in

the matrix equation

82

(-- - 2io.- 2M UOT = 0nI
(3.68)

by defining

N 2 
2M I - 2 (1 + p2) ]R(P 2

2
R! Pi

Pi 2 (PIP2

piP2

,2
(3.69)

in which pi

Uotl, Uot 2 ~

= ti - k are the projections of the ti in the vertical.

eAt, and evaluate the A as solutions to the determinantal

To solve (3.68) we take

equation

JA21 - 210. 2MI = 0 .

The solutions are simply A2 = 2io--2, 2iu - 2r7
2 , where we have set

N 2

r7 2 (1 +p (3.70)

Omitting the two positive roots to (A2) because we require UO ( T i, -+ 0o) - 0, the general

solution for UOT is

UOT = C ( T) e (1+i)o-I C + D (CT) e-1+i)-II,

where C = (CI, C 2 ), D = (Di, D 2 ), and # = sign (r/2). Placing this solution into the governing
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equations gives the relations

(I-M)C=O (r/21 - M) D = 0 ,

which reduce to

R'C = 0 RD=0 ,

upon substitution of M (3.69). Here we have introduced the new matrix

R = I - R'= 1 P
p2 + A2 -12

P1P2

P2

Using the fact that R + R' = I, as well as equations (3.71), we can also write

RC = C R'D = D .

These relations are used below.

Moving now to the matching/boundary conditions ula = - U1, we find from the general

solution for Uor that

UoT(T,0)=C+D=-ula

Operating on this equation with R' and using (3.71) and (3.73) gives

C= -R uola -

Likewise for D we find

D = R' uola -
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The final solution for the boundary-layer flow is therefore

UoT ( T, ) = - (Re-(1+i)O'1n + R'e-(1+$i) -'qIC) uo) a , (3.74)

with R and R' as defined in (3.72) and (3.69).

We briefly note a few additional properties of the matrices R, R', and M which are used in

the derivation of a. First, from the definitions of R and R' (3.72 and 3.69) it is easily verified

that

RR' = 0, R2 =R R'2 =R'.

Using these relations and the definition of M (3.69), we find

RM = R, R'M = r2R'.
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Chapter 4

The effect of buoyancy and

bathymetry on internal seiche decay

Abstract'

We compute viscous decay rates (a) for internal seiches in lakes as the rate of stress working by the

seiche on the bed boundary. Stresses are computed using a velocity field which is modified by adding

a viscous benthic boundary-layer flow. This flow is modeled as a modified form of Stokes' solution for

an oscillating flow over a flat plate, in which the outer flow drops to zero at the bed over the distance

6' = 6/|1 , (6 = 2v/w, with v the viscosity), which we denote as the 'shear length'. The resulting

expression for a corresponds to the integral of kinetic energy at the bed (as for surface waves) multiplied

by a coefficient (7j) which accounts for the effects of buoyancy and bathymetry. Within the pycnocline,

the momentum equation reveals that BL stresses are balanced by substantially magnified buoyancy

forces (corresponding to larger 77), instead of acceleration. To balance buoyancy, the viscous stresses

('r oc ubed/6') become magnified through a reduction in 6' oc |i|- 1 . The relationship between the shear

length and the physical benthic boundary-layer thickness is explored.

As an application, decay rates are computed for the dominant internal seiches (VnH1, n = 1,2,3)

in the Upper Mystic Lake (UML, Winchester, Massachusetts). We find that higher vertical modes have

progressively slower damping rates, and that buoyancy effects contribute to the rapid decay of the VIHI

seiche. Although a for the V3H1 mode is also magnified, it is still ~five times smaller than the VIHI
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decay rate, which accounts for the relative persistence of the V3H1 mode. Since there is no apparent

resonance between wind forcing and seiche response in the UML system, differences in a are believed to

be a major factor determining seiche climate.
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4.1 Introduction

We investigate the effects of buoyancy and bathymetry on the viscous damping of internal se-

iches in lakes. Surface and internal wave decay rates (a) in shallow water are related to bed

velocity structure (for example, a oc shear stress, or kinetic energy). Previous studies have

shown that seiche structure (and therefore a) is determined by bathymetry and stratification

(h (x) and p (z)), and that bed velocities can be substantially magnified for certain lake con-

figurations. We show here that, for baroclinic seiches, a is modified by an additional factor

which describes the impact of buoyancy and bathymetry on bed shear. These effects can lead to

substantially enhanced damping in lakes whenever a region of magnified bed velocities coincides

with the pycnocline. Temperature data and numerical simulations of the dominant seiches in

the Upper Mystic Lake (Winchester, Massachusetts) are used to demonstrate this effect.

The damping of large-scale waves in lakes is due primarily (i.e. at leading order) to viscous

dissipation of wave energy at the boundaries2 [Gloor et al., 2000; Pricker and Nepf 2000a;

Chapter 2]. Decay rates are thus often computed by adding a viscous benthic boundary-layer

(BL) or bed stress parameterization to an inviscid model. Using the former approach, a can

be derived from a perturbation analysis as the complex portion of the leading-order frequency

shift. This method was applied to surface waves by Dore [1968a] and Mei and Liu [1973],

to internal and interfacial waves by Johns [1968], Dore [1968b; 1969], and Pricker and Nepf

[2000b; Chapter 3], and to the flow in a rotating cylinder by Kerswell and Barenghi [1995].

Alternatively, using the bed stress parameterization, a can be computed as the rate of stress

working by the waves on the boundary, i.e., a cc fa urbedds. Henderson and Miles [1994]

used this technique to assess surface wave damping in a cylinder, using Stokes' solution for an

oscillating flow over a plate to describe the BL flow q, and approximating the wall and bed

stresses using the normal shear, Tbed = pvoq/axn. The resulting expression for a is identical

to the perturbation method solution [Pricker and Nepf, 2000b; Chapter 3]. Gloor et al. [2000]

and Pricker and Nepf [2000a; Chapter 2] used the conventional parameterization rbed = C d

2 This assumption is likely valid for large systems such as lakes. However, in small systems such as laboratotory
tanks, damping is also affected by dissipation within the free surface boundary-layer and by contact-line dynamics
at the walls (Henderson and Miles 1994). In addition, recent studies have shown that dissipation within the body
of the fluid is not necessarily negligible in small containers; Howell et al. 2000, Martel et al. 1998, Miles and
Henderson 1998.
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(d = height above the bed) to determine a from model internal seiche solutions. Finally, several

authors have computed decay rates by adding stress terms directly to the momentum equations.

Hukuda [1986] used a linear stress relation with bottom friction coefficient r = Cu, followed

by a perturbation analysis, to e aluate surface wave damping. Orlij [1984] employed depth-

averaged surface, bed, and interface stresses with a two-layer model of transverse seiches in a

channel. And Craig [1991] added both internal shear stress terms to the governing equation and

a modified boundary condition with friction coefficient to compute internal seiche solutions in a

uniform stratification. However, despite this large body of literature, a generalized formulation

for internal seiches for arbitrary stratification and bathymetry has only recently been explored

[Pricker and Nepf 2000b; Chapter 3].

4.2 Internal seiche decay

The decay rate for internal seiches can be determined by adding a viscous benthic boundary

layer flow U to the inviscid velocity field u [Pricker and Nepf, 2000b; Chapter 3]:

q=u+U, qla=0, (4.1)

in which U vanishes a short distance away from the bed (denoted by a, with boundary coordi-

nate s). Using (4.1) as a starting point, wave and seiche decay rates can be computed a) using

a perturbation analysis [see, e.g., Mei and Liu, 1973; Pricker and Nepf, 2000a; Chapter 3], or as

b) the rate of stress working by the seiche on the boundary [Henderson and Miles, 1994], c) the

rate of viscous dissipation of energy within the benthic BL, or d) the rate of pressure working

by the seiche on the BL [Mei and Liu, 1973]. Using the bed stress perspective [Henderson and

Miles, 1994], a for surface seiches is given by

a= Re [jur-nds , E = |uI2 ddz (4.2)

where (* represents the complex conjugate, E is the total seiche energy, and -rng = nirij, with

{ni} = n the boundary unit normal vector. For longitudinal seiches (and the 2D formulation)

we assume the side wall contributions to a are negligible (formally 0 (H/B), with B the lake
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width). In the boundary integral uj is the inviscid or outer flow velocity field, while the stresses

rn oc B9qi/BXn are evaluated using the modified flow.

From the linearized density-continuity relation Dp/Dt = 0 and (4.1), the dynamic density

field p' (x, z, t) = p (x, z, t) - T (z) is related to the vertical velocity by

p'=-iwf (w +W ).
dz

Using this relation the momentum equations can be partitioned into separate outer flow and

boundary-layer (BL) equations,

i = -g woj2 + -- , (4.3)
iw dz 3 x

1 dp arjk !8Uj + Uk44iwpUg = -g. W6j 2 + , rXk = u - + ,
iw dz 9Xk, T8xk - x+

respectively. Here u = {u, w}, Uj = {U, W} and 612 = i-k = 0, 622 = k -k = 1 is the Kronecker

delta, with i and k basis vectors in the x and z directions. The outer flow equation (4.3) is

simply the conventional balance between acceleration, buoyancy, and dynamic pressure P'.

