MANAGING UNCERTAINTY IN SPACE SYSTEMS CONCEPTUAL
DESIGN USING PORTFOLIO THEORY

By
Myles Alexander Walton

Bachelor of Science Mechanical Engineering, Worcester Polytechnic Institute, 1997
Master of Science Aeronautics and Astronautics, Massachusetts Institiute of Technology, 1999

Submitted to the Department of Aeronautics/Astronautics
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
in AERONAUTICS and ASTRONAUTICS
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
June, 2002

© 2002 Massachusetts Institute of Technology. All rights resetved

AU O . o T e
Department of Aeronautics/Astronautics
Certified by.......ooooiiii G e
Daniel Hastings, Professor of of Aeronautics and Astronautics and Engineering Systems
Associate Director of Engineering Systems Division, Thesis Supervisor
Ditegtor, MIT Technology and Policy Program
Certified by......ooooviiiiiiii C e e -
Edward Crawley, Professor of of Aeronautics and As
Department Head, Aeronautics and Astronautics, Thesis Committee Member
/
Cettified by....oviiii e e Pt e
Earll Murman, Professor of of Aeronautics and Pgt'ronautics and Engineering Systems
Ford Professor of Engineering, Thesis Committee Member
Certified by.........ooooviiin, i - .
Joyce Warmkessel, Senior Lecturex,/ Depattment of Aeronautics and Astronautics
Thesis Committee Member
L. W, 2 F a
Accepted by......oooovviiiiiii

Wallace Vander Velde, Professor Emeritus of Aeronautics and Astronautics
Chairman, Department Graduate Committee

MASSACHUSETTS INSTI
OF TECHNOLOGY

AUG 132002 | | AEROI;

LIBRARIES






MANAGING UNCERTAINTY IN SPACE SYSTEMS
CONCEPTUAL DESIGN USING PORTFOLIO THEORY

by
Myles Alexander Walton

Submitted to the Department of Aeronautics and Astronautics in

partial fulfillment of the requirements for the degtee of

Doctor of Philosophy in Aeronautics and Astronautics
Abstract
One of the most significant challenges in conceptual design is managing the tradespace of potential
architectures—choosing which design to pursue aggressively, which to keep on the table and which
to leave behind. This thesis provides a framework for managing a tradespace of architectures not
through traditional effectiveness measures like cost and performance, but instead through a
quantitative analysis of the embedded uncertainty in each potential space system architecture. Cost
and performance in this approach remain central themes in decision making, but uncertainty serves
as the focal lense to identify potentially powetful combinations of architectures to explore
concutrently in further design phases.

Presented is an approach to identify, assess, and quantify uncertainty in space system architectures,
as well as a means to manage it using portfolio theory and optimization. Perhaps best known to
economists and investors, portfolio theory is based around the objective of maximizing return
subject to a decision maker’s risk aversion. This simple concept, as well as the theoretical rigor that
has evolved the theory to practice, is presented as one means of exploring the tradespace of
potential architectures around the central theme of uncettainty.

The approach presented relies upon previous work to model space system architectures using
simulations that capture attributes of performance and cost. The first step in the approach is an
analysis of the tradespace of potential architectures, including the bounding of architectural concepts
that will be evaluated and the potental uncettainties and scenarios that will be investigated. ‘The
second step is to adjust the simulation models to include sources of uncertainty. The third step is to
quantify the impact of the uncertainties on the evaluation criteria for each architecture through
propagation techniques. Finally, portfolio theory is incorporated as an approach to manage
uncertainty effectively.

Illustrative cases present the changing shape of the decision process with uncertainty as a focal
point. The three cases, a military space based radar mission, a commercial broadband system, and
an scientific observing mission, illustrate the this new approach on tradespace exploration and
highlight some of the intuitive and non-intuitive characteristics that can be discovered about the
tradespace.

Thesis Supervisor: Professor Daniel Hastings

Professor of Aeronautics and Astronautics and Engineering Systems
Associate Director of Engineering Systems Division, Thesis Supcrvisot
Director, MIT Technology and Policy Program






ACKNOWLEDGMENTS

I’d first like to acknowledge my advisor, Professor Daniel Hastings. In his capacity as my research
supervisor and doctoral committee chair, Prof. Hastings afforded me the freedom to explore my
interests in cross-disciplinary techniques that served as the basis for this research. His continuous

suppott and encouragement made the conceptual blockbusting possible.

The rest of my doctoral committee desetves a great deal of credit for the work presented in this thesis.
Prof. Earll Murman’s generosity in bringing me into interesting and exciting projects outside of the
narrow scope of my research broadened my experience here at MIT and allowed me to step back from
the thesis from time to time. Dr. Joyce Warmkessel, my Master’s Thesis advisor, provided me with the
ever-important practical perspective of the industry cxpectations of research. Professor Ed Crawley
served me with the amazing ability to wrap his mind around a problem quickly and an uncanny gift to
craft effective messages of the tesearch for communication. Professor Andreas Schulz’s initial class in

operations reseatch setved as some of the original impetus to this work.

Other faculty members who have contributed to this work through insightful feedback and review
include Hugh McManus, David Miller and Olivier de Weck. I'd also like to acknowledge those
otganizations and individuals in industry who hosted site visits for me during the initial stages of the

research and provided valuable feedback as it matured.

MIT has been my home for the past five yeats and it has been the amazing people here that have made
the stay a wondetful experience, most notably, my graduate student colleagues in the Lean Aerospace
Initiative (LAI) [ Josh Bernstein, Carmen Catrera, Jim Chase, Rob Dare, Heidi Davidz, Jason Detleth,
Bobeck Ferdowsi, Chris Forseth, Cory Hallam, Sean Hitchings, Brian Ippolito, Sandra Kassin-
Deardorff, Aaron Kirtley, Jacob Markish, Michelle McVey, Rich Millard, Jeff Munson, Matthew
Nuffort, Nirav Shah, Larry Siegel, Alexis Stanke, Dave Tonaszuck, Mandy Vaughn], the Space Systems
Lab (SSL) [Cyrus Jilla and John Enright], and the Space Systems Policy and Architecture Research
Consortium (SSPARC) [Adam Ross, Nathan Diller, Satwick Seshasai.].



Also, tesearchers from Prof. Hastings’s research group have each provided mnsightful feedback on the
work as it has evolved, notably Elisabeth Iamassoure, Roshanak Nilchiani, Peter Panetta, Chris

Roberts and Joseph Saleh.

Living near my family has afforded me the luxury of staying in close contact with my parents, Steven
and Evelyn Walton, and siblings [Vicky and Robett, Cindy and Jorg, Neal and Lynne, David and Jen,
Tam and Steve, and Clint] whose constant encouragement and love made the PhD journey much
casier. I'd also like to thank the family I martried into [Arthur and Lillian Weigel and John]| for

welcoming me in as one of their own.

I've heard stories that getting a PhD can be an isolating experience. For me, it was anything but
wsolated. T had the unique advantage of a loving wife, Annalisa, going through the PhD process at the
same time. A constant role model for me in research and life, Annalisa was and is my greatest soutrce

of support and inspiration.

The author gratefully acknowledges the financial support for this research from the Space Systems
Policy and Architecture Research Consortium (SSPARC), a joint research program funded by the U.S.
government involving the Massachusetts Institute of Technology, the California Institute of

Technology, and Stanford University.



TABLE OF CONTENTS

LIST OF FIGURES ...ottrteeeeetneernesnesssessssssessessssssssssssasssssssasssossessssssssssssssessasssssassnssssssasssssstonsessonas 13
LIST OF TABLES ....oiiirirecnmiiessionsssssssmsssuasssmessssesssssesssssssnessssssssssassssassssssssensssssnsssssssss .17
GLOSSARY .eveverererrceesssesmssessessassssssssssssessssssssessessssssssssssssssssnssssssssssnmesasassssssasassssssssssase .19
CHAPTER 1
INTRODUGCTION .....oetiteetieniateasnesesseeseeeeeemeemin e oassasesasaseesbeesbaassatsesbs e s b aabse s aae s e s e s s e en e sr e e et be s eenesas 21
1.1 Problem Statement and APPrOQCH ...............ccccccccoivviniiiiiiiiiiiii e 24
1.2 Structure Of DOCUMERL................cccccoioiiiiiiiiiiiii i 26
CHAPTER 2
UNCERTAINTY AS A DECISION CRITERIA IN DESIGN ....coiviiiiiiiiiiiiiicieci e 29
2.1 Simple illustration of the impact of uncertainty included as a decision criteria........... 31
2.2 Vision for Uncertainty Analysis in Space Systems Conceptual Design........................ 35
2.3 Three Principles of Uncertainty Analysis in Space Systems Conceptual Design......... 37
PART I: AN APPROACH TO QUANTIFY AND MANAGE UNCERTAINTY IN SPACE
SYSTEMS CONCEPTUAL DESIGN ...coicieticicnernesenseississsnssessssssssssesssessassasssssssssnsssassasssssnssasasss 39

CHAPTER 3

CURRENT STATE OF UNCERTAINTY ANALYSIS IN SPACE SYSTEMS DESIGN AT FOUR MAJOR SPACE

SYSTEMS DEVELOPERS ...ccveeterteteetenienteieseeiiasastesssssesstsissessasseessessssesssssssssassssnnsaba st s asseseeaeente e ennesns 41
3.1 THIFOAUCHION: ... et 41
3.2 Case 1 [6 Interviewees-GFrOUP] .........c..ccooieeioiiiiiiiiiic et 42
3.3 Case 2 [6 Interviewees-GFOUD] ............cccouvecmiiiiiieiiiee e 45
3.4 Case 3 [9 Interviewees-Individual] ..o 46
3.5 Case 4 [5 Interviewees-INdiVidual]...................cccooiiiiiiiiiiiiiie 49
3.6 Overarching Themes and CRAIIENGES ..............cccccooioiiiviiieniiiiiii e 53

3.6.1 Challenges taken up by the research...........ooooveennniiiiis 54

7



3.6.2 Challenges posed to future research from the site VISItS ..........cocoeeeeveeeeeeereereeenn, 55

CHAPTER4

CURRENT APPROACHES TO ASSESSING UNCERTAINTY AND RISK IN SPACE SYSTEMS CONCEPTUAL

DIESIGN oottt bbb h s bt ne sttt en s 57
4.1 TNIFOAUCTION ...t e, 57
4.2 Literature on qualitative techniques to managing uncertainty and risk....................... 59

4.2.1  Risk EXPOSUIE ANAIYSIS ...ceeivieiiiiitiieieieietetees ettt ee e 59
4.3 Literature on semi-quantitative techniques to managing uncertainty and risk............ 61
4.4 Literature on quantitative techniques to managing uncertainty and risk..................... 62

4.4.1 Statistical Techniques of Measuring UnCertainty..........cooc.veveevrereeereeeeesseereenenen. 62

4.4.2  Fuzzy Logic applied to managing uncertainty in space Systems ...........occcevveveunen... 63

4.4.3  Probabilistic RiSk ASSESSIMENE .......cuiviiiieucreiiieieiieeeeeeeeeeeee e, 63

4.44  Other relevant methods of uncertainty analysis in conceptual design...................... 66
4.5 Limitations of methods for current methods for managing uncertainty and risk......... 67

CHAPTER 5

QUANTIFICATION OF EMBEDDED LIFECYCLE UNCERTAINTY ..ottt oo eeeee e e eeee e 71
5.1 Defining Embedded UnCert@ingy..............cocooeeeeeiieieoeeeeeeeee e, 71
5.2 Quantifying Embedded Uncertainty in Space System Architectures ........................... 72

5.2.1 Developing the boundaries for UNCEMAINtY...........oovveveeeveeeeeeeeeereeeeeeeeeee oo, 73

5.2.2  Quantifying Individual Sources of UnCertainty ..........cocovoveeceeeeeverreeeeererereresiererenna, 73

5.2.3  GINA Design APProach......ccooiicieiiuiieieiiieeeee e er s 76

5.2.4  Propagating UNCEITAINIES ......ueuiuieeieeeeeeeeeceeeeeeeer et eeee e eee et eee e 78
5.3 Visualizing Architectural URCEFIQUINLY .....................ocoooeeeeeeeeeeeeeeereeeeeeeeoeeeeeere, 81

5.3.1 TFocusing on individual architeCtures ..........ooveveeveveviiiiiieeeeeeeeeeeeeeee oo, 81

5.3.2 Comparative tECAMIQUES .....c.euvuririiririiiiseeeieteccece ettt es e s s s 84

CHAPTER 6

PORTFOLIO THEORY APPLIED TO SPACE SYSTEMS CONCEPTUAL DESIGN ..o, 89
0.1 MOdern POFIfOIIO TREOFY..........ccovvmiimiiiiesecseieeeeeeeeeeeeoeeees e ee e, 89



6.1.1 Mathematics of Portfolio OptimiZation .........ccoccoviiviiiiiininneicceen e 90

6.1.2 An example of financial portfolio analysis.........cocveeeriiiinciiiiiniicieceee 96
6.1.3 An example of portfolio analysis applied to space systems...........cccecvevvevmrniianinn. 97
6.2 Uncovering risk aversion in stakeholders ...................coeceviiiviniiiiiiiiiii, 99
6.2.1 Methods of capturing uncertainty aversion ...........cc.coceveviririneeimiieiieieeiseeres 100
6.3  Extensions of portfolio theory to space system design .................c.ccocovevvivniinnninnen. 105
6.3.1 Accounting for upside potential from uncertainty............ccocovvviviiininicieineninne 105
6.3.2  Cost Of DIVErsifiCation .......c.cceeerieriiiiiieicnie ettt 107
6.4 PULING Il TOQEIRCF ..ot 108
6.5  Implementing the AIGOVItAM.............cc.cccooviiiiiiiiiiiiiiecc e, 109
6.6 Where the portfolio theory breaks down in space systems desigh.................c.c......... 110
6.6.1 Practical LIMItationS......c.cvereieerieeereeteieieieceieic ettt sae st 110
6.6.2 Theoretical LIMItationS ....cceeevereeientinieereeieciieieeiniie et ere e 111
PART I1: CASE STUDIES AND RESULTS.....coovvinininrirnnennnsassssessnsassnsanssssssnssssosssssssssssessssenes 113
CHAPTER 7
TECHSAT 21: CUTTING EDGE DESIGN INTRODUCES UNCERTAINTY ....ooviiaiiiiiiiiiiiaieeieieece 115
7.1 Mission and Model DeSCPIDION ............cccoeiviriiniiiiierceee et 115
71T GINA MOAEL. ..ottt e 116
7.1.2  MOAEl RESUIS ..oviveeiiicieeier ettt ettt et 118
7.2 Uncertainty QUARLIFICALION. ..............ccccouiiiiiiiiiiiiiiieieit e 121
7.2.1  SOUrCES Of UMCETTAINLY ...oovveeiieerereeeerireneee et 121
7.2.2 Embedded architectural uncertainty ...........cocoeveeeieniiiiiiiiiicieeniesic e 123
7.3 POFIfOlIO ARQIYSIS ...t 125
7.3.1 Quantifying Decision Maker Risk AVEISION .......ccccoviviiiiiiiniiee 127
7.3.2 Implications of incorporating the extensions to portfolio theory.................c..oo..... 132
7.4 CONCIUSIONS ..ottt 138



CHAPTER 8

COMMERCIAL BROADBAND SATELLITE SYSTEM: MARKET UNCERTAINTIES MAKE OR BREAK THE

BUSINESS IMODEL......ccoiiiiiiiiiiiiiiciiciiii ettt sttt easa e eeese e 139

8.1 Mission and Model DeSCFIPHON..................ccc.cccoeeveeiiiiiiciiee e, 139

8. 1.1 GINA MOMEL....oiiiiiiiiiiiciieeieeeet ettt 141

8. 1.2 MOAEl RESUILS ...ttt ettt ettt esesaa e 142

8.2 Uncertainty QUANIIfICALION. .......c.ccoveveeeeeeeeeeeeeeeeeeeeeeeeeeee ettt er e en e 143

8.2.1  Sources of UNCEITAINLY ...c.ceeiiiiieieisieiictctciet ettt eeenne 144

8.2.2 Embedded Architectural UncCertainty ..........ccocoeveeeeoviieeeeeiieeeeeeeeeeeeeeeeeeeeeeenene 147

8.3 Portfolio ASSESSIERL ...........cocooieiiiiicevee et 149

8.3.1 Quantifying Decision Maker Risk AVEISION ......oooivueeeeeeeeiieeeeeee oo 151

8.3.2 Implications of incorporating the extensions to portfolio theory............cccoueueee... 158

8.4 COMCIUSIONS ...ttt 165
CHAPTER 9

TOP SIDE SOUNDING IONOSPHERIC MAPPING MISSION: UNCERTAINTIES IN UTILITY .................. 167

9.1 Mission and Model DeSCHIDHON....................ccceeceeeiiiiiiieiesioeeee e, 167

9.1.1  The IONOSPRETE ...c.ooveeiieiesiiceeee ettt 167

9.1.2 Ionospheric INfIUENCE .......o.oviiiiieieiccec et 169

9.1.3  The ATOS MISSION ....eoviiiiiiirirririeetiie ettt ettt aeeeesaeen 170

9.1.4  Derived UtIlity FUNCHOMN ...oo.ovviiiiiititiiiiiiii ettt 172

9.1.5  GINA/ULIEY MOGEL ...ttt 176

9.1.6 MOAEI RESUILS ...ttt ettt eee e eee s ss e 178

9.2 Uncertainty QUANLIfICALION.................c..c.ccoooiiveiieieiisieeeeeeee e 181

9.2.1  Sources 0f UNCEITAINTY ........oiiieieiieieecee ettt even e te e 181

9.2.2 Embedded Architectural UnCErtainty ............oooovveveevvremeeereeeeeeeeeeeeeeereser oo senerens 184

9.3 POFIfOLIO ASSESSTNENL ..o e 187

9.3.1 Quantifying Decision Maker Risk AVErSion ............c.ccecueuruieeueereeeeeeee e, 189

9.3.2  Implications of incorporating the extensions to portfolio theory...........cccoevevunne. 197

9.4 CONCIUSTONS...........coovevrcieeeeeeeeee ettt ettt eeee e, 203



CHAPTER 10

CONCLUSIONS AND RECOMMENDATIONS ....ccvevvetiiiitiiieeiiietitessistsnsnsressessssne st st sssaseas e 205
10.1  Collective Observations from Three Case STUAIES .........ccccooovviineeiiiiiiiiniiininieens 205
10.1.1  Level of diversity with respect to uncertainty can be observed..........coovovniees 205

10.1.2  Assets may differ at the architecture, system, subsystem or component level...206
10.1.3  Total tradespace uncertainty analysis can be more cumbersome than valuable 206
10.1.4  Pareto optimal architectures don’t necessarily lie on the efficient frontier. ....... 207
10.1.5  Upside and downside of uncertainties can be separated, as risk and reward. ....207
10.1.6  Distribution rather than the extreme approach provides better confidence........ 207
10.1.7  Sources of uncertainty other than technical can drive portfolio strategies......... 208

10.1.8  With few Pareto optimal architectures dominated solutions can be included....208

10.2  Contribution to the State Of the Art............cccoomviiiiiiiiiiici 209
10.2.1  Developed an approach to quantify and understand embedded uncertainty......209
10.2.2  Applied portfolio theory to the design of space systems ............cooeeiiinnnnnns 209
10.2.3  Developed an approach that is adaptable for stakeholders and systems ............ 210
10.2.4  Contributed ideas of upsides and downsides of uncertainty..........c.cococeeviiinns 210

10.2.5  Produced case studies that illustrate lessons learned from uncertainty analysis 210

10.2.6  Overarching principles of uncertainty in the design of space systems............... 210
10.3  Recommendations for Further ReSearch ..o 211
10.3.1  Multi-Period Portfolio AnalySiS........ceceeiviieriniiiiiiiieeieeieneescce 211
10.3.2  Suggested Cases of Implementation ........cooevieirieininininiiiiens 212
10.3.3  Incorporating Other Sources of Uncertaimty ........cococoeiinnnicicnnininininnns 213
10.3.4  Other Representations of Uncertainty in Portfolio Optimization .............c.c.c.... 214

10.3.5  Uncertainty Analysis Approach on a Formal Multi-Attribute Utility Case........ 215

10.3.6  Multi-Program Enterprise Uncertainty Analysis........c.cocovvvovinnniiiiinin 215
10.3.7  Uncertainty analysis in other areas of engineering Syst€ms .............ccovveururenne. 216
BIBLIOGRAPHY ...... seseesssearesessreneasbtsae s et Rt et s s bO R L SRS SRS SRS R SRS R R R R R A S A O SRS SRS RSB RS R S0 RS8R 217

11



APPENDIX A

FORMALIZING UNCERTAINTY IN SPACE SYSTEMS DESIGN: AN IMPLEMENTATION TUTORIAL ....223

Step 1. Developing the boundaries for UnCErtainty....................ocovveveeeevereeeoeesereeereeeeeeenn, 223
Step 2. Quantifying Individual UNCEFIQIRLIES.......................coeveeeeeeeeeeeeeeeeereeeeeeeeeeee oo 224
Step 3. Accounting for uncertainties in the design models ...............ccccoceeovovereeeerereeereerin, 225
Step 4: POSIProOCeSSINg the RESUILS .......o...........cccoiveeeoeeeeeeeeeeeeeeeeee oo 227
Step 5: Implementing POrtfOlio TREOFY .............c.occoooeeeeesoeeeceeeeeeeeeeeeeeeeeeeeeeeeeeeeeoeeseees o, 228
Step 6. Determining Decision Maker Uncertainty AVersion............o.cooomeeeooeooooeroeernn, 233
Step 7: Determining the optimal investment Strategy .................covomvowoeeereeereeeereeeeseererereonn, 235

Step 8: Analyze optimal portfolio and overall trends in the uncertainty/value tradespace....241

12



LIST OF FIGURES

Number Page
Figure 1: Lifecycle cost committal Versus MCULLENCE ......ovvuueumriiinimerissiisinismssssss e 23
Figure 2: Example of Uncertainties in Cost and UtHY ... 32
Figure 3: Example of a portfolio tradespace . ..o 34
Figure 4: Example of optimal portfolio identification. ... 35
Figure 5: Insertion of the uncertainty analysis approach in conceptual design ..o, 36
Figure 6: Cases along SCCtOr HES it 41
Figure 7: Government Contractor Perspective of Best Value ... 47
Figure 8: Commercial Contractor Perspective of Best Value ..., 50
Figure 9: Soutce of System “BLIOrS™ .o 52
Figure 10: Causes of Program Instability on DoD Acquisition Programs .....cooevveeniniciniinins 53
Figure 11: DoD framework for tisk MANAgemMent ........c...oucivwnremmicrivnnrimiisimisinsissssss s 59
Figure 12: Probability and Consequence Exposutre Chart. ..., 60
Figure 13: The PRA PLOCESS wvuurvueriecarirriesinitias it sesiseoss s b 65
Figure 14: Probability Density Function of Market Capture for Broadband Space System...... 75
Figure 15: Spectrum AOCAtON SCENALIO . vvvciiitrierirrrirrisisemissis s 76
Figure 16: The Generalized Information Network Analysis Method ... 77
Figure 17: Uncertainty propagation within the GINA framework ... 79
Figure 18: Example Histogram for Architectural Uncertainty ..o, 82
Figure 19: Example Box Plot for Architectural UNCErtainty . .....cooorveomrivmoniisiiinissieniisscieieenns 83
Figure 20: Visualizing Architectural Uncertainty in Two DImensions. ..o 84
Figure 21: Uncertainty in a tradespace using error bars and uncertainty ellipses.......coooevvvn 85
Figure 22: Characterizing embedded uncertainty undet three sCenarios ... 86
Figure 23: Embedded Uncertainty Contour Plot. ... 88
Figure 24: Power Of DIVErSIfICAHOMN ..oocoivvcvuuiminirsivmmises i 91
Figure 25: The Covariance MAtrix, (...t 93



Figure 26: Equations of Different OBJectives. ... .oowircniieeinisensiesessiessesesess e seees e, 94
Figure 27: Mutual fund portfolio analysis eXample........ccerereimnrissonsinsreesrneesseesesseseeeesssseeeenns 97
Figure 28: Sample Potrtfollo ANALYSIS ..ot 98
Figure 29: Sample Utility FUNCHON ..ot 101
Figure 30: Measuring risk PremuUIMS......c.cocuirriieinerriennreiessnseseen et ss s ss s sesssen s 101
Figure 31: Indifference Curves for Decision Makers, Varying Risk Aversion Factors............. 103
Figure 32: Iso-Utility Cutves for 2 Decision MaKer .......co..oeuveeeeveeevnerciiseseeseeseeeeeseeeeseeeeessnees 104
Figure 33: The portfolio tradespace with aversion criteria overlaid...........coo..oovvcorverereverinenene 104
Figure 34: Three case studies SUMMALY .......ovvieiriiciimiiniiniee st ian 114
Figure 35: GINA Model FIOW CRALE.....uoriiriirrireinececinneseses e 117
Figure 36: TechSat 21 TradeSPace ... e ssesissisie st 119
Figure 37: Pareto Optimal Front for TechSat 21 Architecttires..........v.eovveeveereeoreeeeeeeeeeeeeeeeereen, 120
I'igure 38: TechSat 21 Architectural Tradespace Undet Uncertainty ..o....oereeeesensrrvvrsssonrrvssionnn. 124
Figure 39: Parcto Front for Three Cases of UNCErtainty ....occeeovvvenecnnerisonceeoinsconneres s 125
Figure 40: TechSat 21 Portfolio ANAlysis....co.ccoveiiviiniieneiee e 126
Figurce 41: Indifference cutves for three decision MaKers.......o..oveooveiceeereeoveeeeeeeeeeeeeeeeseeserer v 128
Figure 42: Optimal investment strategy for high risk aversion decision maker ............ccoo.vun.... 129
Figure 43: Optimal investment strategy for moderate risk aversion decision maker ............... 130
Figure 44: Optimal investment strategy portfolio for low risk aversion decision maker.......... 131
Figure 45: TechSat 21 Portfolio Analysis with full uncertainty and semi-variance.................... 134
Figure 46: Optimal strategy, high risk aversion decision maker, semi-variance ............cc.c........ 135
Figure 47: Optimal strategy, moderate risk aversion decision maker, semi-vatiance ................ 136
Figure 48: Optimal strategy, low risk avetsion decision maker, semi-vatiance........................ 137
Figure 49: Systems SIMulation FLOW .......eiviiiinciiecees oo es e evesseessses e seeeseeees 141
Figure 50: Commetcial Broadband System Patcto Optimal Front.......veceeeeeoerrceseereeeeenn. 143
Figure 51: Broadband Matket Size DY Year ..o orrorneiiiniinsieeeeee e eres 145
Figure 52: Broadband Percent Market Capture Year over Year .....ooo.corvvoureevneeeereeeroreseenennns 146
Figure 53: Creating distributions of architectural OUtCOMES ....vvvuieerniverveeereeeeeeeeeesveee e 148
Figure 54: Broadband tradespace with the inclusion of uncertainty.......ccoovvvverrrvvorervvrsereec. 149
Figure 55: Broadband Case Study Efficient Frontier of Architectural Portfolios...........covvvee.n. 150

14



Figure 56: Snapshot of the Architecture Portfolio Flight SImulator ..., 151
Figure 57: Indifference curves for three decision MaKers ..o 152
Figure 58: Optimal investment strategy for high risk aversion decision maker .....occoovivinrninnnns 154
Figure 59: Optimal Investment strategy for moderate risk aversion decision maker.............. 156
Figure 60: Optimal strategy pottfolio for low risk aversion decision maker.......ccovveeiorrein. 158
Figure 61: Broadband portfolio analysis with full uncertainty and semi-vatiance ........ccoooeeveeee 161
Figure 62: Optimal investment strategy for high risk averse decision maker ........ccooovvvrnrrennrens 162
Figure 63: Optimal investment strategy for moderate risk averse decision makef ......cccooocevvovns 163
Figure 64: Optimal investment strategy for low risk averse decision maker..........ccoooiiinine, 164
Figure 65: Ionospheric CharaCteriStics . st 168
Figure 66: Ionosphere Concentration vs. Altitude for Daytime and Nightime ..ccooovvvvvererenenns 169
Figure 67: Signal is interrupted due to seintillation ... 169
Figure 68: Approaches to Measuring lonosphere CharactetisStics .......oovvmrmninriineniiinssiii, 171
Figure 69: ATOS Low Latitude Survey MiSSION ......ovuerieieieriiiininimsmnsessissssnsins 173
Figure 70: ATOS Low Latitude Snapshot MISSION ... 173
Figure 71: ATOS High Latitude Survey MISSION we..ceeiereercisiiissnisis e 174
Figure 72: Graphical representation of ATOS Design Vector ... 176
Figure 73: ATOS GINA Model Module Flow DIagram ... 177
Figure 74: Low and High Utility Tradespace ..ot 179
Figure 75: ATOS Cost and Utility Tradespace .o...occvevereeceennisiisnisiniiie i 180
Figure 76: (Neat) Pareto Optimal Front for the ATOS Architectural Tradespace ..o 181
Figure 77: Uncertainty in the Mean Time to Failure for a single satellite ... 183
Figure 78: Uncertainty in Low Latitude Value Relative to High Latitude Value.....cccooonrrvrvvvvecn. 184
Figure 79: ATOS Simulation Flow with UNCertamty ........ccovueemrmnimmnnminiiii s 185
Figure 80: Representative Architectural Uncertainty DiStribUtionS oo 186
Figure 81: ATOS Utility and Cost Tradespace with Uncertainty BIIpses.......coooovrvvvciiiiiicnnninen 186
Figure 82: Efficient Frontier in the ATOS tradespace ..o 188
Figure 83: Closer Look at the ATOS Efficient Fronter ..o 188
Figure 84: Flight Simulator for the ATOS Architectural Portfolio Analysis..occeininiiiennns 189
Figure 85: Indifference curves for three decision mMakers. ... 191

15



Figure 86: Optimal investment strategy for high risk aversion decision maker .................... 193

Figure 87: Optimal Investment strategy for moderate risk aversion decision maker............... 195
Figure 88: Optimal strategy portfolio for low risk aversion decision maker...........ccccooveeverrennnc. 196
Figure 89: ATOS portfolio analysis with SEMI-VAHANCE ....corieriveriicie e 198
Figure 90: ATOS portfolio analysis with full uncertainty and semi-vatiance............cccc..ooooene..... 199
Figure 91: Optimal investment strategy for high risk averse decision maker .............ccoceere.ae.. 200
Figure 92: Optimal investment strategy for moderate risk averse decision maker .................... 201
Figure 93: Optimal investment strategy for low tisk averse decision maker..........coo.ovvveoceecee 202
Figure 94: Sample Decision THee SCENAIO .. v v esesesees s ess e seeeseen 225

Figure 95: Probability Density Function of Market Capture for Broadband Space System .... 225

Figurc 96: The Covariance Mattix, (0 ......coccveucomeroncrnreinsimniesossssssosssssssse s 228
Figure 97: Sample portfolo tradeSPace...........c.ccriieeiinnerinnrinseiiee e 231
Figure 98: Sample portfolio tradespace with efficient fronter ......cooeveeveeveceiirereieeeeeecereeeen. 232
Figure 99: Portfolio Tradespace with Individual Assets Mapped .......ccoocoocenrreeorrrvenrrerorrrrernee, 233
Figure 100: Indifference Curves for Decision Makers, Varying Risk Aversion Factors........... 234
Iigure 101: Isoutility lines for a given UNCELtAINtY AVErSION ..c.vvvrevverrveereesirseceeesseese oo 235
Figure 102: Hlustration of aversion in the portfolio tradespace........crerrerreecrrceerreeeceeerrene. 236
Figure 103: Left Skewed Outcome Distribution EXample........coooommrvverrrvvoereeeseeeeoesrcssrese 237
Figure 104: Right Skewed Outcome Distribution EXample ......ccccovmvvvieierevioonicrironereeooiesseneeenns 237

16



LLIST OF TABLES

Number Page
Table 1: Portfolio Theory Applied to Finance and Space Systems........ccovericrnrcienniiccisniinnen. 33
Table 2: Military and Civil Sources of Uncertainty in Conceptual Design .....c.oveveveiiciiiniines 49
Table 3: Commercial Sources of Uncertainty in Conceptual Design .......coovvrirninnnrinicnnienn 51
Table 4: Methods of Uncertainty and Risk ASSESSIMENt c..ovviviiieiieiininiiriniccnennae, 58
Table 5: Technology Readiness Classification ..o 61
Table 6: Uncertainty Catégorization ..................................................................................................... 72
Table 7: Mutual fund options for SAmMPle MVESTOL ... o 96
Table 8: Design vector for the TechSat21 Satellite SyStem ..o, 116
Table 9: TechSat 21 Pareto Optimal Architectures and Outcome Measures .........ocevncencencc. 120
Table 10: TechSat 21 Modeled Sources of UNncertainty .......cocceeveiisininnnnnnees 122
Table 11: Composition of TechSat 21 high risk aversion decision maker strategy.........cccc...... 129
Table 12: Composition of TechSat 21 moderate risk aversion decision maker strategy .......... 130
Table 13: Composition of low risk averse optimal StTAtEQY ...ovcvvecviiriieriiviiciriniininnnien, 131
Table 14: Composition of high tisk averse optimal strategy using semi-vafiance. ... 135
Table 15: Composition of moderate tisk averse optimal strategy using semi-variance......... 136
Table 16: Composition of low tisk averse optimal strategy using semi-Variance ...........c...ooeeee. 137
Table 17: Design vector for the Broadband Communication Satellite System ......ccoccvvveienrene. 140
Table 18: Soutces of Uncertainty considered in Broadband Case ..o, 144
Table 19: Composition of Broadband high risk aversion decision maker strategy..........coooov.e.. 154
Table 20: Composition of Broadband moderate risk aversion decision maker strategy........... 156
Table 21: Composition of Broadband low risk aversion decision maker strategy.................... 158
Table 22: Composition of Broadband high risk aversion decision maker strategy.................... 162
Table 23: Composition of Broadband moderate risk aversion decision maker strategy........... 163
Table 24: Composition of Broadband low risk aversion decision maker Strategy .................... 164
Table 25: Design vector for the ATOS Satellite SyStem.......ccmririni 175

17



Table 26: ATOS Methodology........c.ocmiimiiins oo seseseesessee 178

Table 27: ATOS Soutces Of UNCELtAINTY ...uvuoreeereeereieeiisreeienessenieesses s seessee s ssss s sereeses 182
Table 28: High risk aversion decision maker SLategy ..o 193
Table 29: Moderate risk averse decision maketr STHAtE@Y ....eerenrnrensriesissieeisssses e 195
Table 30: Low risk averse decision mMaKet SEEALERY .v.vuvrmvemmcrremmeiernressnsisenisansnserssnessess s 196
Table 31: High risk aversion decision maker strategy, Semi-variance..............oooeverrereserseervvennne. 200
Table 32: Moderatc risk aversion decision maker strategy, Semi-variance........c..nrecoenene. 201
Table 33: Low risk aversion decision maket strategy, SEMi-VArianCe. . .....rierveorrrssnressr s, 202
Table 34: Sources of uncertainty included in this 1€5€arch. ... oiueiucreeceeceeiiciceeer e 214

18



GLOSSARY

A glossary is presented to familiarize the reader with some of the terminology that is repeatedly used
throughout the course of this work. Most of these terms are consistent with the literature, where the

literature itself is consistent.

Architecture. 1.) Level of segmentation for analysis that represents overall project form and function;
2) Term used in the Generalized Information Network Analysis (GINA) approach to describe
individual design alternatives.! Note these design alternatives may differ only in subsystem
characteristics. On the other hand, individual atchitectutes could be very different such as large
monolithic single satellite systems compared with distributed constellations of small satellites.

Asset. A measurable investment vehicle. An asset in space systems design can be an actual operational
system, ot the design from which an operational system could result.

Conceptual Design. Segment of the product development process charged with identifying customer
needs, developing possible concepts to explore, and sclecting concepts for more detailed design.

Customet. Individual(s) or organization(s) that procure a system.
Decision Maker. Individual(s) or organization(s) having power to direct allocation of resources.

Design Vectot. Vector that represents tradable elements of architectural concepts. These might
include altitude; satellite power, orbital characteristics and level of autonomy for example.

Diversification. Method of allocating resources among assets to avoid specific uncertainty.

Downside. The value distribution represents advetse outcomes of a statistical distribution, also known
as “risk” if an outcome is i the distribution.

Efficient Frontier. The definable region of the tradespace where all efficient portfolios exist in the
value vs. uncertainty tradespace.

