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ABSTRACT

This dissertation explores cooperation when formal contracts and legal institutions are im-
perfect. The first chapter (co-authored with Isaiah Andrews) considers how a principal
allocates business among a group of agents to motivate them in the context of a repeated
game with imperfect private monitoring. If players are impatient, the optimal relational con-
tract dynamically allocates future business among agents depending on past performance.
An optimal allocation rule favors an agent who performs well, even if he later performs
poorly. An agent loses favor only if he is unable to produce and his replacement performs
well. The principal may allows some relationships to deteriorate into persistent shirking in
order to better motivate other agents. We find conditions under which the principal either
does or does not benefit by concealing information from the agents.
The second chapter proves that approximately Pareto efficient outcomes can be sustained
in a broad class of games with imperfect public monitoring and Markov adverse selection
when players are patient. Consider a game in which one player's utility evolves according to
an irreducible Markov process and actions are imperfectly observed. Then any payoff in the
interior of the convex hull of all Pareto efficient and min-max payoffs can be approximated
by an equilibrium payoff for sufficiently patient players. The proof of this result is partially
constructive and uses an intuitive "quota mechanism" to ensure approximate truth-felling.
Under stronger assumptions, the result partially extends to games where one player's private
type determines every player's utility.
The final chapter explores how firms might invest to facilitate their relationships with one
another. Consider a downstream firm who uses relational contracts to motivate multiple
suppliers. In an applied model with imperfect private monitoring, this chapter shows that
the suppliers might "put the relationship first:" they invest to flexibly produce many of
the products required by the downstream firm, rather than cutting costs by specializing.
A downstream firm that relies on relational contracts tends to source from fewer suppliers,
each of whom can inefficiently manufacture many different products required by that firm.

Thesis Supervisor: Robert Gibbons
Title: Sloan Distinguished Professor of Management and Economics
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Chapter 1

The Allocation of Future Business

With Isaiah Andrews

1.1 Introduction

When formal contracts are unavailable, costly, or imperfect, individuals rely on informal

relationships with one another to sustain cooperation. The resulting relational contracts are

pervasive both within and between firms. For example, informal agreements typically com-

plement incomplete formal contracts in the "just-in-time" supply chains used by Chrysler,

Toyota, and others. Similarly, managers rely on long-term relationships to motivate employ-

ees and divisions.' Regardless of the setting, a principal who uses relational contracts must

have an incentive to follow through on her promises to the agents. If the parties interact

repeatedly, then these promises are made credible by the understanding that if they are ever

broken, the relationship sours and surplus is lost.

When a principal interacts with several agents, how she chooses to allocate business

among them critically determines the strength of her relational contracts with each of them.

In this paper, we consider a repeated game in which the principal requires a single product

in each period. Only a subset of the agents is able to produce at any given time, and

the principal chooses one agent from this subset to exert private effort that stochastically

iSee Sako (2004) and Liker and Choi (2004) on Toyota, Hohn (2010) on Chrysler, and Baker, Gibbons,
and Murphy (2002) for many other examples and references.
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determines the profitability of the final product. Importantly, each agent observes only

his own output and pay, so each has only limited information about the principal's other

relationships. By promising additional future business to one agent, the principal increases

the total surplus created by that bilateral relationship, which in turn allows the principal to

give that agent more effective incentives today. Ideally, the principal would be able to promise

enough future business to each agent to motivate him. However, the same future business

cannot be promised to different agents; therefore, if the parties are not very patient, the

principal must prudently allocate business over time to ensure that she can credibly reward

an agent's strong performance.

We show that future business is dynamically allocated in response to past performance,

and that this allocation decision plays fundamentally different roles following high or low

output. An agent is motivated by his expected future payoff, which is determined by wages

and bonuses. The principal can only credibly promise a large payoff if it is accompanied

by a substantial amount of future business. Therefore, an optimal allocation rule rewards

success by promising to favor a high-performing agent with future business, which serves as

a form of relational capital to make a large reward credible. In contrast, the principal can

immediately punish a low-performing agent using transfer payments, regardless of how much

future business is allocated to that agent. As a result, an optimal allocation rule tolerates

failure, as the principal prefers to use short-term transfers to punish poor performance rather

than weakening a long-term favored relationship by withdrawing future business. More

formally, we characterize a dynamic relational contract that rewards success, tolerates failure,

and induces first-best effort whenever any equilibrium does. In this equilibrium, an agent

rises to favored status when he performs well, then is gradually displaced by more recent high

performers. When players are too impatient to attain first-best, the principal sometimes asks

one agent to shirk in order to promise enough future business to the other agent to credibly

reward high performance. Considering the game with two agents and making a realistic

but substantive equilibrium restriction, 2 we show that one (non-unique) optimal relational

contract continues to reward success and tolerate failure. In this equilibrium, the principal

eventually permanently favors one agent, while her relationship with the other agent devolves
2Analogous to belief-free equilibrium; see definition 5 for more details.
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into persistent perfunctory performance. In other words, this relational contract optimally

prescribes a permanent inefficiency in order to solve a short-term moral hazard problem.

Methodologically, we consider a repeated game with imperfect private monitoring

agents do not observe the output produced by or the payments made to their counterparts

so we cannot rely on standard recursive niethods and instead develop alternative tools. This

monitoring structure implies both that agents cannot coordinate to jointly punish deviations

and that the principal may be able to exploit agents' limited information about past play to

better motivate effort. In our relational contract that attains first-best whenever any equi-

librium does, the agents would be willing to work hard even if they learned the true history

of past play. In contrast, if first-best is unattainable, we show that the principal typically

finds it optimal to exploit the private monitoring structure by concealing information from

the agents.

Broadly, this paper considers how individuals can solve short-term moral hazard prob-

lems by making long-term policy commitments-in this case, by promising to allocate future

business in a certain way. For instance, consider a firm with two divisions. Each division

might learn of a profitable project in each period, but the firm can support only one project

at a time. If projects are very profitable, costs are low, or resources to launch projects are

abundant, we will show that the firm can allocate resources to always motivate both divi-

sions, so that one division might be temporarily favored but neither becomes permanently

dominant. When resources or profitable projects are scarce, then in order to properly moti-

vate one division, the firm allows that division to become dominant for a long period of time

or potentially permanently following a strong performance. Thus, this paper speaks to the

observation by Cyert and March (1963) that distinct coalitions within a company motivate

and reward one another by making long-term "policy commitments." In our setting, persis-

tent policies that promise to favor one agent over another are important motivational tools

that make monetary payments credible.

The allocation of future business plays a pivotal role in many different real-world envi-

ronments. For example, companies frequently allocate business among long-term suppliers

in response to past performance. Toyota's keiretsu is a classic example of relational supply

chain management. Asanuma (1989) notes that Toyota ranked its suppliers in four different
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tiers. Better-ranked suppliers are given first priority on valuable contracts, and suppliers

move between tiers in response to past performance.3 Similarly, Farlow et al (1996) report

that Sun Microsystems regularly divides a project among suppliers based in part on their

past performance. In fact, Krause et al (2000) present a survey of many different firms which

finds that suppliers are frequently motivated by "increased volumes of present business and

priority consideration for future business." Similarly, firms allocate tasks and promotions to

reward successful employees.

The seminal papers on relational contracts by Bull (1987), MacLeod and Malconison

(1989), and Levin (2003) have spurred a large and growing literature; Malcomson (2012)

has an extensive survey. Levin (2002) analyzes multilateral relational contracts, arguing

that bilateral relationships may be more robust to misunderstandings between players. In

our setting and unlike Levin (2002), bilateral relationships are the natural result of private

monitoring and the allocation of business plays a central role. Segal (1999) considers a static

setting in which the principal can privately offer a formal contract to each of a group of

agents, which is a monitoring assumption similar to our own.

In a model related to ours, Board (2011) exploits the notion that future business is a

scarce resource to limit the number of agents with whom a principal optimally trades. He

shows that the principal separates potential trading partners into "insiders" and "outsiders,"

trades efficiently with the insiders, and is biased against outsiders. While agents in his model

do not observe one another's choices, the principal perfectly observes actions and so the

dynamics are driven by neither moral hazard nor private monitoring, which are the central

forces in our paper. In the context of repeated procurement auctions, Calzolari and Spagnolo

(2010) similarly argue that an auctioneer might want to limit participation in the auction

to bolster relational incentives with the eventual winner, and they discuss the interaction

between relational incentives and bidder collusion. Li, Zhang, and Fine (2011) show that a

principal who is restricted to cost-plus contracts may use future business to motivate agents,

but the dynamics of their equilibrium are not driven by relational concerns and are quite

different from ours. In research related to the present paper, Barron (2012) considers how
3 Toyota is known for encouraging its suppliers to communicate and collectively punish a breach of the

relational contract. Our baseline model does not allow such communication, but we show in Section 1.7 that
qualitatively similar dynamics hold with communication (albeit under stronger assumptions).
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suppliers optimally invest to maximize the value of their relational contracts and shows that

such suppliers might opt to be "generalists" rather than specializing in a narrow range of

products.

Our model is also related to a, burgeoning applied theory literature using games with

private monitoring. Kandori (2002) provides a nice overview of the theory of such games.

Fuchs (2007) considers a bilateral relational contracting problem and shows that efficiency

wages are optimal if the principal privately observes the agent's output. Wolitzky (2012a,b)

considers enforcement in games where each agent observes an action either perfectly or not

at all. In our model, output-which is an imperfect signal of an agent's private effort-is

similarly observed by some but not all of the players. Ali and Miller (2012) analyze what

networks best sustain cooperation in a repeated game, but do not consider the allocation

of business among players. Harrington and Skrzypacz (2011) discuss collusion when firms

privately observe both prices and quantities, deriving an equilibrium that resembles the

actions of real-world cartels.

The rest of the paper proceeds as follows. The next section lays out the repeated game,

devoting special attention to the private monitoring structure that drives many of our re-

sults. We prove a set of necessary and sufficient conditions for equilibrium in Section 1.3.

A producing agent is willing to work hard only if he believes that following high output, he

would produce a sufficiently large amount of surplus in subsequent periods. Of course, the

principal's allocation decision determines how much surplus each agent expects to produce at

any given time and so determines when these conditions hold. Section 1.4 fully characterizes

a non-stationary relational contract that attains first-best whenever any Perfect Bayesian

Equilibrium does. Turning to the game with two agents and parameters such that first-best

is unattainable, Section 1.5 shows that non-stationary allocation rules are typically optimal.

Restricting attention to equilibria that provide ex post incentives to the agents, we character-

ize one optimal allocation rule. In this relational contract, the principal's relationship with

one of the agents eventually becomes "perfunctory," in the sense that the agent is allocated

production infrequently and perpetually shirks. Which relationship breaks down depends on

past performance: when one agent performs well, the other relationship is likely to suffer. In

Section 1.6, we consider equilibria that do not provide ex post incentives. So long as first-best
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is attainable, it can be attained using ex post incentives. In contrast, if parameters are such

that first-best is unattainable, we show that the principal can typically benefit by concealing

information from the agents. The baseline model makes the stark assumption that agents

cannot communicate; in Section 1.7, we allow agents to send messages to one another and

show that under an intuitive additional assumption, results that are qualitatively similar to

our baseline model continue to hold. Section 1.8 concludes.

Omitted proofs are in Appendix 1.9. Additional results referenced in the text are in

Supplementary Appendices ?? and ??, available at http://economics.mit.edu/grad/dbarron.

1.2 Model and Assumptions

1.2.1 Model

Consider a repeated game with N + 1 players, denoted {0, 1, ..., N}. We call player 0 the

principal ("she"), while every other player i E {1, ..., N} is an agent ("he"). In each round,

the principal requires a single good that could be made by any one of a subset of the agents.

This good can be thought of as a valuable input to the principal's production process that

only some of the agents have the capacity to make in each period. After observing which

agents can produce the good, the principal allocates production to one of them, who chooses

whether to accept or reject production and how much effort to exert. Critically, utility is

transferable between the principal and each agent but not between two agents. At the very

beginning of the game, the principal and each agent can "settle up" by transferring money

to one another; these payments are observed only by the two parties involved.

Formally, we consider the infinite repetition t = 0, 1, ... of the following stage game with

common discount factor 6:

1. A subset of available agents Pt C 2{1,..,N} is publicly drawn with probability F(Pt).

2. The principal publicly chooses a single agent xe E Pt U {0} as the producer.

3. Vi E {1, ..., N}, the principal transfers wt > 0 to agent i, and agent i simultaneously

transfers wi§ > 0 to the principal. wfI and w are observed only by the principal and

12



agent i. Define wi,t = wi - wit as the net transfer to agent i.'

4. Agent xt accepts or rejects production, dt {0, 1}. dt is observed only by the principal

and xt. If d = 0, then yt = 0.'

5. If dt = 1, agent xt privately chooses an effort level et C {0, 1} at cost cet.

6. Output yt E {0, yH} is realized and observed by agent xt and the principal, with

Prob{yt= yH~et} = Pet and 1 > pi > pO > 0.

7. Vi e {1, ..., N}, transfers rT4, rfP are simultaneously made to and from agent i, respec-

tively. rt, rit are observed only by the principal and agent i, with the net transfer to

agent i denoted Ti,t - rit-

Let li,t be the indicator function for the event {xt = i}. Then discounted payoffs are

U0 = (1 - 6) 6 dt yt - (wi,t + 6t (1 - 6)ut
t=0 i=1 t)) t=0

and
00D 00

Ui - (1 - 6) E6t (wi,t + Ti,t - dtcetIi,t) E 6 t(I - 6) u
t=0 t=o

for the principal and agent i, respectively.

This monitoring structure implies that the principal observes every variable except effort,

whereas agents do not see any of one another's choices.' Several features of this model allow

us to cleanly discuss the role of future business in a relational contract. First, agents cannot

communicate with one another. While stark, this assumption implies both that punishments

are bilateral and that agents' information plays an important role in equilibrium.7 In Section

1.7, we give conditions under which some of our results hold when agents can communicate.

4 By convention, wp = 0 if wi,t > 0 and wd = 0 if wijt < 0.
5Results analogous to those in Sections 1.3 - 1.6 hold for outside option i_ > 0 so long as the principal

can reject production by agent xt in step 4 of the stage game without this rejection being observed by the
other agents.

61n particular, agents cannot pay one another. In Appendix ??, we show that a stationary contract
would typically be optimal if they could. Thus, our model may be best-suited for settings in which the
agents primarily interact with one another via the principal.

'In the absence of private monitoring we could restrict attention to equilibria with (some definition of)
bilateral punishments. It is non-trivial to formally define such a behavioral restriction in this model due to
the role of the allocation rule.
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Second, the wage is paid before the agent accepts or rejects production. One way to interpret

dt = 0 is as a form of shirking that guarantees low output, rather than explicit rejection. 8

Third, we assume that some agents are unable to produce in each round. Between firms,

suppliers might lack the time or appropriate capital to meet their downstream counterpart's

current needs; 9 within firms, a division might be unavailable because it has no new project

that requires resources from headquarters. Finally, the principal cannot "multisource" by

allocating production to several agents in each round. While this restriction substantially

simplifies the analysis, the allocation of business would remain important with multisourcing

so long as the principal profits from only one agent's output in each period.' 0

1.2.2 Histories, Strategies, and Continuation Payoffs

Define the set of histories hT at the start of round T as

T {Pt, xt, {wt ,wt , t, et, yt{ T Tt

and denote by K the different nodes of the stage game. A partial history (ht-, nt) E -T x K

denotes that ht occurred in the first t - 1 rounds and nt is the node in period t." The set

of all histories is

'H= {0} U { (hT-',nT) I hT- 1 E HBT r

For each player i E {0, 1, ... , N}, T, : K -3 K describes i's information sets in the stage

game. Private histories at the start of each round for player i are h[ E T ,T"12 and player

8Indeed, the results in Sections 1.3 - 1.6 hold if the agents accept or reject production before the wage is
paid, but can costlessly choose effort "et = -1" that guarantees yt = 0.

9For example, Jerez et al (2009) report that one of Infosys' partners sources a product from the market
only if Infosys "does not have the capability" to supply it.

0 1f multisourcing is possible, the choice of which agent's output to use when multiple agents produce yH
plays a similar role to xt in the baseline model.

"A partial history may also be written in terms of actions: (ht-, Pt, xt) denotes history ht-' followed by
{Pt, Xt}.

12Vi E{1, ..., N}

?,B I ={Pi, xt, 4, wp, 1{xt = i}dt,1{xt = i}et, 1{xt = i yt, rd, I } .
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i's private histories are

H= {0}U U ((hT-1, i(nT)) I h[T1 E WT n }}.
T=1 

) ,

Two histories ht', ht are indistinguishable by agent i if hI ht.

Strategies for player i are denoted oj E E with strategy profile o=

EO x ... x EN. Let 'a, be player i's stage-game payoff in round t.

Definition 1 Vi E {O, ...., N}, player i's continuation surplus Ui : E x 'H

o- and history (ht-1,nt) is

Uj-(a, (ht -1, nt)) = Ea (1 - 6)6t' u+t'
t'=1

I (h t ', nt)1

( , U .... 7N) E E =

-+ R given strategy

(1.1)

and the payoff to the principal from agent i's production, Uo : E x R -+ R, is

U 1(o-, ( ht-, nt)) = Ea [: (1 - 6) 6t' (1{xt+t, i}dt+t'yt+t'
.t'=1

- Wi,t+t - Ti,t+t' )|(ht 1, nt) -
(1.2)

Intuitively, Us is the "stake" the principal has in her relationship with agent i: it is

the expected output produced by agent i but not earned by him. Agents do not know the

true history, so their beliefs about continuation surplus are expectations conditional on their

private history: E, EUi(o-, (ht ', n,))I-,Ii(nt)1 .

Definition 2 The i-dyad surplus Si : E x R -+ R is the total expected surplus generated by

agent i:

Si(o-, (ht-1, nt)) - Uj(o-, (h- , nt)) + U-(a, (ht-', nt)). (1.3)

Dyad surplus plays a critical role in the analysis. Intuitively, Si is agent i's contribution

to total surplus-it is the surplus from those rounds when agent i is allocated production.

The principal's history is

'HO,B - P, Xt, {w2A}, {w4 }, dt, yt, rit, riftit.-
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We will show that Si is a measure of the collateral that is available to support incentive pay

for agent i. We typically suppress the dependence of Si, Uj, and U' on o-.

A relational contract is a Perfect Bayesian Equilibrium (PBE) of this game, where the set

of PBE payoffs is PBE(6) for discount factor 6 E [0, 1).13 We focus on the optimal relational

contract, which maximizes ex ante total surplus: maxVEPBE( ) j= v. This is equivalent to

maximizing the principal's surplus because utility is transferable between the principal and

each agent," but it is not equivalent to maximizing agent i's surplus.

Three assumptions are maintained throughout the paper, unless explicitly stated other-

wise.

Assumption 1 Agents {1, ..., N} are symmetric: c, pe, and YH are identical for each agent,

and VP, P' E 2 {1,..,N}, F(P) = F(P') if |PI = IP'I.

Assumption 2 Full support: for any non-empty P C {1,..., N}, F(P) > 0.

Assumption 3 High effort is costly but efficient: yHP1 - c > yHPO, c > 0.

1.3 The Role of Future Business in Equilibrium

In this section, we prove two essential lemmas that form the foundation of our analysis. The

first clarifies the punishments that can be used to deter deviations, and the second identifies

the role of Si in the relational contract.

As a benchmark, Proposition 1 shows that when yt is contractible, the optimal formal

contract generates first-best total surplus VB = (1 - F(0))(yHp1 - c) regardless of the

allocation rule.

i3 A Perfect Bayesian Equilibrium is an assessment consisting of both a strategy a* and belief system for
each player p* = {fo=. Beliefs for player i p* : -i -+ A(H) assign a distribution over true histories
(ht-1, nt) at each of i's information sets (h-', Ii(lnt)). Given these beliefs, a* is a best response at each
information set. Bayes Rule is used to update beliefs p whenever possible. When Bayes Rule does not apply
(i.e., the denominator is 0), p4 assigns positive weight only to histories that are consistent with (h'1, i(n)),
but is otherwise unconstrained.

4 Proof sketch: Consider an optimal PBE a*. At the beginning of the game, agent i pays a transfer equal
to Ui(o*, 0) to the principal. The equilibrium proceeds as in a* if agent i pays this transfer. If agent i
does not pay, then in every future period wit = -i,t = 0, agent i chooses dt = 0, and the principal chooses
an allocation rule that maximizes her continuation payoff given these actions. These strategies form an
equilibrium if the principal believes i choose et = 0 and agent i believes the principal offers w = -rft = 0
in every future period following a deviation.
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Proposition 1 If output y is contractible and the principal offers a take-it-or-leave-it con-

tract after Pt is realized, then I a PBE with surplus VFB.

Proof:

The following is an equilibrium contract of the stage game: T (0) = 0, Ti(1) - ,1,, and

we = c - Pi1,. Under this contract, agent xt accepts and chooses e = 1. Any allocation

rule that satisfies xt / 0 if Pt f 0 is incentive-compatible and generates VFB. U

Since all players are risk-neutral, the principal can use a formal contract to costlessly

induce first-best effort. This result stands in stark contrast to the rest of the analysis, in

which future business is the critical determinant of a relationship's strength. In this setting,

the incompleteness of formal contracts is a necessary prerequisite for the allocation of business

to play an important role.

Agents' beliefs about the true history can evolve in complicated ways, so our next step is

to derive intuitive incentive constraints that depend on dyad-specific surplus Si. In the online

Appendix, we show that any PBE payoff can be attained by an equilibrium in which agents

do not condition on their past effort choices. Apart from effort, every variable is observed by

the principal and at least one agent; deviations in these variables can be punished as harshly

as possible.l Lemma 1 demonstrates that if the principal or agent i reneges on a promised

payment, the harshest punishment is the bilateral breakdown of their relationship.

Lemma 1 Fix equilibrium -* and an on-path history (ht, nt+1) c 7-. Consider two histories

ht+1, ht+l G 7t+1 that are successors to (ht, nt+1) such that ht+1 c supp{Joht, nt} but It+1 '

supp{o-|ht,nt}, and suppose that h+1 = ht+ 1, Vj {0, i}. In the continuation game, the

payoffs of the principal and agent i satisfy

E [U (htI1 + > 0, (1.4)

Uo(h t+) max [ U(ht) l Z U(h t ). (1.5)

15Analogous to Abreu (1988).
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Proof:

If (1.4) is not satisfied, then agent i could choose wt = rt = 0, et = 0, and de = 0 in each

period, earning strictly higher surplus. Contradiction.

Define Wi(ht+1) {ht+1| Vj i, U+1 = + }. If (1.5) is not satisfied, let

ht+1 E arg max Uo(ht+l) - Ul(ht+1).
ht+1E'hj(ht+1)

Recursively define a feasible continuation strategy for the principal from ht+1. Vt'> 1, the

principal plays ca (ht+t), with the sole exception that wt+ = 0. Let ht+ be

the observed history at the end of round t + t'. The principal chooses ht+t+1 according to

the distribution of length t + t' + 1 histories induced by og(ht+t'), conditional on the event

ht+t+1= hj+t'+1 Vj / i. This conditional distribution is well-defined because the specified

strategy differs from o*(h t+') only in variables that are observed only by the principal and

agent i, and hj+t' hj+t' Vj =/ i by construction.

Under this strategy, agents j :/ i cannot distinguish ht+t' and ht+ for any t' > 1, so the

principal earns at least E,. [ i -(wWt+e + Tjt+t)|t+t] if Xt+t - i and

E.- [Uo1 +t' + wi,t+t + 7i,t+, lht+t] if xt+t 4 i. Agent i is awarded production with the same

probability as under ac (ht+1), so the principal's payment is bounded from below by U0(ht+1)_

Usi(/t+1). 0

Intuitively, following a deviation that is observed by only agent i and the principal, the

harshest punishment for both parties is the termination of trade in the ith dyad. Terminating

trade holds agent i at his outside option, which is his min-max continuation payoff. However,

the principal remains free to trade with the other agents because the deviation was not

observed by these agents. In particular, the principal can act as if the true history is any

ht, so long as that history is consistent with the beliefs of agents j / i. By choosing lit to

maximize her surplus, the principal exploits the other agents' limited information to mitigate

the harm of i's refusal to trade.

Building on Lemma 1, Lemma 2 proves that agent i's beliefs about his dyad-specific

surplus Si, determine whether he works hard in equilibrium. Following high output, an agent

can be credibly promised no more than Si total surplus. Following low output, transfers can
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hold an agent at his outside option 0. As a result, equilibrium conditions are summarized in

a set of intuitive incentive constraints that must be satisfied whenever an agent both works

hard and produces high output.

Lemma 2 1. Let o* be a PBE. Then

(1 - P 6Eo- [S(ht+1) | (h41,rZ(nt))],
Vi C {1,... N}, Vht- C W, nt on the equilibrium path immediately after yt (1.6)

such that xt = i, et = 1, yt = yH-

2. Let or be a strategy that generates total surplus V and satisfies (1.6). Then 3 a PBE

o* that generates the same total surplus V and joint distribution of {Pt, xt, dtet, yt}T

as o- for all T.

Proof:

We prove Statement 1 here and defer the proof of Statement 2 to Appendix 1.9.

For any t and ht+1 E 1'(+, define

Di(ht+1) = U o(ht+1) - max [Uo(t+1) - Ui(I+1) 7)
ht+I JVj i ht +' h t+1-(17

By Lemma 1, the principal is punished by no more than Di(ht+1) if she deviates from a history

ht+1 to ht+l in round t and it is only observed by agent i. Note that Di(ht+1) < Ud(ht+1) by

definition.

Fix history (htl, Pt, xt i, {w,t}, d = 1, et = 1, yt) = (ht-1, nt), and let ri(yt)

EC- [ri,t I ht1, i(nt) , Ui(yt) = E,- [U I h!V, i(nt) be agent i's expected transfer and

continuation payoff following output yt. On the equilibrium path, agent i chooses et = 1

only if

P1[(1 - 6)ri(y H) + 6Ui(yH)] + (1 - P1)k1 - 6)ri(0) + 6UI(0)] - (1 - 6)c (1.8)

po[(1 - 6 )Ti(YH) + JUi(yH)- + (1 - Po)[(I - 6)74(0) + 6Ui(0)1-

Let h be the history reached by choosing Ti,t - 0 rather than the scheduled transfer in round
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t. For bonus ri,t to be paid in equilibrium, we must have

(1- E, [ri,tIht- , n, yt] Di (ht)Iht-1, nt, y]y t] < E cr 1( 1 .9 )
-(1 -6)E, [ri,th t - , t, yt] < WE [U (ht) I h ,ZI(nt,y)

or else the principal or agent i would choose not to pay ri,t. Plugging these constraints into

(1.8) and applying the definition of Si results in (1.6). U

Define 5 1 ' as the minimum dyad-specific surplus that agent xt must believe

he receives following high effort and output. Statement 1 is analogous to MacLeod and

Malcomson's (1989, Proposition 1) and Levin's (2003, Theorem 3) arguments that reneging

constraints on transfers (1.9) can be aggregated across principal and agent.

To prove Statement 2, we construct an equilibrium a* that uses the same allocation rule,

accept/reject decisions, and effort choices as the given strategy a. In order to make these

actions part of an equilibrium, we have to solve three problems. First, the principal must

be willing to follow the proposed allocation rule x*. Second, each agent i must be willing

to work hard whenever condition (1.6) holds. Third, because (1.6) depends on agent i's

information, we must ensure that each agent knows the appropriate amount of information

about the true history.

We use wages and bonus payments to solve these three problems. In each period of a*,

the producing agent xt is paid an efficiency wage wt = d*yHPe; + d*e* . This payment

ensures that the principal earns 0 in every period and so is willing to implement the chosen

allocation rule, while agent xt earns the entire expected surplus produced in that period.

Agent xt can also infer the desired accept/reject decision d* and effort level e*. Following

the agent's accept or reject decision and effort, no bonus is paid unless the agent accepted

production, was supposed to work hard, and produced yt = 0. In that case, agent xt pays

his continuation surplus back to the principal, earning 0." So long as the original strategies

satisfy (1.6), these payments communicate exactly enough information to ensure that xt is

16These transfers may seem unusual, since the principal pays a large up-front wage to the producing agent
and is repaid if output is low. In the proof, these transfers ensure both that the principal is willing to
implement the desired allocation rule, and that any deviations are immediately detected and punished as
harshly as possible. Other transfer schemes may also work, but all relational contracts must contend with
the same constraint (1.6).

20



willing to both work hard when asked and repay the principal if he produces low output. A

deviation in any variable other than effort is observed by the principal and punished with

the termination of trade.

Agent i's expected dyad-specific surplus Si determines whether he can be induced to work

hard, and Si is determined in turn by the equilibrium allocation rule. From (1.6), it is clear

that agent i is only willing to work hard if Si is sufficiently large following yt = yH, and hence

the principal's allocation rule matters only when the agent both work hards arid produces

high output. This result highlights the interaction between wages and bonus payments and

the allocation of business. Following low output, an agent can be held at his outside option

through short-term transfers, regardless of how much business he is promised in the future.

In contrast, following high output an agent can be credibly promised only Si continuation

surplus. Because the agent's beliefs-which are typically coarser than the true history-

determine whether he works hard, the principal must consider both the allocation rule and

agent expectations. Therefore, private monitoring potentially shapes both off-equilibrium

punishments and actions on the equilibrium path.

Because the condition (1.6) depends only on the allocation rule, accept/reject decisions,

and effort choices, we define an optimal relational contract in terms of these variables in the

rest of the analysis. Moreover, a corollary of this lemma is that the set of equilibrium payoffs

would not be changed if the principal could send a private, costless message to each agent.

Any such communication can be replicated in the baseline game using appropriately-chosen

wage and bonus payments." Together, Lemmas 1 and 2 underscore that favoring an agent

with future business following high effort and output makes it easier to motivate him, at the

cost of reducing the future business that can be promised to other agents. This trade-off

shapes the optimal dynamic relational contract.

'Of course, the set of equilibrium outcomes would change substantially if agents were allowed to directly
communicate. This case is studied in Section 1.7.
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1.4 An Optimal Allocation Rule if First-Best is Attain-

able

This section considers relational contracts that induce first-best effort. Stationary allocation

rules are effective only when players are patient, but we introduce a simple non-stationary

equilibrium that attains first-best for a strictly larger set of parameters than any stationary

allocation rule. In this equilibrium, agents are favored with additional future business when

they perform well and remain favored if they later perform poorly, but fall from favor when

they are unable to produce and their replacement performs well.