Following the standard formulation for thin BLs, in (4.4) the momentum balance involves the

viscous stresses r instead of P'. The boundary condition for this system is simply the matching

condition U1, = - ula. In addition, leading-order continuity and the no-flux condition on u

also require that n - U = 0, so that U is parallel to the boundary. We can therefore define a

unit vector t which is parallel to the boundary (i.e. t - n = 0), such that U = Utt. Applying

the continuity scalings w/u W/U ~ HIL = pt, and assuming constant viscosity v, at leading

order (4.4) reduces to

62 = iW 1 - 2 sin-«1 , (4.5)

with Xn = n - x, and n (s) the unit normal vector at the boundary and k - t = nx = sin 9 bed

the local bed slope. In (4.5) we have also used the fact that Brjk/&xXk Tv9U/&xn, as well as

the conventional BL scaling 6 = /2v/w. Written in this form, (4.5) suggests that the BL can

be broken up into two distinct regions. Outside the pycnocline, where N = 0, the bed stresses

are balanced by acceleration, and the BL has conventional Stokes form. However, within the
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pycnocline (specifically, when w < N sin Obc) the stresses are balanced by buoyancy forces.

This has implications for the structure of the BL within the pycnocline, as we demonstrate

below.

To solve (4.5) it is convenient to define the buoyancy/bathymetry factor q (z)

272 - N2 (Z) sin 2 bed , (4.6)

which can be further rewritten as 272 = |, (z) 12, with phase coefficient # = sign (72). From

(4.5), and using the boundary condition U10 = - uj 0 (see (4.1)), the velocity field q for the

entire system is

q(x, z) = u (x, z) - ujae ) ,- (4.7)

This is simply the Stokes solution for an oscillating flow over a plate, modified by the buoyancy

and bathymetry effects described by 2 (4.6). In (4.7) we introduced the rescaled thickness 6',

which we describe as the shear length, in order to make the distinction between this parameter

and the physical (observed) BL thickness. To estimate the magnitude |2|, and hence the size of

6' relative to 6, note from the dimensional scalings in the previous paragraph that the bed slope

is sin 0 bec ~ H/L. Using the constant-N result N/W ~ L/H (see, e.g., Maas and Lam [1995]),

for a system with pycnocline thickness hy, (~ (0.1 - 0.2) H) we estimate N/w ~ L/hryc. Thus,

within the pycnocline we expect 1q1 > 1, so that the magnitude of 6' (oc 6/1171) is smaller than 6

in this region. The impact of increasing 6' on the BL structure is depicted in Figure 4-1, which

shows BL velocity profiles (for maximum Iq (t)I during the wave period) for the region outside

the pycnocline (i.e., 1|71 = 1, the conventional Stokes solution), as well as a representative value

171 = 5 within the pycnocline. While the two profiles have the same form, the profile within the

pycnocline is contracted due the rescaled thickness 6'. Equation (4.5) shows that, within the

pycnocline, the magnitude of the BL stresses (the left-hand side of the equation) must increase

in order to balance the magnified buoyancy term. We thus expect buoyancy/bathymetry effects

to lead to an increase in the decay rate.

Equation (4.7) was also obtained by Wunsch [1969] for progressive internal waves in a

uniform stratification (constant N) encountering a constant-slope boundary [see also Cacchione
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Figure 4-1: Boundary layer velocity proffles for |9|I= 1 and |9|I= 5.

and Wunsch, 1974; Cacchione and Southard, 1974]. In a series of wave tank experiments,

Cacchione and Wunsch [1974] studied the impact of the relationship between incident wave

angle and bed slope, for the subcritical (w/N < sin 0 bed; 772 < 0), critical (w/N = sin 0bcd;

92 =0, and sueciia wN> sinse;2 > 0)cases. Thydemonstrated that asw/

approaches sin 0 bed, amplification of the incident waves leads to instabilities and mixing along

the entire slope. (For non-uniform stratification and non-constant slope, the results of De Silva

et al. [1997] suggest that amplification and mixing is highly localized to the critical region,

i.e., where 772 = 0) However, Cacchione and Wunsch [1974] did not investigate variations in

BL thickness, and specifically, by restricting attention to constant-N fluids, did not consider a

system in which 6' varies with position along the boundary. (Such measurements would have

been difficult at any rate, since the thickness of the BL in the experiments was ~- 3 mm:) As

far as we are aware, such observations have only recently been made (in Lake Alpnach), as we

discuss in Section 4.4 below.

Returning to the analysis of a, using (4.7) and the definition of 6 (4.5), the bed stresses are

'rofl~ = =vz a v(1+ #i)! , -(1±+ i) gwop6|j7luo . (4.8)

... .. . . . . . .. . . . . .
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As this relation shows, the bed shear is Bqo/zxnla ~ uo/6'la; the shear length 6' is therefore

the distance over which the free stream velocity drops to zero at the bed. Substituting (4.8)

into (4.2), the decay rate for internal seiches is

- = 6 1r i -U12 ds. (4.9)
Wo 4E fa9 2

This is simply the integral of the kinetic energy at the bed weighted by Ir/|, which accounts

for the effects of buoyancy and bathymetry. Clearly a increases with increasing 1r71. Note that

when |r/| = 1, a reduces to the decay rate for surface waves (al,71= 1 ) [see, e.g., Henderson and

Miles, 1994]. Internal seiche damping is often estimated by assuming that a is proportional to

the fraction of seiche kinetic energy within the BL (i.e. a with 1r1 = 1; see, e.g., Fischer et al.

[1979]). For comparison we compute both a and a1=1.

Finally, it was stated above that a also represents rate of dissipation of seiche energy within

the viscous benthic BL,

dE 1q- = -2a E ~--Re Ton - ods dxn .dt 2 VBL n

The rate of internal seiche damping thus also corresponds to the rate of generation of turbulence

energy within the BL (see Pricker and Nepf, [2000b]). The decay rate a therefore provides an

estimate for the amount of wind energy that is ultimately available for benthic mixing.

4.2.1 Numerical model for the inviscid flow

To model the structure of longitudinal internal seiches we use a 2-dimensional (linear, inviscid)

stream function formulation,

U = ,cz - .

For wave motion we assume

f (x, t) -+ Re [f (x) e"w]

131



for all the dynamic fields f = (V), p', P'). Eliminating the pressure and density from the lin-

earized 2D momentum and continuity equations

d p
iwpu = -VP'+gp , i' wp -w=0, (4.10)

yields the governing equation (see, e.g., Yih [1980], Ch. 2, § 15)

N2 g24
~-2 -2 () 0 ,(4 .11)

where V = (8/8x, O/oz) and F (z) is the mean density (related to the hydrostatic pressure,

9P/B9z = g-). Using the rigid lid approximation w (x, 0) = 0 the no-flux boundary condition

on u gives

n -u2 =T" (s) = 0 -+ a =0 , (4.12)

where n = (n_, nz) is the boundary unit normal. Analytical solutions to (4.11) and (4.12) are

only possible for a few simple configurations of stratification and bathymetry; models with irreg-

ular bathymetry and non-uniform stratification must be solved numerically. When discretized,

the (4.11)/(4.12) system can be written as a matrix eigenvalue problem

Solution of this equation yields a finite number of internal seiche eigensolutions T and their

corresponding frequencies. (Note, however, that solutions can only be obtained for systems

which are not subject to wave ray focusing; see Maas and Lam [1995]). For a detailed discussion

of the numerical method see Pricker and Nepf [2000a].

4.3 The Upper Mystic Lake

As a test case, we evaluate decay rates for the dominant seiches in the Upper Mystic Lake (UML;

Winchester, MA). The Mystic Lake system, comprised of the Upper and Lower lakes plus two

shallow forebays, is the focal point of the surface and ground water flows exiting the Aberjona
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Figure 4-2: The Upper Mystic Lake, Winchester, Massachusetts.

Watershed (Boston, MA). Internal seiches in the UML have been measured for several summers

as part of an ongoing investigation of contaminant transport in the Aberjona and Mystic Lake

systems. The UML is a small dimictic lake, ~ 1 km long, 600 m wide, and 25 m deep (Figure

4-2), with bathymetry consisting of a main basin plus a shallow lobe (maximum depth ~9

m) covering the northern third of the lake (Figure 4-3). Summer stratification conditions are

extremely consistent each year; the epilimnion grows to a maximum depth of 5 meters and

reaches ~ 28*C, while the hypolimnion remains at ~ 6*C. The location of the pycnocline

relative to the shoal has a major impact on the structure of seiches in the UML, generating

substantially magnified seiche-induced bed velocities in this region [Fricker and Nepf, 2000a].

The objective of the present study is to assess the impact of stratification and bathymetry on

the viscous damping of the seiches, and relate the observations to predicted decay rates (4.9).

4.3.1 Internal wave and wind data

Three thermistor chains were deployed in the UML to record the internal wave activity during

the 1996 summer field season (April to November). The horizontal positions of the chains,
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Figure 4-3: Bathymetry of the UML along the dominant wind forcing axis.

marked A, B, C, are shown in Figure 4-3. Each system was comprised of six thermistors

and a pressure sensor to determine depth. The thermistors on chains A and B (main basin)

were spaced at 1.5 m intervals, with the top thermistor deployed approximately 4 m below the

surface. This arrangement was chosen to optimally span the pycnocline for typical mid-summer

stratification conditions in the UML. In the shallower northern part of the lake chain C was

placed 2 m below the surface with thermistors 1.0 m apart. Temperatures were recorded at

five minute intervals. Concurrent measurements of wind speed and direction were made at

10-minute intervals using an anemometer at the southern end of the lake, placed approximately

12 m above the water surface on a flag pole at the Medford Boat Club (MBC, Figure 4-2).

