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Abstract

One of the greatest barriers in product Carbon Footprinting is the large amount of
time and effort required for data collection across the supply chain. Tesco's decision
to downsize their carbon footprint project from the original plan of 70,000 house
brand products to only a small fraction of them exemplifies the tradeoff between cost
and good intention. In this thesis, we have merged salient characteristics from several
recent works in this area to develop a fast and cheap method to calculate food carbon
footprint accurately. We defined sources of uncertainty as data quality, data gaps and
cut-off error, and quantified them. Firstly, quick judgment uncertainty was applied to
assess data quality, reducing the time and the expertise needed. Secondly, we showed
that it is feasible to use averaged proxies in a preliminary carbon footprint calculation
to select the inputs with high impact. The analysis was streamlined by getting spe-
cific data only for a subset of high impact inputs while leaving the insignificant inputs
represented by low resolution averaged proxies. Monte Carlo simulations and analyt-
ical solutions were introduced to account for the total variance of averaged proxies.
We applied hierarchy structures to organize the existing emission factors to facilitate
proxy selection, but found that the hierarchy required either expert knowledge for
design or large numbers of emission factors to average out the inconsistencies within
the same input types. Lastly, by integrating uncertainty calculation with iterative
carbon footprint calculation, we demonstrated convergence of the calculated carbon
footprint and its uncertainty results, providing firm support for our techniques of
leaving less significant inputs represented by low resolution averaged proxies. The
novel contribution of this work is the application of test sets to 1) prove that carbon
footprints calculated using the streamlined approach converged quickly to a stable
estimate even when the true values were beyond the range of the proxies, and 2)
show an adaptive and justifiable way to select the minimal number of high impact
inputs for further analysis.

Thesis Supervisor: Dr. Edgar Blanco
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Chapter 1

Motivation

The relationship between the food system and the climate is closely tied to the sur-

vival and well being of humans. As much as there is apprehension of the impact of

climate change on future food supply, there is concern about the impact of the food

system chain on the climate, especially when the estimates by IPCC (2007) showed

that the agriculture industry contributed to 13.5% of global greenhouse gas emission

in 2004 [1]. These concerns result in a growing demand of food carbon footprint

analyses at the organizational, individual and product levels [2]. However, conven-

tional carbon footprint analysis is expensive as it approaches the entire process in a

bottom-up manner, demanding extensive data collection for the calculation of a car-

bon footprint estimate [3, 4]. In 2012, we witnessed Tesco ending their unsuccessful

attempt to label 70,000 of their house products. The program failed because carbon

footprint labels of products did not gain "critical mass" amongst Tesco's competi-

tors, so the consumers were unable to compare the carbon footprint between brands.

Another important factor that prohibited carbon footprint labeling was that each

label required "a minimum of several months' work" [5]. At this rate, it would take

companies many years to label all their products. Carbon footprint assessments have

to be faster and cheaper.

There are several recent works that proposed new methodologies to compute en-

vironmental impact and its uncertainty effectively [6, 7, 4]. The new wave of method-

ologies focuses on using screening calculations as the first step to identify the product
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inputs with high carbon footprint contribution, allowing analysts to better allocate

their data collection efforts on these inputs [6, 8]. In 2011, the Materials System Lab-

oratory developed the Product Attribute to Impact Algorithm (PAIA) to calculate

the carbon footprint of products, including the uncertainty, under the constraints of

limited information [9]. Structured Underspecification, one of the steps in PAIA, can

be useful for food carbon footprint calculation. In 2012, PepsiCo implemented carbon

footprinting on a large scale using the Fast Carbon Footprint (FCF) tool developed

by researchers at Columbia University [4]. The tool allowed PepsiCo to carry out

carbon footprint assessments at the same rate products were designed [10]. As of

now, there are few published case studies to support the effectiveness of these carbon

footprint methods. Therefore, the objective of this thesis is to integrate the salient

characteristics of Structured Underspecification and FCF to derive new knowledge

and introduce novel techniques for food carbon footprinting.

1.1 Complexity of the food system

The food supply chain is a highly fragmented system consisting of formal, informal

and nonmarket channels. Although all the supply chains consist of fundamentally

similar stages including the manufacturing and distribution of inputs (seed, animal

feed, fertilizers), agricultural outputs (crops and livestock), processing, packaging,

distribution, preparation, and waste disposal, the traditional interactions across each

segment of the supply chain are purely material and money exchanges [2, 11]. Busi-

nesses usually include many stages of procurement and distribution. In addition, the

competition between businesses induces secrecy along the supply chain. Both the

complex network of distribution and lack of transparency impede effort to trace the

sources of food. To this point we have only described the complexity of the physical

food system. To track the volume of greenhouse gases released throughout the food

system will only add another thick layer of complexity to the existing puzzle! An

accurate food carbon footprint would need to include emissions at the power plants

providing energy to the facilities, the emissions of the farm vehicles, to the carbon
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dioxide trapped in soil, the gases emitted by the livestock, and the list goes on. To

keep active records of all these activities and inputs would require technologies that

could be too costly [2]. To complicate things even more, some of these measures are

difficult to justify or quantify, and if they are quantifiable, they are variable [12].

1.2 Capturing the environmental impact of food

The structure of the food suply chain system did not include the need for compiling

environmental impact data. To rebuild a data structure compatible with the complex

food system requires exorbitant investments to measure and monitor the wide array

of inputs and outputs that are almost impossible. Thus, researchers, governments

and non-governmental organizations have been doing separate life cycle assessments

(LCAs) on individual products for selected food instead (More information on LCA

is provided in Section 2.1). The current best option to capture the environmental

impact of food without real data collection is to rely on these published studies.

The individual carbon footprint studies are often based on purposeful assump-

tions to define the scale and scope, and are applicable only for specific geographical

regions and technologies [2]. Further research was needed to translate the results of

these works to information that is usable for consumers. Leveraging on numerous

LCAs of food products published in the 1990s, Jungbluth structured the determi-

nants in the food life cycle into five broad groups, namely, the type of product and

agricultural practice, the processing for storage and distribution, distance and mode

of transportation, the type and amount of packaging and lastly, the food preparation

process [11]. He compared the different options within these stages and gave general

guidelines about their relative environmental impact, with the objective to provide

clear and simple instructions for environmentally concerned consumers. Other works

attempt to compute the average carbon footprint of an individual from a specific

country, such as India [13], and Finland [14]. While many of these works applied

strategies to reduce the amount of real data needed in their own computation, to our

knowledge, no work has introduced a methodology that is dedicated to computing
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the carbon footprint and the uncertainty of any combination of food in a meal, from

the perspective of a food service provider or a consumer.

1.3 Barriers in product carbon footprinting

There are many challenges to compute general product carbon footprints quickly and

accurately. Critical reviews of environmental impact assessment tools pointed to data

availability and quality as one of the root causes that impose limitations to the system

boundary definition, uncertainty analysis, and the adoption of the tools in general

[15, 3, 16, 17].

System boundary is the extent of the life cycle that is included in the analysis.

Reliable impact assessments need to be set at the right scale and depth, and ideally,

have enough data to account for spatial, technology and temporal variability. Yet,

data limitation pushes analysts to constrain their analysis to only as large as is needed

for the objective of their studies [18]. Although limiting the system boundary is

acceptable for specific cases, it is not applicable in product carbon footprinting. The

main approach to reduce data demand in product carbon footprint calculation is to

identify and exclude the less significant components. The practice to eliminate these

components is also referred to as cut-off [6]. The way to select the cut-off boundary

is still evolving (refer to Section 2.5.3).

The lack of data also prohibits conventional uncertainty analysis. Standard un-

certainty propagation requires large data sets to gauge the spread of the inputs. Data

limitation is perhaps partly why many LCAs do not include uncertainty calculations

[19, 20]. Another barrier to uncertainty calculation is that there are so many sources

of uncertainty that several papers were published to refine the definition of uncertainty

[21, 22, 23, 16, 17, 20]. While there was an early solution to calculating uncertainty

with limited data through the use of fuzzy sets [24], it had not been widely used. Re-

cent developments in uncertainty calculations address the same problem with more

intuitive mathematical structures that can be readily incorporated [25, 4].

Lastly, life cycle assessment results of the same product type are usually not
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consistent. While the International Standards (Section 2.2) allows analysts to apply

justified assumptions for greater flexibility in their assessments, the flip side of the

problem is that the results of the LCAs are often not comparable. This undermines

the application of carbon footprints as a measure to compare between products. For

example, Teehan and Kandlikar found that the carbon footprint of desktop computers

from multiple separate studies had conflicting results because of differences in their

underlying assumptions [26]. In response to the lack of data and consistency, many

researchers have recommended further standardization of LCAs, and to establish large

databases [16, 27, 17]. There is as yet, no food carbon footprint database available.

If we were to compile emission factors from different studies, it is best to use many

values to average out the variability, and also a methodology that can estimate the

error of using multiple sources.

1.4 Thesis objectives

The food service sector is the point where the product is designed for the consumer,

thus it has the highest control over the carbon footprint of the meal, but unfortunately,

it is situated at the end of the supply chain and has limited control and knowledge

over the source of the food. A methodology developed with a focus on food can help

businesses in the food service sector better understand the hotspots in their menu,

so they can design their dishes to minimize their carbon footprint. A more idealistic

aim of the methodology is to provide a platform to compare the carbon footprints of

different food options. To reach this tall order, the methodology has to be fast, cheap

and accurate at the same time. For it to be fast, it could be built on a standardized

database that would calculate estimates and uncertainties. For it to be cheap and

accurate at the same time, screening calculations can assign significance to the inputs.

Effort can be greatly reduced if we can focus our data collection effort on only a subset

of all the inputs, with an understanding that these inputs are the ones that largely

determine the final value of the carbon footprint.
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1.4.1 The Galapagos Islands Ferry Tour case study

A food order list was requested from a company that organizes ferry tour packages

around the Galapagos Islands in Ecuador. This case study was first done with little

changes to the Product Attributes to Impact Algorithm devised by the Materials

Systems Laboratory at the Massachusetts Institute of Technology, as described in the

Master Thesis of Siamrut Patanavanich [7].

1.4.2 The Cambridge Bondir case study

Twenty restaurants that claimed to be environmentally friendly on their website were

invited to take part in the research project with a letter accompanied with an example

form (Appendix C-1 and C-3). Of the restaurants which replied, we only worked

with Bondir. The dish Pasture Raised Red Broiler Chicken was selected for the study

because the chef could provide most of the supply chain data. This case study was

done with improvements to the methodology in the previous case study. The changes

are summarized in Table 5.1.

1.5 Thesis structure

The thesis is broken down into two parts: first to review related works and to give

a brief overview of our methodology, and second, to apply the methodology in case

studies to evaluate the effectiveness of the methodology. In Chapter 2 we define

the terminologies in carbon footprint analysis and point out the gaps in the cur-

rent international and national standards that are still under research revisions. The

review of existing solutions to uncertainty and data availability highlights the bar-

riers to widespread application of carbon footprinting. The chapter ends with an

introduction to the new paradigm in carbon footprinting and a general description of

our approach to food carbon footprinting. In the following two chapters, we would

present the case studies in the same sequence as the research process. In Chapter 3

we present the methodology that we adopt from an existing work and its application
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to calculate the carbon footprint of a food order list of a Galapagos Ferry Tour trip.

The implementation and the results of the case study present several limitations of

the existing methodology, thus a second case study was carried out to further test

the methodology. Chapter 4 explains the revisions to address the limitations in the

Galapagos Islands case study. The Bondir Cambridge case study also shifted the

focus from a structured approach to a more general approach to show that several

nascent techniques can be merged and applied to other combinations of food. Lastly,

we conclude the thesis with Chapter 5 to compare the two case studies, assess the

practical value of the revised methodology and how it can be further improved.
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Chapter 2

Streamlined carbon footprint

analyses

The applications of carbon footprint assessments include product labeling and inform-

ing decisions. Although most companies and businesses are aware of the importance

of carbon footprints, product labeling has not been widespread because of its cost.

Instead, many companies use carbon footprint analyses to identify the hotspots, the

activities or the material inputs that have the greatest impact on the environment,

of their product [3]. The companies can prioritize their attention to alleviating the

impact from the hotspots, thus minimizing the carbon footprint effectively.

Over the last decades, the International Standards, and other international and

national organizations have rolled out various guidelines to ensure that environmental

impact assessments are reliable. Despite that these standards have made carbon

footprint calculation easier by being increasingly clear about the steps, the cost and

time needed for hiring external specialists and for data collection still prohibited

widespread use of carbon footprint assessments. Thus, there is ongoing research effort

to improve the efficiency of carbon footprint assessments without compromising the

accuracy of these assessments significantly.

In this chapter, we first define the types of life cycle assessment, introduce the

prominent international and national standards and protocols for carbon footprint

assessments, and provide a basic understanding of carbon footprint calculations. Sec-
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ondly, we provide the broad classification of streamlining methods, the approaches

that are applied to reduce calculation and data collection needs. Thirdly, we describe

the types of uncertainties typical in carbon footprint analyses and how they are cal-

culated. Lastly, we discuss how recent developments decreased the data collection

efforts of carbon footprint analyses and describe the contribution of this study.

2.1 Life Cycle Assessments (LCA)

To be sustainable at different scopes and scales can lead to widely different interpre-

tations. Figure 2-1 shows the scope hierarchy, starting from Life Cycle Sustainability

Assessment [28] and Sustainable Supply Chain Management [29]. These perspectives

emphasize the need to include economic, social and environmental aspects in the

definition of sustainability. At the next level, Attributional Life Cycle Assessments

examine all the inputs and outputs within the boundary of the life cycle to analyze

the possible environmental impacts of products, [30] excluding considerations of the

potential monetary cost or social impacts. At the bottommost level, carbon footprint

analysis only looks at the climate change impacts of the product, which is only a

subset of the overall environmental impacts, neglecting other potential issues such

as eutrophication or waste. It is not uncommon to find cases where lower carbon

footprint is equated to greater sustainability [31]. Although we will only focus on

carbon footprint analysis in this thesis, the methodology that we have developed can

be applied to other environmental impacts.

2.1.1 Depth and breadth of Life cycle assessment

There are two ways to scale Life Cycle Assessments (LCA) and Carbon Footprint

(CF) assessments (Fig. 2-2). The depth describes how general the assessment is,

and is usually dependent on the type of data that is available. For example, the

carbon footprint of watermelons can be studied based on data at the aggregate sector

level (EIO-LCA) [32] or it can be studied based on the activities and processes at

a particular farm (Process-based LCA) [30]. The aggregated top-down and process-
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Figure 2-1: A hierarchy to show the scopes of life cycle assessments that are commonly
used to analyze the environmental impact of human activities or products.

Attributional Life Cycle
Assessment

Carbon Footprint
Waste, Land Use,
Eutrophication,

LWater Use, etc

Social Equity
& Economics

based bottom-up approach can complement each other to show the range of the

impact [15]. The bottom-up process-based LCA approach is used for the case studies

because the data we have is at the appropriate level. We are aware that this can

underestimate the true carbon footprint because we have excluded the operations

that do not directly affect the food production or preparation, such as the electricity

used for lights at the restaurant. An EIO-LCA could have been done before the

process-based LCA for results with greater accuracy.

The breadth describes the extent of the life cycle, which can be as complete as from

the extraction of the raw materials to the final disposal of the product, conventionally

called cradle-to-grave, or as short as the last mile delivery from the distribution center

to the retail stores. The scope is limited to the production phase in the Galapagos

Islands Ferry Tour case study, and is expanded to cradle-to-grave in the Cambridge

Bondir case study.

2.2 Product carbon footprint

Carbon footprint, the total amount of greenhouse gases that was released during

an activity, or in the production of a material, is only a subset of all the possible
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Figure 2-2: Depth and breadth of Life Cycle Assessment and Carbon Footprint Anal-

ysis.

Depth Large Scale,
Top down approach.
E.g. Economic Input-Output
Life cycle Assessment

Cradle, Gate, Grave,
E.g. Extraction of raw E.g. Distributors and E.g. Disposal
materials Retailers

Breadth

Small Scale approach that looks
at all the precise flows to make
particular products.
E.g. Traditional Life Cycle
Assessment

types of environmental impacts. The six greenhouse gases carbon dioxide (C02);

methane (CH4), nitrous oxide (N20), hydrofluorocarbons (HFC), perfluorocarbons

(PFC), and sulfur hexafluoride (SF) were converted to carbon dioxide equivalent

(CO2eq) using factors suggested by the Intergovernmental Panel on Climate Change

[33]. For convenience, we adopt the term attributable processes (APs) from the GHG

Product Protocol to refer to activities, materials, and energy flows that contribute to

the carbon footprint of the product.

The traditional carbon computation approaches are usually based on established

national or international standards, such as the International Standards 14040:2006,

Life Cycle Assessment: Principles and Framework [34] and 14044:2006, Life Cycle

Assessment [30], World Resources Institute GHG Protocol Product Standards [8]

and the British Standard Institute PAS2050:2011 [35].

* ISO 14040\44 are part of a series of Environmental Management Systems pub-

lished by the International Organization for Standardization (ISO). They pro-
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vide a framework for life cycle assessment, a methodology to analyze the en-

vironmental impacts across the life cycle of activities or products. One subset

of environmental impacts is greenhouse gas emissions, which is equivalent to

carbon footprint.

" The PAS2050 was built on the IS014040/44 standards to further describe the

steps to calculate the greenhouse gas emissions of goods and services.

* The GHG Protocol Product Standard was built on both the ISO standards and

PAS2050 to provide additional guidelines for consistent public reporting of the

greenhouse gas emissions.

The ISO14044, PAS2050 and GHG Protocol require attributional and process-based

LCAs. The attributional approach attempts to link greenhouse gas emissions and

removals of the APs to a unit of the studied product [6]. Process-based means that

the carbon footprint contribution has to be accounted by individual APs. Other

ways to assess environmental impacts include the Economic Input Output Life Cycle

Assessment (EIO-LCA), and the Hybrid Life Cycle Assessment (Hybrid LCA), which

improves the process-based LCA by including elements from the EIO-LCA. [15].

2.3 Basics of carbon footprint calculations

Carbon footprint analysis can be complex because there are many intricacies that

have to be defined and the details can be found within the standards mentioned in

Section 2.2. If the details are decided, the fundalmentals of the calculation can be

done with rudimentary mathematical manipulations. To best simplify the mathemat-

ical operations, the Fast Carbon Footprint methodology has defined that the carbon

footprint of an input CF is the product of the emission factors EF and its driver(s)

Dij, where i is the index of the AP and j is the index of the type of driver (Eqn. 2.1)

[4].

CF = EFjJ Dij (2.1)
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An emission factor, EF is the total amount of greenhouse gas that was emitted in

the production of a unit of material i, or during a unit of activity i, and is expressed

as kgCO2eq per unit weight of material, or per unit of activity. Carbon dioxide

equivalent is a measure of the global warming impact of the greenhouse gases when

normalized to that of the carbon dioxide gas [33]. The drivers are scalars that describe

the magnitude of the input. Using examples from the two case studies in this report,

the drivers can be the weight of food added to the dish, the duration of the activities

and the distance between the origin and the destination of the food inputs. In this

report, the term data can refer to both the drivers, and the emission factors.

2.3.1 Calculating the total carbon footprint

The total carbon footprint CFTotal of a product made of n APs is the sum of all the

individual carbon footprints CF (Eq. 2.2).

n

CFTotal CFi (2.2)

Due to variability and uncertainties, the EF and D are not fixed numbers but

random variables from different distributions. Thus, it is more appropriate to use the

expected emission factors E[EF] and expected drivers E[Dj] to obtain the expected

individual carbon footprint E[CF] and total carbon footprint E[CFTota]. The same

operations are still the same as in Equation 2.1 and 2.2.

2.4 Streamlined carbon footprinting

Extensive work is required to obtain the emission factors of activities and materials

and streamlining methods are often applied to reduce the amount of data needed.

SETAC's 1999 streamlined LCA report classified streamlining approaches into two

broad groups, namely, scope limiting and surrogate data [18]. Scope limiting refers to

only looking at a part of the product life cycle. For example, if the aim of the study

is to compare the carbon footprint of the same type of product from two different
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brands, the scope can be limited up to the production phase, assuming that the use

phase and disposal phase emissions will be similar. Surrogate data refers to using

existing published data as substitutes for the real data. This approach can reduce

data collection effort substantially, [36] and was widely practised through the use of

commercial software suites such as SimaPro, or databases such as the U.S. Life Cycle

Inventory. However, the emission factors are specific to the location and context

and the use of surrogate data will increase the uncertainty of the carbon footprint

estimate.

Alternatively, Ong, Koh, et al. introduced a streamlined approach that first ap-

plied qualitative overview of the inputs into the product life cycle to identify the high

impact inputs, referred to as the Set of Interest. Subsequently, a round of quantitative

assessment was conducted with focus on the Set of Interest only [37]. The qualitative

process requires expert knowledge, thus the application of this method is limited.

2.5 Uncertainty

Carbon footprints of products are only useful for influencing decision processes if

there is information about the reliability of the estimates [35]. The reliability is

usually measured by the range of uncertainty of the single point and the uncertainties

can arise in many different ways in the context of carbon footprint assessments [17].

Huijbergt was the first to discuss the type of uncertainties in-depth in 1998 [21, 22].

Later, the reviews by Bjbrklund [23], Reap [16], Ascough [17] and Lloyd [20] examined

many LCA publications to further categorize the types of uncertainties.

Recently Williams argued that the uncertainties in data, cutoff error, aggregate

uncertainty, geographical uncertainty, and temporal uncertainty are the five most im-

portant uncertainty types in process-based LCA [6]. Uncertainties in data can be due

to the data quality and the data representativeness of the true value. Data quality

describes the natural fluctuations or errors at the time of data collection, and data

representativeness describes the appropriateness of using surrogate data to represent

the real input. Cutoff error is further elaborated in Section 2.5.3. Aggregate un-
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certainty is derived from situations when detailed data is not available, and values

pertaining to a bigger group of entities are used instead. For example, when the data

of the emissions from a particular plastic factory is not available, the emissions data

from the plastic manufacturing industry is used instead. Lastly, emissions data is of-

ten location and temporal specific. For example, Roma Tomatoes grown in Indonesia

in 2010 will have different environmental impacts from Roma Tomatoes grown in the

same country in 1990 or Roma Tomatoes grown in Italy in 2010. Unfortunately, we

may not always know where and when the Roma Tomatoes we consume are gathered

(hopefully recently!), thus there is geographical uncertainty, and temporal uncertainty.

In this work, we classified uncertainty into three general types, namely, uncertainty

within data, uncertainty when dealing with data gaps, and lastly, cutoff errors, and

proposed solutions to quantify them.

2.5.1 Uncertainty in data

The uncertainty within data that arises from the data quality is conventionally de-

scribed using Data Quality Indicators that include technology representativeness,

temporal representativeness, geographical representativeness, completeness and re-

liability [38]. It also encompasses randomness during the data collection process.

A typical way to estimate the uncertainties based on the Data Quality Indicators

is described in Section 3.2.2. However, Meinrenken et. al. pointed out that even

the best-in-class carbon footprint assessments have at least +5% error, thus they

suggested that the uncertainty can be assigned a coefficient of variance based on

judgment [4].

2.5.2 Data gaps

Food comes in many varieties. There are common food such as russet potatoes

and feedlot beef globally and there are also many foods that are unique to individual

regions. Most publications on the environmental impact of food focused on staple and

common food. There could be many ingredients that do not have existing emissions
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data when the aim is to compute the carbon footprint of real meals. Instead of

investing effort to collect the emissions data of all the ingredients, we can adopt

solutions to overcome these data gaps. Data gaps are generally addressed in two

ways [8, 2]. First is through the use of estimated data. The emission factor can be

extrapolated from existing databases by leveraging on the characteristics of the AP,

such as price [4] and location. Second is through the use of existing emission factors

as surrogate data, or proxies, in the calculation. The proxies can be selected based

on characteristics of the AP. The GHG Product Standards provided a few examples

of suitable proxies [8]:

" Using data on apples as a proxy for all fruit

" Using data on PET plastic processes when data on the specific plastic input is

unknown

Canals et.al. compared the effectiveness of using proxies versus extrapolating data

to deal with data gaps for bio-based products and found out that using the averaged

proxy is more accurate than scaled and single proxy, and faster than extrapolating

data, which may need extensive expert knowledge. [2] Another reason against the use

of single proxy is that experts may not select proxies better than amatuers [39]. Canals

et. al. also noted that measuring uncertainty in data gaps is important because the

environmental impact within crops can vary as much as between different crops [2].

2.5.3 Cutoff error

To reduce data collection effort in LCA, certain inputs and outputs can be excluded

if they are likely to be insignificant. However, cutoff can result in the underestima-

tion of the real total environmental impact and has to be done carefully [40]. The

ISO14040/44 standards allow cutoff based on the weight and energy fraction of the

AP with respect to the product, but these criteria do not always correlate to its en-

vironmental impacts (refer to Section 3.3.3). A third option is to perform the cutoff

based on the fraction of environmental impact of the input over the total impact of the
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product but the way to obtain the fraction without data collection efforts was unclear

[15]. PAS2050:2011 clarified this ambiguity by recommending a back-of-envelope cal-

culation. Based on the rough calculation, the inputs and outputs that contribute to

the last 1% of the total carbon footprint can be cutoff from the system boundary. [35]

The rigid 1% cutoff may require redundant data collection effort. The most recent

GHG Protocol Product Standard did not require fixed cutoff boundary, but instead

suggested using screening processes in the calculation:

"The most effective way to perform screening is to estimate the emissions and

removals of processes and process inputs using secondary data and rank the estimates

in order of their contribution to the products' life cycle. Companies can then use this

list to prioritize the collection of primary or quality secondary data on the processes

and process inputs that have the largest impact on the inventory results"

However, uncertainty assessment was not given emphasis, but only "helpful" to

identify processes that contribute to high uncertainty [8]. In addition, Suh and

Williams supported the use of EIO-LCA estimates as the first screening step to cut-

off the less significant processes because the top-down approach will include capital

goods and operation-related emissions [15, 6]. It is an ongoing research effort to find

a good screening approach that can identify the cutoff boundary and its uncertainty.

2.5.4 Methods to assess uncertainty

Two common ways to assess reliability are to use uncertainty analysis and sensitivity

analysis. Uncertainty analysis is applied to propagate input uncertainties to the

results and sensitivity analysis is applied to identify the uncertainty that has the

greatest influence on the result [16]. Sensitivity analysis can indicate the APs that

have the greatest leverage on the results, however, it does not inform the possible

range of the final estimate [6]. The focus of this work will be uncertainty analysis.
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2.6 A new paradigm

The recent developments in LCA have strong emphasis on its practicality, with par-

ticular focus on reducing data collection effort and accounting for uncertainty in the

estimated results. Structured Underspecification addresses data gaps issues and cutoff

boundary selection by providing a logical structure for proxy selection and uncertainty

computation. The Fast Carbon Footprint tool speeds up the carbon footprint and

uncertainty computation process by introducing a framework supported by analytical

equations [4]. The Hybrid Framework promoted the use of iterative carbon footprint

estimation with uncertainty analysis to ensure that results are accurate and precise

[6]. All three proposals are founded on the perspective that data screening should

be used to identify attributable processes that have relatively large impact on the

absolute value or the uncertainty of the carbon footprint estimate.

2.6.1 Structured Underspecification

Structured Underspecification was specifically designed to remove the potential statis-

tical biases due to erroneous surrogate selection and to capture the total uncertainty

in using proxy data. It was first developed to classify material information with

increasing specifications so that the LCA analysts can estimate the magnitude of

uncertainty given the level of specification that is known. We will use an existing

example to illustrate how structured specification works [7]. Figure 2-3 shows how a

hierarchy structure is used to classify information of materials based on five levels of

specifications, including, material category, material property, material type, material

processing, and specific database entry. The material category refers to generic mate-

rial types, such as metals, chemicals and minerals. In the material property level, the

materials are further classified based on differences in their properties. For example,

metals can be classified by whether they are ferrous or non-ferrous or alloys.

The appropriate number of proxies for a material will depend on the level of

specificity. In Figure 2-3, if a material is identified up to the L2 specificity, then any

of the database entries that are indexed as Level 5-A to G are qualified to be its

37



Figure 2-3: Illustration of the Structured Underspecification hierarchy levels.
Adapted from [7].
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proxy. If the material is further specified to Level 3-A, the possible proxies would be

reduced to the database entries that are indexed as Level 5-A to E. Using multiple

proxies will overestimate true uncertainty of the material carbon footprint, but it

will represent the analysts' uncertainty in his or her carbon footprint estimate. The

proxies are used for screening calculation to identify a small fraction of the APs that

have significant contribution to the total carbon footprint, also referred to as the Set

of Interest.

Streamlining in Structured Underspecification

The goal of Structured Underspecification is to determine the set of materials with

the highest environmental impact, and this set of materials is referred to as the Set of

Interest (SOI) [7]. A formal definition of SOI is the smallest number of material that

can represent at least a threshold fraction of the total impact. The threshold fraction

is referred to as the cut-off percentile, and the number of the APs in the Set of Interest

will increase with a higher cut-off percentile. Another interpretation of the cut-off

percentile is the cumulative percentage of carbon footprint that was contributed by the

APs in the SOI. For example, the PAS2050 allowance to leave the APs that contribute

to the last 1% of the carbon footprint is equivalent to a 99th percentile cut-off. The

remaining APs make up the Set of Interest. Structured Underspecification calculates
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the total carbon footprints with Monte Carlo simulations. In this thesis, we would

test the effectiveness of using a fixed cut-off percentile to determine the Set of Interest

for total carbon footprint estimation.

2.6.2 Fast Carbon Footprinting

Fast Carbon Footprinting is a single approach that integrates uniform data structure,

concurrent uncertainty analysis and EF estimation. For uniform data structure, a

"one-data-structure-fits-all-products" model was proposed to calculate both the EF

and the uncertainty with generic algorithm. Instead of an indepth uncertainty anal-

ysis, "Judged uncertainty" is used to assign coefficient of variations (CVs) for cases

where the CVs cannot be determined otherwise, and the suggested benchmarks are

shown in Table 2.1. A linear regression model was used to extrapolate a suitable emis-

sion factor from the database, and Compounded uncertainty, a system of equations,

is used to quickly evaluate the carbon footprint estimate and its associated uncer-

tainty using the extrapolated emission factors and the assigned CVs. Compounded

uncertainty is further elaborated on in Appendix A.3.

The tool was developed to allow companies to calculate carbon footprint quickly

and independently, with little assistance from external specialists. Its main objective

is to provide guidance and insights for product designs and other decision-making

processes. It utilizes the company's records as primary activity data, and emission

factors from public databases. The tool is especially outstanding for its adaptation

to standard enterprise software used by many companies (such as the SAP system)

and it has been developed into an user-friendly interface that is applied by PepsiCo

to identify hotspots at the product level [10].

2.6.3 Iterative carbon footprint estimation with uncertainty

analysis

In his proposal for the Hybrid Framework for Managing Uncertainty in Life Cycle

Inventories (Hybrid Framework), Williams puts a strong emphasis on uncertainty
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Table 2. 1: Rationale for categories of data type and their suggested assigned CV.
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analysis and argued that:

"the future practice of hybrid LCI (Life Cycle Inventory) should include explicit iter-

ation in which uncertainty is estimated before and after... The concept is to integrate

the method [carbon footprint calculation in our context] with uncertainty assessment

to explicitly reduce uncertainty."

