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Abstract

This thesis studies topics in public economics in developed and developing countries, including
health insurance regulation, public goods provision and inequality and welfare measurement. The
first chapter analyzes the impacts of the managed care backlash in the United States on health care
costs in the late 1990s and early 2000s. During the late 1990s, most U.S. states passed a variety
of laws in this period that restricted the cost-cutting measures that managed care organizations
(HMOs, PPOs and others) could use. I exploit panel variation in the passage of these regulations
across states and over time to investigate the effects of the managed care backlash, as proxied
by this legislation, on health care cost growth. I find that the backlash had a strong effect on
health care costs, and can statistically explain much of the rise in health spending as a share of
U.S. GDP between 1993 and 2005 (amounting to 1% - 1.5% of GDP). I also investigate the effects
of the managed care backlash on intensity of care, hospital salaries and technology adoption. I
conclude that managed care was largely successful in keeping health care costs on a sustainable
path relative to the size of the economy. The second chapter attempts to quantify the impact
of differences in political factors on economic growth and development, and specifically, assess to
what extent variation in public goods provision may be responsible for cross-country differences in
income and growth rates. Using a new methodology for the computation of standard errors in a
regression discontinuity design with infill asymptotics, I document the existence of discontinuities
in the levels and growth of the amount of satellite-recorded light per capita across national borders.
Both the amount of lights per capita and its growth rate are shown to increase discontinuously
upon crossing a border from a poorer (or lower-growing) into a richer (or higher-growing) country.
I argue that these discontinuities form lower bounds for discontinuities in economic activity across
borders, which suggest the importance of national-level variables such as institutions and culture
relative to local-level variables such as geography for the determination of income and growth. I
find that institutions of private property are helpful in explaining differences in growth between
two countries at the border, while contracting institutions, local and national levels of public goods,
as well as education and cultural variables, are not. The last chapter of my thesis, which I have
published in the Journal of Public Economics, investigates the dynamics of the world distribution of
income using more robust methods than those in the previous literature. I derive sharp bounds on
the Atkinson inequality index for a country's income distribution that are valid for any underlying
distribution of income conditional on given fractile shares and Gini coefficient. I apply these bounds
to calculate the envelope of possible time paths for global inequality and welfare in the last 40 years.
While the bounds are too wide to reject the hypothesis that world inequality may have risen, I
show that world welfare rose unambiguously between 1970 and 2006. This conclusion is valid for
alternative methods of dealing with countries and years with missing surveys, alternative survey
harmonization procedures, alternative GDP series, or if the inequality surveys used systematically
underreport the income of the very rich, or suffer from nonresponse bias.
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Chapter 1

The Impact of the Managed Care
Backlash on Health Care Costs:
Evidence from State Regulation of
Managed Care Cost Containment
Practices

1.1 Introduction

Controlling health care costs is a major unmet challenge for public and private health care

systems in the United States. Personal health care spending has nearly doubled as a share of GDP
in thirty years, rising from 8% of GDP in 1980 to 14.8% of GDP in 2009, and often has grown
at a linear (and hence, unsustainable) rate for decades at a time. The problem of stemming the
growth in health care costs is particularly urgent because such costs form a significant part of U.S.
government spending, particularly with the passage of the Affordable Care Act (ACA), which will
lead to substantial government subsidies to individuals to purchase private insurance.

The overall trend of rising health care costs in the U.S. saw a temporary break during the

1990s, when personal health care spending as a share of GDP remained nearly constant (actually,
declined slightly) from 12.1% in 1993 to 11.94% in 2000. This stabilization of health care costs

coincided with the peak of the so-called managed care revolution, which saw the replacement of con-
ventional insurers (who reimbursed hospitals and physicians for services provided without regulating

utilization) by health insurance organizations that managed the medical care of their enrollees. The
organizational innovation of managed care firms was to integrate physicians and insurers partially
or completely to align their incentives and discourage physicians from inducing demand for medical

care. The most well-known type of managed care organization, the HMO, restricted its patients to
see a strictly delimited network of providers, who sometimes were its employees. While the growth

of health insurance premiums slowed significantly, patients and physicians chafed under managed
care controls. At the end of the 1990s, there arose a widespread backlash against managed care

cost containment practices, with increasingly negative media coverage of managed care. Ultimately,
state governments passed "patients' bills of rights" that limited the ability of managed care firms

to restrict care and shape the incentives of medical practitioners. Health care costs resumed rising

as a share of GDP in 2001, at the height of the managed care backlash. It remains an open question
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whether managed care succeeded in stabilizing U.S. health care costs or whether the slowdown in
U.S. health care cost growth in the 1990s was a product of other factors (Glied 2003).

This paper will find that the managed care backlash, as proxied by the amount of legislation
passed to restrict managed care cost containment practices (hereafter, backlash regulations), in fact
had a causal effect on increases in health care costs. My identifying assumption is that backlash
regulations increased health care costs only to the extent that managed care was already containing
costs in the given state, while the timing of backlash regulations is exogenous with respect to all
other variables whose dffect on changes in health care costs is a function of managed care intensity.
This assumption is weaker than the standard difference-in-difference assumption that the timing
of the backlash regulations is uncorrelated with shocks to health care costs. My assumption is
plausible because backlash regulations are politically determined variables, which are likely to arise
from distinct data generating processes than are outcomes in health care markets. However, it could
fail in various ways: for instance, if regulations are passed in response to severe cost containment,
which also decreases health care share, or if regulations are correlated with other trending variables
in the health care market. Robustness checks involving more sophisticated control variables, a
dynamic analysis of the passage of regulations and an instrumental variables analysis help rule out
such concerns.

To obtain my findings, I use panel variation in the passage of backlash regulations, which
were passed in different years and in different numbers in different states. I include both the main
effect of backlash regulations as well as, crucially, its interaction with managed care intensity. I
proxy managed care intensity by HMO penetration in each state in 1995. HMO penetration is a
natural proxy for managed care intensity both, directly, because HMOs are the most restrictive
form of managed care, and, indirectly, because looser managed care organizations in the same
state had to cut costs more substantially to compete with the HMOs. 1 Furthermore, I explicitly
model the substantial persistence in the health care share by estimating models with the lagged
health share as a regressor. An econometric difficulty in estimating such models is their mechanical
failure of strict exogeneity and the poor performance of instrumental variables estimators when the
persistence of the dependent variable is high (as documented by Hausman, Hall and Kuersteiner
2007). Therefore, I use a novel approach pioneered by Hausman and Pinkovskiy (2013) that avoids
the bias of instrumental variables by estimating a transformed version of the lagged dependent
variable model with fixed effects via nonlinear least squares.

My results indicate that because of the managed care backlash, health care costs in a state
with average HMO penetration in 1995 grew by 0.1 percentage point more per year than they
would have otherwise, which is equal to the average change in the health care share across states in
2005. To assess the magnitude of my result, I use my regression to make a dynamic counterfactual
forecast of the evolution of each state's health care share under the assumption that the number
of backlash regulations was equal to zero in every state and year, and aggregate the forecasts to
predict the counterfactual for the U.S. health care share for each specification I run. I find that
under the counterfactual of no managed care backlash, the U.S. health care share in 2005 would
have been 12.3%, more than a full percentage point of GDP lower than the actually observed level,
and close to the 1993 level of 12.1%. In fact, most of the rise in the U.S. personal health care
share of GDP between 1993 and 2005 (from 12.1% to 13.5% of GDP), as well as the fact that
health spending resumed rising as a share of GDP after remaining stable at 12% between 1993

'The performance and prevalence of HMOs also could have provided demonstrations to less managed health care
plans that tightly managed policies are marketable, encouraging these plans to adopt them. I provide evidence
that HMO penetration is correlated with tight management practices (the degree of restriction on patients seeing
providers) in Section 3.
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and 2000, can be statistically explained by backlash regulations. I provide a variety of robustness

checks for my identifying assumption by including state trends and covariates, accounting for the

timing of the passage of the regulations, varying the geographic unit of analysis, accounting for

other health insurance regulations being passed at the time and employing instrumental variables.

To my knowledge, this is the first paper quantifying the effects of the managed care backlash on

health care costs. Glied (2003) considers the reasons for the resumption of health care cost growth

in the early 2000s, but does not give a quantitative estimate for the possible effect of the backlash.

A large literature in health policy and law (Peterson 1999) has studied the managed care backlash

qualitatively, discussing the reaction of the public, the legislation passed, and the weakening of

managed care cost containment practices, but has not calculated the impact on health care costs.

I do not attribute the health care cost rise I find to the direct effect of backlash regulations

specifically, but to the managed care backlash in general. The backlash regulations may have been

unevenly enforced across different states, and may have acted as warnings to insurance companies

rather than as binding constraints on their practices. However, I do provide evidence by analyzing

the timing of the passage of the backlash regulations and by including smoothly varying state

trends and covariates that the backlash regulations do not reflect changes in preferences that may

be correlated with shocks to health care and health insurance markets.