Efficient Portfolio. A portfolio whose return cannot be increased without accepting more
uncertainty.

Embedded uncertainty. Architecture characteristic that is neither obvious nor able to be isolated
within the architecture and results from exposute to uncertainty from various sources and levels.

End User. Eventual user of the devcloped system.

t Although we classify an individual combination of design varables as an architecture, in some case the differences between one
combination and another may suggest that the GINA process is simply doing parameter design and not system architecting. "L'his is
the topic of ongoing debate, but to remain consistent with the terminology first developed with GINA, each combination of the design
vector will be called an individual architecture.
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Engineering Systems Design. The construction of solutions that satisfy complex technological and
soctal issues using a systems level perspective with explicit engineering principles

Generalized Information Network Analysis. Method of conducting space systems analysis that
provides for an “apples to apples” comparison of different architectural concepts.

Market Place. Economic boundary for investment.

Portfolio. The set of selected investments for which resources will be allocated.

Optimization. The maximization (minimization) of an objective subject to defined constraints.
Risk. A measure of negative consequences of investment and their likelihood.

Semi-Variance. Measure of uncertainty, can be either upside or downside of uncertainty

Specific Uncertainty. Uncertainty that is unique to some asscts and can be decreased through
diversification. This type of uncertainty might include individual technology specific to one design.

Stakeholder. In the broadest sense, stakeholders are those individuals or groups who affect or are
affected by a system. In a perhaps narrower sense, a stakeholder is a constituent for whom value must
be considered. This includes, customers, usets, suppliet, etc.

Systematic Uncertainty. Uncertainty that exists in all assets and cannot be decreased through
diversification.  This type of uncertainty affects all architectures equally such as cost estimation
uncettainties.

System. Level of decomposition that is inclusive of a major architectural clement and is semi-
independent from the rest of the architecture. This could include a satellite, or ground segment or a
launch vchicle.

Subsystem. The level of decomposition that is inclusive of parts and components that combined
petform a portion of the overall system functionality.

Tradespace. The defined boundaries of potential design solutions that will be evaluated. The
boundartes arc typically defined through a design vector. In portfolio theory applied to space systems,
the architectural tradespace becomes the metaphorical marketplace.

Uncertainty. Inability to quantify precisely; a distribution that reflects potential outcome.

Upside. The value distribution that exceeds positive outcomes, or the “reward” in the distribution if
an outcome 1s defined.

Utility. Measure of worth from the perspective of the decision maker.

Value. Measure of worth inclusive of utility and any elements of disutility, i.e. cost, schedule; E.g.
Function/Cost.
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Chapter 1

INTRODUCTION

Too often, the existence of uncertainty in life is ignored. We avoid stating assumptions and the
uncettainty associated with them, we anticipate the future based on little deviation from previous
expetience, we accept (and sometimes embrace) the idea of unquantifiable complexity, and seek out
certainty as though it is mote powerful than the uncertainty being faced. The bottom line is people
hate being indecisive, inexpetienced, and incorrect and all of these traits are too often associated with
uncertainty. However, history has shown that it is not the simple existence of uncertainty, but instead
the lack of identifying and understanding it that results in failure. Indeed, uncertainty can have a
positive influence. Without it, there would be no room for advancement, there would be no capitalism,
and there would be no religion, no freethinking or debate. Uncertainty therefore should not be
ignored or enter into the decision making process as an afterthought. It should be a motivating central
theme to any decision making process. The goal of this thesis is to portray uncertainty as a central
concept in space systems design and to develop an uncertainty analysis framework that is
apptroachable, quantifiable and useful in directing a project from concept to delivery. This document
presents select methods of uncertainty analysis from a number of disciplines brought together in a

single constructive framework that can be used in the early conceptual design of space systems.

For centuries, religion and the role of the gods dictated the fate of individuals and the outcomes of
decisions; decision makers had a natural shield for the negative results of their actions. Not until the
contradiction to the belief that man had little control over tesults, did full accountability become
realized by many of the wotld’s decision makers. Ironically, this was occurring at the same time,
brilliant scientists, inventors, mathematicians and philosophers were making breakthroughs in their
respective fields. Ideas of uncertainty and tisk would only be seriously studied (e.g. mathematically) in
the age of the Renaissance. Instead of blindly accepting fate and the will of deities, society started to
realize that uncertainty was something that could be understood and incorporated into decision

making, and further that decision makers should indeed be held accountable for their informed or
21



misinformed actions and the resultant outcomes. The Grecks flirted with ideas of uncertainty and risk,
but were unable to mstill the notions into a culture that relied so heavily on the absolute truth and

reality. This reliance obstructed the extension of mere philosophy and thinking to practice. z

Today in engineering systems design, designers and decision makers face much the same conflict that
dectsion makers faced prior to the Renaissance. The precise behavior of these systems is so complex,
that any attempt to understand and model them in dctail is consistent with the role of oracles.
Therefore, people do their best to understand what they can about the problem and its solution, but at
the same time, the expectations for uncertainty analysis inclusion are minimal. If there is one challenge
that the reader takes away after reading this thesis, it should be: Fngneering systems conceptual design needs
to move toward more informed decision making through explicit inclusion of uncertainty as a criteria and in doing so

return accountabilily lo decision mafkers.

The Renaissance gave rise to investigation into concepts of uncettainty, but the efforts were by and
large focused on the negative cffects of uncertainty, in the form of risk. To this day, most of the
tesearch continues to focus on the adverse consequences, or downside, of uncertainty, despite the
maturing of qualitative and quantitative methods that could shed equal light on ideas of upside
uncettainty. The method presented hercin captutes and distinguishes the upside and downside of

uncertainty and presents alternatives to presenting uncertainty and managing it.

Like decision makers in all other fields of study, space systems decision makers are constantly
confronted by the truism that “the only certainty is uncertainty.” This should be the mantra that
complex products systems development otganizations adopt. Aetospace as an industry, with
devclopment lasting in some cases longer than a decade should be at the forefront of this adoption.
However, all too often designers and decision makers convince themselves of the stability of the
environment and the quality of their solutions and decisions. Unfortunately these convictions have a
habit of blowing up in our faces (often quite literally). This is particulatly the case in conceptual design
where decisions are so far separated from the consequences of the decisions, but the impact of

decisions is great, as shown in Figute 1. Because of the significant impact of decisions made in eatly

2 Bernstein, P. (1998). Against the gods: The remarkable story of risk. New York, Wiley and Sons.
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conceptual design and because of the inflexibility of phases of design, this research specifically targeted

that phase as a segment of contribution.

LCC committed

A
100% -7 e
1) 778 S U
\ Cost Incurred
66% [T W
Ease of Change
g | Conceptual/ Detail Production Product use/
E | preliminary design/ and/or support/
D Design development | construction | phaseout/dispos al

Figure 1: Lifecycle cost committal versus incurrence?

Part of the solution to finding better designs is to intelligently explore more of them. Advances in
conceptual design methods for evaluating space systems architectures, specifically the Generalized
Information Network Analysis (GINA) approach, provided a means of exploring conceptual
tradespaces rather than just conceptual point solutions.* By modeling some space systems around the
central assertion that these systems are in fact information transfer networks and aspects of
information theory could be directly applied, the GINA approach was created. The greatest benefit of
GINA was that it enabled a structured analysis, assessment and exploration of large tradespaces using
simulation models that effectively segmented the problem of designing space systems. These
simulation models are used to predict system behavior in terms of cost and various performance
characteristics, such as system capacity over its lifetime and can be used to predict behavior of

thousands of potential architectures simultaneously.

3 Adapted from Fabrycky, W. (1991). Life Cycle Costs and Economics. NJ, Prentice Hall
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This thesis asserts that a simple deterministic prediction, as is the case in GINA and othet modeling
techniques, 1s not enough. This research extends the current thinking with regards to the GINA
methodology, and other design techniques, such that architectures in the tradespace are further
distinguishable by the ebedded uncertainty in each. Traditionally, architectural designs are represented in
a design tradespace, such as those in the GINA framework, as expected values in dimensions of utility
and cost. But in fact, the architectures have little in the way of static existence and instead have
assoctated with them embedded uncertainty. The term “embedded” implies that this chatacteristic is
neither obvious nor can it be isolated within the architecture. Embedded uncertainty is lifeblood that
runs through every aspect of the architecture and while its charactetization can’t be isolated to any
archttectural characteristic, it can be aggregated and described in a way that is helpful to the decision

maker. Further, this uncertainty can in fact represent either risk ot as less often realized—reward.

This research began with an exploration of how decisions were committing resoutces eatly in the
conceptual development process. From this preliminary work, insights were gained into the inevitable
trade-off between speed and flexibility: the trade-off between comfort and anxiety: the trade-off
between certainty and change. Prompting the further investigation of modeling and understanding of
the architectural uncertainty in the conceptual design process.” The improvement of uncertainty

information and uncertainty trade-offs was a natural direction to pursue for making a contribution.

11 Problem Statement and Approach

Uncertainty and risk analysis in conceptual design at present can be charactetized as qualitative, expert
driven and point based. Moreover, uncertainties are evaluated individually, assessed and addressed as
unique and any calculations of these uncertainties are typically a postetiori and ate not embedded in
the end model. This research addresses each of these issues. The presented method provides an
approach that 1s both quantitative and tractable. Further, this approach provides the strategy necessary

to differentiate among potential architectures and manage uncertainty in a tradespace.

+ Shaw, G., D. Miller, and D. ITastings (2001). "Devclopment of the Quantitative Generalized Information Network Analysis (GINA)
Methodology for Satellite Systems.” Journal of Spacccraft and Rockets 38(2): 257-269.

5 Walton, M. (2000). Striving toward a Lean Clean Sheet Design of Space Systems. ATAA Space 2000, Los Angeles, CA, AIAA,
#2001_4573.
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Another perspective of engineering systems development explored in this research suggests that
mental models of running from uncertainty or denying its existence can in fact be replaced by mental
models of leveraging uncertainties that have reward potentials and understanding how to work with
uncertainties that are likely to put project success at risk. These concepts are brought to bear through

the application of financial risk management and, more specifically, the application of portfolio theory.

This thesis began as an exploration in the broad issuc of improving the design and development of
space systems. It evolved to a focus on the front end of conceptual design, because of the high impact
per dollar spent of that phase of development and the significance of the decisions made thete on the
eventual success or failure of the developed system, as illustrated in Figure 1. So given the influence of
decisions in the conceptual design phase, how can the information and/or the process by which
decisions are made be improved? Itis at this junction of the improvement of information and process
that the thesis began to mature. By looking at all the criteria by which decisions are made, ideas of
improved uncertainty quantification and uncertainty management stood out. The problem statement
evolved from the broad question of: How can design and development of space systems be improved in terms of
cost, schedule and guality? to How can uncertainty of architectural choices be quantified and presented to designers and

decision makers as to improve the overall design process in terms of cost, schedule and quality?

Once a problem statement was defined and an initial literature review was completed, semi-structured
interviews were conducted at four major space system design organizations to develop an overall
perspective of the state of uncertainty analysis in industry and to collect challenges that could be
addressed through this research. Some of the most significant challenges were 1.) developing a
method that incorporates different stakeholdets viewpoints and preferences toward uncertainty and
value, 2.) addressing uncertainties from sources outside of the narrow scope of solely technical
uncertainty, and 3.) developing a method that is both tractable and approachable to designers and
decision makers. Overall the dominant theme echoed at the interviews was a desire to understand
uncertainty at a level that would be useful as decision criteria and able to be traded in early conceptual
design. Too often, it was pointed out, uncertainty analysis and corresponding risk analysis are an
afterthought in eatly conceptual design, whete modelers and designers are pushed to deliver the
desired outcome behavior and decision makers are pressed to pick something to move forward to

preliminary design, so as to not appear indecisive.
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In order to treat uncertainty as decision critetia, quantitative methods of uncertainty analysis are used
and an approach 1s developed to quantify the embedded uncettainty in each architecture considered.
To do this, pre-cxisting quantitative methods were synthesized to create an adaptable approach that
could be tailored to different sources of uncertainty and modeling methods. Primarily, the uncertainty
analysis incorporates statistical uncertainty measurement, uncertainty propagation techniques and

elements of probabilistic risk assessment and multi-attribute utility theory.

Realizing that individual uncertainty measutements would not be as useful to a decision maker as a
method by which he/she could trade this information among potential architectures, portfolio theory
and optimization is introduced as potential organizing method to manage uncertainty and guide

decision makers as to what the raw uncertainty data suggests in terms of action.

Finally, all these contributed to a cohesive uncertainty analysis approach that was developed and

demonstrated on three space systems case studies.

12 Structure of Document

Chapter 2 presents the potential that could afise from treating uncertainty as a central decision criteria
in the design of space systems. The chapter presents the vision of why this research is important and
the overarching principles that come out of the work. Part I describes the foundation on which the
approach was conceived as well as a detailed description of the uncertainty analysis approach
developed. Chapter 3 sets the stage for the current practice of uncertainty analysis in industry, while
Chapter 4 highlights the literature on uncertainty quantification and management with respect to space
systems design. Chapter 5 presents the first of two chapters describing the approach derived in this
thesis. This chapter addresses the quantification of uncertainty in architectures, while Chapter 6
desctibes the application of portfolio theoty to space systems design as a useful framework to
managing uncertainty. Part II describes case studies used to demonstrate the applicability and
potential of the uncertainty analysis framework. Chapter 7 describes the application of the uncertainty
framework to a Space Based Radar Mission. Chapter 8 describes the same framework, but in the
context of a Commercial Broadband Communications Space System. Chapter 9 desctibes the
approach applied to a Scientific Earth Obsecrving Space System. Fach of the three cases highlights

different clements of the uncertainty analysis and provides practical implementation examples.

26



Chapter 10 summarizes the conclusions found in the casc studies and the generalizability of those
conclusions, as well as suggestions for further research. Finally, an implementation tutorial 1s included

in Appendix A as a step-by-step description for applying the approach.
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Chapter 2

UNCERTAINTY AS A DECISION CRITERIA IN DESIGN

The purpose of this chapter is to present a vision of the potential benefit that could come from the use
of uncettainty as a decision criteria in design. The application of portfolio theory to the design of
space systems is btiefly introduced, while an illustration of how decisions and the decision process in
conceptual design would be altered within the approach set forth in the thesis. The chapter also
introduces three principles of uncertainty in space systems conceptual design that have evolved from

the work that serve to align the reader for the remainder of the thests.

Consistent with the complexities of a space system, the conceptual design is plagued with uncertainties
from sources both identifiable and concealed. It is the job of those involved in conceptual design to
wade through the uncertainty that define the problem and arrive at decisions and architectures that,
within the current level of available information, reflect the better alternative. Itf’s clear that in
uncertain environments, optimality is something of a myth. This of course is why design is part art in
addition to part science. The simplistic assumptions of certainty of conditions, even at the embryonic
stages of design, can yield detrimental conclusions. Often intractable problems, due in large part to
uncertainty in the system and its the environment, are relegated to abstractions of the real problem that
tely on the accuracy of current estimates. This research lays the framework for a new way of looking
at the process of exploting potential architectures through the lens of uncertainty, that has the
potential to change the way people think about early conceptual design and the selection of designs to

PUISLIC.

Decision criteria such as cost, petformance and schedule are the standard when it comes to decision
making in space systems design. These measures, quantified using anything from back of the envelope
estimation to expert opinion to intense computation and modeling, typically serve as the basis of the
information provided to the decision maker. The mechanism to calculate information, like cost,

schedule and performance, has been taught in a number of books on the design of space systems in
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addition to the industrial practice exercised at each contractor and continues to be the subject of a
large body of research.” In contrast, methods of accounting for uncertainty in predictions in space
systems design have been far less published. No method has been presented, as of yet, that aggregates
the types and sources of uncertainty that arc typical of a space system and demonstrates an approach
to manage such information. This thesis presents such an approach and goes further to develop a

framework in which to explore the implications of uncertainty in different architectures.

Using uncertainty as decision criteria in design is not new. Typically, uncettainties in potential space
system architectures are highlighted eatly as potential soutces of tisks. These risks are then discussed
in terms of probability and likclihood. Individual risks on any given architecture are aggregated
qualitatively to judge the architectural risk that is present. This allows in patt for the relative
comparison of risks among architectures. [As design moves beyond conceptual design, tisk
management takes on a more significant role with risk management specialists developing fault trees

and conducting failure modes and effect analysis and more detailed probabilistic risk assessment.]

It 1s risk, rather than uncertainty that is the more common concept that currently pervades space
systems design. This of coursc is not without reason; human psychology dictates that the downside of
uncertainty is generally more important to decision makers than any upside benefits. Typical of
conscrvatism is the immediate connection of uncertainty to risk. Although the connection between
uncertainty and risk is clear, the distinctions are often buried. 'This thesis proposes uncertainty as a
more general and powerful concept around which to develop a method to manage uncertainties and

the potential risks that result.

It is shown that it is not just the information about uncertainty in any single architecture in isolation
that provides the most benefit to the decision making process. Instead, it is with the collective
uncertainty nformation of all the architectures in the tradespace from which real benefits and
innovative solutions can be found. When the collective uncertainty information is known,

telationships among architectures can be further discerned. For example, some of the most important

6 larson, W.a. J. W., Ed. (1992). Space Mission Analysis and Design. Torrance, CA, Microcosm., Wertz, J. a. W. L., Ed. (1996). Reducing
Space Mission Cost. Torrance, CA, Microcosm., Gordon, G. a. W. M. (1993). Principles of Communications Satellites. New York,
John Wiley & Sons, Inc.
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information that can be gained is the relative dependence of architectures with respect to their
expected outcomes under conditions of uncertainty. A decision maker must not only be aware of the
uncertainty of the architectures she is considering, but also how carrying more than one architecture at
the conceptual design phase might mitigate her exposure to total uncertainty; this is where portfolio
theory and optimization become helpful. Simply investing resources in designs that have diffcrent
levels of uncertainty will not do as much good as investing in designs that have equivalent uncertainty,
but which have a relatively low cottelation to each other in terms of outcome behavior under
conditions of uncertainty. In fact, such correlation-blind investment might simply dilute the available

resources for development.

2.1  Simple illustration of the impact of uncertainty included as a decision criteria.

It’s easy to see the impact that uncertainty information could have on a decision making process.
Although the increased information about uncertainty introduces complexity to the decision making
process, it also highlights the realitics that exist and are so important to decisions at the front end of
product development, as they prescribe so much of the downstream project performance. Judging an
architecture based on static interpretations leaves the decision maker with finality and an ability to
make fairly clean tradeoffs amongst architectures. However, seldom is architectural behavior known
to the point where outcome measures fully distinguish one architecture from another, as shown in
Figure 2. The lack of clarity is due to the embedded uncertainty in each architecture. In the figure, a
central point represents the expected value for a single architecture, while an ellipse represents the
standard deviation about the expectation in the two key performance criteria. The first ctiterion 1s
lifecycle cost and the other is total utility. The concept of “utility” will be explained in more detail in
Chapter 4, but for now utility can be interpreted as the relative performance of an architecture with
respect to accomplishing the desired mission. In this case, introduced in Chapter 9 as ATOS, the
desired mission is to map the characteristics of the earth’s ionosphere. A set of 30 architectural

outcomes is illustrated graphically in Figure 2.

Rather than focusing on an architecture’s expected performance, with the inclusion of uncertamty
information, designers can begin to focus on the range of behavior that it could achieve. The decision

of selecting the “best” architecture becomes less clear, how should judgments be made? On the basis
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of expectation? On the basis of uncertainty? On some combination of the two? Ideas of portfolio
P ty p

theory are used as the foundation from which to answer these questions.

Total Cost and Total Utility for ATOS with Uncertainty Ellipses (1 STD)
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Figure 2: Example of Uncertainties in Cost and Utility

Portfolio theory is a corner stone of this thesis and is presented as a viable approach to manage the
embedded architectural uncertainties that confront decision makers, as in Figure 2. Portfolio theory
has deep roots in the fields of economics and finance; in fact, the creator of modern portfolio theory
received a Nobel Prize in economics for his work on the subject.”  Table 1 desctibes the metaphor
this thesis constructs between the investment in financial instruments and investment in space system

architecture designs. The similarities are striking and, as will be demonstrated, hold up in practice.

7 Markowitz, H. (1952). "Portfolio Selection." Journal of Finance 7(1): 77-91.
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Table 1: Portfolio Theory Applied to Finance and Space Systems

Financial Portfolio Theory Portfolio Applied to
Systems
Who Invests Individuals/groups with capital Decision makers who are f
resources committing resources |
What are the investments | Financial instruments such as Space system architecture designs

stocks, bonds, treasuties

What is the choice space Those vehicles that are available | Those designs that are within the

at a given time and within the scope of the project and included
constraints of a given investor in the tradespace

What is the objective Maximize returns while Maximize expected value of the
considering the investors project while considering the
willingness to accept risk decision maker’s aversion to risk

Portfolio theory enables formal trade-offs to take place in a value vs. uncertainty tradespace, such as
the one presented in Figure 3. This figure displays the same architectures as Figure 2, but allows for
the selection of synergistic combinations of architectures rather than any single point design. The
points represent the expectations in terms of utility/$ and uncertainty for each individual architecture,
while the concave line represents the efficient frontier along which all optimal portfolio investment
strategies lie. That is, the efficient frontier includes all portfolios, or sets of architecture designs, whose

value cannot be improved without accepting more uncertainty.
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ATOS Architecture Portfolio Analysis
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Figure 3: Example of a portfolio tradespace

Portfolio theory also provides for the inclusion of the decision maker’s aversion to risk in the analyss,
thus allowing an optimal strategy to be found, as shown in Figure 4. Notice that the optimal portfolio
exceeds any individual architecture in terms of value for a given level of uncertainty. This non-
intuitive result is achieved through diversification. Portfolio theory brings to the uncertainty analysis
discussion not just the absolute measure of uncertainty in an architecture, but also how different
architectures behave under conditions of uncertainty. Differences in behavior open the door for this
type of diversification. In much the same way bonds and stocks move differently with respect to
uncertainty, so too can architectural designs. In the example provided in Figure 4, the two
architectures in the portfolio are achieving utility using different technical approaches and are therefore
sensitive to different kinds of uncertainty. By carrying both, the total exposure to uncertainty is
lowered because the outcome behavior of each with respect to uncertainty has a low correlation, thus

providing an opportunity for diversification.
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The details of the foundation, approach, assumptions and results follow, but before getting into the
details a vision for uncertainty analysis in the context of space systems is presented as well as the

overarching principles that are be extracted from the thesis.

Decision maker with high risk aversion optimal portfolio strategy
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Figure 4: Example of optimal portfolio identification

2.2 Vision for Uncertainty Analysis in Space Systems Conceptual Design

Uncertainty becomes a formal and central decision criterion in the conceptual design of space systems.

This statement summarizes the overarching vision of the research presented in this thesis. Far too
often uncertainty is treated as a supplemental piece of information that is considered usually after
decisions have been made. Instead, this thesis asserts that uncertainty must be treated with the same
attention as other decision criteria, like performance and cost, to avoid unexpected rework that

contributes to extended schedules and overrun budgets. Therefore it is the mission of this research to
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develop an approach and techniques that enable the assessment, quantification, and management of

uncertainty in the conceptual design of space systems.

Figure 5 presents a conceptual design flow with the inclusion of the proposed uncertainty analysis
framework. Lying between concept generation and concept selection, the uncertainty analysis would
provide useful information to the decision maker in preparation for selecting architectures to pursue.
Coinciding with the vision for uncertainty to be a central decision criterion in the conceptual design of
space systems, so too must the uncertainty analysis be a central component of the conceptual design
process. The uncertainty analysis location, as described, would be eatly enough in conceptual design
to positively influence decisions, while at the same time its location would be late enough, so that the

problem boundaries are drawn and sources of uncertainty can be identified, assessed and quantified.

External Sources
of Uncertainty

Social/Market
Factors

i..ll'ecycle
Uncertainty

» Capture embedded uncertainty of
potential architectures
—ldentify and quantify individual
sources of uncertainty
—Use uncertainty propagation to
capture embedded architectural
uncertainty

Figure 5: Insertion of the uncertainty analysis approach in conceptual design
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2.3 Three Principles of Uncertainty Analysis in Space Systems Conceptual Design
Presented are three engineering principles on the subject of uncertainty. Each of the three principles 1s
developed throughout the course of the thesis and they serve as touchstones for the reader to the

overarching themes of the research.

Principle 1: Irreducible uncertainty exists in all space systems architectures
Perhaps a trivial statement, but in fact this principle above all other principles can lead to shifting the
current mental models away from deterministic thinking about space systems conceptual design.
Without accepting the unpredictable dynamics of the behavior of space system architectures in the
face uncertainty, there will be little motivation for improving the way uncertainty is managed in the

conceptual design process of spacc systems.

Principle 2: Space systems architectures can be characterized by their embedded uncertainty
Every space system architecture has associated with it an embedded uncettainty. "This characteristic
can be quantified, managed, diversified and reduced. Just like other characteristics of the space system
architecture, though, embedded uncertainty is impossible to precisely quantify. However, its
apptoximation can be readily achieved and incorporated into an uncertainty analysis approach, such as

the one presented here.

Principle 3: A portfolio of architectures can be systematically used to adjust overall exposure 1o

uncertainty

Catrying a set of architectures through design that respond differently to different types and levels of
uncertainty can in fact reduce a project’s overall exposute to uncertainty. Although there is generally
an added cost to carrying mote than a single point design, this thesis shows that this cost-benefit can

be quantified.
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" PART I: AN APPROACH TO QUANTIFY AND MANAGE UNCERTAINTY IN
SPACE SYSTEMS CONCEPTUAL DESIGN

This section describes the details of the proposed uncertainty analysis approach. Chapter 3 focuses on
the current state of the art in industrial practice of uncertainty quantification and management in
conceptual design, while Chapter 4 focuses more on the current state of art in the literature. Building
on the foundation laid in the previous two chapters, Chapter 5 and 6 define the proposed uncertainty
analysis approach. Chapter 5 is focused on the quantification of embedded architectural uncertainty,
while Chapter 6 describes the application of portfolio theory and optimization to the field of space
systems conceptual design. Although Chapter 5 and Chapter 6 together comprise the uncertainty
analysis approach defined in this thesis, they are in fact separable and could be incorporated in

isolation of one another.
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Chapter 3

CURRENT STATE OF UNCERTAINTY ANALYSIS IN SPACE SYSTEMS DESIGN AT
FOUR MAJOR SPACE SYSTEMS DEVELOPERS

3.1 Introduction:

The significance and presence of uncertainty 1s something that developers of space systems cannot
escape. This chapter explores this fact. How indeed do designers in industry deal with the presence of
uncertainty in early conceptual design? Four sites were mvestigated that represent a cross section of
the space systems development industrial base as seen in Figure 6. Confidentiality agreements require
the masking of organization names, but those imnterviewed serve commercial, civil and military
customers and represent a cross-section of the space systems design industrial base. 26 individuals
were interviewed in total at the sites whose functions were tied directly to conceptual design
(conceptual designers, directors for advanced development) and were mtimately aware of the role of

uncertainty in conceptual design (risk practioners and project management).

7
" a

Figure 6: Cases along sector lines
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While the research presented in this thesis extends fat beyond the current state and suggests innovative
ways to manage uncertainty in conceptual design, it is important as reseatchers to fully understand the
real-world application environment where reseatch must have impact. It is therefore the purpose of
this chapter to not only highlight the current treatment of uncertainty in conceptual design, but also to

bring out implementation issues that will arise from any proposals of this research.

The presence of uncertainty has classically been treated as the necessary evil that is embedded in the
margins of design and has been done so through predominantly qualitative means. The results of this
process have created the possibility of problems creeping up in the later design stages. It therefore
leads to the research question: Can the architectural uncertainties that cxist be better understood in
eatly conceptual design? The answer that this thesis provides is a definitive yes. But as much as the
answet may be yes, how should such an approach be implemented? Guidance for these questions was

found from the structured interviews conducted within the following four cases.

A final note is that the qualitative analysis presented here results in findings that are, in general, local
and contextually bound. Multiple perceptions of the same events are expected and acceptable, which
can often be difficult for schools of natural science that seck single generalizable suggestions.”
Nonetheless, the overarching themes and challenges observed are of significance and direct relevance
to the overall success of this research as these sites represent a significant fraction of the organizations
focused on space systems development and would be the direct beneficiaties of any improvements

that could be made to space system conceptual design.

3.2 Case1[6 Intetviewees-Group]

The first case was conducted at an organization that specializes in conceptual design studies for both
militaty and civil space system projects. These conceptual design studies are done using dynamic real-
time techniques that have become more common actoss the industry. Through the use of collocation
of experts, the customer and a team leader, amazing progress and consensus on conceptual designs

have been demonstrated. Of course all the work for the design studies are not completed in the

# Krathwohl, D. (1997). Methods of Fducational & Sodial Science Research: An Tategrated Approach. New York, NY, Addison Wesley
Longman, Inc.
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collocated team collaborative sessions, but instead a great deal of upfront model building, planning and

discussions with the customer enable the sessions.

The conceptual design approach adopted by this site leads to some interesting aspects of design
concurrency and customer feedback that can be achieved. There were two distinguishing features of

this site that should be brought out and explained that differentate it from the other cases.

1. Close involvement with the customer - the continual feedback and presence of the customer
is an attribute that isn’t found at the other sites. With this continuous informal contact,
customer acceptance/ aversion of uncertainties can be understood and explored more

effectively.

2. 'This site specializes in the study phase of conceptual design — very early stage of design- and is

characterized by uncertainty in everything including what the customer wants.

The conceptual design wotk that is conducted in this environment suffers from the most uncertainty
due to its very early position in the overall design process. However, it also during this early study
phase of conceptual design when architectural decisions will have a significant impact on the end result
of product development. This site has demonstrated the ability to study in depth as many as twelve
architectures for any given customer in an effort to explore the tradespace. This exploration is only

limited by the capability of the tools and time that the customers and designers have to expend.

At this stage of development, the customer is often not sure what they value and what they need. This
uncertainty in requirements can be the most deadly because it overrides all else in the design. An
architecture free of all uncertainty other than that of customer requirements will still be a very difficult
system to develop. In contrast, interviewees pointed out that the development of systems with little
customer uncertainty, but uncertainties arising from other sources, such as technical uncettaintes,

could be managed much more effectively.

With regards to uncertainty analysis in eatly conceptual design, most analysis is done on a qualitative
basis. Through a method that resembles an ad-hoc uncettainty assessment, each subsystem and

system engineer reports to the customer what are the greatest sources of uncertainty in their purview,
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including some estimate of a likelihood and impact. This gives the customer some sense of the overall
tisk in the architectures considered. From these individual sources of uncertainty, the highest area(s)
are sometimes brought to the discussion of architectute evaluation and pursuit. It is clear that there’s
no formal responsibility for the system/interface level uncertainties in the design, and further there is
no means of aggregating individually identified uncertainties. This leaves the customer in the
unenviable position of assessing not only the importance of the uncertainty information presented to

him, but also the way he should combine it with other decision criteria he may be considering.

Although the technical uncertainties are dealt with in this non-aggregate, individual way, the cost
uncertainty 1s approached from a different perspective becausc it is handled by one individual’s
tesponsibility. Because statistical models provide the costing for the system, the team can quickly
identify the historical uncertainty of previously developed systems from the approximation curve fit
statistical model they are using to cost the proposed system. In this way a quantitative estimate of
uncertainty can be given to the customer in terms of cost. The estimates of cost are generally
calculated using mass and power properties of spacecraft, estimations of software complexity
guidelines of code cost estimations. As a rule of thumb, the 50" percentile of the cost distribution is

presented to the customer.

The cvaluation of multiple concepts (as many as twelve) for customers is unique with respect to other
sites. This is not to say that other sites don’t explore the tradespace, as will be discussed. Instead it

shows that the exploration was one in which the customer was not involved, in general.

Ideas of any formal risk management process in early conceptual design don’t exist at this site.
Instead, at this stage of the study the process of uncovering uncertainties and risks are the main focus.
A further hindrance to any risk management is the over-the-wall handoff that is typical of this study
phasc in aerospace conceptual design. Once studies and conceptual designs have been explored at this
site, the end product is generally a report of some sort that brings out the conclusions of the analysis,
the trades that were made, and the recommendations of the team. The majority of the analysis and
models are not available, however, following the conclusion of studies. The post-study relationship

becomes one that is primarily contextual in assisting any downstream realization of the project.
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From discussions with individuals at the site, it is cleatr that they would welcome methods for looking
at uncettainty more holistically in early conceptual design. One interviewee imagined a “risk station”

could be incotrporated into the concurrent designing environment to fit in with the current process.

3.3 Case 2 [6 Interviewees-Group]

The second case explored included an organization that m contrast to the previous case was under
contract to design and build the conceptual designs they worked toward. This was a fundamental
difference that distinguishes some of the characteristics and the interests of the second (and remaming)
case over the first. This fact puts uncertainties into the economics of the company and therefore one

could atrgue that they should be more visible in the end analysis.

Primatily a defense and civil space systems development contractor, the programs that are found at
this location tended to be very unique, advanced, high cost and having lengthy development times.
The effect of uncertainties on programs from the company perspective were definitive in terms of
their priotitized impact on schedule, cost and technical aspects of the program. It was clear that
although this is the predominant priority, the order might switch depending on stakeholder

petspectives.

Individuals at this organization found that uncertainty analysis in early conceptual design would be a
very useful in the pre-proposal and proposal phase as the trade space 1s being explored. The largest
soutce, according to the consensus of interviewees at this site, were those arising from requirements
instability-the ability to understand what the system needs to do. From this, they see a challenge to not
only understand the uncertainty in a system that is developed under constant requirements, but also
one that exists in a more dynamic customer environment. It has therefore become a major challenge
for them to achieve a forward looking/anticipatory strategy that enables real foresight into potential
outcomes in an uncertain environment in addition to the cutrent approach of dealing with

uncertainties as they arise.

Facing this dynamic environment of evolving requirements, it appears parallel path development
would be common. This is mote the exception than the rule as it applies to design though. One

example of parallel design paths explored was given as it applied to a major component design.
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During one development project three hydro pumps were catried through design until prototypes had
been developed and tested and the uncertainty had been teduced to a level acceptable to make a

decision on which variety to choose.

3.4 Case 3 [9 Interviewees-Individual]

The third case looks at conceptual design at an otganization that works predominantly with
government customers-military and civil- to design and develop space systems. This site, much like
that in case two 1s focused on “one-off”, highly advanced space systems that have cycle times that are

generally much longer than that of commetcial systems.

Like the space systems developed in the previous cases, the systems that are designed at this site
represent some of the most advanced technology. Thete were two main groups that were interviewed
at this site, those working on military systems and those working on civil programs. Although the two
reside at the same location, it was clear that the treatment of uncertainty for the different customers
did differ. The military programs suffered greatly from requirements creep and the uncettainty of
operational issues that require real-time suppott and information delivery to the watfighter. In
contrast, the cvil programs were hampered by the risk aversion of the customer due to the high

visibility of space missions.

Closely related to the topic of uncertainty was the notion of value about which information is
uncertain.  Utility and value were brought up in nearly all interviews as being a key aspect of
understanding how early conceptual design was catried out and how uncertainties were thought of.
One example was the case of a proposal for an advanced system whose design tradespace was fairly

well understood, but the customers definition of value, or “best value”, was not well known
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Best Value?

Utility

Contract Award

Cost

Figure 7: Government Contractor Perspective of Best Value

Figure 2 is used to represent this situation. The dashed line represents the envelope that the contractor
believed the design should fall within and further believed from the customer that the “best value”
design in this program’s case was maximizing utility of the mission given a capped budget. They later
found out after the award was given to a competitor that the customer was far more concerned with
minimizing cost and just meeting minimum utility levels. It was the interviewee’s belief that the
customer could do a better job to make those types of trades more explicit and increase the possibility
for dialogue. He did cite that the customer communication was dependent on the different
customers. For example, on the DII mission it was clear that the Air Force was seeking the highest

utility for a $400M budget.

Pre-proposal and proposal efforts at this site have “cost the company 10s of millions of dollars if not
hundreds and can be as long as a two year effort.” During this time the trade space is explored and
the customers’ perception of value is extracted along with the criteria for proposal selection might be.

Uncertainty analysis during this stage of design is used to place margins on different characteristics of
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the architectures. One program manager believed that telling the truth about the uncertainties of the
system actually led his organization to lose to a competitor whose proposal they viewed as a papet
study without adequate matgins. This places uncertainty analysis in a juxtaposition whete the analysis

may in fact work against winning a proposal.