Winds in the Mystic Lake system are consistently from the south during summer and the north

in winter, because of both the local geography and weather patterns. The forcing is therefore

predominantly along the major axis of the UML all year (indicated by an arrow in Figure 4-2).

A sample of internal wave data at chain C is presented in Figure 4-4 for a one-week period

during mid-summer (1996). Wind data for the same period are also shown. The temperature

data show that the seiche climate in the UML is unsteady, and that the system undergoes rapid

transition among modes. For example, beginning roughly on Jday 193 the dominant mode is

the ~12-hour oscillation clearly evident in the fourth thermistor record (5m depth, -180C).

This seiche persists through Jday 197. At the end of Jday 195 we see the onset of a shorter-

period seiche (~2h) in the fifth thermistor record (6m, ~13 C) which appears to be forced by

a short, strong wind event, and is damped over 5-10 periods (and is possibly re-excited by the

weaker wind event at 0:00h on Jday 196).
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Figure 4-4: Internal wave data from thermistor chain C, with concurrent wind data.

Figure 4-5 shows a spectrogram of the temperature data at thermistor 5 (chain C), computed

for a three-week period which includes the data in Figure 4-4. The wind data are also presented.

The spectrogram shows distinct oscillations at - 0.6 cph and 0.1 - 0.2 cph, and again reveals

the transient nature of the seiche response in the UML. Comparing the wind and wave data,

the 0.6 cph oscillation appears to be forced by stronger, short-duration winds (for example, the

events at Jday 189, 192, 196, and 202, which are marked by dashed lines). The persistence of

the lower-frequency mode might suggest that this oscillation is matched by a component of the

wind spectrum. However, as discussed Section 4.3.3, this is unlikely.

4.3.2 Viscosity and 6

Recall that, in order to compute an expression for a, we described the shear stresses near the

bed using a viscosity parameterization (4.4). Unfortunately, very little information is available

regarding viscosities or diffusivities in lake benthic boundary layers, or even about the size of

the BL. Hagatun and Eidsvik [1986] computed a time- and space-dependent turbulent eddy

viscosity for the benthic BL under ocean surface waves (period ~ 10s), using a numerical model
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Figure 4-5: Spectrogram of temperature data collected at thermistor chain C (fifth thermistor,
at depth 6m). Frequencies are reported in cycles per hour (cph). The bottom figure shows the

concurrent wind data.

with k - E closure. Over a wave period they found vt - 10-4 U with U the magnitude of the

free-stream velocity just above the BL. Applying this to the much longer-period seiches in the

UML, using the frequency of the dominant V3H1 mode (w ~ 2 x 10- 4 s-1) and estimating the

outer flow velocity as 0 (1 cm/s), we find vt ~ 5 x 10- 5 m 2 /s and 6 = 2v/w ~ 0.7m. Hagatun

and Eidsvik [1986] also estimated the thickness of the BL as the height above the bed where

the velocity reached U (and where r = 0). They observed a maximum o ~ 5 x 10-2u during

the wave period. This formula yields 6 - 2.5m for the UML.

More recently, Gloor et al. [2000] measured v ~ 3 x 10- 5 m2/s in the near-bed waters in

Lake Alpnach (see also Wiiest and Gloor [1998]), a surprisingly similar result to Hagatun and

Eidsvik [1986]. The similarities between the UML and Lake Alpnach (both are small lakes, with

depths of 25m and 35m, respectively) allow much more confidence that v > 10- 5m 2 /s is a good

estimate of BL viscosities in the UML. Gloor et al. [2000] also observed temporal evolution

(both oscillatory and unsteady) and spatial variations in boundary mixed-layer thickness (6 ML),

136



10

0015

20. a) _____ _C)

25
5 10 15 20 25 997 998 999 1000 0 0.005 0.01

Temperature (*C) Density (kg/m ) N2 (s)

Figure 4-6: Mean temperature, density, and N 2 profiles for Jday 190-197.

which was inferred from temperature microprofle data as the height above the bed where the

temperature gradient dT/dz showed a discontinuity. They estimated 6 ML in the range 0 - 5m

(inversely correlated with buoyancy), with 6 ML = 1m a representative value. We discuss these

observations in more detail below. To compute decay rates for the seiches in the UML in the

following section we use a BL thickness of 6 = Im.

4.3.3 Seiches in the UML

To evaluate internal seiche solutions for the UML, a representative mid-summer density (or

buoyancy frequency) profile is computed using the thermistor chain data in Figure 4-4 (chain

C) and the simultaneous data at chains A and B. The temperature at each of the 18 thermistors

is first averaged, and then assembled in a composite proffle which is used to estimate P (z) and

N 2 (z) (Figure 4-6). The UML is modeled using idealizations of N 2 and the bathymetry h (x)

along the wind forcing axis (Figure 4-3). Model stream function solutions for the V1H1, V2H1,

and V3H1 seiches modes are shown in Figure 4-7. The 0 (x, z) are computed on a 40 x 40 grid

and then interpolated over a finer grid (150 horizontal x 100 vertical) to facilitate the evaluation

of Ubed (see Fricker and Nepf [2000a]). As an illustration of the velocity field computed from

these solutions, u (x, z) for the V1HI mode is shown in Figure 4-8 (20 x 20). This plot represents

the spatial envelope of the sinusoidal standing wave motion.

The computed VIHI frequency (0.58 cph) matches the higher-frequency oscillation in the

spectrogram (Figure 4-5), identifying this mode as the VIH1 seiche (in general, this peak
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Figure 4-8: Velocity field computed from the V1H1 stream function contours in Figure 4-7.

appears at 0. 55 -0.65 cph in the wave spectra, depending on season). From the V2H1 (0.17 cph)

and V3H1 (0.12 cph) numerical results we see that the lower, broader band in the spectrogram

corresponds to these two seiches. The two oscillations are often difficult to identify separately,

but can be clearly seen in Figure 4-5 at Jday 198, for example. Spectral analysis of UML

thermistor data shows an oscillation centered at - 0.08 cph throughout the summer; even

though this peak is usually broad, by using a larger bin size (i.e. > 512 points) the analysis

is capable of distinguishing a separate peak at ~ 0.2 cph whenever the higher-frequency mode

is present. Despite this, the presence (in fact, dominance) of the V3 mode in the UML was

not .appreciated before the results of this study, because V3 spatial phase structure was not

distinguishable from V2 motion in earlier thermistor chain records due to the positioning of

the thermistors in previous years [Fricker and Nepf, 2000; Trowbridge, 1995]. In addition, the

overly simplistic models used in previous studies were unable to precisely resolve the V2 and

V3 frequencies [Trowbridge, 1995], and thus the existence of the V3 mode was not anticipated.

A sample of temperature data from chain A (southern end of the main basin) is presented in

Figure 4-9. The in-phase motion at the first and third thermistors and antiphase motion at the

second is clearly evident in the record. The thermistors at this location are spaced 1.5 m apart;

the V3 motion is therefore confined to a small region of the water column, which generally makes

it difficult to detect the presence of the V3H1 mode. As mentioned above, this mode is the

dominant oscillation in the UML, with a spectral amplitude one order of magnitude larger than

the V1H1. Whether or how this mode is preferentially excited is unclear. Numerous studies

have shown that higher vertical modes (particularly V2H1) are often dominant in small lakes,
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Figure 4-9: Thermistor chain data at chain A, showing V3 phase structure.

usually because the seiche frequency matches a component of the wind spectrum [Miinnich

et al., 1992; Wiegand and Chamberlain, 1987; LaZerte, 1980). However, in the Mystic Lake

system the wind forcing shows no particular periodicity, except for a weak diurnal peak in

the wind spectrum (~ 0.04 cph). We therefore conclude that the seiche climate in the UML is

predominantly determined by other factors, such as bathymetry, stratification, and as discussed

in the next section, by the viscous damping rate of each seiche.

4.4 Results and discussion

Using equation (4.9) the decay rates for the dominant seiches in the UML are computed from

the numerical solutions in Figure 4-7. The results are shown in Table 4.1. Comparing a with

aisi=1, the buoyancy and bathymetry effects accounted for by r/ cause the decay rates to increase

by approximately one order of magnitude. The decay rate for the V1H1 mode in particular

is exceptionally large; a/w ~ 0.05 implies that the wave amplitude decays by -80% over five

wave periods, i.e. A (5T) /Ao ~ 0.2. This is much closer to the observed behavior of the V1HI

seiche than predicted by alg|=1, for which A/Ao = 0.2 at t ~ 36T. By fitting an exponentially-

decaying sinusoid to the VIH1 response which is excited on Jday 195.7 (see Figure 4-4), we

estimate a V1H1 decay rate of a/w - 0.35 i 0.05, in good agreement with the model prediction.

While the V3H1 decay rate is increased by more than an order of magnitude, av3Hi is still
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sufficiently small that this mode can persist in the UML. The dominance of this seiche is clearly

evident in the field data, for example in Figure 4-4, in which the ~10hr V3H1 oscillation can

be seen throughout most of the seven-day record in both the ~18*C and bottom thermistors

(which was lying on the bed). The results in Table 4.1 show that a decreases for progressively

higher vertical modes. Interestingly, field studies of dominant higher vertical modes often report

that the V1H1 is excited by strong winds along with the other seiches, but then rapidly decays,

leaving the more persistent higher modes (usually V2H1; see Wiegand and Chamberlain [1987];

LaZerte [1980]). These observations suggest that a I for n T is a common result. The fact that

the same trend is observed for a,=1 in Table 4.1 implies that this behavior is primarily due to

features of the (bed) velocity field, and not I r/. A likely explanation is that the fraction of total

seiche energy which is located at the bed (or, in terms of velocities, |ube| / /iEpo) decreases

for higher vertical modes.