It is interesting to examine the mechanisms by which the managed care backlash may have

increased health care costs. The literature on managed care has investigated the effects of managed

care on provider salaries (Cutler, McClellan and Newhouse 2000) and length of stay (Glied 2000).

Using the same methodology as for my baseline result on health expenditures, I look at the effects

of the managed care backlash on these health care inputs. I find evidence that the managed care

backlash raised the salaries of medical providers. I also find that the data is consistent with the

hypothesis that the managed care backlash increased lengths of stay.2 Finally, I consider whether

the managed care backlash is associated with health improvements. I examine the effects of the

managed care backlash on mortality because other health outcomes exhibit composition bias and

are therefore difficult to interpret. I find that backlash regulations (and hence, the associated health

care cost increases) are not associated with strong and unambiguous decreases in mortality, but

the confidence intervals of my estimates are wide.

The rest of the paper is organized as follows. Section 1.2 presents a brief history of managed

care in the United States and describes managed care cost containment practices as well as the laws

regulating them. Section 1.3 describes the data. Section 1.4 explains the empirical specification.

Section 1.5 presents the baseline results for health spending growth, as well as the associated

robustness checks. Section 1.6 presents results for health resources utilization and mortality. Section

1.7 discusses political determinants of backlash regulations and presents an instrumental variables

analysis. Section 1.8 concludes.

1.2 Institutional Background and History

Since patients and doctors have substantial flexibility in choosing the intensity of treatment, the

health insurance market suffers from moral hazard (Arrow 1963) unless insurers monitor treatment

choices or use financial incentives for insurees to economize on care. Most U.S. health insurance be-

fore the 1980s (and all of Medicare and Medicaid) was conventional: insurers reimbursed physicians

2 In addition, I look at the effects of the managed care backlash on technological intensity (Cutler and Sheiner 1998;

Baker and Wheeler 2000, Baker and Phibbs 2002), as measured by the number of facilities in hospitals per capita.

While my estimates are noisy, they are consistent with the number of facilities in hospitals per capita increasing with

the managed care backlash.
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and hospitals for each procedure performed, using deductibles and copayments to provide incen-
tives against unlimited utilization, but they did not intervene in physician treatment choices. An
alternative arrangement, referred to as managed care, involves insurers directly contracting with or
even employing physicians and regulating their choice of care either through more sophisticated fi-
nancial incentives or through the threat of termination (or "deselection" from the contract network)
if the insurer deems that the physician utilizes health resources beyond what is clinically neces-
sary. The most restrictive variety of managed care, the health maintenance organization (HMO)
either hires the physicians whose care it reimburses, or forms exclusive contracts with a panel of
physicians, forbidding its patients to see other physicians in most circumstances. A less restrictive
(and currently most widespread) version of managed care is the preferred provider organization
(PPO), which contracts with a network of physicians to receive discounts on their fees in return for
the PPO giving a discount to its patients to see the physicians in the network. HMOs and POSs
depart from fee-for-service reimbursement by paying physicians salaries, bonuses for low utilization,
or capitated reimbursement for each patient regardless of cost. Additionally, managed care firms
restrict patient choices through gatekeeping (the requirement to see specialists only after a referral
by a primary physician) and utilization review (submission of proposed procedures to the insurer,
and potential refusal to cover expensive or experimental treatments).

Contracts between insurers and physicians for prepaid health care have been observed as
early as the 19th century, and the roots of the HMO Kaiser Permanente trace back to the 1930s.
However, for most of the 20th century, managed care remained a small fraction of the U.S. health
insurance market because of state regulations denying hospital privileges to managed care-employed
doctors and preventing managed care from advertising, which were repealed over the course of the
1970s (Feldstein 1988). As health care costs continued to rise during the 1980s, more and more
employers and individuals saw relatively less expensive managed care as preferable to conventional
fee-for-service insurance.3 As late as 1989, 73% of privately insured Americans had conventional
insurance; by 1996, this fraction was just 27%, and by 2005, conventional fee-for-service insurance
covered only 3% of the privately insured market (Kaiser Family Foundation 2011). The fraction of
people in HMOs rose from 5% of the total insured population in 1980 to 30% in 1998. At the same
time, the health care cost share in the United States, which was trending upward throughout the
1980s, leveled off and even slightly decreased during the 1990s. 4

To the extent that they lowered the level and growth rate of medical costs and insurance
premiums, the cost containment practices of managed care benefited healthy patients, employers
and the federal and state governments. However, they hurt physicians, who now had to compete for
membership in the networks of managed care organizations and incorporate financial considerations
of the cost of treatment into their practice style, as well as less healthy consumers, who now obtained
much lower quality insurance. The employment-based system of health insurance served to increase
the salience of discontents with managed care and decrease the salience of their advantages because
the wage increases resulting from cheaper health insurance were not explicitly tied to the change
in health insurance arrangements in the minds of workers (Blendon et al. 1999).5 Instead, workers
suffered the disruption of switching not only to a new insurance regime but also to a new provider
network without attributing any of the resulting wage increases to the switch to managed care.

3 Another reason for the rapid spread of managed care may have been a series of insurance market reforms for the
small group (small business) market. (Buchmueller and DiNardo (2002), Buchmueller and Liu (2003)).4 Managed care was integrated into Medicare through the voluntary program Medicare part C, which allowed
patients to opt out of traditional Medicare in favor of a managed care plan. Medicaid employed managed care by
shifting patients to it by fiat at the state (or sub-state) level.

5 A robust finding in the health care labor literature is that increases in health insurance premiums are shifted
almost completely to worker wages. See e.g. Gruber (1994, 1997).
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As a consequence of these discontents, in the late 1990s a powerful cultural, media and

legal backlash took place against managed care in general and HMOs in particular. HMOs were

depicted in special reports in major newspapers and in popular films such as As Good as it Gets

as impersonal, greedy bureaucracies that denied life-saving care to critically ill people in order to

enhance their profits. Brodie et al. (1998) document that the tone of media coverage of managed

care, especially in the most visible news sources such as television and newspaper special reports,

grew to be increasingly critical, and gave increasing weight to anecdotes of managed care patients

being denied essential care. Partially in response to this backlash, legislation was initiated at both

the state and the federal level to create "patients' bills of rights" that would limit the cost-control

practices that managed care organizations would be allowed to use. The backlash regulations took

four important forms as documented in Table 1.1 : regulations to provide access to physicians and

treatments, regulations to provide venues for appealing managed care denials of coverage, regula-

tions of the insurer-provider relationship and regulations to mandate particular procedures. Access

regulations took the form of permitting patients to see doctors outside a managed care firm's net-

work if these doctors had previously been treating the patient for a long-term illness (continuity

of care), allowing patients to have direct access to specialists without having to first go through a

primary care gatekeeper physician, and mandating coverage of emergency room use regardless of

whether a sufficiently severe health problem was actually uncovered. Appeals regulation required

managed care firms to create credible procedures for reviewing its coverage decisions, either inter-

nally or relying on an outside arbitrator. In several states, managed care firms could be sued for

medically adverse events resulting from denial of coverage. Provider regulation limited the ways

in which managed care firms could reimburse physicians in their networks or in their employment,

limited managed care's control over the composition of their network (Any Willing Provider or

Freedom of Choice laws), and forbade managed care firms to prevent their providers from disclos-

ing information to patients about treatments not covered by the insurers (gag clauses). Mandated

benefits were mostly focused on maternity stays, reconstructive surgery after cancer, and diabetes

supplies. While no federal legislation was passed6 , nearly all states passed various legislation of

their own, at different times and of differing severity, but almost all in the 1995-2001 period. By

2001, health care costs and insurance premiums had resumed rising, while HMOs were being dis-

placed by the less fiscally stringent PPOs. The percentage of people insured by HMOs, once at

about 30%, declined to 23%.

1.3 Data

1.3.1 HMO Penetration

I obtain data on HMO penetration indirectly from the survey firm Interstudy. I obtain state-

level data for the percentage of the total population (including Medicare and Medicaid recipients)

enrolled in HMOs for 1980, 1985, 1990 and 1995-2007 from the Statistical Abstract of the United

States. I use HMO enrollment, rather than total enrollment in managed care, to measure managed

care intensity because by the beginning of my sample period (1995-2005), most U.S. private health

insurance was some form of managed care, with HMOs being the most restrictive, while the share

of conventional insurance was low and falling, and thus, unlikely to be very informative. I also

obtain data on total population HMO penetration at the county level for the years 1990-2003 from

6 H.R. 2723, sponsored by Democrat John Dingell, passed the house, but the Senate version of the bill was so mild

that Representative Dingell urged the Democrats in the House to vote against it in the joint session.
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Laurence Baker, who constructed these measures using unit records from Interstudy, which are not
available for the public. The exact method of construction of the county-level data is described
in Baker and Phibbs (2002) and involves extrapolation on the basis of county population and
the regional enrollment of HMOs serving each county in question as reported to Interstudy. The
Statistical Abstract and Laurence Baker use somewhat different definitions of HMOs to construct
their HMO penetration rates, but my results are robust to using either measure in the state-level
analysis. For regressions at the state level I use the Statistical Abstract series, and for substate-level
regressions, I use the Baker series.