He also projected that if the iterative steps were done,

"At some point the analyst decides that the result is sufficiently certain for the pur-

pose of the study and the result of the iteration and uncertainty range become the

final result."

However, further work is needed to characterize and quantify the different types of

uncertainty in the LCA before this framework can be applied [6].

2.7 Overview of this thesis's methodology

The methodology was designed with the aim of overcoming data gaps, an ubiquitous

problem in food carbon footprint calculations. The amount of real data required could

be reduced by using averaged proxies to approximate the total carbon footprint. The

averaged emission factor proxies were used for screening calculations to identify the

attributable processes (APs) that have high impact, which we will refer to as the

Set of Interest. Data collection effort was reduced because instead of collecting data

for all the APs, analysts could just focus on the SOI and still obtain good carbon

footprint estimates.

The research procedure to apply the methodology in food carbon footprinting

consists of seven steps, namely:

1. Collecting the primary data, a list of APs of the product. The primary data

refers to the list of APs that carry the product through its life cycle. It includes

both the name of the process and its magnitude.

2. Establishing the system boundary of the study. The motivation of life cycle
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assessments (LCAs) is to measure the environmental impact of products or

activities within the scope boundaries. The size of the scope has to be justified

because it can affect the conclusion of the assessments greatly. [15, 30]

3. Defining the functioning unit. Since the objective of the methodology was to

facilitate carbon footprint calculation of the product, the functional units were

selected to be the total carbon footprint per food order in the Galapagos Islands

Ferry Tour case study and per dish of Pasture Raised Red Broiler Chicken for

the Cambridge Bondir case study.

4. Compiling a database of emission factors.

5. Applying Structured Underspecification to classify the emission factors.

6. Selecting the appropriate proxies and judging their representativeness.

7. Calculating a preliminary total carbon footprint estimate with its uncertainty.

8. Screening for the APs that contribute significantly to the total carbon footprint,

also called the Set of Interest, and,

9. Investing data collection effort on the Set of Interest to find a more accurate

carbon footprint estimate.

The Galapagos Islands Ferry Tour case study used Structured Underspecification

[7] exactly. Through the Galapagos Islands Ferry Tour case study we identified some

limitations of Structured Underspecification, thus the methodology was revised with

the concepts from Fast Carbon Footprinting and the Hybrid Framework in the Cam-

bridge Bondir case study.
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Part II

The Case Studies
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Chapter 3

Galapagos Islands Ferry Tour Case

Study

In this chapter, we calculated the carbon footprint of a food order list of a Galapagos

Islands ferry tour. Despite an increasing availability of life cycle assessments (LCA)

studies and resources, we found few carbon footprint studies that focused on produce

from South America, and none that were focused on produce from Ecuador. Given

the restriction, emission factor proxies had to be used. At this point of the research,

Structured Underspecification was the best option to obtain the carbon footprint

estimate and its associated uncertainty.

3.1 Problem definition and data preparation

3.1.1 Primary data of the Galapagos Islands Ferry Tour case

study

The only information that was provided by the ferry tour company was a list of 142

food items with their order size and weight. (Appendix B.1) The order list included

several items that were either too specific or too exotic that no existing proxies could

be found. If possible, these items were substituted with similar food. For example,

plantains, yucca and yogurt were represented using the emission factors of banana,
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potato and ice cream respectively. Processed foods that consist of several materials

and required cooking processes such as the Custard Flan and Mondongo (a type of

beef tripe soup) were excluded from the study because none of the emission factors

in the database was similar. After this treatment, 48 items were excluded from the

study and 31 items were substituted. Including the 31 items that were substituted,

94 items were used for the rest of the study. The uncertainties in the weight of the

food items were all set at i1%.

3.1.2 System boundary of the Galapagos Islands Ferry Tour

case study

Given that there was no other information on the production, delivery, preparation

and disposal of the food items, the study was only focused on the greenhouse gases

that were emitted when the food was produced at the source. The source can be a

factory or a farm. This type of boundary is commonly referred to as cradle-to-gate.

Although it is not a complete LCA, it is a good representation of the environmental

impact because the production phase of food items dominates the carbon footprint

of food compared to other supply chain processes [42] as long as the food is not

transported by air [43].

3.1.3 Functional unit

The functional unit is the total carbon footprint per food order in the Galapagos

Islands Ferry Tour case study.

3.1.4 Emission factors data organization

The hierarchy levels in this work classify the emission factors in the database according

to the ease of obtaining the information of the food from the perspective of the end-

user. Please refer to Figure 3-1 for illustration; each single point emission factor in

the database was placed at the right end of the hierarchy, at the Technology level.

Each hierarchy level is referred to as the level of specification because it represents
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Figure 3-1: The proposed hierarchy for the Galapagos Islands Ferry Tour case study
consisted of five levels, namely, Food Group, Food, Specific Food, Country of Origin
and lastly, Technology. The single point emission factors obtained from published
sources are placed at the Technology level.

Specific Country of
Food group Food food origin Technology

Spain Greenhouse
Classic Vine UK GenosC1S~~fl ~Greenhouse,

with heating

Italy Not specifiedtomato ______ ____ __

Organic
Denmark

Standard

Greenhouse

the amount of information that is known about the AP. Based on the information the

analyst has about the AP he can move from the Food group level to the appropriate

level of specification and select all the proxies that meet the requirement. If the

analyst only knows that the AP is a tomato, he would use all the seven emission

factors, regardless of the true species of the tomato, its country-of-origin, or the

technology that was used to grow it, because all of them are qualified to be the proxy.

If the analyst knows that the tomato is of the specie Classic Vine, he can use only the

first two emission factors at the Technology level. With more information, the analyst

could use a smaller number of proxies. However, it should be noted that a smaller

number of proxies may not reduce the standard deviation because the environmental

impact within crops can vary as much as between different crops [2]. The database

of emission factors and their sources is in Appendix D.1.

3.1.5 Data structure

The emission factors compiled in the database were often calculated in separate stud-

ies that had different assumptions, and it was not ideal to compare them directly. We
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assumed that the differences were accounted for in the uncertainty of the individual

CF, explained in Section 3.2.1. It was noted that the International Panel for Climate

Change (IPCC) had revised the 100-years global warming potentials (GWP) factors

of nitrous oxide and methane in 2001 and 2007 [44], and efforts were made to convert

the GWP to the latest GWP if the article stated that it used the earlier IPCC GWP

values.

3.1.6 Food production

The emissions produced by the food production processes up to the farm gates and

the slaughterhouse gates is a product of the food production emission factor and

the weight of food in each dish. The emission factors were converted to mass basis,

kgCO2eq/kgfood. When different products were derived from the same source, the

carbon footprints were allocated to products by their relative cost. For example, since

different beef parts have different market values, they would be allocated a carbon

footprint proportional to their prices.

The sources of the food emission factors in our database had varied system bound-

aries in their analyses. Most of the studies covered from cradle to farm gate or pro-

duction gate, a handful of them covered from cradle to retail and an even smaller

number of them covered the entire life cycle. For the conversions of meat between

different boundary definitions, we used the ratio 1 kg live weight = 0.81 kg carcass

weight [45] = 0.56 kg bone free meat [46]. The emission factors for liquids that were

expressed in terms of volume were converted to weight assuming that their density is

the same as water, 1 kg/L.

3.2 Carbon footprint calculation

3.2.1 Uncertainty in each emission factor

Emission factors were usually reported as single point data [25]. Structured Under-

specification assumed that each emission factor was the mean from separate distri-
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butions and represented it with the logarithm distribution. The spread of the dis-

tribution depended on the representativeness of the emission factor. An appropriate

proxy would have a smaller spread whereas a poor proxy would have a wider spread.

The quality was judged using the Data Quality Indicators in the Galapagos Islands

Ferry Tour case study.

3.2.2 Data Quality Indicators

The Data Quality Indicators are widely used to assess the quality of data and are

built into Samapro and Ecoinvent databases [50]. The indicating factors Reliability,

Completeness, Temporal, Geographic and Technological correlations are described in

the pedigree matrix [48, 8]. (Fig. 3.1)

Each of the five factors were rated using an indicator score from 1 to 5, where the

score of 1 was assigned to the most appropriate and accurate data. These indicator

scores were converted to uncertainty factors (Fig. 3.2) to calculate the square of the

geometric standard deviation o' based on Equation 3.1.
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Table 3.1: Data Quality Indicators tabulated in the form of a pedigree matrix that can be used to assess the
quality of data. Adapted from Frischknecht(2007) [51].
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Table 3.2: The default uncertainty factors for the pedigree matrix.

Indicator score 1 2 3 4 5
Reliability 1.00 1.05 1.10 1.20 1.50
Completeness 1.00 1.02 1.05 1.10 1.20
Temporal correlation 1.00 1.03 1.10 1.20 1.50
Geographical correlation 1.00 1.01 1.02 1.10
Further technological correlation 1.00 1.20 1.50 2.00
Sample size 1.00 1.02 1.05 1.10 1.20

.2 __1sqrt[ln(Ui)}2+[ln(U2)]2+{ln(U3)]2+[ln(U4)]2+[ln(Us)]2+[ln(Ue)]2+[ln(U))2
9

where

U, = uncertainty factor of reliability

U2 = uncertainty factor of completeness

U3 = uncertainty factor of correlation

U4 = uncertainty factor of geographical correlation

U5 = uncertainty factor of technological correlation

U6 = uncertainty factor of sample size

Ub = basic uncertainty factor

An Indicator score of three implies that the quality of the CF data as a surrogate

was medium and a score of one implies that there was no uncertainty. Even though

the Data Quality Indicators included technological and geographical correlation as

part of the matrix, we recognized the Country of Origin and Technology as a part

of the food specification and had included them in our classification hierarchy (Fig.

3-1). Thus, we assumed that the Indicator score is three for Reliability, Completeness

and Temporal correlation, and one for the Geographic and Technological correlation.

Based on this assignment, o- = 1.163.

The distributions of the individual emission factors were assumed to be logarithmic

with arithmetic mean, par, and standard deviation,o.. The arithmetic parameters

were calculated using Equation 3.2 and 3.3.
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log2 (g

Par = fgeXp 2 (3.2)

C-ar = expnhgln2 2Og) - 1) (3.3)

3.2.3 Proxy selection

Of the 94 food items in the food order list from the Galapagos Islands Ferry Tour,

we were provided the characteristics of 82 items up to the Food level and 12 items up

to the Specific Food level. There was no information about the country of origin and

the technology that was used to produce the ingredients. At the Specific Food level,

we filtered the surrogate data only if the listed food item stated it explicitly. For

example, Beef liver from the food list was assigned to use the Beef knuckle emission

factor because they were both cheap beef parts.

A few realistic assumptions were made to progress into the Country of Origin

and Technology level. Statistics in FAO showed that most of the foods consumed

in Ecuador in the past ten years were locally produced [52]. We assumed that the

energy consumption in the farming process was dependent on the climate [53] and

selected the emission factors from countries with Tropical and Mediterranean climate

over those from countries with Temperate climate. For example, the preference for

selection was in the order: Brazil>> India and Ghana>> Australia, Spain and Italy>>

UK, Sweden, Denmark, Netherlands, Canada and USA. Statistics in FAO also showed

that the total agricultural area in Ecuador decreased by 2.9% from 1989 to 2009 [52].

It was assumed that there was negligible land use change in Ecuador and any data

with land use change was also excluded in the Country-of-origin level.

Lastly, we do not have any information about the technology used. For the sake

of comparison, we picked one emission factor with conventional technology for each

AP, to calculate the total carbon footprint at the Technology level.
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3.2.4 Uncertainty in using proxies

The proxies were not the true values, and it was unlikely that any of them was exactly

equivalent to the true emission factor. As a result, not only did we need to account for

the uncertainty in the proxy, we needed to account for the potential error of choosing

the wrong proxies. With Structured Underspecification, each proxy was assumed

to be non-identical and had its own distribution. This assumption was appropriate

because the proxies were taken from different sources (e.g. farms in China and farms

in Italy) and the sources carried out their physical activities independently. The fact

that they were non-identical random variables had to be emphasized because, if they

were identical, we could assume that they were from the same population and the

variance of the averaged proxy would be the variance of all the proxies.

Table 3.3: The uncertainty of an averaged proxy needs to consider the variance in
the mean of the proxies and the variance within the proxies

-Variance of the means

-EF1

-EF2

>. -EF3

""EF4

et -Total variance

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Emission kg-CO2eq/kg input

To capture the real spread of the surrogate emission factors, it was assumed that

all qualified emission factors had equal probability of being the most appropriate

proxy thus the probability was a function of the known number of emission factors.

(e.g. If we had four emission factors, the probability of each factor being selected

was 1/4.) In the Galapagos Islands Ferry Tour case study, the "rand" function in

Microsoft Office Excel was used to select the proxies at random. In each run, the

selected proxy was fed into the total carbon footprint calculation. A total of 10,000
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runs were carried out in each simulation.

3.2.5 Monte Carlo Simulation

We carried out 10,000 Monte Carlo simulations for the five levels of specifications using

Oracle Crystal Ball. In each calculation run, individual food items were assigned one

random surrogate emission factor that matched the level of specificity. The proxies

were selected based on Structured Underspecification as described both in Section

2.6.1 and in Section 3.1.4. The total CF of the meal was calculated using Equation

2.2. The uncertainty was computed using the Data Quality Indicators as described

in Section 3.2.2.

3.2.6 Screening for the Set of Interest

The Set of Interest was chosen to be the group of APs, or food items, that contributed

to the first 90th percentile of the total carbon footprint for 75% of the runs. This

cut-off was selected such that there were around 10-20 APs in the Set of Interest. The

food items in the SOI of Food and Specific Food levels were updated with the same

emission factors that were used to compute the total CF at the Technology level. By

combining data from the lower level of specification with data from the higher level of

specification, we created hybrid levels at the Food and Specific Food level, and labeled

them as Food-SOI and SFood-SOJ respectively. If the estimates of the hybrids are

accurate, it would verify that we only have to find the exact emission factors of the

SOI to obtain a good estimate of the total carbon footprint.

3.3 Results

3.3.1 Results at different levels of specification

Figure 3-2 shows the total carbon footprint of the food order list when all 94 food

items were at the stated level of specification. That the means remained at around

670 + 40 across all levels (Table 3.4) was a coincidence that the more appropriate
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Table 3.4: The distributions of the total food carbon footprint of the food order list
for the five levels of specification.

Total carbon footpt nt of the food order list/ kg C02e
Country of

L.evels Food Group Food Specific food Origin Technology

Maximum 11457 15648 12251 1412 916

Minimun 204 316 286 355 522

Median 623 725 647 675 655

proxies were moderate values. As the redundant emission factor proxies were removed

with increasing specification, the spread of the total carbon footprint decreased.

In the first three levels, the group of outliers in the upper end were the simulations

that included the beef emission factor with land use change impact in Brazil beef

[55). This emission factor is 26 times higher than average beef, thus the total carbon

footprint of the simulated runs that included this emission factor was much higher

than the other runs.

The reduction in the spread across the levels also indicated that the hierarchy was

able to classify the emission factors reasonably well, such that the emission factors

that were grouped together in the next level were closer values than the emission

factors that were left out. The result in this section reflected that the carbon foot-

print estimate could be more accurate with more information about the attributable

processes.

3.3.2 The Set of Interest (SOI)

The sets of food inputs that fell into the top 90% of the total food carbon footprint

for more than 75% of the runs were identified and listed in Table 3.5. The number

of inputs in the SOI increased at the higher levels because the number of proxies

decreased and the carbon footprint of the individual inputs were more consistent.

Comparing the SOI of Food Group and Food, although Potato and Minced meat were

at the top of the SOI in Food Group, they fell out of the SOI completely in the Food

level onwards. The Food Group level included proxies of vastly different magnitudes.

Both Potato and Mince meat had large purchase weight, but have emission factors
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Figure 3-2: The boxplots show the 25th, 50th and 75th percentile of the total food
carbon footprint for the food order list at the five levels of specifications. The Country
label represents the Country of Origin. The whiskers extend to the most extreme
points that are within 1.5 interquartile ranges from the lower and upper quantiles.

Food group Food Specific Food Country Technology
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Table 3.5: The lists of food items that fell into the top 90% of the total food CF for
more than 75% of the runs, for the five levels of specifications. The inputs that used
surrogate data (e.g. Yogurt used the emission factor of Ice cream) are marked with
*. The inputs that have interesting shifts between the levels are shaded in orange.

2Fish

5-

6 Sugarcane

7

sugar. .......

I Ric e Rie Fh
Plnt oil Plant oil ........ Plantoil

Parmesan Parmesan
cheese cheese

Rice sugarca nesugar
Sugarcane

Plant oil Cannedtuna
sugar

Sugarcane
sugar

Yogurt*

Parmesan
cheese

8 Rice Parmesan Canned tuna Yogurt* Canned tuna8 Rice cheese

9 Chicken eggs Yogurt* Shrimp Shrimp

10 Canned tuna Shrimp Mozarella Mozarella
............- cheese cheese

11 Yourt* Mozarella
11 Yogurt* cheese

12 Shrimp Chicken eggs Chicken Zucchini

13 Mozarella Chicken Zucchini String bean*

14 Zu .c ch ini Zu cchini String bean* Melons
15i Sri ng be an* St rin g be an* F lo ur FlIou r

16 Flour Yellow Yellow
cheese cheese

17 Yellow Chicken eggs Tomato
17 ~cheese Chce gs fruit*

... 18 ...... __ __ _ _ __ _ _ __ _ ........... W aterm elon. .......... ..-..... *....... . ---
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on the lower bound of their Food Group. Representing them by the average of their

food group gave a false impression that they have high carbon footprint contribution.

Food Group was not a useful level of specification and would be excluded from all

other analyses.

Beef Tongue, Beef Heart and Beef Liver quickly fell out of the SOI as we moved

from the Food to the Specific Food level. These beef parts were relatively inexpensive

compared to the average beef, and were assigned the low emission factors for cheap

beef at the Specific Food level. The SOI was quite consistent in the last three levels

with some slight shuffling in the order. Tomato dropped from 6th to 11th at the

Country of Origin level as many of the higher emission factors from the Temperate

climate were removed. The countries with Temperate climate tend to use energy

intensive greenhouses with heating for their tomato and thus have higher emission

factors [53].

3.3.3 Weight fraction versus carbon footprint fraction

Figure 3-3 shows the average carbon footprint of the SOI as a fraction of the total

carbon footprint E[CFoi] and the weight of the SOI as a fraction of the totaltextbfE[CFTotal]

weight eighto. . While on average the SOI contributed to 0.87 of the total carbon

footprint, it only contributed to 0.38 of the total weight. This indicated that the food

inputs in the SOI, especially Beef, Parmesan cheese and Yoghurt, had high carbon

footprint per unit weight. On the other hand, the plant based foods were in the SOI

because they were ordered in large volumes. The average carbon footprint of the SOI

was slightly lower than 0.90 because the SOI were in the top 90th percentile for only

over 75% of the simulations, instead of all the time. Weight of the AP was not a good

predictor of its carbon footprint contribution.

3.3.4 Streamlining using the Set of Interest

The streamlined approach of only specifying the SOI to the Techonology level effec-

tively reduced the range of the total carbon footprint. The carbon footprint range
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Figure 3-3: The carbon footprint fraction E[CFo and weight fraction Weightjof

the SOI at the Technology level.

1.0 Watermelon
0.9 - Tomato fruit*

- Yellow cheese
0.8 - Flour

Melons
* String bean*

0.6 Zucchini
. *Tomato

o 0.s Mozarella cheese
'9

0.4 Shrimp
-.. Canned tuna

0.3 _ Parmesan cheese

0.2 UYogurt*
Sugarcane sugar

0.1 *Plant oil
* Fish

0.0- 4

CFSOI/CFTotal WeightSOI/WelghtTotal

Table 3.6: The distributions of the total food carbon footprint of the food order list
before and after streamlining using SOI. The maximums and minimums of the hybrids
are very close to those at the Technology level.

Total carbon footp int of the foo- order list/ kg :02e

Levels Food Specific food Food-SOI SFood-SOI TechnoloSV
Maximum 15648 12251 930 914 916
Minimun 316 286 523 518 522
Median 725 647 693 676 655

of the hybrids matched the CF range of the Technology level within the error (Fig.

3-4 and Table 3.6). The results reflected that it was possible to obtain an equally

accurate range of the total carbon footprint without the knowledge of the country

of origin and the technology for 79 out of the 94 items in the food order list. This

could save substantial amount of effort needed to track the supply chain of the less

significant foods.

3.3.5 Limitations of the study

Based on our results, we could infer that the approach to streamline using the SOI

was reliable on two conditions:
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Figure 3-4: The boxplots compare the distribution of the total food carbon footprint
for the food order list before and after streamlining using the SOI. Food-SOI and
SFood-SOI are the hybrids of the inputs in SOI specified at the Technology level with
the remaining inputs at the Food and Specific food levels respectively. The range of
the hybrids matches the range of the Technology level well.

Food Specific Food Food-SOI SFood-SOI Technology
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1. the cut-off percentile has to be appropriate. It was fortuitous that the cut-off

chosen was strict enough to select the attributable processes that affect the

carbon footprint the greatest. The results of the hybrids may be worse if the

cut-off percentile was lower than 90%. The research methodology could be

improved such that the selection of the cut-off percentile was justifiable.

2. the hypothesized true emission factors (at the Technology level) has to be in

the database that was used to compute the Food and Specific Food levels. The

total carbon footprint calculated using existing emission factors does not show

that the methodology would be accurate when the emission factors is unknown.

In Chapter 4 we would test the effectiveness of the methodology using a test

set consisting of emission factors that were not in the database used for the

screening calculation.

Moreover, all the computation is based on simulation and most of the rationale

behind the resulting spread is made from induction. In the next study, we will

introduce the analytical solution to Structured Underspecification.

3.3.6 Summary

By compiling a database and organizing it in a hierarchy, we were able to estimate the

carbon footprint of a meal with limited information. The carbon footprint estimate

was more precise when we had more information on the food items, because the

number of proxies used was reduced. We found that the Food Group level did not

classify the food item well enough to reduce the variance within the level. Also, of

the many food items in the order list, beef appeared to be the food that should be

investigated most carefully. The total carbon footprint was changed drastically both

when the land use beef emission factor was removed and when the lower beef emission

factors were allocated to the cheaper beef parts.

While the SOI contributed to the majority of the total carbon footprint of the

order list, their total weight was less than half of the total order weight. The weight of

the inputs did not reflect the carbon footprint impact. When we only select the items
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by their contribution to the total carbon footprint, the hybrids that combined the Set

of Interest specified at the Technology level with the rest of the food items specified

at either the Food or the Specific Food levels derived carbon footprint estimates that

were comparable to the estimate calculated with all 94 food items specified up to

the Technology level. The SOI had only 15-16 food items. This implied that we

only needed to invest our data collection effort on 15 out of 94 food items to get a

good estimate of the total carbon footprint. Using the concept of SOI could help

the Galapagos Islands ferry tour company save substantial data collection effort and

give an equally accurate carbon footprint. We also found parts of the Structured

Underspecification that can be further improved, and thus we carried out the next

case study with several improvements.
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Chapter 4

Cambridge Bondir's Red Broiler

Chicken Case Study

The limitations in the Galapagos Tour Ferry Food case study motivated further de-

velopments of the food carbon footprinting methodology. A case study was done

for a dish served at a restaurant in Boston. The chef from a local farm-house style

restaurant, Bondir, provided all the details needed for a complete assessment. Chef

Bond's ties with his food suppliers made it possible to collect more details than was

possible in the Galapagos Islands Ferry Tour case study.

Several new ideas are incorporated to the food carbon footprint in this case study

compared to the Galapagos Island case study. First, instead of using the pedigree

matrix, we adopted the Fast Carbon Footprinting approach in assigning coefficient

of variance (Section 2.6.2) to the emission factors and the primary data. Second, an-

alytical solutions were introduced for Structured Underspecification. The analytical

solutions help reduce computation time and improve the transparency in the indi-

vidual component contribution. Third, instead of using a strict cut-off requirement

for the Set of Interest, an iterative approach similar to that suggested by the Hybrid

Framework (Section 2.6.3) was adopted. Fourth, the test set was used to test the

performance of averaged proxies for carbon footprint estimation. The application of

the test set was extended to broader random cases, and this is presented as stand-

alone Section 4.9 and Section 4.10. Lastly, we introduced a metric that selects the
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number of attributable processes (APs) in the Set of Interest based on the degree the

estimate converges to a stabilized value.

4.1 Problem definition

4.1.1 Primary data of the Cambridge Bondir case study

A detailed form with instructions was created to guide the chef in data collection

(Appendix C-3). The information collected consisted of 105 APs in the dish's life

cycle, namely, 39 ingredients (Appendix B.2), 36 packaging materials (Appendix B.3),

8 preparation processes (Appendix B.5), 21 transport trips (Appendix B.4) and 1

waste disposal (Appendix B.6). All weights and emission factors were assumed to be

independent. The food items with astericks (*) at the Specific Food level did not have

an appropriate emission factor in the database and were substituted with the food

items listed at the Food level. There was no data for Mustard seeds, Sugar, Baking

soda and Duck fats and they were assumed to be sourced from USA.

For the transportation stage, except for Black pepper and Olive oil, all other

materials were from the United States. At the state level, we used 644km for all the

local food ingredients, following the definition in the 2008 Congress Bill H.R.2419

[41]. It stated that local food has to be marketed at most 400 miles from the origin

of the product. For distances at the Town and Exact location level, Google Maps was

used to obtain the shortest travelling distance between the origin and the destination.

The uncertainty in the weight of the primary data was uniformly set at +5%. It was

also assumed that the trips were dedicated for delivery and that the return trips were

with empty loads.

4.1.2 System boundary of the Cambridge Bondir case study

One of the aims of this case study was to work with an accessible company that

could provide complete life cycle information. We referred to the life cycle stages

suggested by Jungbluth, namely, the type of product and agricultural practice, the
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processing for storage and distribution, distance and mode of transportation, the type

and amount of packaging and lastly, the food preparation process [11]. In this work,

the processes for storage were regarded as part of the food production and waste

disposal was added as the last stage. To sum up, the five stages that describe the

life cycle of food were Food production, Packaging, Transport, Process and Waste

disposal.

4.1.3 Functional unit

The functional unit is the total carbon footprint per dish of Pasture Raised Red Broiler

Chicken for the Cambridge Bondir case study.

4.2 Data preparation

4.2.1 Emission factors data organization

The description of the hierarchies in the Cambridge Boston case study is in Table

4.1. The difference between the two case studies was that the Galapagos Islands Ferry

Tour (Figure 3-1) used only the food production emission factors database and that

its hierarchy had an additional Food group level. The Food group level was left out

in the second case study because it was not effective in grading the emission factors.

The definitions of the specification levels for the other stages were explained in Table

4.1. The levels of specification in the second case study were intentionally kept at four

to five for all the stages of the life cycle, but it could be varied for other applications.

4.2.2 Data structure

The units for the emission factors were unified so that the data could be manipulated

with ease. The emission factors had to share common units and be organized based on

their characteristics. The rationale for converting the emission factors from published

sources and primary data to the standardized units in the Cambridge Bondir case

study is summarized in Table 4.2 and elaborated in the following subsection. The
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Table 4.1: The levels of attribute specifications in the five product life cycle stages.

Food
The common name that is associated with the food.
E.g. Banana, Tomato.

Level 2 Specific Food Specific variety of the vegetable, or a particular cut of
Leve 2 peciic ood meat.

Level 3 Origin The country where the food was produced, such as
where the farm or the factory was located.

Level 4 Technology The technology used to produce the food.

Level 1 Material Class The common class of the material type, such as Plastic,
Llass and Paper based.

Level 2 Application How the material was used, such as in the form of a
bottle or other formed container or a can.
The specific chemical substance, such as Polyethylene

Level 3 Packaging Material Terephthalate (PET) or Aluminium

Other details such as country of manufacturing, and if
Level 4 Specific Material the material was recycled or disposed at a landfill after

use.
The Mode of Transport was broadly defined as Road,

Level 1 Mode of Transport Air or Water.
The vehicle type referred to the general type of

Level 2 Vehicle type vehicle, such as trucks, cars, or airplanes.
Level 3 Fuel The type of fuel used by the vehicle.

Other details that further define the vehicle, such as
the model type, the engine efficiency and the road

Level 4 Other specifications types. These details were clustered together because
the emission factors of different vehicle types had
different characteristics specified.
The thermal, mechanical and electrical processes used

Level 1 Process type to prepare and clean-up the dish.
e 2If the equipment was built for Industry, Restaurant or

Level 2 Application Household use.
The source of energy for the equipment. It was either

Level 3 Energy source gas or electricity.
Level 4 Equipment The exact equipment that was used for the process.
Level 1 Waste type Compostable, food waste, metal, etc.
Level 2 Disposal Method The type of treatment that was applied to store or

remove the waste, e.g. incineration or landfill.

Level 3 Country The country in which the treatment takes place.
Level 4 Waste management

company
Level 1 Country
Level 2 State
Level 3 Town

Level 4 Exact location

The waste management company that was in charge of
the waste disoosal.

databases of emission factors and their sources are in Appendix D.1 to D.6. The data

treatment details for the emission factors in the food production stage was discussed

in Section 3.1.6.
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Table 4.2: The units and the equations that were used
the attributable processes in the life cycle stage.

I ~ I

to calculate the emission of

Data Units Description Eqao/CaatrsisSource Type

eight of food per dish kg produce/ dish Driver Collected
Iriculture Emission Factor kg CO2e/ kg produce Emission Factor Published data

for food input per dish kg CO2e/ dish \griculture Emission Factor x
Neight of food per dish

eight of material per unit kg packaging material/ pack Collected
ickaging
eight of food per unit kg produce/ pack Collectedickaging
eight of food per dish kg produce/ dish Collected

Weight of material per unit
'eigt o pakagig mteral ackaging x

ght of packaging material kg packaging material/ dish Driver Height of food per dish/ Calculated
Neight of food per unit
)ackaging

ckaging Material Emission kg CO2e/ kg packaging Emission Factor Published dataictor material
ackaging Material Emission

for food input per dish kg CO2e/ dish actor x Weight of packaging
naterial per dish

stance km Driver Collected + Published
eight of food per dish kg produce/ dish Driver Collected
located Transport Emission kg CO2e/ Emission Factor Published dataictor km* kg product

fstance x

for food input per dish kg CO2e/ dish aated Tr nsport Emission

julpment operating time pe' day/ dish Driver Collected
sh ____________

juipment Emission Factor kg CO2e/ day Emission Factor EmissionFactorx_ Spec sheets
quipment Emission Factorx

for food input per dish kg CO2e/ dish quipment operating time pei
Jish_____________

feight of waste per dish kg waste! dish Driver Collected
Isposal Emission Factor kg CO2e/ kg waste Emission Factor Published data

kg CO2e/ dish )isposal Emission Factor x
Neight of waste per dish

4.2.3 Packaging

The emissions from packaging is the product of the weight of the packaging per

dish and the carbon footprint per kg of packaging. The unit of the packaging ma-

terial emission factors was the carbon footprint per kg of packaging material used

kgCO2,q/kgmaterial. (Table 4.2) The scope of the emission factors includes the

manufacturing phase and the end-of-life disposal of the material, thus solid waste

was not listed as an AP.

Some published data only measure the carbon footprint of the raw material, while

we needed the carbon footprint of the packaging material in the form it was in use.