Recall from 4.8 that the shear at the bed is

-9q (1 +#i) .9n bed

In the UML, the region of the water column where the density gradient is strongest (where N

is a maximum, and 6' a minimum) coincides roughly with the depth of the northern shoal (see

Figure 4-3). The bathymetry at this location also tends to generate substantially magnified

bed velocities, as the numerical V1H1 solution in Figure 4-8 shows. The increased decay rate

for the VIHI seiche (in fact all the seiches) is therefore due to the combined effect of enhanced

nbed and Ir1 > 1, which generate substantially magnified bed stresses. Recent studies have

explored the role of bathymetry and stratification in determining seiche structure [Miinnich,

1996; Maas and Lam, 1995], and bed velocities in particular [Fricker and Nepf, 2000a]. The

results in Table 4.1 reveal that the dependence of a on h (x) and p (z) is governed both by Ubed

and by additional buoyancy and bathymetry effects accounted for in the factor r/.

Although the relationship between 6' and the physical benthic BL thickness ( 6 BL) is unclear,

it is interesting to note that the dependence of 6' on buoyancy described above resembles

observations by Gloor et al. [2000]. In field studies in Lake Alpnach these authors found

an inverse relationship between 6 ML and the local buoyancy frequency (Figure 4-10). Their
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mode a =1/w a/w aobs/w

V1H1 0.0071 0.049 0.035 i0.005
V2H1 0.0021 0.022-
V3H11 0.0009 0.012-

Table 4.1: Decay coefficients for the dominant UML seiches. The first column shows the decay
rate when buoyancy effects are neglected. The V1H1 decay rate estimated from the wind-
induced event at Jday 195.7 is listed in the third column

study also showed that 6 ML varies substantially over time, and is determined by numerous

physical processes, most of which are still poorly understood. It is therefore not possible to say

conclusively that the behavior of 6' explains the observations by Gloor et al. in Lake Alpnach.

However, the fact that both 6' and the observed 6 ML are inversely related to buoyancy suggests

that the modified Stokes flow model (4.7) does adequately describe at least part of the physics of

the benthic BL. This was recently reinforced by direct observations of near-bed velocity profiles

in Lake Alpnach which resemble the Stokes solution ( Wiest, pers. comm.).

Finally, we note that several temperature microprofile studies have revealed that, at some

times and locations, the temperature gradient inside lake benthic BLs can be as much as one

order of magnitude smaller than in the fluid just above the BL (in fact, this is one way of

estimating 6 ML from field data [see Gloor et al., 2000; Lemckert and Imberger, 1998; Gloor et

al., 1994]). Because of this homogenization of fluid, the assumption that the mean stratification

7 (z) (and N 2 (z)) away from the bed can be extended into the BL might not be universally

valid. The homogenization of fluid diminishes density gradients near the bed, and hence reduces

the value of a. In addition, benthic mixing causes fluid to advect out of the BL in horizontal

buoyancy-driven intrusions, further changing the BL structure [see, e.g., Gloor et al., 2000;

Goudsmit et al., 1997]. As mentioned previously, none of these processes is well understood at

the present time, and thus it is difficult to know how the expression for a in (4.9) should be

modified. However, since unsteady effects, fluid homogenization, and other physical processes

can potentially be of importance, the a computed here likely represents an upper limit on the

seiche decay rate.
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Figure 4-10: Boundary layer thickness versus buoyancy frequency, from observations in Lake
Alpnach (reproduced from Gloor et al., 2000 (Figure 10); @ American Geophysical Union).

4.5 Conclusions

The decay rate a for internal seiches is computed as the rate of bed stress working (4.2),

and is equivalent in form to the integral of kinetic energy at the bed modified by a buoy-

ancy/bathymetry factor

N2

77= 1 2 s eind2 Obe ; (4.13)

equation (4.2). Buoyancy and bathymetry effects cause roughly a tenfold increase in a (versus

a= 71 1) for the dominant seiches in the Upper Mystic Lake (VnH1, n = 1,2,3). This magnifica-

tion is caused largely by enhanced bed velocities over a shoal whose depth coincides with the

pycnocline (i.e. where N 2 is large). In addition, the damping rate decreases by a factor of ~ 2

for progressively higher vertical modes. This is likely due to the decrease in relative energy at

the bed for higher modes. These trends help explain both the rapid decay of the V1H1 and the

persistence of the V3H1 seiches observed in the UML thermistor chain data.
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The velocity field in the benthic boundary layer is modeled as a modified form of Stokes'

solution for an oscillating flow over a flat plate, in which the outer flow drops to zero at the

bed over the distance 6' = 6/1r/ (6 = v/_vw, with v the viscosity). The magnification of

a described above can be attributed to increased bed shear ~ Ulbae /6' within the pycnocline

due to the buoyancy and bathymetry effects described by Ir/|. We therefore describe 6' as the

shear length, making the distinction between this parameter and the physical (i.e., observed)

boundary- or mixed-layer thickness 6 ML- Within the pycnocline we approximate (see (4.13))

6' ~ 6 , (4.14)
N sin bed

and thus the shear length shows the same inverse relationship with buoyancy that Gloor et al.

[2000] observed for the mixed-layer height (SML) in Lake Alpnach. The similarity between these

observations and the behavior predicted in (4.14), as well as the measurement of Stokes-like

bed velocity profiles in Lake Alpnach (Wilest, pers. comm.), is strong evidence of the validity

of the modified-Stokes BL model, and the decay rate expression in (4.9).
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Appendix A

List of Symbols

B

E, En, Emn

Ekin, Epot

H

L

M

N

P (x, z, t)

P (z)

R, R'

T = (ti, t 2 )

U= U,V,W

Un

UT = (Utl, Ut2 )

V, dV

VBL

g

h (x) , h (x, y)

Lake width

Total seiche energy (mode n, mn)

Seiche kinetic, potential energy

Lake depth (scale)

Lake length (scale)

BL equation matrix operator

Buoyancy frequency

Dynamic pressure

Mean pressure (hydrostatic)

BL vertical projection matrices

BL transverse unit vectors

BL velocities (in the (i,j, k) basis)

BL normal velocity

BL transverse velocities

Volume, volume element

Volume of BL

Gravitational acceleration

Lake bathymetry (2D, 3D)
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hi, h2

i, j, k

k, km

me, my, mz; m, n; nhn v

n, nx

pi =ti -k (i =1,12)

q,qi (=u+U)

s, s

t

U = (u,v , w) , uo, etc.

x = (X, y, z)

Xn = n - x

XT = T -x = (xtl ,Xt 2 )

lAp

Q

a

6, 6 (s) , 6 (s)

6' (= 6/| |)0

6 (X - Xo) ; 6 ab

e (= 6/H)

( (x, t) , ((x, t)

77 (S) ,q Ws)

9 (=sign (72))

(P (I(* 0 P 7W
p (x, t) (= p' (x, t))

Layer thicknesses (2-layer formulation)

Unit vectors (Cartesian, absolute basis)

Horizontal wavenumber (mode m)

Mode numbers (x, y, z; horizontal, vertical)

Boundary unit normal vector (x-component)

Tangent vector vertical projections

Total fluid velocity field

Boundary coordinate(s)

Time

Inviscid fluid velocity field

Spatial coordinates (absolute basis)

Boundary normal coordinate

Boundary tangential coordinates

Density difference (surface-bed, or 2-layer)

Lake volume

Seiche amplitude decay rate

BL thickness

Shear length

Dirac delta function; Kronecker delta

Perturbation parameter

Dynamic horizontal, vertical fluid displacements

BL buoyancy coefficient

BL phase coefficient

Aspect ratio (= H/L)

Kinematic viscosity

Scaled (dimensionless) BL coordinates

Dynamic density (isopycnal) fluctuations
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S(z)

Poi Ps, Pi, P2

o (s), U (s)

r, rig; r,

#x(z) ,x#,(z)
X (z ,. xW()

*(X, Z) , 0" (X, z) , @mn (X, iZ)

00, , m, (X)
WI) W7n , Wmn

wo,0 1 ,..

H (z - zo)

Mean density

Density scale; surface, layer densities

Scaled BL viscosity (= v (s) /vmax)

Stress; surface stress

Vertical structure function (mode n)

Vertical structure function (mode n)

Streamfunction (mode n, mn)

Streamfunction (perturbation expansion)

Seiche frequency (mode n, mn)

Seiche frequency (perturbation expansion)

Heaviside function

Linear differential operator

Lake boundary (bed plus free surface)

Core/BL interface
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Appendix B

Governing equations

We begin with a scaling analysis of the momentum (i.e. inviscid Navier-Stokes) and continuity

equations for a stratified fluid. Benney (1966) performed the same analysis in a study of long,

finite amplitude surface and internal waves, in a paper which is regarded as a seminal work in

the application of the KdV equation to internal waves. The development here differs somewhat

from Benney (1966) by introducing additional scaling parameters.