Lemma 2 implies that Si determines the bonuses that can be credibly promised to agent

i. If 6 is close to 1, players care tremendously about the future and this collateral is abundant

regardless of the allocation rule. Define a stationary allocation rule as one in which actions

do not depend on previous rounds along the equilibrium path; then a relational contract

with a stationary allocation attains first-best when players are patient. 18

Proposition 2 There exists a stationary equilibrium with surplus VFB if and only if

(1-6) < 61 V FB (1.10)
1- po N

Proof:

Consider the following stationary allocation rule, accept/reject decision, and effort choice:

in each round, Prob, {xt = ijPt} { - if i E Pt, 0 otherwise}, while agents choose dt

et = 1. Agents are symmetric, so xt = i with ex ante probability y(1 - F(0)). By Lemma

2, these actions are part of an equilibrium that attains first-best if and only if

c 1
(1 -6) < 6  (1 - F(0))(yHp1 - c),

pi - po N

which proves that (1.10) is a sufficient condition to induce first-best with stationary contracts.

To prove that (1.10) is also necessary, note that for any stationary allocation rule there

18Given a stationary allocation rule, the optimal contract within each dyad is very similar to that in Levin
(2003), Theorem 6.
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exists some i such that Prob{xstat = il P 0} < ' because EZ Prob{xstat ilP # 0} < 1.

If (1.10) does not hold, then i always chooses et = 0. But F({i}) > 0, so first-best cannot

be attained. M

In a stationary relational contract, the allocation rule does not evolve in response to past

performance. While stationary relational contracts attain VFB only if players are patient,

a non-stationary allocation rule can induce first-best effort even when (1.10) does not hold.

We introduce the Favored Producer Allocation-illustrated in Figure 1-and prove that it

induces first-best effort whenever any equilibrium does.

In the Favored Producer Allocation, the principal ranks the agents from 1, ... , N and

awards production to the "most favored" available agent-the i E Pt with the lowest rank.

If that agent produces low output, the rankings remain unchanged, while he immediately

becomes the most favored agent following high output. This allocation rule rewards success

because an agent who produces yH is immediately promised a larger share of future business,

and it is tolerant of failure in the sense that a favored agent remains so even if he performs

poorly. Once an agent is favored he loses that favor only when another agent performs

well and replaces him. 19 In each round, every agent is the sole available producer with

positive probability and so every agent has the opportunity to become favored. The resulting

dynamics resemble a tournament in which the most recent agent to perform well "wins"

favored status.

Formally, the Favored Producer Automaton can be described as follows.

Definition 3 Let # be an arbitrary permutation of { 1, ..., N} and $b' be the identity mapping.

The Favored Producer Allocation is defined by:

1. Set $1 = $1.

2. In each round t, xt = argminij{l,..,N} {ot(Oi C Pt}-

3. If Yt = 0: $t+ 1 = qt. If yt = yH: qt+i(Xt) 1, 0t+1i) t() + 1 if Ot(i) < t(t),

and $t+1(i) = $t(i) otherwise.

19Interestingly, there is some anecdotal evidence that downstream firms tend not to withdraw business from
a poorly-performing supplier. For instance, Kulp and Narayanan (2004) report that one supplier "thought
it unlikely that Metalcraft would pull business if a given supplier's score dropped below acceptable levels."
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3 produces y,

1 2 3 -> 3

Figure 1.1: The Favored Producer Allocation. In this picture, the agents ranked 1 and 2 are
not available, so production is given to the third-ranked agent. This agent produces YH and
so displaces the top-ranked agent.

4. On the equilibrium path, dt = et = 1 iff (1.6) holds, and otherwise de = 1, et = 0.

Proposition 3 proves that a relational contract using the Favored Producer Allocation

attains first-best whenever any equilibrium does.

Proposition 3 Suppose VFB is attainable in a PBE. Then the Favored Producer Allocation

is part of a PBE that generates VFB. Moreover, 3 a non-empty, open A C [0, 1] such that if

6 E A, the Favored Producer Allocation attains first-best but no stationary equilibrium does.

Proof:

See Appendix 1.9.

Before discussing the proof, let's consider why the Favored Producer Allocation rule is

(a) tolerant of failure and (b) rewards success. For (a), consider a harsher allocation rule

that withdraws business from agent i whenever he produces yt = 0. Typically, i is favored

because he produced high output at some point in the past. Thus, this harsher allocation

rule would tighten (1.6) when agent i produced yH. At the same time, the harsher allocation

rule would not relax this constraint for the other agents to the same extent because (1.6)

depends only on histories following high output. An optimal allocation rule is tolerant of

failure precisely because the promise of future business does not simply serve as a direct

incentive for effort, but determines what incentive payments are credible. Transfers ensure

that regardless of his favored status, an agent earns 0 if he produces poorly. An agent can
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be credibly promised Si after high output, which is larger if that agent is also favored in the

future.

To show (b), compare the Favored Producer Allocation to a stationary relational contract.

Supposing that first-best is attained, the allocation rule determines what fraction of the

first-best surplus is produced by each agent at every history. In a (symmetric) stationary

equilibrium, an agent who performs well has Sj = yVFB. In contrast, an agent who produces

yH in the Favored Producer Allocation has S > -VFB, since this agent is more likely to

produce in each future period and so is likely to retain favored status.

The Favored Producer Allocation is simple enough that we can explicitly calculate when

first-best can be attained. Fixing F(0), the region for which first-best is attained is increasing

in the probability of both agents are available. Intuitively, the allocation of business plays

a more important role in the relational contract and first best is easier to attain when

the probability that both agents are available F({ 1, 2}) is large.2 0 This comparative static

has important implications for real-world relationships: for example, frequent (independent)

disruptions in a supply chain decrease both total surplus and the probability that both agents

are available and so a fortiori make it difficult to motivate effort.

We now turn to the proof of Proposition 3. Because PBE strategies depend on private

histories-which grow increasingly complex over time-this game is not amenable to a re-

cursive analysis. Instead, our analysis focuses on the relatively easy-to-compute beliefs at

the beginning of the game. Using this technique, we derive necessary conditions for first-best

to be attained in a PBE and show that the Favored Producer Allocation attains first-best

whenever these conditions hold. We will focus on intuition for the proof here; details may

be found in Appendix 1.9.

The basic idea of the proof is to sum up the obligation owed to each agent-that is, the

amount of future business that has been promised to an agent in expectation in any given

round. By Lemma 2, agent xt must believe his dyad-specific surplus is at least S whenever

he chooses et - 1 and produces yt - YH. We relax this constraint so that it must hold

only the first time each agent produces YH. This obligation is paid off when the principal

20At F({1, 2}) = 1 (which is ruled out by Assumption 2), the Favored Producer Allocation collapses to a
stationary equilibrium and so stationary equilibria are optimal.
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allocates business to that agent in the future. Therefore, we define the expected obligation

(denoted Q') owed to agent i at time t as the net ex ante expected future business that must

been promised to agent i to motivate first-best effort in rounds 1, ..., t.

Definition 4 Given strategies -, define

Prob,{{]t' < t s.t. x = ilyt = yH} f {Xt = ill

Then the expected obligation owed to agent i at time t, Q , is

t- + #,t165 - #t 1~ - 6)(yHP1 - C) (-1

with initial condition Q' 0.

Given a proposed equilibrium with first-best effort a, Q' is a state variable that tracks

how much expected surplus is "owed" to agent i in round t. At t = 1, agent i is allocated

production with probability i3, produces yH with probability pi, and must be promised 55

future surplus in expectation following yH to satisfy (1.6). Therefore, Q1 /3ftpio5 equals

the expected continuation surplus that must be promised to agent i following the first period.

At t - 2, agent i is still owed this initial amount-now worth 2i due to discounting-and

accumulates an additional obligation #0,2p,65 from those histories in which he produces YH

for the first time in this round. If i YH in t =1 and is allocated production at t = 2-which

occurs with probability #J2-then his obligation can be "paid off" at a rate equal to the

expected surplus from production, (1 - 6)(yHP1 - c). Putting these pieces together, the

expected obligation promised to agent i in round 2 is

6 +#3i 2 poS - #3,(1 - 6 )(YHP1 - C),

which equals Q0. A similar intuition applies for each t.

If 01 -* oc as t -+ oc, then agent i incurs obligation faster in expectation than it

could possibly be paid off by promises of future business. In Appendix 1.9, we show that

limt Q' < c is a necessary condition for the proposed strategy o to be an equlibrium.
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Because Q' is constructed by taking an expectation across histories, this necessary condition

is independent of agent beliefs. While concealing information from agent i might alter the

incentive constraint (1.6), it cannot systematically trick agent i into expecting more future

business than is possible to provide in expectation.

Given this result, it suffices to find conditions under which limt - = o for every

set of {3ft, 3 } ,t that are consistent with a feasible allocation rule. Because the agents

are symmetric, it turns out that obligation is minimized when we treat all agents who

have produced YH in the past symmetrically, and likewise with all those who have riot yet

produced yH. Moreover, those agents who have already produced yH should be allocated

business whenever possible, since doing so pays off their obligation and also minimizes the

obligation incurred by the other agents. Therefore, we can exactly pin down the {3t,# !}i,

that minimize Q' for every agent.

To complete the proof, we show that if the Favored Producer Allocation does not attain

first-best, then limt, Q4 = 00 and hence first-best is unattainable by any PBE. Intuitively,

the Favored Producer Allocation gives an agent who has produced yH the maximal fraction

of future surplus, subject to the constraints that et = 1 in every period and (1.6) is satisfied.

Given that agents cannot be tricked into believing that total surplus is larger than VFB this

allocation minimizes the probability that non-favored agents are awarded production, which

maximizes the likelihood that a favored agent remains favored. Even when a favored agent

is replaced, his punishment is mild because he retains priority whenever more-favored agents

are unable to produce.

In one important sense, agents' private information does not play a role in the Favored

Producer Allocation: (1.6) is satisfied at the true history ht on the equilibrium path, so

each agent would be willing to follow his strategy even if he learned the true history. We

refer to any equilibrium with this property as a full-disclosure equilibrium. Formally, full-

disclosure equilibria provide ex post incentives to each player and so are belief-free.2 1 In

the online Appendix, we show that a strategy profile generates the same total surplus as a

belief-free equilibrium if and only if (1.6) holds at the true history, so we define full-disclosure

21As introduced by Ely and Valimaki (2002) and Ely, Horner, and Olszewski (2005). We use a definition
of belief-free equilibriurn given in the online Appendix.
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equilibrium in terms of this condition.

Definition 5 A PBE o* is a full-disclosure equilibrium (FDE) if V i C {1, ... , N},

(1 -6) P1 PO< E,- [Si(h')Ih t 1 ,n t

Vi G {1, ... , N},Vht- W nt on the equilibrium path immediately after yt (1.12)

such that xt = i, et - 1, yt = yH -

If (1.12) does not hold, then o-* conceals information from the agents. The set of full disclo-

sure equilibrium payoffs is FD(6) C PBE(6) C R

The sole difference between (1.12) and (1.6) is that (1.12) conditions on the true history

rather than agent i's (coarser) information set. Because full-disclosure relational contracts

provide ex post incentives for effort, each agent is willing to follow the equilibrium even if he

learns additional information about the true history. That is, these relational contracts are

robust to the agent learning more information about past play in some (unmodeled) way, for

instance by reading trade journals or the newspaper. Proposition 3 implies that if first-best

is attainable, then there exists an equilibrium that induces first-best using ex post incentives.

Corollary 1 Suppose ] a PBE o-* that generates surplus VFB. Then ] a full-disclosure

equilibrium a.FD that generates VFB.

Proof:

Condition (1.12) holds by direct computation in the Favored Producer Allocation.E

In this section, we have explicitly characterized a relational contract that attains first-

best whenever any Perfect Bayesian Equilibrium does. This allocation rule rewards success

and resembles a tournament: agents compete for a temporary favored status that lasts until

another agent produces high output. It is also tolerant of failure: rankings are unaffected

when an agent produces low output. In this way, the principal ensures that she can credibly

promise a large relational bonus to an agent that performs well.
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1.5 Unsustainable Networks and Relationship Break-

down

We now turn to the case with two agents and consider relational contracts if first-best is

unattainable. In this case, non-stationary relational contracts typically dominate stationary

contracts, but the principal cannot always induce every agent to work hard. In particular,

the principal might forego providing effective, incentives to one agent to ensure that another

agent is promised enough future business to motivate him. In the class of full-disclosure

relational contracts with two agents, a variant of the Favored Producer Allocation turns out

to be (non-uniquely) optimal: if an agent produces high output, he sometimes enters an

exclusive relationship in which the principal permanently favors him with future business.

Once this occurs, the other agent shirks.

So long as first-best is unattainable but some cooperation is possible, Proposition 4 proves

that every optimal relational contract tailors the allocation of business to past performance.

Proposition 4 Suppose VFB cannot be attained in a PBE and 5 < E pp F(P)(yHP1 -

c). Then for any stationary equilibrium -rStat, there exists an equilibrium o-* that generates

strictly higher surplus.

Proof:

Let xstat be an optimal stationary allocation rule. Because S Eprge, F(P)(YHP1 - c), it

must be that S < (yHpi - c)Prob {xstat = i} holds for i c Mstat, where 0 < |Mstt| < N

agents. Only i E Mstat choose e - 1 in equilibrium. Consider the non-stationary equilibrium

that chooses a set of agents M(Pi) with IM(P1)I = |MStatl and M(P 1 ) n Pi / 0, then

allocates production to the agents in M(P 1 ) as in Mstat. For t > 1, this non-stationary

equilibrium generates the same surplus as the stationary equilibrium; for t = 1, it generates

strictly higher surplus, since Prob {P1 n Mstat = 0} > 0 by assumption 2. U

Whenever one agent works hard and produces high output in the relational contract, the

principal must promise that agent a large amount of future business. One way to satisfy

this promise is to forego providing incentives to the other agent at some histories. For this
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reason, shirking occurs on the equilibrium path if first-best cannot be attained. Our next

goal is to characterize when shirking will occur, and show that a relational contract may

optimally entail one relationship devolving into perfunctory performance.

For the rest of the section, we restrict attention to full-disclosure relational contracts.

This is a substantial restriction that allows us to use recursive techniques to characterize

equilibrium. These relational contracts also have the valuable property that they do riot rely

on subtle features of an agent's beliefs. In a real-world environment, it might be difficult

to completely stop an agent from learning unmodeled additional information about the true

history; full-disclosure relational contracts are robust to this additional information.22

Among full-disclosure relational contracts, it turns out that a simple variant of the Fa-

vored Producer Allocation is non-uniquely optimal. In this relational contract, the principal's

relationship with an agent might eventually become perfunctory: while both agents work

hard at the beginning of the game, as t -+ 00 it is almost surely the case that one of the

agents chooses et = 0 whenever he produces. Hence, the principal sacrifices one relationship

in order to provide adequate incentives in the other. The principal continues to rely on this

perfunctory relationship when no better alternatives exist because YHPO 0, but she offers

no incentive pay and has low expectations about output.

Definition 6 Let N = 2. The (q1, q2)-Exclusive Dealing allocation rule is:

1. Begin the game in state G1. In state Gi, Prob, {xt = iji G Pt} = 1,

Prob, {xt = -i|Pt ={-i}} - 1, and both agents choose et = 1. If yt = YH, transition

to EDs, with probability qa, 0, otherwise transition to state Gxt. If yt = 0, stay in

Gi.

2. In state EDj, Prob, {xt = ii C Pt} =1 and Prob, {xt = -i|Pt = {-i }} - 1. If Xt - i,

et = 1; otherwise, et = 0. Once in EDj, remain in ED.

We refer to continuation play in state ED as exclusive dealing.

In (qi, q2)-Exclusive Dealing, each agent faces the possibility that his relationship with

the principal breaks down at some time in the future. Before breakdown occurs, the alloca-
221n the context of a collusion model with adverse selection rather than moral hazard, Miller (2012) argues

that ex post incentives are natural for this reason.
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tion rule is the same as in the Favored Producer Allocation and both agents are expected

to choose e = 1. Once agent i enters exclusive dealing-which happens with probability qi

whenever i produces YH-agent -i stops exerting effort and his relationship with the prin-

cipal becomes perfunctory. Like the Favored Producer Allocation, (qi, q2)-Exclusive Dealing

both rewards success and tolerates failure: high output is rewarded by both favored sta-

tus and the possibility of a permanent relationship, while low output does not change the

allocation rule but leaves the door open for the other agent to win exclusive dealing.

Proposition 5 shows that (q*, q*)-Exclusive Dealing is optimal among full-disclosure equi-

libria for appropriate q* E [0, 1]. A critical caveat is that it is not uniquely optimal: there

exist other allocation rules that work, including some that do not involve any permanent

break-down of a relationship. 23

Proposition 5 Let N = 2. ]q* G [0, 1] such that the (q*, q*)-Exclusive Dealing equilibrium

is an optimal full-disclosure equilibrium.

Proof:

See Appendix 1.9.

While the proof is lengthy, the intuition for this result is straightforward. Consider the

continuation game immediately after agent 1 works hard and produces yt = YH- Total

surplus is higher if agent 2 works hard. However, agent 2 is only willing to work hard if he is

promised a substantial fraction of future business, which makes it more difficult to give agent

1 S dyad-specific surplus. It turns out that this benefit and cost of agent 2 working hard both

scale at the rate o0'-' over time. Therefore, an optimal relational contract simply maximizes

the sum of discounted probabilities that agent 2 works hard, subject to satisfying agent

l's incentive constraint. In particular, there exists a q* E [0, 1] such that (q*, q*)-Exclusive

Dealing solves this problem.

Exclusive dealing is certainly not uniquely optimal, but it is interesting that an optimal

relational contract might require the permanent break-down of one relationship in order to

23 For example, an allocation rule that grants temporary exclusive dealing to a high performer for K periods

immediately following YH is also optimal (subject to integer constraints on K).
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Figure 1.2: Optimal equilibria for YH = 10, pi 0.9, Po = 0, c = 5, F(0) = 0. (A)
the Favored Producer Allocation can attain first-best; (B) (q*, q*)-Exclusive Dealing is an
optimal FDE, and non-stationary equilibria strictly dominate stationary equilibria; (C) no
effort can be supported in equilibrium.

credibly motivate the other agent.' This result is consistent with the observation by Cyert

and March (1963) that individuals may use policy commitments to compensate one another

for past actions: the principal commits to a long-term inefficient policy to solve a short-run

moral hazard problem. Figure 2 illustrates the implications of Propositions 3, 4, and 5 in a

game with two agents.

Agents are ex ante identical in the baseline model, so the identity of the agent whose

relationship sours does not affect total continuation surplus. If agent 1 is instead more

productive than agent 2-so that high output for agent 1 is YH + AY > YH-then which

relationship breaks down influences long-run profitability. In the online Appendix, we show

that the proof of Proposition 5 extends to this asymmetric case for some parameters, implying

that (qi, q2)-Exclusive dealing is optimal (albeit with qi / q2). If Ay is not too large,
24 As in Proposition 1 of Board (2012), this result can be interpreted as saying it is optimal for the principal

to separate agents into "insiders" and "outsiders" and be biased against the "outsiders." Unlike Board, we
focus on a moral hazard problem, which implies that the allocation rule is tolerant of failure and looks like
a tournament between the agents.
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the principal might optimally enter an exclusive relationship with either agent, so that ex

ante identical principal-agent networks exhibit persistent differences in long-run productivity.

In a market of such principal-agents groups, an outside observe would observe persistent

differences in productivity, even though each group was playing an ex ante identical optimal

relational contract. 25

1.6 When is it Optimal to Conceal Information?

Corollary 1 shows that concealing information is unnecessary when first-best can be attained,

and Proposition 5 shows that Exclusive Dealing is an optimal full-disclosure equilibria oth-

erwise. In this section, we prove that providing full-disclosure incentives is typically costly

if first-best is unattainable: the principal might do even better by not providing ex post

incentives and keeping agents in the dark.26

Full-disclosure relational contracts have the great advantage of being simple and providing

robust incentives for effort. In contrast, the relational contract we construct to show that

concealing information can be optimal is more complicated and relies on relatively subtle

features of the agents' beliefs. As a result, a full-disclosure relational contract may be easier

to implement in practice, even if the principal could theoretically earn a higher surplus by

concealing information. Nevertheless, some firms appear to be secretive about their relational

scorecards-Farlow et al (1996) report that Sun Microsystems used to withhold the details

of its relational scorecards from suppliers.27

Proposition 6 proves that concealing information is optimal whenever first-best is unattain-

able but agents can be strictly motivated to exert effort.

Proposition 6 Let N = 2 and suppose that first-best cannot be attained in a PBE but that

c 6
P o< 6  (F({1}) + F({1, 2})) (yHp - c). (1.13)

p1 - po 1- 6
25Persistent performance differences among seemingly similar companies are discussed in Gibbons and

Henderson (2012).
26Using the definition of belief-free equilibria given in Appendix B, the equilibrium used to prove this

result is weakly belief-free in a sense analogous to Kandori (2011), but not belief-free.
2 TSun did eventually reveal the details of these scorecards, but only so that their suppliers could adopt

the same scorecard to manage their own (second-tier) relationships.
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Figure 1.3: Set of full-disclosure dyad-specific surpluses when VFB V PBE(6)

Let -* be a full-disclosure equilibrium; then is it not an optimal PBE.

Proof:

See Appendix 1.9.

The proof of Proposition 6 constructs an equilibrium that dominates (q*, q*)-Exclusive

Dealing by concealing information. In such an equilibrium, the full-disclosure constraint

(1.12) need not hold in every history. If first-best is unattainable, the optimal relational

contract specifies inefficient continuation play, and these inefficiencies can be mitigated by

allowing the principal to conceal information from the agents.

More precisely, Figure 3 illustrates the set of dyad-specific surpluses that can be sustained

in a full-disclosure equilibrium. Consider a (q*, q*)-Exclusive Dealing equilibrium, which we

know to be an optimal full-disclosure equilibrium from Proposition 5. Suppose agent 1 is

allocated production and produces y1 in t = 1. In t = 2, agent 2 is allocated production,

works hard, and produces yH. Let (SPD(yi, yH), S2 D(y1 , yH)) be the vector of dyad-specific

surpluses for the agents following this history. Because this is a full-disclosure relational

contract, it must be that S2FD(yi, y) ;> for each y1 E {O,YH}-
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Now, notice that the larger is SFD(yH, YH), the harder it is to satisfy agent l's constraint

(1.6) in t = 1, since SFD(YH, YH) enters that constraint. In contrast, SF D(0, YH) is irrelevant

for agent l's incentives because (1.6) only matters following high output. Therefore, consider

a non-full-disclosure equilibrium in which agent 2 is informed of y1 only after he chooses e2 =

1, and let (Si (Y1, YH), S2 (Y1, YH)) be the vector of dyad-specific surpluses in this alternative

strategy profile. For agent 2 to work hard, it need only be the case that E [S2 (yi, YH) I h'] > 5

In particular, we can set S.FD(YH, YH) < 5, which in turn relaxes (1.6) for agent 1 in t 1.

This slack can then be used to implement a more efficient continuation payoff when y1 = YH-

Proposition 6 illustrates that it is sometimes optimal for the principal to refrain from

telling one agent about her obligations to other agents. This result is related to the long

literature on correlated equilibria such as Aumann (1974) and Myerson (1986), as well as to

recent results by Rayo and Segal (2010), Kamenica and Gentzkow (2011), and Fong and Li

(2010). Like those papers, the principal in this model can determine an agent's information

and thereby create slack in their incentive constraints, which can in turn be used to induce

high effort in other histories. Unlike those papers, the information concealed by the principal

concerns the past performance of other agents and is only valuable in the context of the larger

equilibrium.

1.7 Communication

The baseline model makes the stark assumption that agents cannot send messages to one

another and so are unable to multilaterally punish deviations. While this assumption is

realistic in dispersed supply chains, agents within an organization or a close-knit group of

suppliers may be able to coordinate their actions. In this section, we show that the allocation

of future business remains an important tool even if agents can communicate, so long as they

also earn rents.28 To consider how joint punishment affects our results, we first define an

augmented game with communication between agents.

28 The baseline model and this extension provide two examples of settings in which the allocation of business

affects the strength of each relationship. More generally, so long as the surplus at stake in each dyad depends

on how much business is allocated to that dyad, the allocation of business will matter for incentives.
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Definition 7 The augmented game with communication is identical to the baseline repeated

game, except that each player simultaneously chooses a publicly-observed message mi E M

at the beginning of each round, where IMI is large but finite.

Agents can use the message space M to share information with one another and coordi-

nate to punish the principal. In the augmented game, the allocation of business would be

irrelevant so long as 5 < VF and the principal earned all the rents from production. On

the other hand, the allocation rule remains an important motivational tool if agents keep

some of the profits they produce, a notion formalized in Assumption 4.

Assumption 4 Fix 7 E [0, 1]. An equilibrium satisfies 7-rent-seeking if at any history

(ht-, Pt, xt) on the equilibrium path, agent xt earns

N

Xt )

i=O

the principal earns u = (1- y) ENZ u, and all i ( {0, xt} earn u = 0.

Assumption 4 is similar to an assumption made in Halac (2012) and can be viewed as a

reduced-form model of bargaining power. In round t, the producing agent xt earns a fraction

y of the total surplus produced in that round. As a result, the principal earns only a fraction

1 - -y of the surplus produced in each relationship. Because agents do not pay bonuses to

one another, the maximum surplus at stake in agent i's relationship is the sum of his and

the principal's surplus. In particular, the rents earned by one agent cannot be used to make

incentive pay to another agent credible.

More precisely, Lemma 3 shows that agent i is only willing to work hard if the sum of

his and the principal's surpluses exceeds S.

Lemma 3 The following condition holds in any PBE o-*:

5 < 6EO* [Uo(ht+1) + Ui(ht+l) I (h'-1, Ii(nt))]

Vi G {1,..., N}, Vht-1 E W, nt on the equilibrium path immediately after yt (1.14)

such that xt = i, et = 1, yt = yH.
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Proof:

This proof is similar to that of Statement I of Lemma 2, except that transfers must instead

satisfy

i (yt) < yE, {Uo (h+1)|ht- 1, nt , yt]

-ri(yt) -Eo[Ui(h t ') h t', Ii(nt, y)]

where nt is a node following et = 1 and output yt. If these conditions are not satisfied, then

either the principal or agent i would strictly prefer to deviate to rt = 0 and be min-maxed.

Plugging these expressions into (1.8) yields (1.14). U

Condition (1.14) is similar to (1.6), except that the right-hand side includes the principal's

total expected continuation surplus rather than just her surplus from dyad i. The agents

can coordinate to hold the principal at her outside option following a deviation, so her

entire continuation surplus can be used to support incentive pay in each period. However,

Uo(ht+1) + Ui(ht+1) does not include the continuation surplus for the other agents.

As in the original game, promising future business to agent i increases Ui(ht+1) and so

relaxes (1.14) for i while tightening this constraint for the other agents. Unlike Lemma 2,

the principal may have an incentive to deviate from an optimal allocation rule, so (1.14) is

only a necessary condition for equilibrium. Nevertheless, Lemma 4 shows that a version of

the Favored Producer Allocation continues to be an equilibrium.

Lemma 4 Let Assumption 4 hold. If (1.14) is satisfied under the Favored Producer Allo-

cation for de = et - 1, Vt, then there exists an equilibrium that uses the Favored Producer

Allocation and generates VEB total surplus.

Proof:

See Appendix 1.9.

In the proof of Lemma 4, every player simultaneously reports every variable except et in

each period. All of these variables are observed by at least two players, so any lie is imme-

diately detected and punished by complete market breakdown. These messages effectively

make the monitoring structure public; the Favored Producer Allocation remains a relational

contract because it is a full-disclosure equilibrium.
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Allocating business to i relaxes his constraint (1.14) but tightens this constraint for the

other agents. Using the same logic as in Proposition 3, Proposition 7 proves that a relational

contract using the Favored Producer Allocation attains first-best whenever any PBE does.

Proposition 7 Consider the game in Definition 7, and suppose Assumption 4 holds. If any

PBE has total surplus VFB, then the equilibrium from Lemma 4 also has total surplus VFB.

If 7 > 0, ] a non-empty interval A C [0, 1] such that if 6 E A this equilibrium attains VFB

but stationary equilibria do not.

Proof:

See Appendix 1.9.

Under Assumption 4, Uo(ht) = (1 - 7)VFB at any on-path history h' in a relational

contract that attains first-best. By (1.14), agent i must expect to earn at least S- (1- _y)VFB

in order to be willing to work hard. Using this intuition, we can define the residual obligation

0% as the amount of expected dyad-specific surplus that must be given to agent i for him to

work hard:

0Q = t1 + #fpiO(5 (1 - 7)VFB) - 1 - )Y(pHp1 - C). (1.15)

The proof of this result is then similar to that of Proposition 3.

When the fraction of surplus -y earned by an agent is small, the principal earns more

surplus and thus (1.14) is easier to satisfy. Intuitively, the rent-seeking activities of one

agent have a negative externality on the principal's relationship with other agents. Rent-

seeking by i makes the principal more willing to renege on the other agents, since she loses less

surplus in the punishment following a deviation. Agent i does not internalize this negative

externality because his relationship with the principal is determined by Uo(ht) + Uj(ht) and

so is only affected by how rent is shared in other dyads. 29

29 The observation that rent-seeking by one agent can impose a negative externality on other agents'
relationships has been made by Levin (2002).
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1.8 Conclusion

In the absence of formal contracts, a principal must carefully allocate a limited stream of

business among her agents in order to motivate them. We have shown that agents only work

hard if they are promised sufficient future business following high output, and so the optimal

allocation rule (1) rewards success and (2) tolerates failure. When first-best is attainable,

an optimal relational contract resembles a tournament, where the prize is a (temporary)

larger share of future business and an agent "wins" if he is allocated business and performs

well. When first-best cannot be attained, the optimal full-disclosure equilibrium may involve

exclusive dealing with a high-performing agent while other relationships deteriorate. The

principal can mitigate these inefficiencies by concealing information about the history of play

from the agent. Thus, a downstream firm (or boss) who interacts with multiple suppliers

(or workers, or divisions) must carefully consider both the rule she uses to allocate business

and the amount of information she reveals.