Throughout this paper, I use HMO penetration as a proxy for the intensity of managed
care activity in a given region (state, MSA, county). It is intuitive that HMO penetration should be
a good proxy for the overall level of managed care activity because HMOs were the most restrictive
form of managed care. Since HMOs and less restrictive forms of health insurance operate in the
same product and factor markets, high HMO penetration should incentivize other insurers to adopt
restrictive practices to lower costs so that they could better compete with HMOs. The presence
of HMOs should spread restrictive cost containment practices through the "demonstration effect"
of showing that the health insurance market will bear such practices (e.g. that large numbers of
people will purchase plans that do not cover all local providers). As discussed by Bloch and Studdert
(2004), physicians and hospitals would be likely to use the same practice style for all their privately
insured patients, whether those belonging to HMOs or not, which would lead to spillovers. A large
literature in managed care documents that premium growth rates within and outside HMOs track
each other very closely (Ginsburg and Pickreign (1996, 1997) use KPMG data to show that HMO
premium growth was at least 75% of conventional premium growth over the period 1992-1996),
and a series of papers shows that increases in HMO penetration in a region decrease the health
cost growth rate of conventional insurers in the same region (Baker 1997, Chernew et al. 2008).
HMO penetration also correlates very well with evidence of restrictive cost containment practices.
The MEPS-IC, which is a nationally representative survey of health insurance plans, asks about
the extent to which a plan contracts selectively, and about the extent to which care is managed
in the plan, with answers to these questions being independent of whether a plan is formally an
HMO (so a conventional plan without selective contracting but with some utilization review would
answer "yes" to the question of whether there is any managed care in the plan). Figure 1.1 shows
the correlation between HMO penetration in a state and the state-level estimates of the number
of firms that offer plans with any managed care from the 1996 MEPS-IC (Correlations between
HMO penetration and the extent of exclusivity of providers are even stronger).7 We see that the
correlation is tight, which reinforces our confidence in HMO penetration as a proxy for the intensity
of managed care cost containment practices. 8

Figure 1.2 shows a time plot of the Statistical Abstract HMO penetration measure for the
United States as a whole. We see the steady rise of managed care during the 1980s and the 1990s,
followed by a partial but precipitous decline during the backlash period. Figure 1.3 shows a map of
(Statistical Abstract) HMO penetration by state in 1995. We see that HMOs were strongly clustered
regionally, with high penetration on the West Coast, in the Northeast (especially Massachusetts)

7 The 1996 MEPS-IC was not large enough to support state-level estimates for 10 of the smallest states; hence,
this correlation is on the basis of the 40 largest states only.

81 prefer the HMO penetration measure to the MEPS-IC measures because the MEPS-IC statistics are liable to
have measurement error. MEPS-IC publishes statistics only on the fraction of firms offering plans with various levels
of intensity of managed care, rather than on the number of people enrolled in any such plans. Since large firms tend
to have different health insurance purchasing behavior than do smaller firms, I do not expect the two measures to be
the same. Moreover, since health care costs depend on the number of patients involved rather than on the number
of firms involved, I prefer the population-based HMO penetration measure to the firm-based MEPS-IC measures.
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and in the Midwest.

1.3.2 Backlash Regulations

The key independent variable in my analysis is state regulation of managed care cost containment
practices. I obtain data on the passage of various managed care regulations during the backlash from
the National Council of State Legislatures, which maintains databases of state laws on various topics
for research purposes freely available to the public. Each type of regulation is listed separately for
each state, even if multiple regulations were passed together in a single bill, and multiple regulations
on a single topic (e.g. banning financial incentives for physicians) are listed separately. Altogether,
there are about 750 backlash regulations. Table 1.1 shows the different types of regulations, both in
a fine (27 groups) and in a coarse (4 groups) categorization, as well as how many regulations of each
type were passed. Figure 1.4 shows a time series of the adoption of new backlash regulations. We see
that most such regulations were passed in the 1996-2001 period, although a few were passed before
and after this period. No new backlash regulations were passed after 2005. In my analysis, I will
use the raw total of backlash regulations as a measure of regulation intensity in most specifications,
although I will check for robustness to alternative parametrizations of the regulations.

Throughout the paper, I use backlash regulations as a proxy for the intensity of the backlash
in general, and I do not assert that the effect I find is the causal effect of the regulations themselves.
The heterogeneous nature of the regulations and of their enforcement precludes such a causal
attribution. Moreover, the passage of regulations may have signaled to managed care organizations
that more binding legislation may be passed if they do not change their practices. Nevertheless, it
is important to determine that I am not attributing the effects of some other policy in the health
care sector to the managed care backlash, which I do in Section 1.5. 9

I remain agnostic whether the backlash regulations limited the existing levels of managed
care cost containment, or whether they limited the future growth of managed care cost containment
practices, both in geographical scope and in intensity. In particular, backlash regulations may not
have been effective in controlling how managed care firms regulated access to existing medical
technologies, but they may have been effective in making managed care firms allow subsequent
medical technologies. If technological progress in medicine drives health care costs, then such an
effect pattern could generate substantial increases in health care costs over time without visibly
reversing any aspect of managed care policy.

We see that backlash regulations are not associated with pre-period state HMO penetration.
Figure 1.5 shows a map of the regulations in 2005, and Figure 1.6 presents a scatterplot of the
number of backlash regulations passed by 2005 against HMO penetration in 1995. The relation is
positive, but weak and insignificant. 10 We see that some states with low HMO penetration (like
Wyoming and Mississippi) also had few regulations. However, some states with low to moderate
HMO penetration (Texas, South Dakota, Virginia, Kentucky, Tennessee) were leaders in backlash
regulations, while the managed care leaders (California, Oregon, Massachusetts) had lower levels
of backlash regulations. Moreover, aside from Kentucky and Tennessee, there does not seem to

9The incidence of backlash regulations is not straightforward because public insurance (Medicare and Medicaid)
tended to be regulated separately from private insurance, and because self-insured firms were exempt from state
regulation through ERISA. As I have discussed in Section 1 and earlier in Section 3, there is good reason to believe
that backlash regulations had substantial spillovers to insurers who were not regulated by them directly because of
the extent of spillovers between HMO and non-HMO insurance.

1 0 A 10 percentage point increase in 1995 HMO penetration is associated with an additional 0.6 regulations, with
a t-statistic of 0.6.
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be much geographic clustering of backlash regulations. I explore controlling for other potential

time-varying correlates of backlash regulations in Section 1.5.

1.3.3 Other Regulations

I obtain data on other health insurance regulations from the Blue Cross Blue Shield publication

"State Legislative Health Care and Insurance Issues," which was sent to me directly by its author,

Susan Laudicina. From this data, I extract the series of state mandated benefits, the series of state

small-group insurance reforms, and the series of state individual insurance reforms. Since mandated

benefits are qualitatively similar (although involving mandates of different expense), I use the raw

total number of mandated benefits in each state-year as an independent variable. However, since

different small-group and individual insurance reforms regulate different aspects of the insurer-

insuree relationship, I follow Simon (2005) and code whether each state has a "full reform" or

does not have a "full reform." I define a full reform by the presence of a guaranteed issue law, a

guaranteed renewal law, and rating reform.

Another important set of health insurance reforms taking place in the late 1990s was

Medicaid expansion. The observed fraction of people in a given state who are eligible for Medicaid

is endogenous, because it depends on state economic conditions and demographics, all of which

may affect the health share of GSP. Currie and Gruber (1996) create a time series of "simulated

Medicaid eligibility," which is the fraction of people in a standard population who are eligible for

Medicaid according to the laws of a given state. This series has most recently been updated by

Gruber and Simon (2008). I obtain the simulated eligibility series updated to 2004 directly from

Kosali Simon.