The Navier-Stokes (Euler) equations, excluding viscous and Coriolis terms, are

au
p- + pu -Vu = -VP - pgk, (B.1)

with, for example u (x, t) = (u, v, w) and V = (8/8dx, 8/8dy, 9/8dz) in Cartesian coordinates.

For an incompressible fluid we have the continuity relations

V-u=O,
Dp _p +U*v=o
Dt -p (B.2)

The various fields and coordinates in these equations are scaled as follows:

(x, y) -+ L (x, y)

z -+ Hz

t -> Tt

(u, v) -+ U (u, v)

w -+Ww

P - o pogHP

P -+ Pop

151

(B.3)



For basin-scale waves the length scales H and L are defined by the depth and length of the

lake, respectively. Since we are seeking standing wave (and hence oscillatory) solutions, the

timescale T can be taken as w-1, with w the oscillation period of a given internal seiche mode.

Furthermore it can be assumed that the mean flow in the system is zero, so that the velocities

u, v, w correspond explicitly to the seiche motion. The pressure and density fields, on the other

hand, can be decomposed into mean and perturbation terms,

P (x, t) --+T (z) + aP' (x, t) p(x, t) -+4-P (z) + ap' (x, t),

where a is a small dimensionless parameter related to the 'wave amplitude' (or equivalently to

the magnitude of the velocities). Note the subtle but important point that

Dp _ p dp po Op' Pp po 8 p'
49z H dz H (9z 8 T 8~t'

where Ap scales on the surface-to-bed density difference.

Using the above scalings in the u-continuity relation immediately gives the requirement

WL 1  (B.4)
UH

Again using B.3, and expansions for p, the density-continuity relation becomes (after dividing

by pO/T)

a-p' ±ryuVp'±+'Ew dp=0
&t dz

where we have defined e = and the normalized amplitudePO

UT WT |(|
L H H'

using the fact that w = 9(/4t (WT ~I 41). Note that the leading-order balance in the continuity

equation requires a , -ye (i.e. the isopycnal fluctuations scale on the wave motion as p0 a ~
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Apj). Turning next to the momentum equations, applying B.3 and dividing by poU/T gives

(p + e-Yp) ±t + -/U Vuh = -=VhP (B.5)

2 aw '7 e2 P d

A ~ 8 _j YU-V F2 az F2 dz
t=

writing the horizontal (uh = (U, v), Vh = (a/dx, &/Ddy)) and vertical equations separately.

Here we have defined the Froude number F = U/c, (with c2 = gH the shallow water surface

wave speed) and the aspect ratio y = HIL (- W/U). We next discuss the values of these

parameters.

B.1 The parameters pL, e, y, and F

The four small parameters introduced above are

H Ap F U

L PO H 77 vi V/gesH '

where F is an effective internal Froude number. For basin-scale motions, H and L scale on

the depth and length of the lake, respectively, and thus the aspect ratio t < 1 in general.

The normalized density difference A is also small for natural systems, and especially for lakes,PO

where the stratification is commonly due to thermal effects alone. For example, in the UML

in midsummer the temperature in the mixed layer reaches approximately 28'C (~997 kg/m 3 ),

while the hypolimnion remains at about 6'C (1000 kg/m 3 ). And regarding y, while the spatial

features of the wave motion are governed by the bathymetrey and stratification of the lake, the

amplitude of the seiche (which might not be small) is ultimately determined by the strength of

the wind forcing. For example, for a two-layer fluid system (with upper layer depth hi) in a

rectangular basin (L x H), the maximum steady-state linear displacement of the interface due

to steady forcing r = pu2 is

Lu*
rimax = 2gehi '

153



which occurs at the sides of the basin. Note that W = 2,7_,, is the Wedderburn number

(Thompson and Imberger, 1980), a dimensionless parameter which describes upwelling poten-

tial.

Prom the above arguments, we see that the parameters yL, e, -y are effectively independent

of one another, and as such there are no mutually-imposed conditions on their values. On the

other hand, the Froude number must be a function of (pu, e, -y). To determine the relationship

we turn again to the two-layer system. For the homogeneous system (i.e. no forcing), the

eigensolution for the fluid velocity un in each layer n = 1, 2 (with thickness hi and h2 ) is

related to the interface displacement amplitude C by

lu I=C CI r" /7 V- E
un|=cy ~Ny hih2~ H

hen hn

where we have used the internal wave phase speed c2 = gehlh2 and the scaling |( - Hy from

above. The Froude number is therefore

U hh2 (B.6)
F = ~g r ~ n B6

Returning now to the momentum equations B.5, the leading-order terms (in the z-equation)

satisfy the hydrostatic balance (in dimensional form)

dP

and can therefore be eliminated from the dynamic equations. At next order, the acceleration and

advection terms are much smaller in the z-equation than in the horizontal equations (p2 < 1),

and could justifiably be neglected (Dw/9t = 0 corresponds to the hydrostatic approximation).

However, recognizing that L scales on the 'horizontal wavelength' of a given internal seiche

mode, these terms may in fact be much larger for higher horizontal modes. In addition, retaining

the vertical acceleration does not alter the difficulty of the numerical problem. For these reasons,

and simply for the sake of avoiding the hydrostatic approximation, &w/8t is retained. Finally,
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recalling B.6 the governing equations are

au(P+6/p) T +YU-Vu = -VP -pk

at dz

(B.7)

Filly linearized equations follow from B.7 from the simple requirement that the wave amplitude

is small -y < 1.

B.2 Internal wave energies (linear, inviscid)

Using the relationship between the vertical velocity and displacement fields w = 8(/8t, the

linearized density-continuity relation (from B.7) can be integrated with respect to time, giving

the relation between the density and isopycnal deviations

p' = -pzC - (B.8)

Next, multiplying the linearized momentum equations (B.7, in dimensional form) by u gives

a (1 2) = -V (uP) - gp'wk
5i = - -

after invoking u-continuity to rearrange the pressure terms.

energies per unit volume

skin (x, t) = pu2 Epot (x, t)

Defining the kinetic and potential

J gp'wdt (B.10)

and the energy flux density

<b (x, t) = uP

we see that B.9 corresponds to an energy continuity relation,

49E
+5t < 0, (B.11)
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with E = Ekin + Epot the total energy for a linear, inviscid system. For a lake, if we integrate

B.11 over the lake volume Q, using Gauss' theorem to rearrange the divergence term, we find

- EdV = 0
dt in'

since n - <bla = 0 (i.e. n - ulo = 0) on all boundaries (in the inviscid formulation). This shows

that, in the absence of friction, the total energy of the seiche is conserved over time.

For progressive waves in open systems, the energy densities in B. 10 are typically integrated

over a wave period or wavelength to yield more useful averaged quantities. Since the t and

x coordinates are coupled in characteristics (k -x ± ct), these averaged energies are generally

independent of both time and horizontal position (with integration over either time or horizontal

space giving the same result). This is not the case for seiches, however, for which the time and

space coordinates may be separated. The above energies may thus be integrated over either t or

x separately, yielding useful information about the spatial distribution of energy (or temporal

evolution when viscosity is included).

Since we are interested in wave solutions, we now explicity specify a sinusoidal temporal

variation for the fields f = (u, p', P'):

f (x, t) -- Re [f (x) ewt] , (B.12)

with w the internal seiche frequency. Hereinafter the primes on the dynamic fields are dropped

for convenience. Using B.8 and the definition of the buoyancy frequency N 2 = -g/p dp/dz, we

also define the energies

Eki (x) = Tu2 (x) Epot (x) = gpw = N 22

such that (including an unspecified phase #)

Ekin (x, t) = Ekin (x) (Re e 2+ Epot (x, t) = Epot (x) (Re iet++

Note that the total energy density E = Ekin + Epot at any given location within the fluid is not

constant over time, since Eki,(x) =4 Ept(x) in general. However, integrating the total energy
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over the lake volume gives

E(t) = j dV = Ekin (x) dV cos2 (pt + 4) + Ept (x) dV sin2 (pt + #)

In order for this quantity to remain constant, as determined above, we must have

E = Eki (x) dV = Ept (x) dV = constant . (B.13)

This effectively corresponds to energy equipartition for standing waves in a basin. While the

total energy in the system remains constant, the distribution of energy oscillates between kinetic

and potential, 1800 out of phase. The energetics of the system resemble a frictionless ball rolling

up and down sinusoidal hills, indefinitely exchanging potential energy for kinetic. The analogy

of seiches to a harmonic oscillator is therefore obvious.

B.3 Three-dimensional formulation

We now derive the governing equation and boundary conditions for linear internal seiches.

Any one of the five fields (u, v, w, g, P) can be isolated in a single equation by eliminating the

other four from the linearized governing equations (from B.7). However, to obtain a complete

system of governing equation plus boundary conditions for a single field it is necessary to use the

dynamic pressure P, since this is the only function whose boundary conditions can be expressed

in terms of itself alone (consider the no-flux condition n -ula = 0, which couples the velocity

equations).

Begin by eliminating p (= iwpN 2w/g) from the momentum equations and rearranging,

12
iw-VP=w 2u-N 2wk. (B.14)

Replacing the velocities in the u-continuity relation (i.e. V - u = 0) then gives the governing

equation

2 (1 w2  ap\ =0,VlP - 7i- (B. 15)
oz ;5 N2 _ W2 49z'
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where we have defined the horizontal Laplacian

82 62

The boundary conditions are derived from the no-flux requirement on the velocities, again using

B.14;

n -u = 0 --+ l'P -= nh - VhP - nz, - = 0 B.6
N 2 W 2 5z= (B.16)

on c, where nh = (nx, ny). It is convenient to set

W 1 1
y(z)= -pN2 _ U2

in B.15 and in the discussion of orthogonalities presented below. Finally, at the free surface

z = (s there is a deviation in the pressure due to the displacement of the surface itself. The

dynamic pressure P at the surface is given by

P (C) = (C8) .