Like much of the relational contracting literature, one shortcoming of our model is that

competition does not pin down the division of rents between players. In some realistic cases,

suppliers might be expected to compete away their rents, so that a downstream firm would

opt to cultivate multiple sources in order to secure better prices. There are potentially inter-

esting interactions between rent-seeking and relationship cultivation, since an agent's incen-

tives depend critically on his beliefs about his future surplus. Nevertheless, those companies

with very close supplier relations tend to source from a small number of suppliers, who earn

substantial rents. Toyota even goes so far as to enshrine "[carrying] out business... .without

switching to others" in their 1939 Purchasing Rules (as noted by Sako (2004)).

More broadly, this paper presents one setting where the principal chooses seemingly inef-

ficient actions (eg, exclusive dealing with one agent) in order to cultivate a close relationship.

In repeated games with impatient players, short-run moral hazard problems can sometimes

be solved only by committing to persistently inefficient continuation play. Thus, organiza-

tions exhibit tremendous inertia: inefficient policies persist in a relational contract,so while

seemingly welfare-improving changes undermine existing agreements and inhibit cooperation.

3 See Gibbons and Henderson (2012) for much more on persistent performance differences among seemingly
similar enterprises.
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1.9 Appendix: Proofs3 1

Lemma 2

Statement 2: Sufficiency

Given a strategy a satisfying (1.6), we construct an equilibrium a*.

Let t(o) be the set of on-path histories for generic strategies a, with element ht(j) E

71(a). Define an augmented history as an element (ht; ht) c W x X The set WA, will be

defined to relate on-path histories in o* to histories in a. To simplify notation, let Hre be

the set of nodes in the extensive-form stage game in which e was just chosen, before Nature

chooses y.

Constructing Equilibrium Strategies: We recursively construct the set RA9 and j*.

First, we construct IpA"9:

1. If t = 0, then the initial augmented history is (0, 0) E .IAug. If t > 0, let

(~();h'-'(o*)) E -H 'g.

2. For every history (htl(j), nt), nt E Ne, that is on-path for o, define the augmented

history

((h-l(0), nt); (ht-1(o*), n*)) E -HAu (1.16)

where n* E Ne is defined as follows. Note that actions with * are part of il*, while

those without are part of nt.

(a) Pt* = Pt.

(b) If po > 0 or dt > 0, then x* xt, d* = dt, e* et. If p0 = 0 and de = 0, then

x* = X, d* = 1, and e* 0.32

31We frequently refer to "all histories on the equilibrium path" such that some condition holds. Formally,
interpret "all histories on the equilibrium path" as "almost surely on the equilibrium path."

32

Note: if po = 0, then {dt 0} and {dt = 1, et = 0} generate the same surplus for every player and
w* 0 for both of these events. As a result, d*= 1 and e* = 0 in a* whenever dt = 0 in o. In this case,
an augmented history (ht(u), h*(o*)) may have rounds in which d*, = 1 and e* = 0 but dv = 0; however,
a* still forms an equilibrium that generates the same total surplus and distribution over {'Pt, xt, dtet, yt}T
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(c) w)*,t satisfies

w* t= d [(1 - et)yHPo +et YHP + (I P ) P

and w = 0, Vi ) xt.

3. For any successor history ht(o-) to (ht-l(a), nt) in the support of (-, define the aug-

mented history

(ht(o-); (ht(o-*)) EHAug

by setting yt = yt*, -r*t = 0 Vi / xt, and

,t -1{w*,t 1
P I Po

Next, we recursively define the candidate equilibrium o-* in which the principal tracks an

augmented history.

1. At t = 0, the principal chooses augmented history (0, 0) C ?kAug9. For any t > 0, let

(ht'(o-), ht-1(a*)) E iNA"g be the unique augmented history on the equilibrium path

at the beginning of period t.

2. When Pt is realized, the principal chooses (ht--(o-), nt) for nt E Ne according to

Te,(ht-l(o-), Pt), which is the conditional distribution given by o over nt E A/, given

(ht-1 (o-), Pt). For this (ht-i(a.), nt), there is a unique augmented history

((ht-'(o-), nt), (ht-~'(o-*), n*)) E ' Aug.

3. Given this unique augmented history ((ht-l(o-), nt), (ht-(o-*), n*)), the principal chooses

allocation x* and wages {w }.

4. Agent xt accepts production iff w* , y'po, chooses et = 1 iff , yH1 + (1 ~-

P1) ,'p, and pays transfer r* following output y*.

VT < oo as -.
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5. Given successor history (ht-(u), nt, y*), define J,(ht(j), nt, y*) as the conditional

distribution of histories ht(a) given (ht-(o), nt, y*), which is well defined on the equilib-

rium path. The principal randomly chooses history ht(u) according to TJ(h'-(), ne, y*)

resulting in the augmented history (ht(a), ht(a*)), where ht(o*) is the realized history

under a*. Along the equilibrium path, (ht(o), ht(u*)) E 7 jA"9 by construction.

6. Following any deviation in a variable other than et, the principal thereafter chooses

xt - min{ili C Pt} and wAt = rt 0. Agents who observe the deviation choose

d- = 0.

Uniqueness of (ht(u), ht(j*)) for each ht(u) C W(u): Given an augmented history

(ht~(a), ht-(o*)) E HAug for every on-path ht'(a), then this recursive structure iden-

tifies every ht(cr) c supp{ojht-(x)} with a unique augmented history (ht(o), ht(u*)). The

unique initial history is (0, 0), and so every on-path ht(o) is linked to a unique (ht(o,), ht(u*))

by induction.

Payoff-Equivalence of Old and New Strategies: We claim that o* generates the same

distribution over {P,, x,, de., y,}{ ,Vt, and same total surplus as a. Define X,(ht(o)) as the

ex ante distribution over ht(a) under strategies o and x,,, (ht(a), ht(u*)) as the distribution

over augmented histories (ht(a), ht(o*)). Then:

I. V t > 0 and ht(o) G (), if (ht(or), ht(u*)) G WAg, then

X,,,.*(h t(a), ht(o*)) = x,(ht (cr))

and so a and a* generate the same distribution over {P, xS, dses, ys}_, , Vt.

2. a generates the same total surplus in period t surplus at history ht(a) as a* does in

period t at augmented history (ht(a), ht(u*)).

We tackle each claim separately.
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Claim 1: By induction. For t = 1, 'W = 0 and the result follows. Consider the

conditional distribution over ht(a) given hl(or) and compare it to the conditional distri-

bution over (ht(e), h'(o*)) given (htl(u), htl(u*)). The distribution F(P) is exogenous.

Conditional on the realized Pt, for po > 0 actions (x*, d* e*) ~ (1t-l(u), Pt), while for

po = 0 the analogous statement holds for (x*, d*e*). Since each history (h (a), Pt, n') cor-

responds to a unique augmented history ((htl(a), Pt, ne), (h- 1 (u), Pt, n"), the augmented

history ((h t1(a), Pt, ne), (ht-(a), Pt, ne*)) has the same distribution as (htl(a), Pt, ne) con-

ditional on the (t - 1)-period history. The distribution of yt depends only on dt and et,

so the distribution of yt* given this augmented history is the same as the distribution of

yt given (htl(a), Pt, ne). Given this, the distribution over t-period augmented histories

(ht (o), ht(o*)) is identical to the distribution over ht (u), which proves Claim 1.

Claim 2: The actions that affect total surplus are (x*, d*, e*) (or (x*, d*e*) for po = 0),

which have an identical distribution under a and a* by claim 1. This proves Claim 2.

Optimality of Principal's Actions: Next, we show that the principal has no profitable

deviation. Under a*, the principal earns no more than 0 at every h', so it suffices to show that

the principal cannot earn strictly positive surplus by deviating. Fix history ht. The principal

could deviate from o* in one of three variables: x* {wi}[_1 or { _*}K. Following the

deviation, the principal earns 0 whenever she allocates production to an agent that observed

the deviation. Thus, the principal has no profitable deviation in { since t < 0 and so

a deviation would be myopically costly. A deviation in ni*t for i :/ xt would be unprofitable

for the same reasons, since w*, = 0. The principal would earn dty 1.-wxst following a deviation

in w* If wxtt < yHp0 then d* = 0 and the deviation is unprofitable. If wxt E ' [ypo, ynp1),

then d* = 1 and e* = 0, so the principal's deviation earns yHpo - wxtt < 0. If Wxt > yHP1,

then the principal earns no more than

Wxtt - YHP1
yHP1Wxt +(PA) 1 -pi

so this deviation is not profitable. Because the principal can never earn more than 0 regard-

less of her allocation decision, she has no profitable deviation from x*, proving the claim.
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Optimality of Agent's Actions: Finally, we argue that each agent has no profitable

deviation. This argument entails tracking the agent's private information at each history.

Let htl(o-), hl(a) E WH(a), and let (ht-(a), ht-l(u*)), (ht (o-), h-1(-*)) E Aug.

Claim 1: Suppose that agent i cannot distinguish (htl(a), nt) and (htl(o-), nt).
Then agent i cannot distinguish (ht-(o*), n*)) and (ht-(-*), fl*). Proof by induction.

For t - 0, the result holds trivially. Suppose the result holds for all t < T, and consider a

history in round T. Suppose towards contradiction that i can distinguish (hT- (-*), n) and

(h-(-*), n4). From the inductive step, there is a variable in round T that differs between

nT and ni. Because nT and nT are indistinguishable by assumption, P , x cannot differ,

and so d* and e* cannot differ either.

Thus, it must be that Wi, =/ ^7,T or r- * Ti*T. But ft*T is determined entirely by i,

so it must be that Wm*r T WT, which implies that x* = i. If d* = 0, thenW~T eT =O;

if d* = 1 and e* = 0, then W*T = T - yHpo; and if d =e =1, then W - T --

YHP1 + (1 - p1) PCP,. Thus, contradiction obtains.

Claim 2: Agent i has no profitable deviation from r,*,. Agent i plays a myopic

best-response and earns 0 continuation surplus immediately following any deviation. Hence,

we need only check a deviation when r*t < 0, which occurs when x* = i, e* = 1, and y* = 0

on the equilibrium path. Let (ht'(a*), n*) be such a history, and consider agent i's beliefs.

Agent i knows the true history is consistent with (hl(o-*), IE(n*)) and infers e* =

because w*, ;> yHp1. Because a and -* are payoff equivalent,

Si(o-, ht (a)) = Si(o-*, ht(o-*)). (1.17)

Furthermore,

Ui* h+(.*)) = Si(o*, ht+1(o.*))(1.18)

by construction of o*. By the previous claim, the strategies o-* induce a coarser partition
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than o- over the set of augmented histories. That is,

(hl-(u*), t*) I ((I t -1(u), t (h t -(a*), n*)) E hiAg (~ (0-), 3(t)) =

E; {(ht-1(*),r it 1(o-*), (n*) .
(1.19)

Because (1.6) holds by assumption, E, [S(o, ht+1(o))Ih l(-), Ii(nt) >1 1 ,3c Com-

bined with (1.17) and (1.19), we

E,- Si(o*,ht+1(-*))|h~1(-*),ri(n*=

(1.20)E,* Eo [S (o-, ht+ 1(o-))|Iht- 1(o-), T (nt) ((ht-'(o-), nt),I ht- 1 (.*), n*) E -HAug ;>
1-6 c

3 pi-po

Agent i has a profitable deviation if and only if

0 > (1 - 6)r *t + 6E* [Si(o-*, ht+1(.*))Iht-1(o*), Ii(n*)

butt - , so (1.20) implies that this inequality never holds.

profitable deviation from r*t.

Thus, agent i has no

Claim 3: Agent i has no profitable deviation from d*, e*, or wit. A deviation

in d* or wie is myopically costly and leads to a continuation payoff of 0, so the agent never

has a profitable deviation in these variables. Similarly, agent i has no profitable deviation

from e* = 0. Given rit, agent i has a profitable deviation from e* = 1 iff

cI c
-(1 -pi) -- c <-(1 po) PO

which cannot hold.

Thus, -* is a Perfect Bayesian Equilibrium that satisfies the conditions of Lemma 2.E

Proposition 3

We present two lemmas to prove Proposition 3.
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Statement of Lemma Al

Consider strategies o that attain the first-best total surplus VFB, and suppose ] i E {1, .. , N}

such that

lim sup Q= oo.

Then -is riot a equilibrium.

Proof of Lemrna Al

Given a - that attains first-best with lim supto Qt = 00 for some i E {1, ... , N}. Because

- attains first-best, dt = et = 1 whenever Pt # 0. Towards contradiction, suppose that o is

an equilibrium.

Let

bi(ht) 1{xt = i, yt - yH } * I t' tt,' O}

be the indicator function for the event that xt = i, yt = yH in period t, and yt =

(1.21)

0 Vt' < t

with x= i. Lemma 2 implies that (1.6) must be satisfied the first time that xt = i and

dt = et 1, which implies

bi(hi)6S < (1 - 6)bi(hi)E, 6 li,t+t (yHPi -
I/1

c) | ht . (1.22)

A fortiori, (1.22) must hold in expectation:

E, [bs(ht)] * 65 < E, [(1 - 6)bi(ht)E, 6to'1,t+ (yHp1
i i 6 lit~.t'=1P

- c) h]]

Because o- attains first-best, E [b (ht)] = Prob{xt - i,Y y HXt' i -- yt' 0}

Dividing by 6 K-t and summing across t 1, ... , K yields

= 1 Prob,{bj(h ) = 1}. (1.23)
K L K oo

: 65 <; (1 - 6)VF E, ,1k~' ih+t')
k=1 k=1 It'=1

This infinite sum is dominated by EL 1 of~' (YHP1 -c) and so converges absolutely. Switch-

ing the order of summation on the right-hand side of (1.23) and, then re-index using O = k+t'.

Because the events of (1.21) are disjoint, EIl Prob{bi(hk) = 1} =Prob{2k < K s.t. Xk
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i, Yk - YH}. Therefore, (1.23) can be written

FB~ 5K-i, Prob: {Xi,
FB 1

i It' < min{K, - 1} s.t. xt =, yt = y}.

Now, the tail for @ > K on the right-hand side of (1.24) is dominated by E |K K K-

n and so absolutely converges. Hence, (1.24) implies that 2 C E R such that VK c N,

K Prob, {x z i, ]t' < min{ K, 4' - 1} s.t. xt, = i, ye, = yH < C.

By definition, Prob, {xp = i, It' < min{K, 4 - 1} s.t. xt' = iiYe =yH} /H, so in any

equilibrium that attains first-best, I C E R such that VK E N,

(1.25)
K LK

( 6$- 1 6)V FB 1:K-p H C
e =1 0 * =1~ o

Contradiction. So o- cannot be an equilibrium. M

Statement of Lemma A2

Suppose i strategies a that attain the first-best total surplus VFB such that Vi E { 1,

lim supt-4 fQ < oc. Vht, let

E(ht) =i I h', t' < t s.t. xt iye' = YH}

and Vt,

Ei = {htli E E(he)}

Then ] strategies 8- that also attain VFB such that:

1. Obligation is finite: Vi E {1, ... , N}, lim supt_ oc Qi < oc.

2. Ex ante, the allocation rule treats agents who have produced yH symmetrically: Vt, i C

{1, ... , N}

Prob{xt= ilEj} = _E 1Prob xt =jlE}

Prob {Xt = iI (El) = LE Prob Xt = j (E)}.
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3. Agents who have produced yH are favored: Vt, ht, Probfxt C E(ht)IE(ht)fnPt .0} 1.

Proof of Lemma A2

Given o, define the strategy profile & in the following way. At t = 0, draw a permutation

p : {1, ... , N} -* {1, ... , N} uniformly at random. Then play in & is identical to o-, except

that agent i is treated as agent p(i).

Because agents are ez ante symmetric, & generates first-best surplus. If

lim supte, maxi Q' < oo under -, then

1N
lim sup ni lim sup - Qt < oo

t-+o, t-+0x N i

Vi E {1, .. , N} under &. Define E(ht) {i c {1, ... , N}j]t' <t s.t. xt' =i, yt' yH} as the

agents who have produced yH at least once in history ht. Then Vi C {1, ...,

1N
Prob,{xt = ilht s.t. i E E(ht)} = N E Prob,{xt = jiht s.t. j c E(ht)}.

j=1

Therefore, every i C E(ht) is treated syrunetrically, as is every j ( E(hW).

Next, define strategies & in the following way. Like &, draw a permutation p uniformly

at random at t = 0. In each round, the allocation rule assigns production to an agent in

E(ht) whenever possible:

Pt n E(ht) - 0 -+ i = arg mini, p p(i)
xt E i|.(1.26)

Pt nE(ht) # 0 -+ i = arg miniEpfnE(ht) pi)

Agents always choose dt =-B = 1. Transfers are wi,t - -i,t = 0.

We claim that if lim supts, maxi Q < oo under &, then lim supts, maxi Q < oo under

o. Under both strategies,

Prob&{xt - ilht s.t. i C E(h t )} = Prob&{xt = jht s.t. j c E(ht)} (1.27)

for all i, j, so ] Q, Q such thatVi C {1, ..., N}, t and n= .
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Denote by Et' C 'N the event that m agents have produced YH by time t; then

1 1
On' -IProba{xt E E(ht)|Ej} < -- Prob{xt C E(h t )jE"j}.' rri rn '

Because a^ and & are symmetric, Prob{i E Et(ht)|E"} = for both strategies.

can explicitly write #f and #hL for &:

#t WProba{ t4;

N-I

3L E Probf{E7" 
( - F(0)

N
-m

Now,

Proba{Et2} = [F(0) + (1 - F(0))(1 - pi)] Proba{Et_ 1}

and

Probf{E7} =

4 1 Prob{Ejn1 } + (1 - F(0) - 4;")(1 - pi)Prob{Et"1 } + (1 - F(0) - 4')pProb{Ein 1}

because & attains first-best.

To show that lim supt, n2 > lim supfu() Q, by (1.28) we need only show that obligation

decreases in 4;. In (1.25), obligation is a smooth function of 3f and #/, and hence {;},,

so we must show < 0 Vt, t' E N, m E {1, ..., N}.

Using (1.11) and repeatedly substituting for Qt-1 yields

tt1 & C- I aQt'+1
+ t=1

1

a # t- so

a H
aqtil

1 6 )VFB).

EN f1-F(0)
k=1 \N

- Prob{E }

0
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Then we

V

a/#f

.(1.29)

-Lk kcProba{Et}
N t ) a p M if t' = t

if t' t

t,> t



H9$

E:N k8t Prob {Et}
I t/

Probf{E }

0

if t' < t

if t' = t -

t' > t

Because & is symmetric and limto Proba{f = 1, + #t = I-F and E"i p 0 .

Differentiating the first identity gives us that

9
#90ti - #lH

while differentiating the second gives us . #0 =- E F0t+ 1  . Hence

t = (pi r + (1 - 6)VFB) m t-1-
t-1 (mt-1

The~ ~ ~ 0 fac tht#,=-Et+ L# (and a t < 0) implies that

'9 < - s " <-a>g t' '9

(1.30)

(1-31)

(1.32)*-t #9
s1

where we have used the fact that o#f > 0 for s > t. Together, (1.30) and (1.32) imply

that

-t(1 ( a#_p 165 - 0 #t_,(1 - 6)VFB)

(p16 + (1 - 6)VFB) t-t-1 t aL _pl$ + (1 - 6)VFB)

If we plug this expression into (1.29) and apply (1.31), we finally conclude

(1.33)

a = -p165 + (1 - 6)VFB t + ± 1

precisely as we wanted to show. U
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Completing Proof of Proposition 3

By Lemma A1, we need only show that limt+, Qt =o if the Favored Producer Automaton

does not attain first-best. Define F"= Epipn{1....}$ F(P) as the probability that at least

one of a set of m. agents can produce.

Under the allocation rule (1.26), we can explicitly calculate > - as the probability

that an agent is given production if he has produced yH in the past and m - 1 other agents

have also produced yH in the past. Plugging #3f arid #fH into (1.25) yields

-1 1 ( N 1 - F(0) - F"l*) - (1 F"
C'= E 15k 1 Prob{ Et_1_k} p165 NFk=0 m=0 (

This expression is positive and strictly increasing in S because 1 - F(0) - F"' > 0 with

equality iff m = N. Therefore, if IS* such that limtx Qt = C for some C E R, then

limt,, Qt = oc for any 5 > S*.

Any two strategies with identical {#f }t and {#3"}t have identical {Qtt}. Whenever pos-

sible, the Favored Producer Automaton allocates production to agents who have already

produced, so has the same obligation as & from Lemma A2. Let SG be agent i's surplus im-

mediately after he produced yH in the Favored Producer Automaton. If obligation converges

when 5 = SG, and production is allocated as in the Favored Producer Automaton, then it

diverges for 5 > SG and the proposition is proven.

In the Favored Producer Automaton, at an ht where xt = i, yt = yH, agent i's future

surplus is

6 SG E 1 )VFB 6t'bt+t'lt (1.34)
1 t'=1 .

where bt+t' - 1 (xt+t' = i, ]t" < t + t' s.t. xt" i, yt" = yH}. Let (t 1{xt i; Vt' < t, xt,

i -+ yt, = 0}. Because (1.34) holds at every history ht where xt = i and yt = yH, we can

write

6SG = E (1 - 6)VFB 6tbt+tlht s.t. yt YH, (t = (1.35)
t'=1

for any ht where xt = i, Yt = YH. Because e = 1 at every on-path history, Prob{yt

YH t 1} = p. The event {(t = 1, Yt = YH} can occur only once, so we can manipulate

(1.35) by taking expectations amid applying the Law of Iterated Expectations and dominated
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convergence to rewrite

00 -ool

6SG(6 t 3 =(1-6)VFBE Z6t bj . (1.36)
t 1 .t= I -

Using dominated convergence to interchange summation and integration and noting that

E[be] #H, we have

P1:Sc S 0' - (1 - 6) VFB 5 6 k/3 = 0.
k=1 k=1

Hence, by definition of Qt, if production is allocated according to the Favored Producer

Automaton, then lime-.oo 6tQt = 0 when S = Sc.

Finally, suppose 5 SG. Then by (1.25),

Q- = (1 -6) VFB 5 6kk - _pl6SG 6 L
k=t+1 6t k=t+

In any first-best equilibrium, f3 -+ 0 as t -+ oo, so the second term in this expression

vanishes as t -+ oo. limteo ,H3 = ' due to symmetry, so

1
lim Qt = VFB6

t-+oo N

so obligation converges at 5 SG. Thus, for 5 > SG, obligation diverges to 0, which

implies by Lenma Al that first-best cannot be attained. But for 5 < SG, the Favored

Producer Automaton attains first-best.

Finally, we argue that ] open A - [0,1] such that for 6 E A, the Favored Pro-

ducer Allocation attains first best but a stationary equilibrium does not. Let 6 stat solve

(1 - 6 stat) ,c, = 6StatyVFB. Proposition 2 implies that a stationary equilibrium attains

first-best iff 6 > 6 Stat, and Assumption 3 implies that 6 Stat > 0. Since both sides of (1.6)

are continuous in 6, by Lemma 2 it suffices to show that for 6 = 6 Stat, the Favored Producer

Automaton satisfies E,.[ Si (ht+1)I (h-1, I (nt)) > A VFB at any (ht-, nt) immediately

following yt yH such that xt = i and et = 1. At any such history, i knows with certainty

that he will be assigned rank 1 next period. Further, if we take r ,t to denote the rank of
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player i at the start of round t in the Favored Producer Automaton, then for any on-path

history ht, E [S (ht) h'] = E* [S (ht)I ri,t]. By Assumptions 1 and 2, E,. [Si (ht)| rit] is

strictly decreasing in ri,t since ri,t < rj,t implies both that Prob {xt = i} > Prob {xt = j}

and that Prob {ri,t+t' < rj,t+t,} > 1 for all t' > 0. Since I E, [Si (it+1)| ri,t+1] = VFB

E,- [Si (htl+)|ri,t+1 = 1] > AVFB, and so (1.6) is slack in the Favored Producer Allocation

for 6 = 6stt. This proves the result.E

Proposition 5

In Appendix B, we prove that the payoff set FD(6) is recursive. Let FDP(6) be the Pareto

frontier of FD(6). By definition of a full-disclosure equilibrium, agent xt chooses et = 1 and

produces Yt = YH immediately preceding history (ht-l, nt) if and only if

(1- , c < 6E [Sx(ht)Iht-1, n. (1.37)

Let o-* be an optimal full-disclosure equilibrium, and let VEff =S (a 0) + S2 (a*, 0) be the

total surplus produced in o*. Define a = F({i})+F({1, 2}), and note that F({i}) = F(0)-a.

Claim 1: Either VEff - YHPO, or Vht on the equilibrium path such that in each

t' < t, either et, = 0 or yt, = 0, Probs {et+ = 1|ht} = 1. Let ht be a history such that

such that Yt, = 0 Vt' < t.

We first argue that j= Si(ht) = maxvEFD(6) V 1 +V 2 . If not, then ] a FDE & with strictly

higher surplus than o*(ht). Consider the alternative strategy & that is identical to o* except

at history ht, at which &(ht) = . Then a generates more surplus than &* and satisfies

(1.37). Contradiction.

If (1 - 6 ) PPO > a(yHp1 - c), then (1.6) cannot hold and VEff = YHPO. Otherwise,

Proposition 4 gives a full-disclosure equilibrium with surplus strictly larger than yHP0- In

this case, I ht such that either et = 0 or yt, = 0 Vt' < t and ]i E {1, 2} such that

Prob,* {et+1 = 1|ht, xt+1 = i} > 0. Let (ht, nt+1) be the history immediately following xt+1 =
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i, et+1 = 1, and yt+1 = YH- Then

2

(1-6(yHf1 - c) + 6p,1 E [Sj (ht)|Ih"~, n~t + (1 -p1)6VEf f > (1 - 6)yHpo + 6VyEff (-8
j=1

since otherwise VEff - (1 - 6 )yHPO + 6VEff, which contradicts VEff > YHPO. Let S(ht+1)

be the continuation payoffs following (ht, nt+1).

Consider a strategy a that is identical to o* except after history ht. Let

Prob, {et+ = Iht, Pt+1 4 0} = 1. Following h1t, if yt+1 0, Oa continues with a FDE gener-

ating VEff. if Yt - YH, continuation dyad surplus is S(ht+1) if xt i and (S 2 (ht+1), Sl(ht+1))

if xt / i. These continuation payoffs are feasible because players are symmetric. Then a

satisfies (1.6) and generates strictly higher surplus than a* by (1.38). Contradiction.

Set-Up

Consider a full-disclosure equilibrium c, and let (ht~, nt) be a history satisfying xt = i,

Ct= 1, and yt - yH- Let S e R2 be a vector of dyad-specific surpluses in the continuation

game. Let ht be an equilibrium successor history to (ht-l, nt).

We consider a FDE that maximizes total continuation surplus such that i-dyad surplus

is no less than $5. Such an equilibrium must solve

oo

max E 6t'(1 - 6)E [ui,t+t' + U2,t+t'I ht- 1, n (1.39)
1I,t+t' '2,t t'+ / _1

subject to the constraint that E [ui,t+t' + U2,tt'17-1 be feasible and Vi E {1, 2},

00

6t'(1 - 6)E [u,t+t'I ht- 1, nt]± Si (1.40)

EC i6"~' (1 - 6) E [u.,+s, ht+- 1, nt+j] >5

Vt, (ht+ - 1, nt+j) s.t. ets; = 1, 1yt+[ = YH

Where (1.41) follows from (1.12).

Define

{V1 < t', = -i - (et+i - 0 OR, yt+i 0), ht} (1.42)
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as the event that {xt+f = -i, et+i = 1, Yt+i = YH I has not yet occurred in any round after ht,

and let L'+t' {Lt+t'}c be the complement of this event. Define

At+t= Prob, {eiqtt = 1|Xt+gt

bt+ = ( xt+te = -i, e-ingt = 1,)

i, Li+' }, /3t+, = Prob, {xt+et

Lt+t jand note that

t'-1

Prob, {Lt' } = E Prob, {bt+t } Pi.
k=1

(1.43)

Define (S*t, St = St*+ by

Si, =E 6*(1 6) E ( [U., t+s ht, bt+ t, yt+t = yH

and note that

E [ui,t+tt ProbI {LL _ } = (E [uj,t+vtIbt+.s Yt+s = YH] Probfbt+s, Yt+s YH}
s-i

because the events {bt+s, Yt+s - YH} for s E {1, ..., t'} partition the event Ltt'. Consider

a relaxation of the problem (1.39)-(1.41) that ignores constraint (1.41) for player i, and

replaces this constraint for -i with the weaker set of constraints

Z 0
6 8-t(1 - 6)E [() +8,tAs bt+, I yt+i = yH] ~s* >-i,t+t

S c*+i G FD(6)

The first constraint is a relaxation of the true constraint (1.41), while the second is implied

by (1.41). Manipulating the problem (1.39)-(1.41) yields the following relaxed problem:

max E 5f
ft+t' >et+t t! /It'=1

(1 - 6) [E [unt+t/iLt+t'
j=1

Prob, {Lt+t } + ot Prob, f{bt+t,, yt+t = YHlS jt+t1

(1.44)

subject to:

1. Promise-keeping constraints for agent j E { 1, 2}

-6) [E [ujttILt+t'I Prob, { Ltt' } + 6t'Prob,{bt+vt, yt+t = YH }Sjtt] > j -

(1.45)
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2. Constraint (1.37) holds if event Ltt' occurs:

S:it+t, > S, Vt'> 1. (1.46)

3. Continuation play after L"tt' must be a full-disclosure equilibrium:

St*+t, c FD(5), Vt' > 1. (1.47)

Claim 2: Without loss of generality, S*,t+t, = S* and S*,t+t, = S2, Vt' > 1. Let

a solve (1.44)-(1.47) but not satisfy Claim 2. Consider strategies identical to a, except

that whenever event bt+t' occurs, continuation play generates surplus S* = (S*, S2), where

S* E arg maxVCFD(6) =20 V subject to

1 Y 0
S= otr 6bProb,{bt+t' ,t+t' = yH } St,

Et1=0 6tProb,{fbt+t' , yt+t' = Y H t'=0

Si is the limit of a sequence of convex combinations of FDE payoffs. FD(6) is bounded,

closed, and convex as a corollary of Lemma 2, proven in Appendix B. Therefore, S* E FD(6).