1.3.4 Dependent Variables

I obtain state-level data on economic activity (gross state product) and data on total (public

and private) personal health expenditures as well as separate data on personal health expenditures

in Medicare and Medicaid from the National Health Expenditure Accounts, maintained by the

Center for Medicare and Medicaid Services (CMS). I also obtain county-level data on economic

activity (personal income) from the Bureau of Economic Analysis, which I use to normalize my

health spending variable when I run regressions at sub-state levels. To obtain data on health

expenditure at the substate level, I use the American Hospital Association Annual Survey, which

provides disaggregated data on hospital expenditures. I also use the AHA Annual Survey to obtain

state-level data on hospital payrolls, employment, admissions, utilization and technology choice

(number of facilities of various types). I also obtain state-level data on employment and salaries

in the ambulatory health sector, which comprises of physician offices, outpatient centers and home

health care, from the Bureau of Economic Analysis. Unfortunately, I do not have data on total

physician expenditures at a substate level, and neither do I have hospital-level data on expenditures

reimbursed by Medicaid and Medicare, so in my sub-state analysis, I am restricted to analyzing

total hospital expenditures. Finally, I obtain data on mortality rates by state and year from the

Center for Disease Control.

Table 1.2 presents summary statistics for state-level data in 2005, including personal health

expenditures, regulations, and HMO penetration. We see the sample mean of backlash regulations

in the entire dataset was about 15, and the sample mean of 1995 HMO penetration is 14.5%. The

mean annual change in the health care share of GSP in a typical state was about 0.1 percentage

points.
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1.4 Empirical Strategy

It is intuitive that health spending is very persistent. The set of sick and healthy people, their
medical needs, and the practice styles and technology used to treat them tend to be the same over
time, because of the relatively unchanging landscape of human illness and because rapid change in
the medical system would be unsettling to patients. The persistence of health spending is found to
be important in papers in which it is modeled, such as Cutler and Sheiner (1998). Furthermore,
many papers find that institutional changes in health care markets have effects not only on the
level, but on the trend (or the growth rate) of health care spending or of utilization patterns in
the health care sector (Finkelstein 2007; Acemoglu and Finkelstein 2008). I therefore estimate a
flexible dynamic panel specification that allows the lagged value of health care costs to affect the
current value of health care costs. The specification I estimate is:

Ps,t = a. + At + 6Ps,t-1 + #Rs,t-i + yR,t-1 x HMO 59 + X+ jl+ e,t (1.1)

where P,t is the total health spending share of gross state product in state s and year
t (in other regressions, the dependent variable will be different), a. and At are state and year fixed
effects respectively, R,t- 1 is the number of regulations in force in state s in year t - 1, HMO 995

is HMO penetration in state s in 1995, and X,t is a vector of controls (absent in the baseline
specification). The coefficients of interest are y, the interaction effect of regulations on health
spending as a share of GSP as a function of HMO penetration, 3, the level effect of regulations as
a function of HMO penetration, and the persistence parameter 6.

My identification assumption is that states with different pre-period HMO penetration have
differential trends in health care costs as a share of output in the period 1995-2005 only because
of backlash legislation, taking into account the natural persistence of the health care cost share of
GSP. In particular, because I use panel data with fixed effects, I avoid the potential danger that
states with different amounts of regulation also differ in other static characteristics that influence
health care costs as a share of GSP.

It is well known (Anderson and Hsiao 1982; Arellano and Bond 1991; Blundell and Bond
1995) that estimation of equation (1.1) by ordinary least squares yields biased and inconsistent
estimates of the coefficients 6, # and 7. The standard technique for dynamic panel estimation is the
approach of Arellano and Bond (1991) of differencing equation (1.1) and using lagged dependent and
independent variables as instruments for the lagged difference via GMM. However, this approach
exhibits substantial bias in the case when 6 is close to unity because the correlation between
the instruments and the endogenous variables is close to zero (Hahn, Hausman and Kuersteiner
2007). In particular, the coefficient 6 tends to be biased downward, suggesting less persistence
in the dependent variable than is actually present. Therefore, in this paper, I follow Hausman
and Pinkovskiy (2013) and estimate equation (1.1) by back-substituting for P,t_1 to express P,t in
terms of P,o and lags and levels of the independent variables, and estimating the resulting equation
by nonlinear least squares. I provide a complete description of the procedure I use in Appendix II,
as well as several additional tests for the exogeneity of P,o and for the robustness of the results if
the regressors are predetermined rather than strictly exogenous. In Section 1.5, I show a version of
my baseline estimates computed using the Arellano-Bond method, and note that all the coefficients
are lower than using the nonlinear least squares method, as predicted by Hahn, Hausman and
Kuersteiner (2007) given the size of the parameter 6.
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1.5 Results: Cost Growth

To assess the magnitudes of my estimates, in all my tables, I present forecast values of

the total health spending share of U.S. GDP (or the Medicare, Medicaid or private share in some

specifications) under the assumption that no backlash regulations had been passed. Forecasts are

obtained by bootstrapping the coefficients on the terms in the model that depend on backlash

regulations (and on the lagged dependent variable if it is present) and computing the increase in

the dependent variable coming from backlash regulations for each state and year. I then subtract

the bootstrap estimates from the true values of the dependent variable (in levels) for each state and

year, and aggregate the state-level forecasts (with suitable weights) to obtain a national forecast. I

repeat this procedure 500 times, each time drawing a different set of coefficients from the estimated

distribution. Since the dynamic forecasts involve powers and products of correlated normal random

variables, the resulting forecast distribution is non-normal, and in particular, severely right-skewed.

1 Therefore, I report the median of the resulting bootstrap forecasts. The upper and lower 95%

confidence bounds of the forecast distribution are reported below the point forecast.

1.5.1 Baseline Results

Table 1.3 presents estimates of equation (1.1) when the dependent variable is the total

personal health spending share of GSP, the private share, the Medicare share and the Medicaid

share. We see that the coefficient of interest - the coefficient on the interaction between backlash

regulations and pre-period HMO penetration - is significant when the dependent variable is the

total share or the private share. The magnitude of the interaction coefficients when the dependent

variable is the total health share is 0:093 percentage points, and is comparably high for the private

share. The (insignificant) main effect of regulations is (-0.007) for the total share, and similarly

for the private share. Since the average number of regulations in 2005 is 15.22, and the average

1995 HMO penetration is 0.145, for a typical state, the managed care backlash is associated with

an extra 0.1 percentage point increase in the personal health share of GSP every year. 12 Given that

the mean increase in the personal health share of GSP across all states in 2005 was also 0.1, we see

that the estimated effect of the backlash is substantial. The interaction coefficient when private

share is the dependent variable is slightly smaller than the interaction coefficient when total share

is the dependent variable, but the private health share of GDP is approximately two-thirds of the

total health share of GDP, so the proportional effect of the managed care backlash on the private

share is larger than on the total share.

The counterfactual predictions of the model for what would have happened without the managed

care backlash are striking. The total health share of U.S. GDP was 13.48% in 2005, but without

backlash regulations, it would have been 12.28%, about 1.2 percentage points of GDP lower, which,
given that U.S. GDP in 2005 was about 12 trillion dollars, amounts to 144 billion dollars lower.

This is equal to 46% of Medicare spending in 2005 (which was 2.6% of GDP) and is 10% of the

counterfactual health care share in 2005. The confidence interval of this forecast, however, is very

large, and does not permit us to rule out the observed 2005 level. Figure 1.8 plots the observed path

of the total share of GDP and its counterfactual under the assumption of no regulations; we see that

without backlash regulations, the model suggests that the total health care share of GDP would

"I present an estimate of the baseline forecast distribution in Figure 1.7.
2 We have 15.22 * (0.093 * .145 - 0.007) ~ 0.1

18



have tended to be close to 12%, its long-run level during the 1990s. 13 A similarly low forecast,
also insignificantly different from the observed 2005 level, can be observed for the private share.14
Since the point estimate of the lagged dependent variable coefficient is less than unity (it is 0.93),
we can obtain a cumulative effect of the managed care backlash. As mentioned before, the one-year
increase in the health care share of GSP associated with backlash regulations is 0.1 percentage
point, so the long-rnm impact will be given by -09 = 1.43 percentage points. This is close to the
rise in the U.S. health care share of GDP that we observe between 1999 and 2005, suggesting that
the additional health care share growth from the managed care backlash may have exhausted itself
by 2005. However, since the upper bound of the lagged dependent variable coefficient is close to
unity, much larger long-run impacts of the managed care backlash are consistent with the data.

Since HMOs accounted for only 30% of the insured population at the height of the backlash,
it is obvious that much of the effect of the managed care backlash was a spillover effect to non-
HMO insurance (conventional and looser managed care arrangements) rather than a direct effect on
HMOs. As discussed in Section 1.3, such spillovers are both theoretically expected and empirically
documented in the managed care literature. Some channels for this spillover will be shown in Table
1.9, where we will see that backlash regulations are associated with increases in hospital salaries
and, possibly, with length of stay and the number of hospital facilities, which should have impacted
hospital spending beyond that on HMO patients.