For example, the carbon footprint of the bottle was the sum of the emissions from

the molding process and the emissions from the production of the plastic resins. The

carbon footprint during the shaping process was the product of the emission factors

of the molding processes (Table D.3) and the weight of the packaging material used.
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Allocation

The driver was the weight of packaging material used per dish. The packaging material

per pack of food was divided by the number of times the material was reused and

the number of dishes it contributed to. We assumed that there was no uncertainty in

these numbers. For example, the weight of the material in the plastic bucket used to

carry the Duck fat was divided by the 12 times it was reused.

4.2.4 Transport

The emissions from a transportation process is the product of the allocated trans-

port emission factor of the vehicle, and two drivers, the distance between the origin

and the destination, and the weight of food per dish. (Table 4.2) The allocated

transport emission factor was the carbon footprint that was emitted by the trans-

portation vehicle per km travelled, allocated to each kg of produce carried by the

vehicle kgCO2eq/km -kgfood [47, 48]. The distances were tabulated in the form of a

hierarchy too because the information of the source had different degrees of clarity.

Allocation

We assumed that the trips were dedicated for delivery, that each delivery trip delivered

goods to Bondir solely. This would overestimate the emissions from the transportation

module because the trucks delivered to more than one location in each trip. Based on

previous knowledge that the carbon footprint of transportation contributed little to

the total carbon footprint of prepared food [42, 43], the number of stops per delivery

was neglected in the screening calculation. It could be further refined if it was shown

to be significant. In addition, the calculation was simplified by assuming the same

level of knowledge of the origin and destination, i.e. if we only know the state of

origin of the food, we would only know the state of the destination.
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4.2.5 Process

The process stage included all the mechanical and thermal processes that were ap-

plied for the storage or preparation or cleaning processes at the restaurant. It was

assumed that the processes upstream of Bondir were negligible since the ingredients

were freshly harvested. The energy demands of the equipment were recorded in terms

of power consumption, a measure of energy use per unit time, thus the emission fac-

tor of equipment was kgCO2eq/day and the driver was the duration of the process,

converted to the unit of day per dish (Table 4.2). The power ratings of the equipment

were specified in kWh, and they were multiplied with the emission factor of power

in the USA average, 0.595 kgCO 2eq/kWh for electricity and 0.179 kgCO 2eq/kWh for

gas, and then multiplied by 24 hours per day, to obtain the emission factor in the

units of kgCO2eq/day [49].

Allocation

Some food was made in bulk. For example, the chicken stock was for 40 servings. The

carbon footprint of the heating process was then divided over the servings assuming

that the number of servings was a fixed number without uncertainty.

4.2.6 Waste treatment

The emission factor of waste treatment was the amount of greenhouse gas emitted per

kg of waste, kgCO2eq/kgwaste. The emission factor from waste included the green-

house gas that was emitted during waste treatment. (Table 4.2) The transportation

of the food waste from the restaurant to the disposal site was omitted.

4.3 Data uncertainty

4.3.1 Judged uncertainty

In the Cambridge Bondir case study, the uncertainty in the emission factors was

assigned based on the rationale proposed by the Fast Carbon Footprinting. Since even
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the most accurate estimates by the best-of-class calculations would have coefficient

of variation (CV) of ±5%, it was suggested that data collection efforts could be

conserved by assigning variance based on the analyst's confidence in the data [4].

When compared to the pedigree matrix, this approach also cut down the number

of judgments per emission factor. from six uncertainty factors to one CV. Thus, in

this work, the variance of the emission factors were assigned a CV of 25, 50 or 100%

based on how similar it was to the ideal emission factor. If the proxy emission factors

have the same characteristic as the AP at level 1 (e.g. the AP was tomato and the

emission factors of tomato was used), it was assigned an uncertainty of ±25%, if the

proxy emission factors are not the exact AP as the real AP, but was judged similar

in nature (e.g. the AP was duck fats and the emission factors of duck was used), it

was assigned an uncertainty of +50%, lastly, if the proxy emission factors was totally

different (e.g. the AP was salt, and the emission factor of sugar was used), it was

assigned an uncertainty of t100%. The uncertainties in the emission factors for the

APs are tabulated in Tables B.2 to B.6.

4.3.2 Proxy selection

Even though the APs were more specified in this case study, the database did not

always have representative proxies at the highest level of specification. Some assump-

tions had to be made in selecting these sets of proxies. In cases where there was no

proxy from the United States, proxies from Europe were selected. For the transporta-

tion stage, the trucks were assumed to have engines meeting the Euro 2 standards

and the roads travelled were assumed to be motorways. There was only one proxy

per AP at level 4 specification.
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4.4 Analytical solutions to Structured Underspec-

ification

4.4.1 Average emission factor and its uncertainty

In the Cambridge Bondir case study, an analytical solution was used in place of Monte

Carlo simulations. To calculate the expected emission factor of API, or the average

of the proxies E[EF] and its variance var(EF), let q be the number of proxies, and

the emission factor of the kth proxy be EFk. With Q indicating the selected proxy

and Q E {1, ..., k}, the expectation of emission factor EFk of Q was E[EFIQ = k].

The expected emission factor would be the averaged proxy,

q' E [E Fk|Q = k]
E[EF] = E[E[EFkIQ]1 -Fa k ] q (4.1)

q

The Law of Total Variance [54] was used to calculate the variance in the emission

factor, EF. The derivation of the Law of Total Variance is in Appendix A.1.

var(EF) = E[var(EFk|Q)] + var(E[EF Q]) (4.2)

The total variance can be interpreted as the sum of the average variances of the q

proxies, and the variance between the mean of the q proxies. This variance var(EFi)

was fed into Equation 4.3 to find the variance of the total carbon footprint CFTota.

4.4.2 Total carbon footprint and its uncertainty

The estimated carbon footprint of the n APs for i = 1, ..., n, CF, is the product of

the emission factors EF and its driver(s) Dij. (Eqn. 2.1). The total carbon footprint

would be the sum of all the carbon footprints of the individual APs, CF. (Eqn. 2.2)

Since CF was a multiple of two or three random variables, we used the standard

definition of variance [54] (Eqn. A.6) to derive the variance of the product of multiple

random variables. For example, if the ith component had only one EF and one Di,
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the variance of the ith carbon footprint CF would be equivalent to

var(CF) var(EFiDi,1)

= (var(EF) + E[EFi]2) (var(Di,i) + E[Di,1])

- (E[EF])2(E[Di,1]

= E[EF] )var(Di,1) + (E [Di1] )var(EFi)

+var(EF )var(Dj,1 ) (4.3)

Other combinations of emission factors and drivers could be derived using Equa-

tion A.6. Assuming that all CF were independent of each other, the variance of the

CFTotal was the sum of variance of the n components:

n

var(CFrotal) = var(CF) (4.4)

4.4.3 The pros and cons of analytical solutions

Unlike in the Monte Carlo simulations where the emission factors were stated to have

logarithm distributions, the mean and standard deviation of the analytical solution

to Structured Underspecification would be the same regardless of the distribution

of the emission factors. While the equations do not provide information about the

resulting distribution of the total carbon footprint, the logarithm distribution of the

emission factors in the Monte Carlo simulations was an artifact adopted from the field

of risk assessment (because it does not show negative values). The advantage of using

analytical equations instead of Monte Carlo simulation was that the amount of data

generated was greatly reduced. With 105 APs, the result was 105 pairs of CF and

variances. On the other hand, if we had performed 10,000 Monte Carlo simulations,

there would be 1050,000 pairs of CF and variances to analyse and store.
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4.5 Test set

The use of test set to test prediction models is a widely used practice in Machine

Learning and Data Mining. The available data set is split into two sets, one set

for fitting the prediction model, and the other set to test the performance of the

prediction model. This concept was imported to test the performance of Structured

Underspecification. The test set was a set of emission factors that was judged to

be the most representative emission factors in the database. It would verify that

the methodology worked not only because the hypothetically best emission factors

were already within the database, but because top contributors largely determined

the total carbon footprint and the uncertainty. We would also check if the cut-off

percentile of 99%, as recommended by PAS2050, was an effective way to obtain an

accurate and precise carbon footprint estimate. In cases where there was only one

available emission factor in the database, the emission factor was used both in the

test set and as a proxy. The uncertainty in each test set emission factor was set at a

coefficient of variance (CV) of ±5%. They were assigned a low uncertainty because

they were hypothetically true and accurate measurements. This uncertainty should

represent the random fluctuations within measurements.

4.6 The Set of Interest

The definition of the Set of Interest was more flexible in this case study. Instead of

using a strict percentile cut-off as in the first case study to select the Set of Interest,

the Set of Interest was selected step-wise, starting from the AP with the highest

impact. The impact of the AP could be its contribution to the total carbon footprint,

or its contribution to the uncertainty of the total carbon footprint. If an AP was

selected, effort would be invested to find out more about its characteristics. It would

progress into a higher level of specification and use a smaller number of proxies while

all other APs would use the same proxies as in the previous step:

1. Start Iteration 0 by calculating the total carbon footprint at Level 1 specifica-
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tion.

2. Rank the carbon footprint and the variance of the APs.

3. Replace the emission factor of the AP with the highest impact with the corre-

sponding emission factor from the test set.

4. Recalculate the total carbon footprint and record it.

5. Repeat Step 3, but by updating the AP with the next highest impact based on

the rankings from Iteration 0 in Step 1.

This allowed us to examine the improvement in the carbon footprint estimate

with every piece of new information about the characteristics of the AP. Since the

uncertainty in test set data was set at CV = ±5%, as compared to the proxies that

have CV = +25, +50, or t 100%, the variance of the carbon footprint estimate should

decrease as all the emission factors proxies were updated by a single test set emission

factor.

4.6.1 Extent vs Depth

Imagine that we have limited resources to carry out the data collection, we will

need further understanding on how we choose the Set of Interest, and the levels of

specification we need for each of the 105 APs. More explicitly, we need to decide

whether it is reasonable to have some APs at the Level 1 specification, some at Level

2, and so on. There were many possible combinations of cut-off percentiles and levels

of specification. We started with a screening calculation in which all the 105 APs were

at Level 1 specification, referred to as Iteration 0. We considered a straightforward

case where the specification of the APs could only be increased to one fixed level

(Level 2, 3, and 4). The results would show us if it is more effective to invest our

limited resources to gather shallow information about many APs, or if it is more

effective to invest the same resources to gather in-depth specificiations about the

APs with high impact.
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4.6.2 Contribution to the total carbon footprint or total un-

certainty

In general, uncertainty is derived from the lack of both accuracy and precision. In

this context, accuracy refers to the closeness of the estimated carbon footprint to the

real carbon footprint and precision refers to the spread of the estimated carbon foot-

print. After Iteration 0, the option was to either increase the accuracy or the precision

of the carbon footprint estimate. To increase the accuracy, the Set of Interest has

to be selected based on descending magnitude of individual carbon footprints, CFi.

To increase the precision, the Set of Interest has to be selected based on descend-

ing magnitude of individual carbon footprint variances, var(CF). Both objectives

were desirable and both approaches should converge to the same results, thus it was

interesting to compare if one converges to the true total carbon footprint faster.

4.7 Results

4.7.1 Preliminary total carbon footprint estimate

The screening iteration, Iteration 0 was calculated using all Attributable Processes

(APs) with information at Level 1 specification. It represented the calculation that

required the least information about the AP. The resulting total carbon footprint

of a dish of Bondir's Red Broiler Chicken was 2.1 t 0.4kgCO 2eq. The agriculture

and the process stages contributed the most to the total carbon footprint, 53 and

42% respectively. The process stage had high contribution because thermal processes

are energy intensive, while material and transport had low contribution because the

carbon footprint was allocated to multiple dishes. In addition, the majority of the

packaging used plastic, which was light and had low carbon footprint impact.

The contribution from an individual AP calculated based on averaged proxies from

specification Level 1 is shown in Table 4.3. The top ten APs are cooking processes

and ingredients. The APs that contribute most to the carbon footprints are also the

APs that contribute most to the variance. The top six APs contribute to as much as
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Stage %contribution
Agriculture 53%
Material 1%
Process 42%
Transport 7%
Waste 1%

60% of the total carbon footprint, and the 40th AP only contributes to 1g of the total

carbon footprint. It is clear from the screening calculation that only a small fraction

of the 105 APs have significant impact on the total carbon footprint.

4.7.2 Evaluation of the analytical solution

The expected total carbon footprint and standard deviation of Iteration 0 calculated

based on the analytical solution and a Monte Carlo simulation with 10,000 runs were

only 0.4% and 2.4% apart respectively. (Table 4.4) Since the analytical solution was

equivalent to the Monte Carlo simulation, the rest of the work was done using the

equations only.

4.7.3 Cut-off percentile versus level of specification

Based on the results of Iteration 0, the APs that contribute to the cut-off percentiles

of 20%, 40%, 60%, 80%, 90%, 95% and 99% were updated to level 2, level 3 and level

4 specifications. (Fig. 4-1) The best possible estimate calculated with all 105 APs

at specification level 4 was used as a reference. Not surprisingly, updating the high

impact APs with the level 4 proxies was the most effective way to converge to the

best possible estimate that was calculated using level 4 proxies.

An interesting finding from Figure 4-1 is that the total carbon footprint estimates

flattened after the APs which contributed to the top 80% of the carbon footprints

were updated, indicating that updating the emission factors of the less significant APs

provided negligible marginal improvement to the accuracy of the estimate. If so, there

would be little need to expend resources to collect more information about these less

significant APs. Resources should be focused on the more significant APs. Relying
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Table 4.3: Results from the preliminary total carbon footprint calculation Iteration
0. The attributable processes that are highlighted in orange are the cut-offs for 20%,
40%, 60%, 80%, 90%, 95% and 99%

5

7

P06 aCooking marfax 1.25E-01 54.29% 8.50E-03 57 M01 IPlastic Film 2.OOE-04 99.94% 8.79E-09

58 1 F23 jSugar 1.11E-04 99.95% | 2.09E-09

P05 ooking chicken 8.34E-02 64.35% 3.78E-03 59 F21 jDried Pea 1.11E-04 99.95% 2.09E-09

8 F26 ater 8.04E-02 68.27% 7.69E-03 60 M25 Metal Can 9.95E-05 99.96% 2.49E-09
9 P01 Cooling chicken 7.60E-02 71.98% 7.01E-04 61 F33 Onion 9.06E-05 99.96% 2.54E-09
10 F22 Pork 6.92E-02 75.35% 1.04E-03 62 F13 Sugar 8.45E-05 99.97% 1.63E-09

11 TEF03 Chicken delivery 5.65E-02 78.11% 2.33E-02 63 M02 Paperbase Box 7.98E-05 99.97% 2.76E-09

64 F12 Suar 6.16E-05 99.98% 2.47E-09
13 F06 Eggs 4.55E-02 82.82% 8.15E-04 65 F11 Sugar 6.16E-05 99.98% 2.47E-09
14 F25 Rape seed oil 4.17E-02 84.86% 1. 13E-03 66 TEF13 Spice delivery 5.67E-05 99.98% 2.33E-08

15 P02 Searing chicken 4.17E-02 86.89% 9.44E-04 67 M04 Plastic Bucket 5.63E-05 99.98% 6.49E-10
16 F39 Hot water 2.88E-02 88.30% 3.48E-04 68 F36 Dried Pea 4.94E-05 99.99% 4.12E-10
17 F14 Butter 2.88E-02 89.70% 7.50E-05 69 M07 Pa erbase Box 4.13E-05 99.99% 7.41E-10

70 M06 Paperbase Box 3.57E-05 99.99% 0.00%

19 F07 Milk 2.70E-02 92.38% 1.24E-03 71 TEF15 Spice delivery 2.84E-05 99.99% 0.00%

20 TEF19 live oil delivery 2.17E-02 93.43% 4.71E-04 72 TEF02 Herb delivery 2.59E-05 99.99% 0.00%

21 F38 Rape seed oil 1.86E-02 94.34% 2.24E-04 73 MOS Plastic Film 2.37E-05 99.99% 0.00%
M 74 F24 Dried Pea 2.22E-05 99.99% 0.00%

23 TEF20 Olive oil delivery 1.36E-02 95.79% 1.34E-03 75 M15 extile Bag 2.04E-05 100.00% 0.00%

24 TEF16 Duck fat delivery 1.36E-02 96.46% 1 .34E-03 76 M38 Metal Can 1.97E-05 100.00% 0.00%

25 F15 Dried Pea 1.11E-02 97.00% 2.09E-05 77 M08 Paperbase Bag 1.58E-05 100.00% 0.00%
26 F37 ine 9.10E-03 97.44% 1.30E-05 78 M19 Metal Can 1.19E-05 100.00% 0.00%
27 Waste Compost 8.OOE-03 97.83% 1.09E-04 79 M03 Plastic Bottle 7.79E-06 100.00% 0.00%
28 F09 Flour 7.20E-03 98.18% 4.22E-06 80 M09 Paperbase Bag 7.04E-06 100.00% 0.00%
29 TEF04 Spice delivery 5.1OE-03 98.43% 1.87E-04 81 M27 Plastic Film 5.09E-06 100.00% 0.00%

30 TEF18 Olive oil delivery 4.30E-03 98.64% 6.28E-05 82 M16 Plastic Film 5.09E-06 100.00% 0.00%

31 TEF06 Spice delivery 3.50E-03 98.81% 8.65E-05 83 F31 Cabbage 4.50E-06 100.00% 0.00%
32 TEF07 S ice delive 2.50E-03 98.93% 4.60E-05 84 M10 Paperbase Bag 2.32E-06 100.00% 0.00%

3 85 M32 Plastic Film 2.01E-06 100.00% 0.00%
34 TEF05 Spice delivery 2.OOE-03 99.15% 1.20E-05 86 M11 Metal Can 1.87E-06 100.00% 0.00%

35 F29 Celery 1.80E-03 99.24% 5.40E-06 87 M14 Paperbase 1.69E-06 100.00% 0.00%
I ~Packaging paper% 00%

36 F17 Celery 1.80E-03 99.32% 5.40E-06 88 M22 Plastic Film 8.15E-07 100.00% 0.00%
37 F05 Dried herbs 1.70E-03 99.41% 1.86E-07 89 P08 Dish washing 5.78E-07 100.00% 0.00%
38 F02 Salt 1.40E-03 99.48% 3.42E-07 90 M28 Plastic Film 4.08E-07 100.00% 0.00%
39 TEF14 Spice delivery 1.10E-03 99.53% 8.83E-06 91 M17 Plastic Film 4.08E-07 100.00% 0.00%
40 F27 Onion 1.00E-03 99.58% 3.21E-07 92 M21 Plastic Bottle 3.65E-07 100.00% 0.00%
41 F16 nion 1.00E-03 99.63% 3.21E-07 93 M12 Paperbase Box 2.65E-07 100.00% 0.00%
42 F32 Onion 9.OOE-04 99.67% 2.54E-07 94 M29 Plastic Film 2.04E-07 100.00% 0.00%
43 TEF08 Spice delivery 7.OOE-04 99.71% 4.61 E-07 95 M18 Plastic Film 2.04E-07 100.00% 0.00%

44 TEF17 egetable delivery 7.OOE-04 99.74% 1.52E-06 96 M23 Paperbase Box 1.56E-07 100.00% 0.00%

45 F28 Carrot 6.OOE-04 99.77% 1.51E-07 98 M13 Paperbase Box 1.54E-07 100.00% 0.00%
46 F20 hili 5.OOE-04 99.79% 1.80E-08 99 M20 Plastic Film 9.74E-08 100.00% 0.00%
47 F19 Sugar 5.OOE-04 99.82% 1.58E-07 100 M37 Plastic Bottle 8.15E-08 100.00% 0.00%
48 F03 Dried Pea 3.OOE-04 99.84% 7.44E-09 101 M33 Plastic Film 4.76E-08 100.00% 0.00%
49 TEF01 Flour delivery 3.OOE-04 99.85% 3.50E-07 102 M34 Plastic Film 4.02E-08 100.00% 0.00%
50 F18 Carrot 3.OOE-04 99.87% 3.79E-08 103 M24 Plastic Bottle 1.61 E-08 100.00% 0.00%
51 F35 Salt 3.OOE-04 99.88% 4.88E-08 104 M36 Plastic Bottle 1.22E-08 100.00% 0.00%
52 F34 Chili 2.OOE-04 99.89% 3.55E-09 105 M31 Plastic Film 1.20E-08 100.00% 0.00%
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Table 4.4: The expected total carbon footprint and standard deviation of Iteration 0
calculated based on the analytic solution and a Monte Carlo simulation with 10,000
runs

solely on the PAS2050 guideline to cutoff at the 99th percentile of the screening

calculation would require the analyst to obtain accurate emission factors of the top

33 APs. Verification with the test set would show us if a cut-off percentile of 99%

was too strict.
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Figure 4-1: Starting from Iteration 0, the attributable processes that contributed the

most to the total carbon footprint were updated with the proxies at level 2, 3 and 4

specifications. The red line is the best possible carbon footprint estimate that was

calculated when all 105 APs were at specification level 4.

Increasing the number of APs that were specified at level 2 and 3 did not make

the total carbon footprint estimate converge to the best possible result. Level 2
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and 3 underestimate at the first 20% cut-off because the proxies for roasting chicken

(P03) included emission factors of 31 kgCO2eq/day while and 44 kgCO2eq/day while

the proxy at the level 4 specification was 44 kgCO2eq/day and again at 40% cut-off

because the proxies for chicken (F01) at level 2 and 3 include emission factor between

the range of 1 to 4 kgCO 2eq/kg - chicken while the proxy at level 4 specification

was 5.77 kgCO 2eq/kg - chicken. Level 2 eventually overestimates after 40% cut-

off, because the tap water (F40) has proxies that were in the magnitude of 0.2-0.4

kgCO2eq/kg - water by the 3rd level, these values were removed and the average

dropped to 0.0003 kgCO 2eq/kg - water. The greater value was derived from a LCA

with included the emission during water treatment, while the lower value excluded

that. This shows that the inconsistencies in LCA results exist and can pose problem

when choosing proxies. The progression from level 2 and level 3 does not necessarily

guarantee an improvement in the prediction because there can be wide variation in

the emission factors even within the same level of specification. Neither was the

estimate at level 3 any better than the estimate at Iteration 0.

4.7.4 Total carbon footprint of the Red Broiler Chicken

The significance of using the test set was to show that the carbon footprint estimate

would converge quickly even when only a small fraction of the APs had the unknown

true emission factors in the test set, while the rest of the APs were represented by

proxies at specification level 1. Figure 4-2 shows that the carbon footprint estimate

quickly converged as the APs with high impact were updated with the test set data.

Based on the blue curve in Figure 4-2, the carbon footprint estimates was 2.34 ±

0.06kgCO2eq/dish when the top 33 AP were updated. The final estimate when all 105

APs were updated with the test set emission factors was also 2.34±0.06kgCO2eq/dish.

There could be a more cost-effective way to cut-off and still give an estimate that is

as accurate as at the 99th percentile mandated by the PAS2050.

Lastly, the best possible estimate at the specification level 4 was 2.3±0.2kgCO2eq/dish,

which was more accurate and precise than the estimate at the Specification level 1

at 2.1 i 0.4kgCO2eq/dish. However, there was no merit to this estimate because the
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Figure 4-2: The total carbon footprint estimate of Bondir's Red Broiler Chicken dish.
The APs with the highest impact to the total carbon footprint, both in terms of
absolute contribution (blue line) and contribution to the uncertainty (red line), were
updated with the emission factors from the test set step-wise.

level 4 proxies and the test set proxies were purposely selected with the intention that

they should be very similar values.

4.8 Section take-away

The hierarchy was not effective at reducing the uncertainty of the Red Broiler Chicken

dish. Wide variance persisted in the level 2 and 3 specifications of APs such as

tap water and chicken, and as a result the estimate was inaccurate and imprecise

when numerous APs were updated. The hierarchy was dropped, the case study

departed from using Structured Underspecification and took a new turn. Without

the complications of the levels, the questions became more fundamental, addressing

general methodology questions such as:

1. How could averaged proxies be used to identify the Set of Interest (SOI)?

2. Would the estimate be accurate if we used averaged emission factor proxies for
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the insignificant APs, and the best possible emission factor for the SOI only?

would it work if the best possible emission factors are real emission factors that

may not be within the range of the proxies?

3. Would the hybrids of averaged proxies and the best emission factors work for

other meals than Red Broiler Chicken?

4.9 An important extension:

Random test sets and meals

This section includes extensions to the Cambridge Bondir case study by applying

different degrees of randomness to the methodology. Two sets of factors, namely, the

test set emission factors, and the composition of the meal, were varied.

4.9.1 Random test sets

The selection of the test set was done based on judgement and there could have been

bias in the selection such that the results would converge. Instead of fixing the test

set by judgement, the proxies were randomly selected from the level 1 proxies. This

would mean that the emission factor of a piece of chicken meat from India that was

bred in a conventional method would be as likely to be the true emission factor as

the emission factor of a piece of free range chicken meat from the United States. This

step does not help us better estimate the total carbon footprint of the Red Broiler

Chicken dish, but it would ensure that the result in Section 4.6.2 was not dependent

on the selected test set.

4.9.2 Other ways to set cut-off boundaries

Moreover, the results from multiple random test set simulations could be used to

identify a good size of the Set of Interest, by observing the average rate at which

the simulations converge to a stable estimate. The goodness of convergence could be
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measured by two parameters, 1) the percentage difference of the total carbon footprint

at Iteration n (CF,) and the final carbon footprint estimate (CFfinal), 6n, where

CFfinai - CF (45)
CFinal

and 2) the value of the coefficient of variance at Iteration n, CVn.

The tolerance for both 6n and CVn were set at 1% and 3% respectively, and #
was defined as the xth consecutive time where 6n was smaller than 1% and CV was

smaller than 3%. The term x was set at 5. The requirement for the accuracy would

be stricter if 6n, CV are smaller and x is large. The average # could be obtained

over multiple simulations.

4.9.3 Application to other meals

We further tested the usefulness of the methodology beyond the recipe at the Bondir

restaurant. The driver of the AP and the APs in the meal were randomized to

create new meals. These random meals were created by choosing any other 105 APs

listed in the emission factor database in Appendix D.1 to D.6, based on their level

1 specifications (namely, Food, Material Class, Mode of Transport, Equipment type

and Waste type). Thus the meal could be made up of 40 road trips, 10 air trips, 5

beef, 20 plastic, 30 various vegetables. The weights of the APs were varied uniformly

between 0 to 0.01 kg. Distances were fixed at 100 km for simplification.

Consistent results for random meals would 1) support the use of averaged proxies

as a reliable first step to identify the high impact APs in food, 2) confirm that the

results could converge to a stable carbon footprint estimate even when only the high

impact APs have the true emission factors and the other less significant APs are

merely represented by the averaged proxies.
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4.10 Results for Random test set

The results from 3 simulations of random test sets are shown in Figure 4-3. The

carbon footprint estimates converged regardless of the test set, proving that the results

in Section 4.7.4 were not dependent on the selected test set. In all three cases, the

total carbon footprint estimates stablize when around 20 APs were updated with the

test set values. The trend is the same for all other simulations, except for the runs

which included the beef with land use change values (there were two values, one that

is 26 times the average beef, and one that is 4 times the average beef). The extreme

abnormality was removed for the rest of this study, but it was noted that analysts

need to be aware of outliers while using averaged proxies.

2.8

E-

20 40 60 80 100 1:20

Number ot updated inputs

Figure 4-3: The results from four simulations of the total carbon footprint calculation
with different test sets. Regardless of the test set, the carbon footprint estimate will
converge when over 20 attributable processes were updated. The APs with the highest
impact to the total carbon footprint, both in terms of absolute contribution (blue line)
and contribution to the uncertainty (red line), were updated with the emission factors
from the test set step-wise.

4.10.1 Adaptive cut-off boundaries

With an understanding that the better strategy to obtain an accurate carbon footprint

estimate is to find the true emission factor of the highest impact APs from Section
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4.7.3, the follow-up question is: how can we define the number of high impact APs, or

the size of the Set of Interest based on our preferred accuracy? A potential answer is

that we could use the database of emission factors to carry out numerous simulations

with random test sets to find an average # based on our preferred 6, CV, and x

(Please refer to Section 4.9.2 for definitions).

The random test set is simulated for another 50 times with 6 = 0.01, CV = 0.03

and x = 5, and the averaged size for the Set of Interest, /, turned out to be 27. The

estimate when # = 27 was 2.34±0.06kgCO2eq/dish, similar to the final estimate. The

absolute deviation of the estimated mean from the hypothetically true mean decreased

from +16% to less than +1% and the uncertainty decreased from ±20% to ±2.6 by

the 27th iteration when the estimated uncertainty at the 105th iteration is ±2.5%.

Having the hypothetically true carbon footprint value of as few as 27 out of 105 APs

could give us a good approximation of the hypothetically true mean and deviation

of the total carbon footprint of the restaurant dish. Using the # can save us data

collection affort for six less AP than if the 99th percentile cut-off was imposed. Should

less accuracy is needed, and the parameters 6n, CV could be increased and x can

be decreased while selecting /. These parameters can be self-defined or standardized

across the same industry.

4.10.2 Updating by contribution to the absolute carbon foot-

print or its uncertainty

The rate of convergence by either updating APs with high CF or APs with high

var(CF) was tested on the original test set in Figure 4-2. It appeared that the total

carbon footprint calculated using the level of contribution to the total uncertainty

as a means to identify the high impact APs stabilized faster. However, this may

be dependent on the test set (which is selected by the author's judgement) and the

trend may not be consistent if another test set was used. Thus we compared the two

approaches using many random test sets. The #s were measured for different sets of

6n, CV and x. Five hundred simulations were performed for each set of parameters.
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The approach to update APs with high var(CF) had smaller #cv than to update

APs with high var(CF), #var(CFi) in all three combinations of parameters is listed

in Table 4.5. (Figure 4-4) To update APs in the order of their contribution to the

uncertainty made the estimate converge faster on average. Even though these selected

combinations of parameters and the strong overlap between the distribution of the

betas were not strong evidence to prove that any one approach was clearly better, by

rationale, the approach to update APs with high var(CF) should converge faster.

On top of the fact that it has already accounted for the uncertainty, the var(CFj) was

proportional to the carbon footprint, CF (since var(CF) = (CV * -CF)2 ). Thus to

update APs with high var(CF) increased accuracy and precision at the same time.

When compared to the 99th percentile cut-off, the # cut-offs were often smaller,

except for in the strictest case. The averages of the # were always smaller, showing

that to use # would almost always reduce data collection effort while assuring that

the carbon footprint has converged to a stable value.

Table 4.5: The sets of 6, CV, and x to represent different levels of strictness. A CV
of 0.035 is the lowest possible.

Relative strictness o7 CV, x
Least strict 0.1 0.1 2

Strict 0.05 0.05 5
Strictest 0.01 0.035 7

4.11 Random meals

A meal was defined as any combination of 105 APs from the emission factor databases.

The aim of this approach was to find out if the methodology would work in the same

way if the meal consisted of the other inputs that were not included in the Red Broiler

Chicken dish, such as beef, or pork.

The result was again positive. (Fig. 4-5) The total carbon footprint converged

as a small fraction of the APs was updated. The screening calculation using average

proxies was a viable first step to identify the APs that had high impact as it could
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Figure 4-4: The distribution of #s at different levels of strictness. The y-axis is the
number of occurences normalized by 500 simulations. The blue line is for #var(CFi),
the red line is for #cv and the green line is the 99th percentile cut-off.
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Figure 4-5: The results from four simulations of the total carbon footprint calcula-

tion of random meals. Regardless of the test set, the carbon footprint estimate will

converge when over 20 attributable processes were updated.

reduce the data collection effort and estimate carbon footprint accurately. Given that

there was a wider variation in random meals than in random test sets, we expected

that the #3 derived using o6 0.01, CVs, = 0.03 and x = 5 from fifty random meal

simulations should be larger than when the meal was fixed, and indeed, it was 36.