Employing the fact that w((,) = iw(,, this equation can be combined with the z-momentum

equation in B.14 to give

BP N2 _ 2

- + g P (B.17)

If the rigid lid approximation w (,) = P ((,) = 0 is used, B.17 reduces to (P/z),f face = 0,

and can be simply incorporated into B.16. Equations B.15, B.16, and B.17 represent the

complete system which governs linear internal seiches in 3D. This system is analogous to a

Sturm-Liouville system, and admits an infinite set of orthogonal eigensolutions (internal seiche

modes) and their corresponding eigenvalues (frequencies).
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B.3.1 Orthogonality properties

The eigenmodes P,, can be used in principal to describe the response of a stratified lake to

surface wind stress as a Fourier sum, provided the orthogonality properties of these solutions

are known. For this reason, and because the orthogonality conditions are also needed to perform

the perturbation anlysis in Chapter 5, we now determine the orthogonality conditions on the

Pn.

Begining with B.15 for mode n (with corresponding frequency w, and hence yn), multiply

the equation by P, (= Pm) and integrate over the lake volume,

/ 1 8 ~ -7;' Lj
=Pm V - W - dV = 0.

The reason for the factor j-1 in this integral becomes apparent later. After rearranging the

integrand,

fl[ 1 VP) &P\ DPm &Pn

=Vh - (PmVPn) - PWn nm ) - VhPm VhPn + p n yj dV
ap qz az z z

(B.18)

the first two terms can be converted into a surface integral using Gauss' theorem,

/ 1 _BnL&)

Pm (n - VhP-n /nThI9 ds= .
op &z /

This integral vanishes identically because of the boundary conditions B.16, leaving only the

last two terms in B.18. The orthogonality conditions on P are not necessarily obvious at this

point (as we shall see in the next section, the 2D streamfunction analysis is somewhat more

straightforward). To take the next step, recall that the integrated kinetic and potential energies

in the lake must be equal (see B.13). Equation B.18 can be rearranged using the trivial relation
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and then partitioned into the two orthogonality conditions

1-T V(Pm VhP. + 2Y -mPn dV = Enonm (B.19)
n w2 ;52 n z (z

S1 2 2 PmPn
-IN2 -- ndV = En6nm (B.20)
22Bz &z

after dividing by 2w. Here En is the total energy of seiche mode n; these expressions correspond

to the integrals of the kinetic (= j1 -u 2 ) and potential (= 7 W2) energies, respectively, and

are necessarily equivalent (see B.13).

As a final point, note that the results in this section can be derived much more directly

using the same technique employed in Chapter 5. Specifically, since the P-governing equation

(B.15) is derived by replacing the velocities with P in the u-continuity relation (V -u = 0), the

above analysis can also be performed by evaluating the integral

PV -u* dV = 0.

Rearranging this and again using Gauss' theorem gives

f n -u*PmdS - jVPm -u*dV = 0.

Eliminating the first integral (n -u1,9 = 0) and using the momentum equations (B.14) we find

(um.- u* - 2wmm dV=0.

Written in this f6rm the orthogonality conditions are readily apparent; interchanging m <-+ n

and subtracting the new equation from the original yields (with u = u*, w = w*)

- ) N 2wmwndV = 0.

If m = n this expression vanishes trivially. On the other hand, if m # n the integral itself must

vanish. This can be summarized in the orthogonality conditions (normalized to correspond to
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the energy)

/1N N2 
1iJ 72wmwndV = Em6mn jPUm -undV = Em6mn,

from which we retrieve B.19 and B.20 by replacing the u with P (using B.14).

B.4 Two-dimensional formulation

For realistic lake models (i.e. descriptions of stratification and bathymetry), it is difficult

to obtain numerical solutions to the full 3D problem (equations B.15 and B.16), for reasons

outlined in Appendix C. Because of these difficulties, and because we are primarily interested

in longitudinal seiches, a 2D formulation is used throughout most of this thesis. Some of the

strengths and limitations of this approach are explored in Chapter 2, when model solutions for

the Upper Mystic Lake are compared to field data (§ 2.4).

In two dimensions ((horizontal, vertical) = (x, z)), a formulation for internal seiches can be

derived using a streamfunction 4' (x, z) for the velocity field,

(u, w) = Re -ao eiwJ

Replacing the velocities with ?P, the momentum equations become

.4' _ 9P . _4@ OP
%wPg - --7 7 =T+ gp.

az 8x 8 x

The pressure can be eliminated from this pair by cross-differentiating (8/8z on the x-equation

and 0/8x on the z-equation) and adding. Finally, replacing the density with (see B.7 or B.8)

iw dp
p~dz 49x

gives the 2D seiche governing equation

N2 g2a4
N - (p- 2 - (B.21)
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where V = (19/8x,8/8z).

The boundary conditions for 0 (x, z) are computed from the standard no-flux condition on

u. It is somewhat easier to perform this analysis using vector notation. Writing the 2D gradient

vector as V = (a/ax, 0, 8/8z) and the velocity u = V x @j = VV) x j (where j = k x i is the

y-unit vector), we find

n-u=n-(V@ xj)=-(nxj)-V

Since n - (n x j) = 0, we can define t = n x j as the unit tangent vector to the boundary (i.e.

t is orthogonal to n). The condition n -ua = 0 (where a represents the bed plus free surface)

therefore becomes

t -N701, = 0, zt) = 0.

This can simply be integrated to give the Dirichlet condition

ja,9 = 0 .(B.22)

The integration constant is taken as zero without loss of generality.

B.4.1 Orthogonality properties

The orthogonality conditions for the 2D system are computed exactly the same way as in Section

B.3.1. Writing B.21 explicity for mode n, and then multiplying by @* ( 2m) and integrating

over the 'volume' of the lake (denoted by Q; dV = dxdz) gives

N2 092

Rearranging and grouping the divergence-type terms gives

-a N2  a2@\ N2 a'ma (9-0
JBz [ ( on n)o a ax _
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The first two terms in this integral can be re-expressed as a surface (contour) integral using

Gauss' Theorem,

TOM n - VV), - nz- N " 9p ds = 0,j1 mflVP N2a2 ng d=

which vanishes because of the boundary conditions Omla = 0. Here s is the boundary coordinate

and n = (nx, nz) is the outer unit normal vector at the boundary. This leaves the last two terms

j VPm -V'OndV =f - 2 49m 49ndV.

Interchanging the indices n <-+ m in this expression and subtracting the original gives

1 - ) 7N240 am dV = 0.

This relation holds when either the integral vanishes or when Wn = Wm. This can be summarized

in the orthogonality condition

/ N2 49m0 ddz = 2Em6mn , (B.23)

which in turn implies

i VOM. Vm ndxdz = 2Em6mn .(B.24)

Here Em is the total (and constant) energy of the system for seiche mode m. With n -+ m,

the integrals in B.23 and B.24 correspond to the total potential and kinetic energies for mode

m respectively, which are equal to the total Em (see B.13).
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Appendix C

Numerical formulation

C.1 The 2D system

Expanding the @-governing equation (B.21) and applying

yields

1 a 2 V N 2  + 492 4 _

p25z-2 + g Z az 2

the spatial scalings x -+ Lx, z -+ Hz

N 2 4 2 oi-

HW2 2

(where p = H/L), provided z is also non-dimensionalized within the buoyancy frequency N.

Note that the frequency has been isolated on one side of this equation, allowing the system to

be formulated as an eigenvalue problem. Discretizing this expression using central differences

gives

1 Ax 2 62 z 2 2

L2 Az2 IO + 2 ) 62z9i ± XOi = HW 2 6X$Pi, (C.1)

where we have defined ?Pik 0 (Xi, Zk), and o2 = (ik+1 - 2 Vik + Oi -1), etc. Setting

2 -1 lX 2

,IL2 AZ2
N Az

M =2g

C.1 becomes

W2 2 ( ik + Mk52z'4ik) + 6'Oik] = H-1 k pi.
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This equation is obviously not scale-independent; changing the aspect ratio t, and hence a,

changes the relative magnitudes of terms on the left-hand side. For lakes, P- is so large that

the 6V/y, term on the left is often very small relative to the others, and is frequently neglected

(corresponding to the hydrostatic approximation, as described in Section B.1).

Finally, when C.2 is combined with the boundary condition V)|, = 0, the complete numerical

problem has matrix eigenvalue form

W 2M#b = N# .

If either matrices M or N has an inverse, as is generally the case for the 2D problem, then this

equation can be recast in standard from, eg. A4' = w2o. This numerical formulation therefore

yields a finite set of seiche mode solutions and their corresponding frequencies.

C.2 Brief outline of the 3D problem

The 3D numerical problem is considerably more complicated than the 2D 'O-system. To place

the P-governing equation 3.10 in a form which can be discretized, we first expand the &/Dz

term, and then multiply by (w2 - N2) 2 to remove all terms in the denominator. Collecting the

terms at each order in w, we have

W4 V - (VP) - L 2 2N2V- (TVP) - a (7N2 ) + N4VP = 0, (C.3)

recalling that Vh = (d/8z, 8/&y). To complete the matrix formulation the boundary conditions

in 3.11 can be incorporated as

w2n-VP-N 2nh-VhP=O. (C.4)

We now outline the difficulties in formulating the system C.3 and C.4 as an eigenvalue problem.