When discussing the issue of pursuing parallel options, one intetviewer cited that he did know of
mnstance where a customer did retain multiple system level designs because they were attracted by a
advanced technology system but wete not comfortable with it as a single path so they cartied another
contract with a less advanced concept as well. However, he added that in terms of one contractor
offering options customers adopted the position that “we didn’t allow you to propose options”.
Instead of this position, the interviewee shared that his ideal proposal would include options in much
the same way as automobiles carty options packages where “the customer can choose the barebones

option or accept all the bells and whistles or anything in between”.

Sources of uncertainty can come from anywhere and at this site many of those commonly ovetlooked
were brought out including uncertainties associated with critical skills resources and the supplier base.
The consequences of both can be significant, for example drawing out the schedule and technical risks

in the case of lack of critical skills.

The relationships that different job functions have with respect to uncettainty are significant to
discuss. There were some different interpretations of the interaction between concept designers, risk
practioners (systems engineer whose primary focus was tisk management) and program/project
management and uncertainty. However, the differences can best be characterized as follows:
conceptual designers arc generally focused on subsystem margins to cover uncertainties but have the
greatest knowledge of where internal uncertainties atise; tisk practioners are interested on abstracting
to the higher level of the architecture and typically address the uncertainties at the interfaces; program
managers have a system level focus, like the risk practioners, but are also factoting in the external
uncertainties and at the same time trying to managing the margins built in by designets and the

respective systems level budgets of mass and power.
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The greatest sources of uncertainty at this particular site were found to be uncertainties in
requirements, technical issues, funding, and critical skills. It was pointed out that the requirements
uncertainty arises not just from the customer though, the internal requirements flowdown of customer

requirements provided as much of the uncertainty in the end.

Table 2: Military and Civil Sources of Uncertainty in Conceptual Design

Source of Uncertainty Number of Interviewees
citing the Source in Top 3
Requirements 8
Technical 6
Funding 4
Produciblity /Supplier 3
Critical Skills 1
System Integration 1
Political |
Schedule 1

The formal risk management process of this site is primarily qualitative, but appears to be the most
formal of the approaches seen elsewhere. A rule of thumb of 8.5% of the development cost was given
that is typical in budgeting risk management and mitigation. This information serves as a useful

jumping off point in justifying savings that risk management can result in.

3.5 Case 4 [5 Interviewees-Individual]
The final case bridges the gap to a predominantly commercial space systems design and development
operation. The interesting distinction between commercial and government approaches to space

systems development and the role of uncertainty in eatly conceptual design is brought out in this case.

This site is a leading developer of commercial space systems and the culture in place is far more
acclimated to the commercial customer than that of the military customer. For the most part, the

space systems that are sold from this site are direct derivatives of previous developments. Common
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bus platforms are used to lower costs and speed up delivery time to the customer. From a commercial
standpoint this is a very effective approach, as most communication satellite are not pushing the
envelope of performance, instead the customers are in general satisfied by the evolutionary
advancement of the technology. This is in shatp contrast to the cultures of the first three cases that

rely heavily on military and civil customers who are often looking to advance the state of the art.

Today’s known capability

Uncertain future capability

/

Value

Design A Design B

Figure 8: Commercial Contractor Perspective of Best Value

Figure 8 shows the common perspective of commercial goals in space systems. In general, there 1s no
urgency to jump to the next uncertain futute capability if today’s capability is well known and satisfies
the needs of the customer. This perspective results in two things. First a much slower evolution of
space systems in the commercial environment and second a conceptual design effort that 1s much

faster and involves little trade space exploration.

With this condition, it became readily apparent that the amount of individual satellite conceptual
design for each customet’s satellite is far less than efforts for government customers. Having said this,
1t also becomes clear that the role of uncertainty on the commercial customer programs is not as
significant as on brand new space system developments. Of course there ate areas of the system that

carry some uncertainty, like new components or the stability of the customers cash flow or the
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integration of a payload with the platform bus. Instead of focusing on the current platforms
development and sales, the area of the site that deals with new platform development serves as a

jumping off point for investigating uncertainties in eatly conceptual design.

Developing a new communication bus platform is of comparable complexity to many of the
government programs observed at the other sites. Further the uncertainties that exist in launching a
new platform are substantial, as the designers are developing platforms that will not satisfy one
customer, but many customers and that will serve as a backbone of sales and will be competitive with

other companies’ platforms for some period of time.

An insight that arose from this site was the use of, what is referred to as, handover books. These books
are created during proposal phases of development and are used to document the rationale of the
decisions involved in the proposal. As is often the case, those who work on the proposal may not be
involved in the later phases of design and usually their tacit knowledge is not captured. With handover
books, risks and uncertainties are documented for the design team. The motivation for the books was
experiences with “unexpected” surprises that would arise in later stages of design after the proposal

team had moved to other projects.

Table 3: Commercial Sources of Uncertainty in Conceptual Design

Source of Uncertainty Number of Interviewees
citing the Source in Top 3
Requirements 3
Schedule 2
Produciblity/Supplier 2
Critical Skills 2
System Integration 1
Technical 1
Inadequate Review 1

The observation that requirements uncertainty are at the top of the list for sources of uncertainty for
both of the cases at which a survey was conducted is consistent with the literature that stresses the
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significant costs that come from rework due to uncertainty in requirements. Figure 9 presents just one
example of the impact of requirements uncertainty in the complex systems product developments
process. It is of no surprise that requirements uncertainty is of the most concern to the industrial sites,
as it seems to one major sources of unplanned rework. Other research by Panetta reiterates these
same conclusions’ and a detailed survey of DoD program managers illustrates the same issues can be

found outside of just space systems, as shown in Figure 10.

Requirements All other
Definition Life-Cycle
60-80% Steps

Combined
20-40%

Figure 9: Source of System “Errors”1?

Walton presented nine high level issues that serve as major sources of uncertainty in the generation of
systems level requirements: expedited tradespace exploration, the challenge of bounding the tradespace
without driving a point solution, changes in technology, changes in funding, changes in customer
needs, changes in the wotld environment, ambiguous and unclear requirements communication,
disconnect in user and producer knowledge, and the mistiming of requirements freeze."" Individuals at

each of the case study visits echoed these same sources.

9 Panetta, P. a. D. H. (2002). "Managing Programmatic Risk for Complex Space System Development." International Journal of
Aerospace Management 1(4): 303-313.

10 Boar, B. (1984). Application Prototyping: A Requirements Definition Strategy for the 80's. New York, NY, Wiley & Sons, Inc.

11 Walton, M. (1999). Identifying the Impact of Modeling and Simulation in the Generation of System Level Requirements. Acronautics
and Astronautics. Cambridge, MA, Massachusetts Institute of Technology, SM.
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Figure 10: Causes of Program Instability on DoD Acquisition Programs (N=245, Mean +/- 1 SE)?

3.6 Overarching Themes and Challenges

This section summarizes some of the crosscutting themes and insights that have been uncovered from
the cases. The themes represent important implications as research evolves and contributions are
made to improve the conceptual design effort and the quality of knowledge that 1s gained from the

effort.

e The Role of the Customer: The role that the customer plays in the conceptual design
ptrocess can have a profound impact on the conceptual design process and more specifically
the uncertainty analysis that is conducted. Although no absolute distinctions exist among the
three types of customers (commercial, civil, and military), there are common characteristics in
each of the three groups. All three groups were interested with uncertamnty and more
specifically risk, but typically for three distinct reasons. The civil community was averse to loss
because of public visibility and the possibility of future funding loss, the commercial customer
was averse to loss because it would have impact on business performance and the mulitary

customer was averse to loss because it would reduce their future warfighting capability.

12 McNutt, R. (1998). Reducing DoD Product Development Time: The Role of the Schedule Development Process, Ph.D. Dissertation
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3.6.1

Although the motivations wete diffetent, the levels of risk aversion were very contextual and

no global ordering of aversion could be produced.

Uncertainty in Conceptual Design: This is perhaps the most significant of the themes as it
applies to contribution of any rescarch that might be conducted. From the four cases it’s clear
that the role of uncertainty in conceptual design is significant; it can guide decisions or it can
be punishing if not identified. The ever-present existence of uncertainty makes the topic very
difficult to capture even qualitatively, but deep interest is present in the industry for evolving

perspectives on how identification and even quantification might be done morc eastly.

Risk Assessment/Management: This phrase best reflects the immediate thoughts and
implications of uncertainty in the industty. Risk assessment and uncertainty analysis are indeed
closely related, and therefore the analysis would be remiss to exclude the risk
assessment/management that is being carried out, if any, duting conceptual design. From the
four sites, it became clear that the role of risk assesstent/management is not a major effort in

conceptual design and by and large does not enter the effort until later stages of design.

Dynamics of Decisions: The concept of decisions being made on uncertain information is
driving this theme. It is clear from previous research that a great deal, up to 80%, of the space
system costs are being committed catly in conceptual design with very uncertain information.
Therefore, the current process of decision making is important to the overall impact that this

or any research on uncertainty in conceptual design could have.

Barriers to Change: This theme 1s important to discuss as it guides how research may or may
not be accepted in different organizational cultures or processes. It can provide a great deal of
guidance on the how and when question of implementation of the research, ie. how
uncertainty information should be represented, when the analysis might fit best into the

conceptual design process at different sites.

Challenges taken up by the research
Develop an approach that can be used for a vatiety of perspectives and stakeholders. The

challenge is perhaps self evident by the diversity of the cases that the approach would have to
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3.6.2

be robust to organization implementation and to the types of projects that uncettainty analysis

methods could be used.

A need was recognized for the characterization of uncertainties eatly in conceptual design and

any practical approaches that could be developed would be of great utility.

Research must explore uncertainties beyond the myopic views of technical risk only; it would
be beneficial if other ancillary functions (legal, finance, and market) that are sources of

uncertainty could be embedded in the analysis.

Challenges posed to future research from the site visits

One of the major sources of uncertainty cited at the sites was the role of software in the
overall conceptual design. This is an area of great concern amongst the sites visited, but the
particular task of developing new methods to deal with uncertainty associated with the

development of software in space systems is beyond the scope of this research.

Improve the proposal process that has been seen as a bartier to more effective treatments of
uncertainty and the improvement to the quality of information that can be obtained early in
conceptual design. Further, the post proposal debriefs and feedback on proposal should be
more structured. Some interviewees sighted the benefits that might have come from a

dialogue debrief, rather than a written response to proposal losses.
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Chapter 4

CURRENT APPROACHES TO ASSESSING UNCERTAINTY AND RISK IN SPACE
SYSTEMS CONCEPTUAL DESIGN

4.1 Introduction

In this chapter the relevant literature that applies to assessing uncertainty and risk in the conceptual
design of space systems is reviewed for the purpose of motivating the uncertainty analysis approach
provided in this thesis. The discussion evolves from qualitative to semi-quantitative to quantitative
techniques of assessing uncertainty and risk in conceptual design. Limitations of methods in the

literature are discussed and serve as motivation for the thesis.

Since the Theory of Games and Econonsics Bebavior Y and Risk, Uncertainty and Profit ", publications and
tesearch into ideas of risk and uncertainty analysis have been continuous, yet the area continues to be a
fertile ground for exploration and results. The main reason behind the breadth of the tesearch on
uncertainty and tisk is its broad applicability to so many disciplines. From finance to policy and from
natural science to applied science, risk and uncertainties tend to be drivers of system behavior. Table 4

presents some of the formal quantitative methods for evaluating uncertainty and risk.

13 Von Neumann, J. a. O. M. (1944). Theory of Games and Economic Behavior. New York, John Wiley and Sons.
1 Knight, I%. IT. (1965). Risk, uncertainty and profit. New York,, Harper & Row.
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Table 4: Methods of Uncertainty and Risk Assessment

Methods to Approach Uncertainty and Risk Assessment

| Arbitrage Pricing Method Financial Systems

| Capital Asset Pricing Model Financial Systems
Real Options Financial Systems
Probabilistic Risk Assessment Engineering Systems
Utllity Theory - Engineering Systems
Reliability Theory/Markov Modeling Engineering Systems
Technology Readiness Levels Engineering Systems
Earned Value Management Engineering/Organizational
Task Based Risk Assessment Otrganizational Systems
Organizational Risk Management Organizational Systems

| Cost-Benefit Analysis Political Systems

! Monte Carlo Simulation/Uncertainty Propagation All

I Historical Trending a All
Sensitivity Analysis All

This research leverages work being conducted in the area of uncertainty and risk outside the
development of space systems, including the methods discussed above. The approaches that are
looked into most closely in this work are financial risk assessment, probabilistic risk assessment,

uncertainty propagation as well as some ideas of utility theory.

Before describing the literature, a context is provided for those familiar with traditional risk
management in space systems. Risk management, as described by the DoD, is composed of four
major subcomponents, as shown in Figure 11. The most relevant portion of the risk management
framework to this work is the risk assessment process. Although, these subcomponents apply to the

downside of uncertainty, risk, they can in fact be generalized to include upside potential as well.
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interest in this research

Figure 11: DoD framework for risk management's

4.2 Literature on qualitative techniques to managing uncertainty and risk

Qualitative methods of uncertainty and risk analysis in conceptual design are the most common in
practice, because of the relative ease of use and the fact that most organizations that use semi-
quantitative and quantitative methods also rely on qualitative approaches as inputs to their analysis.
The goal of the qualitative methods in managing uncertainty and risk is to estimate the sources of
uncertainty that provide the greatest exposure of risk to the program. Qualitative approaches typically
rely on expert opinion or organizational knowledge, for example organizational experience with similar

systems.

4.2.1 Risk Exposure Analysis

The most common type of qualitative analysis used is through the use of exposure charts, such as the
one presented in Figure 12. Traditionally, more attention is paid to the left side of the chart that
applies to only the risk that the system may be exposed to. However, it may be equally important to

consider the high reward events that could be managed to maximize the likelihood of their occurrence.

15 Risk Management Guide for Acquisition, Third Edition, January 2000.
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To use the exposure chart, sources of uncertainty are identified and plotted individually on the chart
according to their probability of occurrence and impact of consequence. Designers and decision

makers can then focus the majority of their attention on the “atea of anxiety” as called out in the

figure.
Area of Line of Expectation Area of
anxiety (and Analysis) opportunity

il

0

Probabili

.
>

A

.
>

Negative Consequences "
& d Positive Consequences

Figure 12: Probability and Consequence Exposure Chart

Roberts suggested relevant extensions to the classical risk exposure approach by using the exposure

chart as a tool to focus on sources of uncertainty and risk that should be considered for more detailed

16

analysis techniques.'® These more detailed techniques would include some of the semi-quantitative

and quantitative techniques that are presented here.

16 Roberts, B. (2000). Risk Management Doesn't Save Money, It Saves Programs. Risk Management 2000: Lessons for the Millennium,
MclLean, VA.
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4.3 Literature on semi-quantitative techniques to managing uncertainty and risk

Semi-quantitative approaches to uncertainty and risk management are those that generally include
techniques of both qualitative and quantitative means. For example, expert opinion might be used to
determine the technology readiness levells (TRLs) of certain technology, but more quantitative
approaches are used to model the impact of these technology readiness levels on the overall program.
Used extensively in NASA, TRLs serve as a method to quantify the effect of technology maturity on
predictions of cost. Table 5 presents the TRL information typically used as a standard by NASA.
These technology readiness levels are most often used in judging the technology maturity of

subsystems or components, rather than at the system or architecture level.

Table 5: Technology Readiness Classification!”

Technology Standard Deviation
Readiness Definition Relative about Most Likely
Level Risk Level Estimate (%)

1 Basic principles observed High >25

2 Conceptual design formulated High >25

3 Concept design tested analytically or | Moderate 20-25
experimentally

4 Critical function/characteristic demonstrated | Moderate 15-20

5 Component or breadboard tested in relevant | Moderate 10-15
environment

6 Prototype/engineering model tested in Low <10
relevant environment

7 Engineering model tested in space Low <10

8 Full operational capability Low <10

17 Larson, W. a. . W., Ed. (1992). Space Mission Analysis and Design. Torrance, CA, Microcosm.
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44 Literature on quantitative techniques to managing uncertainty and risk

This section focuses on techniques that have been developed to address uncertainty and risk in the
conceptual design of space systems that rely on predominantly quantitative techniques. A number of
approaches are investigated ranging from statistical measures of uncertainty of the future based on
historical expericnce to advanced uncertainty management techniques using fuzzy sets and finally
probabilistic risk assessment is described as a technique that has been used extensively to manage risk

in space systems.

4.4.1 Statistical Techniques of Measuring Uncertainty

Common statistical measures of uncertainty in space systems design include estimation errors around
cost estimating relationships and parametric design rules of thumb. To create these relationships,
historical data is collected and regressions are conducted to develop equations that can be used in the
conceptual design of space systems. An example of a cost estimating relationship (CER) is the relation
between satellite bus dry mass and the cost of the satellite bus in FYO0$K as expressed by Eq. 1, where
X 1s the dry mass of the proposed satellite bus. The standard error around this estimation is $3696 in
$FYOOK. Such cost estimating rclationships and their associated uncertainties are common and have
been scgmented for a number of different space mission classes as well, from the Air Force unmanned

space vehicle cost model™ to the small satellite cost model developed by Bearden."

Sat _Bus _Cost =781+ 26.1X"*"
Eq. 1

A sccond statistical approach of measuring uncertainty employs the use of TRLs as initial statistical
crrors for propagation. The ROSETTA model has been developed as a software platform in which
TRLs can be incorporated into the system simulation analysis.* By allowing different subsystem
features to be modeled using statistical measures of uncertainty based on the TRLs, the method allows

for uncertainty in outcome figures of merit to be better understood. The ROSETTA model serves as

18 Space and Missile System Center, D. o. €., T.os Angeles AFB, CA (1994). Unmanned Space Vehicle Cost Model. Los Angeles AFB,
CA, Space and Missile System Center.

!9 Bearden, D. E. (1996). Cost Modcling. Reducing Space Mission Cost. J. a. W. L. Wertz. Totrance, CA, Microcosm Dress.

2 Crocker, A., A.C. Charania, and John R. Olds (2001). An Introduction to the ROSEITA Modcling Process for Advanced Space
Lransportation Investment. Space 2001 Conference and Tixposition, Albuquerque, NM.
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a foundation on which to propagate the effects of components with different technology tcadiness
through to the system behavior. The model has specifically been applied to the design of 2™ and 3¢
generation reusable launch vehicles as a way to generate probabilistic predictions of performance

under a variety of technology uncertainty conditions.

4.4.2 Fuzzy Logic applied to managing uncertainty in space systems

Anotonnson and Otto provide an approach to managing uncertainties in design through the use of
fuzzy logic applied to design. Antonnson and Otto coined the term “imprecision” to define a specific
class of uncertainty and the Method of Imprecision (Mol) as an approach from which to base
decisions during the preliminary design stage.” They use the Mol to provide one of the first
quantitative methods to look at creating input ranges to set based design. More specifically, they
develop an approach to determine what design charactetistics it would be beneficial to delay decisions

on due to uncertainty in the system.

Maglaras presented the application of fuzzy sets to the design process and how results differ from
results obtained using probabilistic techniques.” His specific application was to the design of a truss
structure with dampers where the damper characteristics are the main source of uncertainty. He
demonstrates that probabilistic optimization resulted in a better design than the resultant design from
fuzzy set optimization. The fuzzy set approach neglected to consider the ease of controlling different

sources of uncertainty, while probabilistic optimization allowed for that.

4.4.3 Probabilistic Risk Assessment

The field of probabilistic risk analysis has evolved into a standard of systems analysis. The most
common implementation of PRA is through fault trees and hazard (failure) modes and effects analysis.
Like a lot of systems concepts, PRA had its first implementation during the era of complex systems in
the 1950s and 60s. The first program that used the method extensively was the Minuteman Missile

program. The main focus on the Minuteman was to prevent accidental warhead detonation or missile

launch.

2 Antonsson, E. a. K. O. (1995). "Imprecision in Engineering Design." ASME Journal of Mechanical Design 117B.

22 Maglaras, G. (1995). Experimental Comparison of Probabilistic Methods and Fuzzy Sets for Designing Under Uncertainty. Dept. of
Acrospace Engincering. Blacksburg, VA, Virginia Polytechnic Institute. Ph.D. Dissertation.
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First serving the needs of the aerospace industry in terms of risk analysis, the method was in fact
abandoned by NASA following bad experience with the Apollo program and probability estimates.”’
The departure from the space program would last two decades. Following the Challenger accident, a

push for probabilistic risk assessment brought the technique back to the forefront of risk analysis.

The process of conducting probabilistic risk analysis is contained in Figure 13. The main strengths of
PRA are: it has been successfully implemented in systems development, it has a quantitative
foundation and wealth of research, it is generally accepted in practice as a method of assessing risk and
it is good in decomposable, sequential systems analysis. Therc are weakness of coutse, these are: a
complete set of failures is not definable, independence of modes can not be generally achieved, there
are high sensitivities to probability assumptions, it is difficult dealing with inconsistent outcomes, 1.e.

dollars and lives, and the method is best suited for looking in detail at a single point design analysis.

% Hughes, A. a. T. H. (2000). Systems Experts and Computers: The Systems Approach in Management and Engincering
Wortld Wag II and After. Cambridge, MA, MIT Press.
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Figure 13: The PRA Process?*

4.4.3.1  Utilsty Theory

Utility theory is introduced as a method sometimes employed in probabilistic risk assessment to deal
with inconsistent outcomes in PRA by the normalizing consequences of events so that individual
event risks can be understood on an “apples-to-apples” comparison. Utility theory provides a means
to map relative preference to an attribute at different levels, thus defining a trade-off curve of worth of

achieving an attribute in a number of different states. Original research in unidimensional utility

2+ Modarres, M., M. Kaminskiy, et al. (1999). Reliability engineering and risk analysis. New York, Marcel Dekker.
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theory by von Neumann and Morgensternzs, Schlaifer®, Arrow”, Pratt® and Meyer29 was later

extended to the multi-dimensional problem by Keeney and Raiffa®.

4.4.3.2  Relevant Extensions of PRA

Dillon’s wotk provided the advanced probabilistic assessment model (APRAM) to address the
technical and management tisks that potential architectures face. The fundamental question that
APRAM addresses 1s how much to spend to maximize the technical reliability of a system vs. how
much to hold in resetves to solve unforeseen problems or errors in the development phase with the

final goal of minimizing the overall probability of project failure.”

APRAM provides a great deal of insight into single objective risk optimization of a static concept and
slight modifications thereof. However, it’s weakness lies in the single objective of minimization of
probability of failure and the intractability of such a method for evaluating over the entire trade space

of a set of architectures.

4.4.4 Other relevant methods of uncertainty analysis in conceptual design

Browning developed a method for quantifying product development uncertainty through activity-
based modeling. In his work, he developed a causal model for product development uncertainty
through the literature and data collection at acrospace companies. He further constructed an approach
to understand the connection between iterations in design and the overall project risk that could be
expected.”” This work provided a significant step forward in probabilistically modeling the design

processes quantitatively through the use of design structure matrices.

25 Von Neumann, J. 2. O. M. (1944). Theory of Games and Economic Behavior. New York, John Wiley and Sons.
% Schlaifer, R. O. (1969). Analysis of Decisions under Uncertainty. New York, McGraw-Hill.

27 Arrow, K. J. (1965). Aspects of the Theory of Risk-Bearing. Helsinki, Yrjo Hahnsson Foundation.

26 Pratt, J. W. (1964). "Risk Aversion in the Stnall and in the Large." Econometrica 32: 122-36.

2 Meyer, R F. a. J. W. P. (1968). "The consistent assessment of preference functions.” IEEE Systems Science and Cybernetics SSC-4:
270-278.

3 Keeney, R. a. H. R. (1976). Decisions with Multiple Objectives. New York, Wiley and Sons.

3 Dillen, R a. E. P.-C. (To Appear 2000). "APRAM: Advanced Programmatic Risk Analysis Method." International Journal of
Technology, Policy and Management. and Pate-Cornell, E. a. R. 1. (1999). Advanced Programmatic Risk Analysis For NASA's Taster-
Better-Cheaper Mission and Programs, Stanford University.

32 Browning, T. (1998). Modeling the impact of process architecture on cost and schedule risk in product development. Lechnology
Management and Policy. Cambridge, MA, MI'L. Ph.D. Dissertation
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Another relevant extension of uncertainty assessment can be found through research on the
abstraction of the aerospace systems design process as a control system problem. This thesis provides
an analogy of investing in space systems as that of investing in financial instruments. Another group
of researcher took the analogy that the aerospace system design process could be modeled as a control
system problem.” By using control theory, methods to quantify design process robustness and

sensitivities to uncertainty were obtained through feedback and error models.

4.5 Limitations of methods for curtent methods for managing uncertainty and risk

As was seen in Chapter 3 from the site visits, most industry organizations use elements of the methods
described above. Typically using the qualitative methods m very eatly conceptual design and as the
design matures, other methods are applied like the scmi-quantitative and quantitative methods
described above. The literature and cutrent approaches to manage uncertainty fall short in three main

areas.

e There is little understanding of methods to quantify the uncertainty in the tradespace of
potential architectures to pursue as opposed to the uncertainty and risk in a specific point

design.

e There is no method to provide trade-offs of different architectures reacting differently under
conditions of uncertainty; instead current methods are focused on how to manage uncertainty

within the context of a single design or the more general design process.

e There is no method in the literature that quantifies the potential value of carrying multiple

potential architectures in design, let alone the cost of carrying those designs.

3 DeLaurentis, D. a. ID. M. (2000). A New Model for the Aerospace Design Process Based on a Control System Analogy. 8th
AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, Long Beach, CA, AIAA. and DeLaurentis,

D. a. D. M. (2000). Uncertainty Modeling and Management in Multidisciplinary Analysis and Synthesis. 38th Aerospace Sciences
Meeting & Exhibit, Reno, NV.
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Fach of these three issues is addressed by the approach presented in Chapter 5 and 6. Further the
uncertainty analysis approach that 1s presented is inclusive of the some of the techniques outlined
above, thus providing a unified framework to address the problem of managing uncertainty in the early

conceptual design of space systems.
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Chapter 5

QUANTIFICATION OF EMBEDDED LIFECYCLE UNCERTAINTY

The previous two chapters discussed the current state of uncertainty analysis in the development of
space systems at industrial sites and in the literature. This chapter introduces the first segment of the
uncertainty analysis approach put forth in this thesis. This chapter introduces the means to calculate
the embedded lifecycle uncertainty in each of the potental architectures in the tradespace. 'The
method includes identification, assessment, quantification and visualization of uncertainty in the
tradespace of architectures. The next chapter will present the second scgment of the uncertainty

analysis approach using portfolio theory as a unifying concept to manage uncertainty in the tradespace.

5.1 Defining Embedded Uncertainty

It 1s not trivial that this paper’s content is focused on uncertainty, rather than risk. Uncertainty in this
thesis is defined as the inability to quantify precisely an architecture’s value to the stakeholders of the
systems, iLe. company, customer, sharcholders, etc. This is in contrast to the term risk that always
reflects a negative consequence of the probability of loss or injury. The delineation is important, as it

opens the research to aspects of uncertainty that may in fact be positive.

The first step in this method is to develop a holistic view of uncertainties of potential architectures that
enumerates all of the primary sources of risk over the lifecycle of the space system. The uncertainty
structure that was developed is presented in Table 6. This characterization helps to both encompass

the various types of uncertainty but also setves as a framework for discussion with industry.
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Table 6: Uncertainty Categ

Development Uncertainty

Operational Uncertainty

Political Uncertainty- uncertainty of
development funding instability

Political Uncertainty- uncertainty of
operational funding instability

Requirements Uncertainty-
uncertainty of requirements stability

Lifetime Uncertainty - uncertainty of
performing to requirements in a given
lifetime

Development Cost Uncertainty-
uncertainty of developing within a
given budget

Obsolescence Uncertainty — uncertainty of
performing to evolving expectation in a given
lifetime

Development Schedule Uncertainty-
uncertainty of developing within a
given schedule profile

Integration Uncertainty — uncertainty of
operating within other necessary systems

Development Technology
Uncertainty- uncertainty of

Operations Cost Uncertainty — uncertainty of
meeting operations cost targets

technology to provide performance
benefits

Market Uncertainty-uncertainty in meeting
demands of an unknown market

Model Uncertainty

From an aerospace perspective, the life-cycle view is important because a space system’s operational
existence often incurs a significantly higher degree of cost than its development. One of the reasons
this is typically overlooked is that the contractors and buyers are imminently interested in delivery of
the product within time and fiscal constraints. The operational context therefore often follows as a
secondary priority. However, this framework provides the opportunity to focus on the uncertainty of

the system’s life-cycle value.

5.2 Quantifying Embedded Uncertainty in Space System Architectures

Risk and uncertainty are major decision criteria in the pursuit of space system design, and yet the
ability to quantify and provide uncertainty information is not satisfactory, as was discussed in Chapter
3 and 4. Uncertainty and risk analysis in conceptual design at present can be characterized as
qualitative, expert driven and point based. Moreover, uncertainties are evaluated individually, assessed
and addressed as unique and any calculations of these uncertainties are not embedded in the simulation
models of conceptual design. A mote complete approach to design would provide for enabling the
quantification and aggregation of uncertainty, as well as the ability to integrate that information mto

the simulation models. This chapter provides such a method.
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First a description of how to identify individual sources of uncertainty and the how to quantify them is
presented. Next the modeling framework with which potential space system architectures ate
exploted is described. [The modeling framework used was the generalized information network
analysis (GINA) framework, however, any method that provides for analyzing system outcome
behavior could be used, thus making the uncertainty analysis approach available to organizations that
use other system simulation tools.] The next step is to use the modeling framework as a platform to
propagate the effects of individual uncertainties on the outcome criteria (i.c. cost, performance, etc.) of

potential architectures.

5.2.1 Developing the boundaries for uncertainty

Identifying the right uncertainties is part art and part science, much like the rest of conceptual design.
Far more important than identifying all the sources of uncertainty in conceptual design is identifying
the right sources of uncettainty in conceptual design. The right sources will have at least one of the
following characteristics. First, the uncertainty has a major impact on the expected behavior of the
architecture. This major impact could be caused by a low probability event but significant implications
(either positive or negative) or by a higher probability event with less significant implications. What is
a high or low probability event and what is a significant impact are where the art of design enters. The
second characteristic of an uncertainty that should be included in the analysis is one that differentiates
one architecture from another. An example of this second characteristic can be found in a tradespace
of architectures that don’t rely on the same technology. For example, assume a GEO communication
spacecraft could be developed using current technology for solar cell power delivery, but the LEO
architectures in the tradespace would require successful development of a higher efficiency solar cell or
delivery system. Technology is just one source of differentiating uncertainty, policy, market conditions

or manufacturing capability ate othets.

5.2.2 Quantifying Individual Sources of Uncertainty

In order to achieve a characterization of architectural uncertainty, the designer must not only identify,
but also quantify the individual sources of uncertainty that contribute to the architectural uncertainty.
This results in a bottoms-up approach to uncertainty assessment, as opposed to a top-down approach

that looks to directly identify uncertainty at the architectural level. Using the bottoms-up approach,
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the designer typically has greater insight into the component, subsystem and even system level

uncertainties and their outcomes.

Once the relevant sources of uncertainty have been identified, the next step is to attribute some level
of probability and impact to them and quantify them on an individual basis. A relative notion of how
significant the uncertainties are will be determined in the identification stage, but in this step more
tesolution in needed so that it can be incorpotated into the simulation models. Some individual
uncertainties can be very straightforward to quantify. For example, if the cost model being used 1s
based on historical data, a typical standard deviation about the most likely value can be used, as was
pointed out in Chapter 4. Other estimating relationships have comparable standard error measures
that can be found in the literature™ or in company specific databases. Examples of these technologies

might include payload sizing estimation ot other scaling factors for mass ot powet.

Other uncertainties might not be so straightforward to quantify. These could arise from market
conditions, policy uncertainty, new technology or novel architectural concepts. The quantification of
these types of uncertainties is best done using one of two approaches. The first is to develop
distribution profiles over which outcomes exist, e.g. market-capture probability density function in
Figure 14. The figure presents likelihood of achieving a range of different values of market capture for
a given system. In Chapter 8, a commercial space system case study is used to illustrate the

significance of market uncertainty on interpreting the architectural tradespace.

3 Larson, W. a. J. W, d. (1992). Spacc Mission Analysis and Design. Torrance, CA, Microcosn.
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Figure 14: Probability Density Function of Market Capture for Broadband Space System

As significant as the uncertainties discussed above are, so too are uncertainties surrounding the various
scenarios that are attributable to an architecture and that could result in significant impacts to the

architecture design. One example of such a scenario would be the chance event of acquiring one of

two frequencies from the regulatory commissions for transmissions.

Scenario analysis is conducted using a three-step process. The first is to identify the possible scenarios
that would cause significant impact to the value of architectures in the tradespace. The second is to
determine the outcomes of these scenarios and the probability of each outcome. The final step is to
determine a distribution of outcomes and probabilities that can be mcorporated mnto the simulation
models for the purpose of uncertainty propagation. This approach is most useful when chance events
can be isolated and quantified, for example a chance event of acquiring different transmission
frequencies, as shown in Figure 15. In the figure, the chance event is the spectrum allocation for
transmission, while the two outcomes are spectrum 1, with an allocation of 5E9Hz, and spectrum 2,
with an allocation of 1E9Hz, with a probability of 0.4 and 0.6, respectively. This type of scenario
could have a tremendous impact on the relative value of different architectures, perhaps making some
architectures now infeasible. Other scenatios, such as technology fallback plans if one technology
doesn’t achieve operational readiness, can be modeled equally well using this approach. Using a
software package like Decision Analysis by TreeAge® enables the quick development of these
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decision trees and also allows creates expected outcome distributions for the scenarios developed that
can be quickly incorporate. Decision trees also serve as one method to consider correlated sources of
uncertainty. Although the sources included in each of the three cases investigated are uncortelated,
there are circumstances where uncertainty correlations may exist. For example, an uncertainty in
battery petformance, i.e. Watts/kg, might depend upon the uncertain outcome of developing a new

battery or relying on heritage components.

Spectrum 1 Awarded .

Spectrum Allocation . 0.4 5E9
™\ Spectrum 2 Awarded .
pec Hi) 6 warded 1

Figure 15: Spectrum Allocation Scenario

Another source of uncertainty arises from the designer’s understanding of what is meant by value to
the customer. One method of determining this value is through a utility analysis that attempts to
uncover the preferences of customers. This utility information can then be modeled quantitatively and

incorporated into the overall evaluation of the architectures and their pferforrnance.3 >

The uncertainties associated with the utility can be significant, as this can serve as the major decision
criterion by which architectures are evaluated. The sources of uncertainty in utility can come from a
number of causes including the selection of people involved in eliciting customer utility, and the time
dynamics of changing utility. The case study in Chapter 9 incorporates the notion of utility and the

uncertainty associated with it in the context of a scientific space mission.

5.2.3 GINA Design Approach
The assertion that most space systems are in fact infotmation transfer netwotks involved in the

collection and dissemination of data led to a significant breakthrough in space systems conceptual

% de Neufville, R. (1990). Applied Systems Analysis: FEngineeting Planning and Technology Management. New York,
McGraw-Hill
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design. This assertion opened the door for the application of interdisciplinary techniques of design
and evaluation to be applied from network theory onto the problem in space systems conceptual
design. From the assertion, a framework was created, the generalized information network analysis
(GINA) methodology, which has been applied to a number of space system development problems

36,37 » . 2
" By modeling a space system as an information network, common

and been regarded with success.
evaluation criteria are calculated. These criteria allow for the comparison of very different architectures

on equal footing, as shown in Figure 16.
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Figure 16: The Generalized Information Network Analysis Method?

Advances in conceptual design methods for evaluating space systems architectures, specifically the
GINA method, provided a means of exploring conceptual trade spaces rather than just conceptual

point solutions. This is the reason that GINA, or a system simulation approach like it, is so important

36 Shaw, G., D. Miller, and D. Hastings (2001). "Development of the Quantitative Generalized Information Network
Analysis (GINA) Methodology for Satellite Systems." Journal of Spacecraft and Rockets 38(2): 257-269.

37 Jilla, C. (2002). A Multiobjective, Multidisciplinary Design Optimization Methodology for the Conceptual Design of
Distributed Satellite Systems. Aeronautics and Astronautics. Cambridge, MA, Massachusetts Institute of Technology.
Ph.D. Dissertation

38 Ibid.
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to the full implementation of the uncertainty analysis framewotk presented here. GINA serves as the
platform within which uncertainties from different sources can be incorporated into simulation models

and propagated, thus developing distributions of outcomes for architectures in the tradespace.