4.12 Summary

In this case study, we had effectively used the analytical solutions in place of the Monte

Carlo simulations. Using the analytical solutions step-wise, we were able to observe

how the total carbon footprint estimate converged as more APs were updated with

less proxy emission factors. This trend persisted regardless of the level of specification,

showing that increasing the precision of the insignificant APs did not have observable

impacts on the accuracy or the precision of the total carbon footprint, and could be

left unchanged. On the other hand, investments to collect accurate data of the high
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impact items would correct the total carbon footprint estimate in a few iterations.

While a screening calculation using proxies at level 1 specification was a viable first

step to identify the APs with high impacts, levels 2 and 3 may not be adequate

at estimating an accurate food carbon footprint because there could still be wide

variances between the emission factors within the same level. The database could be

better organised using clustering techniques to ensure that the variances were lower

in the higher levels.

Given that the streamlined approach was able to converge to the total carbon

footprint even when the random test sets were used, we conclude that the average

proxies were a good way to represent the hypothetically true carbon footprint. Also,

regardless of whether the best emission factor is the test set or the level 4 specification,

the most effective way is to focus only on the APs with high impact. Moreover,

it was found that the convergence occurred more rapidly when the APs with high

uncertainty var(CF), instead of the APs with high carbon footprint contribution

CF, were updated in each step because var(CF) correlated with both the carbon

footprint and the uncertainty of the AP.

When it comes to selecting the best cut-off boundary, the 99th percentile cut-

off mandated by the standards was too strict. We found that using random test

sets to find the cut-off size # was a more adaptive approach that can provide equally

accurate food carbon footprint estimate. Lastly, this approach can be applied to other

combination of food, packaging, transport, cooking processes and waste disposal to

cut down data collection effort effectively. If a restaurant wants to compute the total

carbon footprint in their dishes, instead of collecting data for all the APs that covered

the life cycle of the food, or using the PAS2050 recommended solution to ignore only

the last 1% of the carbon footprint impact, they could estimate their carbon footprint

step-wise to choose an adaptive cut-off size based on the desired accuracy within the

bounds of maximally possible accuracy.
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Chapter 5

Conclusion

The ultimate objective of this thesis was to reduce the data collection efforts in

carbon footprint analysis by using multiple proxies to obtain a refined carbon footprint

estimate and its uncertainty. While the overall motivation was the same in the two

case studies, they took on different trajectories and concluded on different notes. In

this chapter we would review the key points that were brought up in the case studies,

and how the research procedure could have been improved.

5.1 Summary of differences in the two case studies

The detailed differences in the research procedures between the two case studies are

outlined in Table 5.1. The limitation of the application of Structured Underspecifica-

tion in the Galapagos Islands case study was that the methodology did not guarantee

that the final carbon footprint could be truly reflective of the real carbon footprint

since the final estimate was calculated based on existing emission factors instead of

true emission factors (the same as saying that a black cat is black.) An ensuing

question was, would the hybrid of the specified Set of Interest and non-specified in-

significant APs still predict well, if some of the true emission factors were out of the

range of the existing proxies? Thus, in the second case study we used test sets to

examine this question. The use of a test set could verify that the use of averaged

proxies in Structured Underspecification can also work when the true emission factor
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may be out of the range of the existing proxies. The other notable improvement in

the case study was the introduction of the step-wise approach to clearly illustrate

the marginal improvement of increasing specification for one AP at a time. This im-

provement allowed us to calculate an adaptive boundary cut-off that could minimize

data collection efforts.

Table 5.1: Differences between the Galapagos Islands Ferry Tour case study and the
Cambridge Bondir case study.

Steps in the method- Galapagos Islands Ferry Cambridge Bondir
ology Tour

The system bound- Only the food production Included the five stages across
ary phase, from cradle to farm the life cycle of the product.

gate, was included. The stages were: food pro-
duction, packaging, transport,
processes, and disposal.

The functional unit The food ordered for a ferry A dish of Pasture Raised
tour in the Galapagos Islands, Red Broiler Chicken served at
Ecuador. Bondir, Cambridge.

The hierarchy struc- The food production stage in- Each of the five stages had
ture and levels cluded five levels of specifica- four levels of specification.

tion, namely the Food group, (Table 4.1)
Food, Specific Food, Country-
of-origin and Technology.

Methods to quantify The uncertainties of the prox- The uncertainties of the prox-
the uncertainty of ies were quantified using the ies were assigned a coefficient
the emission factors Data Quality Indicators (Sec- of variance directly.

tion 3.2.2 )
Methods to obtain Monte Carlo simulations were Analytical equations were
the total carbon used to estimate the expected used to calculate the ex-
footprint and its total carbon footprint and its pected total carbon footprint
uncertainty variance. and its variance.
Methods to select The Set of Interest was se- The size of the Set of Interest
the Set of Interest lected using a fixed cut-off. was selected step-wise, start-

ing with a screening calcula-
tion. A test set was used
to measure the effectiveness of
the methodology.

Further work Not applicable The methodology was ex-
tended to multiple random
meals.
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5.2 The effectiveness of Structured Underspecifi-

cation

The Galapagos Islands Ferry Tour case study applied Structured Underspecification

and the concept of the Set of Interest to calculate the total carbon footprint of a

food order list. The application of Structured Underspecification was to show that

a hierarchy could classify emission factors such that analysts could choose multiple

emission factors if there was not enough information or expertise to select one. We

observed a distinct improvement in the prediction with increased specification. The

results from the hybrids also supported the Set of Interest streamlined approach,

which proposed that only a subset of the APs had to be specified to obtain a total

carbon footprint relatively close to the total carbon footprint calculated if all APs

were specified.

However, Structured Underspecification was shown to be less effective in the Cam-

bridge Bondir case study when we apply the test set. We observed that when the

high impact items were poorly specified at level 2 and 3, the total carbon footprint

estimates never converge to the best possible estimate regardless of increased number

of items in the Set of Interest.

5.2.1 Importance of well organized hierarchy

The performance of Structured Underspecification depended a lot on reducing vari-

ance with increasing levels of specifications. We witnessed great improvements in

the Galapagos Islands Ferry Tour case study because the order list included beef,

which has emission factors of three groups: Land use change (7.5kgCO2eq/kgmeat

to 1025kgCO2eq/kgmeat), normal meat (8kgCO2eq/kgmeat to 45kgCO2eq/kgmeat),

and cheap meat (4kgCO2e/kgmeat to 4.2kgCO2eq/kgmeat). Since beef was a sig-

nificant portion of the food consumed on the ferry tour, including normal and cheap

meats, the variance of the total carbon footprint changed greatly as the generic beef

was specified. On the other hand, the APs in the Red Broiler Chicken dish had only
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small changes in variances that were cancelled out by the effects of the other APs, such

as in the level 2 prediction where the low averaged proxies of chicken was cancelled

out by the high averaged proxies of tap water. Based on this result, it appeared that

the variation of food emission factors within the same specie generally nullifies the

effect of increasing specification and Structured Underspecification is less applicable

in food industries.

5.3 Classification of uncertainty

While there were many types of uncertainty, this work broadly defined them to be

uncertainties in data quality, data gaps and cut-off errors. We integrated uncertainty

analysis of data quality and data gaps in the total carbon footprint calculations

using the averaged proxies. These can represent the uncertainty from the perspective

of an analyst who received the data as single point data. Data quality could be

better refined if the Data Quality Indicators were used, however it can be more time

consuming and may be better if they were used exclusively for the Set of Interest.

5.4 Judged uncertainty

The use of judged uncertainty in place of the Data Quality Indicators in the Cam-

bridge Bondir case study reduces the number of values the analyst would need to

judge from five indicator scores to one coefficient of variance, and removes the calcu-

lation steps needed to convert the indicator scores to arithmetric means and standard

deviations. Even though computation work was simple, the reduction in the analyst

judgement saved substantial labor time.

5.5 Use of averaged proxies

One of Structured Underspecification's advantages over the common concept of av-

eraged proxies [25] was the way the variance of the averaged proxies was calculated.
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Instead of taking the variance of all the proxies assuming that they belong to the

same population, Structured Underspecification assumed that each proxy had its

own distribution, capturing a more realistic and broader variance.

The later half of the Cambridge Bondir case study departed from the use of

the hierarchy structure, but retained the use of averaged proxies. The streamlined

approach was verified with multiple test sets, showing that it worked even when some

of the test set emission factors may be outside of the range of the existing emission

factors (excluding the extremely outlying emission factors).

5.5.1 Analytical solutions

This is the first work to introduce the Law of Total Variance for calculating the

variance of averaged proxies considering that the proxies have separate distributions.

The means and variances from the analytical solutions matched those of the Monte

Carlo simulations. While the analytical solutions can cut down the computing time

and the amount of data generated, it could not project the final distribution shape

of the total carbon footprint. On the other hand the distribution obtained from the

simulations was a shape that was adopted from the field of risk assessment, instead of

the true distribution of the data. Either approach can be used based on the analyst's

need.

5.6 Step-wise carbon footprint calculation

While the PAS2050 recommended a direct cut-off based on a screening calculation,

the GHG protocol and the Hybrid Framework recommended a more flexible option

where the data collection priority is assigned to the APs that have high impact on

both the contribution and the uncertainty. Applying the two approaches in two

separate case studies showed that the step-wise approach revealed more information

about the marginal improvement of the carbon footprint estimate with incremental

refinement of the data quality. This work firmly supported William's proposition that

the integration of uncertainty analysis into carbon footprint estimate can allow the
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analyst to choose the appropriate point to end the carbon footprint analysis.

The results encouraged the protocols and standards to emphasize uncertainty

analysis. Instead of giving priority to APs in the order of their contribution to the

carbon footprint, giving priority to APs in the order of their contribution to the

uncertainty increased the accuracy and the precision of the estimate simultaneously.

Using uncertainty to order would avoid investigating an AP that contributed greatly

to the total carbon footprint, but had little uncertainty. This work also approaches

the screening calculations with process-based calculations, and we could have started

with the top down approach using EIO-LCA to find out the hotspots. The process-

based approach most likely underestimated the carbon footprint.

5.7 Cut-off boundaries

In the Galapagos Islands Ferry Tour case study, we found that weight was indeed

not reflective of the environmental impact of APs. In the Cambridge Bondir case

study, we compared the performance of using a fixed 1% cut-off or the adaptive set

of interest size, #, and found that the 1% cut-off required more items to be further

studied than if # was used. In general, both methods have their advantages. While

Os allow adaptive and justifiable cut-off boundaries, 1% cut-off is a simpler concept

to comprehend.

5.8 Application of test sets

The application of the test sets was the most novel contribution in this work. First,

it proved that the step-wise approach would converge to the hypothetically true total

carbon footprint even when only the SOI had the hypothetically true and new emis-

sion factors while the less significant APs were only represented by existing emission

factor proxies. Secondly, using randomized test sets better gauged the right cut-off

size because it accounted for the case when the real emission factors were not within

the range of the existing emission factors.
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In conclusion, by merging the popular concepts and recommendations that were

suggested by different groups of researchers, we created a methodology to estimate

food carbon footprint from the perspective of businesses in the food service sector.

The aim of the work was to show that carbon footprint calculation can be fast,

cheap and reliable at the same time. Although using published emission factors

required substantial data collection from published documents, it saved the need

to carry out real measurements in the field. After the database was compiled, the

screening calculation was fast. Approximating uncertainty using the Fast Carbon

Footprint rationale was practical and cut down the time needed to judge data quality.

Lastly, to carry out the total carbon footprint calculation iteratively, or step-wise, to

identify high impact items was verified to effectively cut down the data collection effort

required while still obtaining relatively accurate and precise estimates. The step-wise

approach clearly depicted the improvement with every revision to the emission factors,

allowing the analyst to stop their investigation when the carbon footprint estimate

converged to a desired accuracy and precision. In the future, the equations and

database can be built into a user-friendly program such that anyone can carry out

a calculation since no expert judgment is needed. Large corporations that want to

obtain highly accurate carbon footprints can invest to obtain better carbon footprint

data for only the high impact items. Further improvements to this approach can

make carbon footprint labeling less daunting in the future.
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Appendix A

Equations

A.1 Derivation of the Law of Total Variance

The difference between the condition expectation of the qualified emission factor EF

and the emission factor EF is defined as

EF -= EF - EF (A.1)

If we are given Q, then E[EFQ] = 0, and E[EF] = 0. EF and EF is uncorrelated.

1 Rearranging Equation A.1, the variance of EF is

var(EFi) = var(EFi) + var(EFi) (A.2)

To find var(EFi?) we introduce var(EF4lQ) where

var(EFQ) = E[(X - E[EFilQ])2 |Q] = E[EF |Q] (A.3)

and

var(EFi) = E [EF] - E[EFi]2 = E[EF = E[var(EFj|Q)] (A.4)

using equations ??, A.2, A.4, we get

1Proof: cov(EFi, EF) = E[EFjEFj] - E[EFi]E[EFi] = 0 because E[EFj] = 0 and E[EFEF]

- EFE[EFj] =0
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A.2 The Variance of the Product of Multiple Ran-

dom Variables

The following definition can be used to derive the variance of the product of multiple

random variables. Equation A.6 closely resemble the standard definition of variance

(var(X) = E[X 2] - E[X]2)]

var(fl Xi) E[H X2 - fJ (E[Xi]
i=1 i=1 i=1

- E Xj)] - (E(X]
i=1 i=1

(var (Xi) + (E [Xi] -j (E [Xi] (A.6)
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A.3 Compound Uncertainty

This part of the work is mainly to explained the work by Dr. Meinrenken in his paper

Fast Carbon Footprinting for Large Product Portfolios using his explanations in the

supporting information [?]. For simplification, we will represent both EF and Dij as

D i,k where in this context k is the index of both the emission factors and drivers of

the ith component. By combining equations 2.2 and 2.1 and expanding the function

about the sample mean CFTotal by Taylor series 2, we obtain

CFTotal CFTotal + ( ACFi,k
i,k

CFrotal + ((D - D) jOCFTotal (A.7)CFotI±(k D) ODk

k

and from this we derive that the variance in the total carbon footprint as a results of

the variation in the driver Di,k, expressed as ACFi,k, is equivalent to

-) CFrotal 2
var(ACFi,k) = (Di,k - Di,k2 (ODk

= (CFi,k - CFTotal ) 2  (A.8)

The coefficient of variance of the total carbon footprint CFTotal is simply

CVCFTtal Eiz Ek (CF ,k - CFTotal)2  (A.9)
CFTotal

Note that CFTotal is the sample mean, which is equivalent to the expected total carbon

footprint E[CFotal] used in the previous section. It was expressed differently only

because the sources have approached the question from different perspectives.

2Terms that are second order and above in the Taylor expansion are zero in this case. The Taylor

series gives an exact answer.
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Appendix B

Primary data
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Table B.1: The order list that was provided by the Galapagos Islands Ferry Tour.

Item 3roduct Substitutd by Order Weight (kg) included (Yes/No)_
1 Sugar 14.00 Yes
2 atermelon 11.49 Yes
3 Seefheart 1.36 Yes
4 eef tongue 1.36 Yes
5 3eef liver 0.91 Yes
6 eanned tuna 0.74 Yes
7 Bliced ham Pork ham 0.23 Yes
8 rhole cold cut 0.23 Yes
9 =_our 6.00 Yes
10 heat bread 2.50 Yes
11 _hole ham 0.23 Yes
12 Bacon 0.20 Yes
13 _otato 32.66 Yes
14 ish 22.68 Yes
15 _ice 22.68 Yes
16 _ee 13.61 Yes
17 rapefruit Orange 11.70 Yes
18 ineapple 9.79 Yes
19 _range 9.72 Yes
20 _arrot 9.07 Yes
21 ToMato 9.07 Yes
22 _apaya _anana 8.24 Yes
23 _urt ice cream 8.00 Yes
24 _il_7.36 Yes
25 reen banana 7.30 Yes
26 ed onion 5.44 Yes
27 abacos 3anana 5.40 Yes
28 3read 5.00 Yes
29 _ucchini 5.00 Yes
30 Velons 4.65 Yes
31 _hicken 4.54 Yes
32 laintain Banana 4.54 Yes
33 _hrimp 4.54 Yes
34 Yucca ?otato 4.54 Yes
35 Eqqs 4.32 Yes
36 _utter 4.00 Yes
37 _auliflower 3.93 Yes
38 Vlik 3.84 Yes
39 Tomato fruit Tomato 3.65 Yes
40 rmip Carrot 3.63 Yes
41 ell pepper 3.38 Yes
42 3each Apple 3.28 Yes
43 ,.ettuce 3.03 Yes
44 vocado Apple 2.88 Yes

45 andarin orange 2.85 Yes
46 emon 2.81 Yes
47 ed apple 2.72 Yes
48 ear pple 2.42 Yes
49 paghetti 2.40 Yes
50 earl onions 2.27 Yes
51 adish arrot 2.27 Yes
52 tring bean ea, fresh pod 2.27 Yes
53 ickle _ucumber 2.06 Yes
54 White cabbage 2.02 Yes
55 Parmesan cheese 2.00 Yes
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Item roduct Substituted by Order Weight (kg) Included (Yes/No)
56 aranjillas 3range 1.96 Yes
57 3rapes Strawberry 1.81 Yes
58 Vlince meat I _ork 1.81 Yes

59 trawberry 1.81 Yes
60 vaporated milk 1.64 Yes
61 ed cabbage 1.60 Yes

62 ondensed milk 1.59 Yes
63 rocolli 1.56 Yes
64 ushroom 1.52 Yes
65 ream 1.50 Yes
66 eans 1.36 Yes
67 orn 1.36 Yes
68 ava beans 1.36 Yes
69 rash green pea 1.36 Yes
70 Vielloco egumme 1.36 Yes
71 ookies read 1.30 Yes
72 read crumbs read 1.00 Yes
73 ozarella cheese 1.00 Yes
74 -entil red pea 0.90 Yes
75 pracker Bread 0.90 Yes
76 9gplant 0.90 Yes
77 reen asparagus 0.86 Yes
78 hite asparagus 0.86 Yes
79 eet com 0.68 Yes
80 hite onion 0.61 Yes
81 live oil 0.46 Yes
82 asil ettuce 0.45 Yes
83 ork 0.45 Yes
84 ork leg 0.45 Yes
85 pinach Lettuce 0.45 Yes

86 _hantilly -ream 0.40 Yes
87 cream 0.40 Yes

88 ellow cheese 0.40 Yes

89 ji (chilli type) hili 0.34 Yes
90 Ilantro, celery, parsley 0.31 Yes
91 eppermint .ettuce 0.30 Yes
92 3reen cherries trawberries 0.24 Yes
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Table B.2: Food production attributable processes to the Red Broiler Chicken dish.
The food items with estericks (*) at the Specific Food level did not have an appropriate
emission factor in the database and were substituted with the food items listed at the
Food level

S~~Food production_____
Weight of food per dish Uncertainty

Food Specific food Technoloay kg produce/dish) (tx%)
Organic,

Chicken Chicken Open pasture 0.080 25
Salt Kosher salt* Conventional 0.002 100
Dried Pea Black Pepper* Oraanic 0.000 100
Duck Fat Conventional 0.030 50
Dried herbs _rganic 0.002 100

Corn cake Organic,
Batter Egs Open pasture 0.011 25

32 Milk Buttermilk* onventional 0.018 50

Servings Flour Cornflour Sustainable 0.017 25
Flour All purpose flour Conventional 0.007 25
Sa ___ _ onventional 0.002 25
uar Baking powder onventional 0.000 100

Sugr Baking soda* Conventional 0.000 100
Sugar Kosher salt* Conventional 0.000 100

Butter Conventional 0.004 25
Marfax Dried Pea Marfax Beans* onventional 0.013 50

40 nion rganic 0.006 25
Servings C rganic 0.003 100

arrot Organic 0.003 25
Sugar Mollasses* Conventional 0.001 100
hili Organic 0.001 25

Dried Pea Mustard Seed* Conventional 0.000 100
Organic,

Pork Bacon Open pasture 0.013 25
Sg Kosher salt* Conventional 0.000 100
Dried Pea Black Pepper* )raanic 0.000 100
Rape seed oil Olive oil* Conventional 0.013 50

Chicken stock ater ap water 0.500 25
8kg nion )rganic 0.006 25

arrot __ raanic 0.005 25
Celerv Organic 0.003 100

Ice 0.500 25
Collards Cabbage Collard greens Organic 0.000 50

90 2nion O__ rganic 0.006 25
Servings Onion Garlic* 3raanic 0.001 100

Chili _rganic 0.000 25
Salt Kosher salt onventional 0.000 100
Dried Pea Black Pepper* rganic 0.000 100
Vine Distilled vinegar* onventional 0.006 50

Rape seed oil Olive oil* Conventional 0.006 50
Vater for

ashing lHot water I___ I___1 1.000 25
_____ _ Water I_____ I__F 1.099 25
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Table B.3: The type and the weight of the packaging material used to carry the
ingredients in a dish of Pasture Raised Red Broiler Chicken at Bondir, Cambridge.

Packaging material
Material

Specific Packaging Specific Driver (kg Uncertainty Times
food . Class Application Material Material material/dish) (±x%) reused

Chicken Chicken Plastic FlP T 7.05E-05 25 0-u
Kosher salt* Paperbase Box Board 5.88E-05 25 0
Black Plastic Bottle PET 2.67E-06 25 2
Pepper*

Duck Fat Plastic Bucket Molded PS 1.92E-05 25 12
container

Dried herbs Plastic Film PET 8.00E-06 25 0
Corn cake Eggs Paperbase Box Board 2.64E-05 25

Batter
32 Buttermilk* Paperbase Box Board 3.05E-05 25 0

Servings Cornflour Paperbase Bag Paper Kraft paper 1.14E-05 25 0
All purpose Paperbase Bag Paper Kraft paper 5.08E-06 25 0
flour

Sugar Paperbase Bag Paper Kraft paper 1.68E-06 25 0
Baking Metal Can Aluminium 3.91 E-07 25 0
powder*
Baking soda* Paperbase Box Board 1.95E-07 25 0

Kosher salt* Paperbase Box Board 7.18E-08 25 0
Paperbase Packaging Paper - Kraft Wax paper * 1.22E-06 100 0

Butter paper
Marfax Marfax Textile Bag Plastic film* Burlap* 6.88E-06 100

Beans*
40 Onion Plastic Film Mesh bag 1.72E-06 25 0

Servings Celery Plastic Film PT1 .38E-07 25 0
Carrot Plastic Film 6.88E-08 25 0
Mollasses* Metal Can Aluminium 2.50E-06 25 0
Chili Plastic Film PET 2.75E-08 25 0
Mustard Plastic Bottle PET 1.25E-07 25 0
Seed*
Bacon Plastic Film PET 2.75E-07 25 0
Kosher salt* Paperbase Box Board 1.15E-07 25 0
Black Plastic Bottle PET 4.17E-09 25 2
Pepper*
Olive oil* Metal Can Aluminium 2.08E-05 25 0

Chicken lap water 26
stock
8kg Onion Plastic Film Mesh bag 1.72E-06 25 0

Carrot Plastic Film PET 1.38E-07 25 0
Celery Plastic Film PET 6.88E-08 25 0
Ice 25

Collards Collard Plastic Film PET 8.16E-10 25 0
greens

90 Onion Plastic Film Mesh bag 6.80E-07 25 0
Servings Garlic* Plastic Film PET 1.36E-08 250

Chili Plastic Film 5.44E-09 25 0
Kosher salt Paperbase Box Board 1.1 3E-07 25 0
Black Plastic Bottle PET 4.12E-09 25 2
Pepper*
Distilled Plastic Bottle PET 1.63E-08 25 0
vinegar*
Olive oil* Metal Can Aluminium 4.12E-06 25 0
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Table B.4: The type of vehicle used and the distance travelled to deliver the ingredients added to each dish of

Pasture Raised Red Broiler Chicken at Bondir, Cambridge.

Distance
Transportation - Vehicle Origin Destination Distance (km)

ehicle Exact Exact

Mode of Vehicle specificatio Other Uncertainty Exact place or place or place or Uncertaint

Supplier ransport type n conditions (±x%) State Town address State Town address State Town address y (±x%)
our star Rd ik7.5t DeselMiniVan 25 USA,MA North Field 496 Pine Meadow USA,MA Cambridge Bondir 6 13 137

arms Toyato Sienna Rd North Field MA
01360

Evas Truck 7.5 to Refrigerated Diesel 25 USA,MA Dartmouth 105 Jordan Road USAMA Cambridge Bondir 64 -10 112 25

3arden 14t Dartmouth, MA

Pete and Road Passenger Euro6 Diesel 25 USA,MA Concord, MA 159 Wheeler Road USA,MA Cambridge Bondir 644 23.5 28.3 25

Jan Car Concord, MA 01742

JN Kidd- All Road Tu 25 USA,MA Weymouth JN Kidd USA,MA Cambridge Bondir 644 3T4 31.1 50

JN Kidd- Road Truck 25 USAMI Saint Clair USA,NJ Paterson 1349 97 955 50

Kosher salt
d o 5 USN Paterson USA, Weymouth JN Kidd 644 392 385 50

Kosher salt
and distilled
white
vinegar
JN Kidd- Road Truck 25 USA,NJ Engelwood .USAMA Paterson 6T4 350 344 50

Distilled
white
vinegar
JN Kidd- Road Ship 25 India Kandir Port USA,NJ Elizabeth Port 14907 14907 14907 50

Black
pepper

N Kidd- Road Truck 25 USA,NJ Elizabeth Port USANY Brooklyn 644 34 33 25

Black
pepper
JR Kidd- Road Truck 25 USANY Brooklyn USAMA Weymouth JN Kidd 644 367 368 50
Black
pepper _____ ______________________ ________

JKidd- Road ruc USA,NY Brooklyn U Woburn 644 30 35 50

Molasses
JN Kidd- Road Truck 25 USAMA Woburn USA.MA Weymouth JN Kidd S44* 45.1 43 50

Molasses
JN Kidd- Road Truck USA USAMA Weymouth JN Kidd 300 200 100
Mustard
seed
JKidd- Road Truck USAUSAMA Weymouth JN Kidd 6 20

Suger I I
JNKid Road Truck 25 USA USA,MA Weymouth JN Kidd 644 200 100

Baking
Soda
Duck Fat Road ruck USA USAMA Weymouth JN Kidd 644 392 200 100

SparrowArc Road Truck 7.5 to Refrigerated Diesel 25 USAME Unity 3 Fisher Rd Unity USAMA Cambridge Bondir 644 34 33 25

farm 14t ME 04988
Extravirgin- Road Truck 28 to 25 GreeceMessenia Kalamata GreeceAttica Athens Pireus port 204 224 247 50

foods 40t
Ship Container 25 GreeceAttica Athens Pireus port USAMA Boston Boston port 7623 7700 7614 5

ship
Road Truck 28 to 25 USAMA Boston Boston port USAMA Watertown 71 Arlington 644 13.4 16.5 25

4t Street
Watertown,
MA 02472

Road Pedal 25 USAMA Watertown 71 Arlington Street USA,MA Cambridge Bondir 1 1 1
Watertown, MA
02472 1 1 1 1 1 _ j



Table B.5: The processes to prepare the Pasture Raised Red Broiler Chicken at
Bondir, Cambridge.

Process and Equipment
Equipment operating time

Equipment Energy per unit produce (daylkg Uncertainty
Food type source Application Equipment dish) (tx%)
Chicken Cooler Electricity Restaurant * divided by 200kg of other 0.0050 25

foodstuff

Cooktop Gas Restaurant Thermatek TMD 36.6.1 0.0021 25

Oven Gas Restaurant Thermatek TMD 36.6.1 0.0104 25

Corncake Cooktop Gas Restaurant Thermatek TMD 36.6.1 0.0069 25

Chicken stock Cooktop Gas Restaurant Thermatek TMD 36.6.1 0.0042 25

Marfax Cooktop Gas Restaurant Thermatek TMD 36.6.1 0.0063 25

Collard greens Cooktop Gas Restaurant Thermatek TMD 36.6.1 0.0014 25

Dishwasher Electricity Restaurant Undercounter Dishwasher 0.0001 25
Champion 180degF

Table B.6: The weight of food waste that was disposed for per dish of Pasture Raised
Red Broiler Chicken at Bondir, Cambridge.

Waste
Weight of food per

Disposal Waste dish (kg produce/ Uncertainty
Waste type Method Country Management dish) (±x%)

Waste Compost Landtill USA 0.050 25
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Massachusetts Institute of Technology MIT Center for Transportation &
Logistics
Building E40-295

77 Massachusetts Avenue
Cambridge, Massachusetts
02139-4307

Phone 617-229-9068
Fax 617-253-4560
http://ctl.mit.edu

June 26, 2012

Jason Bond
Chef and Owner
Bondir
279A Broadway
Cambridge, MA 02139

Dear Jason,

I am a MIT PhD student at the School of Engineering. I am part of a research group under the supervision of

Dr. Edgar Blanco (http://edgarblanco.mit.edu/) looking at environmental sustainability of products and their
underlying supply chains.

One of the main barriers to engage a much broader audience is the complexity and uncertainty of the measurement
and, ultimately, "labeling" of a product environmental attributes. Our current research focuses in developing and
refine quick methods to calculate the carbon footprint of food products that could be widely adopted without

sacrificing the quality of the calculation.

We would like to invite your establishment to participate in a summer study aiming to perform carbon footprint

calculations of meals served at a Cambridge restaurant. The aim of our study is to apply and demonstrate the use of

quick methods with real restaurant business data.

We expect our results and methods to be published in scientific journals. We will treat all data as confidential and

results will not be associated with a recipe or restaurant. It also important to emphasize that we are not aiming to
compare the relative environmental benefits of one establishment vs. another one based on our calculations.

Please let us know if you are interested in accepting our invitation to participate in this study by sending an e-mail to

Yin Jin Lee (yinjin(&mit.edu). I am attaching a brief description of the type of data required and a data collection

template in the form of an excel spreadsheet document. As a token of appreciation, we will share the early results of

our analysis with you as well as provide you with a private report summarizing the results of our calculation at no

charge.

Thank you for your attention, and we look forward to collaborate with you.

Regards,

Yin Jin Lee

PhD Student, MIT Center for Transportation & Logistics

yinjin@mit.edu

cc- Dr. Edgar Blanco, Research Director, MIT CTL(eblanco mit.edu)
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Appendix - Data Collection Summary

The following is a preliminary list of the data we would like to collect for the meal carbon footprint study:

e Restaurant menu

- Ingredient list of a few entrdes with recommended quantities of preparation

- Purchase quantities (in kilograms, cases or bottles) of the selected ingredients in a typical week

e Description of the origin of ingredients (e.g. supplier, country and state)

- Description of the ingredients (e.g. organic, local and free range)

* Ingredient packaging types

e Mode of delivery of the product from farm to the restaurant (e.g. trucks or van)

- Preparation details (e.g. equipment used and cooking time)

We are open to re-adjust our data needs based on what is easily available at your establishment so that existing

records are used whenever possible. A brief interview (less than 30 min) may be scheduled after all data has been

collected to validate our analysis of any information provided.