To begin, the governing equation C.3 is quadratic in W2 . Specifically, the discretized equa-
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tions and boundary conditions have the form

(P 4A + W2 B+C)P=O , (C.5)

and therefore represent a nonlinear eigenvalue problem (dimension N x N, say). The problem

can be linearized by defining the vector

P=WP (C.6)

which, combined with C.5/C.4 gives the 2N x 2N system

0 ~ 1 U2 1 . (C.7)
-C 0 P B A P

(Note that this is one of two possible choices.) Now, the matrices A, B, and C are generally

singular (i.e. do not have inverses) because the boundary conditions C.4 are Neumann-type.

Equation C.7 must therefore be solved as shown rather than in standard form (i.e. MQ = AQ),

thereby requiring a more expensive numerical algorithm. Thus, to summarize, the 3D problem

is computationally more difficult than the 2D case because a) there is one additional space

dimension to begin with, b) the size of the system must be doubled in order to make it linear,

and c) the system must be solved as a generalized eigenvalue problem. These factors make

the 3D problem exceedingly difficult to solve; to the author's knowledge it has never been

attempted.

C.3 Numerical Code

The following is a finite difference code written in MATLAB@ for evaluating solutions to

Equation (C.2).
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%*** ~** ****** ************** ********

% STREAM *
% *

% Solve eigenvalue problem for variable *

% bathymetry, continuous stratification, *

% using a stream function formulation *

% *

% Equation: *

% del^2(pF) - p(NA2)/wA2Fxx =0 *

%or *

% Fzz - (N2/g)Fz + Fxx = (NA2/wA2)Fxx *
% *

% BC: F(boundary) =0 *
% *

% Sections: *

% (1) Grid Generation *

% (2) Density Profile *

% (3) Bathymetry, X and Z Boundary Points *

% (4) X and Z 'Inside' Points *

% (5) Coefficients *

% (6) Equation *
% (7) Pack Matrix, Compute Eigenvalues *

% *

clear bath bath 1 bath2 gridX gridZ Xbm Xbp Xb XbpI Xbp2 X Zb ZbI Zb2
clear rho N2 DELM DELP
clear inm jnm inp jnp inb jnb Im Imm Ip Ipp J
clear dx dxm dxp dxb dz dzm dzp dzb c d C DX Cb Cm Cp DIm DIp DIb D2b D2m D2p
clear A B AP BP CM nonO isO Vnon0 V D I

%******** (1) GRID GENERATION ********

L = 1000; H = 25;

Nx = 40; Nz = 40;

deiX = I/Nx; delZ = I/Nz;
mu2= HA2/LA2;
a2 = (delX/delZ)A2/mu2;

gridX = [O:Nx]/Nx; gridZ = [O:Nz]/Nz;
GridX = ones(Nz+1,1)*gridX; GridZ = ones(Nx+1,1)*gridZ;% grid mesh

%* *** * e* ***P*r*f*******e***************
%************ (2) Density Profile *************
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%************** *** ****** *************

% *

% The stratification can be specified using *

% either the density or the buoyancy frequency. *

% This example is constant-linear-constant *

% density profile *

g = 9.81;

dhyp = Nz;
rhoepi = 997; % epilimnion density
rhohyp = 1000; % hypolimnion density
delrho = rhohyp-rhoepi;
depi = 5; % epilimnion thickness in grid points
dmet = 7; % metalimnion thickness in grid points

rho = [rhoepi*ones(1,depi) rhoepi+delrho*[I:dmet]/dmet rhohyp*ones(1,dhyp-dmet-depi-1)];
N2= [zeros(1,depi) delrho*ones(1,dmet) zeros(1,dhyp-dmet-depi-1)];

DELM = 1+N2/(2*g)*delZ;
DELP = 1-N2/(2*g)*delZ;

Boussinesq =0;
if Boussinesq == 1

DELM = ones(1,length(N2));
DELP = ones(1,length(N2));

end

%***** ********************* **** *********

%***** (3) Bathymetry, X and Z Boundary Points ******
%******* * **** *** ** ******* **** ****** **********

% *

% Xb are the X-boundary points along a given *

% row 2(Nx+1) of them - the 'centre' value is *

% is usually duplicated Zb are the Z-boundary *

% points down a given column (Nz+1) of them *

% **** Example: Parabolic Basin ****

N = 100; X = [0:N]/N; % This is for graphing purposes - not used in this code
bath = 1-4*(X-1/2).^2;

Xbm = 0.5*(1-sqrt(1-gridZ));
Xbp = 0.5*(1+sqrt(1-gridZ));

Xb = [Xbm fliplr(Xbp)];
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Zb = 1-(1 - 2*gridX).^2;

%** ********** ****** ***** ****** *** ** ***** *****

%********* (4) X and Z 'Inside' Points ************
%****** ****** **** ********* **********

% *

% The following points are a fractional distance *

% from the bed, either in x, or in z, or in both *

% -*
% inm,jnm - X,Z indices, left side (minus) *
% inp,jnp - X,Z indices, right side (plus) *
% inbjnb - X,Z indices, bed *

% *

% Im - X indices, left side, 1st grid *

% points inside the boundary (Nz) *
% Ip - X indices, right side, last *
% grid points inside the boundary *

% J - corresponding Z value (Nz) *
% *

% Fractional differences between *

% the near-boundary points and the bed *
% *

% dxm,dzm - left side (minus) *

% dxp,dzp - right side (plus) *

% dxb,dzb - bed *
% *

clear indum jndum dxdum dzdum inm jnm Im dxm dzm inp jnp Ip dxp dzp

k =0; 1=0;
for j = 1:Nz-1
% LEFT

k = k+1;
indum= find(gridX == ceil(Nx*Xbm(j))/Nx);
inm(k)= indum;
jnm(k) =j;
dxm(k) = (indum -1) - Nx*Xbm(j);
dzm(k) = Nz*Zb(indum) - (j-1);
Im(j) = indum;
Imm(j) = indum;
if dzm(k)> 1

dzm(k) = 1;
end
while dzm(k) <= 1

indum =indum + 1;
dzdum = Nz*Zb(indum) - (j-1);
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if dzdum <= 1
k = k+1;
inm(k) = indum;
jnm(k)= j;
dxm(k) = 1;
dzm(k) = dzdum;
Im(j) = indum;

end
end

% RIGHT
1=1+1;
indum = find(gridX == floor(Nx*Xbp(j))/Nx);
inp(l) = indum;
jnp(l)= j;
dxp(l) = (indum-1) - Nx*Xbp(j);
dzp(l) = Nz*Zb(indum) - (j-1);
Ip(j) = indum;
Ipp(j) = indum;
if dzp(l)> 1

dzp(l) = 1;
end
while dzp(l) <= 1

indum= indum - 1;
dzdum= Nz*Zb(indum) - (-1);
if dzdum <= 1

1=1+1;
inp(l) = indum;
jnp(l)= j;
dxp(l) = -1;
dzp(l) = dzdum;
Ip(j) = indum;

end
end

J(j)=j;
end

% ******* Vertical scan of second-to-last row
j = Nz; % just a reminder
clear dxb dzb inb jnb
% Bottom LEFT
indumm= find(gridX == ceil(Nx*Xbm(j))/Nx);
indump = find(gridX == floor(Nx*Xbp(j))/Nx);

Imm(j)= indumm;
Ipp(j) = indump;
k = 1;
inb(k)= indumm;
jnb(k) j;
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dxb(k) = (gridX(indumm)-Xbm(j))*Nx;
dzb(k) = (Zb(indumm) - (Nz-1)/Nz)*Nz;
for i = indumm+1:indump-1

k = k+1;
dxb(k) = 1;
dzb(k) = (Zb(i) - (Nz-1)/Nz)*Nz;
inb(k)= i;
jnb(k) = Nz;

end
k = k+1;
inb(k) = indump;
jnb(k)= j;
dxb(k) = (gridX(indump)-Xbp(j))*Nx;
dzb(k) = (Zb(indump) - (Nz-1)/Nz)*Nz;

clear GridX GridZ

%** ** ** ************ *** ** ****** *** ******* *****

%************* (5) Coefficients ******************

% *

% The fractional differences dx/dx are used to write *

% finite difference expressions for Uzz, Uz, Uxx. *

% The coefficients are arrange in matrices: *

% Cm,Cp,Cb - coefficients for Uxx *
% D2m,D2p,D2b - coefficients for Uzz *
% DIm,DIp,D2b - coefficients for Uz *