5.2.4 Propagating Uncertainties

In order to understand an aggregate view of embedded uncertainty, an ability to simulate and
propagate uncertainties of assumptions, components, and other modeled characteristics of
architectures must exist. Because most space systems conceptual design is forward looking, the
designers typical rely on histotical statistics and future projections when establishing vatious
component characteristics that are necessary to move forward and model an architecture. By
definition these projections have uncertainties associated with them. Using the uncertainty soutces
previously identified and quantified and this model uncertainty, an uncertainty propagating technique

1s developed.

In the GINA methodology, most of the sources of uncertainty can be found in what is known as the
constants vector. The constants vector contains architecture and environmental charactetistics that are
held constant for all architectures evaluated. Thetefore the only variables changing across
architectures are the key design variables known as the design wector, 1.e. number of satellites, altitude,

powet, etc. and the intermediate variables calculated in each of the sub-modules.”

In the uncertainty analysis approach presented, not only are the uncertainties of the assumptions
important, but more so are the implications of those assumptions on the decision criteria of the space
system architectures in the trade space, such as performance and cost. Therefore, initial uncertainties
ate used as sources that are propagated in the simulation models to develop distributions of outcomes

for each architecture in each decision criteria dimension.

Two implementation approaches can be used to capture the various ranges of probabilities of
performance expericnced by the system, either the extreme condition apptoach or the Monte Carlo

simulation approach. The extreme condition approach has the benefit of being far less

¥ Although we classify an individual combination of design vector variables as an architecture, in some case the differences between one
combination and another may suggest that the GINA process is simply doing parameter design and not system architecting. This is
the topic of ongoing debate, but to remain consistent with the terminology first developed with GINA, each combination of the design
vector will be called an individual architecture.
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computationally intensive while the Monte Carlo simulation approach provides a greater confidence in
the embedded architectural uncertainty based on the number of samples taken. The first case study in
Chapter 7 employs the extreme condition approach, while the second and third cases in Chapter 8 and
9 present the implementation of the simulation approach. Du describes in detail some of the

advantages and disadvantages of the two methods. *
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Figure 17: Uncertainty propagation within the GINA framework

Once the individual sources of uncertainty have been identified and quantified, the uncertainty
propagation technique is applied to the GINA simulation model, as shown in Figure 17. The
constants vector that contains all the sources of uncertainty is sampled. This sample 1s then held
constant for the evaluation of each combination of the design vector using a GINA simulation call.
This creates a single set of outcomes for each of the architectures in the tradespace. In order to create
distributions of outcomes, the process is repeated with a new sampling of the constants vector. In the
extreme approach, the number of iterations will be three, whereas in the Monte Carlo approach the

number will vary, depending on the desired sample size. The number of samples that should be

4 Du, X. a. W. C. (2000). "Methodology for Managing the Effect of Uncertainty in Simulation-Based Design." AIAA
Journal 38(8): 1471-1485.
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conducted is not explicitly stated here, as it depends on the sources and levels of uncertainty that have
been identified. For example, soutce uncertainties that have been characterized by continuous normal
distributions will require fewer iterations in the uncertainty propagation approach than situations
involving discrete scenario modeling that may require more iterations to fully develop satisfactory
outcome distributions. Further there are various statistical measures that can be taken to verify a

statistically significant population such as the approach developed by Morgan.

Morgan describes his technique for selecting the sample size as follows:"!

Assume a Monte Catlo simulation has generated » random outputs, (¥y,V,,Vss.-V,). This

distribution is then used to estimate the mean and standard deviation according to the following

equations:

Eq. 3

Given a confidence, o, the confidence interval can be calculated from Eq. 4, where c is the deviation
for the normal distribution enclosing probability ct.
Y— e Yt
m'T m
Eq. 4

In order to calculate a sample size, an interval width, », is selected that will estimate the mean of y with

confidence, o, as given by Eq. 5

41 Morgan, M. G. a. M. . (1990). Uncertainty: A Guide to Dealing with Uncertainty in Quantitative Risk Policy Analysis. Cambridge,
UK, Cambridge University Press.
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Eq. 5

In practice, to quantify a sample size, m, a small Monte Catlo simulation is initially run to estimate the

vatiance. From this the appropriate sample size can be calculated.

5.3 Visualizing Architectural Uncertainty

Visualization of complex information, such as uncertainty, often provides valuable insight into
underlying characteristics of the data that wouldn’t otherwise be noticed. Visualization of data is a
human-machine interface problem and often a useful representation to one person may not provide
value to another. An ongoing body of research on uncertainty visualization provides direction as to
the significant role that visually presenting uncertainty can play.42 Most researchers agree that there is
no “best” visualization technique for presenting uncertainty information, but a2 number of general
guidelines are common. Three of these guidelines are 1.) deliver the information in a way that is
consistent with the type of decisions upon which the data will be based, 2.) cleatly separate the data

from the uncertainty, and 3.) develop visualizations that are consistent with human intuition. **

Therefore, a menu of uncertainty visualization techniques is presented that may enable the designers to
understand and convey characteristics of the embedded architectural uncertainties both individually

and collectively in the tradespace.

5.3.1 Focusing on individual architectures

The first and most straightforward way to represent the outcome distributions for an individual
architecture is to use a histogram that presents the predicted outcomes and their probability of
occurrence, as shown in Figure 18. The figure is generated by “binning” potential outcomes and
counting the number of observations that fall in each bin considered, thus generating a vertical bar
chart. Further, if a normal distribution is expected, a normal expectation line can be overlaid onto the
graph to visually judge relative fit of the data, as shown in the graph. The figure represents the output

for an architecture whose mission is to map the earth’s ionosphere that will be discussed later in

42 Ibid.

** Mahoney, D. P. (Nov 1999). "The Picture of Uncertainty." Computer Graphics World.
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Chapter 9. The prime decision criteria in the case of this architecture was total utility, which is a

relative measure of worth by which all architectures could be judged.

20

Frequency

Std. Dev = .93
Mean = 2.80
N =61.00
1.13 2.13 3.13 413 5.13
1.63 2.63 3.63 463 5.63
Total Utility

Figure 18: Example Histogram for Architectural Uncertainty*

The boxplot provides a snap shot view of the architectural uncertainty as it applies to a single outcome
measures, as plotted for total utility in Figure 19. The box-plot gives information at a quick glance that
all of the observations recorded fell within the bracketed figure with exception of outliers that are
shown separately where they exist. The box represents the interquartile range that contains the 50% of

values, while the solid black line represent the median.

# Although typical convention would normalize utility to 1, this example involved the aggregation of sub-utility functions resulting in
ranges greater than 1
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Figure 19: Example Box Plot for Architectural Uncertainty

There are as many dimensions of uncertainty as there are outcome measures that are trying to be
predicted. The previous examples, and in fact much of the rest of the thesis is oriented around the
most important one or two dimensions from which decisions are generally based. However, there can
be a great deal of value in understanding the way other outcome measures move with respect to
uncertainty. This information might not drive a decision, but it would more likely impact the overall
development plan and concept of operations. For example, the uncertainty in expected customers of a
broadband telecommunications system would directly impact the marketing and rollout plans for the

new product.

In addition, by visualizing uncertainty in more than one dimension, the designer can see how
outcomes in different dimensions move with each other. Figure 20 presents a two-dimensional
histogram of low latitude mission utility and high latitude mission utility for the ionospheric mapping
space system that is discussed in depth in Chapter 9. From this type of figure, the designer can quickly
identify high and low likelihood scenarios as well as appreciate architectural characteristics that are not
evident by looking at each dimension of uncertainty independently. For example, from this figure
both high and low latitude utility can be seen to be right skewed distributions that are positively
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correlated. The right skewed behavior can be seen from the high degree of frequency in the upper

right quadrant and the positive cotrelation is evident from the symmetry about the diagonal.

By looking back at the soutces of uncertainty that effect these two dimensions of utility, the
explanation becomes clear. Both dimensions are driven by the uncertainty in the user lifetime
requirement of five years and the uncertainty in the reliability of the satellites in operation These
uncertainty would effect both the high latitude and low latitude mission in the same manner.
Although this is the case for the particular architecture modeled in Figure 20, it does not necessarily
dictate that other architectures behave in a similar manner. The next section describes the role of

comparative techniques in visualizing uncertainty in the tradespace rather than any single architecture.

2D Histogram of Low Latitude Utility and High Latitude Utilty
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Figure 20: Visualizing Architectural Uncertainty in Two Dimensions

5.3.2 Comparative techniques
Visualizing the uncertainty of a single architecture is important, but in conceptual design it is perhaps

more important to understand the uncertainty in the tradespace of exploration. A number of
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techniques to represent visually the embedded architectural uncertainty for a tradespace of

architectures simultaneously is presented.

The first method suggested is the use of etror bars in the tradespace analysis, as shown in Figure 21.
This multi-dimension aspect might be better appreciated through the use of ellipses of uncertainty. In
either case, one standard deviation from each outcome measure defines the edge of the etror bar or
ellipse. The ellipses are useful in visualizing overlap among architectures in terms of outcomes;
however, the elliptical representation has some mathematical assumptions that the simple error bars
escape. The ellipses with their shape imply a distribution to the uncertainty of an attribute that may or

may not be correct.

Tot_%l Cost and Total Utility for ATOS with Error Bars (1STD)  Total Cost and Total Utility for ATOS with Uncertainty Ellipses (1 STD)
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Figure 21: Uncertainty in a tradespace using error bars and uncertainty ellipses

The error bars and uncertainty ellipses allow the designer to see the relative uncertainty that exists
among architectures, but it provides no insight into if these architectures react differently under
different conditions of uncertainty. To address this, a method is introduced that captures the shifting

outcomes of each architecture tied to different characteristics of uncertainty.

Suppose, the extreme approach is used to calculate the embedded architectural uncertainty and three
conditions of uncertainty are simulated for each architecture. Figure 22 is developed by plotting the
three outcomes for each architecture and connecting the outcomes with a line. As opposed to

previous representations where points ot ellipses represented a single architecture, a line defines an
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architecture in this framework. This particular visualization technique has not been used previously in
the literature, but it provides some fundamental insights that the less complex ellipse and error bar

chatts don’t provide.

o Probability of Detection vs. Life-Cycle Cost
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Figure 22: Characterizing embedded uncertainty under three scenarios

The first thing to notice from this chart is the relative sensitivity different architectures have with
respect to the three scenarios of uncertainty conditions. The second thing to notice is that “good”
architectures can quickly become “bad” architectures under some conditions of uncertainty. For
example, Architecture A and B appear to both be good architectures under low levels of uncertainty.
However, as the uncertainty increases so too does the separation distance between the two
architectures in terms of Probability of Detection to as much as 2.2%. It appears that all the

architectures move in the same general pattern, but it is the degtee to which they move that can
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provide msight. Without this analysis, a decision maker who is presented with deterministic
information might perceive the lower cost Architecture B to be a good choice and Architecture A to
not be worth the $3E7 in lifecycle cost for only 1/10™ of a percent improvement in Probability of
Detection. This kind of visualization allows the immediate interpretation of relative sensitivitics to

uncertainty of the architectures in the tradespace.

Sometimes, shading is a more powerful visualization tool than geometric figures alone. Therefore a
final method is presented for visualizing uncertainty in a tradespace based on a shaded contour plot.
Figure 23 is generated 1 much the same way as the previous tradespace uncertainty figure; however,
contours are used to describe the embedded architectural uncertainty that exists. Building on the
example presented in Figure 21, a similar tradespace is presented representing the ionospheric
mapping mission. Instead of presenting the two dimensions of uncertainty separately a single aggregate
uncertainty is presented, the uncertainty in utility/cost. This chart shows that although the absolute
uncertainty 1s increasing monotonically with cost and uncertamty, the relative uncertamty (uncertainty
in the utility per cost dimension) actually has a turning point, as shown in the figure denoted by the
light square at 1.2 utility and $0.25B.
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Utility/Cost Uncertalnty Contour Plot for the ATOS Case Study
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Figure 23: Embedded Uncertainty Contour Plot

Uncertainty quantification and uncettainty visualization can provide a great deal of insight into not
only individual architectures and their relationship with uncertainty, but also the comparative
relationship that different architectures share with respect to uncertainty. Although useful and
insightful, this information provides the decision maker with no clearer strategy of how to proceed in
conceptual design. A method has to be developed that incorporates the uncertainty information and
codifies into a coherent strategy to suggest to the decision maker. In the next chapter a method is
presented that satisfies this charge. Building on portfolio theory and optimization, an approach is
developed that incorporates embedded architectural uncertainty information as well as decision maker
aversion to risk to define sets of architectures whose returns are often greater than any single asset for

a given exposute to uncertainty.

88



Chapter 6

PORTFOLIO THEORY APPLIED TO SPACE SYSTEMS CONCEPTUAL DESIGN

The previous chapter described the approach used in this thesis to quantify the embedded uncertainty
in architectures that are being evaluated. This chapter presents a method to manage uncertainty
information associated with each architecture after it has been collected. The method 1is based on
portfolio theory and optimization. The foundations of portfolio theory are first presented, followed
by the mathematics of portfolio optimization. An explanation of portfolio theory in both the financial,
as well as the space system context is then presented. Methods for identifying decision maker risk
aversion are then presented as essential to identify optimal portfolio strategies. Caveats to traditional
portfolio theory applied in the field of space systems are then presented along with limitations of the

approach in theory and practice.

6.1 Modem Portfolio Theory

Harry Markowitz revolutionized the way people manage investments with the introduction of
portfolio theory in 1952.* The underlying goals of portfolio theory are to recommend investment
strategies that balance the needs of an individual investor to 1.) achieve the maximum return for their
investment and 2.) for this return to be subject to as little uncertainty as possible. Markowitz put it in

the following way:

A good portfolio is more than a list of good stocks and bonds. It is a balanced whole, providing the
investor with protections and opportunities with respect to a wide range of contingencies. 4

'The mental leap from the context of this theory in finance to its usefulness in design is not that
great—what decision maker would not be interested in developing a project with “protections and

opportunities with respect to a wide range of contingencies?” This goes back to one of the key goals

45 Markowitz, I1. (1952). "Portfolio Selection.” Journal of Finance 7(1): 77-91.
46 Markowitz, Harry M., (1991). Portfolio Selection, second edition, Blackwell, Cambridge, MA.
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of this thesis: To develop a method that creates portfolios of architectures fo invest in during conceptual design which

have inherent in them a level of robustness and flexibility to uncertainty”.

Portfolio theory assumes that for a given level of uncertainty, investors prefer higher returns to lower
returns—a risk averse utility-maximizer decision maker. Similarly, for a given level of expected return,
investors prefer less uncertainty to mote uncettainty. It is standard to measure uncertainty in terms of
the variance, or standard deviation, of return. Therefore, it can be assumed that investors would like to
invest in an efficient portfolio -- one in which there is no other portfolio that offers a greater return

with the same or less uncertainty (or less uncertainty with the same or greater expected return).

Portfolio Theory highlights a very important concept that is often ovetlooked and that is that the
assets traded in the stock market do not move together in terms of return. For example, the overall
market may be moving up, but at the same time there are stocks that ate losing value. There are some
stocks that tend to move together, and others that move in opposite directions, and others that seem
to have no relation to one anothetr. This tendency is measured mathematically by correlations and
covariance. 'The covariance provides the vatability or uncertainty in a pottfolio, as well as a

independence measure of each asset with respect to other assets in the pottfolio.

In order to go beyond general principles of portfolio theory, optimization techniques are used to
enable the scarch of the tradespace of architectures so that the decision maker arrives at an optimal sct
of architectures to pursue that maximize return while at the same time consider his aversion to risk.
The specific class of optimization is quadratic optimization based on an appropriate weighting of risks
and returns. These risks and returns are typically derived from historical movements of stock or asset
movements, but in the case of space systems, the simulation models ate relied upon to generate

distributions of potential outcomes.

6.1.1 Mathematics of Portfolio Optimization

Two precursors to the portfolio optimization algotithm are the quantification of returns and
uncertainty of players in the market. 'The methods to discover architectural uncertainties in conceptual
design were previously explored in Chapter 5. From the measured responses of architectures in the

GINA model under varying levels of uncertainty in the inputs and environment, a covariance matrix

#7 Sce Saleh, J. (2001). "Spacecraft Flexibility.” Journal of Spacceraft and Rockets Forthcoming. for discussion of value of flexibility and

its relationship to robustness.
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can be obtained that describes not just the individual uncertainty of each asset in the tradespace, but
also how each architecture’s uncertainty moves with respect to another architecture. That 1s, how
independent are the architectures in terms of the uncertainty that exists and how likely is
diversification of the uncommon or specific uncertainty associated with individual architectures.
Figure 24 portrays the diversification of specific uncertainty, and the remaining systematic uncertainty

that can’t be escaped.

Portfolio
Uncertainty
Specific
Uncertainty
Systematic
Uncertainty
Number of
0 5 10 15 Assets
Figure 24: Power of Diversification*®
6.1.1.1  Value

In order to define strategies for a given decision maker, the value that is desired from the system must
be understood. Neatly everyone has an idea of what »a/ue means, so 1 that way it 1s a familiar concept;
however, seldom are individual’s ideas on value interchangeable. Take for example the same mission
of delivering communications capability to the military and to the consumer marketplace. Although
both seek the same basic setvice, the way each customer judges the service value will have striking

differences. Typically security, availability, and performance will be at the top of the military customer

# Adapted from Brealey, Richard and Stewart Myers. (2000) Principles of Corporate Finance, sixth edition, McGraw-I1ill, Boston.
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list, while cost, cartier quality and latency may be at the top of the consumers’ list of value desired

from the system.

Researchers at MIT have taken a broader perspective to define value and in the process created a
useful framework in which to think about how to identfy, agtee upon and deliver value to
stakeholders, including the customer. They make the point that value is contextual, multi-dimensional
and dynamic, but despite these qualities it can be identified, agteed upon and delivered. Termed the
value creation framework, the construct provides a guidepost on how a mult-dimension, mult-
dectsion maker value identification and agreement might come about. The first stage of the
framework 1s the identification of what each stakeholder would like to get out of the system; the
second step provides for the formal understanding of what the goal of the system is and how each
stakeholder may derive value; while the third stage describes necessary approaches to execute on the
agreed upon value proposition.” It is at the second stage of the framework where a value measures

for a space system architecture might start to be considered.

To utilize portfolio optimization, a one-dimensional measure of value is created. Most of the literature
suggests that this value is a function of cost, and the many attributes of utlity that could exist. The
exact relationship will be mission and customer specific, as previously discussed. However, methods
to translate multi-attribute utility and cost into value is the subject of ongoing rescatch, and although
the third case study described in Chapter 9 uses the concept of utility based on multi-dimensional
attributes, the most common value criterion temains a function per cost metric, such as “billable T'1
hours/$ spent” as in commercial broadband case in Chapter 8 or “probability of detection/$ spent” as

in the military case described in Chapter 7.

# Murman, E. ¢. a. (2001). Lean Linterprise Value. New York, NY, Palgrave Publishers, Ltd.
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Once the value criterion 1s set, simulation models are used to capture the architecture outcome, as
described in Chapter 5, under varying levels of uncertainty. Once # samples are collected, the sample
mean, 7, can calculated for architecture x with Eq. 6. This sample mean represents the expectation of
value that will be derived for a given architecture and will be used in portfolio optimization as a

measure of return on the asset.

Eq. 6

6.1.1.2  Uncertainty and Covariance

To continue with the portfolio optimization, the individual uncertainty of each architecture, through
its standard deviation from the mean, must be understood and also the covatriance of each pair of
assets must be determined. This information is necessary to create a covatiance mattix, as shown in
Figure 25, that describes the independence of assets in the tradespace with respect to uncertainty. Eq.

7 describes the calculation of covarance, Oy, y, , given standard deviation, Oy, and oy, , and

correlation coefficient, py, v, , for two assets.

Assets X1 X2 X3 @ e X
Xi o)’ P12616, [P13o103 | @ o ®
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Figure 25: The Covariance Matrix, 0

Ox.x, = Px,x,%x0x,
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"The most common method in finance to calculate the covartance matrix in Figure 25 is through the
use of time samples of comparative vatiables. Following similar logic, in order to obtain the value in
the covariance matrix for space systems, the distribution outcomes for each architecture under the
same conditions of uncertainty are used. Each datum in the outcome distribution becomes a sample
observation in the calculation of mean, covariance and variance for each architecture and pair of
architectures by using the standard deviation equation, Eq. 8, and the covarance equation, Eq. 9, for
two asscts x and y. Substituting Eq. 8 and Eq. 9 into Eq. 7 yields the correlation coefficient for each

pair of architectures in the tradespace.

2
n n
2
nE X; —(E xi]
_af = i=1

* n(n—1)

a

Eq. 8

Eq. 9

Figure 26 describes two one-dimensional optimization problems for managing investments. Variance
can be either minimized such that it meets some fixed level of return for an investment or the return
can be maximized subject to some maximum level of uncertainty a decision maker 1s willing to take.
In these equations, () is the covariance matrix of the assets as described in Figure 25, r 1s the expected

returns and wis the selected weightings of assets.

Minimize Variance Maximize Return
.1 5 "
min—w’ Ow max > rw,
2 Q ; 1 1
STy rw, zn sr.l w QOw<o!
i=l 2
STy w, =1 STy w, =1
i=1 i=]
STw=0 STw=0

Figure 26: Equations of Different Objectives
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Portfolio optimization seeks to combine both of these important preferences into a single objective
function to maximize, as shown in Eq. 10. This equation represents the basis for most applied
porttfolio theory that can be found in practice. In words, it seeks to maximize the returns that can be
achieved given known uncertainties and returns of players in the market and also given a known level

of aversion to uncertainty, £.

k
max : rTw—EwTQw

ST Zn: w, =1
i=1

STw=20
Eq. 10

The application of portfolio theory has been shown to be effective in a number of applications and
disciplines, including the modeling of a social welfare state’, organizational restructuring and business
acquisition strategy’ and many others far from the original financial domain, but this work represents

the first rigorous extension of portfolio theory to systems design.

Eq. 10 can be used to find the optimal portfolio based on returns and uncertainties of architectures for
a decision maker, but random portfolios can also be calculated in terms of overall expected return and
uncertainty. Eq. 11 and Eq. 12 describe the methods of calculating portfolio returns and variances,

where R, 1s the associated return, w, is the investment in asset z
n
E(R,) =) WR,
i=1

Eq. 11

Var(R,) = wow, (R, - ER))R, - E(R,))

i=1 j=1
Eq. 12

50 Elton, E.] and M.J. Gruber. (1979) “Optimal Dynamic Consumption and Portfolio Planning in the Welfare Statc”, TIMS Studies in the
Management Sciences 11: 179-196.

51 Bergh, Donald. (1998) “Product-market uncertainty, portfolio restructuring, and performance: an information-processing and resource-
based view.” Journal of Management Mar/Apr 1998.
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6.1.2 An example of financial portfolio analysis

A financial portfolio example is presented to develop the connection between applying portfolio
theory in the context of finance and applying it in the context of space systems. Suppose a financial
investor has $1000 dollars to invest. What are the best investment vehicles he/she can put the money
into to gain the best return? Portfolio theoty provides a framework to find an ideal mix of assets to
put money into that will provide the most return for the risk their willing to take. To simplify this
example, suppose this investor is limited by their retirement plan to invest in only three mutual funds.
These funds have historical data from which an expected return and a standard deviation have been
calculated. Using the historical data, the correlation coefficient for each pair wise combination of the

three funds is presented. This information is presented in Table 7.

Table 7: Mutual fund options for sample investor

Mutual Fund Standard Correlation to Correlation to  Correlation to

Expected

Deviation Value Growth

(l] {!)

Name Return (%) SmallCap

Value 11.77 7.18 1.000 0.1175 20.1136
Growth 13.78 7.45 0.1175 1.000 0.0886
SmallCap 12.37 6.51 01136 0.0886 1.0000

Using this information, an efficient frontier is calculated on which all optimal investment strategies will
reside. This frontier is done by first calculating the maximum return portfolio possible and then
calculating the minimum uncertainty portfolio possible. These two portfolios define the boundaries of
the efficient frontier. The next step is find portfolios that represent the best return for a given level of
uncertainty. Repeating this step generates the efficient frontier, as shown in Figure 27. The location
of the individual mutual funds has been labeled in the figure as well. The composition of a portfolio
on the efficient frontier can be seen on the right hand side of the chart. The point shown in the chart
consists of 13% of the Value Fund, 54% of the Growth Fund, and 33% of the SmallCap Fund. If this

was the optimal strategy for the example investor, it would mean he/she should put $130 in the Value

96



Fund, $540 in the Growth Fund, and $330 in the Small Cap Fund to achieve the highest return, in this

case 13.1% for the risk his level of risk aversion allows, a standard deviation of 4.9% for this portfolio.
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Figure 27: Mutual fund portfolio analysis example

There are two major points to take away from this example. First, a continuous set of investments has
been established which the investor can choose from, as opposed to discrete assets. Second, notice
that portfolios are available to the investor that provide more return at a lower level of uncertainty
than any single mutual fund would have allowed. This comes from the uncorrelated behavior of these
assets to situations of uncertainty. Keeping the financial example in mind, an example of portfolio

theory app]ied to space systems conceptual design is prescnted.

6.1.3 An example of portfolio analysis applied to space systems

The typical end result of portfolio analysis is the formulation of an efficient front of portfolios, as was
shown in the financial example. Portfolios that lie on the efficient frontier are those that maximize
value for a given level of uncertainty, as shown in Figure 28. This figure represents work on a

broadband system whose value is represented here subscriber hour per dollar and whose uncertainty is
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the standard deviation around the expected return. Individual architecture’s subscriber hour/$ and
uncertainty have been plotted and are marked with diamonds on the chart. The concave line
represents the efficient frontier of portfolios that can be built using these architectures as members.
For example, the circle on the line cotresponds to no single architecture, but instead corresponds to a
portfolio that holds 64% of one, 34% of another and 22% of still another. The return is calculated, as
described above, to equal 34 Subsctiber Hours/$ while the standard deviation is 16 Subscriber
Hours/$. Like, in the financial example, this implies an investment strategy. However, what is being
invested is a little different in conceptual design than it is in finance. In conceptual design, the
resources might include time, money people, infrastructure support, etc as opposed to the single
resource of money. Therefore this portfolio would direct a decision maker to perhaps set up contract
account numbers for the three different architectures and allocate resources accordingly, in order to
monitor the resources being expended on each asset. Another approach might be to simply
communicate the emphasis with which the designs should be explored to the conceptual design team.
Emphasis could be given on parallel designing the common features of the different architectures and
paying stricter attention to the differences among the architectures and how those differences effect

any interfaces as well.
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Figure 28: Sample Portfolio Analysis
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Figure 28 helps transition to the next important question in portfolio analysis, which is where on the
frontier of efficient portfolios does the decision maker’s optimal strategy exist? The answer to that

question lies in the decision maker’s level of risk avetsion.

6.2 Uncovering risk avetsion in stakeholdets

A method to quantify the efficient frontier has been presented, but further guidance as to where on
the frontier looks most attractive must be found. This localization is one mote step in focusing the
efforts of design and condensing the tradespace based on available information. The available

mformation in this case is the level of risk aversion of the decision maket.

Once an approach for calculating risk aversion is presented, the vision of formalizing uncertainty in
the conceptual design of space systems becomes much more generalizable and actionable amongst a

large group of stakeholders whose preferences need not align.

Some authors have made distinctions between uncertainty aversion and risk aversion in the past. For
most, uncertainty aversion has meant the aversion to not knowing even the chances of an event
occurring.52 This is in contrast to the classic interpretation of tisk aversion as the aversion of a
decision maker to known probabilities, but uncertain outcomes.” Using a fair coin toss as an example
to illustrate this difference. Uncettainty averse individuals concern themselves with not knowing how
likely heads or tails may be. The risk averse individual is more concerned with the implications of the

coin landing on heads or tails.

The point has been made previously that this thesis is focused on uncertainty rather than risk because
uncertainty can be considered inclusive of risk. The use of the overarching concept of uncertainty is
used in this analysis as well; however, aversion as is discussed in this thesis more closely relates to risk
aversion, as desctibed in the literature than to that of uncertainty aversion described above. This is
because most decision makers in the case of space systems ate more concerned with the implications

of the negative outcomes than they are with the simple existence of uncertainty.

Understanding the level of aversion in stakeholders must be achieved in much the same way the utility

analysis is conducted through direct interaction and structured dialogue with stakeholders. Two

52 Epstein, L. (1997). Uncertainty Aversion. Loronto, Canada, University of Toronto and Hong Kong University of Science and
Technology.

% Savage, M. F. a. L. P. (1948). "T'he Utility Analysis of Choices involving Risk." Journal of Political Economy 56: 279-304.
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methods for extracting the value of the risk aversion constant, £, are described for use in the portfolio

optimization approach outlined above.

6.2.1 Methods of capturing uncertainty aversion

It is of coutse an oversimplification that a petson’s aversion can be described by one scalar value, but it
allows for analysis that would otherwise be intractable. Financial markets have struggled with
uncovering stakeholder risk aversion for investment purposes. These levels of aversion ate often
brought out by questions from experienced financial advisors or structured questionnaires that have
proven effective in the past. Instead of questionnaires, two technique are presented: a quantitative
method based on decision maker utility functions and a second, qualitative approach to qualify a

decision maker’s aversion through the use of indifference curves.

6.2.1.1  Method 1: Using utility functions
The captuting of a decision maket’s utility is also an cxercise in capturing their aversion to tisk.”* For
example, a question that might be asked during a utility intetview is: Given the following two options

what would be the value of p for which you would be indiffetent in the selection?
1. Certainty Option: Value X

2. Uncertain Option. Value X, with probability p and X, with probability 1-p, such that
U()<U)<UCK)

A series of these types of questions will lead to utility function, as shown in Figure 29. This function
illustrates the utility of a risk averse individual, through its characteristic concave function. Moreover,
Figure 30 highlights the risk premium, m,, that a decision maker is willing to pay to avoid risk. A
neutral individual equates no premium to having a sure thing and would therefore judge indifference
based solely on expected value. In contrast, a fisk prone decision maker would be charactetized by a

convex utility function signifying their proclivity toward uncettainty.

51 Von Neumann, J. a. O. M. (1944). Theory of Games and Ficonomic Behavior. New York, John Wiley and Sons.
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Figure 30: Measuring risk premiums
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Eq. 13 presents a mathematical representation of risk aversion. The value known as absolute risk
aversion (ARA) 1s obtained from information in the utility function, as developed above, in the form

of the first and second derivative.™>°

u"(x)

s, (x)=— u'(x)
Eq. 13

This factor will be positive for a risk averse individual and negative for a risk prone individual. The
decteasing incremental rate of utility improvement is due to the decision maker’s willingness to pay a

premium in terms of a lower attribute value if it implies a decreased exposure to uncertainty.

An augmentation to this notion of absolute rate of risk aversion is relative risk aversion (RARA),
which includes a provision for the current state of wealth of the decision maker. Research has been
done to show that tisk aversion may be subject to a number of conditions, including the present value
of the decision maket’s wealth. In order to address this concern, the present value of the wealth

condition is included in the analysis, as shown in Eq. 14.°

S, (x)=xs,(x)= —xﬂ(fl
u'(x)
Eq 14
6.2.1.2  Method 2: Using graphical approaches
A graphical approach can be employed to augment or stand-alone as a measure of risk aversion. This
graphical approach is aimed at directly interacting with the decision maker to address the preferences
of risk aversion. Using this approach a relative value for the decision maker’s risk aversion factor can
be determined that can be used directly in the portfolio optimization approach. This number provides
the “weighting” of uncertainty, £, in the maximization of returns subject to uncertainty, as shown in

Eq. 10.

55 Pratt, J. W. (1964). "Risk Aversion in the Small and in the Large." Lconometrica 32: 122-36.
50 Arrow, K. J. (1965). Aspects of the Theory of Risk-Bearing. Helsinki, Yrjo Hahnsson Foundation.
57 Pratt, J. W. (1964). "Risk Aversion in the Small and in the Large." Econometrica 32: 122-36.

5% Arrow, K. J. (1965). Aspects of the Theory of Risk-Bearing. Flelsinki, Yrjo Hahnsson Foundation.
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This approach works when a stakeholder is available for consultation or the approach was built into

the front end of the process. Using a series of indifference curves, such as those i Figure 31, a

decision maker can be polled as to the amount of uncettainty they are willing to except for increased

return. Figure 31 presents the indifference cutve for three different decision makers with & values of

1,2 and 3.

60

S0

Indifference Curves

— k=2
- k=3
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Uncertainty
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Figure 31: Indifference Curves for Decision Makers, Varying Risk Aversion Factors

After a £ is chosen using the indifference curves, a family of Iso-utility contours is created as shown in

Figure 32. From this information and the previously calculated efficient frontier of portfolios, a

recommendation can be made on what specific portfolio to pursue. The tangent point of the highest

iso-utility line and the efficient frontier denotes the optimal portfolio, as shown in Figure 33.
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Figure 33: The portfolio tradespace with aversion criteria overlaid
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6.3 Extensions of portfolio theory to space system design

There are 2 number of assumptions from traditional financial portfolio theory that are challenged
when investigating real assets, like space systems. These assumptions include: customers are driven by
the risks and place no value in upside potential of systems, uncertainty is represented by normal
distributions of outcomes, and there is no cost in holding an asset in the portfolio. This section
addresses the extensions that can be made to traditional portfolio theory as to overcome some of these

assumptions.

6.3.1 Accounting for upside potential from uncertainty

One of the fundamental assumptions that Markowitz made 1n the development of portfolio theory
was that investors were risk-averse. While it is true of space system designers as well, an approach 1s
mnvestigated to value the upside of uncertainty that is so often neglected in traditional uncertainty and
risk assessment. The value of such upside potential of uncertainty has been discussed extensively mn
the area of Options and Real Options. However, it is the downside of uncertainty that dominates most
research and practical analysis, and perhaps rightfully so considering the level of risk aversion petvasive
in the aerospace industry. The following analysis tries to capture the importance of understanding the

risk in the assets and at the same time determine a method to separate it from the upside potential.

To separate the upside and the downside of uncertainty, the concept of semi-variance, both s and

upside
Saownside, Ar€ introduced as measures of one-sided uncertainty.59 Assume 10 likely values for a space
systems architecture value to the customer are represented by t={1 421097 34 8 1}. To calculate
semi-variance, two companion set of outcomes are created, £'={49494910974949849} andr
={1424949493449 1} and companion deviations around the expectation, as shown in Eq. 15

and Eq. 16.

0if ,<0
(r-E) {

(r-E@)ifr,>0
Eq. 15

(r, - E(r))” {(r,- -E)if, <0

Oif , >0

5 Markowitz, H. (1991). Portfolio Selection: Efficient Diversification of Investments. Cambridge, MA, Basil Blackwell. .
describes a possible extension of the mean-variance portfolio selection approach that incorporates the idea of down-sided semi-
variance.
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Eq. 16

From these equations (+-E(r))" = {0005.14.12.1003.1 0} and (+-E(t)) = {-3.9-09-29000-1.9 -
0.9 0-3.9}. The upside and downside semi-variances can be found s, .= E(@-E@®)7) = 5.684 and
Suwmie= BAEEM) ) = 4.406. This difference in the upside and downside semi-variance illustrates
the lack of normality in the disttibution of r. Pottfolio theory was originally based on the premise of
random motion of stocks in the form of volatility that could indeed be modeled by normal variables
having upside and downside semi-variance that are in fact equal. The same cannot necessarily be
assumed in space systems, as many of the probability distribution functions that describe things like
market uncertainty or events of decision tree analysis are not gaussian. Using the semi-variance
information, two covariance matrices, Q. aNd Quoynice ate constructed. Once these matrices are
constructed, the portfolio optimization formulation can be expressed in the form of Eq. 19 and Eq.
20. 'The objective function in Eq. 19 reflects a decision maker who is very concerned with the true
downside of uncertainty and sees no reason to reflect any upside benefit due to uncertainty. While the

objective function of Eq. 20 incotporates the negative aspects of the downside of uncertainty as well

as the upside potential the uncertainty might present.