Finally, if the original {S>t+t,} solved the relaxed problem (1.44)-(1.47), then so does S*,

which proves the claim.

Return to Derivations

Recall that xt = i, et = 1, and yt =YH in round t of ht+1. Therefore, Si > S. Relax

the problem (1.44)-(1.47) by ignoring (1.45) for agent -i. Furthermore, while {#t+t'}t' and

{ Prob, {bt+t' }} are closely related to one another, we relax the problem further by allowing

these two sets of variables to be chosen independently. Total surplus increases and all

constraints are relaxed when #t+t' increases, so it is optimal to choose #t+t' = a Vt'.

Under this further simplification, and following much manipulation (omitted here for

56



brevity), the relaxed program may be written

CV6 (YH (P1 - P0) - c) + 6yHPo+

max ((1 -6) (yH (p - P0) - c) + 6p1 (S* +S) -J 1 t'Prob,{bt+t, (1.48)
{Prob f{bt±,}} ,S[,32

(6a (YH (P1 - PO) - c) - 3 YHPoP1) Et 1 'Prob,{bt+t }

subject to the promise-keeping constraint

no

65 < a6 (YHP1 - C) + 6 P1 (S - a (yHP1 - c)) t 1t'Proh,{bt+} (1.49)

and the equilibrium constraints

Si > 5, S*a full-disclosure eq'm (1.50)

Effectively, this problem has three choice variables, Et 1 6t'Prob,{bt+t, } S*, and S*.

Si a(yHP1 - c) because a(yHp1 - c) is the maximum continuation surplus that can be

given to agent i, and S* is optimally on the Pareto frontier of FD(6). Therefore,

6 a(yH(Pl - PO) - C) + 6 YHPOPI 6a(yHP1 - C) + 6(1 - a)yHPO - S1 + 52

because 6 a(yHP1 - C) + 6(1 - a)yHPO is the value of exclusive dealing with a single agent and

thus the smallest Pareto-efficient payoff. Thus,

((1-6) (YH (P1 ~ P0) - C) + 6p 1 (1 + 2) - 6  (yH (P1 - PO) - C) - 6 YHPOP1) > 0-

The maximal feasible value of E 1 6t'Prob, {bt+t, } that satisfies (1.49) solves this problem.

Next, we show that (1.49) binds at the optimum. Some value of E 6t'Prob,{bt+gt} makes

(1.49) bind, so it suffices to show that some strategy attains this value. Let SG and SB

be dyad-specific payoffs in the good and bad states of the Favored Producer Automaton,

respectively. Because first-best cannot be attained, S > SG. S* > S5 so Si < VFB-5 < SB.

Because S, > 5, (1.49) is violated when 3t+t, = a, 4't+et = 1 always; otherwise, the Favored

Producer Automaton would induce high effort and thus attain the first-best. Additionally,
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(1.49) must be satisfied when E _'t'Prob,{bt+t,} 0, since otherwise S, > a(YHP1 - c), which

is not feasible.

Consider the following class of strategies. Agent i chooses et+t' - 1. With probability

q, agent -i chooses et+t' = 0, Vt'; we will henceforth refer to this continuation strategy as

"exclusive dealing with agent i." Otherwise, agent -i chooses et+t' =1 Vt' until bt+t' - 1.

In either case, #t+t' = a until bt+t' = 1. Once bt+t' - 1, continuation play generates fixed

surplus S*. For this class of strategies, agent i's dyad-specific surplus V4 is given by

Sq = a [(1 - 6 )(YHP1 - c) + 6 (qa(yHp1 - c) + (1 - q) + (1 - a) [6P1 i + O(1 - p1 0.

Rearranging this expression, we immediately show that S' is continuous in q, with limq- 1 Siq

a(yHP1 - c) and limq..+o Sq < VG. By the Intermediate Value Theorem, there exists a q* such

that S S = . 3 t+t' = a in this class of strategies, so the value of E 6t'Prob, {bt+t,} corre-

sponding to q* makes (1.49) bind.

Finally, the Pareto frontier is downward-sloping, so if (1.49) binds then the promise

S_ must also be satisfied or else S is infeasible. Fixing continuation play S*, the class of

equilibria characterized by (qi, q2)-Exclusive Dealing solves the relaxed problem. It remains

to show that qi = q2 = q* at each relevant history ht+1.

Claim 3: Fix the vector of dyad-specific surpluses (SI, S2) at history ht+1. ] a

solution (S 1, S2) to (1.48) subject to (1.49) and (1.50) such that (Si, S2) (S1 , 52)

and S* S. Define SEff,i (ZEffi g ff,i) by

SEff,i - arg max 14
VEFD(6)

subject to

SEff + SEffiS ' VE ff

There are two cases to consider: (1) Si ;> 5, or (2) Sf f's <
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Consider case (2). In this case, S* + Si is decreasing in S*; because the payoff

frontier is convex. Let

5* = arg max v2
v6FD(6)

subject to

v1 = S.

Define Q = 6> ot' Prob, {bt+t }. Let (Q, S*) satisfy (1.49), and consider an alternative

(Q, S*), where Q chosen so that (1.49) binds. Now S < S*, so S* + S* 2 S* + Si because

FD(6) is convex. Moreover, 5* > Si because the Pareto frontier of FD(6) is downward-

sloping and 5*. < S*i , so (1.49) continues to be satisfied. If S7 - S;, then 5*. > S*,

Q = Q, and (Si, S 2 ) < (S 1 , 52 ) follows immediately. If S' > Si, then Q > Q, which

further increases total surplus (1.48). Moreover, because (1.49) binds in both solutions,

Si = S = S, and so S*i > S* because S* + S* 2 S* + S2. This proves the claim in case

(2).

Consider case (1). I claim that case (1) contradicts the assumption that first-best

cannot be attained. By claim 1, e = 1 in the first round, and so we must have

VEff = (1 - 6 )(yHP1 -- c) + 6VEff

which implies that VEff = YHp1 - C = VFB. Contradiction.

Final Steps

By claim 3, the optimal equilibrium awards player i with exactly S surplus following (xt = i,

Ct = 1, Yt = YH) regardless of the rest of the history h'. Together with previous results, we

conclude that (q*, q*)-Exclusive Dealing with q* chosen so (1.6) binds is a solution to the

relaxed problem. This is an equilibrium, proving the claim.E
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Proposition 6

It suffices to show that I a relational contract that conceals information and is strictly better

than the optimal full-disclosure equilibrium. Define a F({ 1}) + F({1, 2 }).
By Proposition 5, ]q* c [0, 1] such that q*-Exclusive Dealing is an optimal full-disclosure

equilibrium. By (1.13), q = I would gives players strict incentives to work hard; because

first-best cannot be attained, q* E (0, 1). For any e > 0 such that q* - e E (0, 1), define

(1 - q* + eOpi <P.
(1-q* + c)pi + (1 - p1)

Note that ] q(c), q(c) such that 1 > -(c) > q(c) > 0 and O(c)q(e) + (1 - q*.

We construct a relational contract that conceals information; by Lemma 2 and Corollary

??,it suffices to specify an information partition, allocation rule, accept/reject decision, and

effort choice. In t = 1, x 1 E P1 is chosen randomly and di = ei = 1. Without loss of

generality, let x1 = 1. In t = 2, agent 2 remains uninformed of y1 with probability 1 if y1 - 0

and with probability 1 - q* + c if yi = yH. If 1 E P 2 then x2  1, otherwise agent 2 is given

production whenever possible. If x 2 = 1, then d2 = C2 = 1. If x 2 = 2, then d 2 = 1, and

e2 = 1 if and only if agent x2 was not informed of yi. From t = 3 onwards, the continuation

equilibrium is chosen from the full-disclosure Pareto frontier. Let V' E FD(6) be the full-

disclosure payoff that maximizes agent i's payoff among all optimal full-disclosure payoffs

(that is, those which maximize total surplus), and VEx, E FD(6) be the continuation payoff

when i is given exclusive dealing: VEx,i - a(yHp1-c) and Vi (F()-a)yup0- If x 1 = 1,

then the continuation payoff VEq(Y 1, Y2) E FD(6) is chosen identically to the optimal full-

disclosure equilibrium. If x1 = 2 and yi = YH was revealed to 2, then the continuation

payoff is VNEqL(y 1 , Y2) - VEx,xi. If xi = 2 and yi was not revealed, then the continuation

payoff is VNEq,H(Y 1 , Y2), where VNEq,H(O, ) VNEq,H (yH, 0) yzi vNEq,H (YH , YH) -

q(e)VExx2 + (I - q(c))Vx2, and VNEq,H(0,YH) - (VExx2 + (1 - yc( VExx2.

By Lemma 2, we need only show that (1.6) holds for the agents at each history. For t > 3,

the continuation equilibrium is full-disclosure and so this inequality holds by definition. In
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round t = 2 and x 2 =1, this constraint is

5 < (q*VEx1 + (1 - q*)V x)

which holds because

revealed, then C2 = 0

Prob, {y1 = yH h2

Y2 = YH is

q*-Exclusive Dealing is an equilibrium. If x 2 = 2 and Y1 = YH is

and so (1.6) does not apply. If y1 is concealed, then agent 2 believes

d/(c). Therefore, agent 2's expected continuation surplus following

#(e)VNEq,H(yHyH) + (1 - (q))NEq,Lx + (1 -- 1*YHx* >

where equality is follows from the definition of VNEq,H, q, and q and the inequality is a result

of agent symmetry and (1.51).

Next, we check 1's incentives in t = 1. Following y1 yH, 1 believes he receives continu-

ation surplus

(1 - 6)a(yHp1 - c) + (q * - )jViEx,'1

S 1 (yH, C) (1 - q* + c)a6 (p, [(1 - q*)V,1 + q*ViEx,1 i1 + (1.52)

(1 - a)(1 - q* + ) (p1 (q) V1Ex,21 - q())V

Because q(() < q* and V1Ex,2  1

pi(q(e)VEx, 2 + (1 - q(e))V 2 ) + (1 - pi)V 1 > p1(q*V1Ex - q*) 2 ) + (1 -p)V 1
1

so

(1 - 6 )a(yHpl - c) + (q 1Ex 1

Si(yH, c) > (1 - q* + c)a6 (p1 [(1 -q*)V 1
1 + q*VlExu1 + (1 - pl)V1) +

(1 - a)(1 - q* + c)6 (p1(q*V1Ex 2 1 - q*)V

The right-hand side of this expression is continuous in e and equals q*VEx,1 + (1 1

when c = 0. Hence, S1(yH, 0) > 5 by (1.51), and so -c> 0 such that S1(yH, C) S.

It remains to show that an equilibrium with such an c generates strictly higher surplus
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than q*-Exclusive Dealing. In t = 1, total surplus in both equilibria is (1 - 6)(YHPl - C). In

t = 2, the equilibrium that conceals information generates strictly higher surplus, since

(a + (1 - a) (1 - pi + (1 - q* + e)pi)) (yHpi - c) >

(a +,(1 - a) (1 - pi + (1 - q*)p1)) (y Hp1 - c)

because c > 0. In the continuation game starting at t = 3, the equilibrium that conceals

information has total surplus

aE [V1Eq(Y 1, Y2) + VEq(Y1, Y2) 1 -2 1 + (1 - a)p1(q* - 1Ex +

(1-a) (1 - pl (q* -))(q*(1, E2 - * (V2 +22

On the other hand, q*-Exclusive dealing has continuation payoffs

aE [V1Eq(y 1 , 2 + (2Eq(y 1 , 2e= 1 - a)pq*(VEx,1 + V2Ex1)+

(1 - a)(1 -piq*) (q*(v 1Ex
2  

2Ex 2  - q*) (V 2 + V2

Comparing these payoffs, we find that the concealing-information equilibrium dominates

the optimal full-disclosure equilibrium so long as

- 7Ex,1 + Ex,1 Ex,2 Ex,2 2 ) 2

-( 1El+VEx) + (q *(VIEx~ + V2Ex 2 + (I - q*)(V 2 ± V)

which holds because V71Ex,1 ±Ex,1 VEx,2 Ex,2 < V 2 + V2. Thus, we have found an

equilibrium that is strictly better than the optimal full-disclosure equilibrium. U

Lemma 4

It suffices to show that in each round, players' strategies are best-responses in the game

where all variables except c are publicly observed, since messages reveal the true history

along the equilibrium path. By construction, the agent is willing to choose e = 1 if the

IC constraint holds. Given that agent surplus is U - 7VG following high output and the
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principal's payoff is (1 - 7)VFB in any first-best equilibrium, we have

p1[(1 - 7)VFB + G] - (1 - 6)C > po 6 (l - )FB VGI

which can be rearranged to yield the condition

(1- 6) c _ 7)VFB +7V
6 1 - po

In each round, the agent awarded production earns -y(1 - 6)(YHP1 - c) and the principal

earns (1 - 7))(1 - 6 )(yHp1 - c), so Assumption 4 is satisfied. If players follow the message

strategy, the principal is willing to follow the allocation rule and pay r(yH) ( 1 ~FB

since any deviation is immediately revealed by messages and mutually min-maxed, leaving

the principal a payoff of 0. Similarly, agent i is willing to pay 1-7yVG if favored and 167yVB

otherwise.

Finally, we must check that messages are incentive compatible. Any unilateral deviation

is immediately observed because the producing agent and principal send identical messages in

each period. Thus, any deviation is punished by mutual min-maxing, yielding a continuation

payoff of 0. Hence, no player has an incentive to deviate from the prescribed message profile

and these strategies form an equilibrium. U

Proposition 7

Claim 1: Obligation is the Correct Notion

We closely follow the proof of Proposition 3. Given strategy 0- that yields first-best surplus,

define the residual expected obligation for player i as

n -= + s3'pi6(5S- (1 - 7)VFB) [([(1 - 6)7(yHp1 - c) (1.53)
6

We first claim that if lim supt, Q = 00, then the strategy a cannot form an equilibrium

that attains first-best.

Under Assumption 4, continuation surpluses for agent i and the principal at on-path
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history ht are

U (h') =VFBE, L 0 t'(1 - 6) I,t+t' I ht
t'=o

UO(h t ) = (1 - Y)VFB

respectively. Therefore, the necessary condition (1.14) can be rewritten

(1-) 6E (- Y)VFB ± FB 6'( - 6)li,t+t (h', t, YH) (1.54)p1 -O poI t'=0 t )

where nt = (Pt, xt, wi,t, dt = 1, et = 1) E I. As before, consider the relaxed game where

(1.54) must only hold the first time each agent i produces yH- Define b (h ) as in (1.21);

then we can write (1.54) as

bj(ht)pioS < bj(ht)pi6E, (1 - 7)VFB + FB 6t'( - ) i,t+t' (h t, YH)1

which can be rearranged to yield

bi- (1 - r)VFB) < b.(ht)pi6E, HVFB I it'(I - ) i,t+t nt, YH)]
DPAS (I -- Y~v t 17 t'=0 X

This expression is nearly identical to the corresponding inequality (1.22), with the sole

exception that the obligation incurred upon production is S - (1 - -)VFB rather than S. A

stationary equilibrium attains first-best if 5 -(1 -)VFB _ 0. If V - (1 _Y)VFB > 0, then

an argument identical to Lemma Al proves the desired result.

Claim 2: Business Allocated to an Agent who has Already Produced

Next, we argue that Lemma A2 holds for Q: that is, lim supt,, Q < 00 for first-best

strategy o only if lim suptoo0 $t < oo for first-best strategy & that (1) randomizes agent

labels at the beginning of the game, and (2) awards production to an agent that has already

produced YH whenever possible. Result (1) follows by the same argument as in Lemma A2.

For Result (2), S - (1 - Y)VFB > 0 is independent of the allocation rule, so the only

difference between this argument and the proof of Lemma A2 is that the final term in (1.53)
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is multiplied by 7. Performing the same set of manipulations, we can show

MQ
(p($' - (1 - )VFB -yVFB . L

(p( -(1-,)VFB) + ( 6)VFB) t-t'-1 Lt-

which is negative by (1.33), proving the desired claim.

Claim 3: limt- 0 0 Qt oo if the Favored Producer Automaton does not attain

first-best

Finally, we prove the proposition by arguing that Qt -+ oo whenever the Favored Producer

Automaton does not generate first-best surplus. We follow Proposition 3: in this context,

the Favored Producer Automaton gives agent i continuation surplus

6V = -E (1 - 6 )VFB 6t'bt+t,Ihtl
t'=1

as in (1.34). Manipulating this expression to resemble (1.36), we have

p6 60 00

PP:S k3k _ (1 _ 6) ,YVFB 13 6 kOH -0.

k=1 k=1

In order for the Favored Producer Automaton to attain first-best, it must be that SG <

S - (1 7)VFB Plugging SG ~-- (1 ~7yVFB) into a non-recursive expression for residual

obligation, we yield

6t Q + p16 (S - (1 -)VFB) E -(1 6) yVFB 6 k3I 0
k-t+1 k=t+1

and hence

h = (1 -6) yVFB k: tH _ P16 (S _ (1 _ 7)VFB)
k=t+1

6kL

k~t+1

In any first best equilibrium ## -+ 0 as t -+ oo, so the second term in this expression vanishes
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as t -+ c. limt_.,3' - I- due to symmetry, so

lim Q = VFB64
t-+00 N

and this lower bound on obligation converges at S - (1 - S)VFB gG, which proves that

At -+ c for any larger S, as desired.E
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Chapter 2

Attaining Efficiency with Public

Monitoring and Markov Adverse

Selection

2.1 Introduction

Many economically interesting settings entail both moral hazard and adverse selection prob-

lems. Collusive firms have private information about their costs and imperfectly observe

their opponents' pricing decisions; a boss motivates her workers without knowing the oppor-

tunity cost of their effort or the profitability of the activity; a regulator enforces pricing rules

to maximize welfare, but does not observe all actions taken by a monopolist or underlying

market demand. Moreover, private information about players' utility is frequently persis-

tent, so players have different beliefs about both present and future payoffs at any given

time. The purpose of this paper is to take one step toward the analysis of these situations

by proving that nearly efficient payoffs can be obtained with patient players in games when

one player has Markov private information about her payoff and monitoring is imperfect

but public. More precisely, any payoff in the interior of the convex hull of Pareto efficient

and min-max payoffs can be approximated by an equilibrium for patient players. The proof

partially constructs a class of equilibria and sheds intuitive light on the underlying structure
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of these games.

In recent years, a growing body of research has focused on dynamic Bayesian games with

persistent private types. When utility is transferable, players can commit to actions, and

private information is Markov, Athey and Segal (2012) construct a dynamic team mecha-

nism that implements an efficient allocation rule and can be replicated in an equilibrium of

the game without commitment. In work that is closely related to this paper, Escobar and

Toikka (2012)-henceforth referred to as ET-prove a similar efficiency result for a general

class of games with observable actions and Markov private types. Building upon an idea

proposed by Jackson and Sonnenschein (2007) and applying it dynamic mechanism design

problems with Markov private types, ET show that this mechanism can be replicated by an

equilibrium using Fudenberg and Maskin's (1986) "carrot-and-stick" punishments. I also use

Jackson and Sonnenschein's idea, albeit in a simpler mechanism design problem with one-

sided private information. Because monitoring is imperfect and hence harsh punishments

would lead to inefficient payoffs on the equilibrium path, I cannot use ET's techniques to sup-

port this mechanism as an equilibrium. Instead, I modify Fudenberg, Levine, and Maskin's

(1994)-henceforth FLM-and Fudenberg and Levine's (1994) analysis of repeated games

with imperfect public monitoring to show that continuation play can be used to approximate

transfers when players are patient.' Renault, Solan, and Vieille (2012, henceforth RSV)

show that efficient payoffs can be attained in dynamic sender-receiver games with perfect

monitoring where the sender's type affects both players' utility. Adapting their argument, I

partially extend my result to some games in which player l's type affects everyone's payoff.

Two fundamental problems complicate the application of FLM to a game with Markov

adverse selection. First, the player with private information must report in such a way that

the resulting payoffs are approximately efficient. I initially focus on this adverse selection

problem, demonstrating that nearly efficient payoffs can be obtained via a dynamic mecha-

nism without transfers when players are patient and can commit to actions as a function of

the reported type. Given this result, I turn to the problem of enforcing the correct actions

in equilibrium. Here, the difficulty is that a player's private information informs her beliefs

'In independently-developed work, Horner, Takahashi, and Vieille (not yet available) extend Fudenberg
and Levine (1994) to games with Markov private types.

68



about continuation payoffs. If naively designed, a punishment harsh enough to deter all

types from deviating might lead to quite inefficient continuation play, even when players are

patient. I use the fact that the private type in each round is not very informative about

payoffs in the distant future to sidestep this problem. Because types evolve according to a

Markov process, all players have approximately the same beliefs about the distribution of

types in the far future, so rewards and punishments in these distant periods can be precisely

targeted to provide incentives without being excessively harsh. In order to identify a poten-

tial deviator, the distribution of public signals must satisfy a "pairwise full rank" condition

that is qualitatively similar to, but somewhat stronger than, the condition required by FLM.

The proposed equilibrium breaks the infinite-horizon game into sets of K blocks of T

periods each. Within each T period block, actions correspond to a fixed allocation rule and

the player with private information is given a "quota" for the number of times she can report

each type. This technique of breaking an equilibrium into finite-length blocks is used by ET

in games with Markov private types; earlier work by Radner (1981, 1985); and Matsushima

(2004), Sugaya (2012), and others in the context of games with imperfect private monitoring.

For T sufficiently large, the distribution of private information within the block-for example,

a player's private types-closely matches the true distribution; in my setting, this implies

that an agent who reports truthfully is unlikely to exceed an appropriately-chosen quota

until the final rounds in the block.2

At the end of each block, a count is made of the number of times each report-signal

pair occurs, and this count determines play in blocks separated from the present round

by jK other blocks, for j E N. Thus, the messages and signals in block 1 influence the

targeted allocation rules in blocks 1 + K, 1 + 2K, and so on. In this way, a deviator cannot

exploit his private information to deviate only when his expected punishment would be mild.

Essentially, each sequence of blocks 1, 1 + K, 1 + 2K, .... is treated as a separate game, where

the private types in any two blocks are approximately independent. Continuation payoffs

are chosen to give linear incentives, so as in Holmstrom and Milgrom (1987) players have

constant incentives at every history within each block to play the desired action. As players

2For games with imperfect private monitoring, the private information is instead the private signal.

Loosely speaking, aggregating these signals across many periods increases precisions and ensures that players

rarely need to engage in inefficient punishment.
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grow patient, the size of each block T increases so that the empirical distribution of types

in that block more closely matches the invariant distribution. K also increases to ensure

that private information in one block has a minimal impact on players' expected rewards or

punishments for actions taken in that block.

In addition to providing a bound on equilibrium payoffs when players are very patient,

this proof sheds intuitive light on the interaction between moral hazard and Markov ad-

verse selection. Critically, delay can be beneficial if private information decays over time; by

postponing a punishment, a player can more precisely target a desired level of utility and

mitigate the need for unduly harsh penalties. Hence, an institution that implements punish-

ments after a delay might be more efficient than one that immediately penalizes deviations.

Second, adverse selection problems are mitigated in a dynamic setting. In the equilibrium

presented in this paper, the informed player loses the option of sending an advantageous

message in the future whenever she chooses to send the same message today; her incentive

to tell the truth arises from this tension between her current and future selves. Intertemporal

trade-offs are imposed by a host of real-world institutions, from Ostrom's (1990) analysis

of the graduated sanctions that regulate public goods in many communities to employment

contracts that allow a maximum number of sick days each year.

The rest of the paper is organized as follows. In Section 2.2, I introduce the model and

state the main result as Theorem 1. The proof begins in Section 2.3, where I prove that

approximate truth-telling can be guaranteed when players are sufficiently patient and can

commit to actions. I turn to the game without commitment in Section 2.4, introduce a

notion of enforceability, and use this definition to prove the main result. Section 2.5 extends

the efficiency result to some games in which the private information affects everyone's payoff,

and Section 2.6 concludes with discussion. Full proofs may be found in online appendices,

available at http://economics.mit.edu/grad/dbarron.

2.2 Model and Definitions

Consider an infinite-horizon dynamic game F with N players. Player 1 has a private type

t E 0 = {1, ..., I0 e } with 1 | < oc that evolves according to a Markov process with initial
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distribution v E A(6) and transition probability P(Ot+1|6t). To facilitate players adapting

to the state of the world, I assume that player 1 can send a public message mt C Mt after

learning Ot. After observing this message, players simultaneously choose unobserved actions

ai e Ai with profile a = (ai,..., aN) E A = A1 x ... x AN, which influences a public signal

y c Y with |Y| < oc via the distribution F(yIai, ... , aN). To prevent players from drawing

inferences about the action profile from their payoff, I assume that the utility of player i

depends only on his private action aj, the public signal y, and - in the case of player 1 - the

type 6: u1(a,, y, 6) and ui(ai, y) for i / 1. In Section 2.5, I consider games in which 0 affects

every player's utility. Payoffs are weighted by the common discount factor 6, and player i

seeks to maximize his average discounted payoff

00

U E 6t (1 - 6)ui,t
t=0O

where uj,t is the expected utility of player i in round t.

In summary, the stage game in each period is:

1. A public randomization device de ~ U[O, 1] is realized.

2. Type Ot E e is drawn according to transition probability P(Ot|Ot-1), with i6i < oo.

3. Player 1 observes Ot and sends public message m.t C M.

4. After observing mt, each player i simultaneously chooses an action ai E Aj.

5. Public signal y is realized according to distribution F(yta).

6. Payoffs are realized: u1(a1, y,0) for player 1, ui(ai, y) for i E {2, ..., N}.

Define the expected stage-game payoff for player 1 and i / 1, respectively, as

gi (a, 6) = Ey [ui(ai, y, 0)|1a]

and

gj(a) = E,[ui(ai, y)|a).
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To simplify notation, I sometimes include 0 as a argument of player i's utility, even when i /

1: gi(a, 0). Thus, player i's average payoff in the dynamic game is

E t (1 - 6)gi(at,6t).
t=o

Because A x e is finite, gi : A x e -+ R is uniformly bounded; without loss of generality, let

Ig;i < 1 for all i. Player 1 is referred to as "she," while all other players are "he."

Informally, my main result states that as players grow patient (6 increases), some Pareto

efficient payoffs can be approximated arbitrarily closely by an equilibrium payoff. More

precisely, any point on the interior of the convex hull of Pareto-efficient and min-max payoffs

can be approximately attained for patient players. To formalize this result, I first make an

assumption on the transition probability P(-|-).

Assumption 5 P(6t6t_1) has a unique stationary distribution ir c A().

Assumption 1 holds if P(- -) is irreducible. Under this condition, the long-run distribution

of types is 7, regardless of the current information. Using this fact, I consider the set of

"long-run" expected payoffs that are attainable under the distribution ir.

Definition 8 The set of stationary payoffs is

V Co (v E RNI]a : 0 -- A(A) s.t. Vi, E, [g (a(0), 0)] vi.

Then the set of Pareto efficient stationary payoffs is

PF = {v c V|Vv' c V, if v' > v, then v' = v}.

V is the set of payoffs that can be attained using an allocation rule a : ( -+ A(A) when

the true type 0 is drawn according to the distribution 7r. Dutta (1995) proves that V is

the limit (in the Hausdorff metric) of the set of feasible payoffs in the dynamic game as

6 -+ 1, where this convergence is uniform in the prior distribution v. I focus on the set of

equilibrium payoffs for very patient players, so V is the natural comparison set.
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There are several different ways to define min-max payoffs for each player. Following ET,

the stationary min-max profile for player i specifies a constant, pure-strategy action for every

player except for i, who is allowed to best-respond to the actions of the other players. This

is not the weakest possible notion of min-max, since the action profile can neither depend on

0 nor be mixed. It will also be helpful to define the max-max payoff for player i, which is the

maximum possible payoff i can earn when types are drawn according to 7r. I will typically

refer to these payoffs as the min-max and max-max payoffs for i.

Definition 9 The stationary min-max payoff for player i is

g" min max E,[g (ai(6),a_i,6)]
gi a-iE=A-i at:844Ai

with strategy profile ai,". The max-max payoff for player i is

g," = max E [gi (a(0), 0)].
Sa:8-+A

with strategy profile ai,M3 Let

V'i = {v c Vjv =PE [g(a(0), 0)] where a E {a'"&, a,I for some i E {1, ..., N}}

be the set of payoffs corresponding to min-max and max-max action profiles, and define the

individually rational convex hull of Pareto efficient and min-max payoffs as

V* = {v E Viv E co(PF U V" 7) s.t. vi > g7",Vi}

I prove that every payoff in the interior of V* can be approximated in an equilibrium

as players grow patient. This set need not correspond to the entire set of feasible and

individually rational utilities, since it only includes those payoff vectors that can be written

as a convex combination of Pareto-efficient, min-max, and max-max payoffs.4 Note that only

3 Note that ao,"(0) and aiM(0) are independent of 0 if i y 1.
4 Notice that this payoff set is slightly different from that of Escobar and Toikka (2012), whose result is

for the convex hull of Pareto-efficient and constant actions. I conjecture that my result can be extended to
include the set of all constant actions without incident.
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player l's min-max and max-maie action profiles depend on 0, so a'm and ai',M are constant

for i f 1.

Histories in this game include both the private actions and public signals observed in

each round. For player 1, a history also includes the sequence of past types {1, ..., Ot}.

Definition 10 Define player i's private history in round t as

hi~ - {{t' ,t',1{i =l}, mer ant', ye}, Y .

The set of all player i's private histories of length T is denoted W[, and i = UT EN -i[

The public history in round t consists of variables that everyone observes:

hit = {16i, mtr, yti }t<t .

The set of public histories of length T is WT , with W =UTEN T.

My solution concept is the Perfect Bayesian Equilibrium (PBE). Let pi = (p)ty be

player i's sequence of beliefs p : ti -+ A(0 1), and consider an assessment (-, p) where

o~ = (o~i)iG{1,...,N} is a strategy profile oi : Wi -+ Aj. (o, pt) is a PBE if it is sequentially

rational and t is computed from o- using Bayes rule whenever possible.