The associations between backlash regulations and the Medicare and Medicaid shares of
GDP are different in magnitude and nature from the effects on the total and on the private share.
We see that the counterfactual estimates for Medicare and Medicaid both show cost increases that

are smaller relative to those in private insurance. We also see that the main effect and interaction
coefficients are insignificant and relatively small (and the interaction coefficient when the Medicaid
share is the dependent variable is negative). One rationalization of these results is that Medicare is
a federal program with a federal-level reimbursement schedule that creates high-powered incentives
(Clemens and Gottlieb 2012) and should therefore not have been directly affected by backlash
regulations. Medicaid, though regulated by the states, has its own regulations for managed care
as well as its own reimbursement practices that change the cost-cutting incentives of Medicaid
managed care. The small cost increases that are observed probably come from spillovers from
private insurance. The finding that the total health care share rose because of the managed care
backlash is mostly driven by the behavior of the private health share.

Alternative Specification

For most of the estimates of the persistence parameter 6 that I obtain in Table 1.3, 6 is
close to unity. Moreover, for some of these estimates, I cannot reject the null hypothesis that 6 is

"In Figure 1.8, the counterfactual path of the health care share without backlash regulations first rises slightly
during the recession of 2001, and then falls gradually below its original level by 2005. The fact that the difference
between the counterfactual path and the observed path is slightly increasing over time is because backlash regulations
affect the change of the health share of GSP, and therefore have a trend effect on the level of the health share of GSP.
My estimates suggest that absent the backlash regulations, the health share of GDP would have been on a slight
negative trend, and with the backlash regulations it was on a positive trend instead.

1 4 In results not reported, I estimate equation 1.1 with log health share, log health expenditures per capita and
log total health expenditures as dependent variables. The results are qualitatively similar, although the effects when
the dependent variable is log expenditure or log expenditure per capita are of lower magnitude. Such a result is
consistent with managed care allowing for health care costs to grow at roughly the same rate as the economy but not
below this rate, either because patients valued the additional care sufficiently highly, or because customers were not
particularly sensitive to price rises at or below the rate of economic growth.
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equal to unity, and for the baseline specification the upper bound of the confidence interval for 6 is

unity. If 6 is taken to be unity, equation (1.1) implies an equation of the form

APs,t = as + At + #Rs,t_ 1 + 1Rs,t_1 x HMOs9 9 5 + X r ± es, (1.2)

Unlike equation (1.1), equation (1.2) is readily estimable by OLS and is more efficient when

6 is actually equal to unity. It has an intuitive interpretation: it is just the regression of the change

in the dependent variable on state characteristics, national trends, and the independent variables

of interest. I now present my baseline results using the difference specification in Table 1.4, and

present the rest of my results computed with the difference specification in Appendix I.

Table 1.4 shows the baseline results for the difference specification in column 2. The

interaction coefficients and the forecasts are close to those produced using the dynamic panel

specification. The forecast total health share of GDP is 11.9%, somewhat lower than for the

dynamic panel specification, and it is significantly different from the observed 2005 level at 5%

because the confidence interval of the prediction is much narrower. Such a forecast is consistent

with the managed care backlash increasing the U.S. health share of GDP by 1.6 percentage points,
which constitutes slightly more than the entire increase in the U.S. health share since 1993. In Table

1.4, I also present estimates of equation (1.1) obtained using the Arellano-Bond methodology. We

see that the coefficient on the lagged dependent variable (6) becomes smaller (0.86) and that the

interaction coefficient is much smaller than in the nonlinear least squares specification (0.035) as

per the prediction of Hausman, Hall and Kuersteiner (2007).

1.5.2 Robustness Checks

Elementary Robustness to Excluding Data Points

An elementary robustness check is to verify that my estimates are not sensitive to excluding

individual states or groups of states from my sample. I therefore re-estimate equation (1.1) 50

times, dropping a different state each time, and look at the highest and lowest values attained by

the interaction coefficient. I also repeat this exercise again 8 times, each time dropping a different

region of the U.S. (New England, Mid-Atlantic, Southeast, Great Lakes, Plains, Southwest, Rocky

Mountains, Pacific). The lower bound on the interaction coefficient is 0.09, and the upper bound

is 0.13.15

Robustness to State Trends and Panel Covariates

Table 1.5 reestimates equation (1.1) when additional trends or control variables are added to the

regression. Column 1 reestimates the baseline. Column 2 adds state-specific trends, a demanding

robustness check (it effectively involves quadratic trends in the health share of GSP because of the

persistence of the dependent variable). The interaction coefficient remains significant though it

shrinks relative to the baseline (0.063), but the main effect of regulations becomes positive and the

counterfactual forecast is about 9.9% of GDP, which is very low (and significantly different from

the observed 2005 level even with the large prediction errors of the dynamic panel specification).

Column 3 adds demographic covariates (log fractions of the population that are over 65, black,
and female) to the baseline regression; the interaction coefficient shrinks slightly to 0.077 but

5 In Appendix I, I carry out the same robustness check for the difference specification (1.2), with the addition that

I also drop years from the sample, which I cannot do when estimating the dynamic panel model. I also plot the

partial relation of the dependent variable against the HMO-regulations interaction.
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remains significant at 1%. Column 4 adds log GSP. The interaction coefficient actually increases
slightly and we do not see any substantial effects. 16 Finally, column 5 decomposes the raw count of
regulations passed into individual counts for the 4 broad categories of regulations (access, appeals,
mandates and provider regulations). This specification nests the baseline specification (which
would obtain if the coefficients on all categories of regulations were the same), but allows different
categories of regulations to affect the health care share differently. We see that the largest and
statistically significant coefficients are on provider regulations, which suggests that regulations
affecting the relationship between managed care and physicians (such as bans on financial incentives
for physicians to treat less intensively, or any-willing-provider laws) were particularly important,
followed by mandates for services that managed care especially tried to curtail (e.g. minimum
maternity stays), while regulations expanding patients' access to physicians and procedures may
have actually lowered the health care share. 17 The forecast is slightly lower than the baseline
forecast.

Robustness to the Dynamic Structure of Regulations

An essential robustness check to ensure that my results are not being driven by mean reversion,
or by various forms of reverse causation is to include leads and lags of my right-hand-side variables
into the regression. Glied (2003) presents several theories of the rise in health care costs in the late
1990s and early 2000s, all of which argue that the health care cost slowdown in the 1990s was a
product of a coincidence of transient factors (a low point in the underwriting cycle and strategic
behavior of managed care firms during the health insurance market's transition to managed care
in order to gain market share) that dissipated as the processes generating them reverted to the
mean. Including leads and lags (together with contemporaneous effects) of the regulation variables
into my regression helps control for mean reversion, and allows me to test an implication of the
hypothesis that regulations are causing health care spending increases. Moreover, including leads
and lags allows me to control for endogenous timing of the backlash regulations. For instance, if
backlash regulations were passed in states with abnormally low health care share increases (because
of aggressive cost containment that generated discontent), but then health care shares resumed
rising (because of mean reversion), there would be a spurious positive correlation between lagged
backlash regulations and current health care shares, and a spurious negative correlation between
future backlash regulations and current health care shares. If the managed care backlash is causing
changes in the health care share of GDP, it must be the case that when leads and lags of the
regulations are included, the leads of the regulations are not significant conditional on the lags, while
the lags are significant conditional on the leads. Table 1.6 presents the results for the dynamic panel
specification (1.1). We see that the coefficients on the leads are an order of magnitude lower than
the coefficients on the lags (the largest is 0.013). If only one lead, one lag and the contemporaneous
effect are included, the interaction coefficient on the first lag is statistically significant. If two leads

16 A more demanding robustness check would be to include not only the main effect of log GSP but also its
interaction with HMO penetration in 1995. Then, the coefficient y on the HMO-regulations interaction shrinks in
magnitude and loses statistical significance. However, the resulting estimates greatly depend on outliers, and change
drastically if a particular state is excluded. In Appendix I, I estimate this robustness check via median regression,
which is more resistant to outliers than least squares is, and find results substantially closer to the baseline.17 However, all of these inferences should be interpreted with caution because the type of backlash regulations passed
may be correlated with other aspects of the managed care backlash, such as adverse media coverage of managed care,
which may have led it to curtail its cost containment practices.

I consider other ways of parametrizing the backlash regulations variable, e.g. counting the number of years for
each state in which the number of backlash regulations increased (hence, the number of "backlash bills"). My results
remain unchanged.
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and lags with contemporaneous effects are included, each of the lag interaction coefficients is about

0.07, but neither is significant individually. Since multicollinearity becomes, severe as leads and lags

are added, I perform joint F-tests that all leads are zero and joint F-tests that all lags are zero. We

see that the coefficients on leads are always jointly insignificant, while the coefficients on lags are

jointly significant at 5% with only one lead and lag, and at 10% with two leads and lags. Therefore,

we have some reassurance that it is the lags and not the leads that are driving my results.