- ) -
S PSS PSS ® PuS S
u1 u2utl u3 ul un ul
2
P28 S S Pi1S S ®* Pu2S S
ul u?l u?2 u3ul unp u?
—_ 2
QUPS"de—— PisS S P38 S S * L3S S
ul u3j u2 uj u3 unp usl
® . ° ° )
2
pl,nS S pZ,nS S p3,nS S . S
L ul un u2unp w3 un Un
Eq. 17
r 2 ]
S PSS PusS S ®* PusS S
dl1 d2 di d3 di dn di
2
P2S S S PSS ® Pu2S S
dl d2 d?2 d3 di1 dn d2
— 2
QDownside_ pl,BS R) pms RY S ® pn,BS S
d1d3 d2 d3 d3 dp d3
° ® L) ° ]
2
plnS S pZnS S 103,nS S hd S
dl dn d2 dn d3 dn dn N
Eq. 18
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max : E(r)w— % W O ppnside W

st..w =0
Eq. 19
. 1 ! k \
max . E(T)W+5 w upsidew_-z—: w QDownsidew
s.t.: Z w, =1
i=1
st.:w=0
Eq. 20

6.3.2 Cost of Diversification

In finance, portfolios are composed of assets whose growth is not driven by contributions by the asset
holder. This is not the case in the space systems, where the outcome value of each asset in the
portfolio is driven by the asset holder’s continued contribution to the design, through people’s time,
testing resources, money, etc. For this reason, there is an added cost to the portfolio owner having
more than one asset in a portfolio over and above the single design cost. Unlike in finance, the

question remains, “What is the cost of diversification?”

One method for quantifying the cost of diversification derived here is based on the cottrelation of
assets. Rather than derive new information from the architectutes, curtent information can be used in
the form of correlation coefficients that are easily obtainable from the covariance matrix previously

calculated.

Eq. 21

Using the correlation coefficient as a relative measure of marginal cost increase for pursuing multiple
portfolios, a relative cost penalty for diversification can be obtained that illustrates the diversification
penalty. Knowing that as the correlation coefficient of two architectures approaches one, the
architectures represent decreasing marginal cost to include both in the portfolio. It is also true then

that as the cotrelation coefficient approaches zero, the architectures represent more dissimilar designs
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and will have greater marginal costs to include in the portfolio. The cost of diversification would
therefore approach zero as the correlation coefficient approach one and approach the full cost of an
additional architecture as the cotrelation coefficient goes to zero. The cost of diversification, Cp, 1s

is the nonrecurring cost of design for architecture 7, w,,,. 1s the

AN

characterized in Eq. 22, where Cj

onRec

maximum fractional investment in any of the architectures in the tradespace, »; is the fractional
investment in asset ¢ # is the number of assets in the portfolio and p; is the cortelation coefficient

between asset 7 and /.

: 1-p.
CD = Z Z WLCNonRec, (__;l__pi).

i=w>0 j=w>0 max

Eq. 22

6.4 Putting it together

The classic portfolio optimization problem has been extended to encompass many of the real world
situations that are encountered in space systems. The new formulation of this problem is presented in
Eq. 23 and Eq. 24.

max:E(r)w—g—w

s.t.:Zwizl

i=1
st.:C, <C,

st.:w=>0

QDownside w
vail

1 k
. ' t
max : E(}")W + —2— w upsidew e QDownsidew

2
s.t.:Zw,:l
i=1
st.:Cp <C,

st.:w>=0

vail

Eq. 24

Similar to traditional portfolio theory, the objective seeks to maximize expected returns from the
underlying assets subject to acceptable uncertainty, but here it is only looking to minimize the exposure

to the downside of uncertainty (and also seeking to maximize the portfolio exposure to upside effects
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of uncertainty in the case of Eq. 24). Finally, the “cost” of diversification involved in exploting sets of
architectures in conceptual design 1s addressed by placing an available cost to diversify constraint on

the optimization.

6.5 Implementing the Algorithm

Matlab® was used as a programming platform from which to implement the pottfolio analysis. This
has the benefit of leveraging ongoing work with algorithms in the Matlab® language as well as
maintaining a common platform with the simulation software that is used to model the space system
architectures. This avoids the difficulties that come with interoperability of progtams and computer
systems. Further, because Matlab® is a common engineering software platform, there is relatively
little burden on mmplementers of the uncertainty analysis approach to learn or procure a new software

tool.

The portfolio optimization algorithm, as desctibed in Eq. 10 1s a non-linear optimization problem,
more specifically a quadratic optimization program. Luckily there is a good deal of research on solving
quadratic optimization problems and those optimization problems specifically tied to portfolio theory
as well. Because quadratic optimization and specifically portfolio theotry has been of such mterest to
researchers, there ate a number of methods that could employed to addtess the algorithm outlined in
Eq. 10 and then tailored to address the needs of the modified portfolio optimization applied to space

systems conceptual design.

There are a number of methods to attack quadratic optimization problems, but one of the most
common optimization routines is done using line search methods, notably conjugate-gradient and
Newton steepest descent search methods. These approaches have been employed in a number of
commercial products including the Matlab® Optimization Toolbox, Excel Add-ins and stand-alone
pottfolio optimization programs. This thesis relied heavily on the use of the Matlab® Optimization
toolbox to temain consistent with the platform of the simulation models. The Matlab® quadratic
optimization routine defines a problem as either large scale or medium scale and then implements a
tailored algorithm to appropriately deal with the complexity of the problem. The quadratic
optimization algorithm in Matlab® uses the Newton’s steepest descent line search algorithm that from
an initial feasible starting point calculates the steepest gradient in any direction, still within the feasible
space, and moves in that one direction the maximum amount. This 1s then continued until no feasible

direction provides a better solution than the current solution. There are subtleties to the algorithm
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that ensure no cycling and the algorithm is also based on the assumption that the Q matrix is positive
semi-definite, thus making the optimization problem convex. In the next section, the convexity
assumption provides some issues when implementing the suggested add-ons to the classic portfolio

theory approach.

6.6  Where the portfolio theory breaks down in space systems design

Of coutse, the portfolio approach presented hete has limitations like any methodology and it is often
as significant to understand the relative weaknesses of an approach, as it s to understand its strengths.
The modes of failure for the approach fall into two distinct categories, practical limitations and
theoretical limitations. Practical limitations ate those that although, consistent mathematically or
theotetically, they hold relatively little value for the decision maker or the analyst, whereas theoretical
limitations ate those that come with applying the portfolio theory rigorously to the problem of space

Sys tems.

6.6.1 Practical Limitations

Dectermining uncertainty distributions for each architecture in the potential tradespace can be
computationally intensive and intractable. Therefore, the scope of the architectures is limited by both
the precision of the architectural distribution, i.e. how many outcome samples for cach architecture, as

well as the total number of architectures considered.

Further, the outcome of the portfolio analysis provides the decision maker with an optimal strategy
that suggests which architecture should be assigned resources for further development. When
portfolio solutions present a decision maker with portfolio that recommends a very small investment
in an architecture, it’s questionable if this is a reasonable strategy to employ in practice. For example, a
portfolio that recommends investment of 46% in a LEO satellite systems, 52% in a MEO satellite
system and 2% m a GEO satellite system should probably be looked closely at to justify the 2%
investment in the GEO architecture. It 1s most likely the case that such a small investment would not
overcome the threshold to make any progress on further design. In that case, the portfolio should be

adjusted to reflect relative investment in the LEO and MEO architectures only.

Moreover, the relative investment that is derived using portfolio theory should not be seen as absolute.

It is easy to distinguish 46% of cash to invest, but it is more difficult to gain such precision in the
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allocation of design resources. Instead, the optimal portfolio should be seen more as a relative guide

to direct the decision makers thinking than an absolute position.

0.6.2 Theoretical Limitations

There are a few mathematical assumptions that serve as limitations in some instances of applying the
portfolio optimization framework proposed herein. The first assumption is that the outcome
distributions are normal distributions. This is why variance is used in the Markowitz portfolio theory
implementation. In the case of a normal distribution the scaled semi-variance would provide the same
mformation as the variance. Therefore the mathematical complication of calculating semi-variance can
be avoided. Normality of outcomes can be tested using statistical tests and software such Statistical
Package for the Social Science (SPSS®). However, seldom do assets have true normal outcome
distributions. Therefore, one way to address a non-normal distribution is to use semi-variance in the
portfolio optimization implementation, as opposed to variance. This would address the issue of
skewed distributions. However, there are potential outcome distributions whose behavior simply
cannot be captured under portfolio theory. In these cases, even if the portfolio analysis provided little
guidance, the uncertainty quantification would at the very least provide decision makers of the
embedded architectural uncertainty. The existence of these cases doesn’t invalidate the results of the
portfolio analysis, but at the same time, when they appear, portfolio theory might not be providing the

complete set of uncertainty information to the decision maket.

The second assumption in the portfolio theoty algorithm is that the covariance matrix is semi-positive
definite. In mathematical terms, this indicates that the eigenvalues for the matrix are non-negative, ot
more practically, a portfolio can’t have uncertainty less than zero. Typically, this is not an issue and the
traditional portfolio optimization method with the algorithms previously described works efficiently.
However, when using both upside and downside semi-variance in conjunction, the modified Q matrix
may very well not be positive definite, i.e. right skewed distributions. The options in this case are to
consider the two sides of uncertainty independently or heuristic methods can be employed on the

problem to search the solution space.”

The third assumption of the algorithms shown was a condition of linear constraints. However, the

cost of diversification constraint is non-linear. Therefore, there are two options in the case of
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employing the cost-to-diversify extension. The first is to use heuristic search methods but run the risk
of poor solutions or second post-process the results on the efficient frontier and deliver only those

that satisfy the constraint as feasible portfolios to pursue.

60 See Masini, R. 2. M. G. S. (1996). "Heuristic algorithms for the portfolio selection problem with minimum transaction lots." European

Journal of Operational Research 114(2): 219-233. and Winker, P. (2000). Optimization Heuristics in FEconometrics: Applications of
Threshold Accepting. New York, Wiley.
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"II: CASE STUDIES AND RESULTS

The goal of the following case studies is to demonstrate the implementation, applicability and wotth of
the uncertainty analysis approach presented in Part I. There are three cases investigated, a space based
radar space system, a space based broadband communications systems, and a space based ionospheric
mapping mission. These three cases represent the three overarching segments of space systems,
namely military, commercial and civil (science) missions, as shown in Figure 34. Further, the
technology and conceptual architecture in each of the architectures differs significantly. These
differences provide complementary implementation scenarios for the uncertainty analysis approach

that provide the reader with a broader vision of how the approach could work in practice.

Each case 1s structured identically for ease of reading. The first section in each case describes the
overall mission as well as the conceptual design model description. The next section focuses on
quantifying the architectural uncertainty embedded in each architecture, while the third section
describes the application of portfolio theory to the individual case. Finally each case is closed with
insights and conclusions that each provided about the specific mission as well as the uncertainty
analysis approach. The primary purpose of each case is not to describe the individual mission and
modeling approach of each in depth. For this information, refetences have been provided. Instead, it
is the focus of these chapters to demonstrate the applicability of the uncertainty analysis apptroach to

the broad class of problems that each case represents.
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Mission Name: TechSat 21 (Military)
Value Measure: Probability of Detection/$
Uncertainty Measure: StdDev(Pd/$)

Mission Name: Broadband System (Commercial)
Value Measure: Billable Hour/$

Uncertainty Measure: StdDev(BH/$)

Mission Name: ATOS (Science)
Value Measure: Total Utility/$
Uncertainty Measure: StdDev(TU/$)

Figure 34: Three case studies summary
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Chapter 7

TECHSAT 21: CUTTING EDGE DESIGN INTRODUCES UNCERTAINTY

7.1 Mission and Model Description

TechSat 21, short for Technology Satellite of the 21st Century, is a program aimed at pushing the
boundaries on the current approach to satellite systems development. Its novelty lies in concepts at
both the architectural, system, subsystem and component level. The most obvious feature of the
TechSat 21 architecture is the departure from the traditional monolithic satellite designs of the Milstar
and Defense Support Program satellites. Unlike those systems, TechSat 21 employs collaborate
clusters of satellites in what is hoped to be a more flexible, extensible, bettet performing and less costly
architecture. Using a cluster of formation flying satellites, a synthetic aperture can be created whose
properties for a variety of missions ranging from space based radar to ground moving target
indication. Of course because this is a non-traditional architecture there is significant uncertainty
associated with many aspects of the concepts proposed. It therefore provides a good example of the
uncertainty analysis approach applied to a highly complex, high technology, and envelope-pushing

problem.

The TechSat 21 mission is envisioned to push the current thinking on how industry designs space
systems as generally monolithic, inflexible and costly systems. Through the use of sets of clusters of
satellites, it’s expected that space systems could be developed for lower lifecycle cost, better
performance, improved reliability and adaptability. These benefits would arise from a number of the
features of the formation flying clusters, including larger numbers of smaller satellites and therefore
opportunities for economies of scale and wider availability to inexpensive launch vehicles. The
improved mussion performance would come from the now unrestricted effective aperture and the
multi-mission possibilities that such a constellation could provide. The satellite cluster design would
have the potential to improve the overall system reliability in certain cases and would also provide for

an adaptable system that could be upgraded through the installation of more satellites
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To conduct a systems analysis of the potential architectures that could be employed to accomplish the
TechSat 21 mission, boundaries were established as to what concepts would be evaluated. The
different architectural characteristics that were considered are presented in Table 8. In the GINA
terminology, these characteristics are called the design vector and a combination of the six design
variables constitutes a separate architecture. For example, one architecture evaluated was a 500km
satellite constellation, having 4 satellites, existing in one cluster, on 2 planes, with an antenna power of

100W and an antenna area of 0.5m”>.

Table 8: Design vector for the TechSat21 Satellite System

Name Description Potential Values

Altitude The operating altitude of the TechSat21 500-1500km
constellation

Number of Satellites | The number of satellites in each 4-16
cluster/swarm

Number of Clustet ‘The number of cluster/swarms that comprise | 2-100

the constellation

Number of Planes | The number of orbital planes occupied by the | 2-10

constellation
Antenna Power Antenna Transmission Power 100-1kW
Antenna Diameter Antenna Aperture Diameter 0.5-3m

The goal of this case study is to demonstrate the applicability of a formal uncertainty analysis
framework that includes both the quantification of uncertainties in individual architectures, but also a
portfolio based approach to pursuing a set of the potential architectures to minimize decision maker’s
exposure to uncertainty. The case study is used as a way to introduce the reader to the approach
presented in the previous chapters. In this case, the primary sources of uncertainty are due to

technology and the designer’s ability to model a non-traditional architecture.

7.1.1 GINA Model
The TechSat 21 GINA model developed in the MIT Space Systems Lab was essential to completing

61

this case study.” The model developed over a number of years and involving many researchers has
allowed systems analysis and architecture trade-offs to be made on a significantly large design

tradespace. 'The broad architectural concept for TechSat 21 consists of a set of collaborative,

6 Jilla, C. (2002). A Multiobjective, Multidisciplinary Design Optimization Methodology for the Conceptual Design of Distributed
Satellite Systems. Aeronautics and Astronautics. Cambridge, MA, Massachusetts Institute of Technology. PhD.
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formation flying spacecraft in low earth orbit that could perform multiple missions ranging from
synthetic aperture radar to ground moving target indication to signal interception. The abstraction of a
space system to a series of computer simulation models is something of an art. Defining interfaces,
segmenting the problem and capturing outcome measures are all techniques that are not typically
taught in aerospace curriculum, but are essential to generating results and crafting observations and
conclusions that are of use to the decision maker. The segmentation of the TechSat 21 GINA model
is presented in Figure 35. 'The initial modules of the simulation model are the input of the Design
Vector, as previously described, and the Constants Vector. The Constants Vector represents those
variables that for the enumeration of the tradespace are held constant. By doing so, architectures can
be equitably compared. Examples of constants can range from orbital constants like the radius of the
earth, to performance constants such as the probability of failure of an individual spacecraft, to

operational constants like how many ground stations will be necessary.

’ Design Vector | I Constants Vector

* ]

Simulation Modules

Constellation

Reliability

Radar
Performance

L Payload

Sizing

Satellite Bus

Design

Launch

Design

Launch
Replenishment
Operations

Design

Systems

Module

Figure 35: GINA Model Flow Chart
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Once the Design Vector and the Constants Vector have been initialized, the simulation proceeds with
the Constellation Module. This module produces the otbital characteristics for the space segment that
make it possible to later assess the performance of the architecture. The Reliability Module is used to
assess the overall architecture reliability and petformance degradation based on the reliabilities of
individual spacecraft. The Radar Module quantifies the various technical petformance measures in a
radar context. These include: probability of detection, minimum detectable velocity of a ground target,
and area search rate. The Payload Sizing module uses the inputs of the Design and Constants Vector
to model an approptiate payload antenna for a given architecture. Using the Payload Module output,
the Satellite Bus Module designs an appropriate configuration and sizes all subsystems to satisfy the
payload requirements in terms of power and mass, as well as other conditions of the Design and
Constants Vector. Once the satellites and their payloads have been modeled, the launch sequence is
determined by the Launch Module. The Launch Replenishment Module using the previous reliability
assessment designs a repopulating scheme for the constellation. The Operations Module defines the
operational requitements for the system in terms of people, ground stations, etc. The final module,
the Systems Module, using outputs from the previous model as inputs, generates outcome measutes

for cach architecture, such as total lifecycle cost as well as cost per function measures. %

7.1.2 Model Results

The GINA model was evaluated for thousands of potential atchitectures and vatious outcome
measures were generated to provide input to decision makers on potential architectures to pursue mn
further design excrcises. These measutes included petformance measures like: probability of detecting
a given target, the availability of the system, minimum detection velocity, signal to noise ratio, and area
search rate. Cost measures are also generated from the simulation including launch, design and
development, operations and total lifecycle cost. Using these measures different architectures can be
analyzed and trade-offs can be made along multiple dimensions. Although all outcome measures are
of interest to the decision maker, the primary performance decision criteria chosen was probability of

detection, while the primary cost decision critetia is lifecycle cost. Figure 36 presents the model results

62 Shaw, G. B. (1999). The generalized information nctwork analysis methodology for distributed  satellite  systems.
Aeronautics/ Astronautics. Cambridge, MA, Massachusctts Institute of Technology. ScD.

6 Jilla, C. (2002). A Multiobjective, Multidisciplinary Design Optimization Methodology for the Conceptual Design of Distributed
Satellite Systems. Aeronautics and Astronautics. Cambridge, MA, Massachusctts Institute of Technology. PhD.
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for 3000 architectures in the TechSat 21 tradespace. Each point in the chart represents a single
architecture whose composition is defined by a unique design vector, e. altitude=800km, number of
satellites per cluster=4, number of clusters=42, number of planes=6, antenna power=800, and
antenna diameter=2.5m” The target region for the best architecture would be of minimum cost, with

maximum probability of detection.

TechSat 21 Tradespace of Probability of Detection (@95% Availability) vs. Lifecycle Cost
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Figure 36: TechSat 21 Tradespace

Knowing the primary decision criteria as Probability of Detection and Lifecycle Cost, the Pareto
optimal front can be found for the tradespace by identifying non-dominated architectures. A non-
dominated architecture is one whose performance cannot be surpassed without higher costs. Figure

37 presents the Pareto optimal front, as calculated by Jilla using heuristic search methods.”* The

64 Ibid.
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Pareto optimal design vector values are shown in Table 9. All the architectures in the table had an

altitude of 800km, 6 planes and 42 clusters of spacecraft each having 4 satellites.

TechSat 21 Pareto Optimal Front for Probability of Detection (@95% Avail) vs. Lifecycle Cost
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Figure 37: Pareto Optimal Front for TechSat 21 Architectures
Table 9: TechSat 21 Pareto Optimal Architectures and Outcome Measures
Architecture 1 2 3 4 5 6 7 8 9-12
Ant Diam 25 2.5 25 25 3.0 3.0 3.0 3.0 3.5
Ant Pow 700 800 200 1000 700 800 900 1000 700-1000
P(d) 90.0% | 95.0% 97.0% | 98.2% | 98.9% | 99.4% | 99.7% | 99.8% | 99.8%-99.9%
| Lifecycle Cost ($B) | 457 4.59 4.61 4.64 5.18 5.20 522 5.24 6.00-6.07
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The results presented above were made using deterministic assumptions and calculations, but what
kind of uncertainty is associated with each architecture selection and what is an appropriate means by
which uncertainty can be managed and quantitative trade-offs can be made? By applying the
uncertainty analysis approach from Chapter 5 and Chapter 0, it is shown that there is a considerable
amount of uncertainty associated with each architecture, that it can be quantified and that portfolio

theory provides a central framework in which the uncertainty of the tradespace can be managed.

7.2  Uncertainty Quantification

The first phase in the uncertainty analysis approach is the quantification of embedded uncertainty in
each of the architectures under consideration. The necessary initial step will be to focus on the
TechSat 21 tradespace, models and environment and identify the relevant individual sources of
uncertainty. Once the sources are identified, each source has to be assessed for inclusion in the
analysis and if included, quantified as previously in Chapter 5. After the identification, assessment and
quantification of individual sources of uncertainty, the same GINA simulation models previously
developed are used to quantify embedded architectural uncertainty through uncertainty propagation.
This propagation provides one means of aggregating the individual sources of uncertainty and a

method to identify contributions of individual sources to the final embedded architectural uncertainty.

In this section, the effect of uncertainty on individual architectures is presented. In the next section,
through the use of portfolio theory and optimization, the implications of uncertainty to the whole
tradespace are discussed as well as the effective management of these uncertainties for various types of

decision makers.

7.2.1 Sources of uncertainty

TechSat 21 represents a revolution in the development of space systems. The program is
incorporating a number of unproven technologies, architectural and operational concepts. It is truly a
case of pushing the envelope. That being said, it 1s not surprising that the TechSat 21 has a good deal
of uncertainty associated with it. Table 10 presents the attributes and value ranges that were used as
potential sources of uncertainty. These uncertainties were chosen from the constants vector and
represent both technical uncertainty, i.e. achievable false alarm rate and model uncertainty, ie. tram

cost density for the TechSat 21 mission.
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Table 10: TechSat 21 Modeled Soutces of Uncertainty®

Attribute

. Best Value

! Expected Value | Worst Value

Mission Lifetime 9 years - 10 y 11 years
Radar Freq. 10.219 Hz 1019 11z 9.81°9 Iz
Ant Trans. Duty Cyc. 0.045 0.05 0.055
Radar Cross Section 10.2 m? 10 m?2 ” 9.8 m?
Required Range Res. 240m 250m 260m
‘I'ram Mass Dens. 8 kg/m? 6 kg/m? 4 kg/m?
Tram Elec. Dens. 7 kg/m? 5 kg/m? 3 kg/m?
Tram Cost Dens 125E68/m? | 1168/m? | 0.75E6$/m?
Tram [lec. Cost Dens. 1.25E6 $/m? 116 $/m? 0.75E6 $/m?
Stowed Depth 0.6 m 0.5m 0.4m
# PrimexPPT 6 4 3
Mass Primex PPT 2kg 1.5kg Tkg
Pow. Primex PTT 20 W 1w 1W
#Micro PPT 12 10 8
Mass Micro PPT 0.5 kg 0.2kg 02 kg
Pow Micro PPT 10W 0.5 W 0.4W
Star Sens. Mass 25kg 0.7 kg 05kg
' Star Sens. Pow 20w 4W 4w
Magnometer Mass 1.2 kg 0.13 kg 013 kg
Mangonmeter Pow 1W 05w 05W
# Torque Rods 4 3 2
Mass Torque Rods 0.6 kg 0.45 kg 0.4 kg
Power Torque Rods 2W 13W 1W
MB per Chip 48 MB 64 MB 96 MB
Mass per Chip 1 kg 0.5kg 0.5 kg
Bat. Power Density 45Whr/kg | 51 Whr/kg 60 W hr/kg
mbperamrs per Satellite 12 11 1
MTTF 450 months 498 months 550 months
MTIR 2 months 3 months 4 months

65 Best and worst cases were obtained by using univariate analysis to determine the direction of goodness for each individual vartable.
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7.2.2 Embedded architectural uncertainty

After the individual sources of uncertainty have been identified and quantified, the next step is to
develop distributions of outcomes for each of the architectures. Through uncertainty propagation in
the model and simulations of the architectures under varymg levels of uncertainty, resultant
distributions can be obtained for each of the architectures in the tradespace. These resultant

distributions are necessary to proceed to the next step in the uncertainty analysis, portfolio selection.

In this case the extreme method of uncertainty propagation was used. The first step in the technique
is to list the extreme possibilities as was done in Table 10. A single state-best, worst or expected- is
selected and incorporate the results into the constants vector. This vector is then used for each of the
architectural simulations programmed and results are captured in an outcome vector for cach
architectures that includes characteristics such as performance measures such as probabilities of
detection, coverage and cost measures such as development, operating and total life cycle cost. It also
includes system architecture characteristics, such as mass, power, launch vehicles used and other high-

level design characteristics.

Next, a2 new state is chosen-best, worst, expected and the simulation is repeated for each of the
architectures that are being investigated and the outcome vector is saved. This process of selecting a

constants vector is repeated until outcome measures have been generated for all states.
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Figure 38: TechSat 21 Architectural Tradespace Under Uncertainty

This uncertainty quantification can be done for each of the architectures in the tradespace, or as
suggested here, an efficient tradespace preprocessor can be used to develop a substantially smaller set
of architectures from which to conduct uncertainty analysis. This efficient tradespace preprocessor
allows for improved distributions in the embedded uncertainty of each architecture. It also allows for
a more tractable overall conceptual design. Figure 38 presented the outcomes of the uncertainty
analysis using the extreme approach and Figure 39 presents the subset of those results constituting
only the Pareto optimal front architectures. The spread of the worst case from the expected case is
noticeably larger than that of the spread of the best case from the expected case. This is true in the
dimensions of cost and probability of detection. This shows that the uncertainty distributions for the
tradespace are left skewed meaning there is more downside than upside in the architectures being

considering.
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Figure 39: Pareto Front for Three Cases of Uncertainty

7.3 Portfolio Analysis

The previous section described the quantification of embedded architectural uncertainty. Knowing the
architectural uncertainty can help decision makers in a number of circumstances, such as developing a
mitigation plan once an architecture has been selected. Embedded uncertainty, along with correlation
measures of how architectures behave under conditions of uncertainty, can provide the decision maker
with even more potential. Using portfolio theory, the decision maker can create accurate trade-offs
and begin to manage not the uncertainty in an zudividual architecture, but instead manage the uncertainty
in a fradespace of potential architectures. This section describes the application of the portfolio optimization
technique described in detail in Chapter 6. The results of the TechSat 21 uncertainty quantification are
used to generate an efficient frontier of portfolios that represent optimal strategies for a decision
maker to pursue in order to maximize his expected value of the project while considering his/her

aversion toward risk.

Figure 40 shows the general characteristics of the TechSat 21 value vs. uncertainty tradespace. The

Pareto optimal architectures that were determined in the traditional concept exploration of utlity vs.
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cost tradespaces have been used here as the potential members in any portfolio. There were twelve
Pareto optimal architectures in all that were evaluated using the uncertainty analysis framework,

plotted as dots in Figure 40.

One of the first insights seen from the value/uncertainty tradespace is that the efficient frontier is not
composed of all the Pareto optimal architectures. Instead, only a few contribute to the portfolios that
constitute the efficient frontier. In all, only three of the original twelve Pareto optimal architectures

contribute to membetship along the efficient frontier.

Further, the efficient frontier does not extend beyond any individual architectures in the tradespace
and instead represents a linear combination of only three assets. The teason for this is the high degree
of correlation the architectures being considered share, ie. all p>0.998. There were only three sets of
observations used to generate these correlation coefficients, but all the architectures were very similar

differing in only antenna diameter and power.

TechSat 21 Efficient Frontier
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Function Per Cost (Probability of Detection/$1E10)
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Uncertainty(Standard Deviation)

Figure 40: TechSat 21 Portfolio Analysis
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7.3.1 Quantifying Decision Maker Risk Aversion

Once the efficient frontier has been calculated, the next logical next step is to determine where the
optimal strategy is for a given decision maker. As discussed in Chapter 6, capturing decision maker risk
aversion can be relatively straightforward through the use of indifference curves and iso-utility lines.
By interacting directly with the customer with this graphical technique, preferences of the decision
maker can be captured and incorporated into the portfolio optimization. As previously seen, the level
of aversion of the decision maker can greatly affect the optimal strategy and this is also true in this case
study. There are a total of 3 architectures that constitute membetship in a portfolio somewhere on the

efficient frontier and there are many combinations of those possible.

The highly risk averse individual would find himself looking at pottfolio in the lower left corner of the
efficient frontier, while the more risk prone decision makers would have preferences leading to
strategies in the upper right corner. Rather than chose a single decision makers aversion, two decision
makers who represent these extremes as well as a more moderate decision maker are presented as well
as their optimal portfolio strategy that would come from the uncertainty analysis. By using three
representative decision makers, the overall sensitivities of the pottfolio can be obsetved and outcomes
compared to demonstrate the adaptability of the uncertainty analysis approach to a large range of

decision makers who become involved in the development of space systems.

Assume that Figure 41 represents the three-decision maker’s indifference curves for the
value/uncertainty trade. The lines represent k values of 0.5, 2 and 3. Using this information an
optimal investment strategy can be developed based on the portfolio optimization. As one might
expect, the decision maker with a low level of risk aversion will accept far more uncertainty for a given
increase in value than the decision makers with moderate and high levels of risk aversion. Notice that
a completely risk averse individual would have a indifference curve that is represented by a vertical line,

while a horizontal line would represent a tisk neutral decision maker.
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Indifference curves for three decision makers

- low risk aversion
----- moderate risk aversion
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Figure 41: Indifference curves for three decision makers

7.3.1.1  Decision maker with high risk aversion optimal portfolio strategy

The first decision maker looked at has a risk aversion coefficient of 3. The iso-utility lines for this
decision maker have been overlaid on the efficient frontier in Figure 42. The optimum portfolio for
this decision maker resides in the lower left corner of the efficient frontier and consists of only a single
architecture. Notice that the optimal strategy portfolio resides at the tangent point of the efficient
frontier and the maximum utility iso-utility line. This type of figure will be used repeatedly in this

chapter and the next two to illustrate optimal strategies for specific decision makers.

The composition of this portfolio is shown in Table 11 and consists of a single architecture that is a
constellation consisting of 42 clusters each having 4 satellites that have an antenna power of 1kw and a
diameter of 2.5m’. The entire constellation resides at 800km and occupies six orbital planes.
Although portfolios can suggest sets of assets to pursue, it can also suggest single assets, when the
individual asset lies on the efficient frontier and is tangent to the maximum iso-utility line, as in this

case.
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Figure 42: Optimal investment strategy for high risk aversion decision maker

Table 11: Composition of TechSat 21 high risk aversion decision maker strategy

Percentage Architecture Design Vector Total  Uncertainty

of Portfolio = {alt,sats/clustr,#clustr,#planes,ant pow,ant_diam} Utility/$

100% {800, 4, 42, 6, 1000, 2.5} 1.67 0.59

100% Complete Portfolio Value and Uncertainty 1.67 0.59

7.3.1.2  Decision maker with moderate risk aversion optimal portfolio strategy

A second decision maker that was considered was one that had a moderate risk aversion, k=2. This
decision maker’s optimum portfolio strategy as shown in Figure 43: Optimal investment strategy for
moderate risk aversion decision maker resides in the middle of the efficient frontier. As was the case

in the high risk aversion decision makers, this portfolio consists of only a single asset.
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The composition of this portfolio is shown in Table 12 and consists of a consists of a single
architecture, that is a constellation consisting of 42 clusters each having 4 satellites that have an
antenna power of 1kw and a diameter of 3m’. The entire constellation resides at 900km and occupies

six orbital planes.
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Figure 43: Optimal investment strategy for moderate risk aversion decision maker

Table 12: Composition of TechSat 21 moderate risk aversion decision maker strategy

Percentage Architecture Design Vector Total Uncertainty
of {alt,sats/clustr,#clustr,#planes,ant pow,ant_diam} Utility/$
Potrtfolio
| 100% {800,4,42,6,900,3} 1.89 0.66
L 100% Complete Portfolio Value and Uncertainty 1.89 0.66 |

130



7.3.1.3  Decision maker with low risk aversion optimal portfolio strategy
The relatively low risk aversion decision maker has an optimal portfolio strategy in the upper right

corner of the efficient frontier again consisting of only a single architecture.

The composition of the low risk aversion decision maker is shown in Table 13. The portfolio contains
a single asset, specifically a satellite constellation of 42 clusters each having 4 satellites at 800km
covering 6 planes and each satellite having a transmission power of 900W and an antenna diameter of

3.5m>

Decision maker with low risk aversion optimal portfolio strategy

T 1) T T . T

215
c 2

2.05

1.95
1.9

1.85

1.8

Probability of Detection/$1E10

1.78

17

1.65

0.55 o.Ls_ 065 07 075 08 085 09 0.95
- Uncertainty(Standard Deviation of Probability of Detection/$1E10)

Figure 44: Optimal investment strategy portfolio for low risk aversion decision maker

Table 13: Composition of low risk averse optimal portfolio strategy

Percentage Architecture Design Vector Total  Uncertainty

of Portfolio  {alt,sats/clustr,#clustr,#planes,ant pow,ant_diam} Utility/$

{800,4,42,6,900,3.5}
100% Complete Portfolio Value and Uncertainty 213 0.78
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7.3.2 Implications of incorporating the extensions to portfolio theory

7.3.2.1  Differentiating risk_from uncertainty

Presented above was the implementation of portfolio theory using uncertainty as a surrogate for risk.
Here, the impact of separating the upside and downside of uncertainty is explored within a
reapplication of portfolio optimization to discover any new insights. The first step is to differentiate
the tisk from the uncertainty in the distribution. The risk can be found by focusing on the downside
semi-variance, as ptreviously discussed in Chapter 6. To do so, first adjust the variance of individual
observations around the expectation as shown in Eq. 25. Then, calculate the variance of these new

observation errors, as shown in Eq. 26.

(.~ E(r)) = [(n “E@)if r, <0

0if r, >0
Eq. 25
SDownside :Z*E[Z(V—E(r))zl
Eq. 26
Thus creating a downside covariance matrix as shown in Eq. 27.
_ , -
S P21 S S PSS ®* PusS S
d1 d2 dl didi dn dl
2
Pi2S S S PSS ® Pu2S S
d1d?2 d?2 d3 di dnd?2
— 2
QDownside - pl,BS Ry pms S S . p”’JS S
d1d3 d2d3 d3 dn d3
[ ] [ ] [ ] [ ] [ ]
2
pl,nS S pZ,nS S p3,nS S . S
dl dn d?2 dn d3 dn dn B
Eq. 27

Finally the portfolio algorithm is implemented in the similar manner to traditional portfolio theory,

only substituting Q,...a. for Q, as shown in Eq. 28.
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Eq. 28

Using this algorithm, an efficient frontier can be calculated in the same manner petformed eatlier in
the case. The tradespace of uncertainty and probability of detection is shown in Figure 45. The
efficient frontier for both the full uncertainty portfolio analysis, as well as the setni-variance analysis is
shown in the figure. The most interesting insight to take away from this chatt is that there is more risk
in the tradespace than would be perceived if uncertainty were used as a sutrogate for tisk. Another
thing to observe is that the relative position of the architectures with respect to one another has not

changed and instead, the result from the semi-variance analysis is a simple shift to the right.
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Mean-SemiVariance and Mean-Variance Efficient Frontier
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Figure 45: TechSat 21 Portfolio Analysis with full uncertainty and semi-variance

Now that there is a different efficient frontier, it is conceivable that decision makers should choose
different optimal portfolio strategies. Using the same decision makers previously used, the low,
moderate and high risk aversion, the effects that this extension provides to classical portfolio analysis

are described.