For approximate efficiency to be attainable among patient players, continuation payoffs

must be tailored to punish some players while rewarding others. In order to identify which

players should be punished following a realization of y, the distribution of signals must

satisfy a pairwise full rank condition. While not required for the result, I also assume for

convenience that F(yla) has full support.

Assumption 6 Let a : e -+ A be a Pareto efficient, min-max, or max-max strategy profile.

Then VO c 0, F(yja(0)) has full support on Y and satisfies pairwise full rank, defined as
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the following: for any two players i, j C {1,..., N}, define the matrix of signal distributions

F(yila) F(ylyila)

F(yilai - a!, a-i) - F(ylyija= a', a-i)

H (a) - F(yilai - a , aa) --- F(ylyi =ai ai, ai)

F(yila= a, a_) - F(yjyjIa= ajaj)

IAjI JAjF(yifa= a , a_a) -..... F(ylyilaj =a aj)

where {a, ..., A } A. Then F satisfies pairwise full rank at action profile a if Vi, j E

{1, ..., N}, rank(FL.(a)) =|A| + |A| - 1, which is the maximal rank for this matrix.

Pairwise full rank encompasses two intuitive conditions. First, given a_, each of player

i's actions lead to a different conditional distribution F(-| J, a-i). Hence, any unilateral

deviation by player i can be detected and punished. Furthermore, deviations by player i

are statistically distinguishable from those by player j, so that a transfer scheme between i

and j can be designed to deter deviations by either of these players. This second feature is

critical, since it implies that agents can be punished using transfers without a budget breaker

or "burning money."

Assumption 6 is somewhat stronger than the condition assumed by FLM, who requires

only that a single action profile satisfies pairwise full rank. So long as there exists an action

profile with pairwise full rank, FLM show that a dense subset of (potentially mixed-strategy)

action profiles also satisfy pairwise full rank. Unlike FLM, the construction presented in this

paper relies on pure-strategy actions, so pairwise full rank must be assumed to hold at every

action profile.

It is sometimes convenient to consider a T-period truncation of dynamic game. This

finite-horizon game is used in Section 2.3 to demonstrate that a mechanism without transfers

can implement approximate truth-telling.

Definition 11 Define the T-round dynamic game as the truncated game that ends after the
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stage game is played for T rounds, with payoffs

1 - 6 T-1

1 -tg 6Sg(at ,Ot )
t=o

I will refer to the game that has not been truncated as the infinite-horizon dynamic game.

Utility is discounted in the T-round game so that the resulting average payoff is com-

parable for any T. To preview, T-round blocks are the fundamental components in my

constructed equilibrium; agents will be induced to conform to an equilibrium in each block

using changes in continuation play at the end of each block.

The next sections are dedicated to proving the following efficiency result.

Theorem 1 Let Assumptions 5 and 6 hold. Suppose W C int(V*) is a smooth5 set. Then

Vc > 0, 1 P* < 1 such that V6 > * , Vw C W, there exists a sequential equilibrium of the

infinite-horizon dynamic game that generates payoff v* satisfying |1w - v*|| < e.

2.3 The Mechanism

As the first step of the analysis, I consider a mechanism design problem in which players

commit to actions as a function of the history of messages and public signals in the T-round

dynamic game.

Definition 12 The game with commitment has an identical stage game as the baseline

model, but the action in round t is given by M : W x M -+ A that implements action

M(ht-,mt) at history (ht-,mt). Let A ={M : H x M -+ A} be the set of all pure-

strategy mechanisms; an allocation rule is a function a: M -+ A.

5A set W C RN is smooth if

1. it is closed and convex;

2. it has a non-empty interior;

3. at each boundary point v, there is a unique tangent hyperplane Pv, which varies continuously with v.
Thus, the boundary is a C2 -submanifold of RN.
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The mechanism M is defined only in terms of pure strategies, and indeed the construction

presented in this paper cannot enforce mixed strategies in equilibrium. To be willing to play

a mixed strategy, an agent must be indifferent between multiple actions. The type 6t is

informative about continuation play in my construction, so an agent's beliefs about this

type affect his continuation surplus and he cannot be made exactly indifferent between two

strategy profiles.

In this section, I construct a mechanism that targets allocation rule a and gives each

player i a payoff close to E, [gi (a(6), 6)]. Similar to Jackson and Sonnenschein (2007), this

mechanism assigns a maximum number of times that each action a(m) can be played in

the T period game, thereby creating an intertemporal tradeoff for player 1: she forgoes the

option of reporting m c M in a future period if she reports m today. If the allocation rule

a : M -+ A is Pareto efficient, player l's potential gains from misreporting are limited, so

her payoff approximates E, [g1 (a(0), 0)] when T is large.

Definition 13 In the T-round dynamic game, a mechanism M is a T-period quota mech-

anism with allocation a : 0 -+ A if the following hold:

1. Let

Q(6) = floor{T * 7r(6)}

and note that T - Zoee Q(0) E [0, M]. Define the quota corresponding to an announce-

ment 6 E 6 as

Q(03) + 1, j T - EoEe (OI,0j = KoeQ

I Q(6j), otherwise

2. In period t of the T-period block, M(ht~-, mt) a(mt) if Et,,t 1{mt = mt } < Q(nt).

Otherwise, M(ht--1,mt) = a(O6), where

J = argmin j| 1{mt= 0}<Q(6)
i ti<t

A few features of this mechanism will prove useful in the rest of the paper. First, the

sum of the quotas Q(0) add up to exactly T: EOe Q(0) = T. Therefore, every player
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knows the number of times each action a(6) is played; player i / 1's payoff approximates

the weighted average I Ee Q(O)gi (a(O)) as 6 -+ 1. Second, the quota is determined by

the invariant distribution 7r and does not depend on the initial distribution v. I will show

that this mechanism approximately implements the desired allocation rule for any prior v.

Finally, if player 1 exceeds the quota for a given 6, then that message is treated as if she

reported a type with quota remaining. Thus player 1 has no incentive to report any type for

which she has already exceeded her quota.

This mechanism differs from the one used by ET, which tracks the empirical distribution

of reported transitions between types and matches that probability to {P(OtIOt_1)}ot,tie.

If multiple players have private information, players' payoffs might differ substantially from

the utilities targeted by the mechanism if the joint distribution of reports were to differ dra-

matically from the type distribution. For example, a subset of players could coordinate their

reports to collude and increase their collective payoffs, or tailor their messages to previous

reports in the block in order to harm other players. Requiring that reported transitions

match P(GtlOt_1) ensures that different players' reports are approximately independent. In

my setting, only player 1 reports a type in each period and so these issues are riot a concern.

Instead, the game with commitment is a decision problem because only player 1 acts; I use

features of decision problems to prove the results that follow.

The T-period quota mechanism only approximates payoffs from the desired allocation

rule if players are patient and the time horizon is long. Thus, I define implementability as

an asymptotic property when T -+ oo and 6 -+ 1.

Definition 14 A class of mechanisms in the T-period dynamic game implements a set of

allocations A {a : 8 -+ A} if Vc > 0, IT* < oo such that VT > T*, 6* E (0, 1) such that

V 6 > 6*, Va E A, and V prior v, I a mechanism in that class with equilibrium - such that

T -1

E(1 - 6)6 t E, [g (a(mt), 0)] E B (Er [g(a(0), 0)],e).

Proposition 8 Let A consist of all Pareto efficient allocation rules. Then A can be imple-

mented using T-Period Quota Mechanisms.
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Proof: See online appendix.

To prove Proposition 8, consider player l's payoff if she were to truthfully report her type

in each period. If T is large, then the empirical distribution of reports closely matches 7r; as

a result, she is unlikely to exceed her quotas until the very end of the T periods. Truthful

reporting is a feasible strategy, so player l's utility is bounded from below by E, [g(a(6), 0)]-c

for T and 6 sufficiently large. Player i / l's payoff approximates E9,e gr(O)gj(a()) =

E, [gi(a(6))] if T and 6 are large, regardless of player l's strategy. Because a is Pareto

efficient, player l's utility is also bounded above by E, [g(a(O), 6)] + e; otherwise, there

would exist some allocation rule that Pareto dominates a(-). These facts together prove the

Proposition.

When a is a min-max or max-max payoff, I implement it using a different class of mech-

anisms.

Definition 15 The T-Period Unrestricted Mechanism implementing a(6) satisfies:

1. In each round t C {1, ... ,T }, player 1 announces mt E e.

2. The implemented allocation rule is a(mt).

In the equilibrium constructed in Section 2.4, i's min-max or max-max allocation rules

are played exactly when intertemporal incentives cannot be used. When i = 1, the player

must find it optimal to truthfully reveal her type in a min-max or max-max allocation rule

to provide viable incentives for the other players to play the desired actions. Truth-telling

is an equilibrium in an unrestricted mechanism but not necessarily in a quota mechanism,

particularly at histories where player 1 is close to exceeding her quota.

Proposition 9 Let A = {alli C {1,..., N} s.t. a E {a'"i,aMI}} . Then A can be im-

plemented using an unrestricted mechanism, and truth-telling mt - Ot, Vht C 'H, is an

equilibrium of the unrestricted mechanism.

Proof: See online appendix.
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By definition, truth-telling maximizes player l's myopic payoff in a min-max or max-max

allocation rule, so player 1 is willing to truthfully reveal her type in each period. As a result,

1 T

Tim - EE [gi(a(6t),Ot)] =, E [gi(a(0),0)]
t=O

Vi, which proves Proposition 9.

Next, I formalize the intuition that players' beliefs about payoffs in the far future con-

verge. To do so, I introduce a class of i-delayed mechanisms in the (K. + T)-round dynamic

game.

Definition 16 Let a : E -+ A be a Pareto efficient, min-max, or max-max payoff. A

mechanism in the (r. + T)-round dynamic game is a i'-delayed mechanism with allocation

rule a if:

1. For t E {1, ..., '}, some -period mechanism M is played.

2. For t G {K + 1, ... , T}, a T-period quota or unrestricted mechanism that implements a

is played.

The mechanism in the first K rounds of a r'-delayed mechanism is irrelevant; the purpose

of these rounds is to ensure that players have similar ex ante beliefs about the distribution

of types in the final T periods. Because types are approximately distributed according to 7r

in the distant future, (normalized) payoffs in the final T rounds converge to some fixed value

as n -+ oc regardless of the prior v.

For a fixed T, the set of payoffs that can be approximated by K-delayed mechanisms are

called invariant payoffs. I focus on these invariant payoffs for most of Section 2.4, adapting

the proof techniques from FLM to apply to them.

Definition 17 Fix T < oo and allocation rule a : 0 -+ A, and consider any a-delayed

mechanism with allocation rule a. A vector vT(a) G RN is an invariant payoff for a if

V( > 0, 3*,6* such that V,'> K*, 6 > 6*, and V prior v E A(6), there exists a PBE o-* in

rounds {,., r + T - 1} such that E, T_0 6 t(1 - 6 )g(a(m,+t), 0,+t)] c B(vT(a), ).

80



The set of invariant payoffs is

VT = co{vt(a)Ia is either Pareto-efficient, or a {a"', ai'" }for some i}.

The individually-rational invariant payoffs are

VT* = {v G VT|Vi,vi ;> v (a'"))}

For a fixed T, the set of invariant payoffs may differ from the set of interest V*. However,

Propositions 8 and 9 show that payoffs in a T-period quota or unrestricted mechanism

approximate the corresponding stationary payoffs as T -+ oo, and so VT* -+ V* (in the

Hausdorff sense) in this limit. I will consider a large but fixed T for most of Section 2.4 and

take this limit as the final step in the proof.

Next, I argue that some vT(a) exists for any Pareto-efficient, min-max, or max-max

allocation rule.

Proposition 10 Fix T and a Pareto-efficient, min-max, or max-max action a : e -+ A.

Then there exists at least one invariant payoff vIT(a). Moreover, if a is a min-max or

max-max strategy, then player 1 reports truthfully in the final T rounds of the K-delayed

mechanism in the equilibrium that approximates vT(a).

Proof: See online appendix.

The game with commitment is a decision problem, so player l's optimal payoff in contin-

uous in both the discount factor 6 and the prior v, which in turn ensures that an invariant

payoff vf(a) exists for every Pareto efficient, min-max, and max-max allocation rule. For

player i /1, the action profile a(O) will be implemented exactly Q(O) times in the quota

mechanism, so player i's payoff continuously approximates _ ET_1 Q(0)gi(a(0)) = v(a) as

6 -+ 1, regardless of player l's strategy. In an unrestricted mechanism, player i does not pre-

cisely know the number of times player 1 will report each type. However, truthful reporting

is an equilibrium strategy, so the distribution of reports approaches ir as K increases; hence

vf(a) exists for any a implemented by an unrestricted mechanism, as well.
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The fact that private information is one-sided is critical for this result. The invariant

payoff vT(a) is defined as the limit of equilibrium payoffs as n -+ o for any initial distribution

of types v. If only player 1 acts in the mechanism, then her strategy in rounds {, .... , S +

T - 1} depends only oii the realization of Or. In contrast, if multiple players were to act in

the mechanism, then equilibrium outcomes would depend on beliefs about 0,. The set of

equilibrium payoffs is not lower hemicontinuous in prior beliefs, so payoffs do riot necessarily

converge to a single value for every prior v as K. -+ o. This problem-that equilibrium

payoffs are not lower hemicontinuous in prior beliefs-is a central difficulty to extending this

result to multi-sided private information.

Next, I extend the intuition from Proposition 10 to the infinite-horizon dynamic game

by introducing a mechanism that implements a sequence of T-period mechanisms.

Definition 18 Consider the infinite-horizon dynamic game with commitment. Fix T, K E

N. V j E N, k < K, block (k,j) consists of periods

T (k,j) = {(K(j - 1) + k - 1)T, (K(j - 1) + k - 1)T + 1, ...(K(j - 1) + k)T - 1}

with (k, j)-block history

h(kj) -- f6, me, yt}tE{(K(j-1)+k-1)T,(K(j-1)+k-1)T+1,...(K(j-1)+k)T-1}

A mechanism M : J -+ A is (T, K)-Recurrent if:

1. Vj c N, k < K, block (k, j) is either a T-period quota mechanism implementing Pareto

efficient allocation rule a(k,), or an unrestricted mechanism implementing min-max or

max-max a(k,j)

2. For any two histories ht and ht with t a round in block (k, j), if h(kj') - A(kj') V' < ,

then a(kj) - 6(kj).

3. Messages don't affect outcomes: V strategies -, &, Vk < K, Vj G N,

Prob {a( i) - a (k tl) a(k,2 ) a(ki i)} (k~) aI a(k l) a(k,2 ) a(ki-1)}

(2.1)
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The (T, K)-Recurrent mechanism-which forms a crucial part of this analysis-satisfies

the three important properties given in the definition. Property 1 ensures that M implements

a distinct T-period mechanism in each block of the infinite-horizon game, while 2 guarantees

that the public randomization devices, messages, and signals ( t'n.t, yt) observed in round

t of block (k, j) only impact future allocation rules a(k,j') in blocks with the same index

k. Property 3 guarantees that for a fixed k, the distribution over possible allocation rules

{ a(k,j) }jg evolves independently of the sequence of messages sent by player 1. Together with

property 2, this requirement ensures that player 1 cannot manipulate the future allocation

rule through her reports, so that she chooses a reporting strategy to maximize her payoff

within each T-period block. By Proposition 10, one such optimal strategy yields payoffs that

approximate the invariant payoff as K -+ oo.

Intuitively, a (T, K)-Recurrent mechanism splits the infinite-horizon game into sets of K

blocks, each of which consists of T periods. A quota or unrestricted mechanism is played

in each T-period block, and the public signals from these rounds determine the mechanism

that is played in the blocks that are separated by K - 1 blocks from one another. In effect,

this construction creates a set of K "auxiliary games" to the baseline dynamic game; each

round of an auxiliary game consists of T periods of the baseline game, with a discount rate

of 6T(K-1) between "rounds.

Increasing K in a (T, K)-Recurrent mechanism mimics an increase in K in a n-delayed

mechanism, delaying the impact that any round t has on payoffs in the continuation game.

The next corollary proves that players' expectations in block (k, j) of the payoff in future

blocks (k, j'), j' > j, approximates the invariant payoff vT(a(k'j')) as K -+ oc.

Corollary 2 Consider a (T, K)-Recurrent mechanism. Then V ( > 0, 1 a K* < oCO and

6* < 1 such that V K > K*, 6 > 6*, ] an equilibrium - such that V history h' with t in block

(k, j), and any j' > j, expected payoffs in block (k, j') conditional on ht satisfy

1 E E [6t''(K(j'-1)+K-1) UpIht' c B (E, [vT(a(k,j'))|hj ,() . (2.2)
1 T ET(kj)

Proof: See online appendix.

As in Proposition 10, this result relies crucially on the fact that only player 1 has private
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information. Given the structure of a (T, K) recurrent equilibrium, player 1 considers only

the public history and her current type when calculating her optimal action. Therefore,

continuation payoffs in block (k, j) depend only on a(k,j) and player l's type at the beginning

of that block. In particular, so long as reports in block (k, j) do not affect the expected

allocation rule in any future block, player 1 is willing to follow an optimal strategy for the

T-period mechanism that implements a(k'j). Properties (2) and (3) of Definition 18 imply

that player 1 cannot affect future allocation rule by her report, so she plays an optimal

T-period reporting strategy in each block.

By Corollary 2, continuation payoffs in the far future of a (T, K)-Recurrent mechanism

are close to invariant payoffs. The allocation rule afk,') is independent of messages in block

(k, j) for j' > j, but it can depend on the public signals in block (k, j). In the next section,

I consider the game without commitment, fix T, and construct a relationship between a(kj')

and the signals observed in block (k, j) to punish deviations from the desired allocation rule.

2.4 Equilibrium

The goal of this section is to build a conceptual apparatus that mimics the notion of enforce-

ability introduced by Abreu, Pearce, and Stachetti (1990). With this construction in hand,

I modify the basic proof technique of FLM to prove that points in the interior of V* can be

approximated by an equilibrium for sufficiently patient players.

Consider a (T, 2)-Recurrent mechanism. Intuitively, the odd (1, j) and even (2, j) blocks

form two distinct games: outcomes observed in block (1, 1) only affect the targeted allocation

rule for blocks (1, 2), (1, 3), and so on, and similarly for blocks (2, j). Players' beliefs in

blocks (1, j) and (2, j) are still related, so I construct an equilibrium that deters deviations

from the equilibrium action for any such beliefs. The key observation is if an action profile

a be deterred with uniformly strict bonus schemes in VT, then these bonus schemes can

be approximated by continuation payoffs in the far future and so a can be enforced in

equilibrium.

Before considering enforceability in this class of games, I define a few features that con-

tinuation payoffs in an enforceable profile must satisfy.
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Definition 19 An allocation rule a : [0, 1] xe -+ A and a finite collection {w((, y,)}jG[o,1],yEy,oee c

W satisfy condition 0 on W if V( c [0,1], there exists weights A((, y, 0) for a finite set

of points {wl, ... , w } C W such that w((, y, 0) - 1f A'(, y, 0)wi and

EA'( , y, 0) F(y Ia ((, 0)) =EA'((, y, O') F(y Ia(( O')), V6, O' E 6, Vl < L() (2.3)
yEy yCy

a and {w(y, 0)} satisfy condition i on W if V( E [0, 1],

Eycy A'((, y, 0)F(yai, aej(, 0)) VO ,' E , Vai, a' c Aj, V1 < L().
EEyyA(, y, O')F(yla' , a_j( , O'))

Conditions 0 and i play an essential role in my definition of enforceability but have no

clear analogue in repeated games. Intuitively, the collection {w( , y, O)}gE[o,11,y,9yEoe are a set

of bonus payments for the players; in equilibrium, these bonus payments will be mimicked

by continuation play. Condition 0 imposes that conditional on players following the alloca-

tion rule a, every report by player 1 induces the same distribution over extremal bonus

payments. If Condition 0 did not hold, then requirement (3) of Definition 18 would not be

satisfied and so player 1 might have an incentive to alter her report in the hopes of secur-

ing better continuation play. Likewise, Condition i ensures that player i cannot change the

distribution of bonus payments by unilaterally deviating from his action. This assumption

deters player i from playing a myopically suboptimal action when he is being min-maxed or

max-maxed in order to induce favorable continuation play.

Conditions 0 and i require that the distribution over continuation play is unaffected by

changes in player l's report or player i's action, respectively. Continuation payoffs are a

function of players' beliefs about the distribution of future types, which depend on player

l's private information and actions. These beliefs will not be precisely pinned down in

equilibrium; as a result, if player 1 could influence the distribution of continuation payoffs by

altering her message, she might do so even if both distributions lead to the same expected

invariant surplus.

With Definition 19 in hand, I define decomposable payoff vectors and enforceable alloca-

tion rules.
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Definition 20 We say that a payoff v is (T, (, W, (5)-decomposable if I an implementable

allocation rules a : [0, 1] x 0 -+ A and "bonus payments" {w(), y, O)}e[o,1jyEYe - W such

that the following three properties hold:

1. a and {w(,y,0)} satisfy Condition 0 on W, with Ey[w( ,y,0)] -s(), VO E 6.

2. The adding up constraint holds:

v = E [(1 - 6)v1(a(, .)) + (5w( )]. (2.4)

3. The enforceability constraint holds: Vi, V( G [0, 1|, EITHER

(1 - 6) g(a((, m), 6) + i(Q) - >

maxaiEAi {(1 - 6)gj(aj, a_i(,m), )} + maxjCAj\aj(o) {Ey[wj( , y, n) I ai, a-(m)] I

(2.5)

holds, OR Condition i on W is satisfied and

gi (a ((, 0), 0) ;> gi (ai, ae-i ((, m), 6 ), Vai E Ai , Vm E)9 (2.6)

If there exist bonus payments such that (3) holds, then a : [0,1] x 0 -+ A is (T, CW, 6)-

strictly enforceable. If every v G W is (T, C, W, 5)-decomposable, then W is (T, C6)-self
decomposable.

This notion of enforceability is defined in terms of actions within a T-period block and

differs from the repeated-games definition in several ways. A type-dependent allocation rule

a : 6 -+ A is enforceable if one of two conditions holds. First, player i might be uniformly

strictly motivated to play ai(m) for any beliefs about 0, given that continuation play gener-

ates surplus {wi (C y, m)}I. Second, if i is not given strict intertemporal incentives, then he

must play a myopic best-response to the other players. In either case, Condition 0 ensures

that the second statement of Definition 18 is satisfied if players conform to the allocation

rule a(k',). If player i is playing a myopic best-response, then Condition i guarantees that
6 Mixed strategies are ruled out because a player typically cannot have uniformly strict incentives to play

multiple actions.
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she has no incentive to change her action in order to induce a favorable continuation payoff

by requiring that player i cannot affect continuation play when she is min-maxed or max-

maxed. The allocation rule a(kj) must be enforced for every round of a T-period block. I

use a linear incentive scheme to do so, which is why the continuation payoffs in (2.5) are

multiplied by j.
Following FLM, I use continuation payoffs {w((, y,6)} that lie on a translate of the

hyperplane tangent to a boundary point v c W to support the payoff v.

Definition 21 A (translate of a) hyperplane P C RN is an i coordinate hyperplane if it is

parallel to the ith coordinate axis - that is, if P - {x G RNIx_ 0 = C} for some c C R, / G RN

such that 03i / 0 and Vj $ i, Oj = 0. P is a normal hyperplane if it is not a coordinate

hyperplane.

A bonus scheme on hyperplane P is a linear contract. Any continuation payoffs {w(, y, O)}

that lie on the ith coordinate hyperplane satisfy wj( , y, 0) = ', so player i cannot be strictly

incentivized to take the equilibrium action. Thus, such an allocation can be enforced using

payoffs on such a hyperplane only if (1) a is a min-max or max-max payoff for player i,

and (2) continuation payoffs {w((, y, 0)} satisfy Condition i. On a normal hyperplane, strict

incentives can be provided to each player, so the primary problem is to find continuation

payoffs that uniformly deter every player's deviations.

Lemma 5 shows that continuation payoffs that satisfy these properties can be found so

long as F(yla(0)) satisfies pairwise full rank for every 0.

Lemma 5 Suppose the signals at action profile a satisfy pairwise full rank and either:

1. P is a normal hyperplane and a is a Pareto-efficient, min-max, or max-max allocation

rule;

2. i G {1, ..., N} such that P is parallel to the ith coordinate axis and a is a min-max or

max-max allocation for player i.

Then V 6 E (0,1), C > 0, T > 0, a is (T,(, P',6) strictly enforceable, where P' is any

translate of P.
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Proof: See online appendix.

This lemma depends critically on F satisfying pairwise full rank at every Pareto-efficient,

min-max, and max-max allocation rule, but this assumption plays different roles depending

on whether P is a normal or coordinate hyperplane. If P is normal, then pairwise full rank

ensures that different players' deviations are statistically distinguishable from one another

so that there exists a budget-balanced bonus scheme that induces the desired actions. If P is

parallel to the it" coordinate hyperplane, then pairwise full rank guarantees that continuation

payoffs exist that satisfy Condition i. These bonus payments deter deviations by players j / i

while remaining unaffected (in expected distribution) by player i's action.

Lemma 6 proves several key properties of enforceability and decomposability.

Lemma 6 1. If a payoff v is (T, ,W, 6)-strictly decomposable, then v is also (T, (',W, 6)-

strictly decomposable for any ' < .

2. Let P be any hyperplane (normal or coordinate), and suppose that a is (T,(, P,6)-

strictly enforceable. Then:

(a) For every ' > 6, there exists a continuous function ((6) K C such that a is

(T, ((6), P, 6')-strictly enforceable. Moreover, I {w(y, 0,6, <)} that enforce a and

1,x > 0 such that

1 6'

where the extremal payoffs also satisfy ||w|I - rii

(b) a is (T, (, P', 6)-strictly enforceable for any translate P' of P.

Proof: See online appendix

Properties 1 and 2b follow immediately from the definition of enforceability. To show

Property 2a, I specify a function ((6) > 0 that decreases linearly in 6; plugging this expression

into (2.5) and rearranging yields the desired property.

Next, I use the properties of enforceability and invariant payoffs that I have already

proven to show that every payoff in a self-decomposable set W is "close" to an equilibrium

payoff when the block length T is large (but finite).
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Proposition 11 Ve > 0, fix T > 0 so 36 M < 1 such that if 6 > 6M and a is a Pareto-

efficient, min-max, or max-max allocation rule, then the T-period quota or unrestricted

mechanism implementing a has payoffs U C B (E, [gi(a(6), 0)] , ). For a closed, convex,

bounded set W, suppose ] 6 < 1 such that V6 > 6, ]((6) > 0 such that W is (T,((6),6)-

strictly self-decomposable. Then ]6* such that V6 > 6*, w G W, 3 an equilibrium of the

infinite-horizon game with payoff v C B(w, e).

Proof: See online appendix.

The proof of Proposition 11 constitutes an important building block in the construction

of my main result, and relies critically on the properties of (T, K)-Recurrent mechanisms.

Suppose that a set W is self-decomposable and let w C W. By (2.4), there exists an

allocation rule a1 and continuation payoffs wl that together with the appropriate discounting

generate v. Payoff wi can be similarly deconstructed into an allocation rule a2 and further

continuation payoffs W2 ; continuing this process leads to a sequence of allocation rules that

generate v. If players follow these allocation rules and are sufficiently patient, then the

resulting payoff v is close to w by the definition of invariant payoffs.

A (T, K)-Recurrent mechanism can be used to enforce these allocation rules. The alloca-

tion rule a' is played in block (k, 1) Vk < K. In block (k, j), continuation play is determined

by choosing one round of (k, j - 1) at random and targeting the continuation value specified

by the report and public signal from that rou ind. If T = K = 2, then the allocation rule in

rounds {5, 6}, {9, 10}, and so forth targets continuation value w(( 1 , yin, i) with probability

I and otherwise targets w(1, Y2, M2 ). By Condition 0, the expected continuation value w(( 1 )

can be implemented using the same convex combination of points in W, regardless of the

report m; as a result, continuation play can be made independent of player 1's report, so

this mechanism is (T, K)-Recurrent. As K grows, the realization of a public signal and the

resulting penalties and rewards are separated by many rounds, so these incentives approx-

imate the invariant payoff. Because rewards and penalties are realized in the more distant

future as K increases, the effective between-block discount factor 6 TK decreases; to enforce

the equilibrium actions, K -+ o as 6 -+ 1.

The rest of the argument presented here is modified from FLM, Lemma 4.2 and Theo-
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rem 4.1. Together, the next set of lemmas demonstrate that a set W which satisfies some

regularity properties is (T, , 6)-self decomposable if every payoff on the boundary of W is

decomposable on a translate of the hyperplane tangent to that point. Combining this result

with Lemma 5 yields the desired efficiency result.

The first step in this argument is to replace the notion of decomposability with a local

version for compact sets W.

Definition 22 A set W is T locally self-decomposable if for each w G W, there is a 6*, < 1

and an open set U containing v such that, for every 6 ;> 6*,, there exists a * > 0 such that,

for every < (*, U n W is (T, (, W, 6)-decomposable.

So long as W is compact, then local self-decomposability implies (T, (, 6)-decomposability

for 6 sufficiently close to 1.

Lemma 7 If a subset W C RN is compact, convex, and T-strict locally self-decomposable,

then there exists a 6* < 1 such that for every 6 ; 6*, there exists an * > 0 such that for

every ( < (*, W is (T, , 6)-strictly self-decomposable.

Proof: See online appendix.

The collection of open sets in the definition of T locally self-decomposable together form

an open cover of W. If W is compact, then this cover has a finite subcover. If 6 is larger

than the maximal 6*, for all neighborhoods that together form that subcover and ( is smaller

than the minimal (, in the subcover, then all points in W can be enforced and so W is

(T, (, 6)-self decomposable.

Finally, I argue that a set W is locally decomposable if it is decomposable on tangent

hyperplanes - that is, if every point w E bd(W) can be decomposed using some Pareto-

efficient, min-max, or max-max allocation rule a: 6 -+ A that is separated from W by the

hyperplane tangent to W at w, and payoffs on a translate of that hyperplane.