Note: All information not in the public domain will be treated as confidential. Results will only be used for academic

purposes and establishment names will not be associated with any published results.



Dish German Pork Knuckle

F-ree range,
Pork Knuckle 200 g USA organic

Organic,
Cherry tomato 50 g USA greenhouse

Flour 20 g USA Conventional

Process (before delivery to the restaurant, for processed food)

rrTomato Sun dried Drying under sun

Pork Knuckle 5 Plastic Film
Low vensny
Polyethylene 5 g No

Plastic Foam Polystyrene 20 g No
Corrugated

Paper base Box box 50 x 30 cm3 Yes 40
Corrugated

Cherry tomato 15.3 kg Paper base Box box 5D x 30 cm3 No

Flour 1 kg Plastic Film Unspecified 3 g Unspecified

Pork Knuckle Road
Certified

Lorry/trucki-trailer Smartwayv Diesel Yes
Address of

Farm

naaress or
distribution

center No
Address of
distribution Address of

Road Van < 3.5t Unspecified Diesel Yes center restaurant Yes
US EPA

Certified Orange
Smartway County,

Cherry tomato Road Lorry/truck+trailer Elite Diesel Yes California LA Airport
Air Medium haul Unspecified Petrol Yes LA Airport MASS Airport

Road Van < 3.5t Unspecified Diesel Yes Mass Airport Restaurant
Distribution

Farm, 23 Center, 937
Cottage Rd, Windy Rd,

Spring field, IL Reading, OH

Flour Road 23123 31234
Distribution
Center, 472
Albany St,

Distribution Cambridge MA
Center, OH 02139



MIT- Center for Transportation and Logistics
Carbon Footprint Study in Collaboration with Bondir

Life Cycle Data Collection Form
August 2012

Introduction
Data collection is an important step in a carbon footprint study. Accurate and precise activity data will
give reliable carbon footprint result. The purpose of this data collection form is to clearly define the type
of information needed for a complete study, demonstrate how to fill the data collection form and lastly,
provide a copy of the empty form. It will be easier to first look at the example and refer to the definitions
when the fieldname is ambiguous. While filling the form, certain information may be difficult to obtain;
if the information cannot be obtained, please write "Unknown". If the information is not applicable,
please write "/".

Definitions

Module Field Description
Agriculture - This Ingredient Food, and species if available. Please include
module is used to total tap water use, for both preparation and
identify the carbon cooking too.
footprint that is Technology The technology used to produce the food.
associated with the Possible options (are not limited to):
production of the food. Conventional, Greenhouse with and without

heating for vegetable, Organic, Free range for
livestock and Artisan for fishing.

Weight of food per dish The weight of the ingredients added to one dish.
This can be a rough estimate or it can be
obtained by dividing the amount of meat
purchased divided by the number of dishes sold.

Weight percent of A weight percent of parts that is inedible. E.g.
inedible parts 5g of bones in 50g of Sardine = 10%.

Packaging material - Packaging Material See Packaging Helplist for possible options.
This module is used to Class
identify the carbon Application See Packaging Helplist for possible options.
footprint that is Packaging Material See Packaging Helplist for possible options.
associated with the Weight of material per Weight of one packaging material, whether the
material that was used to unit packaging packaging is reused or not. A measured or
pack or prepare the food. estimated value is fine.

Weight of food per unit A measured or estimated value is fine.
packaging
Times reused # of times the packaging is reused before it is

disposed
Packaging waste Recycled or disposed as trash
disposal type
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MIT- Center for Transportation and Logistics
Carbon Footprint Study in Collaboration with Bondir

Life Cycle Data Collection Form v1.0

Module Fields Description
Process & Equipment - Ingredients List of all the food that was processed
This information is used Process Possible options (are not limited to): Freezing,
to calculate the carbon Cooling, Boiling, Dehydrating, Mixing and
footprint associated with Washing.
the equipment used to Equipment type Possible options (are not limited to): Walk-in
store and prepare the Freezer or Cooler, Horizontal Freezer or
ingredients and food. Cooler, Gas Stove, Electric Stove, Gas Oven,

Electric Oven, Blender, Mixer, Food Processor,
Dehydrator and Dishwasher.

Application Possible options (are not limited to): Restaurant,
Warehouse and Home.

Capacity In terms of dimensions or weight or volume
Brand, Model Number Brand and model number.
Energy consumption of In specs sheet, or at the back of the equipment.
equipment
Process time for each Estimated time the ingredient was processed.
product This entry can be descriptive. Example, a carrot

may be in the fridge for an average of 6 hours.
Another example, the dishwasher may run for
1.5 hours, regardless of how many dishes it
holds.

Total weight of product For continuous processes such as freezing, this
in each process refers to the estimated weight of products using

the equipment for 1 day. For batch processes
such as the mixer, this refers to the estimated
total weight of mixed food in one run. As for
the dishwasher, this refers to the average
number of items in each wash. The value need
not be precise.

Waste - This information Type of waste Food mainly. Do not need to break down the
is used to calculate the types of food if they go through the same type
carbon footprint of disposal. Do not need to include packaging
associated with the waste.
disposal of the food and Disposal Method Possible options (are not limited to): Landfill,
water waste. Incineration, Sink, Composting, Transferred to

third party.
Disposal center All possible information about the disposal

center. Such as the name of the waste
management company and the location of the
waste treatment plant.

Weight of waste per dish A rough estimation of the total food waste per
dish, excluding the weight of the inedible part
of the dish, will work.
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MIT- Center for Transportation and Logistics
Carbon Footprint Study in Collaboration with Bondir

Life Cycle Data Collection Form v1.0

Module Fields Description
Distance - This Ingredient Food, and species if available
information is used to Stop type The purpose of the stop. Possible options (are
estimate the distance not limited to): Farm, Producer, Distribution
covered to deliver the center, Warehouse, Port, Airport, Restaurant.
goods from the farm or Address or general The exact addresses of the farm, the distribution
producers to the location centers and the warehouse locations are
restaurant. preferred. If that is not possible, the preference

for detail decreases as follows: the town, the
state, and the country.

Transportation Vehicle - Vehicle type The trip starting from Stop #1 will be described
This information is used in Stop #1 column. Possible options (are not
to identify the carbon limited to): Trucks, Vans, Passenger car,
footprint that is Airplanes, Container ship, Ferry, Rail.
associated with the Fuel Diesel, petrol, hybrid or biodiesel
transportation vehicles. Make Manufacturer or brand of vehicle

Capacity Any measure of the carrying capacity of the
vehicle

Year The estimated manufactured year, or the age of
the car. E.g. 2 or 10 years old.

Refrigeration Yes or No. If yes, how?
Certification Euro standard engine or Smartway Carrier

Certification
Capacity Utilization An estimated percentage of the capacity of the

vehicle that was in used during the delivery.
E.g. One third full = 33%.

Other conditions Land transports traffic condition: Free flow,
Jammed or Saturated. Rail terrain: Flat, Hilly or
Mountainous.

Return trip Empty or partially filled
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MIT- Center for Transportation and Logistics
Carbon Footprint Study in Collaboration with Bondir

Life Cycle Data Collection Form v1.0

Packaging Helplist

Possible options for Materials

Packaging
material

Application class Patcaging Material
Bottle PET or PETE or Polyethylene terephthalate (Plastic #1
Cap PE or Polyethylene (Plastic #2 and #4)

Molded container Plastic PP or Polypropylene (Plastic #5)
Foam PS or polystyrene (Plastic #6)
Bag
Film
Jar White glass

Bottle Green glass
Brown glass
Glass

Liquid packing Board
Box Corrugated Board

Graphic paper Paper base Paper
Bag

Packaging paper

Can Metal Tin steel can
C Aluminum Can

How to identify the plastic: Plastic Coding system
e.g.

PETE

Number Abbreviation Material/ Plastic name

I PET or PETE Polyethylene terephthalate

2 HDPE High density polyethylene
3 PVC or V Polyvinyl Chloride
4 LDPE Low density polyethylene
5 PP Polypropylene
6 PS Polystyrene
7 Others or 0

Numbers other Unknown Unspecified
than 7 ______ ______________________
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MIT- Center for Transportation and Logistics
Carbon Footprint Study in Collaboration with Bondir

Life Cycle Data Collection Form v1.0

Example - LCD Form Part 1
Please use separate sets of forms for each dish. If the information cannot be obtained, please write "Unknown", and if the information
is not applicable, please write "/". Please use more forms if there is not enough space, and number the pages accordingly.

Dish name Pasture Raised Ked froller Chicken LCD Form - Part I

Number of dishes sold in a day 40

Ingredient Olive oil / Chicken / Potato /

Technology Conventional / Free range Organic / Organic /
Agriculture Weight of food per dish l Og 200/ 1 20g

Weight percent of inedible parts / / 5% / / /

Packing Material Number Material #1 Material #2 Material #1 Material #2 Material #1 Material #

Packaging Material Class Paper base Metal Plastic Paper base Paper base
Application Box Formed container Bag Box Box

Packaging Packaging Material Paper Tin Unknown Paper Paper
material Weight of material per unit packaging 20g 1150g Sg

Weight of food per unit packaging 6 tins 2L 2 lbs 4 x 2 lbs chicken 5 lbs

Times reused 0 0 0 around 3 unknown

Packaging waste disposal type Recycled Recycled Trash Recycled unknown
Process Number Process #1 Process #2 Process #3

Ingredients Chicken, Olive oil Chicken, Olive oil Potato
Process Sear Roast in Oven Roast in Oven
Equipment type Gas stove Oas Oven Gas Oven

Process & Application* Restaurant Restaurant
Equipment Capacity* NA 10 cubic ft

Brand, Model Number* Thermatek, TMD 36.6.1 Thermatek, TMD 36.6.1
Energy consumption of equipment* Unknown 10 kW, turned on from I 2noon to 1 Opm.
Process time for each product 2 min 30 min 20 min

Total weight of product in each process 200g Average 2 kg of food when it is on.

Waste Number Waste # I Waste # Waste #

Type of waste Food

Waste Disposal Method Compost
Disposal center WM waste management, Massachusetts

Weight of waste per dish 0 to 5g
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MIT- Center for Transportation and Logistics
Carbon Footprint Study in Collaboration with Bondir

Life Cycle Data Collection Form v1.0

Example - LCD Form Part 2
Dish name Pasture Raised Red Broiler Chicken LCD Form - Part 2

Number of dishes sold in a day 40

Ingredient Olive oil
Stop Number Stop #1 Stop #2 Stop #3

Distance Stop type Producer factory Origin Port Destination Port

Address or general location Greece Greece port 10w0Ramond N o 01vard,

Vehicle type Unknown Container ship Van
Fuel Diesel
Make Mercedes
Capacity t7

Transportation Year / years
Vehicle Refrigeration None

Certification Smartway Carrier
Capacity Utilization 1007
Other conditions Saturated road
Retum trip Empty

Ingredient Chicken

Stop Number Stop #4 Stop #1 Stop #2
Distance Stop type Destination - restaurant Farm Destination - restaurant

Address or general location B1ondir Distribution Center, 937 Windy Rd, Sondir
Reading, ON 312 34

Vehicle type Passenger Car
Fuel Petroi
Make Renault
Capacity /

Transportation Year 3 years old
Vehicle Refrigeration Yes, back seat of the car.

Certification

Capacity Utilization

Other conditions Freeflow
Return trip . /
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Life Cycle Data Collection Form v1.OMIT- Center for Transportation and Logistics
Carbon Footprint Study in Collaboration with Bondir

Dish name LCD Form - Part I

Number of dishes sold in a day

Ingredient

Technology
Agriculture

Weight of food per dish

Weight percent of inedible parts

Packing Material Number Material # Material # Material # Material # Material # Material #

Packaging Material Class

Application

Packaging Packaging Material
material Weight of material per unit packaging

Weight of food per unit packaging

Times reused

Packaging waste disposal type

Process Number Process # Process # Process #

Ingredients

Process

Equipment type

Process & Application*
Equipment Capacity*

Brand. Model Number*

Energy consumption of equipment*

Process time for each product

Total weight of product in each process

Waste Number Waste # Waste # Waste #_

Type of waste

Waste Disposal Method

Disposal center

Weight of waste per dish

Page __ out of_



MIT- Center for Transportation and Logistics
Carbon Footprint Study in Collaboration with Bondir

Life Cycle Data Collection Form v1.0

Dish name LCD Form - Part 2

Number of dishes sold in a day

Ingredient

Stop Number Stop # Stop # Stop #
Distance Stop type

Address or general location

Vehicle type

Fuel

Make

Capacity

Transportation Year
Vehicle Refrigeration

Certification

Capacity Utilization

Other conditions

Return trip

Ingredient

Stop Number Stop # Stop # Stop #
Distance Stop type

Address or general location

Vehicle type

Fuel

Make

Capacity

Transportation Year
Vehicle Refrigeration

Certification

Capacity Utilization

Other conditions

Return trip

Page __ out of_



Appendix D

Emission Factors

Table D.1: The source and specifications of the agriculture emission factors. Emission
factors with source C" are calculated using details from on the specs sheets of the
equipment.

Source Food Food Specifica- Country of Technology kg C02 eq GWP

tions origin 100/ kg @ Farm-

gate

[48] Barley Spain Conventional 0.933

[56] Barley Spring Barley Denmark Conventional 0.637

[56] Barley Winter Barley Denmark Conventional 0.599

[48] Barley France Conventional 0.561

[48] Barley Switzerland Organic 0.545

[48] Barley Switzerland Extensive 0.525

[48] Barley Germany Conventional 0.49

[48] Barley Switzerland Integrated Pro- 0.422

duction

[56] Barley Spring Barley Denmark Organic 0.39

[56] Barley Winter Barley Denmark Organic 0.315

[48] Maize Starch Germany 1.096

[48] Maize Switzerland Integrated Pro- 0.606

duction

[48] Maize USA 0.435

[48] Maize Switzerland Organic 0.433

[56] Oats Flakes Denmark Conventional 0.651
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[56] Oats Denmark Conventional 0.553

[56] Oats Denmark Organic 0.379

[57] Rice Thailand Paddy 2.967

[13] Rice Basmati Rice India Paddy 1.515

[13] Rice India Paddy 1.221

[48] Rice USA Conventional 0.467

[58] Rice Brown rice USA, Cali- Averaged 2.43

fornia

[58] Rice White rice USA, Cali- Averaged 2.64

fornia

[56] Rye Flour Denmark Conventional 0.855

[56] Rye Denmark Conventional 0.697

[56] Rye Denmark Organic 0.61

[48] Rye Switzerland Organic 0.532

[48] Rye Europe Conventional 0.518

[48] Rye Switzerland Extensive 0.424

[48] Rye Switzerland Integrated Pro- 0.342

duction

[48] Sorghum Sweet Sorghum China Conventional 0.29

[56] Wheat Flour Denmark Conventional 0.986

[48] Wheat Spain 0.763

[56] Wheat Denmark Conventional 0.688

[48] Wheat Switzerland Extensive 0.673

[48] Wheat France 0.625

[48] Wheat USA 0.603

[48] Wheat Switzerland Organic 0.594

[48] Wheat Switzerland Integrated Pro- 0.594

duction

[48] Wheat Germany 0.553

[59] Wheat Winter wheat UK 0.333

[56] Wheat Denmark Organic 0.274

[56] Lentil USA, Idaho 0.54

[13] Apple India 0.331

[60] Apple Seasonal Germany 0.112
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[59] Apple Desert apple UK 0.111

[58] Apple Fuji USA, Cali- Conventional 0.18

fornia

[58] Apple Machintosh, USA, Cali- Organic 0.26

Golden deli- fornia

cious

[58] Apple Machintosh, USA, Cali- Organic - Tran- 0.25

Golden deli- fornia sitional

cious

[58] Apple Granny Smith USA, Cali- Conventional 0.11

fornia

[58] Apple Granny Smith, USA, Cali- Organic - Tran- 0.02

Macintosh fornia sitional

[58] Apple Granny Smith, USA, Cali- Organic 0.19

Macintosh fornia

[13] Banana India 0.072

[61] Lemon Italy 0.166

[62] Melon Italy 1.375

[63] Melon Watermelon Australia 0.38

[63] Melon Rock and Can- Australia 0.25

taloupe

[61] Orange Italy 0.24

[64] Pineapple Ghana Organic 0.14

[64] Pineapple Ghana Organic 0.12

[59] Strawberry UK Greenhouse 1.272

with heating

[65] Strawberry UK Greenhouse 0.85

with heating

[65] Strawberry Spain 0.35

[66] Strawberry Spain 0.349

[58] Strawberry USA, Cali- Conventional 0.34

fornia

[58] Strawberry USA, Cali- Organic 0.23

fornia
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[58] Strawberry USA, Cali- Organic - Tran- 0.21

fornia sitional

[58] Blueberries High Bush USA, Cali- Conventional 0.83

fornia

[58] Blueberries High Bush USA, Cali- Organic 0.73

fornia

[58] Blueberries High Bush USA, Cali- Organic - Tran- 0.72

fornia sitional

[58] Grapes Wine grapes, USA, Cali- Conventional 0.27

Chardonnay fornia

[58] Grapes Wine grapes, USA, Cali- Organic 0.25

Chardonnay fornia

[58] Grapes Wine grapes, USA, Cali- Organic - Tran- 0.05

Chardonnay fornia sitional

[58] Grapes Wine grapes, USA, Cali- Conventional 0.21

Cabernet Sauvi- fornia

gnon

[58] Grapes Wine grapes, USA, Cali- Organic 0.17

Cabernet Sauvi- fornia

gnon

[58] Grapes Wine grapes, USA, Cali- Organic - Tran- 0.17

Cabernet Sauvi- fornia sitional

gnon

[58] Grapes Raisin Grapes, USA, Cali- Conventional 0.67

Thompson fornia

Seedless

[58] Grapes Raisin Grapes, USA, Cali- Organic 0.7

Thompson fornia

Seedless

[58] Grapes Raisin Grapes, USA, Cali- Organic - Tran- 0.67

Thompson fornia sitional

Seedless

[67] Spaghetti Italy 1.508

[48] Rape seeds USA Conventional 1.869

[48] Rape seeds Germany Conventional 1.327
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[48] Rape seeds France Conventional 1.279

[48] Rape seeds Switzerland Extensive 1.083

[48] Rape seeds Switzerland Integrated Pro- 1.046

duction

[48] Rape seeds Germany Conventional 0.898

[48] Rape seeds Switzerland Organic 0.684

[48] Palm kernel Malaysia Conventional 7.59

oil

[48] Palm oil Malaysia Conventional 3.21

[48] Rape oil Europe Conventional 5.02

[48] Rape oil Switzerland Conventional 4.55

[48] Soyabean oil Brazil Conventional 4.08

[48] Soyabean oil Europe Conventional 2.05

[48] Soyabean oil USA Conventional 0.954

[48] Coconut oil Philippines Conventional 0.475

[59] Sugarbeet UK 6.978

[68] Sugarcane Zambia 0.64

[68] Sugarcane Mauritius 0.26

[68] Sugarcane Zambia 0.21

[68] Sugarcane Zambia 0.092

[48] Sugarcane Brazil 0.021

[48] Dried Pea Spain Conventional 1.274

[48] Dried Pea Switzerland Integrated Pro- 1.021

duction

[48] Dried Pea Switzerland Organic 0.981

[48] Dried Pea France Conventional 0.698

[48] Dried Pea Germany Conventional 0.659

[56] Dried Pea Denmark Conventional 0.486

[48] Fava Bean Switzerland Integrated Pro- 1.052

duction

[48] Fava Bean Switzerland Organic 1.038

[69] Beans Scotland 0.05

[58] Almond USA, Cali- Conventional 2.47

fornia
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[58] Almond USA, Cali- Organic 3.57

fornia

[58] Almond USA, Cali- Organic - Tran- 3.07

fornia sitional

[58] Walnut Chandler USA, Cali- Conventional 0.49

fornia

[58] Walnut Terminal bear- USA, Cali- Organic 2.89

ing fornia

[58] Walnut Terminal bear- USA, Cali- Organic - Tran- 1.92

ing fornia sitional

[63] Asparagus Australia 2.54

[63] Amaranth China 0.105

[63] Beetroot Australia 0.24

[63] Broccoli Australia 1.73

[70] Broccoli Spain 0.2

[70] Broccoli Spain 0.8

[70] Broccoli UK 0.3

[70] Broccoli UK 0.35

[58] Broccoli USA, Cali- Conventional 0.36

fornia

[58] Broccoli USA, Cali- Organic 0.43

fornia

[58] Broccoli USA, Cali- Organic - Tran- 0.31

fornia sitional

[63] Cabbages Australia 0.23

[71] Cabbages Chinese Cab- China Conventional 0.135

bage

[63] Capsicums Australia 0.59

[56] Carrots Denmark Organic, with 0.209

straw

[63] Carrots Australia 0.2

[56] Carrots Denmark Organic, with 0.165

straw
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[56] Carrots Denmark Organic, with- 0.111

out straw

[56] Carrots Denmark Conventional, 0.101

with straw

[56] Carrots Denmark Conventional, 0.058

without straw

[59] Carrots UK 0.045

[63] Cauliflowers Australia 0.38

[59] Cauliflowers UK 0.279

[13] Cauliflowers India 0.028

[63] Celery Australia 0.18

[62] Chillies Italy 1.05

[63] Chillies Australia 0.66

[56] Cucumbers Denmark Greenhouse 4.348

with heating

[63] Cucumbers Australia 0.13

[27] Cucumbers Finland 3.745

[71] Cucumbers China Conventional 0.043

[13] Eggplant India 0.031

[72] Lettuce Britain Greenhouse 2.549

with heating

[72] Lettuce Britain Greenhouse 2.549

with heating

[59] Lettuce UK Greenhouse 1.783

with heating

[60] Lettuce Germany Greenhouse 1.45

with heating

[63] Lettuce Australia 0.32

[72] Lettuce Britain Outdoor 0.274

[72] Lettuce Britain Outdoor 0.27

[72] Lettuce Spain Outdoor 0.259

[72] Lettuce Spain Outdoor 0.255

[60] Lettuce Germany Outdoor 0.25

[72] Lettuce Britain Greenhouse 0.184
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[72] Lettuce Britain Greenhouse 0.176

[58] Lettuce Iceberg USA, Cali- Conventional 0.19

fornia

[58] Lettuce Leaf USA, Cali- Organic 0.27

fornia

[58] Lettuce Leaf USA, Cali- Organic - Tran- 0.15

fornia sitional

[63] Mushroom Australia 0.06

[63] Onion Australia 0.21

[56] Onion Denmark Dried 0.207

[56] Onion Denmark Conventional 0.136

[59] Onion UK 0.072

[63] Pea Fresh pod Australia 3.94

[63] Pea Shelled Australia 2.46

[70] Long green Fresh pod UK 0.28

beans

[70] Long green Fresh pod UK 0.207

beans

[70] Long green Fresh pod Uganda 0.138

beans

[48] Potato Starch Germany Conventional 0.86

[63] Potato Australia 0.63

[63] Potato Australia 0.27

[73] Potato Ireland Organic 0.202

[59] Potato UK 0.172

[56] Potato Denmark Conventional 0.153

[48] Potato Switzerland Organic 0.141

[48] Potato Switzerland Integrated Pro- 0.133

duction

[73] Potato Ireland Conventional 0.122

[48] Potato USA Conventional 0.115

[69] Potato Ware potatoes Scotland Organic 0.039

[13] Potato India 0.025

[27] Potato Starch Finland 0.349
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[27] Potato Russet Burbank USA, South- 0.32

western

Idaho

[27] Potato Russet Burbank USA, East- 0.185

ern Idaho

[63] Sweet corn USA 1.38

[65] Tomato Baby Plum UK Greenhouse 5.877

with heating

[65] Tomato Classic Vine UK Greenhouse 5.077

with heating

[56] Tomato Denmark Organic 4.947

[56] Tomato Denmark Standard 3.437

[56] Tomato Denmark Recirculated 3.437

[65] Tomato Baby Plum Spain Greenhouse 3.077

[65] Tomato Classic loose UK Greenhouse 2.177

with heating

[74] Tomato Spain Greenhouse 1.44

[74] Tomato Spain Outdoor 1.42

[74] Tomato Spain Outdoor 1.31

[62] Tomato Cherry Tomato Italy 1.242

[74] Tomato Spain Greenhouse 1.05

[65] Tomato Classic Vine Spain Greenhouse 0.977

[62] Tomato Italy 0.877

[65] Tomato Classic loose Spain Greenhouse 0.717

[63] Tomato Australia 0.22

[75] Tomato Spain Greenhouse 0.25

[58] Tomato USA, Cali- Conventional, 0.23

fornia Furrow irriga-

tion

[58] Tomato USA, Cali- Direct seeded 0.1

fornia for processing

[71] Tomato China Conventional, 0.045

Furrow irriga-

tion
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[71] Spinach Water Spinach China Conventional 0.014

[62] Zucchini and Italy 1.799

squash

[63] Zucchini and Australia 1.17

squash

[56] Cod Denmark Sea 2.605

[56] Flatfish Denmark Sea 7.209

[56] Herring Denmark Sea 1.148

[56] Industrial Denmark Sea 0.476

fish

[56] Mackerel Denmark Sea 0.336

[56] Sand eel Denmark Sea 0.332

[56] Trout Denmark Aquaculture 3.576

(Standard)

[56] Trout Denmark Aquaculture 6.454

(100% circula-

tion)

[56] Trout Denmark Aquaculture 2.528

(0% circulation)

[76] Trout Rainbow Trout Finland Cultivated 1.47

[13] India 1.436

[77] Anglerfish Spain Offshore, trawl- 20.86

ing

[77] Atlantic Spain Offshore, lining 7.756

pomfret

[77] Bigeye tuna Spain Offshore, lining 40.9

[77] Blue shark Spain Offshore, lining 7.489

[77] Blue whiting Spain Coastal, trawl- 3.423

ing

[77] Common Spain Offshore, trawl- 6.39

cuttlefish ing

[77] Common Spain Offshore, lining 6.956

ling
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[77] Common oc- Spain Offshore, varied 7.35

tupus

[77] Conger eel Spain Offshore, lining 7.76

[77] European Spain Coastal, seining 1.56

Pilchard

[77] Fork beard Spain Offshore, lining 12.5

[77] Hake Spain Coastal, trawl- 14.356

ing

[77] Hake Spain Offshore, lining 16.023

[77] Hake Spain Offshore, trawl- 15.467

ing

[77] Lesser flying Spain Offshore, varied 6.91

squid

[77] Mackerel Atlantic horse Spain Coastal, trawl- 2.88

mackerel ing

[77] Mackerel Atlantic horse Spain Coastal, seining 1.96

mackerel

[77] Mackerel Atlantic mack- Spain Coastal, trawl- 1.76

erel ing

[77] Mackerel Atlantic mack- Spain Coastal, seining 1.22

erel

[77] Mackerel Chub mackerel Spain Coastal, seining 1.56

[77] Mako shark Spain Offshore, lining 20.045

[77] Megrim Spain Offshore, trawl- 18.689

ing

[77] Other Spain Coastal, trawl- 4.52

species ing

[77] Other Spain Coastal, seining 1.56

species

[77] Other Spain Coastal, Ar- 2.98

species tisanala and

trolling

[77] Other Spain Offshore, varied 8

species

[77] Porbeagle Spain Offshore, lining 20.045
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[77] Rock fish Spain Offshore, lining 13.88

[77] Splendid al- Spain Offshore, lining 7.756

fonsino

[77] Swordfish Spain Offshore, lining 28.48

[77] Turbot Spain Aquaculture 43.112

[58] Salmon Norway Farmed 3.41

[58] Salmon Chile Farmed 4.83

[58] Salmon Canada Farmed 4.18

[78] Salmon Norway Farmed 3.58

[78] Salmon Chile Farmed 4.6

[78] Salmon Canada Farmed 4.74

[78] Salmon UK Farmed 6.54

[56] Mussels Denmark Sea 0.078

[77] Mussels Spain Aquaculture 0.166

[77] Norway lob- Spain Offshore, trawl- 141.5

ster ing

[56] Norway lob- Denmark Sea 100.07

ster

[56] Shrimp or Denmark Sea 4.86

prawn

[79] Shrimp or Senegal, Trawling 63.334

prawn Ziguinchor

[79] Shrimp or Senegal, Artisanal 13

prawn Ziguinchor

[46] Beef Brazil 41.033

[55] Beef Brazil Includes new 1063.92

land use change

[80] Beef Canada 18.291

[80] Beef Canada 22.2

[?] Beef Canada 30.775

[56] Beef Denmark Conventional 38.712

[81] Beef Ireland Both specialist 20

beef farms and

dairy breeds
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[?] Beef Ireland Suckler 43.964