The first decision maker was the high risk aversion decision maker. Under the efficient frontier using
semi-variance, his optimal portfolio strategy has remained the same as previously found, as shown in
Figure 46 and Table 14. This is reasonable because there are no less uncertain architectures to pursue

even though there is a higher degree of risk in the tradespace.
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Decision maker with high risk aversion optimal portfolio strategy
22 ,

T ! i T T T |

biity of Detection/$1E10

‘Optimal |
~Strategy
Portfolio

ey ';0.%45 e Y 0%
Uncertainty (scaled semi-variance)

Figure 46: Optimal investment strategy for high risk aversion decision maker using semi-variance

Table 14: Composition of high risk averse optimal portfolio strategy using semi-variance

Percentage Architecture Design Vector Total  Uncertainty

of Portfolio  {alt,sats/clustr,#clustr,#planes,ant pow,ant_diam} Utility/$

100% {800, 4, 42, 6, 1000, 2.5} 1.67 0.64
100% Complete Portfolio Value and Uncertainty 1.67 0.64

The moderate decision maker does have a shift in his portfolio. The optimal portfolio and
composition are shown in Figure 47 and Table 15. He has shifted to the same single asset portfolio
strategy as the high risk aversion decision maker. It is interesting to notice that this decision maker’s
iso-utility line is neatly parallel to the part of the efficient frontier between his previous portfolio single

asset and his new portfolio single asset.
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Decision maker with moderate risk aversion optimal portfolio strategy
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Figure 47: Optimal investment strategy for moderate risk aversion decision maker using semi-variance

Table 15: Composition of moderate risk averse optimal portfolio strategy using semi-variance

Percentage Architecture Design Vector Total  Uncertainty

of Portfolio = {alt,sats/clustr,#clustr,#planes,ant pow,ant_diam} Utility/$

{800, 4, 42, 6, 1000, 2.5}
100% Complete Portfolio Value and Uncertainty 1.67 0.64 L

The low decision maker’s optimal portfolio strategy has remained in the upper right corner of the
efficient frontier, as shown in Figure 48 and Table 16. The increased uncertainty that he is now

exposed to is still not enough to adjust the low risk aversion decision maker.
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Decision maker with low risk aversion optimal portfolio strategy
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Figure 48: Optimal investment strategy for low risk aversion decision maker using semi-variance

Table 16: Composition of low risk averse optimal portfolio strategy using semi-variance

Percentage Architecture Design Vector Total = Uncertainty

of Portfolio  {alt,sats/clustr,#clustr,#planes,ant pow,ant_diam} Utility/$

100% {800,4,42,6,900,3.5} 2.13 0.92
100% Complete Portfolio Value and Uncertainty 213 0.92

7.3.2.2  Cost of diversification

Because the efficient frontier in the case of TechSat 21 is comprised of a relatively few number of
architectures, three, and the maximum number of architectures in any portfolio along the efficient
frontier is 2, there is a relatively small cost to diversify and it would likely not exceed any decision

makers available funds for development, as all the architectures have much the same characteristics
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with the exception of antenna diameter. Although for each of the three sample decision makers
highlighted in this case, the optimal portfolio strategy consisted of a single architecture, it is still
possible that a decision maker’s strategy contain more than one architecture. The two-asset portfolio
would represent very minimal cost though, with the architectures differing in antenna diameter by only

0.5 m~

7.4 Conclusions

This case provided an illustration of the uncertainty analysis approach applied to a very advanced
military space system. The level of uncertainty in the tradespace was considerable and yet, the optimal
pottfolio strategies for three decision makers were comprised of single architectures. Of the
architectures evaluated, there was simply not enough independence of architectures with respect to
uncertainty for diversification possibilities to come about. In the other cases presented, diversification
does show up as an optimal strategy; however, this case points out that not all tradespaces contain
complementary architectures, that when combined yield more than any single asset, thus making the

teaching point that optimal portfolio strategies sometimes consist of single architectures.

The inclusion of uncertainty analysis did illustrate the large amount of uncertainty associated with each
architecture in the tradespace, thus allowing the decision maker to base decisions, not on deterministic
predictions, but ones that are cautioned by some level of uncertainty. The uncertainty analysis further
illustrated the ability to compare architectures in the tradespace and understand the relative sensitivities
and trace those sensitivities back to sources of uncertainty. This traceability allows designers to
concentrate on either modeling with more resolution or building in enough margins in their designs to
accommodate the resultant possibilities. The impact that separating the upside and downside
consequences of uncertainty can have on a decision maker’s optimal portfolio strategy was also

presented.
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Chapter 8

COMMERCIAL BROADBAND SATELLITE SYSTEM: MARKET UNCERTAINTIES
MAKE OR BREAK THE BUSINESS MODEL

8.1 Mission and Model Description

The struggle of delivering broadband infrastructure has been the focus of a number of recent
commercial endeavors, ranging in implementation concepts from wired options like cable and DSL to
wireless delivery options either through gtound, ait ot space based sources. The most successful
implementations thus far have been through ground-based systems; howevet, there are also companies
seriously exploring the capabilities a space-based platform provides. The ptimary benefits of a space
broadband system over that of any ground based system is that space systems have less reliance on any
preexisting ground infrastructure and can serve changing and/ot rapidly growing matkets more
effectively through repositioning satellites and adding more capacity to the systems through incteasing
the complement of space assets or satellite upgrades. Locations where satellite based setvices have
advantages over land-based systems include economically developing nations with little pre-existing
mnfrastructure, sea based platforms and air based platforms, and remote locations that have little access
to land based systems. Space based broadband systems also have the potential to compete even in
matkets where infrastructure is widespread and competitors already serve customers. This
phenomenon can be seen in the satellite TV industry where satellite based TV broadcast customers
represent a significant share of the overall market. Through competitive pricing strategies and product
differentiation, DirecTV and others have proven that space based systems are viable competitors with

other platforms.

This case study explores the systems analysis of such a space based broadband architecture. This
commercial venture allows the demonstration of the uncertainty analysis framework in a context that
includes aspects of market uncertainty. Numerous examples of the effects of matket uncertainty can
be seen on the space industry, ranging from uncertainties in launch vehicle capacity to meet the

evolving needs of low earth satellite delivery to market uncertainties that defined bankruptcies in the
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case of Iridium and GlobalStar space systems. Where the major decision criteria for a complex system

is market dtiven, matket uncertainties should always be considered

The goal of the systems analysis is to explote the tradespace of potential architectures that satisfy a
recognized need for a broadband communications infrastructure. The major feature of the
atchitectural concept consists of a satellite network complemented by ground stations. While a space
system has been chosen to sctvice this market, the details of the architecture have not been defined
and instead have been left open for defining the tradespace. Six tradable parameters define the
boundaties of the tradespace. These are altitude, inclination, satellites per plane, number of orbital
planes, payload power, and the atea of the phased array antenna. These characteristics and their

possible values are given in Table 17.

Table 17: Design vector for the Broadband Communication Satellite System

‘ Description Potential Values
Altitude Altitude for a defined circular orbit LEO(1500km),
MEO(20184km),
GEO(35786km)
Inclination The inclination of the circular orbits. 0-90°

Satellites per Plane The number of satellites in each of the | 1-8
occupied planes

Number of Planes The number of otbital planes that the | 1-10
satellite constellation occupies

Payload Power Downlink power from an individual | 1kW-10kW
satellite

Phased Atray Area Area in square meters of the total 1-5m?
phased array antenna area
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8.1.1 GINA Model

Figure 49 describes the simulation flow that was employed in this case study, based on work by
Kashitani.®* The model initiates with the definition of a constants vector that contains parameters of
the designs that remain constant across all of the architectures that are being evaluated. Examples of
constants in the Broadband model ate scientific constants, such as the earth’s radius, and conversion
factors. Other constants that are included in the Broadband model are market constants such as

market size and distribution, satellite sizing ratios, and launch vehicle performance.

Design Vector Constants Vector
I

v
Simulation Modules

Satellite Sizing

Orbit
analysis

L Coverage

analysis

L Capacity

Analysis

L Launch

analysis

L Cost

Analysis

L Performance

assessment

Figure 49: Systems Simulation Flow

6 Kashitani, T. (2002). Development and Application of an Analysis Methodology for Satellite Broadband Network Architectures.
Proceedings of the 20th AIAA International Communications Satellite Systems Conference, Montreal, Canada.
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The simulation is relatively course in system design detail, but setves as a good case for analysis
because of the use of market models that exemplify circumstances where market uncertainty can have
the driving effects on outcomes. The flow of the model begins with a relative sizing of the spacecraft
based on rules of thumb and the design vector inputs. For example, from the antenna power and
antenna size, the relative mass and size of the spacecraft can be determined from sizing relationships
commonly used in conceptual design.”” After the relative size of the spacecraft is calculated, Satellite
Tool Kit® is used to propagate the satellites in their individual orbits and capture ephemeris that can
be used in the coverage model. The coverage model calculates a global map of acceptable coverage
that 1s achieved from the space segment of the architecture, based on probabilities of satellites in view.
The system capacity model then generates the total subscribers that the architecture being evaluated
could support. This calculation is based primarily on the link budget calculation of individual
spacecraft summed over the constellation. The capacity of the architecture and its coverage are then
compared with a market demand model that defines the number of likely subscribers over the course
of a given year. The launch module then cteates a launching scheme based on the orbital
characteristics, as well as mass and size characteristics of the satellite constellation. The system
component costs are then calculated as well as the total system cost that 1s then transformed to present
valuation. The final module accepts the inputs from the previous models and generates a number of
outcome measures, 1.e. profit, cost-per-billable hour, etc.”® For the remainder of this case the billable

hour-per dollar spent 1s used as the key decision criteria.

8.12 Model Results
Figure 50 presents the subscriber hour and system cost tradespace with dots representing the 13
Pareto optimal architectures that were calculated using a heuristic search of the design tradespace.m

These are the expected outcomes for the 13 architectures on the Patreto front, but of course there is

¢7 For more detall on sizing relationships see Larson, W. a. ]. W., Ed. (1992). Space Mission Analysis and Design. Torrence, CA,
Microcosm.

% Kashitani, 1. (2002). Devclopment and Application of an Analysis Mcthodology for Satellite Broadband Network Architectures.
Proceedings of the 20th ATAA International Communications Satellite Systems Conference, Montreal, Canada.

® Jilla, C. (2002). A Multiobjective, Multidisciplinary Design Optimization Methodology for the Conceptual Design of Distributed
Satellite Systems. Aeronautics and Astronautics. Cambridge, MA, Massachusetts Institute of Technology.
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uncertainty that surrounds each expectation that will be addressed in the next section.”  From this
tradespace of total subscriber hours generated by the space system and the system cost, a billable hour
per dollar-invested metric (subscriber hout/$) is developed that is used later as the single measure of

value for the decision maker.
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Figure 50: Commercial Broadband System Pareto Optimal Front

8.2 Uncertainty Quantification

Once the baseline GINA model was developed, the uncertainty quantification approach was initiated.
The first step in the process was to identify the potential sources of uncertainty in architectures being
investigated. Once the initial sources were identified and quantified the Monte Carlo uncertainty

propagation technique was used to develop the embedded uncertainty for each architecture.

7 A total of 17 Pareto optimal architectures were initially found; however 4 of these became infeasible under the inclusion of uncertainty
and were excluded from further consideration. The infeasibility was caused by launch vehicle constraints on mass that were violated
for these architectures.
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8.2.1 Sources of uncertainty

Table 18 presents the various soutces of uncettainty that were considered in the Broadband case study.
Because the Broadband GINA model is relatively coarse, a good deal of the uncertainty being
quantified atises from the rules of thumb being used in the model simulation to generate results.

However, because of the commercial nature of the case, market uncertainties are also introduced.

Table 18: Sources of Uncertainty consideted in Broadband Case

Total Market Size

Market Capture

Payload Power per Unit Mass

Mass Fraction of the Payload with respect to Dry Mass

Fraction of Dry Mass in Wet mass

Density of Satellite

Discount Rate

Theoretical First Unit Cost per Kilogram

8.2.1.1  Cost Uncertainty

The cost module for this system used cost estimating relationships to transform mass into cost for
development of the spacecraft. This setved as one source of cost uncertainty. For example, The
histotical rule of thumb for Theoretical First Unit Cost per Kilogram is $84,000. A normal
distribution centered around $84k with a standard deviation of $10k was used in the simulation models

to capture the expectation and uncertainty associated with the cost estimating relationship.

8.2.1.2  Market Uncertainty

The broadband system analysis affords the opportunity to introduce market uncertainty into
application.  Specifically this market uncertainty is arising from the estimation of three main
parameters: 1.) total market size of broadband customers, 2.) percent market capture for this project,
and 3.) the discount rate used in the cash flow analysis. These three sources of market uncertainty
serve as representative examples of market uncertainty. Others could have been included such as

uncertainty in market geographic distribution or competition scenarios. Kelic investigated a number
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of market uncertainties that include those listed above in her analysis of potential space based

broadband delivery systems.71

Uncertainty in total market size is modeled using a lognormal distribution that is consistent with
petvious market analysis of the broadband market potential. A lognormal distribution is used for the
obvious reasons that the market has a lower bound of zero, but a more uncertain upper bound. Figure
51 represents the market distribution that was used in the analysis. The expected market size was

calculated on an annual basis with a six year projection.
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Figure 51: Broadband Market Size by Year

The percent market capture is another source of uncertainty. Even with a precise market, there is no

way to know what competitors you'll have and what customers will prefer. Again a lognormal

1 Kelic, A. (1998). Assessing the Technical and Financial Viability of Broadband Satellite Systems Using a Cost per T1 Minute Metric.
Aeronautics and Astronautics. Cambridge, MA, Massachusetts Institute of Technology, SM.
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distribution is used here to represent an expected market capture of 7.5% and the distribution around

that, as shown in Figure 52.
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Figure 52: Broadband Percent Market Capture Year over Year

Finally, a discount rate was used in some of the calculations to generate net present values for vatious
architecture outcomes. The discount rate uncertainty was represented by a normal distribution with

mean of 30% with a standard deviation of 7.5%.

Although market uncertainties exist in the Broadband case, by no means are market uncertainties
isolated to commercial ventures. Military and civil systems also suffer from market uncertainties in a

number of ways, ranging from competition to demand for the system.

8.2.1.3  Model Uncertainty
Because, the simulation model was relatively course, there were a number of design rules of thumb
used to size features of the architectures. These rules of thumb are based on historical trends and the

hope is that the previous design trends will hold for the current system. Most of these rules of thumb
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have associated with them an expected scaling factor and a standard error.”” The model uncertainties
that were considered in this case were the sizing relationships for payload power per unit mass, mass
fraction of the payload with respect to dry mass, fraction of dry mass in wet mass, and the density of

the satellite.

8.2.2 Embedded Architectural Uncertainty

To calculate the embedded uncertainty in each architecture, the set of individual sources of uncertainty
is built into the constants vector. The first step is to sample the constants vector under conditions of
uncertainty, as shown in Figure 53. For example, a % market capture will be randomly selected from
the possible distribution, a single number of potential subscribers for each year of operation will be
randomly selected, a satellite density value will be randomly chosen from the potential values it could
take on, etc. Once the constants vector is initialized, this vector is the used for each of the potential
design vector combinations under consideration and results in an outcome vector for each architecture

considered.

Next, a new constants vector is selected from the distribution of possible constants vectors. The
simulation for each design vector combination under consideration is repeated, resulting in a second
set of outcome observations for each architecture evaluated. This process of selecting a constants
vector is repeated many times until a populated distribution of outcome measures can be generated.
The number of runs is only limited by the computation required and time allowed, as many simulation

models for every design vector combination can take 5-10minutes.

72 Larson, W. a. ]. W., Ed. (1992). Spacc Mission Analysis and Design. ‘T'orrance, CA, Microcosm.
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Figure 53: Creating distributions of architectural outcomes

The end result of the uncertainty propagation is an ordered set of outcomes for every architecture
considered. This data can be used to create statistical measures of uncertainty for a single architecture
and also the pair-wise correlation coefficients that are necessary in pottfolio optimization. Figure 54
presents a snapshot of the embedded uncertainty that was calculated for each architecture on the

Pareto optimal front. The diamonds represent the expected value of the architecture in terms of
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system cost and total subscriber hours, while the ellipses represent the uncertainty of each architecture

in both dimensions.
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Figure 54: Broadband tradespace with the inclusion of uncertainty

8.3 Portfolio Assessment

Once the embedded architectural uncertainties have been calculated, the portfolio assessment, as
described in detail in Chapter 6, can be applied. The portfolio assessment will be useful in helping the
designer to assess and manage the uncertainty in the architectural trade space and not just single point
designs. The portfolio assessment also provide a context in which trade-offs of uncertainty and value,
subscriber hour/$, can be made. Using an expected return and covariance matrix based on 100
observations of 13 architectures, the pottfolio optimization algorithm was applied to generate the

efficient frontier. Figure 55 presents the broadband efficient frontier, as derived under the classis

portfolio optimization algorithm in Eq. 10.

149



Mean-Variance Efficient Frontier using the Pareto Optimal Frontier
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Figure 55: Broadband Case Study Efficient Frontier of Architectural Portfolios

Using an architecture portfolio analysis flight simulator, the designer and decision maker can
dynamically explore trade-offs between uncertainty and function-per-cost. Figure 56 provides a screen
shot of the flight simulator. The dot indicates the current portfolio, while the weight of each
architecture in the portfolio is listed on the right hand side along with the expectation of function-per-
cost and uncertainty. For example, the dot on the efficient frontier represents a portfolio consisting of
two architectures, both LEO and equivalent antenna size and power levels, but having different
numbers of spacecraft in the constellation and different orbital configuration. An immediate
observation from the portfolio tradespace is the clear demarcation of GEO, MEO and LEO

architectures along measures of value and uncertainty.
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Figure 56: Snapshot of the Architecture Portfolio Flight Simulator

8.3.1 Quantifying Decision Maker Risk Aversion

Once the efficient frontier has been calculated, the next logical next step is to determine where what
the optimal strategy is for a given decision maker. As discussed in Chapter 6, capturing decision maker
risk aversion can be relatively straightforward through the use of indifference curves and iso-utility
lines. By interacting directly with the customer with this graphical technique, preferences of the
decision maker can be captured and incorporated into the portfolio optimization. As was previously
seen, the level of aversion of the decision maker can greatly affect the optimal strategy and this is also
true in this case study. There are a total of 7 architectures that constitute membership in a portfolio

somewhere on the efficient frontier and there are many combinations of those possible.

The highly risk averse individual would find himself looking at portfolio in the lower left corner of the
efficient frontier, while the lower risk averse decision makers would have preferences leading to

strategies in the upper right corner. Rather than chose a single decision makers aversion, two decision
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makers who represent these extremes are presented as well as a more moderate decision maker and
their optimal portfolio strategy that would come from the uncertainty analysis. By using three
representative decision makers, the overall sensitivities of the portfolio can be observed and outcomes
compared to demonstrate the adaptability of the uncertainty analysis approach to a large range of

decision makers who become involved in the development of space systems.

Indifference curves for three decision makers
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Figure 57: Indifference curves for three decision makers

Assume that Figure 57 represents the three-decision maker’s indifference curves for the
value/uncertainty trade. Using this information an optimal investment strategy can be developed
based on the portfolio optimization. As one might expect, the decision maker with a low level of risk
aversion will accept far more uncertainty for a given increase in value than the decision makers with
moderate and high levels of risk aversion. Notice that a completely risk averse individual would have
an indifference curve that is represented by a vertical line, while a hotizontal line would represent a risk

neutral decision maker.
152



The £ values representing the three decision makers looked at in this case are 0.03, 0.1, and 1. These
are relatively low k values, thus indicating decision makers who are closer to being risk neutral. This
set of k values was chosen to span the portfolio space. 'This range suggests that the efficient frontier

has relatively high levels of uncertainty and little offering to the highly risk averse individuals.

8.3.1.1  Decision maker with high risk aversion optimal portfolio strategy

The first decision maker looked at was the highly tisk averse decision maker with a £ value of 1. A
highly risk averse decision maker would expect to find themselves in the lower left hand comner of the
efficient frontier and that is exactly what is shown in Figure 58. The efficient frontiet, the concave
line, as well as three iso-utility lines have been plotted for the decision maker. An optimal investment

strategy where the highest iso-utility curve becomes tangent to the frontier is shown in the figure.

The composition of the optimal strategy is defined in Table 19. This portfolio contains both a MEO
architecture and a LEO architecture. Thete were lower risk assets for which the decision maker could
have invested, such as the one GEO architecture on the Pareto optimal front, but this decision maker

desired more return that the lower risk architectures could provide.
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Decision maker with high risk aversion optimal portfolio strategy
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Figure 58: Optimal investment strategy for high risk aversion decision maker

Table 19: Composition of Broadband high risk aversion decision maker strategy

Percentage Architecture Design Vector Subscriber ~ Uncertainty
of Portfolio ~ {alt, inc, sats/plane, planes, pow, ant area} Hour/$
I 55% {(MEO, 0, 8,1, 1, 3} 0.5 0.2
| 45% {LEO,0,7,1,2,0.5} 6.9 2.7 |
| 100% Portfolio Value and Uncertainty 3.4 13
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8.3.1.2 Decision maker with moderate risk aversion optimal portfolio strategy

The second decision maker investigated has a k value equal to 0.1. In most cases this value would not
be considered a “moderate” level of risk aversion, but the phrase is used here to show the relative
preference to uncettainty of three decision makers. The optimal investment strategy for the moderate

risk aversion decision maker is shown in Figure 59.

The composition of this portfolio lies at a single architecture, a LEO architecture consisting of 40
satellite constellation each with a 2 m? antenna and 1 kW power. It appears that implementation of
portfolio theory failed to create a multi-asset portfolio for the decision maker as an optimal strategy.
However, it is not the goal of portfolio theoty to create a portfolio for the sake of Increasing the
number of investments. Instead the goal is to use different assets where possible to diversify away
some level of uncertainty. In the case of this tradespace, the architectures considered, the models used
and the uncertainty sources quantified produced architectural outcomes whose behaviors were highly
correlated. In cases where tradespaces lack this type of diversity, there will always exist portfolios that

contain a single asset because the efficient frontier will closely resemble a linear combination of assets.
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Decision maker with moderate risk aversion optimal portfolio strategy
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Figure 59: Optimal Investment strategy for moderate risk aversion decision maker

Table 20: Composition of Broadband moderate risk aversion decision maker strategy

Percentage Architecture Design Vector Subscriber ~ Uncertainty
of Portfolio ~ {alt, inc, sats/plane, planes, pow, ant area} Hout/$
100% {LEO, 45,5, 8,1, 2} 24.7 10.5
100% Portfolio Value and Uncertainty 24.7 10.5
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8.3.1.3  Decision maker with low risk aversion optimal portfolio strategy

The third decision maker has a very low level of risk aversion, k=0.03. The optimal strategy for this
decision maker is shown in Figure 60 and as one might expect, it resides in the upper tight cornet of
the efficient frontier. This strategy is indeed taking on a good deal of uncertainty with expected value

of 45.5 Hours/$ and a standard deviation of over half that.

The composition of the portfolio is described in detail in Table 21. There are three assets in the
portfolio, all LEO architectures. The reason for large LEO architectures dominating this portfolio is
that the larger the constellation of satellites and the mote capacity a system has to achieve subscriber
hours if the market conditions are good. However, under adverse market conditions, the system won’t
achieve the subscribers expected and it will have requited a significant capital investment to construct
it. Notice that one of the assets suggested is only 2% of the portfolio. In practice 2% of an
architectural investment would most likely not be enough to produce tangible benefits, so this

percentage might best be distributed amongst the other two assets.
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Decision maker with low risk aversion optimal portfolio strategy
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Figure 60: Optimal strategy portfolio for low risk aversion decision maker

Table 21: Composition of Broadband low risk aversion decision maker strategy

Percentage Architecture Design Vector Subscriber = Uncertainty
of Portfolio ~ {alt, inc, sats/plane, planes, pow, ant area} Hout/$

| 9% {LEO, 45,5, 8,1,2} 24.7 10.5

» 2% {LEO, 45, 7,10, 1, 3} 48.3 26.8

| 89% {LEO, 60, 6, 10, 1, 3.5} 47.6 25.6

| 100% Portfolio Value and Uncertainty 45.5 24.2

8.3.2 Implications of incorporating the extensions to portfolio theoty
The classical implementation of portfolio theory has been presented using uncertainty as a surrogate
for risk, but in fact, the two can be separated, as shown below through the use of semi-variance. The

low tisk aversion decision maker has a suggested optimal portfolio that consists of more than one
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asset. What is the extra cost of that portfolio and how should a cost benefit trade be made? To find

the answet, the correlation coefficient of the portfolio members is used as a starting point.

8.3.2.1  Differentiating risk from uncertainty

The first step to differentiate the risk from the uncertainty in the distribution can be found by focusing
on the downside semi-variance, as previously discussed in Chapter 6. To do so, first adjust the
variance of individual obsetvations around the expectation as shown in Eq. 29. The variance of these

new observation errors is then calculated, as shown in Eq. 30.

(r,— E(r)) = [(r,» -E)if 7, <0

Oifrl. >0
Eq. 29
SDown:idezz*E[Z(r—E(r))z]
Eq. 30
Thus creating a downside covariance matrix as shown in Eq. 31.
~ , -
S P S S PSS * PSS S
d1 d2 dy d3 dil dn dl
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QDownside— p],3S RY p2,3S S S i pn,BS Ry
d1d3 d2 d3 d3 dn d3
® [ ] ® ® [ ]
2
PSS PSS S Pi.S S d S
L didn d2dn d3dn dn
Eq. 31

Finally, implement the portfolio algorithm in the similar manner to traditional portfolio theoty, only

substituting Q. .. for Q, as shown in Eq. 32.
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k
max: E(V)W - 5 w QDownside w

s.t.: Zn: w, =1
i=1

st.:w=>0
Eq. 32

Using this algorithm, an efficient frontier can be calculated in the same manner performed earlier in
the case. The tradespace of 1isk and function per cost is shown in Figure 61. The efficient frontier for
both the full uncertainty portfolio analysis, as well as the semi-variance analysis is shown in the figure.
The most interesting insight to take away from this chatt is that there is less risk in the tradespace than
would be perceived if uncertainty were used as a surrogate for risk. Another thing to observe 1s that
the relative position of the architectures with respect to one another has not changed and instead, the
result from the semi-variance analysis is a simple shift to the right. Also the relative separation
between the two frontiers is not constant and suggests that the architectures in the upper right have a

greater relative upside than those in the lower left hand corner of the efficient frontier.
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Mean-SemiVariance and Mean Variance Efficient Frontier
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Figure 61: Broadband portfolio analysis with full uncertainty and semi-variance

With a different efficient frontiet, it is conceivable that decision makers should choose different
optimal portfolio strategies. Using the same decision makers previously used, the low, moderate and

high risk aversion, the effects that this extension to classical portfolio analysis would provide are

discussed.

The first decision maker was the high risk aversion decision maker. Under the efficient frontier using
semi-variance, his optimal portfolio strategy has remained the same as was previously found, as shown

in Figure 62 and Table 22.
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Decision maker with high risk aversion optimal portfolio strategy
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Figure 62: Optimal investment strategy for high risk averse decision maker

Table 22: Composition of Broadband high risk aversion decision maker strategy

Percentage Architecture Design Vector Subscriber  Uncertainty
of Portfolio  {alt, inc, sats/plane, planes, pow, ant area} Hour/$

| {MEO, 0, 8,1, 1, 3} 6.9 1.1

| 2% {LEO,0,7,1,2,0.5} 1353 2.6

| 49% {LEO, 30, 5, 6,1, 4} 0.5 0.08

1‘ 100% Portfolio Value and Uncertainty 3.9 0.63

The moderate risk aversion decision maker has seen no shift in his optimal portfolio strategy.
Although there is less perceived risk in the tradespace under the semi-variance calculation, the same

architecture is still retained.
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Decision maker with high risk aversion optimal portfolio strategy
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Figure 63: Optimal investment strategy for moderate risk averse decision maker

Table 23: Composition of Broadband moderate risk aversion decision maker strategy

Percentage Architecture Design Vector Subscriber  Uncertainty
of Portfolio  {alt, inc, sats/plane, planes, pow, ant area} I—Iqur/ $
100% {LEO, 45, 5, 8, 1, 2} 24.7 10.5
100% Portfolio Value and Uncertainty 24.7 105 |

The low risk averse decision maker has seen a shift in strategy. He previously had a portfolio of three
assets as an optimal portfolio strategy, but now has two, namely the architectures that had the highest

values, as shown in Figure 64 and Table 24.
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Decision maker with low risk aversion optimal portfolio str_ategy
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Figure 64: Optimal investment strategy for low risk averse decision maker

Table 24: Composition of Broadband low 1isk aversion decision maker strategy

Percentage Architecture Design Vector Subscriber ~ Uncertainty
of Portfolio  {alt, inc, sats/plane, planes, pow, ant area} Hour/$
| 24% {LEO, 45,7, 10,1, 3} | 48.3 10.4
76% {LEO, 60, 6, 10, 1, 3.5} 47.6 99
| 100% Portfolio Value and Uncertainty 47.7 9.9

8.3.2.2  Cost of diversification
Some of the optimal portfolio strategies that have been found in this case have included more than
one asset and therefore more than one architecture to pursue in design. In order to calculate the exact

cost to diversify into a portfolio, the individual assets should be closely looked at by the designers and
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decision makers. For example, two LEO architectures with 45°%inclination operating at 1kW and 2m?’
antennas and having only a small difference in the number of satellites in slightly different planes will
probably not incur twice the design cost of a single architecture because of the commonality between
the two architectures. In contrast, a two asset portfolio with a very large LEO atchitecture requiting
many ground stations and a two satellite GEO architecture might represent a significantly higher cost

to develop than either of the two individually.

A relative measure of the cost of diversification is used to judge the relative extra cost of carrying a
portfolio based on the correlation of assets in the portfolio, as described in Chapter 6. For an
example, the low risk aversion decision maker under the full uncertainty distribution would have a cost
to diversify equal to 0.5% of the cost to design the architecture with the design vector {LEQ, 45, 5, 8,
1, 2} plus 0.1% of the cost to design the architectute with the design vector {LEO, 45, 7, 10, 1, 3}.
Therefore the total cost to proceed with the portfolio would be the cost of designing the majority
constituent in the three-architecture portfolio plus this additional cost to diversify. This type of
calculation can provide the basis for additional consideration by the decision maker on whether or not
to proceed with the portfolio strategy. Again the cost to diversify calculated here is a figure of merit
and represents a relative estimate on what the cost could be. The actual cost to diversify will be case

specific and should be looked at carefully by the designers and decision makers.

8.4 Conclusions

This case demonstrated the applicability of the uncertainty analysis approach to space based
broadband communications architecture. Market and model uncertainty were explored as primary
sources of uncertainty and the case demonstrated how significant these sources could be to the overall
value of a given architecture, with some architectures maintaining 50% uncertainty. The role of
downside semi-variance focus was also demonstrated, in contrast to a full uncertainty, and the impact
that such separation would have on the decision maker’s optimal strategy with the same level of sk

aversion was shown.

The intuitive observations that comes from the analysis such as LEO architectures having
predominantly greater uncertainty than MEO and GEO architectures is reinforcing to current

speculations, but the case provides a quantitative base for exploring the intuition in more detail.
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Moreover, an interesting final note on this case is how real world systems are acting with respect to the
efficient frontier that was developed. The Teledesic Space System has been in development for some
time. Initially conceived as a very large, LEO constellation of satellites, the system would provide
global broadband capability with very low latency and at a reasonable price. The original concept was
released 1n 1994 as having 840 satellites at development cost of $6.3B and total life cycle cost of
$17.8B.

In 1998, Teledesic went through a dramatic redesign from 840 satellites in LEO to 288 satellites. As
was shown in the analysis, this shift to fewer spacecraft lowered the potential market capture of the
system, but also lowered the exposure to risk that the system would have from the upfront

development cost investment.

In February 2002, a Teledesic architecture redesign was publicly released consisting of 12 satellites in
MEO at a development cost of $1B and 18 more MEO satellites deployed at a later date to
supplement coverage to achieve global capacity. Again, this is 2 downward movement on the efficient
frontier, opting for less capacity and subsctiber hours/$, but at a significantly lower cost than the LEO
systems. Had Teledesic taken a portfolio perspective on design, would they have made more progress
on becoming operational? Possibly, but with the analysis presented here, they definitely would have

realized where they were heading a lot sooner.
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Chapter 9

TOP SIDE SOUNDING IONOSPHERIC MAPPING MISSION: UNCERTAINTIES IN
UTILITY

9.1 Mission and Model Description

The ATOS Mission (short for the first iteration, A, in a series of Terrestrial Obsetving Swarms
mussions) has the primary objective of collecting and disseminating fine measutements of the
ionosphere. This data would be used by the science customer as inputs to a simulation model used for
describing the behavior for the ionosphere. An understanding of the ionosphere’s composition at fine
detail would allow for more accurate prediction and mitigation of etrors in communication and
location measurement. Potential tactical benefits of a detailed mapping of the ionosphete begin to

paint a clear picture of the potential value of such a mission beyond the pure science of ionosphetic

mapping.

9.1.1 The Ionosphere

The ionosphere makes up just a fraction of the total mass of the atmosphere, but has a great deal of
significance to the space community because of its influence on the propagation of RF transmissions
through it. The influence is caused by the presence of charged particles that acts as conductors and

mterfere with the transmission of radio waves.

The 1onosphere is divided into four main layers from 50km to 1000km altitude, as shown in Figure 65.
The first layer, including altitudes 50km to 90km, is the D-region. The E-region extends higher to
about 150km where it meets the F region. This region, sometimes divided into the F1 and F2 region,
has the most significant concentration of charged particles and contributes the most in the way of
interference to the transmission of radio waves. The F2 stops around 600km and joins what is known

as the topside of the ionosphere.
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Figure 65: Ionospheric characteristics™

In addition to altitude distinctions in the ionosphere, other spatial characteristics exist. Characteristics
are nearly identical in the longitudinal directions, but have substantive differences along lines of

latitude. Specifically, the ionosphere forms two majot bands of interest. The first occurs in the

equatorial-low latitude region and the second in the high latitude region, greater than 60° latitude.

Not only does the ionosphere change by location, the makeup also varies in terms of concentration
and composition in both predictable and unpredictable time scales. Figure 66 provides a rough
estimate of the ionosphere’s electron concentration as a function of altitude for both nighttime and
daytime conditions undet solar-max and solar-min conditions. Notice the dramatic bulge between 200
and 400 km, known as the F-layer. The F-layer is typically of the most interest to the scientists as it
causes the most interference with RF transmissions. In addition, daytime measurements are typically

more beneficial to the scientists as this is the time when concentrations are at their highest levels.

73 Anderson, D. a. T. F.-R. (1999). Space Environment Topics: The Tonosphere. Boulder, CO, Space Environment Center, SE-14.
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Figure 66: Ionosphere Concentration vs. Altitude for Daytime and Nighttime™

9.1.2 Ionospheric Influence

Figure 67 graphically illustrates the influence of ionospheric effects known as scmtillation on the
transmission of a radio wave signal. Notice the considerable spike in the noise that lasts approximately
40 seconds. The greater the amplitude of this spike the more significant the impact on any
communications. This signal degradation is caused by small-scale structures in the ionosphere whose
presence is typically associated with certain bands of latitude, specifically a low latitude band, <20°,
and a high latitude band, >60°. The low latitude occurrences tend to be associated with times just after

sunset, while the high latitude turbulence can be present day or night.

10

0}

-10

Figure 67: Signal is interrupted due to scintillation’

™ Tascione, T. F. (1988). Introduction to the space environment. Malabat, Fla., Orbit Book Co.
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9.1.3 The ATOS Mission

Given the significant impact of the ionosphere and its variability on communications and navigation,
the science- and even broader space-community are interested in the accurate modeling and prediction
of ionospheric dynamics. The overarching goal of the ATOS mission was to design a space system
that captured both the large scale and time-scale aspects of the ionosphere, as well as the detailed,

small time-scale fluctuations that are so unpredictable.

One of the most intetesting features of the ATOS model is the use of utility measures to define
“goodness” in the tradespace of architectutes. Instead of using a set of performance measures, such as
usable bytes delivered or resolution and accuracy, a non-traditional approach, utility theory, was

applied to the problem of balancing the many sets of customer needs that were involved mn the

program.

Utdlity theory allows the designer to capture the preference of customers and decision makers in
mathematical equations that provide for customer-in-the-loop trade-offs. This is in contrast to the
customet-in-loop approach used in at the first case study site in Chapter 3. At that site, Case 1, the
customet was physically present during the trade-offs process of conceptual design. In contrast, utility
theoty allows the customer preferences to be present during trade-offs but not necessarily require their
physical presence. There are of course good and bad aspects to each of these approaches. One of the
greatest advantages of utility theory is having the customer explicitly define their preferences through
the use of utility interviews. Many customers have a broad vision for what they want in a system, but
few have taken the vision and broken it down to the relative system attributes and how important each
of those attributes are. Utility theory enables that process. In contrast, the physical collocation of the
customer can be clarifying and perhaps more accurate and adaptive to unforeseen circumstances, but

take a toll on the customer in terms of time invested in the project.

Five concepts to accomplishing the ATOS mission were investigated, as shown in Figure 68. The
ionosphere is represented by the dotted pattetns in each of the five charts, while the boxes represent
the notional satellites that are part of the overall space system. The first concept, UV Sensing would
provide for the passive measurement of the ionosphere characteristics based on the reflections of UV

rays off the 1onosphere and complex ground processing to back out useful science data. By using a

75 Anderson, D. a. T F-R. (1999). Space Environment Topics: The lonosphere. Boulder, CO, Space Environment Center, SE-14.
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swarm of satellites, rather than one satellite, the accuracy of the science data would be greatly
improved. This concept has the benefit of being fairly straightforward in design and technology as
well as requiring relatively little power and mass in the passive sensor payload; however, it’s hampered
by taking passive measurement whose accuracy is less than direct measurement and the required post-

processing to obtain useful measurement information.