Robustness to Other Health Insurance Regulations

A significant concern is that the managed care backlash in general, and backlash regulations in

particular, proxy for other changes in the policy environment that cause the health spending share

to rise. As discussed in Section 1.3, during the backlash period, other health insurance reforms

that did not directly target HMO cost contaimnent mechanisms - mandated benefits, small group

and individual market insurance reforms, and Medicaid expansion - were being passed. It would

be troubling both for my identification strategy and for my use of backlash regulations as a proxy

for the intensity of the managed care backlash if controlling for these political changes in the health

insurance environment significantly altered my baseline estimates, and it would be reassuring for

my approach if accounting for other health insurance reforms did not appreciably change my results.

Table 1.7 attempts to address this concern by including these regulations in my baseline

dynamic panel specification (1.1) alongside with the backlash regulations. Column 1 reproduces

the baseline. Columns 2 through 5 add mandated benefits, small group reforms, individual market

reforms and simulated Medicaid eligibility (both as levels and in interaction with HMO penetra-

tion) to the baseline regression, one at a time, respectively. Finally, Column 6 contains all the

additional health insurance controls simultaneously (coefficients not reported). We see that the in-

teraction coefficient on backlash regulations remains significant and unchanged in magnitude from

the baseline specification, while the coefficients on the other health insurance reforms are insignif-

icantly different from zero (with the exception of the individual market reforms). Moreover, the

counterfactual forecasts under the hypothesis that no regulations were passed are similar to the

baseline.

Robustness to Regional Disaggregation

To test my identification strategy further, I run my regressions using sub-state variation.

While backlash regulations vary at the state by year level, I can use disaggregated data on HMO

penetration, health spending and economic outcomes to add rich locational controls. Since only

hospital spending data is available at the sub-state level (from the AHA Annual Survey), I can only

look at total hospital spending, rather than at total health care spending. Moreover, because gross

product data is not calculated for most sub-state units (in particular, for counties), I use county

personal income as a measure of economic activity, which is different from gross output. Table 2.4

presents results when the unit of analysis is states, urban and rural counties of states agglomerated

together (which I call MSU's), MSA's (with rural counties of a state combined into a single unit) and

county zones (which are MSAs for urban counties, and agglomerations of 5 neighboring counties for

rural counties). 18 We see that since personal income is smaller than gross output, the shares are

18 Since each set of estimate requires performing nonlinear least squares with an increasing number of fixed effects,

I cannot present results at the county level, which would require nearly 3000 fixed effects. I present results at the

county level computed via OLS using specification 1.2 in Appendix I.

There are 97 MSUs because Alaska is classified as entirely rural, while New Jersey and Rhode Island are classified

as entirely urban.
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larger: the observed share of total spending out of U.S. personal income is 16.2%, and the forecast
share without regulations is 14.9%. The first column reproduces the equivalent of my baseline
specification with the new variables: the dependent variable is the change in health spending as
a share of state personal income. The magnitude of the interaction coefficient is similar to the
baseline estimate in Table 1.3, and the forecast share is practically and statistically significantly
smaller than the observed share. Subsequent specifications use the change in hospital spending as
a share of personal income as the dependent variable. Each specification at each unit of analysis
includes unit fixed effects (thus, the MSA specification has MSA fixed effects), and since a lagged
dependent variable is included, these fixed effects approximate linear unit trends, which is a very
flexible way of controlling for many time-varying covariates (demographics, economic conditions)
at a local level. The interaction coefficient is typically between 0.02 and 0.03, which is reasonable
given that hospital spending is approximately a third of total personal care spending, with the
exception of results for MSAs, where the interaction coefficient is 0.011. This is because looking at
MSAs (with rural counties agglomerated into a single unit for analysis) downweights rural areas of
the United States and increases the weight on urban areas. When we look at county zones (which
do not downweight rural areas), the interaction coefficient is of the same magnitude as for states
and MSUs. The counterfactual forecasts of hospital spending as a share of personal income are
about 9% lower than the observed 2005 level for states and MSUs, but they are much closer to the
observed 2005 levels for MSAs and county zones.

1.6 Results: Utilization and Health

It is interesting to examine what aspects of the health care production function did the
managed care backlash affect to raise health care costs. Health care utilization and salaries are
difficult to measure in the private sector because of a lack of centralized, consistent panel data.
A partial solution is to look at hospital accounts and inventories, which have been systematically
recorded for long periods of time by the American Hospital Association's Annual Survey. While
these data describe only the health care production function of hospitals, we have seen in Table
1.8 that hospital spending constitutes over one-third of total personal health care spending, and
that hospital spending has also risen with backlash regulations as total health care spending has.
The AHA survey provides hospital-level data on aggregate measures of volume, such as admissions,
inpatient days, payrolls and employment, allowing the computation of variables such as average
hospital salaries and average lengths of stay per admission. In my analysis, I aggregate all variables
to the state level.

Table 1.9 presents results of estimating the dynamic panel specification (1.1) for a variety of
dependent variables measuring hospital expenditures, utilization, salaries, and technology adoption.
Column 1 sets hospital expenditures as a share of personal income as the dependent variable. We
see that the interaction coefficient is about 0.033 (which is reasonable given the fact that hospital
expenditure is only 5.5% of personal income) and significant at 5%. Hospital expenditures as
a fraction of personal income rose by over 12% (relative to the counterfactual level) during the
managed care backlash. Column 2 shows that hospital payrolls as a fraction of personal income
rose even more during the backlash than hospital expenditures did. It is interesting to attempt to
understand how this rise in hospital payrolls as a share of personal income was allocated between

The county zones were constructed by ranking rural counties by their distance to the approximate centroid of the
United States (-90 longitude, 38 latitude) and combining adjacent counties in that ranking within each state into
groups of at most 5 counties in each group.
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hospital employment (as a share of population) and hospital salaries (as a share of average personal

income). Column 3 shows results for the association between backlash regulations and hospital

employment as a share of population. We see that the interaction coefficient is very small and

insignificant, and the counterfactual prediction is close to the baseline. Therefore, the increase in

hospital payrolls as a share of GSP did not appear to have manifested itself in terms of higher

hospital employment. Column 4 shows estimates for the association between backlash regulations

and average hospital salaries as a fraction of state average personal income (measured in percentage

points). We see that the interaction coefficient is significant at 5%, and that the observed 2005

average hospital salary as a fraction of the national average income is 10.5% higher than the

counterfactual salary (although the confidence interval of this forecast is, as usual, extremely wide).

Hence, there is suggestive evidence that most of the rise in payrolls as a share of income went into

higher relative salaries for hospital workers rather than into increasing the fraction of the population

in the hospital sector. This tentative finding is consistent with the estimates of Cutler, McCllelan

and Newhouse (2000), which suggest that managed care reduced the salaries of medical providers. 19

Another potential source of cost increases during the managed care backlash (a source of cost savings

during the managed care revolution) is length of stay (Glied 2000). Column 6 presents estimates

for the association between length of stay and backlash regulations. The interaction coefficient

in the length of stay specification is small and insignificant, but the main effect is positive and

marginally significant, leading to a counterfactual 7.8% rise in the length of stay per admission.

This is sizeable, though lower than the counterfactual hospital cost increase observed in column 1,
suggesting that length of stay increases may have played a role in the cost increase observed during

the managed care backlash. 20

Given that we have found that there is a strong association between managed care regu-

lation and health care cost growth, it is interesting to examine whether there were any discernible

improvements in important measures of health that were associated with the backlash regula-

tions. The literature on the impact of managed care on health outcomes and health care quality

(summarized in Miller and Luft 1997 and Glied 2000) has not found substantial deteriorations or

improvements in health arising from managed care. Theoretically, health could even improve with

the introduction of managed care if some costly medical procedures were unnecessary or mildly

harmful. In this paper, we confirm this basic result: the counterfactual path of health outcomes

without managed care regulations is generally insignificantly different from the actually observed

path, although the statistical uncertainty is high.

The health outcome I consider is all-population mortality. Unlike health outcomes such as

19 1t may be interesting to ask what happened to the earnings of physicians. While consistent panel data on

physician incomes is difficult to obtain, I have computed average salaries in the ambulatory health sector (including

physician offices, offices for outpatient treatment and home health care) using employment and compensation data

from the Bureau of Economic Analysis. These salaries should be good proxies for physician income because they are

the salaries of people employed by physicians, and whose productivity is directly related to that of physicians. The

effects of the managed care backlash on ambulatory health sector salaries are similar but slightly stronger than those

on hospital salaries (approximately a 14% counterfactual growth rate).
20In addition to the above analysis, I consider the effects of the managed care backlash on technological progress.