% *

clear Cm Cp Cb D2m D2p D2b Dim Dip Dlb

k=dxm';
Cm(:,1:4) = [6./(k.*(k+1).*(k+2)) (k-3)./k -2*(k-2)./(k+1) (k-1)./(k+2)];

k=-dxp';
Cp(:,1:4) = [(k-1)./(k+2) -2*(k-2)./(k+1) (k-3)./k 6./(k.*(k+1).*(k+2))];

k = dxb(1:length(dxb)-1)';
Cb(:,1:4) = [6./(k.*(k+1).*(k+2)) (k-3)./k -2*(k-2)./(k+1) (k-1)./(k+2)];

k = -dxb(length(dxb));
Cb(length(dxb),1:4) = [(k-1)/(k+2) -2*(k-2)/(k+1) (k-3)/k 6/(k*(k+1)*(k+2))];

k = dzm';
a = 1./(k.*(k+ones(length(k),1)));
b = [-k.^2 k.A2-ones(length(k),1) ones(length(k),1)];
Dim(:,1:3) = [a.*b(:,i) a.*b(:,2) a.*b(:,3)];
D2m(:,1:4) = [6./(k.*(k+l).*(k+2)) (k-3)./k -2*(k-2)./(k+1) (k-1)./(k+2)];
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k = dzp';
a = 1./(k.*(k+ones(length(k),1)));
b = [-k.A2 k.A2-ones(length(k),1) ones(length(k),1)];
D1p(:,1:3)= [a.*b(:,1) a.*b(:,2) a.*b(:,3)];
D2p(:,1:4)= [6./(k.*(k+1).*(k+2)) (k-3)./k -2*(k-2)./(k+1) (k-1)./(k+2)];

k = dzb';
a = 1./(k.*(k+ones(length(k),1)));
b = [-k.A2 k.A2-ones(length(k), 1) ones(length(k), 1)];
Dlb(:,1:3) = [a.*b(:,1) a.*b(:,2) a.*b(:,3)];
D2b(:,1:4) = [6./(k.*(k+1).*(k+2)) (k-3)./k -2*(k-2)./(k+1) (k-1)./(k+2)];

%***************** (6) Equation *****************
%****** **** *********** ***********

% *

% The interior points are done first. *

% Then the boundary points are added. *
% *

%preallocate

A = sparse(zeros((Nx+1)*(Nz+1),(Nx+1)*(Nz+1)));
B = sparse(zeros((Nx+1)*(Nz+1),(Nx+1)*(Nz+1)));

% Hydrostatic approximation when r = 0

r = 1;

%**** body (rows 2 to Nz-1) *

for j = 2:Nz-1
for i = Im(J(j))+1:Ip(J(j))-1

A((j-1)*(Nx+1)+i,(j-2)*(Nx+1)+i)= a2*DELM(j); % for j=2, this point is deleted when
A((j-1)*(Nx+1)+i,(j-1)*(Nx+1)+i-1) = r; % the matrix is packed
A((j-1)*(Nx+1)+i,(j-1)*(Nx+1)+i) = -2*(r+a2);
A((j-1)*(Nx+1)+i,(j-1)*(Nx+1)+i+1)= r;
A((j-1)*(Nx+1)+i,(j)*(Nx+1)+i) = a2*DELP(j);

B((j-1)*(Nx+1)+i,(j-1)*(Nx+1)+i-1) = N2(j);
B((j-1)*(Nx+1)+i,(j-1)*(Nx+l)+i) = -2*N2(j);
B((j-1)*(Nx+1)+i,(j-1)*(Nx+1)+i+1) = N2(j);

end
end

% left (rows 2 to Nz-1) *

for j = 2:length(jnm)
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if jnmo) > 2
A(Onmo)-I)*(Nx+l)+inmo),Onmo)-3)*(Nx+l)+inmo)) = D2mo,4)*a2;

end
A(Onmo)-I)*(Nx+l)+inmo),Onmo)-2)*(Nx+l)+inmo))

a2*(D2mo,3)+N20nmo))/g*delZ*Dlmo,3));
A(Onmo)-I)*(Nx+l)+inmo),Onmo)-I)*(Nx+l)+inmo)) =

r*Cmo,2)+a2*(D2mo,2)+N20nmo))/g*delZ*Dlmo,2));
A(Onmo)-l)*(Nx+l)+inmo),Onmo)-l)*(Nx+l)+inmo)+I) = r*Cmo,3);
A(Onmo)-I)*(Nx+l)+inmo),Onmo)-I)*(Nx+l)+inmo)+2) = r*Cmo,4);
A(Onmo)-I)*(Nx+l)+inmo),Onmo))*(Nx+l)+inmo)) =

a2*(D2mol)+N20nmo))/g*delZ*Dlmol));

B(onmo)-I)*(Nx+l)+inmo),Onmo)-l)*(Nx+l)+inmo)) = CmO,2)*N20nmO));
B(onmo)-l)*(Nx+l)+inmo),Onmo)-l)*(Nx+l)+inmo)+I) = CmO,3)*N20nmO));
B(onmo)-l)*(Nx+l)+inmo),Onmo)-l)*(Nx+l)+inmo)+2) = CmO,4)*N20nmO));

end

% right (rows 2 to Nz-1)

forj = 2:lengthonp)
if jnpo) > 2

A(Onpo)-I)*(Nx+l)+inpo),Onpo)-3)*(Nx+l)+inpo)) = D2po,4)*a2;
end
A(Onpo)-l)*(Nx+l)+inpo),Onpo)-2)*(Nx+l)+inpo))

a2*(D2po,3)+N20npo))/g*delZ*Dlpo,3));
A(Onpo)-l)*(Nx+l)+inpo),Onpo)-I)*(Nx+l)+inpo)-2) = r*Cpol);
A(Onpo)-I)*(Nx+l)+inpo),Onpo)-I)*(Nx+l)+inpo)-I) = r*Cpo,2);
A(Onpo)-l)*(Nx+l)+inpo),Onpo)-I)*(Nx+l)+inpo)) =

r*Cpo,3)+a2*(D2po,2)+N20npo))/g*delZ*Dlpo,2));
A(Onpo)-I)*(Nx+l)+inpo),Onpo))*(Nx+l)+inpo)) =

a2*(D2pol)+N20npo))/g*delZ*Dlpol));

B(onpo)-l)*(Nx+l)+inpo),Onpo)-I)*(Nx+l)+inpo)-2) = CpOl)*N20npO));
B(onpo)-I)*(Nx+l)+inpo),Onpo)-l)*(Nx+l)+inpo)-I) = CpO,2)*N20npO));
B(onpo)-I)*(Nx+l)+inpo),Onpo)-l)*(Nx+l)+inpo)) = CpO,3)*N20npO));

end

% second-to-last row

%j = Nz
for i = 1:length(inb)- I

base = (Nz- 1) * (Nx+ 1);
A(base+inb(i),(Nz-3)*(Nx+l)+inb(i)) = D2b(i,4)*a2;
A(base+inb(i),(Nz-2)*(Nx+l)+inb(i)) = a2*(D2b(i,3)+N2(Nz)/g*delZ*Dlb(i,3));

A(base+inb(i),(Nz- 1)*(Nx+ 1)+inb(i)- 1) = r*Cb(i, 1);
A(base+inb(i),(Nz-l)*(Nx+l)+inb(i)) = r*Cb(i,2)+a2*(D2b(i,2)+N2(Nz)/g*delz*Dlb(i,2));
A(base+inb(i),(Nz-l)*(Nx+l)+inb(i)+I) = r*Cb(i,3);
A(base+inb(i),(Nz-l)*(Nx+l)+inb(i)+2) = r*Cb(i,4);
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B(base+inb(i),(Nz-1)*(Nx+l)+inb(i)-1) = Cb(i,1)*N2(Nz);
B(base+inb(i),(Nz-1)*(Nx+1)+inb(i)) = Cb(i,2)*N2(Nz);
B(base+inb(i),(Nz-1)*(Nx+1)+inb(i)+1) = Cb(i,3)*N2(Nz);
B(base+inb(i),(Nz- 1)*(Nx+1)+inb(i)+2) = Cb(i,4)*N2(Nz);

end

% very last point
i = length(inb);
A(base+inb(i),(Nz-3)*(Nx+1)+inb(i)) = D2b(i,4)*a2;
A(base+inb(i),(Nz-2)*(Nx+1)+inb(i)) = a2*(D2b(i,3)+N2(Nz)/g*delZ*Dlb(i,3));
A(base+inb(i),(Nz-1)*(Nx+1)+inb(i)-1) = r*Cb(i,4);
A(base+inb(i),(Nz-1)*(Nx+1)+inb(i)) = r*Cb(i,3)+a2*(D2b(i,2)+N2(Nz)/g*delZ*Dlb(i,2));
A(base+inb(i),(Nz-1)*(Nx+1)+inb(i)+1) = r*Cb(i,2);
A(base+inb(i),(Nz-1)*(Nx+1)+inb(i)+2) = r*Cb(i,1);

B(base+inb(i),(Nz-1)*(Nx+1)+inb(i)-1) = Cb(i,4)*N2(Nz);
B(base+inb(i),(Nz-1)*(Nx+1)+inb(i)) = Cb(i,3)*N2(Nz);
B(base+inb(i),(Nz-1)*(Nx+1)+inb(i)+1) = Cb(i,2)*N2(Nz);
B(base+inb(i),(Nz-1)*(Nx+1)+inb(i)+2) = Cb(i,1)*N2(Nz);

%************************* **** ***

%************* (7) Pack Matrix, *************
%********** Compute Eigenvalues *
% =** **** ** ******* *** *** ******n** **

nonO = find(diag(A) = 0); % find non-zero diagonals
is0 = find(diag(A) == 0); % find zero diagonals

AP = A(non0,nonO);
BP = B(nonO,nonO);

CM = full(AP\BP);
[V,D] = eig(CM);
clear CM % save space

for i= 1:length(D) % move eigenvalues to a vector
I(i) = D(i,i); % the I(i) correspond to omega^2

end

clear D
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