[?] Beef Japan 32.827

[81] Beef Spain Conventional 17.439

[82] Beef Sweden 22.759

[81] Beef UK Lowland 22.862

[81] Beef UK Non- organic 23.155

[81] Beef UK Hill and upland 24.034

[81] Beef UK Suckler 37.076

[83] Beef Brazil new land use 225.4

[83] Beef Ireland new land use 60.4

[83] Beef Veal Netherlands new land use 7.9

[83] Beef Beef cattle Netherlands new land use 20.8

[83] Beef Dairy cattle Netherlands new land use 11.7

[56] Beef Fillet Denmark Conventional 45.842

[56] Beef Flanchet Denmark Conventional 22.898

[56] Beef Foreend Denmark Conventional 25.142

[56] Beef Knuckle Denmark Conventional 4

[56] Beef Mince Denmark Conventional 4.282

[56] Beef Outside Denmark Conventional 22.835

[56] Beef Round Denmark Conventional 22.647

[56] Beef Steak Denmark Conventional 43.377

[56] Beef Steak Denmark Conventional 40.544

[56] Beef Tenderloin Denmark Conventional 69.542

[56] Beef Top round Denmark Conventional 43.279

[58] Beef USA, Idaho 15.12

[58] Beef USA, Ne- 17.86

braska

[58] Beef USA 20

[84] Beef USA Feedlot 14.8

[84] Beef USA Pastoral 8.1

[85] Beef USA Feedlot 26.9

[85] Beef USA Pastoral 34.9

[85] Beef USA Backgrounding 29.45

/Feedlot
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[86] Chicken Cooled and Brazil Large scale 1.4

packaged

[86] Chicken Cooled and Brazil Small scale 1.7

packaged

[56] Chicken Denmark Conventional 3.223

[86] Chicken Cooled and France Label Rouge 3.9

packaged

[86] Chicken Cooled and France Standard sys- 2.2

packaged tem

[81] Chicken France Conventional 2.993

[13] Chicken India Conventional 0.846

[82] Chicken Sweden Conventional 3.447

[81] Chicken UK Conventional 8.161

[81] Chicken Netherlands Includes new 9.786

land use change

[81] Chicken Netherlands Includes new 4.7

land use change

[81] Chicken UK Free range 7.829

[27] Chicken Finland Conventional 2.58

[58] Chicken UK Conventional 4.6

[58] Chicken USA Conventional 2.36

[58] Chicken UK Conventional 3.1

[58] Chicken Canada, Conventional 3.99

British

Columbia

[87] Chicken USA Conventional 5.77

[87] Chicken USA Organic or Free 6.924

range

[56] Chicken egg Denmark Conventional 2.813

[13] Chicken egg India 0.84

[81] Chicken egg Netherlands Battery cage 5.571

[81] Chicken egg Netherlands Aviary with 6

outdoor run

[81] Chicken egg Netherlands Deep litter 6.143
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[81] Chicken egg Netherlands Deep litter with 6.571

outdoor run

[82] Chicken egg Sweden 2.029

[58] Chicken egg Canada, Large scale, free 2.38

British range

Columbia

[58] Chicken egg USA, New Large scale, con- 1.86

Jersey fined

[58] Turkey Pennsylvania 5.24

[88] Duck Australia Conventional 2.07

[?] Duck UK Conventional 4.1

[89] Pork Austrailia Conventional 4.77

[89] Pork Austrailia Conventional 8.462

[45] Pork Canada 4.524

[45] Pork Canada 4.314

[45] Pork Canada 4.41

[56] Pork Denmark Conventional 3.524

[56] Pork Denmark Conventional 3.524

[89] Pork Denmark Conventional 5.077

[56] Pork Denmark Conventional 3.984

[56] Pork Denmark Conventional 4.246

[56] Pork Denmark Conventional 4.294

[56] Pork Denmark Conventional 4.379

[81] Pork Finland Good agricul- 4.391

tural practice

[81] Pork Finland Red label 6.681

[89] Pork France Conventional 4.616

[81] Pork Netherlands Conventional 6.558

[81] Pork Spain Intensive 4.8

[82] Pork Sweden Conventional 5.216

[89] Pork Sweden Conventional 6.77

[89] Pork Sweden Conventional 8.462

[81] Pork UK Heavier finish- 9.354

ing
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[81] Pork UK Outdoor breed- 9.739

ing

[81] Pork UK Conventional 9.785

[81] Pork UK Indoor breeding 9.877

[83] Pork Netherlands Includes new 7.9

land use change

[58] Pork USA, Michi- Average pro- 5.69

gan ductivity

[58] Pork USA, Iowa Confined 6.04

[58] Pork USA, Iowa Some pasture 6.69

[58] Pork UK 6.4

[58] Pork US 3.8

[58] Pork UK 5.5

[56] Pork Bacon Denmark Conventional 3.264

[56] Pork Ham Denmark Conventional 3.264

[56] Pork Mince Denmark Conventional 3.26

[56] Pork Mince Denmark Conventional 3.282

[56] Pork Neck Denmark Conventional 3.266

[56] Pork Tenderloin Denmark Conventional 3.224

[13] Sheep meat Mutton India 28.72

[83] Sheep meat Lamb Netherlands Includes new 31.1

land use change

[58] Sheep meat Lamb USA, Idaho 25.37

[58] Sheep meat Lamb USA, Ohio High productiv- 19.39

ity

[58] Sheep meat Lamb USA, Ohio Average pro- 21.42

ductivity

[58] Sheep meat Lamb UK 17.6

[58] Sheep meat Lamb UK 28

[58] Sheep meat Lamb New Zealand 31.35

[56] Milk Denmark Conventional 0.965

[56] Milk Denmark Conventional 0.809

[56] Milk Denmark Conventional 0.779

[56] Milk Denmark Organic 0.797
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[56] Milk Denmark Conventional 1

[56] Milk Denmark Conventional 1.087

[56] Milk Denmark Conventional 1.058

[56] Milk Denmark Organic 0.974

[83] Milk Netherlands Includes new 1.6

land use change

[58] Milk Whole Milk UK Conventional 1.03

[58] Milk Whole Milk US Conventional 1.35

[58] Milk Whole Milk UK Conventional 1

[58] Milk Whole Milk USA, Wis- Conventional 1.02

consin

[58] Milk 2% milk USA, Wis- Conventional 0.67

consin

[58] Milk Whole Milk USA, Idaho Conventional 1.1

[13] Milk India Conventional 0.729

[56] Milk Full cream Denmark Conventional 1.146

[56] Milk Lowfat Denmark Conventional 1.218

[56] Milk Mini Denmark Conventional 1.253

[56] Milk Skimmed Denmark Conventional 1.265

[56] Milk Milk powder Denmark Conventional 9.119

[56] Cheese Denmark Conventional 11.84

[27] Cheese Finland Conventional 11.737

[58] Cheese USA, Wis- 9.09

consin

[58] Cheese Sweden 8.8

[58] Cheese UK 9.8

[90] Butter Denmark 9.6

[90] Butter Germany 9

[90] Butter France 7.2

[58] Yogurt With 2% milk USA, Wis- 0.79

consin

[91] Carbonated UK Glass bottled 0.098

drinks
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[91] Carbonated UK Aluminium 0.052

drinks canned

[91] Carbonated UK 0.5 L bottle 0.078

drinks

[91] Carbonated UK 2 L bottle 0.057

drinks

[83] Tofu Netherlands Includes new 3.8

and Belgium land use change

[83] Tofu Netherlands Includes - new 2.4

land use change

[92] Chocolate Milk chocolate Europe 3.05

[92] Chocolate Dark chocolate Europe 1.45

[92] Chocolate White chocolate Europe 3.5

[92] Chocolate Chocolate with Europe 1.85

sultanas

[93] Chocolate Milk chocolate Sweden 2.6

[93] Chocolate Dark chocolate Sweden 0.84

[94] Cocoa pow- Ghana 0.323

der

[27] Beer Medium Finland 0.108

strength

[27] Oat meal Finland 0.625

[48] Sugar from Switzerland Conventional 0.973

Sugarbeet

[48] Sugar from Brazil Conventional 1.86

Sugarcane

[68] Sugar from Zambia 1.731

Sugarcane

[68] Sugar from Mauritius 0.255

Sugarcane

[90] Margarine UK 1.1

[90] Margarine Germany 1.32

[90] Margarine Spain 1.66

[90] Spreadable Denmark 7.4
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[56] Bread Rye bread Denmark Conventional 0.707

[56] Bread Wheat bread Denmark Conventional 0.772

[60] Bread Germany 0.52

[56] Bread Rolls Denmark Conventional 0.861

[56] Margarine Denmark Conventional 0.857

[95] Ice cream China 2.968

[95] Ice cream New Zealand 0.59

[13] Indian Spice India 0.845

[58] Cooked Pacific 3.23

Tuna Ocean

[48] Tap water Switzerland 0.001

[48] Tap water Europe 0.001

[56] Tap water Denmark Groundwater 0.171

[56] Tap water Denmark Surface water 0.389

[56] Tap water Denmark 0.245

[96] Tap water USA 0.001

C Ice USA 280 Lb Mani- 0.133

towoc Ice Ma-

chine

C Ice USA 280 Lb 0.104

Hoshizaki

Ice Machine

C Ice USA 500 Lb 0.07

Hoshizaki

Ice Machine

C Ice USA 600 Lb 0.072

Hoshizaki

Ice Machine

C Hot water USA GE SmartWa- 0.032

ter Electric

Water Heater

SE50M12AAG

139



C Hot water USA Kenmore 50 gal. 0.013

Short Natural

Gas Water

Heater

C Hot water USA Kenmore 55 gal. 0.035

Tall Electric

Water Heater

C Hot water USA Kenmore 30 gal. 0.051

Tall Electric

Water Heater

C Hot water USA Rheem Fury 65 0.035

Gallon Electric

Water Heater -

82V662

C Hot water USA Rheem 0.013

22V50F1 Natu-

ral Gas Water

Heater, 50

Gallon

[97] Wine Australia 1.47

[97] Wine France 1.07

[97] Wine Argentina 1.5

[97] Wine USA 1.93

[98] Wine North Amer- 2.39

ica

[98] Wine Europe 1.72

Table D.2: The source and specifications of the packaging material emission factors.

Source Material Application Packaging Specific material kg C02 eq/ kg

class material Packaging material

[48] Plastic Bottle PET Polyethylene terephthalate, 3.853

granulate, bottle grade, at

plant/RER U
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[48] Plastic Film PET Polyethylene terephthalate, 3.18

granulate, amorphous, at

plant/RER U

[?] Plastic Bottle PET PET bottles recycled FAL 2.809

[?) Plastic Bottle PET PET bottles FAL 4.07

[?] Plastic Bottle PET PET bottle grade I 3.919

[96] Plastic Bottle PET Virgin PET Bottle, Landfilled. 3.77

[96] Plastic Bottle PET 25% Recycled PET Bottle, re- 3.24

cycled at end of life

[?] Plastic Film PET PET amorph I 5.004

[48] Plastic Film PE Polyethylene, LLDPE, granu- 2.274

late, at plant/RER U

[48] Plastic Film PE Polyethylene, LDPE, granu- 2.532

late, at plant/RER U

[48] Plastic Film PE Polyethylene, HDPE, granu- 2.36

late, at plant/RER U

[?] Plastic Film PE PE (LLDPE) I 1.039

[?] Plastic Film PE PE (LDPE) I 1.554

[?] Plastic Film PE PE (HDPE) I 1.369

[48] Plastic Film PE Packaging film, LDPE, at plan- 2.604

t/RER U

[?] Plastic Film PE LLDPE film recycled FAL 1.635

[?] Plastic Film PE LLDPE film FAL 2.235

[?] Plastic Film PE LDPE film recycled FAL 1.744

[?] Plastic Film PE LDPE film FAL 2.451

[?] Plastic Film PE HDPE bottles recycled FAL 2.699

[?) Plastic Bottle PE HDPE bottles FAL 3.316

[48] Plastic Film PP Polypropylene, granulate, at 2.403

plant/RER U

[?] Plastic Film PP PP I 1.529

[?] Plastic Cap PP PP caps recycled FAL 3.119

[?] Plastic Cap PP PP caps FAL 3.75

[?] Plastic Molded PS PS (GPPS) I 3.304

container
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[?] Plastic Molded PS PS (GPPS) FAL 3.512

container

[?] Plastic Molded PS PS (GPPS) 100

container

[?] Plastic Foam PS PS (EPS) recycled FAL 4.073

[?] Plastic Foam PS PS (EPS) I 3.368

[?] Plastic Foam PS PS (EPS) FAL 4.925

[48] Plastic Molded PS Polystyrene, general purpose, 4.406

container GPPS, at plant/RER U

[48] Plastic Foam PS Polystyrene, expandable, at 4.068

plant/RER U

Dettore Plastic Bottle PLA Polylactic acid, landfill 1.29

Christo-

pher

G

2009

[48] Glass Jar or White Packaging glass, white, at 0.833

Bottle glass plant/RER U

[48] Glass Jar or White Packaging glass, white, at 0.57

Bottle glass plant/DE U

[48] Glass Jar or White Packaging glass, white, at 0.541

Bottle glass plant/CH U

[48] Glass Jar or Green Packaging glass, green, at 0.817

Bottle glass plant/RER U

[48] Glass Jar or Green Packaging glass, green, at 0.496

Bottle glass plant/DE U

[48] Glass Jar or Green Packaging glass, green, at 0.509

Bottle glass plant/CH U

[48] Glass Jar or Brown Packaging glass, brown, at 0.839

Bottle glass plant/RER U

[48] Glass Jar or Brown Packaging glass, brown, at 0.552

Bottle glass plant/DE U

[48] Glass Jar or Brown Packaging glass, brown, at 0.66

Bottle glass plant/CH U

[?] Glass Bottles Glass Glass bottles recycled FAL 0.546
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[?] Glass Bottles Glass Glass bottles FAL 0.937

[48] Paper base Liquid Board Liquid packaging board, at 0.614

packing plant/RER U

[48] Paper base Box Board Solid bleached board, SBB, at 2.61

plant/RER U

[48] Paper base Box Board Solid unbleached board, SUB, 0.916

at plant/RER U

[48] Paper base Box Board Whitelined chipboard, WLC, 1.087

at plant/RER U

[48] Paper base Box Corrugated Corrugated board base paper, 0.673

Board kraftliner, at plant/RER U

[48] Paper base Box Corrugated Corrugated board base paper, 1.04

Board semichemical fluting, at plan-

t/RER U

[48] Paper base Box Corrugated Corrugated board base paper, 0.824

Board testliner, at plant/RER U

[48] Paper base Box Corrugated Corrugated board base paper, 0.822

Board wellenstoff, at plant/RER U

[48] Paper base Box Corrugated Corrugated board, fresh fibre, 1.041

Board single wall, at plant/CH U

[48] Paper base Box Corrugated Corrugated board, fresh fibre, 1.001

Board single wall, at plant/RER U

[48] Paper base Box Corrugated Corrugated board, mixed fibre, 0.962

Board single wall, at plant/CH U

[48] Paper base Box Corrugated Corrugated board, mixed fibre, 0.951

Board single wall, at plant/RER U

[48] Paper base Box Corrugated Corrugated board, recycling fi- 0.977

Board bre, double wall, at plant/CH

U

[48] Paper base Box Corrugated Corrugated board, recycling fi- 0.97

Board bre, double wall, at plant/RER

U

[48] Paper base Box Corrugated Corrugated board, recycling fi- 0.998

Board bre, single wall, at plant/CH U
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[48] Paper base Box Corrugated Corrugated board, recycling fi- 0.997

Board bre, single wall, at plant/RER

U

[?] Paper base Box Corrugated Corrugated cardboard FAL 2.191

Board

[?] Paper base Graphic Paper Newspaper 100% recycled FAL 1.678

[?] Paper base Graphic Paper Newspaper virgin fiber FAL 2.745

[?] Paper base Graphic Paper Paper towels 100% recycled 4.642

FAL

[?] Paper base Graphic Paper Paper towels virgin FAL 4.393

[48] Paper base Graphic Paper Paper, newsprint, 0% DIP, at 1.326

plant/RER U

[48] Paper base Graphic Paper Paper, newsprint, at plant/CH 0.833

U

[48] Paper base Graphic Paper Paper, newsprint, at regional 0.962

storage/CH U

[48] Paper base Graphic Paper Paper, newsprint, at regional 1.303

storage/RER U

[48] Paper base Graphic Paper Paper, newsprint, DIP con- 1.087

taining, at plant/RER U

[48] Paper base Graphic Paper Paper, recycling, no deinking, 0.835

at plant/RER U

[48] Paper base Graphic Paper Paper, recycling, with deink- 1.569

ing, at plant/RER U

[48] Paper base Graphic Paper Paper, wood-containing, LWC, 1.491

at regional storage/CH U

[48] Paper base Graphic Paper Paper, wood-containing, LWC, 1.527

at regional storage/RER U

[48] Paper base Graphic Paper Paper, wood-containing, su- 1.162

percalendred (SC), at regional

storage/CH U

[48] Paper base Graphic Paper Paper, wood-containing, su- 1.199

percalendred (SC), at regional

storage/RER U
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[48] Paper base Graphic Paper Paper, woodcontaining, LWC, 1.416

at plant/RER U

[48] Paper base Graphic Paper Paper, woodcontaining, super- 1.09

calendred (SC), at plant/RER

U

[48] Paper base Graphic Paper Paper, woodfree, coated, at in- 1.122

tegrated mill/RER U

[48] Paper base Graphic Paper Paper, woodfree, coated, at 1.181

non-integrated mill/RER U

[48] Paper base Graphic Paper Paper, woodfree, coated, at re- 1.192

gional storage/CH U

[48] Paper base Graphic Paper Paper, woodfree, coated, at re- 1.267

gional storage/RER U

[48] Paper base Graphic Paper Paper, woodfree, uncoated, at 0.852

integrated mill/RER U

[48] Paper base Graphic Paper Paper, woodfree, uncoated, at 1.48

non-integrated mill/RER U

[48] Paper base Graphic Paper Paper, woodfree, uncoated, at 1.209

regional storage/CH U

[48] Paper base Graphic Paper Paper, woodfree, uncoated, at 1.323

regional storage/RER U

[?] Paper base Packaging Paper Kraft bleached FAL 2.413

paper

[48] Paper base Packaging Paper Kraft paper, bleached, at plan- 1.701

paper t/RER U

[48] Paper base Packaging Paper Kraft paper, unbleached, at 0.856

paper plant/RER U

[?] Paper base Packaging Paper Kraft unbleached 100% 1.239

paper rec.FAL

[?] Paper base Packaging Paper Kraft unbleached FAL 1.254

paper

[?] Metal Can Tin steel Tin plate 100%scrap B250(98) 3.005

can

[?] Metal Can Tin steel Tin plate 100%scrap D 3.109

can B250(98)
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[?] Metal Can Tin steel Tin plate 20% scrap B250 4.632

can

[?] Metal Can Tin steel Tin plate 20% scrap D B250 4.652

can

[?] Metal Can Tin steel Tin plate 50% scrap B250 4.026

can

[?] Metal Can Tin steel Tin plate 50% scrap D B250 4.077

can

[?] Metal Can Tin steel Tin plate 80% scrap B250 3.409

can

[?] Metal Can Tin steel Tin plate 80% scrap D B250 3.492

can

[?] Metal Can Tin steel Tin plate B250 5.036

can

[48] Metal Can Tin steel Tin plated chromium steel 7.85

can sheet, 2 mm, at plant/RER U

[48] Metal Can Aluminum Aluminium alloy, AlMg3, at 9.262

Can plant/RER U

[99] Metal Can Aluminum

Can

[100] Textile Cloth Wool Wool for sweater

Table D.4: The source and specifications of the transportation material emission
factors.

Source Mode Vehicle Fuel Vehicle Specification , Capacity Allocated Trans-

of type Utilization , Other conditions port EF (kg

Trans- CO2e/km. kg

port load)

[48] Air Freight NA Medium haul , NA , NA 0.002

Aircrafts

[48] Air Freight NA Long haul , NA , NA 0.002

Aircrafts
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[48] Air Freight NA Unspecified , NA , NA 0.002

Aircrafts

[47] Air Freight Jet-Al Saab 340B , 0.5 , NA 0.003

Aircrafts

[47] Air Freight Jet-Al Saab 340B , 0.75 , NA 0.002

Aircrafts

[47] Air Freight Jet-Al Saab 340B , 1, NA 0.002

Aircrafts

[47] Air Freight Jet-Al ATR 42-300 Freighter , 0.5 , NA 0.004

Aircrafts

[47] Air Freight Jet-Al ATR 42-300 Freighter , 0.75 , NA 0.003

Aircrafts

[47] Air Freight Jet-Al ATR 42-300 Freighter , 1, NA 0.003

Aircrafts

[47] Air Freight Jet-Al AN-26 Freighter , 0.5 , NA 0.005

Aircrafts

[47] Air Freight Jet-Al AN-26 Freighter , 0.75 , NA 0.004

Aircrafts

[47] Air Freight Jet-Al AN-26 Freighter , 1 , NA 0.003

Aircrafts

[47] Air Freight Jet-Al F-27-500 , 0.5 , NA 0.003

Aircrafts

[47] Air Freight Jet-Al F-27-500 , 0.75 , NA 0.002

Aircrafts

[47] Air Freight Jet-Al F-27-500 , 1 , NA 0.002

Aircrafts

[47] Air Freight Jet-Al BAe-146-200 , 0.5 , NA 0.004

Aircrafts

[47] Air Freight Jet-Al BAe-146-200 , 0.75 , NA 0.003

Aircrafts

[47] Air Freight Jet-Al BAe-146-200, 1 , NA 0.003

Aircrafts

[47] Air Freight Jet-Al L-188 Electra Freighter , 0.5 , NA 0.004

Aircrafts
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[47] Air Freight Jet-Al L-188 Electra Freighter , 0.75 , NA 0.003

Aircrafts

[47] Air Freight Jet-Al L-188 Electra Freighter , 1, NA 0.002

Aircrafts

[47] Air Freight Jet-Al B737-300QC Freighter , 0.5 , NA 0.002

Aircrafts

[47] Air Freight Jet-Al B737-300QC Freighter , 0.75 , NA 0.002

Aircrafts

[47] Air Freight Jet-Al B737-300QC Freighter , 1, NA 0.002

Aircrafts

[47] Air Freight Jet-Al B737-300SF , 0.5 , NA 0.003

Aircrafts

[47] Air Freight Jet-Al B737-300SF , 0.75 , NA 0.002

Aircrafts

[47] Air Freight Jet-Al B737-300SF , 1, NA 0.002

Aircrafts

[47] Air Freight Jet-Al A320 Freighter , 0.5 , NA 0.003

Aircrafts

[47] Air Freight Jet-Al A320 Freighter , 0.75 , NA 0.002

Aircrafts

[47] Air Freight Jet-Al A320 Freighter , 1 , NA 0.002

Aircrafts

[47] Air Freight Jet-Al AN-12 , 0.5 , NA 0.001

Aircrafts

[47] Air Freight Jet-Al AN-12 , 0.75 , NA 0.001

Aircrafts

[47] Air Freight Jet-Al AN-12 , 1 , NA 0.001

Aircrafts

[47] Air Freight Jet-Al B727-200 Freighter , 0.5 , NA 0.003

Aircrafts

[47] Air Freight Jet-Al B727-200 Freighter , 0.75 , NA 0.002

Aircrafts

[47] Air Freight Jet-Al B727-200 Freighter , 1 , NA 0.002

Aircrafts
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[47] Air Freight Jet-Al TU-204-1OOC , 0.5 , NA 0.004

Aircrafts

[47] Air Freight Jet-Al TU-204-1OOC , 0.75 , NA 0.003

Aircrafts

[47] Air Freight Jet-Al TU-204-100C , 1 , NA 0.002

Aircrafts

[47] Air Freight Jet-Al B757SF , 0.5 , NA 0.002

Aircrafts

[47] Air Freight Jet-Al B757SF , 0.75 , NA 0.002

Aircrafts

[47] Air Freight Jet-Al B757SF , 1 , NA 0.001

Aircrafts

[47] Air Freight Jet-Al B757-200SF , 0.5 , NA 0.003

Aircrafts

[47] Air Freight Jet-Al B757-200SF , 0.75 , NA 0.002

Aircrafts

[47] Air Freight Jet-Al B757-200SF , 1 , NA 0.002

Aircrafts

[47] Air Freight Jet-Al A310-300 Freighter , 0.5 , NA 0.002

Aircrafts

[47] Air Freight Jet-Al A310-300 Freighter , 0.75 , NA 0.002

Aircrafts

[47] Air Freight Jet-Al A310-300 Freighter , 1 , NA 0.002

Aircrafts

[47] Air Freight Jet-Al B757-200F , 0.5 , NA 0.002

Aircrafts

[47] Air Freight Jet-Al B757-200F , 0.75 , NA 0.002

Aircrafts

[47] Air Freight Jet-Al B757-200F , 1, NA 0.001

Aircrafts

[47] Air Freight Jet-Al A300-B4 Freighter , 0.5 , NA 0.003

Aircrafts

[47] Air Freight Jet-Al A300-B4 Freighter , 0.75 , NA 0.003

Aircrafts
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[47] Air Freight Jet-Al A300-B4 Freighter , 1 , NA 0.002

Aircrafts

[47] Air Freight Jet-Al A300-B4 Freighter , 0.5 , NA 0.003

Aircrafts

[47] Air Freight Jet-Al A300-B4 Freighter , 0.75 , NA 0.002

Aircrafts

[47] Air Freight Jet-Al A300-B4 Freighter , 1, NA 0.002

Aircrafts

[47] Air Freight Jet-Al IL-76MD , 0.5 , NA 0.003

Aircrafts

[47] Air Freight Jet-Al IL-76MD , 0.75 , NA 0.002

Aircrafts

[47] Air Freight Jet-Al IL-76MD , 1, NA 0.002

Aircrafts

[47] Air Freight Jet-Al DC-8-63F , 0.5 , NA 0.002

Aircrafts

[47] Air Freight Jet-Al DC-8-63F , 0.75 , NA 0.002

Aircrafts

[47] Air Freight Jet-Al DC-8-63F , 1 , NA 0.001

Aircrafts

[47] Air Freight Jet-Al DC-8-73F , 0.5 , NA 0.002

Aircrafts

[47] Air Freight Jet-Al DC-8-73F , 0.75 , NA 0.002

Aircrafts

[47] Air Freight Jet-Al DC-8-73F , 1 , NA 0.001

Aircrafts

[47] Air Freight Jet-Al B767-300 Freighter , 0.5 , NA 0.002

Aircrafts

[47] Air Freight Jet-Al B767-300 Freighter , 0.75 , NA 0.002

Aircrafts

[47] Air Freight Jet-Al B767-300 Freighter , 1 , NA 0.001

Aircrafts

[47] Air Freight Jet-Al A300-600F , 0.5 , NA 0.002

Aircrafts
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[47] Air Freight Jet-Al A300-600F , 0.75 , NA 0.002

Aircrafts

[47] Air Freight Jet-Al A300-600F , 1, NA 0.002

Aircrafts

[47] Air Freight Jet-Al B767-300F , 0.5 , NA 0.002

Aircrafts

[47] Air Freight Jet-Al B767-300F , 0.75 , NA 0.002

Aircrafts

[47] Air Freight Jet-Al B767-300F , 1, NA 0.001

Aircrafts

[47] Air Freight Jet-Al DC-10-30F , 0.5 , NA 0.003

Aircrafts

[47] Air Freight Jet-Al DC-10-30F , 0.75 , NA 0.002

Aircrafts

[47] Air Freight Jet-Al DC-10-30F , 1 , NA 0.002

Aircrafts

[47] Air Freight Jet-Al DC-10-30 Freighter , 0.5 , NA 0.002

Aircrafts

[47] Air Freight Jet-Al DC-10-30 Freighter , 0.75 , NA 0.002

Aircrafts

[47] Air Freight Jet-Al DC-10-30 Freighter , 1 , NA 0.001

Aircrafts

[47] Air Freight Jet-Al MD-11 Freighter , 0.5 , NA 0.002

Aircrafts

[47] Air Freight Jet-Al MD-11 Freighter , 0.75 , NA 0.002

Aircrafts

[47] Air Freight Jet-Al MD-11 Freighter , 1 , NA 0.001

Aircrafts

[47] Air Freight Jet-Al MD-11F , 0.5 , NA 0.002

Aircrafts

[47] Air Freight Jet-Al MD-11F , 0.75 , NA 0.001

Aircrafts

[47] Air Freight Jet-Al MD-11F , 1 , NA 0.001

Aircrafts
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[47] Air Freight Jet-Al B747-400 Freighter , 0.5 , NA 0.002

Aircrafts

[47] Air Freight Jet-Al B747-400 Freighter , 0.75 , NA 0.002

Aircrafts

[47] Air Freight Jet-Al B747-400 Freighter , 1, NA 0.001

Aircrafts

[47] Air Freight Jet-Al B747-200F , 0.5 , NA 0.002

Aircrafts

[47] Air Freight Jet-Al B747-200F , 0.75 , NA 0.002

Aircrafts

[47] Air Freight Jet-Al B747-200F , 1 , NA 0.002

Aircrafts

[47] Air Freight Jet-Al B747-400F , 0.5 , NA 0.002

Aircrafts

[47] Air Freight Jet-Al B747-400F , 0.75 , NA 0.001

Aircrafts

[47] Air Freight Jet-Al B747-400F, 1 , NA 0.001

Aircrafts

[47] Air Belly Air- Jet-Al A320 Belly , 1, NA 0.002

crafts

[47] Air Belly Air- Jet-Al A320 Belly , 0.5 , NA 0.003

crafts

[47] Air Belly Air- Jet-Al A320 Belly , 1 , NA 0.003

crafts

[47] Air Belly Air- Jet-Al A320 Belly , 0.5 , NA 0.003

crafts

[47] Air Belly Air- Jet-Al A330-300 Belly , 1 , NA 0.002

crafts

[47] Air Belly Air- Jet-Al A330-300 Belly , 0.5 , NA 0.002

crafts

[47] Air Belly Air- Jet-Al A330-300 Belly , 1 , NA 0.002

crafts

[47] Air Belly Air- Jet-Al A330-300 Belly , 0.5 , NA 0.002

crafts
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[48] Rail Average Diesel NA , NA , NA 0.001

Train powered

[48] Rail Average Electric NA , NA , NA 0.001

Train powered

[48] Rail Average Mixed NA , NA , NA 0.001

Train power

[48] Rail Average Mixed NA , NA , NA 0.001

Train power

[47] Rail Short Electric Cargo type, Bulk , 0.6 , Flat ter- 0.001

Train powered rain

[47] Rail Short Electric Cargo type, Average , 0.5 , Flat 0.001

Train powered terrain

[47] Rail Short Electric Cargo type, Volume , 0.4 , Flat ter- 0.001

Train powered rain

[47] Rail Short Electric Cargo type, Shuttle train , 0.5 , 0.001

Train powered Flat terrain

[47] Rail Average Electric Cargo type, Bulk , 0.6 , Flat ter- 0.001

Train powered rain

[47] Rail Average Electric Cargo type, Average , 0.5 , Flat 0.001

Train powered terrain

[47] Rail Average Electric Cargo type, Volume , 0.4, Flat ter- 0.001

Train powered rain

[47] Rail Average Electric Cargo type, Shuttle train , 0.5 , 0.001

Train powered Flat terrain

[47] Rail Long Electric Cargo type, Bulk , 0.6 , Flat ter- 0.001

Train powered rain

[47] Rail Long Electric Cargo type, Average , 0.5 , Flat 0.001

Train powered terrain

[47] Rail Long Electric Cargo type, Volume, 0.4 , Flat ter- 0.001

Train powered rain

[47] Rail Long Electric Cargo type, Shuttle train , 0.5 , 0.001

Train powered Flat terrain

[47] Rail Short Electric Cargo type, Bulk , 0.6 , Hilly ter- 0.001

Train powered rain
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[47] Rail Short Electric Cargo type, Average , 0.5 , Hilly 0.001

Train powered terrain

[47] Rail Short Electric Cargo type, Volume , 0.4 , Hilly 0.001

Train powered terrain

[47] Rail Short Electric Cargo type, Shuttle train , 0.5 , 0.001

Train powered Hilly terrain

[47] Rail Average Electric Cargo type, Bulk , 0.6 , Hilly ter- 0.001

Train powered rain

[47] Rail Average Electric Cargo type, Average , 0.5 , Hilly 0.001

Train powered terrain

[47] Rail Average Electric Cargo type, Volume , 0.4 , Hilly 0.001

Train powered terrain

[47] Rail Average Electric Cargo type, Shuttle train , 0.5 , 0.001

Train powered Hilly terrain

[47] Rail Long Electric Cargo type, Bulk , 0.6 , Hilly ter- 0.001

Train powered rain

[47] Rail Long Electric Cargo type, Average , 0.5 , Hilly 0.001

Train powered terrain

[47] Rail Long Electric Cargo type, Volume , 0.4 , Hilly 0.001

Train powered terrain

[47] Rail Long Electric Cargo type, Shuttle train , 0.5 , 0.001

Train powered Hilly terrain

[47] Rail Short Electric Cargo type, Bulk , 0.6 , Mountain- 0.001

Train powered ous terrain

[47] Rail Short Electric Cargo type, Average , 0.5 , Moun- 0.001

Train powered tainous terrain

[47] Rail Short Electric Cargo type, Volume , 0.4 , Moun- 0.001

Train powered tainous terrain

[47] Rail Short Electric Cargo type, Shuttle train , 0.5 , 0.001

Train powered Mountainous terrain

[47] Rail Average Electric Cargo type, Bulk , 0.6, Mountain- 0.001

Train powered ous terrain

[47] Rail Average Electric Cargo type, Average , 0.5 , Moun- 0.001

Train powered tainous terrain
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[47] Rail Average Electric Cargo type, Volume , 0.4 , Moun- 0.001