The AHA also collects data on the different types of facilities that each hospital owns, which can be used to mea-

sure technological advancement (Cutler and Sheiner 1998, Baker and Phibbs 2002, Finkelstein 2007, Acemoglu and

Finkelstein 2008). I measure technological advancement by the weighted number of facilities per million people in a

state, with each facility receiving a weight proportional to the fraction of hospitals lacking such a facility in 1995, a

weighting scheme pioneered by Baker and Spetz (1999). Dynamic panel specification estimates are very noisy (and

the usual sign pattern of the coefficients on the regulation variables is reversed). However the counterfactual forecast

implies that the managed care backlash resulted the number of facilities per million being 15.8% higher than without

the backlash. Difference specification estimates of this relationship (presented in Appendix I, Table 1.16) result in a

similar counterfactual forecast and in a positive, though insignificant, interaction coefficient.
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the incidence or severity of major diseases (which may increase as the population ages because of
improved life expectancy), mortality for a fixed age group is an unambiguous indicator of a poor
health outcome. However, mortality in the privately insured population under 65 is (fortunately)
low, which makes it difficult to estimate any potential effects of backlash regulations precisely.
Column 7 of Table 1.9 presents evidence on the effects of managed care regulation on overall all-
cause age-adjusted mortality rate for the entire U.S. population (per 100,000) using the dynamic
panel specification (1.1). We see that the forecast mortality rate in 2005 if backlash regulations were
absent is slightly lower than the observed rate, although the confidence intervals are very wide. The
interaction coefficient is negative, suggesting that backlash regulations may have lowered mortality
in states with high HMO penetration relative to states with low HMO penetration, but the main
effect is large, leading to mortality actually being less in the counterfactual scenario without the
managed care backlash than was actually observed in 2005. The confidence intervals on the forecasts
are too wide to calculate any meaningful upper bounds on the degree to which mortality may have
fallen with backlash regulations.

1.7 Political Determinants of Regulations and Instrumental Vari-
ables Estimation

Since the managed care backlash was partially mediated by the political system through the
passage of the backlash regulations, it is natural to ask whether political variables explain backlash
regulations. Moreover, if it can be argued that these political variables could have impacted the
health care market only through the passage of backlash regulations, it would be possible to test
my identification strategy further by using the political variables as instruments. Obtaining valid
instrumental variables estimates for the effect of the managed care backlash on health care costs that
matched with the OLS estimates presented in the baseline results would be reassuring confirmation
of the validity of the central findings of my paper.

The political variables I will be using for most of my analysis will be numbers of years of
Democratic control of the state governorships, upper houses of state legislatures, and lower houses
of state legislatures since 1994 (since the first large wave of backlash regulations came in 1995).
There is good reason on the basis of the health policy literature to believe that Democrats were
more favorably disposed to backlash regulations than Republicans were. When the U.S. House of
Representatives voted on the Bipartisan Consensus Managed Care Improvement Act (H.R. 2723)
in 1999 (also known as the Norwood-Dingell Act), which would have imposed a federal version of
the backlash regulations (including managed care liability for poor health outcomes resulting from
denials of care), all but five Democrats voted for passage, while nearly three-fourths of Republicans
voted against passage (Poole and Rosenthal 2012). Brodie et al. (1998) and Gray et al. (2007)
provide evidence that self-identified Democrats were more likely to support backlash regulations.
However, there were exceptions: the Texas Health Care Liability Act, one of the most comprehensive
pieces of backlash legislation, was passed in Texas in 1998 with the strong support of the Republican
governor, George W. Bush. A more technical reason for looking at the Democratic control variables
is that other political variables that may conceivably affect backlash regulations - such as interest
group activity of supporters or opponents of these regulations - are much more poorly measured
because of data problems and because of lack of clarity in what constitutes interest group activity
in principle. On the other hand, whether the Democrats or the Republicans are in control of a
particular branch of state government is very easy to ascertain.

Since there are three parts of the state government whose control I can assign to a party,
I create multiple variables for Democratic control of the various combinations of parts of the state
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government. Moreover, motivated by the example of Texas, I include interactions of the Democratic

control variables with an indicator that the state in question is a Southern state, since the relative

Democratic propensity to support backlash regulations there is very different than in the rest of

the country. I describe in detail my procedure for parametrizing the Democratic control variables

in Appendix III, and I provide tentative evidence that Democratic control increases the passage

of backlash regulations. The individual coefficients are imprecisely estimated and do not present a

particular pattern, but it is possible to see that any configuration of Democratic control increases

the propensity to pass backlash regulations outside the South.

Can the association between the backlash regulations and the Democratic control variables

be used to implement an instrumental variables strategy for estimating the effect of the managed

care backlash on health care costs? It can under the condition that the Democratic control variables

affect health care costs exclusively through the backlash regulations. In principle, Democratic

control of branches of the state government could affect health care costs through the passage

of other health insurance regulations, or through other legislation that affects the economy as a

whole, and through it, the health care share of GSP. From the analysis in Section 1.5, we see that

other health insurance regulations do not affect the relationship between backlash regulations and

health care costs and tend not to significantly affect health care costs once backlash regulations are

accounted for. The concern that non-health-related legislation favored by Democrats affects the

health care share remains, but is less plausible because such indirect effects would have to be very

large to have meaningful impacts.
A way to further refine this identification strategy would be to find a variable that would

affect the ability of Democrats to pass backlash regulations and use only the interaction of that

variable with the Democratic control variables as an instrument (while accounting for the main

effects of the Democratic control variables in the structural regression). I argue that such a variable

is physician dominance of health interest groups, which is used in Gray et al. (2007), and which is

measured as the fraction of health lobby registrations by primary care clinic organizations. From

the discussion in Section 1.2, we see that physicians were vocal opponents of managed care cost

containment practices, both because these practices interfered with the clinical practices that they

were accustomed to and that were parts of their training, and because managed care adversely

impacted medical provider salaries (Cutler, McClellan and Newhouse 2000, Section 1.6 this paper).
Gray et al. (2007) finds that physician dominance in the early period of the backlash is correlated

with the subsequent passage of backlash regulations in a cross section of states. Therefore, we should

expect physician dominance of health interest groups to make it easier for state governments to pass

backlash regulations, all else the same. On the other hand, it is unlikely that physician dominance

of health interest groups could affect the health care share except through the passage of health care

regulations. Physician dominance could be endogenous to the health share, but using measures of

physician dominance for the pre-backlash period and the early backlash period should ameliorate

this problem.
Hence, a more conservative identification strategy would be to instrument backlash reg-

ulations with interactions between Democratic control variables and the pre-period measure of

physician dominance of health interest groups, while including the Democratic control variables

without physician dominance interactions as controls in the first and second stage. The identifica-

tion assumption becomes that the only way in which Democratic control of the state government

could differentially affect the health care share as a function of pre-period physician dominance of

health interest groups is through the passage of backlash regulations. Since it is very implausible

that Democrats would have a propensity to pass legislation that does not affect the health care

market directly in a way that varies with physician dominance of interest groups, we no longer have

the concern that Democrats may have passed non-health-related legislation with indirect effects
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on the health care market. It still could be the case that physician groups differentially influenced
Democrats' ability to pass other health insurance regulations that were not related to the backlash.
However, we have seen in Table 1.7 that of the major health insurance regulations passed dur-
ing the backlash period, only the backlash regulations appear to affect health care costs. Finally,
including the Democratic control main effects in my regression ensures that it is the interaction
relationship between the Democratic controls and pre-period physician dominance that is providing
the variation to instrument backlash regulations, rather than the Democratic-physician dominance
interactions acting as a proxy for Democratic controls. In Appendix III, I provide evidence that
variation in these interaction coefficients is sufficient to help explain the passage of backlash regu-
lations, even controlling for the main effects of Democratic controls. Moreover, I provide tentative
evidence that the Democratic-physician dominance interactions increase the passage of backlash
regulations. Once again, the full specification contains many coefficients whose signs do not reveal
a pattern. Simple parametrizations of the backlash regulations-Democratic control-physician dom-
inance relationship exhibit the intuitive signs for the estimates, but these estimates tend not to be
statistically significant.

Table 1.10 presents instrumental variables estimates of the dynamic panel specification 1.1
based on the two instrumental variables strategies I propose. 2 1 To estimate Table 1.10, I use nonlin-
ear GMM by exploiting the exclusion restrictions implied by the excluded political instruments and
the regressors assumed to be exogenous. Column 1 reproduces the OLS results. The subsequent
columns contain instrumental variables results for various combinations of instruments. Since there
are many instruments in each regression, I do not present the first stages, but simply write what
groups of instruments are included. In addition to the second stage results, I present the results
of tests for underidentification, overidentification and exogeneity of the instrumented regressors.
First, to show that my instruments are relevant to the instrumented regressors, I present p-values
of tests of excluded instruments for the regression of regulations on all variables presumed to be
exogenous. Second, since I have more instruments than instrumented regressors in every specifi-
cation, I present the p-value of the Hansen overidentification test on the objective function, which
tests the null hypothesis that the model is overidentified (all instruments are exogenous conditional
on one instrument being exogenous). Finally, I present the Hausman test for the endogeneity of
the instrumented variables, conditional on my instruments being exogenous.