UV Sensing

Topside Sounder

Direct Scintillation Sensing

In Situ

Figure 68: Approaches to Measuring Ionosphere Characteristics

The second possible measurement was another passive technique, GPS Occultation. Again, by
acquiring a signal, in this case the GPS transmission, and measuring the effect of the ionosphere on
the transmission of the signal through it, models can be developed that back out the expected
composition. Using a swarm of satellites, relative differences in GPS signal reception could be used to

gain better insight into the small-scale characteristics of the ionosphere.

The third possible approach would be the use of a top-side sounder. By using an active payload that
sends pulses from the topside of the atmosphere downward, certain characteristics can be obtained

about the ionosphere including charged particle concentration. Further, because most disturbances in
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the ionosphere occur above the maximum density region, the most compelling ionospheric data could

be collected.

The fourth approach, direct scintillation sensing relies a good deal more on the ground segment to
measure variability in the ionosphere. By using simple communication schemes from multiple satellite
payloads to ground stations, direct scintillation measurements can be taken and then be used to

characterize the ionosphere’s characteristics.

The fifth approach was the one that was employed in the ATOS architecture. Pethaps the easiest to
conceive of all the possible measurement schemes, the in situ approach would rely on direct
measurement of ionospheric conditions as the individual satellites passed through it. The payload
would be a passive payload consisting primarily of Planar Langmuir Probes (PLPs) to record charged
particles densities. This approach has the benefits of having a relatively simple passive payload that
requires litle power, mass and records data that necds little post-processing to atrive at useful
information for the customer. To move further in the conceptual design process, there needed to be a
shared understanding of the relative worth of the different attributes of the mission that the customer

wanted the systems to achieve.

9.1.4 Derved Utility Function

The utility was derived from the atchitecture’s ability to satisfy three distinct sub-missions. The first,
the low latitude sutvey mission, was an equatorial region survey that would identify unstable regions of
the ionosphete near the equator. The second mission, the low latitude snapshot mission, would
require the space system to initiate an extensive data collection of an unstable region once the first
mission identified a instability. The third mission was to petform a high latitude survey that would

accurately measure telative ionospheric density correlated with GPS-to-ground data.

The low latitude sutvey mission was to measures the low latitude chatacteristics of the tonosphere at a
sampling rate of approximately 1Hz, as shown in Figure 69. From this information, the customer’s

model could be populated with the large-scale characteristics of the ionosphere.
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Figure 69: ATOS Low Latitude Survey Mission

The low latitude snapshot sub-mission would be important once the survey mission identified a
ionosphere disturbance. Using a swarm of satellites, fine-scale measurements of the anomaly would be
collected. As shown in Figure 70, satellites at different separation distances are useful to the customer,
because at large separation distances the overall shape and characteristics of the disturbance would be
captured, while small separation distances would provide more baseline measurements of variability
within the disturbance. All this data would feed into the customer’s model and provide better

predictability for future communications outage planning.

Figure 70: ATOS Low Latitude Snapshot Mission
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“The last sub-mission is a high latitude survey. As mentioned eatliet, the major charged particle
concentration in the ionosphere is centered about the equatorial band and the high latitude region.
Although not as significant a sub-mission as the low latitude missions, the high latitude mission would
provide further population of the science communities global ionosphetic model and prediction
ability. Typically, the high latitude region is less turbulent than the low latitude region and therefore,
the science community is only interested in the sutvey mission as opposed to the survey and snapshot
mission. Figure 71 represents the notional space segment that could accommodate the high latitude
mission. The desirable separation among satellites in this mission is about 75km in the direction of
longitude and latitude and 20km in the direction of altitude. In the low latitude region, the ionosphere
is fairly constant with altitude, this assumption does not hold with the high latitude mission. Further,
there would be added value to the science community if GPS occultation measurements could be

taken as well to correlate the data produced by in-situ measurements of the swarm.

%8 GPS

Figure 71: ATOS High Latitude Survey Mission

From the above missions, utility functions wete calculated for each of the missions, as a function of
each mission’s attributes, as notionally shown in Eq. 33, Eq. 34, and Eq. 35. For example, the low
latitude survey mission was a function of individual sample observations and the location and time of

day of each measurement.

U(Low_Surv)= f(X,, X0 X,,)
Eq. 33
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U(Low_Snap)=g1,,Y,,....,Y,)

m

Eq. 34

U(High _Surv)=h(Z,,Z,,..,Z.)
Eq. 35

Additionally, 2 total architecture utility variable was defined as a weighted sum of the two separate
mission utilities, as shown in Eq. 36. Although this is a simple linear aggregation of the multiple
elements of utility it provided a first look at how ideas of utility could be incorporated into the space
systems conceptual design process. Considerable progress has been made on subsequent design
iterations that exploit the full potential of multi-attribute utility theory.”

U(Totaly=U(High_ Surv)/ U, (High_ Surv)+2*(U(Low_ Surv)+ U(Low_ Snap)) (U (Low _ Surv) + U(Low _ Snap)),...,
Eq. 36

The design vector that was developed to define the tradespace of architectures that would be
investigated is presented in Table 25 and graphically in Figure 72. The design vector consisted mainly
of orbital parameters, as the mission was drven by the in-situ locations of individual satellites

throughout the mission lifetime.

Table 25: Design vector for the ATOS Satellite System

Name Description

Altitude Altitude of the satellite swarm

Subplanes per Swarm | Number of subplanes in swarm

Satellites per Swarm Number of satellite in swarm

Suborbits per Swarm | The number of concentric orbits in swarm

Subplane Yaw ‘The yaw angle of the swarm with respect to
nadir
Separation Distance The maximum along track separation

% Diller, N., Qi Dong, Carole Joppin, and S. K. Sandra Jo Kassin-Deardorff, Dan Kirk, Michelle McVey, Brian Peck, Adam Ross,
Brandon Wood (2001). B-TOS Architecture Study:Second Iteraton of the Terrestrial Observer Swarm Architecture. Cambridge, MA,
Massachusetts Institute of Technology.

175



separation distance
- >

subplane per swarm
(3 shown)

( R subplane yaw

Figure 72: Graphical representation of ATOS Design Vector

9.1.5 GINA/Utility Model
The conceptual design simulation models developed during the ATOS design effort were based on the

GINA heritage, but actually went beyond the original approach by applying utility theory to capture
the preferences of the customer in the simulation. Instead, utility theory was applied as described
eatlier and incorporated into the system simulation, as presented in Figure 73 to generate outcome

measures that would enable informed trade-offs of potential architectures.
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Figure 73: ATOS GINA Model Module Flow Diagram

The ATOS mission used the GINA method as a way of conceptualizing the structure of the
simulation model, but strayed from the strict application of information theoty and instead
mmplemented a methodology summarized in Table 26. By identifying the customer very early in the
process and by capturing their input with a formal utiity approach, design trade off were carried out

more effectively than would have otherwise been possible to with only performance measures.
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Table 26: ATOS Methodology

Collect stakeholder needs

Develop program goals and priorities

Describe and scope the system functionally

Define the solution space based on available technologies and constraints

Develop the mission utility function

Develop a simulation model

Explore the architecture trade space with respect to the utlity function

Revisit and verify the stakeholders needs were captured

9.1.6 Model Results

Over four thousand architectures were evaluated using the simulation model described in the previous
section. After calculating the expected outcomes for these thousands of potential architectures, the
tradespace was explored along the fundamental utility and cost measures developed in the early
problem formulation. Figure 74 gives the first look at how the tradespace took shape in terms of low
latitude utility, high latitude utility and cost. Each shaded square in the chart represents at least one
specific architecture concept, as defined by a unique design vector. In the figure, the two dimensions
of customer utility have been plotted and the shaded squates represent the life-cycle cost of a given
architecture. The first intuitive conclusion that can be drawn from this tradespace is that utility
increases with inctreasing cost. It 1s further evident though that there are some relatively inexpensive
architectures that accomplish the low latitude mission quite well, but don’t perform very well in the
high latitude mission. These types of multi-dimensional utility plots can be used with the customer to

revisit the relative importance of individual missions.
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Figure 74: Low and High Utlity Tradespace

Exploring the tradespace further, the individual points can be identified by what architecture they
represent, as well as what characteristics drive the performance outcomes. Figure 75 represents the
total utility and cost predicted outcomes for 1380 designs, which are represented as diamonds in the
plot. By using the total utility function in Eq. 36, overall architectural preferences can begin to be
observed. For example the highest utility-per-dollar or the highest total utility architecture can be
found, as shown in the figure. Interesting to notice is that the highest utility-per-dollar architecture 1s

separated from a “bad” design by only a few design characteristics changing.

179



Life Cycle Cost vs. Total Utility (N=1380)
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Figure 75: ATOS Cost and Utility Tradespace

One of the most important things to notice is that this is a fairly large tradespace with varying outcome
measures and that there are some very good designs, but there are also some less desirable outcome
designs. The vertical bands that are being formed are due to the number of satellites in the swarms that
drive the lifecycle cost of the mission. Other dimensions of the design vector drive the outcome value

for total utility.

As was done in the previous case, uncertainty investigation is limited to the Pareto optimal front of
architectures in the tradespace, primarily for the reason of computational efficiency. The true Pareto
optimal architectures in the ATOS tradespace consist of only 6 architectures, however. Therefore to
increase the pool of potential architectures to draw upon in the portfolio analysis, and because of no
computational limitations, 30 near Pareto optimal architectures were chosen to use in the uncertainty
analysis approach. These 30 architectures are graphed in Figure 76. The next section addresses the

question of: what is the embedded uncertainty in each of these architectures being evaluated?
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Figure 76: (Near) Pareto Optimal Front for the ATOS Architectural Tradespace

9.2  Uncertainty Quantification

The first step in quantifying embedded architectural uncertainty is to bound the sources of uncertainty
approptiately. The possible sources of uncertainty that affect the architecture outcomes must first be
identified and the designer must decide which will be included in the analysis. There are two primary
reasons to not include all sources of uncertainty in practice. The first is that the analysis would quickly
become intractable and the second reason is that there are some soutces of uncertainty whose effects

would be either very difficult to model or have little impact on the architectural uncertainties.

9.2.1 Sources of uncertainty
The uncertainty quantification in ATOS included technical, cost, modeling and utility uncertainty.

Table 27 lists the uncertainties that were included in the case.
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Table 27: ATOS Sources of Uncertainty

Sources of Uncertainty for ATOS

Mean Time to Failure per Satellite

Cost Estimating Relationships for Satellite Bus

Payload Cost Uncertainty

Number of Controllers Required per Satellite

Cost of Ground System (Software and Hardware)

Low Latitude Mission Utility Relative to High Latitude Mission Utlity

Satellite Density

9.2.1.1  Technical Uncertainty

The major technical uncertainty that was included came from the mean time to failure (MTTF) for a
single satellite in the constellation. Because the mean time to failure is a representative reliability of the
entire satellite, it is a very difficult number to measure. Small satellites such as those presented have
previously used 500 months as the mean time to failure. However, there are not a lot of these
distributed satellite systems in operation, so the reliability warranted the inclusion of uncertainty
bounds. A normal distribution with a standard deviation of 50 months, as shown in Figure 77, was

used to represent the uncertainty in MTTF.
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Figure 77: Uncertainty in the Mean Time to Failure for a single satellite

9.2.1.2  Cost Uncertainty

The cost uncertainty arose from both cost to develop and the cost of operations. The uncertainty in
the cost of development of the satellite bus was captured using the standard error in the historical cost
estimating relationships used in the simulation models. The development cost uncertainty for the
payload was also included. The operations cost uncertainty arose from uncertainty in the estimation of
the individual sources that contribute, such as the number of engineers and operators required for

maintaining the system and the uncertainty in the cost of ground software and equipment.

9.2.1.3  Utility Uncertainty

Because this case relied on utility as the key decision criteria, an element of utility uncertainty was
included in the analysis. The combined low latitude mission and high latitude mission were difficult
for the customer to distinguish in terms of precise relative value, so a nominal value of 2:1 was used as
the utility ratio of the combined low utility mission to the high utility mission as was shown in Eq. 36.
Instead of using this ratio, the relative worth of the high latitude mission over the low latitude mission
was modeled as a probabilistic density function, as shown in Figure 78 with a mean of 2 and a standard

deviation of 1.
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9.2.1.4  Model Uncertainty

The model uncertainty in the ATOS case study arose from the designers in ability to precisely quantify
different aspects of the system through mathematical formulation. Instead, design rules of thumb or
parametric relationships are used that are based on historical observations. Two model uncertainties in
the case of ATOS were the satellite density, which is used to calculate the derived mass and overall
structure within the model, and the learning curve used to estimate production costs for more than

one satellite.

9.2.2 Embedded Architectural Uncertainty

Once the sources of uncertainty have been identified and each has been quantified and inserted into
the constants vector, a Monte Catlo sampling routine is conducted with the goal of developing
distributions of outcomes for each of the architectures evaluated, as shown in Figure 79. These
distributions charactetize the embedded architectural uncertainty and are used to compate

architectures and their responses to the various sources of uncertainty.
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Normality in Architectural Distributions

in Figure 80.

rejected for any of the architectural distributions created.
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Once the outcome distributions have been calculated, they can be plotted in histograms such as those
Portfolio theory and optimization abstracts uncertainty chatacteristics to simple
measures of expectation and variance that are consistent with gaussian distribution. The individual
architecture uncertainty distributions should be investigated to satisfy this assumption that the
characteristics of the uncertainty disttibution can indeed be captured by these simple measures.
Normality can be tested using statistical measures such as skewness and kurtosis as well as graphical

Using the Shpiro-Wilk test for normality, the hypothesis for normality could not be
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Figure 80: Representative Architectural Uncertainty Distributions

The end tesult of the uncertainty propagation is an ordered set of outcomes for every architecture
considered. This data can be used to create statistical measures of uncertainty for a single architecture
and also the pair-wise cotrelation coefficients that are necessary in portfolio optimization. Figure 81
presents a snapshot of the embedded uncertainty that was calculated for each architecture on the
Pareto optimal front. The points represent the expected value of the architecture in terms of cost and

total utility, while the ellipses represent the uncertainty of each architecture in both dimensions.
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Figure 81: ATOS Utility and Cost Tradespace with Uncertainty Ellipses
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9.3 Portfolio Assessment

Using the quantified uncertainty for each architecture, and knowing the cotrelation of outcomes, the
portfolio analysis technique was applied, as described in Chapter 6. Using an expected return and
covariance matrix based on 60 observations of 30 architectures, the portfolio optimization algotithm

was applied to generate the efficient frontier.

Figure 82 presents the ATOS efficient frontier, as derived under the classic portfolio optimization
algorithm in Eq. 10. Although this efficient frontier appears very similat to frontiers seen in the
previous cases, it has a very interesting quality. The efficient frontier extends beyond the petformance
achieved by any single architecture, as shown in Figure 83. This is an important finding as it shows
that portfolio theory can provide more potential to the decision maker than would otherwise be
possible with a single asset. The reason for the extension beyond any single architecture can be traced
back to Figure 74. Notice that some architectutes achieve a very high level of low latitude value at low
cost but perform the high latitude mission pootly, whereas others perform well in both low and high
latitude missions. Because of these two different approaches to achieving total value, there arises a
chance to diversify uncertainty. The amount diversified is not enormous, but it is measurable and
presents one of the first illustration that portfolio assessment in space systems can help decision
makers achieve higher returns for a given level of uncertainty than they otherwise could with single

assets.
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Figure 83: Closer Look at the ATOS Efficient Frontier
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Using the flight simulator shown in Figure 84, the designer can dynamically explore the portfolios that
lie along the efficient frontier. Notice for example the dot highlights a portfolio of composition
architecture 2 and architecture 25. This combined portfolio provides for an expected return of 0.88
Total Utility/$ and an uncertainty of 0.3 Total Utility/$. Using this approach, the decision maker can

quickly identify the changing characteristics of portfolios along the efficient frontier.

e S Sl e g inoatuntine Senos B riivme
el ; : _ 5 i g i
PR 1 ; ; [w00e 7 2
ATOS Architecture Portfolio Analysis i
; ; ; ! T T T P
it r—u—p.s
: : i : ; g : : [0 Fs
B i forsiiass RS s et iz e W e ] g
: : : ' : ; e
: : : 0 V3
L : : : : : : : [0 Fu
: : i ; i ﬁ [0 P
[0 Fn
o Fu
; ; i [0 Fi5
: : i
> : : [0 Fr
RTRR. A. Tm—— (TSR Spp— 4 =
: : ' [0 mas

22

Ity

e
=
T

[0 F2
[o=Fa
[0 P2
o Fa

: ; : : : [orpa

Y ; : : f BEEE
2 : ; 5 : : [0 Fz
ug_%= A e e, ................ .............. O - I Dol e
: i : é : : : ; [0 Fa

: : : : 5 : % o wa

; : 3 i : Expected Retun
i i i | i I i i 06781
P 0.2 03 08 1 % Vo !

0.4 05 06 07 08
Uncertainty (Standard Deviation) e

Total Utili

SRR
Piot Cunent Weights

Figure 84: Flight Simulator for the ATOS Architectural Portfolio Analysis

9.3.1 Quantifying Decision Maker Risk Aversion

Once the efficient frontier has been calculated, the next logical next step is to determine where what
the optimal strategy is for a given decision maker. As discussed in Chapter 6, capturing decision maker
risk aversion can be relatively straightforward through the use of indifference curves and iso-utility
lines. By interacting directly with the customer with this graphical technique, preferences of the
decision maker can be captured and incorporated into the portfolio optimization. As was previously

seen, the level of risk aversion of the decision maker can greatly affect the optimal strategy and this is
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also true in this case study. Thete are a total of 7 architectures that constitute membership in a

portfolio somewhere on the efficient frontier and there are many combinations of those possible.

The highly risk averse individual would find himself looking at portfolios in the lower left corner of
the efficient frontier, while the low risk aversion decision makers would have preferences leading to
strategies in the upper right corner. Rather than chose a single decision makets aversion, two decision
makers are presented who represent these extremes as well as 2 more moderate decision maker and the
optimal portfolio strategy that each would follow from the uncertainty analysis. By using three
representative decision makers, the overall sensitivities of the portfolio can be observed and outcomes
compared to demonstrate the adaptability of the uncertainty analysis approach to a large range of

decision makers who become involved in the development of space systems.

Assume that Figure 85 represents the three-decision maker’s indifference cutves for the
value/uncertainty trade. Using this information an optimal investment strategy can be developed
based on the portfolio optimization. As one might expect, the decision maker with a low level of risk
aversion will accept far more uncertainty for a given increase in value than the decision makers with
moderate and high levels of risk aversion. Notice that a completely risk averse individual would have a
indifference curve that is represented by a vertical line, while a hotizontal line would represent a tisk

neutral decision maker.
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Figure 85: Indifference curves for three decision makers

9.3.1.1  Decision maker with high risk aversion optimal porifolio strategy

The first decision maker looked at has a risk aversion coefficient, £, equal to 2. This 1s a relatively high
degree of risk aversion and so it is expected that this decision maker’s optimal portfolio strategy reside
in the lower left corner of the efficient frontier, and that is exactly what Figure 86 shows. To identify
this point, the efficient frontier is plotted and then overlaid with iso-utility curves for a given decision
makers aversion level. The three convex cutves represent the iso-utility curves for a decision maker,
each increasing in utility as they move to the upper left. Therefore the optimal portfolio investment
strategy would lie at the tangent point of the iso-utility curves and the efficient frontier, as show in

Figure 806.

The composition of the optimal pottfolio for this decision maker is 48% of one architecture and 52%
of another, as shown in Table 28. The two architectures that have been selected behave differently
enough to move the curve beyond a simple linear combination of the two and provide measurable

value through diversification. A strategy has been created that has less uncertainty than either of the
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portfolio assets. These kinds of non-intuitive synergies can only be found through a method such as
the one presented here. The majority of the portfolio is occupied by the architecture that was
identified as having the maximum utility in the tradespace in Figute 75, while the remaining portfolio
includes a much smaller architecture of only 2 satellites, compared to 26, and has a much smaller cost.
The two combine synergistically in this portfolio because the two architectures are achieving total
utility/$ in two ways. The 26 satellites architectures is achieving both the low and high latitude
missions, but at a high price. The 2 satellite mission is achieving good results on the low latitude
survey sub-mission, but doesn’t have enough satellites to do a good job at either the low latitude
snapshot mission or the high latitude survey. On the other hand, the 2 satellite architecture is
inexpensive, thus it achieves a good total utility/$. Because the approaches that the two architectures
are different with respect to total utility/$, the effects of uncertainty on each of the architectures

outcome measure have been different.
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Figure 86: Optimal investment strategy for high risk aversion decision maker

Table 28: Composition of ATOS high risk aversion decision maker strategy

Percentage Architecture Design Vector Total Uncertainty
of Portfolio  {sats/swarm, subotbs,size,yaw,subplanes,alt} Utiiity/ $
52% {26,4,14.1,60,2,700} 2.4 0.9
48% {2,1,3.8,30,1,300} 1.9 0.8
100% Portfolio Value and Uncertainty 2.2 0.7
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9.3.1.2  Decision maker with moderate risk aversion optimal portfolio strategy

The next decision maker presented has a more moderate tisk aversion coefficient, £ of 1. This
decision maker’s strategy lies in lower left half of the efficient frontier, but still relatively far from the
previous decision maker. Notice that a decision maker with this level of risk aversion can be
accommodated in the portfolio analysis technique. However, without the creation of portfolio, the
decision maker would have to settle for single assets that meet his risk aversion critetia but achieve
much lower total utility/$, or the decision maker would need to accept a higher level of risk than their
aversion coefficient would predict them to be comfortable with to achieve a high level of total cost/$.
The ability of portfolio theory to create continuous investment strategies is another benefit that can’t

be achieved with single assets.

The composition of the optimal portfolio is for the moderate risk averse decision maker is presented
in Table 29. Once again, the majortity of the pottfolio is occupied by the 26 satellite architecture as was
seen with the previous decision maker. The rest of the portfolio has changed though. This decision
maker is looking to get more return and willing to accept more risk, so two architectures enter the
portfolio that have greater returns than the architectures in the highly risk averse decision maker case,
but also greater uncertainty. The higher returns in terms of Total Utility/ $ come about because the 4
satellite architectures, although achieving less overall mission utility, do so using a far less proportional

cost.
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Figure 87: Optimal Investment strategy for moderate risk aversion decision maker

Table 29: Composition of ATOS moderate risk averse decision maker strategy

Percentage Architecture Design Vector Total Uncertainty

of Portfolio  {sats/swarm, subotbs,size,yaw,subplanes,alt}  Utility/$

57% {26,4,14.1,60,2,700} 2.4 0.9
28% {4,2,3.8,30,1,500} 4.2 1.7
15% {4,1,14.1,0,1,700} 4.1 1.6
100% Portfolio Value and Uncertainty 32 1.1

9.3.1.3  Decision matker with low risk averston optimal portfolio strategy

Finally, a decision maker who has a relatively low risk aversion coefficient, £, of 0.4 is investigated.
The optimal portfolio strategy, as shown in Figure 88, lies in the upper right corner of the efficient
frontier. With a relatively low level of risk aversion, this type of decision maker is trying to get the

most value out of the system with relatively little worry about the risk that the solution might carry.
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Figure 88: Optimal strategy portfolio for low risk aversion decision maker

The composition of the optimal portfolio is presented in Table 30. Notice one architecture from the
moderate risk averse decision maker is kept, but a new architecture has been added as well. This
architecture should be familiar, as it was called out in Figure 75 as the best value design. Indeed, this
architecture did have the highest total utility/$, but it also had the highest level of uncertainty for any

of the architectures.

Table 30: Composition of ATOS low risk averse decision maker strategy

Percentage Architecture Design Vector Total Uncertainty

of Portfolio ~ {sats/swarm, subotbs,size,yaw,subplanes,alt} ~ Utility/$

13 83% {8,4,14.1,30,1,700} 54 2.3
11 17% {4,2,3.8,30,1,500} 4.2 1.7
100% Portfolio Value and Uncertainty 5.2 22
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9.3.2 Implications of incorporating the extensions to portfolio theory

Although classic portfolio techniques were used above, the extensions to portfolio theory, as presented
in Chapter 6, could also be applied to glean any new information. The first extension that can be
made is separating the risk from the uncertainty previously used. This separation can be useful to
lustrate to decision makers that architectures are more or less risky than their uncertainty distributions
might lead to one to believe. The second extension that is used is to quantify the cost of carrying a

portfolio of architectures, rather than any single asset.

9.3.2.1  Differentiating risk from uncertainty

The first step to differentiate the risk from the uncertainty in the distribution can be found by focusing
on the downside semi-variance, as previously discussed in Chapter 6. First adjust the variance of
individual observations around the expectation as shown in Eq. 37. Then simply calculate the variance

of these new observation errors, as shown in Eq. 38.

(r,.—E(r)) = |:(rz -E(@))ifr, <0

O0ifr, >0
Eq. 37
SDownside =2*E[Z(V—E(r))2]
Eq. 38
Thus creating a downside covariance matrix as shown in Eq. 39.
_ R _
A P S 8 PusS S * PuS S
dl d2 di d3 dl] dn dl
2
PSS S PSS S ® Pu2S S
dl1d2 d?2 d3 dil dn d?2
— 2
QDownside - pl,SS S p2’3S S S L pn’3S Ry
d1 d3 d2 d3 d3 dn d3
'Y . ° ° .
2
pl,nS S p2,nS S p3,nS S . S
L dl dan d2 dn d3 dn dn ]
Eq. 39

Finally implement the portfolio algorithm in the similar manner to traditional portfolio theory, only

substituting Q y,.sice for Q, as shown in Eq. 40.
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Eq. 40

Using this algorithm, calculate an efficient frontier in the same manner performed eatlier in the case.

The tradespace of risk and function per cost is shown in Figure 89.

Mean-SemiVariance Efficient Frontier
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Figure 89: ATOS portfolio analysis with semi-variance

The semi-variance scaled efficient frontier with the full uncertainty distribution efficient frontier is
shown in Figure 90. The efficient frontier for both the full uncertainty portfolio analysis, as well as the
semi-variance analysis is shown in the figure. The most interesting insight to take away from this chart
is that there is about the same level of risk in the tradespace that would be perceived if uncertainty

were used as a surrogate for risk.
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Figure 90: ATOS portfolio analysis with full uncertainty and semi-variance

With a different efficient frontier, it is conceivable that decision makers should choose different
optimal portfolio strategies. Using the same decision makers previously used, the low, moderate and
high risk aversion, the effects that this extension to classical portfolio analysis would provide are

discussed.

The first decision maker was the high risk aversion decision maker. Under the efficient frontier using
semi-variance, his optimal portfolio strategy has changed only in percentage investment in each of the
assets in his portfolio, as shown in Figure 91 and Table 31. The optimal portfolio now has a higher
degree of emphasis on the higher return/higher risk asset.
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Figure 91: Optimal investment strategy for high risk averse decision maker

Table 31: Composition of ATOS high risk aversion decision maker strategy using semi-variance

Percentage Architecture Design Vector Total Uncertainty

of Portfolio =~ {sats/swarm, subotbs,size,yaw,subplanes,alt}  Utility/$

64% {26,4,14.1,60,2,700} 2.4 0.8
36% {2,1,3.8,30,1,300} 2.0 0.8
100% Portfolio Value and Uncertainty 25 0.7

The moderate decision maker has kept two of the previous three asset portfolio. There is also an

overall greater percentage investment in the higher return/higher risk asset.
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Decision maker with moderate risk aversion optimal portfolio strategy

6 T T T T T T T T/ T
H H H H H H H [P H

ction per Cost (Subscriber Hour/$) -

15 _ i i i 1‘ i
VAT 0E L a0e 12 14 16 PR PERRE

Figure 92: Optimal investment strategy for moderate risk averse decision maker

Table 32: Composition of ATOS moderate risk aversion decision maker strategy using semi-variance

Percentage Architecture Design Vector Total Uncertainty

of Portfolio  {sats/swarm, suborbs,size,yaw,subplanes,alt} ~ Utility/$

65% {26,4,14.1,60,2,700} 2.4 0.8
35% {4,2,3.8,30,1,500} 4.3 1.8
100% Portfolio Value and Uncertainty 3.1 1.0

The low risk aversion decision maker has moved his optimal strategy to a one-asset portfolio.
Although there did not appear to be a large degree of shift in the efficient frontier using semi-variance
in place of full uncertainty, there was enough to move 17% investment of another architecture out of

this portfolio, so that 100% of the resources could be devoted to the highest value system.
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Figure 93: Optimal investment strategy for low risk averse decision maker

Table 33: Composition of ATOS low risk aversion decision maker strategy using semi-variance

Percentage Architecture Design Vector Total Uncertainty

of Portfolio ~ {sats/swarm, subotbs,size,yaw,subplanes,alt}  Utility/$

100% {8,4,14.1,30,1,700} 5.4 2.3
100% Portfolio Value and Uncertainty 5.4 2.3

9.3.2.2  Cost of diversification

Some of the optimal portfolio strategies suggested in this case have included more than one asset and
therefore more than one architecture to pursue in design. In order to calculate the exact cost to
diversify using a portfolio, the individual assets should be investigated by the designers and decision
makers. For example, two 4 satellite architectures with similar characteristics differing only in altitude

by 200km will probably not incur twice the design cost of a single architecture because many of the
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similarities in each architecture can be design for both. In conttast, a two-asset portfolio with a 26
satellite architecture at very large separation distance and a two satellite swarm at very small separation
distance architecture might represent a significantly higher cost to develop than either of the two
individually.

A measure of the cost of diversification can be used to judge the relative extra cost of carrying a
portfolio based on the correlation of assets in the portfolio, as described in Chapter 6. For example,
the high risk aversion decision maker under the full uncertainty distribution would have a cost to
diversify equal to 33% of the cost to design the 2 satellite architecture. This high cost to diversify is
based on the low correlation that exists between the two assets, 0.598. In contrast the cost to diversify
of the low risk averse decision maker would be only 3.5% of the cost to design the 4 satellite
architecture in the portfolio. This lower additional cost is due to the higher degree of correlation that
exists, 0.965.

9.4  Conclusions

This case provided an opportunity to implement the uncertainty analysis approach in the context of a
space system whose primary mission was science. Unlike the previous two cases that focused on a
direct function per cost metric, like probability of detection per dollar or subscriber hour per dollar,
the ATOS case study demonstrated the use of the uncertainty analysis method in a system exploration

that centered around utility/$ as a fundamental decision criteria.

This case also presented the benefit that portfolio analysis can provide to a decision maket by creating
investment strategies for design that achieve higher value for lower uncertainty than would be possible
with any single asset. Illustrated by the high risk averse decision maketr whose optimal portfolio
consisted of architectures that achieved value through diffetent approaches and therefore reacted
differently to uncertainty. Finally the focus on downside of uncertainty was shown to have impact on

the optimal investment strategy of different decision makers.
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Chapter 10

CONCLUSIONS AND RECOMMENDATIONS

The uncertainty analysis approach presented here represents not only a new way of looking at
uncertainty in the conceptual design of space systems, but also a2 new of doing space systems
conceptual design mn general. Its implementation has been demonstrated on three distinct cases each
representing teaching lessons on the potential this uncettainty analysis apptoach provides. Beyond the
approach itself, numerous observations have been made on the conceptual design process and the role
that uncertainty plays. By establishing a framework in which to identify, assess, quantify, propagate
and manage uncertainty, formal trade-offs involving uncertainty can begin to take place. These kind of
trade-offs can lead to better guidance in choosing an architecture or set of architectures in the

conceptual design phase and along with that reduce the cost and cycle time due to unplanned rework.

In this chapter, the collective observations of the case studies and approach are reviewed, this thesis’
contribution to the state of the art are revisited and directions of future research that build on the

foundations of this research are suggested.

10.1 Collective Observations from Three Case Studies
Three different case studies were used to illustrate the potential of the uncertainty analysis approach
presented in this thesis. This section revisits the observations gained by the individual cases and the

overarching themes that evolve from them.

10.1.1 Level of diversity with respect to uncertainty can be observed

The level of diversity in the architectural tradespace can be observed through the covatiance matrix
and the overall behavior of the portfolio tradespace. The more diverse a population of assets in the
tradespace, as in the ATOS case, the closet the correlation coefficients will be to zero and in turn the

more potential opportunities for diversification of uncertainty. This level of diversity can generally be
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seen in the portfolio tradespace, the mote diverse tradespace of architectures will have an efficient

frontier that extends beyond the uncertainty and value of any individual asset.

Diversity among a tradespace of architectures is not readily visible from the design parameters alone.
Instead, the diversity of the tradespace with respect to uncertainty i1s emergent once the approach has
been executed. This is another reason why the tetm embedded uncertainty is used to describe the

characteristic uncertainty in each architecture.

10.1.2 Portfolio assets may differ at the architecture, system, subsystem or component level
This is an important observation because it goes back to what a portfolio is, as the term is used in this
thesis. The portfolio is a set of assets that a decision maker invests in to achieve a return. In the case
of the TechSat 21 case, examples of portfolios were presented whose assets would potentially differ by
only the power and size of the transmission antenna illustrating only component and pethaps
subsystem differences. In the broadband case study, there were portfolios whose composition
included MEO and LEO satellites—substantially different systems, and in varying architectural
configurations. Likewise in the ATOS example, substantial differences were observed at the
architectural level, with the high tisk aversion decision maker having an optimal investment strategy of
two vety distinct concepts, one very large swarm having 26 satellites at 700km and another much

smaller 2 satellite swarm at 300km.

Because of the variety of differences that distinguish assets in the portfolio, the implementation of
portfolio strategies will be different. For example, it may be difficult to convince a decision maket to
invest in three or four architectures at first. However, the different assets may only be pointing out

very specific features of the overall concept that should be held open.

10.1.3 Total tradespace uncertainty analysis can be more cumbersome than
valuable...using a subset of the tradespace for uncertainty analysis is more effective
Developing distributions of outcomes for architectures can be a computationally intensive task. The
detail and run-time of the design simulation model will largely dictate the extent to which uncertainty
analysis can be applied to the entire tradespace. This thesis presented the uncertainty analysis

apptoach applied to the Pareto optimal architectures that were found in exploring the traditional cost
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and utility tradespaces. By focusing on the subset of best architectures under consideration,
statistically significant distributions of outcomes can be calculated for each architecture under
evaluation. As more effective computation schemes are researched or more computation power
becomes available, the tradespace can be broadened to include more dominated solutions that might

add to the decision maker’s options.

10.1.4 Pareto optimal architectures don’t necessarily lie on the efficient frontier of the
uncertainty/value tradespace.

Although Pareto optimal architectures were used as inputs to the uncertainty analysis approach, the

cases showed that Pareto optimality in the cost and utility tradespace doesn’t dictate their existence in

the efficient frontier of portfolios. This suggests that those Pareto optimal architectures would never

be patt of an investment strategy identified by the portfolio analysis and further that the architectures

are therefore candidates for removal from the set under consideration.

10.1.5 Upside and downside of uncertainties can be separated, as risk and reward.

Indeed the uncertamnty in the traditional portfolio theory commingles the upside and downside of
uncertainty, but it is fairly straightforward to separate the two. The separation can present the decision
maker with different optimal strategies than would otherwise be considered under the total uncertainty
implementation of portfolio optimization. This distinction between portfolios under full uncertainty
and downside uncertainty arises from the outcome distributions not being truly normal. For example,
a set of architectures with tight skewed distributions might move the efficient frontier to the left in the
portfolio tradespace, thus allowing more risk averse decision makers, portfolio strategies with higher

returns.

10.1.6 Distribution rather than the extreme approach provides better confidence, but
requires more computation.

The extreme approach to uncertainty propagation is far less computationally intensive; however, the

level of precision in the distribution is not neatly as good as the Monte Carlo distribution technique of

uncettainty propagation. The choice between the two will be a question of computational resources

and the number of architectures that are to be looked at.
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The extreme approach is best suited to reach initial best/worst case uncettainties, as was seen in the
TechSat 21 example, ot to identify architecture behavior under very specific instances of uncertainty.
The apptoach is also best suited to exploting many architectures at once, because it requires far less
computation time than the Monte Catlo simulation technique. In some cases, in may be best to
petform an extreme approach assessment of the entire tradespace to ensure the “right” architectures
are being included in the uncettainty analysis framework and then the Monte Catlo simulation
technique could be used with the subset of architectures identified from the extreme approach to
develop outcome distributions from which more confident portfolio investment strategies could be

established.