Train powered tainous terrain

[47] Rail Average Electric Cargo type, Shuttle train , 0.5 , 0.001

Train powered Mountainous terrain

[47] Rail Long Electric Cargo type, Bulk , 0.6 , Mountain- 0.001

Train powered ous terrain

[47] Rail Long Electric Cargo type, Average , 0.5 , Moun- 0.001

Train powered tainous terrain

[47] Rail Long Electric Cargo type, Volume , 0.4 , Moun- 0.001

Train powered tainous terrain

[47] Rail Long Electric Cargo type, Shuttle train , 0.5 , 0.001

Train powered Mountainous terrain

[47] Rail Short Diesel Cargo type, Bulk , 0.6 , Flat ter- 0.001

Train rain

[47] Rail Short Diesel Cargo type, Average , 0.5 , Flat 0.001

Train terrain

[47] Rail Short Diesel Cargo type, Volume, 0.4 , Flat ter- 0.001

Train rain

[47] Rail Short Diesel Cargo type, Shuttle train , 0.5 , 0.001

Train Flat terrain

[47] Rail Average Diesel Cargo type, Bulk , 0.6 , Flat ter- 0.001

Train rain

[47] Rail Average Diesel Cargo type, Average , 0.5 , Flat 0.001

Train terrain

[47] Rail Average Diesel Cargo type, Volume , 0.4 , Flat ter- 0.001

Train rain

[47] Rail Average Diesel Cargo type, Shuttle train , 0.5 , 0.001

Train Flat terrain

[47] Rail Long Diesel Cargo type, Bulk , 0.6 , Flat ter- 0.001

Train rain

[47] Rail Long Diesel Cargo type, Average , 0.5 , Flat 0.001

Train terrain

[47] Rail Long Diesel Cargo type, Volume, 0.4, Flat ter- 0.001

Train rain
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[47] Rail Long Diesel Cargo type, Shuttle train , 0.5 , 0.001

Train Flat terrain

[47] Rail Short Diesel Cargo type, Bulk , 0.6 , Hilly ter- 0.001

Train rain

[47] Rail Short Diesel Cargo type, Average , 0.5 , Hilly 0.001

Train terrain

[47] Rail Short Diesel Cargo type, Volume , 0.4 , Hilly 0.001

Train terrain

[47] Rail Short Diesel Cargo type, Shuttle train , 0.5 , 0.001

Train Hilly terrain

[47] Rail Average Diesel Cargo type, Bulk , 0.6 , Hilly ter- 0.001

Train rain

[47] Rail Average Diesel Cargo type, Average , 0.5 , Hilly 0.001

Train terrain

[47] Rail Average Diesel Cargo type, Volume , 0.4 , Hilly 0.001

Train terrain

[47] Rail Average Diesel Cargo type, Shuttle train , 0.5 , 0.001

Train Hilly terrain

[47] Rail Long Diesel Cargo type, Bulk , 0.6 , Hilly ter- 0.001

Train rain

[47] Rail Long Diesel Cargo type, Average , 0.5 , Hilly 0.001

Train terrain

[47] Rail Long Diesel Cargo type, Volume , 0.4 , Hilly 0.001

Train terrain

[47] Rail Long Diesel Cargo type, Shuttle train , 0.5 , 0.001

Train Hilly terrain

[47] Rail Short Diesel Cargo type, Bulk , 0.6 , Mountain- 0.001

Train ous terrain

[47] Rail Short Diesel Cargo type, Average , 0.5 , Moun- 0.001

Train tainous terrain

[47] Rail Short Diesel Cargo type, Volume , 0.4 , Moun- 0.001

Train tainous terrain

[47] Rail Short Diesel Cargo type, Shuttle train , 0.5 , 0.001

Train Mountainous terrain

156



[47] Rail Average Diesel Cargo type, Bulk , 0.6 , Mountain- 0.001

Train ous terrain

[47] Rail Average Diesel Cargo type, Average , 0.5 , Moun- 0.001

Train tainous terrain

[47] Rail Average Diesel Cargo type, Volume , 0.4 , Moun- 0.001

Train tainous terrain

[47] Rail Average Diesel Cargo type, Shuttle train , 0.5 , 0.001

Train Mountainous terrain

[47] Rail Long Diesel Cargo type, Bulk , 0.6 , Mountain- 0.001

Train ous terrain

[47] Rail Long Diesel Cargo type, Average , 0.5 , Moun- 0.001

Train tainous terrain

[47] Rail Long Diesel Cargo type, Volume , 0.4 , Moun- 0.001

Train tainous terrain

[47] Rail Long Diesel Cargo type, Shuttle train , 0.5 , 0.001

Train Mountainous terrain

[48] Road Truck 14 Diesel NA , 0.5 , NA 0.001

to 28t

[48] Road Truck 28 Petrol NA , 0.5 , NA 0.001

to 40t

[48] Road Truck 28 Petrol NA, 1 , NA 0.001

to 40t

[48] Road Truck 28 Diesel Euro 3 , 0.5 , NA 0.001

to 40t

[48] Road Truck 28 Diesel Euro 4 , 0.5 , NA 0.001

to 40t

[48] Road Truck 28 Diesel Euro 5 , 0.5 , NA 0.001

to 40t

[48] Road Truck 14 Diesel Euro 3 , 0.5 , NA 0.001

to 28t

[48] Road Truck 14 Diesel Euro 4 , 0.5 , NA 0.001

to 28t

[48] Road Truck 14 Diesel Euro 5 , 0.5 , NA 0.001

to 28t
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[48] Road Truck 14 Diesel NA , 0.5 , NA 0.001

to 28t

[48] Road Truck 14 Diesel NA, 1, NA 0.001

to 28t

[48] Road Truck 14 BioDiesel Euro 3 , 0.5 , NA 0.001

to 28t

[48] Road Truck 7.5 Diesel NA , 0.5 , NA 0.001

to 14t

[48] Road Truck < Diesel NA , 0.5 , NA 0.001

7.5t

[48] Road Truck < Diesel NA , 1 , NA 0.001

7.5t

[48] Road Truck 7.5 Diesel NA , 0.5 , NA 0.001

to 14t

[48] Road Truck 7.5 Diesel NA , 1, NA 0.001

to 14t

[48] Road Truck < Diesel Euro 3 , 0.5 , NA 0.001

7.5t

[48] Road Truck < Diesel Euro 4 , 0.5 , NA 0.001

7.5t

[48] Road Truck < Diesel Euro 5 , 0.5 , NA 0.001

7.5t

[48] Road Truck 7.5 Diesel Euro 3 , 0.5 , NA 0.001

to 14t

[48] Road Truck 7.5 Diesel Euro 4 , 0.5 , NA 0.001

to 14t

[48] Road Truck 7.5 Diesel Euro 5 , 0.5 , NA 0.001

to 14t

[48] Road Passenger Diesel Euro 3 , NA , NA 0.004

Car

[48] Road Passenger Diesel Euro 4 , NA , NA 0.003

Car

[48] Road Passenger Diesel Euro 5 , NA , NA 0.003

Car
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[48] Road Passenger Diesel NA , NA , NA 0.004

Car

[48] Road Passenger Diesel NA , NA , NA 0.004

Car

[48] Road Passenger Diesel NA , NA , NA 0.004

Car

[48] Road Passenger Diesel NA , NA , NA 0.004

Car

[48] Road Passenger Ethanol Euro 3 , NA , NA 0.004

Car Diesel

[48] Road Passenger BioDiesel Euro 3 , NA , NA 0.002

Car

[48] Road Passenger Methanol Euro 3 , NA , NA 0.001

Car

[48] Road Passenger Natural Euro 3 , NA , NA 0.004

Car gas

[48] Road Passenger BioDiesel Euro 4 , NA , NA 0.004

Car

[48] Road Passenger BioDiesel Euro 4 , NA , NA 0.004

Car

[48] Road Passenger Petrol Euro 3 , NA , NA 0.004

Car

[48] Road Passenger Petrol Euro 4 , NA , NA 0.004

Car

[48] Road Passenger Petrol Euro 5 , NA , NA 0.004

Car

[48] Road Passenger Petrol NA , NA , NA 0.004

Car

[48] Road Passenger Petrol NA , NA , NA 0.004

Car

[48] Road Passenger Petrol NA , NA , NA 0.004

Car

[48] Road Passenger Petrol NA , NA , NA 0.004

Car
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[48] Road Passenger BioDiesel Euro 3 , NA , NA 0.003

Car

[48] Road Passenger Petrol NA , NA , NA 0.004

Car

[48] Road Passenger Petrol NA , NA , NA 0.004

Car

[48] Road Bus Diesel NA , NA , NA 0.019

[48] Road Tram Electricity NA , NA , NA 0.008

[48] Road Trolley Electricity NA , NA , NA 0.006

bus

[48] Road Truck < Petrol NA , NA , NA 0.001

7.5t

[48] Road Truck < Petrol NA , NA , NA 0.001

7.5t

[47] Road Truck < Diesel 80-ties , 0.5 , Freeflow, Motorway 0.001

7.5t

[47] Road Truck < Diesel Eurol , 0.5 , Freeflow, Motorway 0.001

7.5t

[47] Road Truck < Diesel Euro2 , 0.5 , Freeflow, Motorway 0.001

7.5t

[47] Road Truck < Diesel Euro3 , 0.5 , Freeflow, Motorway 0.001

7.5t

[47] Road Truck < Diesel Euro4 , 0.5 , Freeflow, Motorway 0.001

7.5t

[47] Road Truck < Diesel Euro5 , 0.5 , Freeflow, Motorway 0.001

7.5t

[47] Road Truck 7.5 Diesel 80-ties , 0.5 , Freeflow, Motorway 0.001

to 14t

[47] Road Truck 7.5 Diesel Eurol , 0.5 , Freeflow, Motorway 0.001

to 14t

[47] Road Truck 7.5 Diesel Euro2 , 0.5 , Freeflow, Motorway 0.001

to 14t

[47] Road Truck 7.5 Diesel Euro3 , 0.5 , Freeflow, Motorway 0.001

to 14t
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[47] Road Truck 7.5 Diesel Euro4 , 0.5 , Freeflow, Motorway 0.001

to 14t

[47] Road Truck 7.5 Diesel Euro5 , 0.5 , Freeflow, Motorway 0.001

to 14t

[47] Road Truck 14 Diesel 80-ties , 0.5 , Freeflow, Motorway 0.001

to 26t

[47] Road Truck 14 Diesel Eurol , 0.5 , Freeflow, Motorway 0.001

to 26t

[47] Road Truck 14 Diesel Euro2 , 0.5 , Freeflow, Motorway 0.001

to 26t

[47] Road Truck 14 Diesel Euro3 , 0.5 , Freeflow, Motorway 0.001

to 26t

[47] Road Truck 14 Diesel Euro4 , 0.5 , Freeflow, Motorway 0.001

to 26t

[47] Road Truck 14 Diesel Euro5 , 0.5 , Freeflow, Motorway 0.001

to 26t

[47] Road Truck 14 Diesel 80-ties , 0.5 , Freeflow, Motorway 0.001

to 28t

[47] Road Truck 14 Diesel Eurol , 0.5 , Freeflow, Motorway 0.001

to 28t

[47] Road Truck 14 Diesel Euro2 , 0.5 , Freeflow, Motorway 0.001

to 28t

[47] Road Truck 14 Diesel Euro3 , 0.5 , Freeflow, Motorway 0.001

to 28t

[47] Road Truck 14 Diesel Euro4 , 0.5 , Freeflow, Motorway 0.001

to 28t

[47] Road Truck 14 Diesel Euro5 , 0.5 , Freeflow, Motorway 0.001

to 28t

[47] Road Truck 28 Diesel 80-ties , 0.5 , Freeflow, Motorway 0.001

to 40t

[47] Road Truck 28 Diesel Eurol , 0.5 , Freeflow, Motorway 0.001

to 40t

[47] Road Truck 28 Diesel Euro2 , 0.5 , Freeflow, Motorway 0.001

to 40t
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[47] Road Truck 28 Diesel Euro3 , 0.5 , Freeflow, Motorway 0.001

to 40t

[47] Road Truck 28 Diesel Euro4 , 0.5 , Freeflow, Motorway 0.001

to 40t

[47] Road Truck 28 Diesel Euro5 , 0.5 , Freeflow, Motorway 0.001

to 40t

[47] Road Truck 40 Diesel 80-ties , 0.5 , Freeflow, Motorway 0.001

to 50t

[47] Road Truck 40 Diesel Eurol , 0.5 , Freeflow, Motorway 0.001

to 50t

[47] Road Truck 40 Diesel Euro2 , 0.5 , Freeflow, Motorway 0.001

to 50t

[47] Road Truck 40 Diesel Euro3 , 0.5 , Freeflow, Motorway 0.001

to 50t

[47] Road Truck 40 Diesel Euro4 , 0.5 , Freeflow, Motorway 0.001

to 50t

[47] Road Truck 40 Diesel Euro5 , 0.5 , Freeflow, Motorway 0.001

to 50t

[47] Road Truck 50 Diesel 80-ties , 0.5 , Freeflow, Motorway 0.001

to 60t

[47] Road Truck 50 Diesel Eurol , 0.5 , Freeflow, Motorway 0.001

to 60t

[47] Road Truck 50 Diesel Euro2 , 0.5 , Freeflow, Motorway 0.001

to 60t

[47] Road Truck 50 Diesel Euro3 , 0.5 , Freeflow, Motorway 0.001

to 60t

[47] Road Truck 50 Diesel Euro4 , 0.5 , Freeflow, Motorway 0.001

to 60t

[47] Road Truck 50 Diesel Euro5 , 0.5 , Freeflow, Motorway 0.001

to 60t

[47] Road Truck < Diesel 80-ties , 0.5, Saturated, Motorway 0.001

7.5t

[47] Road Truck < Diesel Eurol , 0.5 , Saturated, Motorway 0.001

7.5t
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[47] Road Truck < Diesel Euro2 , 0.5 , Saturated, Motorway 0.001

7.5t

[47] Road Truck < Diesel Euro3 , 0.5 , Saturated, Motorway 0.001

7.5t

[47] Road Truck < Diesel Euro4 , 0.5 , Saturated, Motorway 0.001

7.5t

[47] Road Truck < Diesel Euro5 , 0.5 , Saturated, Motorway 0.001

7.5t

[47] Road Truck 7.5 Diesel 80-ties , 0.5, Saturated, Motorway 0.001

to 14t

[47] Road Truck 7.5 Diesel Eurol , 0.5 , Saturated, Motorway 0.001

to 14t

[47] Road Truck 7.5 Diesel Euro2 , 0.5 , Saturated, Motorway 0.001

to 14t

[47] Road Truck 7.5 Diesel Euro3 , 0.5 , Saturated, Motorway 0.001

to 14t

[47] Road Truck 7.5 Diesel Euro4 , 0.5 , Saturated, Motorway 0.001

to 14t

[47] Road Truck 7.5 Diesel Euro5 , 0.5 , Saturated, Motorway 0.001

to 14t

[47] Road Truck 14 Diesel 80-ties , 0.5 , Saturated, Motorway 0.001

to 26t

[47] Road Truck 14 Diesel Eurol , 0.5 , Saturated, Motorway 0.001

to 26t

[47] Road Truck 14 Diesel Euro2 , 0.5 , Saturated, Motorway 0.001

to 26t

[47] Road Truck 14 Diesel Euro3 , 0.5 , Saturated, Motorway 0.001

to 26t

[47] Road Truck 14 Diesel Euro4 , 0.5 , Saturated, Motorway 0.001

to 26t

[47] Road Truck 14 Diesel Euro5 , 0.5 , Saturated, Motorway 0.001

to 26t

[47] Road Truck 14 Diesel 80-ties , 0.5 , Saturated, Motorway 0.001

to 28t
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[47] Road Truck 14 Diesel Eurol , 0.5 , Saturated, Motorway 0.001

to 28t

[47] Road Truck 14 Diesel Euro2 , 0.5 , Saturated, Motorway 0.001

to 28t

[47] Road Truck 14 Diesel Euro3 , 0.5 , Saturated, Motorway 0.001

to 28t

[47] Road Truck 14 Diesel Euro4 , 0.5 , Saturated, Motorway 0.001

to 28t

[47] Road Truck 14 Diesel Euro5 , 0.5 , Saturated, Motorway 0.001

to 28t

[47] Road Truck 28 Diesel 80-ties , 0.5 , Saturated, Motorway 0.001

to 40t

[47] Road Truck 28 Diesel Eurol , 0.5 , Saturated, Motorway 0.001

to 40t

[47] Road Truck 28 Diesel Euro2 , 0.5 , Saturated, Motorway 0.001

to 40t

[47] Road Truck 28 Diesel Euro3 , 0.5 , Saturated, Motorway 0.001

to 40t

[47] Road Truck 28 Diesel Euro4 , 0.5 , Saturated, Motorway 0.001

to 40t

[47] Road Truck 28 Diesel Euro5 , 0.5 , Saturated, Motorway 0.001

to 40t

[47] Road Truck 40 Diesel 80-ties , 0.5, Saturated, Motorway 0.001

to 50t

[47] Road Truck 40 Diesel Eurol , 0.5 , Saturated, Motorway 0.001

to 50t

[47] Road Truck 40 Diesel Euro2 , 0.5 , Saturated, Motorway 0.001

to 50t

[47] Road Truck 40 Diesel Euro3 , 0.5 , Saturated, Motorway 0.001

to 50t

[47] Road Truck 40 Diesel Euro4 , 0.5 , Saturated, Motorway 0.001

to 50t

[47] Road Truck 40 Diesel Euro5 , 0.5 , Saturated, Motorway 0.001

to 50t
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[47] Road Truck 50 Diesel 80-ties , 0.5 , Saturated, Motorway 0.001

to 60t

[47] Road Truck 50 Diesel Eurol , 0.5 , Saturated, Motorway 0.001

to 60t

[47] Road Truck 50 Diesel Euro2 , 0.5 , Saturated, Motorway 0.001

to 60t

[47] Road Truck 50 Diesel Euro3 , 0.5, Saturated, Motorway 0.001

to 60t

[47] Road Truck 50 Diesel Euro4 , 0.5, Saturated, Motorway 0.001

to 60t

[47] Road Truck 50 Diesel Euro5 , 0.5 , Saturated, Motorway 0.001

to 60t

[47] Road Truck < Diesel 80-ties , 0.5 , Stop and go, Motor- 0.002

7.5t way

[47] Road Truck < Diesel Eurol , 0.5 , Stop and go, Motor- 0.001

7.5t way

[47] Road Truck < Diesel Euro2 , 0.5 , Stop and go, Motor- 0.001

7.5t way

[47] Road Truck < Diesel Euro3 , 0.5 , Stop and go, Motor- 0.001

7.5t way

[47] Road Truck < Diesel Euro4 , 0.5 , Stop and go, Motor- 0.001

7.5t way

[47] Road Truck < Diesel Euro5 , 0.5 , Stop and go, Motor- 0.001

7.5t way

[47] Road Truck 7.5 Diesel 80-ties , 0.5 , Stop and go, Motor- 0.003

to 14t way

[47] Road Truck 7.5 Diesel Eurol , 0.5 , Stop and go, Motor- 0.002

to 14t way

[47] Road Truck 7.5 Diesel Euro2 , 0.5 , Stop and go, Motor- 0.002

to 14t way

[47] Road Truck 7.5 Diesel Euro3 , 0.5 , Stop and go, Motor- 0.002

to 14t way

[47] Road Truck 7.5 Diesel Euro4 , 0.5 , Stop and go, Motor- 0.001

to 14t way
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[47] Road Truck 7.5 Diesel Euro5 , 0.5 , Stop and go, Motor- 0.001

to 14t way

[47] Road Truck 14 Diesel 80-ties , 0.5 , Stop and go, Motor- 0.002

to 26t way

[47] Road Truck 14 Diesel Eurol , 0.5 , Stop and go, Motor- 0.001

to 26t way

[47] Road Truck 14 Diesel Euro2 , 0.5 , Stop and go, Motor- 0.001

to 26t way

[47] Road Truck 14 Diesel Euro3 , 0.5 , Stop and go, Motor- 0.001

to 26t way

[47] Road Truck 14 Diesel Euro4 , 0.5 , Stop and go, Motor- 0.001

to 26t way

[47] Road Truck 14 Diesel Euro5 , 0.5 , Stop and go, Motor- 0.001

to 26t way

[47] Road Truck 14 Diesel 80-ties , 0.5 , Stop and go, Motor- 0.002

to 28t way

[47] Road Truck 14 Diesel Eurol , 0.5 , Stop and go, Motor- 0.001

to 28t way

[47] Road Truck 14 Diesel Euro2 , 0.5 , Stop and go, Motor- 0.001

to 28t way

[47] Road Truck 14 Diesel Euro3 , 0.5 , Stop and go, Motor- 0.001

to 28t way

[47] Road Truck 14 Diesel Euro4 , 0.5 , Stop and go, Motor- 0.001

to 28t way

[47] Road Truck 14 Diesel Euro5 , 0.5 , Stop and go, Motor- 0.001

to 28t way

[47] Road Truck 28 Diesel 80-ties , 0.5 , Stop and go, Motor- 0.001

to 40t way

[47] Road Truck 28 Diesel Eurol , 0.5 , Stop and go, Motor- 0.001

to 40t way

[47] Road Truck 28 Diesel Euro2 , 0.5 , Stop and go, Motor- 0.001

to 40t way

[47] Road Truck 28 Diesel Euro3 , 0.5 , Stop and go, Motor- 0.001

to 40t way
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[47] Road Truck 28 Diesel Euro4 , 0.5 , Stop and go, Motor- 0.001

to 40t way

[47] Road Truck 28 Diesel Euro5 , 0.5 , Stop and go, Motor- 0.001

to 40t way

[47] Road Truck 40 Diesel 80-ties , 0.5 , Stop and go, Motor- 0.001

to 50t way

[47] Road Truck 40 Diesel Eurol , 0.5 , Stop and go, Motor- 0.001

to 50t way

[47] Road Truck 40 Diesel Euro2 , 0.5 , Stop and go, Motor- 0.001

to 50t way

[47] Road Truck 40 Diesel Euro3 , 0.5 , Stop and go, Motor- 0.001

to 50t way

[47] Road Truck 40 Diesel Euro4 , 0.5 , Stop and go, Motor- 0.001

to 50t way

[47] Road Truck 40 Diesel Euro5 , 0.5 , Stop and go, Motor- 0.001

to 50t way

[47] Road Truck 50 Diesel 80-ties , 0.5 , Stop and go, Motor- 0.001

to 60t way

[47] Road Truck 50 Diesel Eurol , 0.5 , Stop and go, Motor- 0.001

to 60t way

[47] Road Truck 50 Diesel Euro2 , 0.5 , Stop and go, Motor- 0.001

to 60t way

[47] Road Truck 50 Diesel Euro3 , 0.5 , Stop and go, Motor- 0.001

to 60t way

[47] Road Truck 50 Diesel Euro4 , 0.5 , Stop and go, Motor- 0.001

to 60t way

[47] Road Truck 50 Diesel Euro5 , 0.5 , Stop and go, Motor- 0.001

to 60t way

[47] Road Truck < Diesel 80-ties , 0.5, Freeflow, Urban Road 0.001

7.5t

[47] Road Truck < Diesel Eurol , 0.5 , Freeflow, Urban Road 0.001

7.5t

[47] Road Truck < Diesel Euro2 , 0.5 , Freeflow, Urban Road 0.001

7.5t
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[47] Road Truck < Diesel Euro3 , 0.5 , Freeflow, Urban Road 0.001

7.5t

[47] Road Truck < Diesel Euro4 , 0.5 , Freeflow, Urban Road 0.001

7.5t

[47] Road Truck < Diesel Euro5 , 0.5 , Freeflow, Urban Road 0.001

7.5t

[47] Road Truck 7.5 Diesel 80-ties, 0.5 , Freeflow, Urban Road 0.001

to 14t

[47] Road Truck 7.5 Diesel Eurol , 0.5 , Freeflow, Urban Road 0.001

to 14t

[47] Road Truck 7.5 Diesel Euro2 , 0.5 , Freeflow, Urban Road 0.001

to 14t

[47] Road Truck 7.5 Diesel Euro3 , 0.5 , Freeflow, Urban Road 0.001

to 14t

[47] Road Truck 7.5 Diesel Euro4, 0.5 , Freeflow, Urban Road 0.001

to 14t

[47] Road Truck 7.5 Diesel Euro5 , 0.5 , Freeflow, Urban Road 0.001

to 14t

[47] Road Truck 14 Diesel 80-ties, 0.5 , Freeflow, Urban Road 0.001

to 26t

[47] Road Truck 14 Diesel Euro1 , 0.5 , Freeflow, Urban Road 0.001

to 26t

[47] Road Truck 14 Diesel Euro2 , 0.5 , Freeflow, Urban Road 0.001

to 26t

[47] Road Truck 14 Diesel Euro3 , 0.5 , Freeflow, Urban Road 0.001

to 26t

[47] Road Truck 14 Diesel Euro4 , 0.5 , Freeflow, Urban Road 0.001

to 26t

[47] Road Truck 14 Diesel Euro5 , 0.5 , Freeflow, Urban Road 0.001

to 26t

[47] Road Truck 14 Diesel 80-ties, 0.5 , Freeflow, Urban Road 0.001

to 28t

[47] Road Truck 14 Diesel Euro1 , 0.5 , Freeflow, Urban Road 0.001

to 28t
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[47] Road Truck 14 Diesel Euro2 , 0.5 , Freeflow, Urban Road 0.001

to 28t

[47] Road Truck 14 Diesel Euro3 , 0.5, Freeflow, Urban Road 0.001

to 28t

[47] Road Truck 14 Diesel Euro4 , 0.5 , Freeflow, Urban Road 0.001

to 28t

[47] Road Truck 14 Diesel Euro5 , 0.5 , Freeflow, Urban Road 0.001

to 28t

[47] Road Truck 28 Diesel 80-ties , 0.5 , Freeflow, Urban Road 0.001

to 40t

[47] Road Truck 28 Diesel Eurol , 0.5 , Freeflow, Urban Road 0.001

to 40t

[47] Road Truck 28 Diesel Euro2 , 0.5 , Freeflow, Urban Road 0.001

to 40t

[47] Road Truck 28 Diesel Euro3 , 0.5 , Freeflow, Urban Road 0.001

to 40t

[47] Road Truck 28 Diesel Euro4 , 0.5 , Freeflow, Urban Road 0.001

to 40t

[47] Road Truck 28 Diesel Euro5 , 0.5 , Freeflow, Urban Road 0.001

to 40t

[47] Road Truck 40 Diesel 80-ties, 0.5 , Freeflow, Urban Road 0.001

to 50t

[47] Road Truck 40 Diesel Eurol , 0.5 , Freeflow, Urban Road 0.001

to 50t

[47] Road Truck 40 Diesel Euro2 , 0.5 , Freeflow, Urban Road 0.001

to 50t

[47] Road Truck 40 Diesel Euro3 , 0.5 , Freeflow, Urban Road 0.001

to 50t

[47] Road Truck 40 Diesel Euro4, 0.5 , Freeflow, Urban Road 0.001

to 50t

[47] Road Truck 40 Diesel Euro5 , 0.5 , Freeflow, Urban Road 0.001

to 50t

[47] Road Truck 50 Diesel 80-ties, 0.5 , Freeflow, Urban Road 0.001

to 60t
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[47] Road Truck 50 Diesel Eurol , 0.5 , Freeflow, Urban Road 0.001

to 60t

[47] Road Truck 50 Diesel Euro2 , 0.5 , Freeflow, Urban Road 0.001

to 60t

[47] Road Truck 50 Diesel Euro3 , 0.5 , Freeflow, Urban Road 0.001

to 60t

[47] Road Truck 50 Diesel Euro4 , 0.5 , Freeflow, Urban Road 0.001

to 60t

[47] Road Truck 50 Diesel Euro5 , 0.5 , Freeflow, Urban Road 0.001

to 60t

[47] Road Truck < Diesel 80-ties , 0.5 , Saturated, Urban 0.002

7.5t Road

[47] Road Truck < Diesel Eurol , 0.5 , Saturated, Urban 0.001

7.5t Road

[47] Road Truck < Diesel Euro2 , 0.5 , Saturated, Urban 0.001

7.5t Road

[47] Road Truck < Diesel Euro3 , 0.5 , Saturated, Urban 0.001

7.5t Road

[47] Road Truck < Diesel Euro4 , 0.5 , Saturated, Urban 0.001

7.5t Road

[47] Road Truck < Diesel Euro5 , 0.5 , Saturated, Urban 0.001

7.5t Road

[47] Road Truck 7.5 Diesel 80-ties , 0.5 , Saturated, Urban 0.002

to 14t Road

[47] Road Truck 7.5 Diesel Eurol , 0.5 , Saturated, Urban 0.001

to 14t Road

[47] Road Truck 7.5 Diesel Euro2 , 0.5 , Saturated, Urban 0.001

to 14t Road

[47] Road Truck 7.5 Diesel Euro3 , 0.5 , Saturated, Urban 0.001

to 14t Road

[47] Road Truck 7.5 Diesel Euro4 , 0.5 , Saturated, Urban 0.001

to 14t Road

[47] Road Truck 7.5 Diesel Euro5 , 0.5 , Saturated, Urban 0.001

to 14t Road
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[47] Road Truck 14 Diesel 80-ties , 0.5 , Saturated, Urban 0.001

to 26t Road

[47] Road Truck 14 Diesel Eurol , 0.5 , Saturated, Urban 0.001

to 26t Road

[47] Road Truck 14 Diesel Euro2 , 0.5 , Saturated, Urban 0.001

to 26t Road

[47] Road Truck 14 Diesel Euro3 , 0.5 , Saturated, Urban 0.001

to 26t Road

[47] Road Truck 14 Diesel Euro4 , 0.5 , Saturated, Urban 0.001

to 26t Road

[47] Road Truck 14 Diesel Euro5 , 0.5 , Saturated, Urban 0.001

to 26t Road

[47] Road Truck 14 Diesel 80-ties , 0.5 , Saturated, Urban 0.001

to 28t Road

[47] Road Truck 14 Diesel Eurol , 0.5 , Saturated, Urban 0.001

to 28t Road

[47] Road Truck 14 Diesel Euro2 , 0.5 , Saturated, Urban 0.001

to 28t Road

[47] Road Truck 14 Diesel Euro3 , 0.5 , Saturated, Urban 0.001

to 28t Road

[47] Road Truck 14 Diesel Euro4 , 0.5 , Saturated, Urban 0.001

to 28t Road

[47] Road Truck 14 Diesel Euro5 , 0.5 , Saturated, Urban 0.001

to 28t Road

[47] Road Truck 28 Diesel 80-ties , 0.5 , Saturated, Urban 0.001

to 40t Road

[47] Road Truck 28 Diesel Eurol , 0.5 , Saturated, Urban 0.001

to 40t Road

[47] Road Truck 28 Diesel Euro2 , 0.5 , Saturated, Urban 0.001

to 40t Road

[47] Road Truck 28 Diesel Euro3 , 0.5 , Saturated, Urban 0.001

to 40t Road

[47] Road Truck 28 Diesel Euro4 , 0.5 , Saturated, Urban 0.001

to 40t Road
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[47] Road Truck 28 Diesel Euro5 , 0.5 , Saturated, Urban 0.001

to 40t Road

[47] Road Truck 40 Diesel 80-ties , 0.5 , Saturated, Urban 0.001

to 50t Road

[47] Road Truck 40 Diesel Eurol , 0.5 , Saturated, Urban 0.001

to 50t Road

[47] Road Truck 40 Diesel Euro2 , 0.5 , Saturated, Urban 0.001

to 50t Road

[47] Road Truck 40 Diesel Euro3 , 0.5 , Saturated, Urban 0.001

to 50t Road

[47] Road Truck 40 Diesel Euro4 , 0.5 , Saturated, Urban 0.001

to 50t Road

[47] Road Truck 40 Diesel Euro5 , 0.5 , Saturated, Urban 0.001

to 50t Road

[47] Road Truck 50 Diesel 80-ties , 0.5 , Saturated, Urban 0.001

to 60t Road

[47] Road Truck 50 Diesel Eurol , 0.5 , Saturated, Urban 0.001

to 60t Road

[47] Road Truck 50 Diesel Euro2 , 0.5 , Saturated, Urban 0.001

to 60t Road

[47] Road Truck 50 Diesel Euro3 , 0.5 , Saturated, Urban 0.001

to 60t Road

[47] Road Truck 50 Diesel Euro4 , 0.5 , Saturated, Urban 0.001

to 60t Road

[47] Road Truck 50 Diesel Euro5 , 0.5 , Saturated, Urban 0.001

to 60t Road

[47] Road Truck < Diesel 80-ties , 0.5 , Stop and go, Urban 0.002

7.5t Road

[47] Road Truck < Diesel Eurol , 0.5 , Stop and go, Urban 0.001

7.5t Road

[47] Road Truck < Diesel Euro2 , 0.5 , Stop and go, Urban 0.001

7.5t Road

[47] Road Truck < Diesel Euro3 , 0.5 , Stop and go, Urban 0.001

7.5t Road
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[47] Road Truck < Diesel Euro4 , 0.5 , Stop and go, Urban 0.001