Definition 23 A smooth subset W C V* is T-strictly decomposable on tangent hyperplanes

if, for every point v on the boundary of W, there exists a profile a(-) such that:
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1. There exists an element g(a) C VT that is separated from W by the unique (n - 1)-

dimensional hyperplane P, that is tangent to W at v, and

2. There exist 6 < 1 and ( > 0 such that a is (T,(, P|,,5)-enforceable for some translate

Pt' of P,.

So long as W is smooth, Lemma 8 shows that decomposability on tangent hyperplanes

implies local decomposability.

Lemma 8 Let W be a smooth set. Suppose W is T-strictly decomposable on tangent hy-

perplanes. Then W is locally T-strictly self-decomposable.

Proof: See online appendix.

For (2.4) to hold, the translate of the tangent hyperplane used to enforce a must cut

through the interior of W. Because the boundary of W is a C 2-submanifold, the boundary

of W decreases at a square-root rate about w. By Lemma 6, the bonus scheme on the

hyperplane tangent to w used to enforce a decreases linearly. Thus, this bonus scheme lies

in the interior of W for 6 sufficiently large. Similarly, a neighborhood about w can be

supported by slightly varying the continuation payoffs while keeping a constant.

A few distinctions between this argument and FLM are worth noting. First, only min-

max, max-max, and Pareto-efficient allocation rules are played in the constructed equilibrium

because other allocation rules may be impossible to implement with a quota or unrestricted

mechanism. This fact explains why V* is not the full set of individually-rational payoffs:

Theorem 1 holds because V* contains only convex combinations of implementable payoffs.

For a similar reason, mixed-strategy min-max payoffs cannot be sustained in the class of

equilibria constructed here, even though they might generate a strictly lower payoff and

hence serve as a better punishment for the min-maxed player. Continuation play at the end

of block (k, j) randomizes among a small set of extreme continuation payoffs, which ensures

that every sequence of messages leads to the same distribution over continuation payoffs

and in turn guarantees that player l's reporting strategy is not influenced by between-block

incentive concerns. For this reason, the public signal 6t observed in each round is absolutely

critical in the proof.
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To complete the proof, I argue that a smooth set W C int(V*) also satisfies W C int(VT*)
if T is sufficiently large. If W C VT*, then the arguments from the previous section imply

that W is self-decomposable for 6 sufficiently large, which ensures that an equilibrium payoff

approximates every w c W. These steps together yield Theorem 1.

Lemma 9 Let W C VT* be a smooth set. Then there exists a 6* < 1 such that for every

6 > *, ] ( > 0 such that W is (T, (6)-decomposable.

Proof: See online appendix.

If W C VT*, then any hyperplane tangent to a point w E bd(W) separates the set W

from some point v E bd(VT*). If this hyperplane is normal, then v corresponds to some

convex combination of Pareto-efficient, min-max, and max-max payoffs. If the hyperplane

is instead parallel to i't coordinate axis, then it separates W from either the min-max or

max-max invariant payoffs for player i. By Lemma 5, these payoffs are supportable on the

ith coordinate hyperplane. Hence, W is (T, C, 6)-decomposable.

Lemma 10 Let W C V* be a smooth set, and suppose ] c > 0 such that

U B(w,) C V*.
wEW

Then ] T* < oo such that V T > T*, 3 6* < 1 such that V6 > 6*

W C VT*.

Proof: See online appendix.

As T -+ oc, Propositions 8 and 9 imply that VT* closely approximates V*, in the sense

that every pure-strategy, min-max, and max-max invariant payoff vT(a) satisfies

lim VT (a) = E., [g(a(6), 0)| E V*
T-+oo

Hence, for any W G int(V*), W C int(V T *) for sufficiently large T. Combining the results

from the last two sections yields Theorem 1.
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2.5 0 Affects Every Player's Payoff

So long as Proposition 10 and Corollary 2 are satisfied, the proofs in Section 2.4 can be used

in other settings. To demonstrate this point, I adapt RSV to extend Theorem 1 to some

games in which 0 affects every player's payoff. Formally, suppose 0 affects everyone's payoffs

but is known only to player 1.

Definition 24 A game with common state of the world is identical to Section 2.2, except

Vi e {2, ..., N}, player i has payoff 'ai(ai, y, 0), with gi(a, 0) - E [ui(ai, y, 0)|a]. Players do

not observe their stage-game payoffs.

There are two substantial difficulties in extending the arguments from Sections 2.3 and

2.4. First, because every player's payoff depends on the type 0, Proposition 8 must be refined

to show that player 1 reports truthfully "most of the time." RSV's techniques can be applied

to prove this result under additional assumptions about l's utility. Second, for i E {2, ..., N},

player i's optimal action depends on his beliefs about 0. So long as i's actions are enforced

on a normal hyperplane, deviations can be deterred for any beliefs. However, player i cannot

be incentivized through continuation play if the supporting hyperplane is parallel to the i"

coordinate axis. Therefore, i's best response cannot depend on his beliefs in a muin-max and

iax-max allocation rule, which limits the generality of this theorem.

The first additional assumption constrains player l's utility profile.

Assumption 7 Let a : 0 -+ A be a Pareto efficient allocation rule. Then

E g1(a(0), 0) > gi(a(,(0)), 0) (2.7)
oce 0e

for any permutation @ : 0 -+ 0, with equality if and only if $(0) 0 0, V0 E 0.

Condition (2.7) is a strict version of Rochet's (1987) necessary and sufficient condition

for the allocation rule a(-) to be implementable in a static mechanism design problem with

quasi-linear utility.7 RSV assume that an equivalent condition holds for the decision rule

7 Rochet's Theorem 1 requires that V finite cycles {o, ..., 0q = 0} g E,
Q

L (91(a(O6), Ok+1) - 91(a(Ok),Ok)} <0
k=O
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they implement in equilibrium. In the class of games I consider, monitoring is imperfect and

thus (2.7) must hold at every Pareto-efficient allocation rule so that continuation play can

be used to enforce the desired actions.

In the equilibrium I construct, players are required to occasionally "waste" rounds, in

the sense that no information is communicated and every player chooses a constant action.

These wasted rounds will be useful precisely when one of the players i E {2, ..., N} cannot be

incentivized through continuation play. Hence, I assume that there exists a profile aTI,' for

each player i c {2, ... , N} such that a' is a myopic best-response regardless of i's beliefs

about last period's 0.

Assumption 8 Vi E {2,..., N}, ] an action profile aTI,' that satisfies

a I' E arg max ( gi(ai,ai ,6')P('|)

VO E 0.

Assumption 8 states that for every i E {2, .., N}, there exists some action profile aTIi

such that i is playing a best response, regardless of his beliefs about last period's type.

This assumption holds if both players have an "opt out" action in which they choose not to

interact with one another, as in Assumption (v) of Athey and Segal (2007). It may also hold

in sender-receiver games if the Markov chain P(0'10) is not too persistent.

The results in Section 2.4 rely critically on the fact that for i / 1, player i's best response

to an action profile is independent of 0. In particular, player i's min-max and max-max

allocation rules must be implementable without knowing the true state of the world, which

is not true if player i's payoff depends on 0. Corollary 2 requires that only player 1 acts in

the mechanism, so player i's min-max and max-max allocation rules cannot depend on his

beliefs, which fundamentally constrains the set of payoffs supported in equilibrium.

Definition 25 Define the type-invariant min-max and max-max payoffs for player i C

{2, ..., N} as

giT= min max E, [gi(a, 0)]
a-jGA-j a EAj

I additionally assume that this inequality is strict unless Q = 0 and the cycle is trivial.
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and

g MTI max E [gi (a,0)]
aeA

respectively. Let C*irfTl,' and aMTI,' be corresponding pure-strategy action profiles, and define

Vmconwn = {vti s.t. v - u(a) for a 6 {a"TIi aMTIi aTIi}}

Then the type-invariant payoff set is

V {v E VIv E co(V U VmConlmon ),vi E [g,, ggf], vi E [gimTI, gITI], Vi E {2, ... , N}}

The main theorem of this section states that any v C V** can be approximated arbitrarily

closely by an equilibrium payoff when players are sufficiently patient. Like V*, V** is a convex

hull of implementable payoffs. However, V** also bounds player i E {2, ..., N}'s payoff from

above by gYTI, which in some games might be strict enough to rule out any Pareto efficient

payoffs. Intuitively, this restriction is relatively mild if players have substantial capacity to

help or harm one another independently of the state 0. For example, if players can pay one

another in each period,8 then g"lTI may be large because it includes a large transfer to player

i (even if players are not risk-neutral or such transfers are inefficient).

Assumption 9 There exists an w > 0 so that V 7r' C A(O) such that I|7r' - 7r|I <

Vi E {2, ... ,f N,

a arg max E, gi(a , a""]i, ]
aj E A

and

ai arg max E, [gi(ai, aIi
ai E Aj

Assumption 9 ensures that player i's best response to his type-independent min-max and

max-max allocation rules is robust to small changes in the type distribution. For example,

this assumption is satisfied if either E, gi(amTIi, a) > E,1 [gi(aj, a" ', 0)] Vai / c47TIf',

mTli% mT-[ior a ' Earg maxa g(aijaj "',,V6E .

8 Formally, the action ai includes a payment chosen from some large but finite feasible set.
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Under these additional assumptions, any v c int(V**) is arbitrarily close to an equilibrium

payoff when players are patient.

Theorem 2 Consider a game with a common state of the world such that Assumptions 5 -

9 hold, and suppose W C int(V**) is a smooth set. Vc > 0, 1 6* < 1 such that if 6 > 6*,

Vw E W, there exists an equilibrium with payoff v such that v E Bw, ).

Proof: See online appendix.

The argument for Theorem 2 is in Supplemental Appendix ??; here, I discuss notable

differences between this proof and that of Theorem 1. One key distinction occurs when a

type-independent min-max or max-max allocation for player i C {2, ..., N}-say arTI,i

is played in block (k, j) and enforced by continuation play on a hyperplane P parallel to

the ith coordinate axis. In this case, player i will play a myopic best-response to amTI,i

but a'I'i E arg max2 Er [g(a, aTI i 6) only when 117r' - r|I| < w. To circumvent this

problem, the allocation rule aTIi is played at the beginning of the block, while amTI,i is
TIi iIplayed for the remaining rounds. Because a, C arg maxa oI gi (a, ad 0) P(0'|0), VO,

player i conforms to aTIi in the beginning of the block. If aTI, is played for a sufficiently

long time, player i's beliefs about 0 is close to the invariant distribution 7r, so he is willing

to conform to a"TIi by Assumption 9.

A second difference is that player 1 must tell the truth with high probability in order

to implement an allocation rule a. As shown by RSV, player 1 cannot systematically lie

and improve his payoff in a T-period quota mechanism if Assumption 7. Intuitively, any lie

simply reorders the sequence of messages in a quota mechanism, which under this assumption

strictly hurts utility.

The final difference in the proof lies in the definition of invariant payoffs vT(a): I use the

fact that a constant Blackwell policy is optimal when player 1 is sufficiently patient to show

that every player's payoff approximates some constant vT(a) for all 6 sufficiently close to 1.

Other than these complications (and the changes to definitions required to take them into

account), the proof is similar to the argument outlined in Sections 2.3 - 2.4.
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2.6 Conclusion and Future Directions

This paper has proven that when players are patient, there exists an equilibrium that attains

nearly efficient payoffs in a large class of games with imperfect private monitoring in which

one player has a Markov private type. Adapting techniques from both the repeated games

and dynamic mechanism design literatures, I demonstrate that an intuitive equilibrium con-

struction can be used to induce players to cooperate, even when they face both moral hazard

and adverse selection problems.

The current analysis assumes that every player observes an identical - albeit imperfect -

signal in each round. The information structure in many real-world settings is typically more

complicated: players might observe different signals about the actions taken in each period,

so that the game is one of imperfect private monitoring. In Kandori and Matsushima's (1998)

canonical Folk Theorem with imperfect private monitoring and public communication, the

equilibrium periodically induces a player truthfully reveal her private history, which is used

to reward or penalize the other players. This incentive scheme requires that the monitoring

player be exactly indifferent between telling the truth and lying, which is difficult in games

with persistent private information because each player's continuation payoff depends on her

beliefs about the current type. One class of private monitoring games that might remain

relatively tractable-originally studied by Ben-Porath and Kahneman (1996)-assumes that

at least two players observe the same signal in each period. In this setting, those players

can be asked to reveal their shared signal and punished if their reports disagree; hence, I

conjecture that an efficiency result similar to Theorem 1 holds in such games with a Markov

private type.

An important shortcoming of the approach detailed here is that it does not naturally

extend to games with multi-sided private information. If several players have private infor-

mation, then player 1 is not the only decision-maker in the mechanism studied in Section 2.3.

As a result, payoffs would not be lower hemicontinuous in the prior V, so a single invariant

payoff approximated by equilibrium payoffs for every prior v might not exist. In the current

approach, continuation payoffs are only used to enforce the desired actions; in principle, I

conjecture that continuation play might also be useful in inducing truth-telling by replicating
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transfers from static mechanism design, which might lead to a generalization of the results

in both Sections 2.4 and 2.5.

Finally, the quota mechanism is a powerful way to mitigate adverse selection problems

when transfers are not available. Most of the papers that study these mechanisms focus

on their asymptotic properties, which arise from the Law of Large Numbers; however, the

intertemporal tradeoffs generated by such mechanisms seem relevant even when players are

impatient. Frankel (2011) demonstrates that quota mechanisms can be optimal in some

dynamic mechanism design problems. Elucidating the costs and benefits of these mechanisms

in a general setting with impatient players appears to be a formidable task, but I believe that

a further investigation of these problems might lead to new insights in settings as diverse as

public goods problems and optimal contracts in a workplace.
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Chapter 3

Putting the Relationship First

3.1 Introduction

Businesses in a relation-based system will expand at those margins where dimin-

ishing returns set in most slowly. This will mean preserving the closeness of the

relation, even at the cost of undertaking a new activity that is not economically

so close-not such a good complement in production or consumption. - Avinash

Dixit (2007)

Repeat dealing, cultural homogeneity... and a lack of third-party enforcement... have

been typical conditions. Under them transactions costs are low, but because spe-

cialization and division of labor is rudimentary, transformation costs are high. -

Douglass North (1990)

Individuals and companies rely on informal relationships with one another to encourage

cooperation when formal contracts are incomplete or unavailable. Participants in these

relationships invest to strengthen their bonds, rather than simply cutting costs or maximizing

productive efficiency. For example, suppliers might alter their production process or produce

different goods in order to better meet a favored buyer's needs, leading to markets that look

structurally different from those with readily available formal contracts.

In this paper, I illustrate one way that relational contracts can affect investment deci-

sions. A single downstream firm requires several inputs from a group of suppliers. Before the

99



relationship begins, each supplier chooses a set of products to manufacture: highly special-

ized firms are very efficient at manufacturing a small number of products, while generalist

suppliers can inefficiently produce many different goods. The game has imperfect private

monitoring-each supplier is unable see the details of the downstream firm's relationship

with other suppliers-which prevents the upstream firms from jointly punishing a deviation

by the downstream firm.

The main result of this paper links suppliers' investments to the underlying contractual

environment. When formal contracts are available, many upstream firms enter the market,

and each specializes in a small set of products in order to minimize manufacturing costs.

In contrast, generalist upstream firms have an advantage when enforceable contracts cannot

be written. A generalist supplier can meet many of the downstream firm's needs, increasing

the future value generated by that relationship. The supplier can then threaten to withhold

production if the downstream firm does not adequately compensate it for output, which

induces the downstream firm to pay bonuses and so encourages high effort. This leads to a

tension between efficiency and adaptability in a relational contracting setting that is absent

when formal contracts are available. I develop applications dealing with employment and

legal reform that emphasize this connection between ex ante investments and the underlying

contracting environment.

As implied in the opening quotes by Dixit (2007) and North (1990), real markets are rife

with interactions that are tailored to maximize the efficacy of relational contracts. In an

attempt to mimic successful Japanese car companies, Chrysler revolutionized its production

process in the early 1990s by developing close relationships with a small number of upstream

firms.' In the context of this model, Chrysler's decision to use informal contracts naturally

led to a reduction in the number of regular suppliers; I argue that the remaining suppliers

exerted higher effort precisely because they dramatically expanded the set of products they

manufacture. Along this line, Liker and Choi (2004) point out that both Toyota and Honda

ask their top-tier suppliers to "produce subsystems instead of components." Similarly, Nistor

(2012) finds that if a restaurant requires customized ingredients, it tends to source from fewer

suppliers. In a survey, Guinipero (1990) reports that manufacturers implementing just-in-

'See Dyer (1996) for an in-depth analysis of Chrysler's transformation.
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time techniques tend to both reduce the size of their supply networks and emphasize quality.

The fundamental trade-off in this model resembles Bernheimn and Whinston's (1990)

analysis of multimarket contact. If duopolists compete in several different markets, they can

threaten to revert to competition in every market following a deviation from the collusive

price. Bernheim and Whinston show that if the different markets exhibit certain kinds of

heterogeneity, then the duopolists can exploit this heterogeneity in order to better sustain

collusive outcomes. In my model, a generalist supplier has a similar sort of "multimarket

contact" with the downstream firm: it produces-and so can threaten to withhold-many

different products. In my basic model, trade occurs in only one market in each round,

which creates a very stark benefit for multimarket contact: parties who interact in multiple

markets trade with one another more frequently. In Section 3.5.1, I consider a setting in

which generalist suppliers are sometimes optimal even if trade occurs in every market in

every round.

While the seminal papers by Bull (1987) and Levin (2003) have instigated an extensive

literature on relational contracts, relatively few papers consider the interaction between these

informal arrangements and market structure (see Malcomson (2012) for a review of the large

and growing relational contracting literature). Notable exceptions include Board (2011)

and Calzolari and Spagnolo (2009), who argue that relational contracts tend to lead to small

markets. In Board's model, a downstream firm pledges future surplus to its suppliers in order

to induce cooperation. Because the downstream firm must sacrifice some rent every time it

contracts with a supplier, it chooses to contract with a strict subset of the available upstream

firms. Similarly, Calzolari and Spagnolo argue that restricting entry in a procurement auction

can increase bidders' expected future surplus and thus induce higher effort. By considering

a game that emphasizes the importance of ex ante investments, I generate insights that are

complementary to both of these papers.

Many of the standard tools in game theory cannot be applied in environments with

imperfect private monitoring; see Kandori (2002) for an overview. As a result, much of the

theoretical literature focuses on either "Folk Theorem"-type results (investigating the set of

equilibria among very patient players), or restricts attention to belief-free equilibria, which
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have a simplifying recursive structure.2 In contrast, I focus on a simple principal-agents game

in which output produced by and bonuses paid to an agent are observed by the principal and

that agent, but not by other agents. Hence, this model loosely resembles Ellison's (1994)

work on communal enforcement and Wolitzky's (2011) analysis of public goods provision,

albeit without any contagion-style punishments.

In Section 3.2, I discuss the timing of the model arid introduce several important assump-

tions. Section 3.3 covers three different benchrark solutions that provide useful comparisons

to the main results. I explore the central trade-off between specialization and adaptability in

Section 3.4, along with a simple example that has a closed-form solution and is used in the

extensions. Section 3.5 covers three applications: the first explores what happens if multiple

products are required in each period, the second investigates why upstream firms might resist

the introduction of formal contracts, and the third considers human capital investments by

employees. I conclude with discussion in Section 3.6.

3.2 Model

I propose a model in which a repeated game is preceded by ex ante investments. Section

3.2.1 describes the timing and monitoring structure of the game, and Section 3.2.2 gives

definitions and assumptions.

3.2.1 Timing

Consider an intermediate goods market with a single principal, who requires one of many

different products in each period. At the beginning of the game, agents decide whether to

enter the market or not. They also choose a specialization Pi G [0, 1], which determines

the products that they can manufacture and their efficiency at producing each good. Pi

captures the fundamental trade-off between efficiency and flexibility which lies at the heart

of the analysis: if the measure of Pi is large, then agent i can make many different goods but

must pay a high fixed cost to produce. After entry decisions and specializations are observed

by everyone, the repeated game begins. In each period, a single good #t E [0, 1] is randomly
2 See Ely and Valimaki (2002) and Ely, Horner, and Olszewski (2005) for more details.
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drawn as required by the principal. Any agent with #t E Pi is able to produce this good; the

principal pays a wage to each agent and asks one to produce. That agent pays a fixed cost

that depends on Pi and also chooses a private and costly effort et that determines output yt.

After observing output, the principal can choose whether to pay a discretionary bonus T,t

to agent i. Importantly, output yt is observable only by the principal and producing agent,

while wage wi,t and discretionary bonus Ti,,t are observable to only the principal and recipient

of these transfers.

Players share a common discount factor o in the repeated game, and do not discount

between t = 0 and the repeated game t - 1, 2, .... Formally, the game has the following

timing:

. At the beginning of the game t = 0:

1. A countably infinite number of agents simultaneously choose whether to enter

or exit the market. Entry costs FE > 0, and agents that do not enter have no

additional actions. Let {1, ..., M} be the set of agents in the market.

2. Each agent i E {1, ..., M} publicly chooses a measurable specialization P C [0, 1].

Denote pi = p(Pi) as the Lebesgue measure of this set.

3. The principal and agent i simultaneously make transfer payments TO 0, i-O 0,

respectively, to one another. Let T,o = r4 - io be the net transfer to agent i.3

. In each round t = 1, 2, ...:

1. A required product 4t ~ U[0, 1] is publicly observed.

2. The principal offers production to one agent xt C {0} U {1, 2, ..., M}. This offer

is observed only by agent xt.

3. Vi C {1, ..., M}, the principal and agent i simultaneously make wage payments

w > > 0, f > 0 to one another, with net wage to agent i wi,t = wft -wt. These

payments are observed only by the principal and agent i.

3For all transfer payments, if Ti,O ;> 0, the convention is that 'rT = 0, and similarly rio = 0 if ro < 0.
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4. Agent xt accepts or rejects production: dt E {0, 1}. This decision is observed only

by the principal.

5. If Xt accepts the contract, then lie pays fixed cost -y(pti), where 7 : [0, 1] -+ R+,

and privately chooses effort et E {O, 1} at cost cet.

6. Output yt C Y C R is realized, where yt ~ F(ylet) if both d$t E Pi and de = 1,

and yt = 0 otherwise. yt is observed only by the principal and xt.

7. Vi E {1, ..., M}, the principal and agent i simultaneously make bonus payments
t > 0 T 0 with net -is transfer is observed only7t t wihntpayment Ti,t = i"t _ T his onl

by i and the principal.

8. Payoffs are realized: agent i earns

ut = (1 - 6) (Ti,t + wi,t - l{xt = i}dt(7(pi) + cet)),

while the principal earns

M
Uo't = (1 - 6) 1Ixt / ldtyt - 1(ri,t + wi,t)-

Three of the assumptions in this model require special consideration. First, specialization

determines the subset of goods Pi, that agent i can produce and his fixed cost of produc-

ing -y(pi). This assumption is stark but cleanly captures the intuition that specialization

increases efficiency at the cost of flexibility. Second, an agent's specialization cannot be

changed once it is chosen. This is a notion of lock-in: an agent tailors its production process

to manufacture certain goods, and changing this role is prohibitively costly. Third, agents

have no means of communicating with one another. While extreme, this assumption is a

tractable way to model bilateral relationships between the principal and each agent.4

4 Why don't specialized agents horizontally integrate in order to share information with one another?
One possible answer is that "generalist agents" in this model are in fact horizontally integrated. Under this
interpretation, 7(p) represents the production costs associated with a bloated organizational structure. There
might also be legal or financial constraints that prevent horizontal integration, or behavioral restrictions that
limit joint punishment by different divisions within a company.
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3.2.2 Histories and Equilibrium

Because players observe different outcomes as the game progresses, I separately track each

player's private history over time.

Definition 26 The set of baseline histories 7Tn at time T is

n = {M { Pi} M, {f, r {clt, Xt, d, {wA, W }i 1 , e, y, {t , ri}M1 ) IT}

The principal observes all actions except for effort et, so the set of principal's baseline his-

tories at time T is B-,4 {hT\{et}{-1|hT E 7-). The set of agent i's baseline histories at

time T is

- {M, {PI} 1, rj7, rT7, {4t, Xt, dt1{xt = i}, Wy, re,t, 1{Xt =1i}et, 1{xt = i}yt} )

Let A be the nodes of the stage game; then (hT , nT+1) indicates a history at node nT+1 E )

of round T + 1. let ZI(nt) be agent i's information set at stage-game node nt, so that a private

history is (hi, I (nT+1))-

Strategies are denoted o- for agent i E {1, ..} and o-o for the principal, with profile

o- = {oo, .... }. A relational contract is a Perfect Bayesian Equilibrium (PBE) of the repeated

game.' A relational contract is stationary if on the equilibrium path, actions in period

t depend only on variables observe in period t, and is optimal if it maximizes total ex

ante expected surplus. Because monitoring is imperfect and private, I cannot use standard

recursive techniques in this analysis and so rely on other methods.

The cost function -/(p) is constrained so that a meaningful trade-off between specialization

and flexibility exists.

Assumption 10 7(p) is differentiable with y',y" > 0 and -'(0) - 0, and p(E[yle = 1] -

c - -(p)) is strictly increasing in p.

5A Perfect Bayesian Equilibrium consists of a strategy profile - and belief system p = i{p- 0 o over true

histories for each player such that (1) given beliefs pj(h ), oa maximizes player i's continuation surplus, and

(2) pi updates according to Bayes Rule whenever it is well-defined. When Bayes Rule is not well-defined, pi

a.ssigns weight only to histories that are consistent with agent i's information but is otherwise unconstrained.
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Assumption 10 implies that if agent i is allocated production of every good in Pi and

works hard, then the total surplus produced by i is increasing in pi. In addition to driving

the tension between adaptability and productive efficiency, this assumption ensures that it

is optimal for specializations {Pi}4 1 to cover the entire interval if the agents are expected

to work hard.

Finally, I constrain F(yle) so that it is efficient for an agent to accept production if arid

only if he works hard.

Assumption 11 1. F first-order stochastically increases in effort:

F(yle = 1) >FOSD F(yle = 0).

2. e = 1 is strictly efficient: E[yje = 1] - c- -y(p) > 0 > E[yle = 0] - 7(p), Vp E [0, 1].

It will turn out in this analysis that the critical determinant of the strength of agent

i's relationship with the principal can be measured by the total surplus produced by agent

i, which is determined by whether (1) i is allocated production of Ot E Pi, (2) i accepts

production if it is offered, and (3) i works hard if he accepts production.

Definition 27 The total per-period surplus produced by agent i in round t is

7r TO =(1 - )1{xt = i}dt(yt - cet -7(pi)).

The principal's per-period surplus from agent i is

,,t=(I - J) Axt =ildtye - wite ri'.

Given strategy profile o- and history (ht', nt), the continuation surplus for agent i is

Ui(ht~1, nt; or) = E , 6t'--1ui,tht~1, nt
-t'=t+1

and the continuation surplus for the principal from agent i is

U (ht~1, ne ; o-) = E, 6'' t-17r ,tjht-1, ne ,
-t'=t+1
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with the principal's total continuation payoff equal to U0 = EMUi.

Wheni unambiguous, I suppress the notation (ht-l, nt; a) in U, Us, and Uo. By construc-

tion, 7rf =T 7r "t + ni,t and the total surplus produced in a period is E1i 7rTOT. Therefore,

7rT captures the contribution of each agent to total surplus in a period. Intuitively, this

total surplus is at stake in each relationship in the sense that it is lost as a punishment if

either the principal or agent i reneges on a promised payment. If agent i works hard when

he is allocated production, then giving production to agent i more frequently increases 7rTOT

and thus increases the size of this punishment. Because t(Pi) determines how frequently

agent i is able to produce, the size of p(Pi) determines the maximum value of 7rTOT, which

in turn determines the set of credible bonuses that can be supported in a relational contract.

This fundamental tension drives my main result.

Following Levin (2003) and much of the subsequent relational contracting literature, I

focus on the optimal equilibrium. In this setting, any PBE is payoff equivalent to a PBE in

which agents do not condition on their past efforts,6 so I consider only relational contracts

that are independent of past effort decisions.

3.3 Benchmarks - First Best, One-Shot, and Public

Monitoring

Three different benchmarks are relevant in this model. The first characterizes the first-best

by supposing that output yt is contractible, the second considers the one-shot game, and the

final considers optimal relational contracting if monitoring were public.

3.3.1 Optimal Entry and Specializations with Formal Contracts

Suppose that output yt, entry, and specializations Pi are contractible at the beginning of the

game. Then the principal can efficiently induce high effort from every agent, since all parties

are risk-neutral and have deep pockets. Because each agent exerts high effort regardless of

her specialization Pi, these specializations are chosen to balance the fixed costs 'y(pi) against

6The proof of this fact may be found in Andrews and Barron (2012), Appendix B.
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the cost of entering the market FE. Therefore, it is straightforward to calculate the efficient

number of entrants and their specializations.

Proposition 12 Let Assumptions 1 and 2 hold. Every optimal equilibrium entails MFB

entrants and takes the following form:

1. For any agents i, k in the market, p(Pi) = p(Pk) = P, where yt M *

2. Vt, effort is et = 1.

The first best number of firms MFB decreases in FE and is independent of 6.

Proof: See Appendix 3.7.

A principal who has access to formal incentive contracts can always motivate her workers,

so the number of firms in the market is determined by setting marginal production costs

icy'(k) equal to the cost of entry FE (subject to integer constraints). In Section 3.4,

I will show that MFB is large and specializations p = is specialized relative to the

optimal relational contract when players are impatient. Intuitively, when formal contracts

are available, market size is limited only by the cost of entry and each firm specializes in a

narrow band of products.

The distributions F(yle = 1) and F(yle = 0) are statistically distinguishable, so some

contract exists that induces high effort. I record this result as a corollary.

Corollary 3 There exists a bounded set of transfers r(y) that induce the agent to exert high

effort, and such that oo > supy r(y) - inf, r(y). For any transfers r(y) that induces high

effort, sup T(y) - infy r(y) > 0.