10.1.7 Sources of uncertainty other than technical can often drive portfolio strategies

The presence of matket uncertainty in the broadband case study is a simple, yet powerful example of
the role that a non-technical uncettainty can play in defining embedded architectural uncertainty and
optimal portfolio strategies. In the case of the broadband system, uncertainty in the overall potential
market and the market that the system would capture created a significant amount of uncertainty for

large LEO systems that although having significant returns, also had considerably more uncertainty

It was also shown that other uncertainties, such as those in the utility functions of missions, as in the
ATOS example, have significant impact on optimal strategies to pursue. In this case, the total utility of
the mission was comprised of achieving a low latitude mission component and a high latitude utility
component. The uncertainty of the relative importance of each was a source included in the analysis.
There are of course many other non-technical sources of uncertainty as shown in Table 34 and every

effort should be made to include as many soutces as are applicable.

10.1.8 When the Pareto optimal architectures are relatively few, more dominated solutions
can be included in the analysis.

Although, it was found that all Pareto optimal architectures are often found to not exist on the

efficient frontier of the portfolio tradespace, it was also shown that non-Pareto optimal architectures

can. This was demonstrated in the ATOS example, where a relatively small set of architectures

occupied the Pateto optimal front, 6, and additional architectures were added to the analysis to provide

a broader pool of potential assets to draw from. In the end, seven architectures were found to exist in
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portfolio along the efficient frontier. Given availability of computation power, ot a small set of Pareto
optimal architectures, it may setve the designer to investigate a larger collection of architectures from

the initial tradespace.

10.2 Contribution to the State of the Art

This research breaks new ground in a number of areas and furthers the research of others in a number
of ways. By building on the foundation of current uncertainty assessment in space systems design and
applying the interdisciplinary concept of portfolio theory, this thesis extends the state of the art of

conceptual design and the way uncertainty can be identified, assessed, quantified and managed.

10.2.1 Developed an approach to quantify and understand embedded architectural
uncertainty

The idea that architectures have associated with them a distinguishing characteristic in embedded

uncettainty and that this charactetistic can and should be used in trade-offs and decision making

throughout design is a fundamental insight that comes directly from this work. Without the inclusion

of uncertainty analysis, designers aren’t pressed to question their assumptions and the decision makers

ate without valuable information that could prevent future rework.

In addition to quantification techniques of embedded architectural uncertainty were a suite of
visualization techniques that provide necessary communication vehicles of architectural and tradespace
uncertainty. Single dimension, multi-dimensional single architecture techniques as well as methods for

visualizing multiple architectures’ uncertainties simultaneously were presented.

10.2.2 Applied portfolio theoty to the design of space systems thus making uncertainty
trade-offs possible

The interdisciplinary application of portfolio theoty to space systems provides a new approach to

managing uncertainty in the conceptual design tradespace. The approach provides for strategies to

form around the basis of decision maket’s aversion to uncertainty and risk and takes into account the

non-intuitive aspects of tradespace uncettainty, specifically covariance.
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10.2.3 Developed an approach that is adaptable for different stakeholders and systems

The uncertainty analysis approach includes preferences of decision makers in suggesting optimal
strategies, thus making the approach adaptable for organizations that deal with many customets. As
was pointed out through the case studies in Chapter 3, there are a number of different customers that

are being served and a single adaptable framewortk provides the best hope for adoption in practice.

10.2.4 Contributed ideas of upsides and downsides of uncertainty

This thesis established emphasized and demonstrated the difference between risk and uncertainty and
illustrated that uncertainty is not always to the detriment of the system. By using semi-variance
techniques to bisect an outcome distribution about its mean, the negative consequences of uncertainty
and the positive consequences of uncertainty could be quantified and incotporated into the portfolio

optimization to produce investment strategies that are driven by risk, rather than total uncertainty.

10.2.5 Produced case studies that illustrate lessons learned from uncertainty analysis

The three case studies that were used in this thesis serve as a basis for future implementations of the
uncertainty analysis framewortk in cases of similar characteristics. They illustrate different potential
outcomes that might be obsetved in practice and serve as guides to practitioners of the uncertainty

analysis method.

10.2.6 Developed overarching principles of uncertainty in the design of space systems
As stated in chapter 3, there were three engineeting principles on the subject of uncertainty proposed

from this work.

Principle 1: Irreducible uncertainty exisis in all space systems architectures — Sources of
uncertainty in conceptual design can be reduced but never extinguished. Because of
the interaction of humans, technology and an open system environment where

markets and politics come into play, uncertainty can be guaranteed.
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Principle 2: Space system architectures can be characterized by their embedded nncertainty — In the
same way that an architecture can be characterized by its cost and petformance, so too
can it be characterized by it embedded uncertainty. Trade-offs can be made with
uncertainty and other architectural features and decisions can be influenced by
uncertainty as a distinguishing characteristic.

Principle 3: A portfolio of architectures can be systematically used to adjust overall exposure to
uncerlainty — There were two ways portfolio theory can adjust the overall exposure to
uncertainty. First, portfolio theory provides for continuous investment opportunities
for any level of risk aversion, unlike discrete assets. Second, portfolio theoty provides
a means of diversifying uncertainty through combinations of different architectures on

the basis of covatiance.

10.3 Recommendations for Further Research

Like most research, there is still much work to be done. Although a unified apptoach has been
presented and demonstrated through practical examples, there is a great deal of oppottunity to extend,
implement and refine the approach upon which this thesis is based. The true benefits of this research
won’t be exploited until, “actual” programs experiment with the method as part of their conceptual

design process.

There are of course other issues that although not directly discussed in this wotk, arose as potential
areas of further research. These include: the implementation of multi-period portfolio analysis,
implementation of the approach in more “real world” case studies, investigation into different
representations of uncertainty on which to base the portfolio analysis, broadening the method to
incorporate sources of uncertainty that weren’t investigated in this thesis, the implementation of the
approach on a more formal multi-attribute utility case study, the implementation of the approach at
the multi-program enterprise level and the implementation of the uncertainty analysis approach on

engineering systems outside of the field of space systems design.

10.3.1 Multi-Period Portfolio Analysis
The approach presented in this thesis is based around a single time period analysis of the tradespace of

potential architectures. Naturally the question arises, how do I adjust my portfolio as uncertainties
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change? One potential answer would be through a multi-period assessment of the tradespace of
potential architectures. Taking the statting portfolio as the tradespace of exploration, a second analysis
could be done on the subset of architectures until an eventual architecture is chosen. The time step
for analysis would depend on the timing of information about uncertainty. For example, a second
portfolio analysis could be initiated for a space system after one of its key technologies was further

along and the performance /cost of the technology were more certain.

This multi-period portfolio analysis would continue until the optimal portfolio consists of a single
architectural design. The initial portfolio is meant as a starting position in concept selection, a jumping
off point from which to assign resources in putsuit of an operational design. It is expected that once
the portfolio is chosen, the operational system will be one of the cutrent members of the pottfolio.
There is of course a possibility for unknown unknowns to “pop-up” that could require the decision
maker to open up the portfolio to new designs; however, every attempt should be made to minimize
the possibility for these unknown unknowns to not be modeled in the original uncertainty analysis.
No approach will ever be petfect in terms of eliminating any unplanned rework, but the hope is that
the approach presented in this thesis, minimizes the exposure of the decision maker to the effects of

unplanned rework due to both known and unknown uncertainties.

There is no real way to know at what period of analysis the portfolio will evolve to a single design
asset. For instance, the period of analysis at which a single design emerges is highly dependent on the
initial tradespace that was explored and the level of diversity of the assets in the portfolio. It is also
highly dependent on the decision maker and their level of risk aversion, as well as their willingness to
pay for a portfolio of designs to be developed. The multi-period approach would define methods to

reduce the portfolio, as well as adjust the optimal investment strategies as information changes.

10.3.2 Suggested Cases of Implementation

The cases presented in this thesis provided implementation examples in the three major classes of
space systems today: military, commercial and science. However, these examples were just that,
examples. The real test of any approach comes when it is implemented “in the field” on a
development program. There is no doubt that this type of implementation will teach very important

lessons that were not yet uncovered in the course of this research. Possible teachings that would come
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from these implementations would be more realistic/practical estimatons of different sources of
uncertainty. 'The uncertainty quantification presented in this thesis was based on literature and
engineering judgment; however, it’s certainly possible that satellite design organizations, such as those
interviewed in Chapter 3, could have more precise estimations of uncertainty for their individual

organizations.

Other results of real world implementation could include valuable feedback on how to structure results
for the most benefit to the decision maker or how to best overcome current mental models of
jumping to point designs eatly in conceptual design. These are some of the major cultural issues that
would arise from real world implementations of the approach. Other findings could include sources
of uncertainty that weren’t included in this research, but are significant drivers in different
organizations. The next suggestion for future work builds on this thought and would provide an

opportunity to incorporate more fully sources of uncertainty into the approach.

10.3.3 Incorporating Other Sources of Uncertainty

Various sources of uncertainty were uncovered as contributing to the embedded uncertainty in space
system architecture designs. However, not all of those sources of uncertainties were included in the
example cases presented in this thesis. Significant further research is still needed to incorporate
uncertainties whose individual quantification 1s quite difficult. These types of uncertainties would
include various sources of potential political uncertainty, as well as obsolescence uncertainty, lifetime
uncertainty, and integration uncertainty. Table 34 illustrates the different sources of uncertainty
affecting space systems conceptual design and highlights the broad categories of uncertainties that
were not fully developed in this thesis. For example, Weigel showed policy and uncertainties

assoclated with them can have significant impact on the evaluation of an architectural tradespace.77

7 Weigel, A. (2002). Bringing Policy into Space Systems Conceptual Design: Quantitative and Qualitative Methods. Technology
Management and Policy. Cambridge, MA, Massachusetts Institute of Technology. Ph.D. Dissertation
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Table 34: Sources of uncertainty included in this research

Development Uncertainty

Operational Uncertainty

Political Uncertainty- uncertainty of

Political Uncertaintv- uncertainty of

development funding instability

aperational funding instability

Requirements Uncertainty-
uncertainty of requirements stability

Lifetime Uncertainty - uncertainty of
performing to requirements in a given
lifetime

Development Cost Uncertainty-
uncertainty of developing within a
given budget

Obsolescence Uncertainty - uncertainty of
performing to evolving expectation in a given
lifetime

Development Schedule Uneertainty-

Integration Uncertainty — uncertainty of

uncertainty of developing within a

operating within other necessary systems

given schedule profile

Development Technology
Uncertainty- uncertainty of

Operations Cost Uncertainty — uncertainty of
meeting operations cost targets

technology to provide performance
benefits

Market Uncertainty-uncertainty in meeting
demands of an unknown market

Model Uncertainty

10.3.4 Other Representations of Uncertainty in Portfolio Optimization

In the approach presented in this thesis, the number representing a standard deviation from the
expected outcome value represented uncertainty in the portfolio optimization approach. There are
other uncertainty measures that could be used in the production of the value/uncertainty tradespace.
For example, a typical measure in finance is representing value as a percentage expected return on an
investment and the uncertainty as a % deviation from the expected return. This kind of approach
would have immediate applicability to the Broadband case, for example, where the system profit and
investment could be transformed into an expected rate of return and percentage differences around
that expectation would immediately fall out. In the end, the designer should strive to put analysis in
front of the decision maker that is the most applicable and other representations than those presented

in this thesis may be more appropriate for some decision makers.
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10.3.5 Uncertainty Analysis Approach on a More Formal Multi-Attribute Utility Case

'The ATOS case study represented an initial attempt at applying utility theory to the design of space
systems; however, the technique and quality of the application have been improved by ongoing
research at MIT.” There is a great deal of promise in applying portfolio theory with multi-attribute
utility as the primary measure of value, as it would represent all attributes important to the customer in
a single dimension. Further, risk aversion could be explicitly extracted from utility functions, as was

discussed i Chapter 6.

10.3.6 Multi-Program Enterprise Uncertainty Analysis

The approach presented in this thesis is focused on enabling the effective development of a single
operational system. That is, from the portfolio of # architectures, it is envisioned that only one of
these architectures will be fully developed and return operational value to the decision maker. There is
potential, however, to generalize the uncertainty approach presented here to a set of operational
systems. This could be implemented at the level of program management, where an optimal
Investment strategy for resources would atise from the analysis of prospective programs and there

expected returns and uncertainties.

One timely example of this implementation would be in developing a Mars Progtam that consists of
multiple projects that each has individual returns and individual uncertainty, but in the end maximize
the total return of the Mars Program. In fact most program already think in a portfolio mindset, and
simply need the formal approach to go along with it. There are a number of pitfalls that can happen
with simply applying a portfolio mentality in putting together a set of programs. A ovetly simplistic
view of portfolio theory might lead decision makers to simply assemble a set of low, medium and high
uncertainty programs, rather than understand the sources of the uncertainties in the designs and how
they behave relative to one another. This would give rise to not only the single point failure scenarios,
and therefore mitigate any benefit gained from a portfolio of projects, but it might also not be the
optimal strategy i terms of allocating resources. It is conceivable that the decision maker is simply

diluting their resources by spreading them over a number of programs whose uncertainty (and

78 Diller, N., Qi Dong, Carole Joppin, and S. K. Sandra Jo Kassin-Deardorff, Dan Kirk, Michelle McVey, Brian Peck, Adam Ross,
Brandon Wood (2001). B-T'OS Architecture Study: Second Iteration of the Terrestrial Observer Swarm Architecture. Cambridge, MA,
Massachusetts Institute of Technology.
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therefore risk) are not clearly understood. Interesting work by Guikema on minimizing risk among a
group of projects competing for fixed resources could be statt for applying uncertainty analysis in this

C
context.”

10.3.7 Uncertainty analysis in other areas of engineering systems

Although all the examples presented in this thesis are in the field of space systems, there is significant
potential to catty the approach over to other disciplines in engineering systems. The obstacles to catry
over the research to other disciplines would be fairly small in terms of theory, but instead the majority
of issues would arise in the identification of the classes of uncertainty that most directly affect
whatever discipline is investigated. Fot example, in aitcraft or automotive design, desired styling in
terms of product form will be a much larger source uncertainty as opposed to space systems design.
In space systems, very few customets cate about the satellite system looks. The same cannot be said
of customers of aircraft and automobiles. At first glance, the uncertainty analysis framework could
hold up quite well in other disciplines of engineeting systems, but it will be the goal of future research

to demonstrate its applicability.

7 Guikema, S. a. E. P.-C. (2001). The Danger of Myopic Conservatism in Risk Analysis: The Problem of Time Allocation For The Deep
Space Network. AIAA Space 2001, Albuquerque, NM, ATAA, 2001-4518.
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Appendix A

FORMALIZING UNCERTAINTY IN SPACE SYSTEMS DESIGN: AN
IMPLEMENTATION TUTORIAL

To enable implementation of the framework described in this thesis, a tutorial is included that provides
a step-by-step description of its application. It 1s the hope that this research will be adopted and

experimented with during “real world” conceptual design projects.

Step 1. Developing the boundaries for uncertainty

When one admils that nothing is certain one must, I think, also add that some things are more nearly

certain than others. -Bertrand Russell
Uncertainty 1s so pervasive in conceptual design, that a near infinite source list could be developed that
in some way or another contribute to actual behavior that is different than predicted. Therefore, a
designer could become absorbed and bogged down in the intractable problem of discovering all the

myriad of uncertainties in an architectural concept. This, of course, is not a desirable outcome.

Identifying the right uncertainties is part art and part science, much like the rest of conceptual design.
Far more important than identifying all the soutces of uncertainty in conceptual design is identifying
the right sources of uncertainty in conceptual design. The right sources will have at least one of the
following characteristics. First, the uncertainty has a major impact on the expected behavior of the
architecture. This major impact could be caused by a low probability event but significant implications
(either positive or negative) or by a higher probability event with less significant implications or by a
higher probability event and significant implications. What is a high or low probability event and what
is a significant impact are where the art of design enters. The second characteristic of an uncertainty
that should be included in the analysis is one that differentiates one architecture from another. An
example of this second characteristic can be found in a tradespace of architectures that don’t rely on
the same technology. For example, assume a GEO communication spacecraft could be developed

using current technology for solar cell power delivery, but the LEO architectures in the tradespace
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would require successful development of a higher efficiency solar cell or delivery system. Technology
is just one source of differentiating uncertainty, policy, market conditions or manufacturing capability

are othets.

Step 2. Quantifying Individual Uncertainties

If you cannot measure ... your knowledge is of an unsatisfactory kind -Lord Kelvin

Once the relevant sources of uncertainty have been defined, the next step is to apply some level of
probability and impact to them. A relative notion of how significant the uncertainties are has already
been determined in step 1, but in this step more tesolution needs to be provided so that it can be built
into the design models in the next step. Some individual uncertainties can be very straightforward to
quantify. For example, if the cost model being used is based on historical data, these models typically
have standard deviations that can be included as cost modeling uncertainty. Other estimating
relationships have comparable standard error measures that can be found in the literature™ or in
company specific databases. Examples of these technologies, might include payload sizing estimation

or other scaling factors for mass or power.

Other uncettainties might not be so straightforward to quantify. These could atrise from market
conditions, policy uncertainty, new technology ot novel architectural concepts. The quantification of
these types of uncertainties is best done using one of two approaches. The first is to develop
distribution profiles over which outcomes exist, e.g. matket-capture probability density function n
Figure 95. The second approach is to generate scenarios with outcomes using a decision tree
approach. This approach is most useful when chance events can be isolated and quantified, for
example a chance event on acquiring a necessaty slice of spectrum and the impact of being awarded
different outcomes, as shown in Figure 94. Other scenatios, such as technology fallback plans if one
technology doesn’t achieve operational readiness, can be modeled equally well using this approach.
Using a software package like Decision Analysis by TreeAge® enables the quick development of these

decision trees and also develops expected outcome distributions within the program.

8 Larson, W. a. J. W., Ed. (1992). Space Mission Analysis and Design. Torrence, CA, Microcosm.
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Figure 95: Probability Density Function of Market Capture for Broadband Space System

Step 3. Accounting for uncertainties in the design models

"

.. we cannot "ask" an electron where it is without changing ils position. Social systems have

Heisenberg principles all over the place, for we cannot predict the future without changing if.
- Kenneth Ewert Boulding

Design models will be different with design location or organization; therefore a general approach is

suggested to integrate the uncertainty information calculated in steps 1 and 2 with the major design
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models. The purpose of this step is to integrate uncertainty into the design models, such that the
effects of uncertainties can be observed in the behavior of the architectures and the outcome

measures/decision criteria.

To predict the behavior of the architectures and outcome measures, non-deterministic simulation
models of the architectural systems and their environment are run multiple times subjected to
previously quantified individual sources of uncertainty. Integration of the individual sources of
uncertainty as identified in step 1 and quantified in step 2 can be done in a number of ways and will be
vety dependent on the types of uncertainty that need to be included. For example, most of the
uncertainties in the cases presented in this thesis were able to be included in the constants vector of a
systems simulation framework. Using this approach, the constants vector is first sampled. This
creates an initial condition that is used to evaluate all the architectures of interest in the uncertainty
analysis. Once all the architectures are evaluated under this static condition, a new constants vector 1s
sampled and the atchitectures are evaluated using it. This process repeats until a satisfactory

distribution of results has been developed for each architecture in the tradespace.

The number of runs necessary to develop disttibutions is not defined; but instead 1s constrained only
by the resolution desired in the behavior distributions and the computation time necessary to run the
simulation models. Further, computation time may be so prohibitive in some cases, that a subset of
the entire tradespace is analyzed. In the cases in this thesis, Pareto optimal architectures were defined
priot to introducing uncertainty analysis. Although this approach is less rigorous than applying the
uncertainty analysis to the entire tradespace, tractability became an overriding implementation concern
and expetriments predicted little additional information was to be gained from a full tradespace

uncertainty analysis.

While building the decision ctiteria distributions from the uncertainty analysis, care should be taken to
ensure ttial numbers are noted for each distribution element. This is important for calculating the
correlation coefficient among space system architectures. The correlation coefficients allow the analyst
to develop covariance matrices that enable the use of portfolio theory as a mechanism to manage

uncertainty.
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Step 4: Postprocessing the Results

Once the distributions of decision criteria have been developed for each architecture, the data will
need to be post processed to feed the next step in the approach, portfolio theory. At this point
statistics of each distribution should be calculated. This includes standard measures of expected value

and standard deviation or variance.

In addition to these measures, other features of the distribution should also be looked at. For
example, featutes like tail behavior and bifurcation of the distribution could be of interest and might
be clouded by the broad statistical measures. These other features could bring out characteristics that
might not be fully captured in the portfolio theoty application, but would be of interest to the decision
maker. More important than those features is perhaps the explanation of why the analysis provided
such tesults. Typical reasons would be that one or two scenarios dominate the expectation outcome
and the outcomes have very different results, which could explain bifurcations. Long tails in the
distribution would be explained by very low probability outcomes that have significantly different
outcomes than the expectation. Both of these reasons could be very significant to a particular decision
maker and should be treated as valuable pieces of information that ate considered alongside the

portfolio strategy suggested.

Once individual distributions have been investigated, the set of distributions also needs to be post-
processed to develop the covariance matrices for use in implementing the portfolio optimization. The
covariance matrix represents the relative independence of the architectures, as well as the uncertainty
of the architectures. The matrix is created, as shown in Figutre 96, by placing the variance of assets on

the diagonal and using pair-wise covatiance, as calculated in Eq. 41, on the off-diagonals.

O-XI'XZ = pXI,XzO-XIO.Xz
Eq. 41
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Figure 96: The Covariance Matrix, {J

Step 5: Implementing Portfolio Theory
An investor who knew future returns with certainty would invest in only one security, namely the one
with the highest future return.. But diversification is a common and reasonable investment practuce.

Why? To reduce uncertainty! -Harry Markowitz

Modern portfolio had its origin in economics and finance, so the application of the approach in space
systems design can seem abstract, but the metaphor and mathematics have a near one for one
correlation with the goals and constraints of investing and design. At the highest level, the ultimate
goal of portfolio theory is to provide an optimal investment strategy that maximizes returns with
subject to the aversion of the decision maker to the downside of uncertainty and its consequences. In
applying this thinking to space systems, an analogy is employed of providing an “optimal” investment
strategy to decision makers that suggests exploring a portfolio of architectures. This strategy will
maximize the expected reward from the development effort while taking into considerations the

decision makers willingness to take on risk.

The analogy can be further developed to who is investing and what is being invested in and what is the
range of investment opportunities. In the financial world, the investor would represent any individual
or group of individuals that has resources they are willing to exchange for an opportunity to create
value with the explicit understanding of the uncertainties and consequences associated with any

investment. That is, return more wealth to the individual than would otherwise be realized without
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investment while taking into consideration his/her acceptance of risk. Investment vehicles for these
individuals and groups are typically financial instruments such as stocks, bonds, options and othets.
However, the scope of the marketplace of financial instruments is continuously expanding with more

and more firms creating new vehicles of investment.

In space systems, decision makers have resources in the form of money, people and time, which they
too would like to exchange for an opportunity to create value. In the financial investment case,
mvestors have an explicit understanding of the associated uncertainties and consequences of actions,
likewise, decision makers in the space systems context must have an explicit statement of aversion to
tisk. Investment vehicles in the case of space systems are the actual space system designs. These
designs would be carried in a portfolio, much like that of the financial investor and the portfolio would
reap benefits by diversifying the exposure of the investor to overall uncertainty while at the same time
maximizing the expected return by retaining perhaps promising, but untested designs. Finally, the
choices that are available to the decision maker to keep in his/her portfolio are based solely on the
concept generation phase and what is willing to be considered in the tradespace of potential

architectures for development.

In the case of space systems, return might be profit (NPV) or some other measure of value in terms of
a function per cost, such as billable minutes per dollar in the case of a commercial communication
system ot images per dollar in the case of observing missions. Of course other measures of value
could be used like a multi-attribute measure of utlity that encompasses costs and vatious attributes of
utility.*!

The application of portfolio theoty can not only be exptessed qualitatively, as described above, but
also in mathematics as was developed first by Harry Matkowitz in 1952.% He formulated the problem
as an optimization in which, the decision maket is seeking to maximize the overall return of the
portfolio based on the individual assets and their expected return while discounting any aversion a

decision maker has toward risk and the associated risk in each of the assets. Embedded in the

81 de Neufville, R. (1990). Applied Systems Analysis: Engineering Planning and Technology Management. New York, McGraw-Hill.
82 Markowitz, Harry M., (1991). Portfolio Selection, second cdition, Blackwell, Cambridge, MA.
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problem formulation was an elegant way to not only a method to considet the uncertainty of assets,
but also a way to consider the relative movements of assets with respect to different uncertain
conditions. This elegant solution allows for the inherent rewarding of assets in the portfolio that
moves in different ways with respect to uncertainty and discounts those that compound uncertainty
because of their high correlation. The modern pottfolio algorithm is shown in Eq. 42 and represents
the foundation of many of today’s investment strategies. In the equation, E(r) represents the expected
returns of the assets, Q represents the covariance mattix of the tradespace of architectures (as was
calculated in Step 4), k is the measure of risk aversion of the decision maker (which will be calculated
in the Step 6) and w reflects the weightings of the individual assets in the tradespace that have been
selected for investment. The sum total of all w, must naturally equal one as w; is a measure of relative

composition of asset Zin the portfolio.

max : E(r)w— g— w'Qw

Eq. 42

This formulation would provide a single optimal strategy to follow, but the overall behavior of what 1s
known as the efficient frontier is also of interest to the decision maker. This information can be
calculated by plotting a “portfolio tradespace” of uncertainty versus expected retutn, as shown in
Figure 97. The points in this tradespace represent potential portfolio to invest in and are calculated

using Eq. 43 and Eq. 44 for return and uncertainty, respectively.
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Mean-Variance Efficient Frontier and Random Portfolios
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Figure 97: Sample portfolio tradespace

E(#¥)= Zn: wr

Eq. 43

Une=3"Y ww,(r - EG))r, - E(r,))

i=1 j=1

Eq. 44
From this tradespace an efficient frontier can be determined that contains all the optimal strategies for
any level of risk aversion, as shown by the blue line in Figure 98. A portfolio on the efficient frontier
represents a collection of assets whose total return cannot be improved by changing any assets in the

portfolio without increasing the current portfolio uncertainty.
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Mean-Variance Efficient Frontier and Random Portfolios

0.16

0.15

0.14

0.13

 Expected Return

0.12

.16 0.18 020 090 024 026
Uncertainty(Standard Deviation) '

Figure 98: Sample portfolio tradespace with efficient frontier

Much like design tradespaces, a great deal of information is contained in a portfolio tradespace of
uncertainty and return. The visualization of the portfolio tradespace, like that of traditional cost and
utility tradespaces, highlights trends and properties of the overall set of solutions that enable a focus
on the 10% of the data that is really interesting while not wasting time exploring the other 90%. First,
the shape of the frontier gives a general feel for the types of architectures that are available to a
decision maker. For example, its slope and concavity can provide information on where optimal

portfolios of individuals with different levels of risk aversion will be found on the frontier.

It is also useful to ovetlap the portfolio tradespace with the expected return and uncertainty of the
single design assets in the tradespace, as shown in Figure 99. This enables the decision maker to
visualize the potential that portfolios provide over single assets. Further, the plotting allows the
decision maker to quickly understand the relative uncertainty of different single architectures, which is

helpful if he/she chooses not to pursue a portfolio of designs.

232



Mean-Variance Efficient Frontier and Random Portfolios
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Figure 99: Portfolio Tradespace with Individual Assets Mapped

Step 6: Determining Decision Maker Uncertainty Aversion

One man’s risk is another man’s pleasure -Anonymous

In Step 5, the portfolio theory algorithm is developed and a portfolio tradespace is designed that
shows the set of solutions on the efficient frontier from which an optimal solution should be chosen.
In order to determine where a decision maker’s optimal strategy lies, their level of aversion to
uncertainty must be quantified. The most straightforward method of calculating a decision maket’s
aversion is to find an indifference curve in the value and uncertainty tradespace that accurately reflects
his/her interests. Indifference curves typically take on the mathematical form shown in Eq. 45 and
graphically in Figure 100. v in Eq. 45 represents the expected return or value of the system while o is
the uncertainty in a portfolio. The lines in Figure 100 represent 3 different levels of risk aversion,

values of £, and reflect a decision makers indifference to lie anywhere on the curve. That is, anywhere
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along a single line provides the same utility to the decision maker. Notice that the higher the value for

% the more return is required to tolerate the same level of uncertainty.

U=v-ko®
Eq. 45

Indifference Curves for k=1,1.5,2

60
. k=1
v k=15
50l ® k=2
®
w
40t Py
f‘.ik
® 7
*1‘: vvv
VV

0 05 1 15 2 215 3l '3'.!5- Jll t'l.l5 i é e
Uncertainty

Figure 100: Indifference Curves for Decision Makers, Varying Risk Aversion Factors

Using this kind of visualization, the analyst can interview the decision maker to determine his/her £

83
value.

83 There are other quantitative measures of aversion that can be used and are discussed in Chapter 6 of this thesis.
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Step 7: Determining the optimal investment strategy
With uncertainty present, doing things, the actual execution of activity, becomes in a real sense a

secondary part of life; the primary problem or function is deciding what to do and how to do it.

-Frank Knight

Once the aversion of the decision maker has been captured and the full portfolio tradespace has been
defined, an optimal strategy can be determined by combining the two pieces of information. The
optimal strategy can be found graphically or through the portfolio optimization algorithm as shown in
Eq. 42. Graphically it can be seen that an optimal portfolio for a decision maker will be found at the
tangent point of the decision maker’s iso-utility curves and the portfolio tradespace of value and
uncertainty. First calculate iso-utility curves for a decision maker’s level of aversion as shown in Figure
101. Notice that utility increases as the iso-utility curves move toward the upper left hand corner,

maximizing value and minimizing uncertainty.

Isoutility Curves (U=v-k*sig?, k=1)
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Figure 101: Isoutility lines for a given uncertainty aversion
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Next plot the portfolio tradespace over the aversion curves. Find the tangent point of the two cutves
and determine the composition of the portfolio at that point. This portfolio represents the optimal
strategy for a decision maker to pursue. Of course there are other factors to consider in deciding this
is the optimal portfolio to go with. Traditional portfolio theory would expect the decision maker to

accept the portfolio given, but with complex systems design, it shouldn’t be quite so deterministic.

} Architecture Portfolio Analysis
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Figure 102: llustration of aversion in the portfolio tradespace

There are two main complexities that have not yet been considered, as portfolio theory applies to
space systems. The first is that the decision maker is probably more concerned with the downside
exposure to uncertainty in the form of risk than he is with the overall uncertainty of the outcome. For
example, traditional portfolio theory takes into account the uncertainty that will be expetienced over
the entire range of expectations. This is inclusive of both the upside and downside of uncertainty. A
graphical example to illustrate what this data could be hiding is presented in Figure 103 and Figure
104. Although, these two distributions are quite different, they would be represented the same way
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under traditional portfolio theory, that is their variance and expected return would be equal. Seeing

the distributions, though, it is clear that Figure 103 represents a significantly larger downside than does
Figure 104.

Probability

Value

Figure 103: Left Skewed Outcome Distribution Example

Probability

Value
Figure 104: Right Skewed Outcome Distribution Example

To overcome this problem, use semi-variance, as opposed to variance, to distinguish the upside

potential from the downside risk. Semi-variance is the average of the squared deviations below (or

above) the expected return. The concept of semi-variance, both s, . and Sy, 18 Introduced as a
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measute of one-sided uncertainty.” Assume 10 likely values for a space systems architecture value to
the customer, represented by r={1 4 2 10 9 7 3 4 8 1} have been calculated. To calculate semi-
vatiance, two companion set of outcomes are created, r'={4.94.94.9 1097 4.9 49 8 4.9} and r={1 4
249494934491} and companion deviations around the expectation, as shown in Eq. 46 and Eq.
47.

- 0if ,<0
(n=E@r))" = (r,-E@)ifr,>0
Eq. 46
o (n-E(r))lfI’;SO
(- E(r) = [ 0if 7,> 0
Eq. 47

From this (-E(r))” = {0 00 5.1 4.1 2.1 00 3.1 0} and (+-E(r)) = {-3.9-09-29000-1.9 -0.9 0-3.9}.
Then the upside and downside semi-variances can be found s, 4= E([(t-E(®)'T) = 5.684 and sy,n0.=
E([(t-E(1))) = 4.406. This difference in the upside and downside semi-variance illustrate the lack of
normality in the distribution of r. Portfolio theory was otiginally based on the premise of random
motion of stocks in the form of volatility that could indeed be modeled by normal variables having
upside and downside semi-variance that are in fact equal. The same cannot necessarily be assumed in
space systems, as many of the probability distribution functions that describe things like market
uncertainty or events of decision tree analysis ate not gaussian. Using the semi-variance information,

two covariance matrices, Q, . and Qe are constructed.

84 Markowitz, H. (1991). Portfolio Sclection: Efficient Diversification of Investments. Cambridge, MA, Basil Blackwell.. describes  a
possible extension of the mean-variance portfolio sclection approach that incorporates the idea of down-sided semi-variance.
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With these two semi-variance matrices, the tradidonal portfolio theory is adjusted to reflect the
changing considerations. First, if the decision maker is concerned solely with the downside of
uncertainty, then he can simply substitute Q. into the traditional portfolio theory algorithm, as
shown in Eq. 50. However, if the decision maker would also like to consider the upside potential of
architecture, then both the upside benefit, O, ., and the downside tisk, O can be implemented

together in the portfolio theory algorithm, as shown in Eq. 51.

k
max : E(r)w - E w QDownsidew

s.t.:iwi =1
i=]

st.:w>0
Egq. 50
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1
max . E(r)w + 5 W' (Qupside - kQDownside )W

s.t.: i w, =1
i=1

st.ow20
Eq. 51
One last extension that can be made to traditional portfolio theory for use in space systems is a cost of
carrying on a portfolio of designs. In the financial approach to portfolio theory, there is no
assumption of recurring investment in the collection of assets in the portfolio. This is not the case in
space systems, where resources must be assigned and used on designs to refine and test them.
Therefore the size of the portfolio or the total diversity of the portfolio might be constrained by
available resources. For example, even if a twenty-asset portfolio of designs is suggested by the

analysis, it is unlikely that adequate resoutces would be available to make this a viable opportunity.

A constraint is placed on the portfolio optimization algorithm that takes into consideration the cost of
diversification and bounds the feasibility of solutions that exceed available resoutces. Using this
approach, the optimal number of architectures to carry forward is not defined, but rathet that number
would be suggested from the analysis and the constraints on available resources. The algotithm for the
cost of diversification is shown in Eq. 52. C, considers the average correlation of the asset to the rest
of the portfolio as a measure of additional resources that will have to be invested fot this asset to
belong in the set. It also takes into consideration, the relative estimated nonrecurring cost to design

the asset and the proportion of assets in the portfolio.

3 1-p.
Cp= Z Z _":V—ICNonReci(—n_pjl

i=w>0 j=w>0

Eq. 52

Using cost of diversification as a constraint, the following portfolio theory implementation is
developed, as shown in Eq. 53. Of all the algorithms shown, the analyst should decide which 1s best
suited for their situation in terms of decision maker considerations, problem tractability and resource

constraints.
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max : E(V)W + E w' (Qupside - kQDownside )W
s.t.: z w, =1
i=1

. 1- ,")
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i=w>0 j=w>0

st..w=>0
Eq. 53

Step 8: Analyze optimal portfolio and overall trends in the uncertainty/value tradespace

Whichever portfolio optimization algorithm was used, you now have a set of assets that represents the
optimal investment strategy for the decision maker. The tesultant portfolio suggests not only what
assets should be maintained in the portfolio but also what percentage of the portfolio each asset

should occupy.

A reality check should be done at this stage to not only vetify that the portfolio is doable, but also to
investigate the surrounding architectures in the portfolio tradespace and run some sensitivities on the
decision makers aversion factor. The portfolio tradespace should also be analyzed for overall trends
and identifying the driving uncertainties in the tradespace. This will help the designers remain vigilant
on the elements that contribute the most uncertainty and impact to the overall system value. The
information on dominant uncertainty contains necessaty data to understand what changes in
conditions warrant a reduction in the portfolio of designs. When the major uncertainties have been
reduced, the analyst should recompute the efficient frontier of the portfolio tradespace. The portfolio
approach discussed herein should not be implemented as a one-time analysis, but instead should be
performed as more information is gained on the sources and amount of uncertainty in the tradespace
and its architectures. The goal in the end is to develop a single system that delivers the best value to

the customer and this portfolio approach will provide a path along which to proceed.
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