7.5t Road

[47] Road Truck < Diesel Euro5 , 0.5 , Stop and go, Urban 0.001

7.5t Road

[47] Road Truck 7.5 Diesel 80-ties , 0.5 , Stop and go, Urban 0.003

to 14t Road

[47] Road Truck 7.5 Diesel Eurol , 0.5 , Stop and go, Urban 0.002

to 14t Road

[47] Road Truck 7.5 Diesel Euro2 , 0.5 , Stop and go, Urban 0.002

to 14t Road

[47] Road Truck 7.5 Diesel Euro3 , 0.5 , Stop and go, Urban 0.002

to 14t Road

[47] Road Truck 7.5 Diesel Euro4 , 0.5 , Stop and go, Urban 0.001

to 14t Road

[47] Road Truck 7.5 Diesel Euro5 , 0.5 , Stop and go, Urban 0.001

to 14t Road

[47] Road Truck 14 Diesel 80-ties , 0.5 , Stop and go, Urban 0.002

to 26t Road

[47] Road Truck 14 Diesel Eurol , 0.5 , Stop and go, Urban 0.002

to 26t Road

[47] Road Truck 14 Diesel Euro2 , 0.5 , Stop and go, Urban 0.002

to 26t Road

[47] Road Truck 14 Diesel Euro3 , 0.5 , Stop and go, Urban 0.001

to 26t Road

[47] Road Truck 14 Diesel Euro4 , 0.5 , Stop and go, Urban 0.001

to 26t Road

[47] Road Truck 14 Diesel Euro5 , 0.5 , Stop and go, Urban 0.001

to 26t Road

[47] Road Truck 14 Diesel 80-ties , 0.5 , Stop and go, Urban 0.002

to 28t Road

[47] Road Truck 14 Diesel Eurol , 0.5 , Stop and go, Urban 0.002

to 28t Road

[47] Road Truck 14 Diesel Euro2 , 0.5 , Stop and go, Urban 0.001

to 28t Road
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[47] Road Truck 14 Diesel Euro3 , 0.5 , Stop and go, Urban 0.001

to 28t Road

[47] Road Truck 14 Diesel Euro4 , 0.5 , Stop and go, Urban 0.001

to 28t Road

[47] Road Truck 14 Diesel Euro5 , 0.5 , Stop and go, Urban 0.001

to 28t Road

[47] Road Truck 28 Diesel 80-ties , 0.5 , Stop and go, Urban 0.002

to 40t Road

[47] Road Truck 28 Diesel Eurol , 0.5 , Stop and go, Urban 0.001

to 40t Road

[47] Road Truck 28 Diesel Euro2 , 0.5 , Stop and go, Urban 0.001

to 40t Road

[47] Road Truck 28 Diesel Euro3 , 0.5 , Stop and go, Urban 0.001

to 40t Road

[47] Road Truck 28 Diesel Euro4 , 0.5 , Stop and go, Urban 0.001

to 40t Road

[47] Road Truck 28 Diesel Euro5 , 0.5 , Stop and go, Urban 0.001

to 40t Road

[47] Road Truck 40 Diesel 80-ties , 0.5 , Stop and go, Urban 0.001

to 50t Road

[47] Road Truck 40 Diesel Eurol , 0.5 , Stop and go, Urban 0.001

to 50t Road

[47] Road Truck 40 Diesel Euro2 , 0.5 , Stop and go, Urban 0.001

to 50t Road

[47] Road Truck 40 Diesel Euro3 , 0.5 , Stop and go, Urban 0.001

to 50t Road

[47] Road Truck 40 Diesel Euro4 , 0.5 , Stop and go, Urban 0.001

to 50t Road

[47] Road Truck 40 Diesel Euro5 , 0.5 , Stop and go, Urban 0.001

to 50t Road

[47] Road Truck 50 Diesel 80-ties , 0.5 , Stop and go, Urban 0.001

to 60t Road

[47] Road Truck 50 Diesel Eurol , 0.5 , Stop and go, Urban 0.001

to 60t Road

174



[47] Road Truck 50 Diesel Eur.2 , 0.5 , Stop and go, Urban 0.001

to 60t Road

[47] Road Truck 50 Diesel Euro3 , 0.5 , Stop and go, Urban 0.001

to 60t Road

[47] Road Truck 50 Diesel Euro4 , 0.5 , Stop and go, Urban 0.001

to 60t Road

[47] Road Truck 50 Diesel Euro5 , 0.5 , Stop and go, Urban 0.001

to 60t Road

[47] Road Truck < Diesel 80-ties , 0.5 , Freeflow, Rural Road 0.001

7.5t

[47] Road Truck < Diesel Eurol , 0.5 , Freeflow, Rural Road 0.001

7.5t

[47] Road Truck < Diesel Euro2 , 0.5 , Freeflow, Rural Road 0.001

7.5t

[47] Road Truck < Diesel Euro3 , 0.5 , Freeflow, Rural Road 0.001

7.5t

[47] Road Truck < Diesel Euro4 , 0.5 , Freeflow, Rural Road 0.001

7.5t

[47] Road Truck < Diesel Euro5 , 0.5 , Freeflow, Rural Road 0.001

7.5t

[47] Road Truck 7.5 Diesel 80-ties , 0.5 , Freeflow, Rural Road 0.001

to 14t

[47] Road Truck 7.5 Diesel Eurol , 0.5 , Freeflow, Rural Road 0.001

to 14t

[47] Road Truck 7.5 Diesel Euro2 , 0.5 , Freeflow, Rural Road 0.001

to 14t

[47] Road Truck 7.5 Diesel Euro3 , 0.5 , Freeflow, Rural Road 0.001

to 14t

[47] Road Truck 7.5 Diesel Euro4 , 0.5 , Freeflow, Rural Road 0.001

to 14t

[47] Road Truck 7.5 Diesel Euro5 , 0.5 , Freeflow, Rural Road 0.001

to 14t

[47] Road Truck 14 Diesel 80-ties , 0.5 , Freeflow, Rural Road 0.001

to 26t
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[47] Road Truck 14 Diesel Eurol , 0.5 , Freeflow, Rural Road 0.001

to 26t

[47] Road Truck 14 Diesel Euro2 , 0.5 , Freeflow, Rural Road 0.001

to 26t

[47] Road Truck 14 Diesel Euro3 , 0.5 , Freeflow, Rural Road 0.001

to 26t

[47] Road Truck 14 Diesel Euro4 , 0.5 , Freeflow, Rural Road 0.001

to 26t

[47] Road Truck 14 Diesel Euro5 , 0.5 , Freeflow, Rural Road 0.001

to 26t

[47] Road Truck 14 Diesel 80-ties , 0.5 , Freeflow, Rural Road 0.001

to 28t

[47] Road Truck 14 Diesel Eurol , 0.5 , Freeflow, Rural Road 0.001

to 28t

[47] Road Truck 14 Diesel Euro2 , 0.5 , Freeflow, Rural Road 0.001

to 28t

[47] Road Truck 14 Diesel Euro3 , 0.5 , Freeflow, Rural Road 0.001

to 28t

[47] Road Truck 14 Diesel Euro4 , 0.5 , Freeflow, Rural Road 0.001

to 28t

[47] Road Truck 14 Diesel Euro5 , 0.5 , Freeflow, Rural Road 0.001

to 28t

[47] Road Truck 28 Diesel 80-ties , 0.5 , Freeflow, Rural Road 0.001

to 40t

[47] Road Truck 28 Diesel Eurol , 0.5 , Freeflow, Rural Road 0.001

to 40t

[47] Road Truck 28 Diesel Euro2 , 0.5 , Freeflow, Rural Road 0.001

to 40t

[47] Road Truck 28 Diesel Euro3 , 0.5 , Freeflow, Rural Road 0.001

to 40t

[47] Road Truck 28 Diesel Euro4 , 0.5 , Freeflow, Rural Road 0.001

to 40t

[47] Road Truck 28 Diesel Euro5 , 0.5 , Freeflow, Rural Road 0.001

to 40t
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[47] Road Truck 40 Diesel 80-ties , 0.5 , Freeflow, Rural Road 0.001

to 50t

[47] Road Truck 40 Diesel Euro1 , 0.5 , Freeflow, Rural Road 0.001

to 50t

[47] Road Truck 40 Diesel Euro2 , 0.5 , Freeflow, Rural Road 0.001

to 50t

[47] Road Truck 40 Diesel Euro3 , 0.5 , Freeflow, Rural Road 0.001

to 50t

[47] Road Truck 40 Diesel Euro4 , 0.5 , Freeflow, Rural Road 0.001

to 50t

[47] Road Truck 40 Diesel Euro5 , 0.5 , Freeflow, Rural Road 0.001

to 50t

[47] Road Truck 50 Diesel 80-ties , 0.5 , Freeflow, Rural Road 0.001

to 60t

[47] Road Truck 50 Diesel Eurol , 0.5 , Freeflow, Rural Road 0.001

to 60t

[47] Road Truck 50 Diesel Euro2 , 0.5 , Freeflow, Rural Road 0.001

to 60t

[47] Road Truck 50 Diesel Euro3 , 0.5 , Freeflow, Rural Road 0.001

to 60t

[47] Road Truck 50 Diesel Euro4 , 0.5 , Freeflow, Rural Road 0.001

to 60t

[47] Road Truck 50 Diesel Euro5 , 0.5 , Freeflow, Rural Road 0.001

to 60t

[47] Road Truck < Diesel 80-ties , 0.5 , Saturated, Rural 0.001

7.5t Road

[47] Road Truck < Diesel Eurol , 0.5 , Saturated, Rural 0.001

7.5t Road

[47] Road Truck < Diesel Euro2 , 0.5 , Saturated, Rural 0.001

7.5t Road

[47] Road Truck < Diesel Euro3 , 0.5 , Saturated, Rural 0.001

7.5t Road

[47] Road Truck < Diesel Euro4 , 0.5 , Saturated, Rural 0.001

7.5t Road
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[47] Road Truck < Diesel Euro5 , 0.5 , Saturated, Rural 0.001

7.5t Road

[47] Road Truck 7.5 Diesel 80-ties , 0.5 , Saturated, Rural 0.001

to 14t Road

[47] Road Truck 7.5 Diesel Eurol , 0.5 , Saturated, Rural 0.001

to 14t Road

[47] Road Truck 7.5 Diesel Euro2 , 0.5 , Saturated, Rural 0.001

to 14t Road

[47] Road Truck 7.5 Diesel Euro3 , 0.5 , Saturated, Rural 0.001

to 14t Road

[47] Road Truck 7.5 Diesel Euro4 , 0.5 , Saturated, Rural 0.001

to 14t Road

[47] Road Truck 7.5 Diesel Euro5 , 0.5 , Saturated, Rural 0.001

to 14t Road

[47] Road Truck 14 Diesel 80-ties , 0.5 , Saturated, Rural 0.001

to 26t Road

[47] Road Truck 14 Diesel Eurol , 0.5 , Saturated, Rural 0.001

to 26t Road

[47] Road Truck 14 Diesel Euro2 , 0.5 , Saturated, Rural 0.001

to 26t Road

[47] Road Truck 14 Diesel Euro3 , 0.5 , Saturated, Rural 0.001

to 26t Road

[47] Road Truck 14 Diesel Euro4 , 0.5 , Saturated, Rural 0.001

to 26t Road

[47] Road Truck 14 Diesel Euro5 , 0.5 , Saturated, Rural 0.001

to 26t Road

[47] Road Truck 14 Diesel 80-ties , 0.5 , Saturated, Rural 0.001

to 28t Road

[47] Road Truck 14 Diesel Eurol , 0.5 , Saturated, Rural 0.001

to 28t Road

[47] Road Truck 14 Diesel Euro2 , 0.5 , Saturated, Rural 0.001

to 28t Road

[47] Road Truck 14 Diesel Euro3 , 0.5 , Saturated, Rural 0.001

to 28t Road
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[47] Road Truck 14 Diesel Euro4 , 0.5 , Saturated, Rural 0.001

to 28t Road

[47] Road Truck 14 Diesel Euro5 , 0.5 , Saturated, Rural 0.001

to 28t Road

[47] Road Truck 28 Diesel 80-ties , 0.5 , Saturated, Rural 0.001

to 40t Road

[47] Road Truck 28 Diesel Eurol , 0.5 , Saturated, Rural 0.001

to 40t Road

[47] Road Truck 28 Diesel Euro2 , 0.5 , Saturated, Rural 0.001

to 40t Road

[47] Road Truck 28 Diesel Euro3 , 0.5 , Saturated, Rural 0.001

to 40t Road

[47] Road Truck 28 Diesel Euro4 , 0.5 , Saturated, Rural 0.001

to 40t Road

[47] Road Truck 28 Diesel Euro5 , 0.5 , Saturated, Rural 0.001

to 40t Road

[47] Road Truck 40 Diesel 80-ties , 0.5 , Saturated, Rural 0.001

to 50t Road

[47] Road Truck 40 Diesel Eurol , 0.5 , Saturated, Rural 0.001

to 50t Road

[47] Road Truck 40 Diesel Euro2 , 0.5 , Saturated, Rural 0.001

to 50t Road

[47] Road Truck 40 Diesel Euro3 , 0.5 , Saturated, Rural 0.001

to 50t Road

[47] Road Truck 40 Diesel Euro4 , 0.5 , Saturated, Rural 0.001

to 50t Road

[47] Road Truck 40 Diesel Euro5 , 0.5 , Saturated, Rural 0.001

to 50t Road

[47] Road Truck 50 Diesel 80-ties , 0.5 , Saturated, Rural 0.001

to 60t Road

[47] Road Truck 50 Diesel Eurol , 0.5 , Saturated, Rural 0.001

to 60t Road

[47] Road Truck 50 Diesel Euro2 , 0.5 , Saturated, Rural 0.001

to 60t Road
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[47] Road Truck 50 Diesel Euro3 , 0.5 , Saturated, Rural 0.001

to 60t Road

[47] Road Truck 50 Diesel Euro4 , 0.5 , Saturated, Rural 0.001

to 60t Road

[47] Road Truck 50 Diesel Euro5 , 0.5 , Saturated, Rural 0.001

to 60t Road

[47] Road Truck < Diesel 80-ties , 0.5 , Stop and go, Rural 0.002

7.5t Road

[47] Road Truck < Diesel Eurol , 0.5 , Stop and go, Rural 0.001

7.5t Road

[47] Road Truck < Diesel Euro2 , 0.5 , Stop and go, Rural 0.001

7.5t Road

[47] Road Truck < Diesel Euro3 , 0.5 , Stop and go, Rural 0.001

7.5t Road

[47] Road Truck < Diesel Euro4 , 0.5 , Stop and go, Rural 0.001

7.5t Road

[47] Road Truck < Diesel Euro5 , 0.5 , Stop and go, Rural 0.001

7.5t Road

[47] Road Truck 7.5 Diesel 80-ties , 0.5 , Stop and go, Rural 0.003

to 14t Road

[47] Road Truck 7.5 Diesel Eurol , 0.5 , Stop and go, Rural 0.002

to 14t Road

[47] Road Truck 7.5 Diesel Euro2 , 0.5 , Stop and go, Rural 0.002

to 14t Road

[47] Road Truck 7.5 Diesel Euro3 , 0.5 , Stop and go, Rural 0.002

to 14t Road

[47] Road Truck 7.5 Diesel Euro4 , 0.5 , Stop and go, Rural 0.001

to 14t Road

[47] Road Truck 7.5 Diesel Euro5 , 0.5 , Stop and go, Rural 0.001

to 14t Road

[47] Road Truck 14 Diesel 80-ties , 0.5 , Stop and go, Rural 0.002

to 26t Road

[47] Road Truck 14 Diesel Eurol , 0.5 , Stop and go, Rural 0.001

to 26t Road
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[47] Road Truck 14 Diesel Euro2 , 0.5 , Stop and go, Rural 0.001

to 26t Road

[47] Road Truck 14 Diesel Euro3 , 0.5 , Stop and go, Rural 0.001

to 26t Road

[47] Road Truck 14 Diesel Euro4 , 0.5 , Stop and go, Rural 0.001

to 26t Road

[47] Road Truck 14 Diesel Euro5 , 0.5 , Stop and go, Rural 0.001

to 26t Road

[47] Road Truck 14 Diesel 80-ties , 0.5 , Stop and go, Rural 0.002

to 28t Road

[47] Road Truck 14 Diesel Eurol , 0.5 , Stop and go, Rural 0.001

to 28t Road

[47] Road Truck 14 Diesel Euro2 , 0.5 , Stop and go, Rural 0.001

to 28t Road

[47] Road Truck 14 Diesel Euro3 , 0.5 , Stop and go, Rural 0.001

to 28t Road

[47] Road Truck 14 Diesel Euro4 , 0.5 , Stop and go, Rural 0.001

to 28t Road

[47] Road Truck 14 Diesel Euro5 , 0.5 , Stop and go, Rural 0.001

to 28t Road

[47] Road Truck 28 Diesel 80-ties , 0.5 , Stop and go, Rural 0.002

to 40t Road

[47] Road Truck 28 Diesel Eurol , 0.5 , Stop and go, Rural 0.001

to 40t Road

[47] Road Truck 28 Diesel Euro2 , 0.5 , Stop and go, Rural 0.001

to 40t Road

[47] Road Truck 28 Diesel Euro3 , 0.5 , Stop and go, Rural 0.001

to 40t Road

[47] Road Truck 28 Diesel Euro4 , 0.5 , Stop and go, Rural 0.001

to 40t Road

[47] Road Truck 28 Diesel Euro5 , 0.5 , Stop and go, Rural 0.001

to 40t Road

[47] Road Truck 40 Diesel 80-ties , 0.5 , Stop and go, Rural 0.001

to 50t Road
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[47] Road Truck 40 Diesel Eurol , 0.5 , Stop and go, Rural 0.001

to 50t Road

[47] Road Truck 40 Diesel Euro2 , 0.5 , Stop and go, Rural 0.001

to 50t Road

[47] Road Truck 40 Diesel Euro3 , 0.5 , Stop and go, Rural 0.001

to 50t Road

[47] Road Truck 40 Diesel Euro4 , 0.5 , Stop and go, Rural 0.001

to 50t Road

[47] Road Truck 40 Diesel Euro5 , 0.5 , Stop and go, Rural 0.001

to 50t Road

[47] Road Truck 50 Diesel 80-ties , 0.5 , Stop and go, Rural 0.001

to 60t Road

[47] Road Truck 50 Diesel Eurol , 0.5 , Stop and go, Rural 0.001

to 60t Road

[47] Road Truck 50 Diesel Euro2 , 0.5 , Stop and go, Rural 0.001

to 60t Road

[47] Road Truck 50 Diesel Euro3 , 0.5 , Stop and go, Rural 0.001

to 60t Road

[47] Road Truck 50 Diesel Euro4 , 0.5 , Stop and go, Rural 0.001

to 60t Road

[47] Road Truck 50 Diesel Euro5 , 0.5 , Stop and go, Rural 0.001

to 60t Road

[48] Water Barge Diesel NA , NA , NA 0.001

Tanker

[48] Water Barge Diesel NA , NA , NA 0.001

[48] Water Transocea idleavy NA , NA , NA 0.001

Freight Fuel Oil

ship

[48] Water Tanker Heavy NA , NA , NA 0.001

Fuel Oil

[47] Water RORO NA Modern , 0.88 , NA 0.001

Cargo

[47] Water RORO Residual Car transporters , 0.7 , NA 0.001

Cargo Oil
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[47] Water Container Marine Inland , 0.5 , NA 0.001

ship Diesel Oil

[47] Water Container Residual Feeder Small , 0.8 , NA 0.001

ship Oil

[47] Water Container Residual Feeder A type , 0.8 , NA 0.001

ship Oil

[47] Water Container Residual Panamax, 0.8 , NA 0.001

ship Oil

[47] Water Container Residual Post Panamax , 0.8 , NA 0.001

ship Oil

[47] Water Tanker Marine Inland , 0.5 , NA 0.001

Diesel Oil

[47] Water Tanker Residual Coastal Tanker , 0.5 , NA 0.001

Oil

[47] Water Tanker NA Product/Chem , 0.55 , NA 0.001

[47] Water Tanker NA Large , 0.6 , NA 0.001

[47] Water Dry Bulk Residual Inland WW , 0.5 , NA 0.001

Oil

[47] Water Dry Bulk Residual Coastal , 0.67 , NA 0.001

Oil

[47] Water Dry Bulk Residual Handy Size , 0.67 , NA 0.001

Oil

[47] Water Dry Bulk Residual Ocean , 0.67 , NA 0.001

Oil

[47] Water General Residual Inland WW , 0.5 , NA 0.001

Cargo Oil

[47] Water General Residual Coastal , 0.71 , NA 0.001

Cargo Oil

[47] Water General Residual Handy Size , 0.71 , NA 0.001

Cargo Oil

[47] Water General Residual Ocean , 0.71 , NA 0.001

Cargo Oil
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Table D.3: The emission factors of the molding processes

Source Shaping process kg CO2eq Unit

[48] Extrusion plastic film 0.429 /kg plastic
[48] Blow moulding/RER U 0.89195872 /kg plastic
[48] Foaming, expanding/RER U 0.69257704 /kg plastic
[48] Aluminium product manufacturing, 3.3360709 /kg metal

average metal working/RER U
[48] Steel product manufacturing, aver- 1.7921457 /kg metal

age metal working/RER U

Table D.5: The source and specifications of the process emission factors.

Source Equipment Application Energy Equipment Equipment EF

type Source (kgCO2e/ day)

Product Oven Domestic Electricity GE Cafe 30" Built-In Double 29.995

website Convection Wall Oven

Product Oven Domestic Electricity GE Profile 30" Built-In Sin- 31.423

website gle/Double Convection Wall

Oven

Product Oven Domestic Electricity GE Profile 30" Built-In Sin- 24.282

website gle/Double Convection Wall

Oven

Product Oven Domestic Electricity GE Profile Advantium 120V - 25.71

website 30 in. Wall Oven

Product Oven Domestic Electricity Oven, LG LRE3023ST 48.563

website

Product Oven Domestic Gas Oven, LRG3091ST 18.256

website

Product Oven Domestic Gas Gas range, Kenmore Model 21.404

website 70402

Product Oven Restaurant Gas Vulcan-Hart (V36-1) - 36 Gas 44.067

website Open Burner, 4 burners

Product Oven Restaurant Gas Southbend (S36D) - 36" Gas 44.067

website Open Burner, 6 Burners

Product Oven Restaurant Gas Wolf (C72-SS-12B-N) - 72 44.067

website Gas Open Burner, 12 Burn-

ers
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Product Oven Restaurant Gas U.S. Range (X24-4L) - 24" 31.476

website Open Burner Sunfire, 4 Burn-

ers

Product Oven Restaurant Gas Vulcan-Hart (36-S-6B-P) - 36 44.067

website Open Burner Endurance, 6

Burners

Product Oven Restaurant Gas Thermatek TMD 36.6.1 37.771

website

Product Oven Domestic Electricity GE Cafe 30" Built-In Double 51.419

website Convection Wall Oven

Product Oven Domestic Electricity GE Profile Advantium 120V - 25.71

website 30 in. Wall Oven

Product Oven Domestic Electricity Oven, LG LRE3023ST 59.989

website

Product Oven Domestic Gas Oven, LRG3091ST 16.997

website

Product Oven Domestic Gas Gas range, Kenmore Model 21.404

website 70402

Product Cooktop Domestic Electricity Inductor Cooktop, 12.888

website LSCI365ST

Product Cooktop Domestic Electricity Inductor Cooktop, 9.452

website LSCI365ST

Product Cooktop Domestic Electricity Inductor Cooktop, 4.726

website LSCI365ST

Product Cooktop Domestic Electricity Inductor Cooktop, 12.888

website LSCI365ST

Product Cooktop Domestic Electricity Inductor Cooktop, 6.015

website LSCI365ST

Product Cooktop Domestic Gas Gas Cooktop, LSCG306ST 11.458

website

Product Cooktop Domestic Gas Gas Cooktop, LSCG306ST 23.922

website

Product Cooktop Domestic Gas Gas Cooktop, LSCG306ST 15.109

website
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Product Cooktop Domestic Gas Gas Cooktop, LSCG306ST 6.296

website

Product Cooktop Domestic Gas Gas range, Kenmore Model 11.332

website 70402

Product Cooktop Restaurant Gas Thermatek TMD 36.6.1 44.067

website

Product Cooktop Restaurant Gas Vulcan-Hart (V36-1) - 36 Gas 35.253

website Open Burner, 4 burners

Product Cooktop Restaurant Gas Southbend (S36D) - 36" Gas 35.253

website Open Burner, 6 Burners

Product Cooktop Restaurant Gas Wolf (C72-SS-12B-N) - 72 37.771

website Gas Open Burner, 12 Burn-

ers

Product Cooktop Restaurant Gas U.S. Range (X24-4L) - 24" 37.771

website Open Burner Sunfire, 4 Burn-

ers

Product Cooktop Resta'urant Gas Vulcan-Hart (36-S-6B-P) - 36 40.29

website Open Burner Endurance, 6

Burners

Product Oven Domestic Electricity GE Cafe 30" Built-In Double 35.708

website Convection Wall Oven

Product Oven Domestic Electricity GE Profile 30" Built-In Sin- 18.568

website gle/Double Convection Wall

Oven

Product Oven Domestic Electricity GE Profile Advantium 120V - 13.926

website 30 in. Wall Oven

Product Cooktop Domestic Electricity Inductor Cooktop, 0.43

website LSC1365ST

Product Cooler Restaurant Electricity Top Mount 4X5X6 Norlake 11.995

website KLB45-CR , CPB050DC-A

Product Cooler Restaurant Electricity Top Mount 6X12X6 Norlake 18.406

website KLB612-CR, CPB075DC-A

Product Cooler Restaurant Electricity Top Mount 6X6X6 Norlake 11.995

website KLB66-CR , CPB050DC-A

186



Product Cooler Restaurant Electricity Top Mount 6X12X7 Norlake 18.406

website KLB77612-CR , CPB075DC-

A

Product Cooler Restaurant Electricity Top Mount 6X6X7 Norlake 11.995

website KLB7766-CR , CPB050DC-

A

Product Cooler Restaurant Electricity Top Mount 8X8X7 Norlake 18.406

website KLB7788-CR , CPB075DC-

A

Product Cooler Restaurant Electricity Top Mount 8X8X6 Norlake 11.995

website KLB88-CR, CPB050DC-A

Product Freezer Restaurant Electricity Top Mount 4X5X6 Norlake 15.567

website KLF45-CR , CPF060DC-A

Product Freezer Restaurant Electricity Top Mount 6X12X6 Norlake 25.032

website KLF612-CR , CPF150DC-A

Product Freezer Restaurant Electricity Top Mount 6X6X6 Norlake 20.062

website KLF66-CR, CPF075DC-A

Product Freezer Restaurant Electricity Top Mount 6X12X7 Norlake 25.032

website KLF77612-CR , CPF150DC-

A

Product Freezer Restaurant Electricity Top Mount 6X6X7 Norlake 19.943

website KLF7766-CR , CPF100DC-A

Product Freezer Restaurant Electricity Top Mount 8X8X7 Norlake 25.032

website KLF7788-CR, CPF150DC-A

Product Freezer Restaurant Electricity Top Mount 8X8X6 Norlake 19.943

website KLF88-CR, CPF100DC-A

Product Dishwasher Restaurant Electricity Undercounter Dishwasher 0.018

website Champion 250degF

Product Dishwasher Restaurant Electricity Undercounter Dishwasher 0.013

website Champion 220degF

Product Dishwasher Restaurant Electricity Undercounter Dishwasher 0.003

website Champion 180degF

Product Dishwasher Restaurant Electricity Undercounter Dishwasher Jet 0.007

website Tech 140degF
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Product Dishwasher Restaurant Electricity Undercounter Dishwasher Jet 0.015

website Tech 220degF

Product Dishwasher Restaurant Electricity Undercounter Dishwasher 0.003

website Moyer Diebel (201LT)

140degF

Product Dishwasher Restaurant Electricity Door Type Dishwasher In- 0.002

website singer 180degF

Product Dishwasher Restaurant Electricity Door Type Dishwasher In- 0.006

website singer 220degF

Product Dishwasher Restaurant Electricity Door Type Dishwasher Jack- 0.004

website son 140degF

Product Dishwasher Restaurant Electricity Door Type Dishwasher Fagor 0.002

website (FI-120W) 140degF

Table D.6: The source and specifications of the waste treatment emission factors.

Source Type of waste Disposal Country Method Disposal EF kg

Method specification CO2e/kg waste

[101] Compost Landfill Australia 0.002

[101] Paper and card- Landfill Australia 0.003

board

[101] Garden and green Landfill Australia 0.002

[101] Wood Landfill Australia 0.002

[101] Textiles Landfill Australia 0.002

[101] Sewage Landfill Australia 0.001

[48] Compost Incineration Switzerland 0.032

[48] Compost Incineration Switzerland 0.016

[48] Municipal Landfill Switzerland 0.56

[48] Compost Composting Switzerland 0

[48] Compost Covered fermen- Switzerland 0.041

tation

[48] Compost Anaerobic Switzerland 0.258

digestion
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[48] Compost Covered fermen- Switzerland 0.015

tation

[48] Sewage Waste water Switzerland Residence 0.435

treatment

[48] Sewage Waste water Switzerland Unpolluted, 0.332

treatment Class 2

[48] Sewage Waste water Switzerland Class 1 0.316

treatment

[48] Sewage Waste water Switzerland Class 2 0.37

treatment

[48] Sewage Waste water Switzerland Class 3 0.403

treatment

[48] Sewage Waste water Switzerland Class 5 0.479

treatment *

[48] Sewage Waste water Switzerland Class 4 0.439

treatment

[48] Sewage Waste water Switzerland Unpolluted, 0.3

treatment Class 3

[102] Compost Landfill USA 0.001

[102] Compost Landfill USA No recovery 0.002

[102] Compost Landfill USA Flaring 0.001

[102] Compost Landfill USA Energy 0.001

recovery
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