Proof: One such contract with bounded transfers is exhibited in the proof of Proposition

1. Note that the agent's IC constraint is

E[r(y)|e = 1] - E[r(0)|e = 0] > c

and so supY T(y) - inf, r(y) > c > 0 as desired. M
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Rather than explicitly calculating the optimal incentive contract in what follows, I will

instead use Corollary 3 to argue that an agent's payoff must vary with y in order to motivate

him to work hard. In a relational contract, the principal must prefer to pay this bonus rather

than renege and face a punishment by the betrayed agent, and the role of Pi is to ensure

that the principal is indeed willing to do so.

3.3.2 Equilibrium in the One-Shot Game

A second important benchmark is the one-shot version of the repeated game. The principal

cannot credibly promise to reward the agent for high output, so no surplus is generated in

equilibrium. Because entry is costly and low effort is inefficient, no agents enter the market

(MSPOT - 0)-

Proposition 13 The unique payoff in the spot game is 0, with MSPOT = 0-

Proof: Using backwards induction, Ti(y) = 0, Vi, y C {0, yH}. Therefore, e* = 0 in

equilibrium, and so total surplus generated by any firm in the market is no larger than 0

because E[yle = 0] - K(p) < 0. But then no firm chooses to enter the market, since they

must incur the cost FE > 0 to (o so. U

Proposition 13 demonstrates that repeated interaction between the principal and each

agent is required to induce the agents to work hard. While all players earn their min-

max payoff in this one-shot equilibrium, Section 4 will prove that punishments following a

deviation that is not publicly observed do not typically mix-max the deviator.

3.3.3 What Happens if Monitoring is Public?

It is instructive to consider the optimal equilibrium if xt, yt, {wi,t}, and {rit} were publicly

observed so that the game was one of imperfect public monitoring. This benchmark will

highlight role of private monitoring in the baseline model.

Many of the tools developed in the foundational relational contracting paper by Levin

(2003) can be adapted to this setting. As a first step, I show that stationary contracts are
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optimal in this setting.7

Lemma 11 There exists an optimal relational contract that is stationary in the public mon-

itoring game.

Proof: See Appendix 3.7.

The proof of Lemma 11 constructs a stationary optimal relational contract and is similar

to Levin (2003), Theorem 2. In this equilibrium, the principal earns all of the surplus

produced in each period, and is punished by reversion to the static equilibrium following any

deviation. As a result, whenever the agents are willing to work hard in any equilibrium, the

principal is willing to pay them an incentive scheme that motivates them to work hard in

each period of a stationary equilibrium.

The next result demonstrates that the efficient contract either has M = 0, or M > MFB.

Proposition 14 In an optimal relational contract, 1 (Pi n Pk) = 0, Vi, k c {l, ... , M}.

p(Pi) = 1, and either MP" - 0 or MPub > MF firms enter the market.

Proof: See Appendix 3.7.

With public monitoring and transfers between agents, at least MFB firms enter the

market. As in the first best, additional entry leads to lower production costs -( ). This

reduction in costs has two benefits: it both directly increases surplus and indirectly allows the

principal to credibly promises larger bonuses in equilibrium, since she would lose her entire

continuation surplus-which does not include the cost of entry FE-were she to renege on

this promise. The optimal relational contract weighs both of these benefits against the cost

FE of additional entry to determine the efficient number of entrants, whereas the first-best

weighs only the first of these benefits against FE. Therefore, MPUb > MFB.

7 Note that utility is not transferrable between agents in this setting, and so the model differs from Levin
(2003). Indeed, Andrews and Barron (2012) show in a related model that if the set of relational contracts
were restricted so that the agents earned a positive fraction of the surplus they produced, then a tension
similar to what is explored in this paper continues to be relevant.
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3.4 Putting the Relationship First

In this section, I consider the optimal relational contract in the baseline game. The optimal

equilibrium is substantially different than the first-best benchmark from Section 3.3.1: a

relatively small number of agents enter the market, each of whom is able to produce a broad

range of products. I prove the general result in Section 3.4.1, while Section 3.4.2 considers

a specific example with a complete closed-form solution.

3.4.1 The Role of Flexibility in Relational Contracts

This section proves that if formal contracts are unavailable, the optimal market structure

involves a small number of agents that are not very specialized. Because agents cannot

communicate with one another, they are unable to coordinate and jointly punish deviations

by the principal. As a result and unlike the case with public monitoring, the future surplus

generated by each agent determines the largest bonus that can be paid to that agent. Ex

ante investments that focus on flexibility (i.e., a large pi) increase the total surplus generated

by agent i, at the cost of reducing the maximum feasible total surplus.

Together, the next lemmas provide the basic ingredients for the main result. First,

I argue that a principal that deviates in her relationship with agent i is punished by no

worse than the bilateral breakdown of trade with i. To ensure that each agent is sufficiently

valuable, the equilibrium measure of specialization jt(Pi) must be bounded from below by

some p*(6) > M'. Moreover, if specializations do not overlap (so that jt(Pi n'Pk.) = 0),

then the efficient relational contract can be replicated by a stationary relational contract.

Proposition 15 combines these arguments to demonstrate the main result: when relational

contracts are used and players are impatient, the number of agents in the market is smaller

and each agent specializes in a broader range of tasks than in the first-best equilibrium.

Other agents do not observe when the principal betrays one of their number, so the pun-

ishment in each principal-agent dyad depends on the surplus generated by that relationship.

More precisely, if an equilibrium transfer is not made to (or by) agent i, then the size of the

punishment following this deviation is bounded above by the value of the relationship to the

player paying the bonus. Thus, the contribution of each agent to total surplus is the key
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variable that determines what is at stake in each relationship and thus the incentive pay Ti,t

that can be offered to each agent.

Lemma 12 Let Assumption 11 hold, and suppose o-* is an equilibrium. Fix a history

(ht , fnt), where nt is a node immediately following output yt. Then

(1 - 6)Eor r,t~ht 4,-T(nt)] : 6E,. U(h3.h1,)(e
-(1 - 6)E [r,tIht 1), (nt)] 6E, [Ui(ht)Iht-1, I(nt)

Proof: See Appendix 3.7.

The proof of Lemma 12 argues that the player responsible for paying ri,t always has

the option of refusing to pay and suffering a breakdown in the relationship. Because agent i

interacts only with the principal, a breakdown in this realtionship would hold i at his outside

option 0. On the other hand, the principal can continue to allocate business to the other

agents following a breakdown with agent i. Therefore, she can "cut her losses" following a

breakdown and so (1 - 6)ri,t is bounded by the value of that agent to the principal, Us. The

bound (3.1) on the principal's punishment is not necessarily tight, since she may be able to

do strictly better by surreptitiously altering her allocation rule following a deviation. For

instance, if the principal could award product <t to either firm i or firm j in round t, then

she may be able to reward the product to j following a breakdown with i without triggering

any futher punishment.

For Lemma 12 to hold, agents must be unable to communicate; otherwise, they could

coordinate to jointly punish a deviation by the principal.' Hence, there is an incentive to

aggregate production in a small group of firms in order to limit reneging temptation. This

impulse towards aggregation leads to a deviation from the first best market structure, since

a specialized firm produces at a low cost but is unable exact a revenge sufficiently large to

deter the principal from deviating.

The next lemma demonstrates that it is in fact easier to induce high effort from an agent

with a large Pi, particularly when that agent is the sole producer of every product in Pi.
8Alternatively, I could assume'that agents can communicate but are behaviorally restricted to "bilateral

breakdown" following a deviation by the principal. Such a behavioral restriction is non-trivial to define be-
cause agents' beliefs about how the principal allocates business might change when they observe a deviation.
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Lemma 13 Fix the number of entrants M and specializations {Pi}. A necessary condition

for there to exist a PBE in which agent i chooses et = 1 on the equilibium path is that there

exists an incentive scheme T(y) that induces et = 1 and

sup T(y) - inf ri(y) < pi (E[yle = 1] - c - (3.2)
Y Y 1-6

Proof: See Appendix 3.7.

Agent i can be motivate to work hard using both contemporaneous transfers Ti,t and

continuation payoffs Uj. From Lemma 12, the total variation in these incentives must satisfy

0 < (1 - 6 )ri,t + 6Ui < 6(U? + Uj). The sum Uj + Uo is bounded above by the right-hand

side of (3.2), which is the surplus produced by agent i if he is awarded every 4 E Pi in each

period and always works hard. If agent i were unwilling to choose et = 1 if she were the sole

producer of every qt E Pi in each round, then she would also be unwilling to choose et 1

in any relational contract. Intuitively, allocating production to agent i whenever possible

maximizes the size of the punishment following a deviation in two ways. First, if i produces

every E 'Pi then she can threaten to withhold production of these goods, which creates a

powerful incentive to maintain the relationship. Moreover, all other agents also expect agent

i to produce every 4 E Pi, so the principal cannot deviate from this allocation rule without

being punished by every agent. Thus, if the principal were to renege on agent i, she would

be unable to reallocate production without triggering a punishment.

The next corollary shows that the incentive condition (3.2) is also sufficient if the agents

have specializations that do not overlap.

Corollary 4 If p(Pi n Pj) - 0 Vi,j c {1, ..., M}, then there exists a stationary optimal

relational contract. In this equilibrium, agent i picks et = 1 Vt on the equilibrium path iff I

transfers Ti(y) that induce high effort and satisfy (3.2).

Proof: See Appendix 3.7.

Consider an equilibrium such that Pi n Pi - 0 for every agent. In round t, the princi-

pal optimally allocates production of #t E [0, 1] to the sole agent who can produce, so the
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maximum feasible continuation surplus in each relationship does not depend on the princi-

pal's allocation rule. Hence, a stationary relational contract is optimal for similar reasons

to Levin (2003), and in particular there exists an optimal stationary equilibrium in which

the principal earns all of the surplus in each period. In such a stationary contract, the left-

hand side of (3.2) captures the temptation to renege on a promised bonus payment, whereas

the right-hand side is the amount of surplus lost by the principal if she does not pay the

equilibrium bonus -rj.

So long as Pi n P = 0, (3.2) implies that the specialization Pi is the sole determinant

of whether agent i works hard in the optimal relational contract. In general, equilibrium

behavior in this game can be quite complicated, but much of this complexity stems from

how the principal allocates business over time. If this allocation rule is independent of

the history-which is natural when specializations don't overlap-then simple contracts are

optimal.

The incentive constraint (3.2) suggests an important definition: the minimum specializa-

tion required to induce high effort in equilibrium, (6).

Corollary 5 There exists a continuous function p*(6 ) that is defined on 6 G [6,1) for some

6 < 1 such that (1) pu*(6) is decreasing in 6, (2) p*(6) = 1, and (3) lim6, 1 t*( 6 ) = 0, and

] a PBE in which agent i chooses et = 1 at some history only if pi j p*(6). Moreover,

if pi p*(6 ), Vi, and t(Pi n P.) = 0, Vi, k, then all agents choose et = 1, Vt along the

equilibrium path.

Proof: See Appendix 3.7.

The critical threshold p*(6) is the smallest interval of specialization such that inequality

(3.2) holds for some incentive scheme that induces high effort. In an optimal equilibrium,

every agent that enters the market must satisfy pi p*(6); otherwise, that firm would never

exert high effort, and so should instead stay out of the market to save the entry cost FE.

Moreover, if Pi n Pk = 0, Vi, k, then si 2! p*(6) is sufficient to induce high effort from i.

Corollary 5 illustrates the central intuition of the model: if 6 is far from 1, I*(6) > M ,

so firms must choose a broader specialization than in the first-best. In other words, each

firm "puts the relationship first:" rather than specializing to minimize manufacturing costs,
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as they would if formal contracts were available, firms in the market instead inefficiently

produce a broad array of different products. Broad specializations-p(Pi) > M- lead to

lower total surplus given e =1 but also increase dyad-specific surplus Uj + Us, so that better

relational incentive contracts can be implemented in equilibrium.

Proposition 15 puts the preceding steps together to show that a market reliant on rela-

tional contracts typically has fewer entrants and broader specializations than a market in

which formal contracts are available. If participants are more impatient, then the number of

agents in the market is smaller and each entrant is responsible for a broader set of products.

Proposition 15 Suppose Assumptions 1 and 2 hold. Then:

1. For every M < MFB, there exists J(M) such that for all 6 > 6(M), at least M firms

will enter the market in any optimal equilibrium.

2. For every M < MFB, there exists an open interval A(M) that satisfies sup A(M) K

inf A(M + 1), such that for every optimal equilibrium with 6 CA(M):

(a) M firms are optimal;

(b) pL(Pi n Pk) = 0, pu(Pi) = , and the efficient equilibrium can be replicated by a

stationary equilibrium

Proof: See Appendix 3.7.

The proof of Proposition 15 relies on the fact that p(P) > p*(6) Vi in the efficient

equilibrium. So long as p* (6)M < 1, there is no reason for specializations to overlap; because

y(p) is increasing and strictly convex, it is instead optimal for each firm to specialize in a

disjoint subset of the same size, p(Pi) = 1. In this situation, ± > pt*(6) and so the agents

exert high effort in the optimal equilibrium and together produce the entire interval of goods.

For M < MFB, surplus from this equilibrium is strictly increasing in M conditional on high

effort, so any equilibrium with M < MFB firms and (M + 1)pt*(6) 1 is dominated by an

equilibrium with M +1 firms with disjoint specializations of measure M
1 . This bounds the

number of entrants M from below. Moreover, if p*()M = 1, then it is uniquely optimal

for exactly M firms to enter and choose disjoint specializations with ji(Pi) = p*(6). This
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equilibrium both induces high effort and minimizes entry and fixed costs. Because FE > 0,
it remains optimal for M firms with disjoint specializations to enter the market on an open

interval A(M) about the 6 for which p*(6)M = 1.

Together, Proposition 12 and Proposition 15 illustrate the central trade-off between flex-

iblity and efficiency. When formal contracts are available, a large number of agents enter the

market and each specializes in a relatively small subset of products to minimize the fixed cost

7(p). In contrast, when high effort can only be induced through a relational contract and

players are impatient, the optimal equilibrium often involves a small number of relatively

inefficient firms, each of whom is responsible for producing a wide variety of products and

generating substantial surplus. Because the set of products is fixed and each agent specializes

in a large subset of that set, fewer agents to needed to satisfy the principal's needs.

On the intervals A(M), p(Pi n Pk) = 0 and there is no overlap between specializations.

In other words, each product is "single-sourced:" agents never compete to produce the same

set of products. Single-sourcing is not uncommon within supplier networks, particularly

when the firms rely on relational contracting-for instance, the promise to "carry out busi-

ness with.. .suppliers without switching to others" is enshrined in Toyota's 1939 Purchasing

Rules.' In this model, multi-sourcing-in which several agents can produce the same inputs-

increases the principal's outside option and thus her reneging temptation, which makes it

more difficult to sustain high effort within a relationship. Now, suppose that multi-sourcing

did occur, perhaps for some unmodeled reason. Even in this case, the tension between adapt-

ability and efficiency presented in Proposition 15 would be unlikely to disappear. Indeed,

multi-sourcing makes it harder to induce high effort; because flexibility is a way to increase

lock-in and effort, flexible ex ante investments are one way to mitigate the deleterious effects

of multi-sourcing on relationships. In short, the trade-off between efficiency and flexibility

seems likely to hold, even if multi-sourcing were optimal for other (unmodeled) reasons.

Outside of the intervals A(M) in Proposition 15, specializations might overlap PinPj / 0.
Andrews and Barron (2012) explore the non-stationary allocation rules that are optimal in

such a setting.

9As referenced in Sako (2004).
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3.4.2 A Simple Framework for Applications

This subsection presents an example for which a simple closed-form optimal relational con-

tract exists. While this example is a special case, it starkly illustrates the broader trade-off

between flexibility and specialization.

Consider the following binary output: if et = 0 or 4, ( Pi, then yt = 0; if et = 1 and

4t E Ps, then yt = yH > 0 with probability p and otherwise yt = 0. Suppose the cost function

is
0 y<-

7( ) '- (3.3)

where M > 2 is an integer and -y satisfies yHp - c - 7 > M1 (yHp - c) > FE. In this market,

each agent faces a very simple choice: they either specialize in a subset - of the market

what I'll call a "specialist"-or they choose to become a "generalist," able to inefficiently

produce whatever product is required. For the purposes of this analysis, assume MFE <'7,

so that it is optimal to have M specialists enter the market if output is contractible.

Proposition 16 Define 6 by = - A(yHp - c) and 6 by - (yHp - c - ). In this

example with the assuptions given above, any optimal equilibrium satisfies:

1. If 6 > 6, then M firms enter the market and specialize in subsets Pi C [0, 1| with

p(P) - - and Si n Sj = 0. Firm i produces every j G Pi.

2. If 6 G [6, 6), then a single firm enters the market, specializes in P1 = [0, 1|, and

manufactures every j E [0, 1|.

3. If 6 < 6, then no firms enter the market.

Proof:

First, consider optimal entry and specialization supposing that et = 1 in every period.

Because MFE < y, the maximum surplus if there are S < M specialists and G. < 1

generalists is
S M-S
-- (YHp - C)+ G (yHp - c - - (S + G)FEM M
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The derivative of this expression with respect to S is y (YHP - c) - (YHP - c - 7) - FE

If G = 1, then this derivative is positive if 7 > MFE, and if G = 0, it is strictly positive if

y(yHp - c) > FE. These inequalities hold by assumption, so S = M and G = 0 is optimal

if each specialist chooses et = 1, Vt.

Now, consider the optimal relational contract, and define TH and T0 to be a bonus scheme

with minimal |TH - ToI such that

PTH + (1 -p)TO - c T0.

It is clear that one such bonus scheme is TH , TO = 0. If 6 > 6, then by Corollary 4

first-best effort can be induced in a relational contract with M entrants and Pi n Pk 0,

and so first-best can be attained. If instead 6 < 6, Corollary 5 implies that in order for agent

i to choose e =1 in equilibrium, it must be that pi > y. Because all pi > y have the same

fixed cost y of production and YHP - C - -Y> FE, it is optimal for a single agent to enter with

Pi = [0, 1]. By Corollary 4 and using the bonus scheme TO, TH, that agent chooses et =1 Vt

so long as
c 6
- < (yHp - c - Y)

By assumption, YHP - c - -Y> y (YHP - c), so there exists a range 6 c (A, 6) in which a single

agent enters the market and chooses P1 - [0, 1]. M

This example provides a very sharp result. For sufficiently patient firms, the first best

market structure can be achieved: a large number of agents enter the market, and each

specializes in a small subset of products. As 6 decreases, however, the market abruptly

collapses to a single agent.10 This lone remaining agent instead prioritizes his relationship

with the principal in order to preserve its own incentive to exert high effort. Because the

first-best market structure involves M entrants specializing in p(P) = I, Proposition 16

reiterates that relational contracts tend to involve fewer agents and more flexible investments

than formal contracts.

'oNotice that this discontinuity is the result of the discountinuous cost function -y and is different than
Proposition 4, which proves that for continuous -y any M ; MFB is optimal for an open set of discount
factors.
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3.5 Applications

The availability and quality of formal contracts differ dramatically between countries, indus-

tries, and jobs. In this section, I extend the basic model to explore several implications for

production and investment. Extension 3.5.1 shows that the basic trade-off between flexibility

and specialization may persist even if every product in required in every round. Extension

3.5.2 illustrates that entrenched firms might agitate against socially beneficial legal change

because they fear that it would render their investment in flexibility obsolete. Extension

3.5.3 considers the employment relationship and suggests important differences between the

skill sets and assigned tasks of employees and independent contractors.

3.5.1 Extension 1 - Multiple Required Products in Each Round

In the baseline model, I assume that the principal requires a single product in each round,

which implies that agents with broader specializations interact more frequently with the prin-

cipal. The purpose of this extension is to demonstrate that the trade-off between flexibility

and specialization may be relevant even when every product is required in each round. This

result follows because the principal can tailor the relational contract to provide stronger

incentives to a generalist agent without increasing the maximal reneging temptation.

To make this point, I consider a very simple model that departs from the baseline model

in two key ways. First, the products required by the principal are drawn from a finite set

{1, ..., M}, so that agents specialize in a subset Pi C { I, ..., M}. This assumption ensures

that there is aggregate uncertainty in the market conditional on effort, which is required for

the result to hold. Second, all products are required in every period, so the principal chooses

one agent x4,t to produce each good 4 E {1, ... M} in each round t. An agent i assigned the

set of products Xi,t g {1, ..., M} exerts effort eo,t on each C E Xi,t at cost c Eo ep,t. The

principal earns surplus EM 1 y4,t, y4,t C {0, YH}, where

Prob{yp,t = yHI e - 1
0 e I 0

if PxE P , and yp,t = 0 if ? .As in Section 3.4.2, I assume the specialization function
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-y(-) takes the simple form that -y(Pi) = 0 if 1' is a singleton and otherwise -y(Pi) -y. I also

assume that FE = 0.

Proposition 17 illustrates that a single generalist agent can sometimes be optimal in this

game.

Proposition 17 Consider the model in this section, and suppose that p < m- and (yHp

c) > -y. In an optimal equilibrium with the minimal number of agents in the market, there

exists a -y* such that if - < -y* there exist cutoffs 6s > 6s such that:

1. If 5 > 6s , then M firms enter the market and specialize in a single product;

2. If 6 e (6s I s) , then a single firm enters the market, specializing in M products;

3. Otherwise, no firms enter the market.

Proof: See Appendix 3.7.

The extent of cooperation in a relational contract depends on the shape of the bonus

scheme r: as in Lemma 13, agent i works hard only if there exists some bonus scheme T

defined on the possible outcomes of products in XYit that induces high effort and satisfies

sup r - inf -r < + ±U

Suppose agent i manufactures every product {1,..., M}; then he must only be motivated to

work hard on each < E {1, ... , M} based on the expected realizations of (yi, ..., yM). Because

M is finite, agent i faces aggregate uncertainty about the vector of realized outputs. If it

is unlikely that yj = YH for every product j, the optimal contract can offer a relatively low

payment for this outcome while still providing incentives for effort. The reneging temptation

depends only on the largest and smallest bonuses paid, so it increases less rapidly than the

continuation value produced by a single agent as the number of products made that agent

increases. Hence, a generalist agent can be induced to work hard when there is aggregate

uncertainty, even if a specialist agent would be unwilling to do so.
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3.5.2 Extension 2 - Resistance to Contractual Innovation

Formal contracts unambiguously increase total surplus in this setting, since they lead to

smaller specializations and higher effort. Suppose now that the agents have an unantici-

pated opportunity to make formal contracts available after they choose their specializations,

perhaps by supporting legal reform or codifying the production process. Although the prin-

cipal would benefit from having access to formal contracts, the existing agents have already

chosen to be generalists and so might resist any reform that leads to the entry of specialist

competitors."1

To make this argument formal, I make several restrictive assumptions. Suppose that after

the agents have entered the market and chosen their specializations, they have an unantici-

pated opportunity to make yt contractible for the principal. For instance, the agents might

be able to codify their knowledge of the production process, develop an internal auditing

scheme that could be appropriated by the principal, or push for legal reform to eliminate

corruption in the courts. Importantly, once this contracting technology is generated, it is a

public good in that the principal can write formal contracts with any agent.

In order for the agents to be motivated to resist legal reform, they must have some

stake in the relationship in the sense that each expects to earn positive profits whenever he

produces. Therefore, I restrict attention to relational contracts in which each agent earns a

fraction a C (0,1) of the total expected surplus if he is called upon to produce, and earns

0 otherwise. To simplify the argument, I assume that FE - 0 and consider the optimal

relational contract with the minimal number of entrants.

Formally, consider the following additions to the timing at the end of t - 0:

1. Legal reform becomes available: unless the current agents pay FR > 0, output yt, entry,

and specializations become contractible. Assume that no players anticipate this stage

before it occurs.

2. If legal reform occurs, the principal writes a long-term formal contract with existing

and potential new entrants, who then choose whether or not to enter at cost FE = 0.

"Unlike Baker, Gibbons, and Murphy (1994), the introduction of formal contracts in this extension has

an unambiguously positive effect on social welfare.

121



3. If legal reform does not occur, players continue according to an optimal relational

contract. 12

These modifications to the game are ad hoc-they are meant to represent a market that is

ripe for legal reform after operating for a long time. To make this point in the starkest way,

assume the specialization cost -y(p) is as in Section 3.4.2.

Proposition 18 Suppose that

Assume 6 G [A,6), where 6 and 6 are defined in Proposition 16, and consider only relational

contracts of the following form: there exists an a > 0 such that Vt, ht-, agent i's payoff is

at least aE 1rw7OTlht1, t, 1{xt = i} > 0.'" In the optimal relational contract in this class,

legal reform does not occur if FR < a(yHp - c - y).

Proof: As in Proposition 16, one agent enters the market at the beginning of the game

and specializes in P1 = [0, 1]. Consider the continuation equilibrium if legal reform occurs.

Because (yHp - c - 7) < (yHp - c) and FE = 0, the principal will write a long-term contract

inducing high effort in each period with M new entrants following legal reform. Those M

agents enter the market and specialize in disjoint subsets of measure pi = 1. Call agent 1

the original entrant in the market, while agents 2, ... , M +1 are the M new entrants following

legal reform.

Following legal reform, agent 1 is never allocated production and the principal has no

incentive to pay him, so agent 1 earns 0. If legal reform does not occur, the continuation

relational contract induces high effort from agent 1, who earns a(yHp - c - -Y) by the as-

sumption that each agent earns at least aE[7r TOT!h', , 1{xt = i}]. Therefore, agent 1 is

willing to pay any F < a (yHp - c - -y) in order to prevent legal reform. M

121n particular, this assumptions implies that agents are not punished for resisting legal reform. One
justification for this assumption is that by successfully resisting legal reform, and agent might ensure that
the principal was never even aware of the opportunity for that reform.

i3 That is, if xz = i, then i earns a percent a of the total surplus in the period, and if xt / i, then i earns
0.
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This example highlights a tension inherent in developing markets that might prevent or

delay the introduction of better contracts. The agents in a relational market prize flexibility,

which is only valuable if relational contracts are required-if legal reform succeeds, these

agents are displaced by a larger group of highly specialized agents. Importantly, the principal

cannot credibly commit to share the efficiency gains from legal reform. Any such promise

would have to satisfy the principal's reneging constraint to be credible, and if formal contracts

are available, then the principal's payoff following reneging is too attractive to support these

promises.

3.5.3 Extension 3 - The Employment Relationship

In the context of the employment relationship, Proposition 15 suggests that employees and

independent contractors (such as consultants) may make systematically different investments

in human capital. To make this point precise, I modify the example from Section 3.4.2 so that

the "principal" actually represents two different employers. At the beginning of the game,

agents choose whether to enter at cost FE > 0 and, if they do enter, choose specializations

Pi. The fixed cost of a specialization Pi is given by (3.3), and specializing in a product

implies that the agent can make that product for either employer.

In each period, two products 0', 0' ~ U[0, 1] are independently drawn as required for that

period, and for each product 47, the principal asks one agent x to produce. Critically, each

agent can only manufacture a single product in each period, so x1 ) X2 unless x' = x = 0.

For product k, agent x accepts or rejects production, chooses effort et E {0, 1} at cost cek,

and produces binary output yk E {0, yH}, where the probability of YH > 0 is P if C k 1

and 4O E Pk, and 0 otherwise. The monitoring structure for all variables is just like the

baseline game, and transfers between the principal and each agent wi,t, Ti,t are the same as

that model.

One interpretation of this set-up is that the principal actually represents two different

employers, each of whom has a single task 4 that must be accomplished in each period.

This interpretation is unusual because these two (presumably independent) employers act as

a single player in the game. By modeling them as a single player, I ensure that the employ-

ers will always act in their joint best interest in order to highlight an interaction between
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employment and human capital investments. If I instead modeled the two employers as two

separate players, then the optimal equilibrium might entail contagion-style punishments in

which one employes serves to disseminate information to the agents when the other employer

reneges on a bonus." In order to completely rule out such contagion punishments (which

may or may not be realistic in a given setting), I model the employers as a single player.

Agent i is a contractor if Prob{x' = i}, Prob{x= i} c (0, 1) Vt on the equilibrium path,

so that i produces either #' or #' with positive probability in each period. An agent is an

employee if he exclusively produces one of #4 or #', so that ]k c {1, 2} with Prob{x' = i} = 0

Vt.

Formalizing this logic, Proposition 19 proves that for some parameters, employees-who

are generalists and produce only one of the products k c { 1, 2}-are (non-uniquely) optimal

if output is non-contractible, while contractors-who work for both firms and specialize in

a small subset of products-are optimal if output is contractible.

Proposition 19 Consider the example presented in this section. Let

6 c 6 12
(YHP - C- -0 ~-> (Y(1__ HP- C)1- p 1-6 M

and suppose that max { MFE, YHP - c - M2FE} < 7 < ' (YHP - c). Then:

1. If output is contractible, M workers enter the market in any equilibrium. Each spe-

cializes in - of the interval [0, 1] and manufactures products for both principals.

2. If output is not contractible, then 2 workers enter in any equilibrium. Each specializes

in the interval [0,1].

Moreover, if output is not contractible, there exists an optimal equilibrium in which each

worker works exclusively for a single principal.

Proof: See Appendix 3.7.

14 For instance, the following chain of events might occur: if principal A reneges on a bonus for agent i,
then agent i reneges on principal B. When principal B observes this, she reneges on every other employee,
who renege on employer A in turn.
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If agent i is a specialist with p(Pi) = y, then the principal can use that agent to

produce either #' or 0' when one of those products happens to lie in Pi. if M is large, then

the probability of both d E Pi and 0 E Pi is very small, and so the principal only needs

a single agent to specialize in the region Pi. In contrast, if i is a generalist with p (Pi) = 1,

then they will always be able and needed to produce one of the products, so the principal

might assign i to be an employee for a single task k E { 1, 2}. Generalists tend to be optimal

when formal contracts are unavailable by a logic similar to the previous sections.

Proposition 19 can be interpreted to suggest a difference between employees and contrac-

tors. Contractors (1) produce contractible output, (2) are likely to be highly specialized and

very good at their chosen tasks, and (3) work for multiple firms. In contrast, employees (1)

produce non-contractible output, (2) are flexible, though perhaps not very efficient at any

given task, and (3) are locked into a bilateral relationship with a single firm. In this model

the decision whether to hire long-term or short-term workers is driven by the human capital

investments required to sustain high effort. Employees and contractors are distinguished

both by the differences in the contractibility of their jobs, and by their different ex ante

specializations. Put another way, the contractibility of output drives the ex ante human

capital acquired by a worker, and consequently whether that worker operates as a contractor

or a employee. If formal labor contracts are not available, employees-who are locked into a

bilateral relationship and can flexibly produce whatever product is required of them-might

be favored over contractors.

3.6 Conclusion

In closing, I informally discuss a few more applications in the context of this model. First,

markets sometimes interact with cultural norms to inhibit trade. For instance, Dixit (2011)

points out that in institution-poor environments, firms from developing countries tend to

have an advantage over multinationals that are based in developed nations. His explanation

is that firms from developing countries understand how to navigate inefficient or corrupt

institutions-they know whom to influence to get things done. I present a complementary

story: a firm from a developed country might also be too specialized to work well in a
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relational setting. Suppose that a "downstream" domestic firm (a retailer, perhaps) would

like to contract with a multinational "upstream" firm. Such a multinational might be a very

cost-effective producer of a few inputs, but it lacks the flexibility to be a close partner if

formal contracts are not available. As a result, foreign firms face multiple barriers to entry in

developing markets: not only do they need to learn how to work around inefficient or corrupt

formal institutions, they must also alter their production process to prize adaptability over

efficiency.

Second, relational contracts sometimes build upon existing social ties-for instance, a

CEO might hire a close relative to supply a service, rather than choosing the most cost-

effective producer. In a relational contract, such behavior might be eminently justified, since

ostracism and social sanctions are powerful forces that imply the parties can punish one

another very harshly if one of them deviates from their agreement, which in turn prevents

reneging. In Section 3.5.2, close social ties can also be used to induce an otherwise unwilling

agent to accept legal reform rather than resist it. Unlike informal contracts, familial rela-

tionships exist independently of business ties. Therefore, social ties provide a "stick" that

helps the principal commit to rewarding its suppliers for acquiescing to changes, even when

those changes weaker their market relationship. While an outsider might observe inefficient

production methods and attribute them to nepotism, closely intertwined business and so-

cial networks could also serve a valuable purpose by inducing higher effort and mitigating

resistance to efficiency-enhancing institutional changes.

Finally, this model presents a simplistic view of firm specialization and capital acqui-

sition, and it would be worthwhile to expand on the notion of ex ante investments and

precisely illustrate how they interact with relational contracts. For example, suppliers of-

ten choose whether to invest in general or relationship-specific capital. In a static setting,

relationship-specific investments can be appropriated ex post; in a repeated game, however,

these investments increase lock-in and hence effort provision in a relationship (a point made

by Klein and Leffler (1981)). Discussing the hold-up problem in this context requires an

assumption about how surplus is split in a relational contract, and hence requires a theory

of bargaining in repeated games.
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3.7 Appendix: Omitted Proofs

Proof of Proposition 12:

This proof proceeds in four steps. A long-term contract can be written before entry and

utility is transferrable, so the optimal contract will set M, {Pi }, and xt, et, Vt to maximize

total surplus.

(1) Optimal one-shot contract. Consider the following formal contract r(y): let Y be such

that F( Ie - 0)-F(yIe = 1) C (0, 1), which must exist because F(.e -= 1) >FOSD F(-Ie = 0).

Then T(y) - F(gje=0)-F(gle=1) if y > y, and otherwise T(y) = 0. Under this contract, an agent

chooses e = 1 since

C -~(1 - F(YIe - 1)) - c > C Y I - F(____=_0))

F(yle = 0) - F(yle = 1) - F(yle = 0) - F(Qje 1) (1 F - 0)).

It is an optimal static equilibrium for the principal of offer this formal contract, and so et 1

in any round of the repeated game for which <Ot c Pi.

(2) If agents choose et = 1, Vt, then specializations do not overlap. Suppose that p1 (-Pj n

Pk) > 0, arid consider the alternative with et = 1, Vt, P3 = P3 Vj : k, and Pk -- PVPi.

By claim 1, each agent chooses et = 1 in the static equilibrium with these alternative

specializations. If Pk = 0, then k need riot enter the market, which improves total surplus

by FE > 0; If =/ $ 0, then firm k's cost is -(4k) < 7(pk), also increasing total surplus.

(3) pii = pj, Vij. Suppose M firms enter the market and choose {pi}M1. By claim 1,

et = I in the efficient equilibrium. By claim 2, there is no overlap in specializations and so

the problem is
M

min E pta(pts)
{Idi} i=1

subject to
M

y(-) is convex and increasing, so pvy(p) is convex. Hence, the solutions to this problem is

yi = y Vi and some p > 0.

127



(4) Optimal entry. The measure p is chosen to solve

max Mp(E[yle = 1] - c - y(t))

subject to the constraint My < 1. But Mp < 1 cannot be a solution, since p(E[yje =

1] - c - 7(p)) is strictly increasing in p. Hence, the optimal equilibrium sets p =W and

Pi n Pj = 0, Vi, j.
The efficient number of entrants M solves

max(E[yle = 1] - c - ( - FEM

with first-order condition 7'(J) = M 2 FE.

The left- and right-hand sides of this expression are strictly decreasing and increasing in

M, respectively, so some (non-integer) M* equates the two sides. Total surplus is continuous

in M and MFB must be a natural number, so MFB is either the floor or the ceiling of M*.

N

Proof of Lemma 11:

A deviation in any variable other than et in round t is publicly observed and hence can be

punished by breakdown in the market, which leaves every player at the min-max payoff 0.

Let o be an optimal equilibrium. If et = 0 at every history of o, then it can be trivially

replicated by a stationary contract. Otherwise, let (ht-, nt) be a history on the equilibrium

path immediately following et =1 and output yt. Let r(yt) = E, [- ht-1, nt] be the expected

transfer to the producing agent in this history, and Ui(yt) = E, [Ui ht-', nt] Vi E {0, ..., M}

the expected continuation surplus (where i = 0 is the principal).

For et =1 in equilibrium,

(1 - 6)~yt) + 6U(yt) - c > (1 - 6 )r(yt) + 6U(yt). (3.4)
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For transfer i(yt) to be supported in equilibrium,

(1 - 6)f(yt) 6Uo(yt)(35< (J(Y) Vyt (3.5)
-(1 - 6)f~yt) w2(yt)

since otherwise at least one player would prefer to deviate, not pay a bonus, and earn min-

max payoff 0 in the rest of the game.

Define T - ( yt) +- U6,(yt), and note that T(yt) > 0 by (3.5). Consider the following

stationary equilibrium: At t = 0, M firms enter and specialize as in -, and wu,o = FE.

Vt > 0 on the equilibrium path, xt is the agent with the smallest specialization P, such that

Ot E Pfx, xt't = c + Y(px,) - E [r(yt)], and w%,t = 0 Vi / xt. Agent xt accepts (dt = 1) and

chooses et = 1. Following output yt, -Tx = T(yt) 2 0 and ri = 0 Vi : xt. Any deviation is

immediately punished by reversion to the static equilibrium.

At t = 0, the agent is indifferent between entering or not. The principal is willing to

pay wi,o = FE because MFE is smaller than the principal's total continuation surplus in an

optimal equilibrium. Vt > 0, each agent earns 0. For each de E [0, 1), let p m(ot) be the

smallest specialization p(Pi) such that t E P. Then the principal earns

Uo f 1{i E {l.M} s.t. 4t C P}E[yt - c - 7(["(0t))|et = 1]det

from every on-path history in this relational contract.

The principal or agent xt is willing to pay w,,t because doing so earns that player at

least 0, while failing to do so earns them 0. Vt, agent xt is willing to work hard because (3.4)

holds for r(yt). The principal is willing to pay T(yt) 0 because

(1 - 6 )r(yt) - (1 - 6 )i(Yt) + 6U2,(yt) 6(Uo(yt) + U,,(yt)) 6Uo (3.6)

where the first inequality follows from (3.5) and the second inequality is because Uo is the

maximum expected surplus attainable given entry M and specializations {Pi}. Thus, we

have found a stationary equilibrium that produces at least as much total surplus as the

posited original equilibrium. N
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Proof of Proposition 14:

Let V(M, {Pi}) be the expected total surplus in the optimal stationary equilibrium with M

firms and specializations {Pi}. By emma 11, there exists a stationary optimal continuation

equilibrium in which the principal earns total surplus:

V(M, P = f 1{i s.t. #t E Pi }E[yt - c - -(p"(0t))Iet =1]dot - MFE if (3.6) holds

-MFE otherwise

Suppose that at the beginning of the game, the total-surplus maximizing number of agents

MP"' enter and choose optimal specializations {Pi Ii . The principal pays FE to each entrant

and play continues according to the optimal stationary equilibrium, while any deviation is

punished by a breakdown of the market. Since V(M, {TP}) 2 0, the principal would rather

pay MFE than suffer relational breakdown, so firms are willing to enter because they earn 0

and hence this is an equilibrium. Therefore, it suffices to find the M and {Pi } that maximize

V.

Suppose that p(P, n Pk.) # 0, and consider the alternative equilibrium in which agent

k does not specialize in Pi n Pk. If Pk\Pi 9 UlikPt, then agent k can exit the market

without affecting total surplus; otherwise, the fixed cost 7(pk) of agent k strictly decreases.

In either case, V(M, {Pi}) strictly increases, so it must be that p(Pin Pk) = 0 in the optimal

equilibrium.

If $ (M, {Pi}) such that V(M, {Pi,}) > 0, then M = 0 is optimal in equilibrium. Oth-

erwise, i = - because -y(p) is convex, as in Proposition 12, so the optimal equilibrium

maximizes total surplus subject to satisfying (3.6). Ignoring this constraint, MFB maxi-

mizes surplus by definition. The constraint (3.6) is relaxed as M increases, so the optimal

number of entrants is either M = 0 or M > MFB. *

Proof of Lemma 12:

Towards contradiction. Suppose that

-(1 - 6)Ec, [7;tIht1,1, in) I> 1 E,3 [Ui(h)|h!",1I(nt).
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Consider the following deviation for agent i: do not pay this transfer, and in future rounds

pay no transfers, never accept production, and never exert effort. This deviation yields payoff

0, so is profitable given agent i's information set (hl, (nt))

Suppose now that

(I - 6)E, [i,tjh!1, l(nt) > 6E,. [U (ht)h-1,I(nt).

Then it must be that -r, > U(ht) for at some history in this information set. Consider the

following deviation for the principal: do not pay n,, in round t. In the continuation game,

replicate equilibrium play following history (ht-1, nt), with the exception that wi,tl - Ti,t' - 0

in every future period whenever xt = i is specified by the equilibrium, instead play xt = 0.

Because w ,t, I,t', and xt = 0 are not observed by any agents j :/ i, all other agents do not

detect a deviation. The principal earns no less than 0 from agent i in each future period, so

her continutation surplus is bounded below by

6E K U (h t )|ht-1 , nt > -(1 - 6)E, [ I h-1, ntj + 6E K U (ht )|ht - 1, nt

and hence this deviation is profitable. N

Proof of Lemma 13:

Suppose there exists an equilibrium o and an on-path history (ht-', nt) immediately preced-

ing effort et such that xt = i and et - 1. Then

E, [(1 - 6 )Txt + 6Ux(ht) I h- 1, Iz,(nt), et = 1 - 3.>
Xt (3.7)

E [(1 - 6)Trt,t + SUxt(h t ) I ht--, (nt), et = 0

for et = 1 to be incentive compatible. Define F(yt) - E [Tt + -1'_Ue lh --1,TI(nt), ytl.
By Lemma 12, the following inequalities must hold for T to be incentive compatible Vyt:

(1 - 6)Eo, [~rIht-1, EI(nt, yt)I <; 6Eo- [Uo(ht) + Ui(ht)Iht-1, i(nt, yt)
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-(1 - 6)Ea [~Irht', i(nt, yt)] < 0

By definition,

Ud(h'1, nt) + Ui(ht1, nt) = E, [L:t0 6t't1 (ui + 7r)|ht, nt=
Kpi (E [ytle = 1] -c- 7(pi))

because pi (E [ytle = 1] - c - -y(pi)) is the maximum surplus produced by agent i given P1 .

,f (y) satisfies (3.7) and so is an incentive scheme that induces high effort, and moreover

(1 -6) supr(y) -inf f-(y) pi (E [y - c-7(pi)|e = 1]) .

Hence, whenever agent i chooses et =1 in equilibrium, there exists an incentive scheme T(y)

that satisfies (3.7) and (3.2). U

Proof of Corollary 4:

Suppose that p(Pi n Pk) - 0 for every i, k E {1, ..., M}. By Lemma 13, agent i exerts high

effort in equilibrium only if (3.2) holds; I construct a stationary equilibrium in which this

condition is also sufficient.

Fix some -(y) that minimizes sup, r(y) - inf, r(y) among all incentive schemes such that

(3.7) holds, and assume without loss that infY i(y) = 0. Consider the following strategy

profile: the principal allocates 4t to i such that 4t C Pi (if multiple agents are available-

which occurs with probability 0-then the principal chooses the lowest-numbered agent that

has the smallest pi among those for which (3.2) holds). If (3.2) holds for xt, then wxt,t =

c + (pi) - E [ri(y)|e = 1], dt = et = 1, and rxz,t =r(yt) > 0 following output yt. If (3.2)

does not hold, then the principal pays w,,t = 72,, 0 and the agent rejects production. In

either case, wi't = ri't = 0 Vi =/ xt. After a commonly observed deviation, the entire market

breaks down. After a deviation observed by agent i and the principal, agent i thereafter

rejects production, wi,t = Tt = 0 in each period, and xt = 0 whenever i is the only agent

able to produce. The principal plays the on-path actions for all agents j :/ i.

I claim that this strategy profile is an equilibrium. Let U be the set of agents for which
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(3.2) holds. In each period on the equilibrium path, every agent earns 0 and so the principal

earns the total expected surplus for that period. The principal has no profitable deviation

from the allocation rule on the equilibrium path, since either there is only one available agent

or the principal is allocating production to the agent that maximizes expected surplus in

that period. If (3.2) does not hold, then play is a mutual best response both on and off the

equilibrium path. If (3.2) holds, then the agent is indifferent between accepting and rejecting

production and willing to choose e =1 by construction of Ti (y). Whoever is responsible for

paying w,,,t is willing to do so because paying Wa,,,t yields higher continuation surplus by

construction. If the principal does not pay r(yt), then she no longer earns any surplus from

agent i. Because p (Pi n Pk) = 0 for every i, k E {1, ... , M}, the total loss from this deviation

is

opi (E[yle = 1] - c - 7 (pi))

and the total gain from the deviation is Ti(y). This is not a profitable deviation because

(3.2) holds.

Off the equilibrium path, strategies among those that have observed the deviation are a

mutual best response by construction. Pay among those who have not observed are likewise

a mutual best-response. Therefore, this strategy profile is an equilibrium that induces high

effort from every agent i whose Pi satisfies (3.2). It is optimal because (3.2) is a necessary

condition for high effort. U

Proof of Corollary 5:

From Lemma 13, agent i is only willing to choose e = 1 in an equilibrium if (3.2) holds. The

same set of transfer schemes induce high effort regardless of pi or 6. Define p*(6) to solve

the following

inf sup -r(y) - inf r(y) = p*(6) (E[yle - 1] - c -
{{-r}|{r} induces e = 1} y Y

whenever this is well-defined. Because sup Ti - inf ri > c > 0, p*( 6) > 0 defines the minimum

measure of specialization required to induce an agent to choose e = 1. Because -Y(t) is
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continuous and p(E[yle = 1] - c - 7(p)) is increasing in y for p E [0, 1], p*(6 ) exists, is

continuous, and satisfies lim,- 1 p* (6) = 0 and lim, 8 p* (6) = 1 for some 6 < 1.

if p(Si n Sk) = 0, then a stationary contract is optimal and this condition is sufficient

to induce high effort by Corollary 4, so e - 1 at every history in the optimal equilibrium iff

[pi 2 p(*(6) Vi. N

Proof of Proposition 15:

To prove this result, I introduce an equilibrium with the desired properties and show that it

is optimal.

First, fix the number of entrants M < MFB, and consider the continuation game. Sup-

pose that t*(6)M < 1. I first claim that the optimal equilibrium with M firms satisfies

p(P, n Pk) = 0 and p(P) = ftM, Vi, k and some M E [0, 1]. Suppose not, and assume that

the optimal equilibrium generates total surplus v*.

Let i is the surplus generated under the same allocation rule if et = 1 in each period.

Then v* < f, where this inequality hold strictly if v* ever has et = 0 on the equilibrium

path.
-00o M 

-f) = E, [1 6(1 - 6) 1{ lxt - i}{fE[yle =1] - c - 7(p(Pj))} dq~t.

In turn, f is dominated by the strategy profile in which (1) et =1 in each period, (2)

specializations do not overlap, and (3) the principal allocates to the unique producer in each

period. Define {PfN} as the set of disjoint specializations created by removing Pi n Pk

from one of i, k's specializations. Let VNO be the resulting surplus, so VNO > f with strict

inequality if p (Pi n Pk) > 0 for some i / k.

VNo = E, 1(1 - 6)6t {(PO ... U P{ 0 )E[yje =1 - c} - (pNOy NO
-t=0 i= I

Because py(p) is strictly convex, VNO is dominated by the surplus generated if all agents

choose et = and have equally-sized, non-overlapping specializations pES 1 jpNO U... U

pjo). This alternative strategy profile generates total surplus VES, where VES > VNO and
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this inequality holds strictly if specializations {PiNO are not of equal size.

VES MpES (E[ylc = 1] - c - -(pES

Finally, recall that pu(E[yle = 1] -c-y(p)) is increasing in p. Therefore, VES is dominated

by the surplus generated if each agent picks e - 1, has an equally-sized specialization, and

specializations collectively cover [0, 1]. Define

VOPT - (E[yle = 1 - c - 7(
t=o

as the surplus in this alternative.

By Lemma 13 and Corollary 4, because y ;> p*(6), VOPT can be generated in an equilib-

rium of the repeated game, provided that (1) Pt = with P n P = 0, and (2) M K MFB

firms enter the market. It remains to show that such an equilibrium exists.

Consider the following strategies:

1. M agents enter the market, labelled {1, ..., M}.

2. agent i E {1, ... , M} specializes in the interval Pi - [M, y].
3. i c {1, ..., M}, wi,o = max{0, FE - Ui}, where U is the surplus earned by agent i in

the continuation game.

4. Play continues as in the optimal stationary contract with agents { 1, ... , M}.

5. If either fewer or more than M firms enter, or specializations differ from those specified

in step 2, then continuation play specifies wi = -r - 0 and e = 0, Vi, at every history.

Because both specializations and the set of entrants are public knowledge, the punishment

strategy specified in step 5 is feasible. Hence, the number of entrants will not exceed M,

and entrants will specialize in the specified interval. If agent i expects to be paid wi,o =

max{0, FE~- Uj}, then she weakly prefers to enter the market, since the surplus from entering

is wi + U - FE > 0. Moreover, the principal is willing to pay wi: if she does not, her

loss is y (E[yle = 1] - c - '( 1 )) - Uj, which is larger than wi because FE < (E[yle

1] - c - 7(y)) for M < MFB.
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If p*(6) ', the total surplus generated by the efficient equilibrium is

E[yje = 1] - c - 7(1) - MFE

This expression is increasing in M for M < MFB by definition of MFB. Thus, the number of

entrants in the optimal equilibrium is bounded below by M(6) = min { MFB, fioor{ A ).

To prove statements 2 and 3 of the Proposition, suppose that Mp*(6) = 1. For M <

MFB, such a 6 exists because p* (6) varies continuously on [0, 1]. By the argument above,

at least M firms enter the market. If exactly M firms enter the market and specialize in

disjoint subsets of length p*(J), then total surplus is

00 1
6'{yHp - c -- y7(-)} - MFE (3.8)

t=0

For M < MFB, (3.8) is increasing in M. p*(6) = i, so -y(pi) > y by Corollary 5 and hence

(3.8) is the largest surplus that can be generated in an equilibrium with discount rate 6.

Therefore, every efficient equilibrium has M firms enter the market and specialize in subsets

± of the unit interval. Hence, when Mp*(6) = 1, exactly M firms enter.

Now, consider a small increase in 6. At least M agents will enter the market by statement

1, so suppose that M + K agents enter. Then total surplus is no more than

(1 - 6)6f{yHp - c - y(p*(6))} - (M + K)FE (3-9)
t=:O

But p* and y are both continuous, and FE > 0. Hence, there exists some open set A(M)

such that for 6 E 6(M), (3.8) is strictly larger than (3.9) and so the optimal equilibrium

entails M agents.E

Proof of Proposition 17:

I first claim that first-best can be attained if and only if

c 6
- < (YHP - c).
p 1-6
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Suppose this inequality holds, and consider the following strategy profile:

1. M agents enter the market, each specializing in a single product with Pi -n P = 0 Vi, k.

The principal pays each entrant wio = FE.

2. In each period, the principal allocates production to the unique i with kt C Pi.

3. The principal offers wage wt,t = 0; the agent accepts and chooses et = 1.

4. If yt = 0, rztt - 0; if yt = yH, r,,t =. ri,t = 0 for all i =/ xt.

5. If the principal deviates on xt, then every agent rejects and chooses et = 0 in each

future round, and wi,t = ri,t = 0 Vi. If either principal or agent deviates on wi,t or ri,t,

then whenever Xt = i, the agent rejects and chooses et = 0 in every future round, and

wt = Tt = 0 for that agent, but otherwise play continues as on the equilibrium path.

The principal earns M(yHp - c) in continuation surplus following any on-path history, and

the agent earns 0. The principal loses (yHp - c) following a deviation in wit or Ti,t, and earns

0 following a deviation in xt. Each agent is indifferent between entering the market or not,

and the principal is willing to pay wi,o = FE because YHp - c - FE > 0. The principal and

agent are trivially willing to pay the wage, and the principal is willing to pay r-t so long as

- < (YHp - C)
p 1 -

which holds by assumption. The agent is willing to work hard because p - c 0. Players

mutually best-respond off the equilibrium path, so this describes an equilibrium that attains

first-best.

Suppose instead that > j-d (yHp - c), and fix a strategy profile - that attains first-best.

By an argument similar to Lemmas 12 and 13, it must be that

(1-6) sup E, [r ht1, i(nt,yt) -infE, [rilht-1,ITi(nt,yt)) 6 (YHp- c)-

Plugging in the optimal contract, < < (yHp - c), which contradicts the assumption.
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Next, I claim that there exists a set of 6 for which 2 > J (YHP - c) but a single agent

with P1 can be motivated to work hard. By the argument above, any firm specializing in

one product will never exert high effort under this condition. Therefore, every firm entering

must specialize in at least two products, and so the maximum surplus in the market is

M(yHp - c - y). Using an argument similar to Lenunas 12 and 13. A stationary relational

contract can be constructed similarly to above, but with a single entrant who specializes in

1 {1, ..., M} and wi,t = 7 in each period.

Define an incentive scheme as {rM 1 7I T0 }, where rk is the bonus payment if YH

is observed for k products. This incentive scheme can be implemented in the stationary

relational contract if and only if

sup k - infrk < M(yHp -- c -- Y)
k k 1-6

I claim that there exists a threshold -* such that if -y -*, high effort can be supported

with a single firm but not with M firms. It suffices to show that for some 6 such that

C> -- (yp - c), there exists a bonus scheme {-r} that induces an agent to work hard on

all M products and satisfies supi ri - infi -r < 1%M(yHp - c - -Y)

To begin, consider the incentive scheme ~rk =k . Define "K as the event that ek,t 1p

for K of the M products. Then under the incentive scheme {k}, I first argue that

-E[#{y = yH} | WKI - Kc
p

is weakly increasing in K. Fix every outcome except Yk, and denote this vector of M - I

outputs Y-k. For any fixed Y-k, the value of choosing ek - 1 is -p - c > 0. Therefore,p

regardless of the outcome of the other tasks, the agent always weakly prefers to pick ek 1

under the specified contract, so the agent's payoff is weakly increasing in K.

Now, consider the IC constraints for an arbitrary incentive scheme {rk }. The agent is

willing to choose e,t =1, Vk, t, if

Ek[rk I XJM] - Mc > Ek[rk | K] - Kc,VK E {0,..., M}
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Consider the incentive scheme Tk = ck, V k < M - 1, TM-1 > (M -1),and T < .M,

where TA-I and TA are chosen so that

Ek[Tk | VM] > - E[#{y YH M
p

Such an incentive scheme exists so long as p < 1. I claim that this alternative contract

continues to satisfy the IC constraints. Since Tk - ?"k for all k < M - 1 and r-l > fM-1

Ek [Tk | WKI - Kc is increasing for all K < M - 1. Therefore, it suffices to show that

Ek[7k | 'M] - Mc > Ek[Tk I XM-1] - (M - 1)c

or

M( M Mk-PM1kTk ( M-1 k(i )M-1k k

k=0 k k=0 k

strictly slackens when TM-i increases, since this slack can then be used to decrease r

The coefficient on TM-1 is M 1)!pM1(1-p) on the left-hand side, and (M-)! m1 = PM-1
(M-1)! (M-1)!P

on the right-hand side. Thus, increasing TM-1 strictly relaxes the IC constraint if p < M-1

Under this parameter restriction, supk k < Mg when a single agent enters the market and

manufactures every product. Hence, for -y > 0 sufficiently small, there exists an open interval

of 6 for which M > 6 (YHP - c) but

P 1-6
supri - infr7-'< 1 (yHp - C- 7)

Si 1-

On this interval, a single generalist firm enters the market in the optimal equilibrium. U

Proof of Proposition 19:

First, suppose that output is not contractible. I claim that an agent with specialization

yi < --I will never choose et = 1 in a relational contract. As in the baseline model, following

any deviation in ri,t with agent i, the principal can always allocate business as if no deviation

has occurred, but set Ti,t= wi,t = 0 and x k = 0 whenever he would have chosen x = i on
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the equilibrium path. Similarly, agent i can always set ri,t = wi,t = 0 and de = 0. As a

result, in equilibrium it must be that

(1 - 6)r, W [EU '(ht)|Iht-', nt]

-(1 - 6)r,t > 6E [Uj(ht)|ht-1,TI(nt)]

for any (ht-, Tt) immediately following the realization of output yt. Worker i can produce

only once per round and only if 0' E Pi for some k E {1, 2}. Therefore, agent i is able to

product at least one of the products in a period with probability (1 - (1 - p) 2 ). By an

analogous argument to Lemma 13, in any PBE in which agent i chooses et 1, it must be

that
c 6
- < (1, - (1 - p,)2) (yHP - C). (3.10)

By assumption, this inequality does not hold for pi < 1 because the right-hand side of

(3.10) is increasing in pi.

Hence, in any optimal equilibrium every entrant specializes in yi > . Then the maxi-

mum feasible surplus is 2(yHp - c - -Y) - 2FE, which is attained in the following stationary

equilibrium:

1. Two workers enter and specialize in [t(P1) - [0, 1], p(tP 2) = [0, 1]. wi,o = PE

2. 0'4 is always assigned to i - 1, #2 is always assigned to i = 2.

3. wi,t - y for both agents. Agents accept and choose e 1.

4. If yt = yH, Ti = ); otherwise, ri = 0.

The agents are willing to follow the equilibrium entry and effort decisions by construction.

The principal is willing to pay wit for reasons similar to those argued in Proposition 17, and

willing to pay r so long as
c 6
whi- h d (yHP - C - 7

which holds by assumption. Note that each agent is an employee in this relational contract.

140



Suppose instead that output is contractible, so that every agent chooses et = 1 in every

period. Note that it is weakly optimal if V agent i, si c {-, 1}. Call i a "specialist" if p

and a "generalist" if pi = 1. Because only two products are required in equilibrium, there will

be at most two generalists in the market. Fix the number of generalists in the market and

consider the number of specialists. Suppose it is optimal for at least one specialist to enter

the market, which is implied by the condition 7 > MPE. Then it is optimal for at least M

specialists to enter the market, because these specialists can choose disjoint specializations

and each generate the same additional surplus as the first specialist. If M specialists enter

the market, then it is not optimal to have two generalists in the market.

More than 2M specialists will never enter the market in the optimal equilibrium. Fixing

the number of generalists G E {0, 1, 2}, suppose that 2M > K > M specialists enter the

market. Because only two products are required in each period, it is never optimal for

more than two specialists to produce the same product. The total measure of production is

2 > } > 1. Let A be the measure of products that have exactly one producer and p2 the-M

measure of products that have two producers. Then surplus can be written

(1 - pt - p 2)G(yHP - C - 7) + p1'(YHP - C + 1{G :/ 0}(yHp ~ c - 7)) + [ 22(yHP - C)

KK

subject to the constraint that measures of specialization are between 0 and I and sum to K

1+2p2 k E {0, 1], k E {1, 2}.
M1

Plugging in summing-up constraint yields

(1-1 (-K 1))G(yHp-c-7)+'(yHp-C+1{G / 0}(yHp-c--7))+ -- - P (yIp-C)2 M M

or

S-- )G(yHp - C - 7/) + p' 1{G 7/ 0}(yHp ~ C - -y) + -(yHP - C)-
2 2 M M

Notice that total surplus increases linearly in K, so if K > M specialists are optimal then

it is optimal to have K = 2M. We have already shown 2 generalists are dominated by M
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specialists and one generalist, so we need only consider whether M specialists, M specialists

and 1 generalist, or 2M specialists are optimal.

If 2M specialists enter the market, then total surplus is 2(yHp - c) - 2MPE. If M

specialists enter the market, then the same specialist is required for both products with

probability N. Hence, total surplus is

2 (yHp - c) - 2 (yHp -c) - ME

Finally, if M specialists and a generalist enter the market, then total surplus is

1
2(yHp - c) - M - - (M + 1)FE

So long as MFE > (yHp - c), M specialists strictly dominates 2M specialists. So long

as -4T(yHp - c - 7) < FE, M specialists strictly dominates M specialists and a generalist.

Rearranging these conditions, we have that M specialists are optimal so long as

1
M 2pE > max{-(yfHP - c), (YHP - c -M

By assumption, we know that y (yHp - c) < (yup - c -y), so we require only that M 2pE>

yHp - c - -y which holds by assumption. Therefore, under the given conditions, it is optimal

for M specialists to enter the market when formal contracts are available. Each specialist is

allocated either xt or xt with positive probability in each period, proving the claim. U
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