Column 2 instruments backlash regulations and backlash regulations interacted with 1995
HMO penetration using the Democratic control variables only, both as main effects and interacted
with the South dummy. We see that the interaction coefficient is virtually the same magnitude
and significance as in the baseline specification, and the counterfactual forecast is slightly larger
(12.5%) and significantly different from the observed 2005 level. This is because the standard error
on the lagged dependent variable coefficient is substantially smaller than in the baseline specifica-
tion, although the standard errors on the other regressors are similar to the baseline. We also see
that both first stages are significant, that the Hansen test cannot reject overidentification of the
model (so the instruments are not mutually contradictory), and the Hausman test cannot reject
the null hypothesis that the backlash regulations are exogenous (which is not surprising, given
the similarity of the coefficient estimates). Column 3 executes the more conservative identification
strategy and instruments the two backlash regulation variables with Democratic control-physician
dominance interactions only (with or without the South dummy). The main effects of the Demo-
cratic control variables are included as exogenous variables in the regression in order to isolate the
variation coming from the interaction terms. We see that now the interaction coefficient is slightly
larger than the baseline (0.116), and the counterfactual forecast is 12.4%. We also see that the

211 present similar estimates for the difference specification 1.2 via 2SLS in Appendix .
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excluded instruments (the Democrat-physician dominance interactions) are significant in the first

stage even after controlling for the Democratic main effects. As in Column 2, the Hansen test fails

to reject overidentification, and the Hausman test fails to reject exogeneity of the regulations.

Therefore, under either of my identification assumptions, we see that endogeneity in the

backlash regulations is not likely to be a problem for my analysis, and in particular, that the

backlash regulations are most likely exogenous with respect to shocks to the health care share of

GSP. We also obtain a tentative story for an aspect of the political system's role in the passage of

backlash regulations: the Democratic party, at least outside the South, was relatively more likely

to pass such regulations than the Republican party was, and the presence of physician-dominated

health interest groups increased this party differential in backlash regulation passage. 22

1.8 Conclusion

This paper finds that the managed care backlash of the late 1990s, as measured by state

regulation of managed care cost containment practices, has increased the U.S. health care share of

GDP by over 1 percentage point, and accounts for much of the growth in the health care share of

GDP since the health care cost growth stagnation of the 1990s. This result is robust to a variety

of specification checks, which, in particular, rule out alternative explanations based on neglected

geographic heterogeneity, mean reversion, and confounding with other health insurance policies.

There is suggestive evidence that the backlash operated mostly by raising the costs of privately-

insured patients through higher provider salaries and more intensive utilization (longer lengths of

stay), with a possible increase in the rate of technological change. I further show that there were

no statistically significant mortality improvements caused by the managed care backlash. Finally, I

present evidence that political variables can explain part of the variation in the backlash regulations,
and exploit this observation to execute an instrumental variables strategy.

Given that the magnitude of the cost increase that I attribute to the managed care backlash

is comparable to the sizes of the major U.S. public health insurance programs, it is worth studying

the phenomenon of the backlash in greater detail. While a great deal of qualitative research has

been done on the backlash in the health policy literature, to my knowledge, this is the first paper

that investigates the backlash in public economics. It is important to understand precisely what

components of the managed care backlash (media or regulatory) had the largest effects on health

care costs, and what channels did the backlash operate through to raise the U.S. health care share.

It is also important to understand why some states experienced a much stronger level of backlash

than did others. Additionally, my finding highlights the importance of studying health care cost

control in the private sector, especially given the Affordable Care Act's emphasis on using private

insurance to achieve universal coverage.

Furthermore, my findings emphasize the importance of studying the virtues and defects of

different managed care cost containment mechanisms. We cannot quantify the many inconveniences

- reduced choice of treatment strategy, inability to see a doctor one has been accustomed to,
unpredictability of utilization review committees - that managed care created for its patients, and

therefore cannot trade them off against the cost savings. Suggestive evidence from looking at the

221 do not make any normative claims on whether passing the backlash regulations was welfare-improving or welfare-

deteriorating. While I find evidence that backlash regulations increased health care costs, I cannot find statistically

significant evidence on the benefits of backlash regulations for health and peace of mind of patients, and therefore,

cannot judge whether the benefits exceeded the costs. In fact, my mortality estimates alone are compatible with

substantial health benefits from the backlash regulations.
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effects of different types of regulations hints that some of these hardships could have been regulated
away without substantial cost, and that most of the cost savings from managed care occurred from
its ability to influence physicians rather than patients. In light of the inclusion of managed care
into the Affordable Care Act through ACOs, it is imperative to understand what particular aspects
of the managed care program created value for its customers so that it could be possible to improve
on the managed care model in the future.
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Figure 1.3
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Figure 1.5 (1.5)

Number of Backlash Regulations in 2005
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Figure 1.7
Distribution of Counterfactual Forecast of Health Care Share, %
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1.10 Tables

Table 1.1

Backlash Regulation Type Coarse Number of Regulations

(Fine Grouping) Grouping of given Type

Com p. Consumer Rights Access 68
Continuity of Care Access 40

Direct Access, OB/GYN Access 48

Direct Access, other Access 21

Emergency Care Coverage Access 39

Emergency Room Access 3

Emergency Prudent Lay Person Access 23

Ombudsman Access 21

Specialist as PCP Access 10

Standing Ref. To Specialist Access 28

Insurer Liability Appeals 14

Independent External Review of Denials Appeals 58

Liability, Financial: Enrollee Appeals 16
Liability: Provider Contracts Appeals 26

Point of Service Appeals 21

Diabetes Supplies Mandates 54

Hospital Stay after Childbirth Mandates 42

Inpatient Care after Mastectomy Mandates 22

Post-Mastectomy Breast Reconstruction Mandates 10
Off-label Prescription Drug Use Mandates 18

Any Willing Provider Provider 16

Ban All Products Clauses Provider 6

Ban on Financial Incentives Provider 38

Ban on Gag Clauses Provider 57

Freedom of Choice Provider 9

Medical Director Requirements Provider 26

Report Cards Provider 27
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Table 1.2

Summary Statistics, State-Level Data

(1) (2) (3)
VARIABLES N Mean SD
Personal Health Share of GSP 50 14.28 2.408
Change, Personal Health Share of GSP 50 0.104 0.357
Backlash Regulations 50 15.22 5.300
HMO Penetration in 1995, % 50 14.54 10.17
PAHAshare 50 4.942 1.125
Hospital Payroll Exp. as Share of Personal Income 50 2.617 0.613
Hospital Employment as Share of Population 50 1.739 0.334
Average Hospital Salary as Share of Income per Capita 50 150.7 20.59
Average Length of Stay 50 6.746 1.276 (1.2)
Number of Facilities per Million, Rare-Weighted 50 629.3 347.6
Backlash Regulations, Access 50 8.360 3.445
Backlash Regulations, Appeals 50 1.120 1.003
Backlash Regulations, Mandates 50 2.820 1.480
Backlash Regulations, Provider 50 2.920 1.469
Small Group Full Reforms 50 0.720 0.454
Indiv. Mrkt. Full Reform 50 0.180 0.388
Mandated Benefits 50 15.40 5.440
Log Gross State Product 50 11.90 1.046
All-Cause Mortality Rate per 100,000 50 818.3 86.80

Data on state regulation of managed care obtained from the National Conference of State Legislatures. The

regulations variable is the sum of all regulations in force in the given state and year. Data on the percentage of state

population enrolled in HMOs in 1995 is obtained from the Statistical Abstract, originally from Interstudy. Data on

health expenditures and GSP from CMS. Data on hospital expenditures, payrolls, employment, lengths of stay and

facilities from the AHA Annual Survey. Data on other health insurance regulations from "State Legislative Health

Care and Insurance Issues" by BCBS. Data on mortality from the CDC.
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Table 1.3

Baseline Estimates

Dynamic Panel Specification

(1) (2) (3) (4)

Total Private Medicare Medicaid

Share Share Share Share

Lag. DV .929** .897** .932** .931**
(.035) (.034) (.063) (.060)

Regs (T-1) -.007 -.009+ -.001 .003
(.006) (.004) (.001) (.002)

Regs (T-1) X HMO (1995) .093** .085** .010 -. 011
(.025) (.017) (.006) (.008)

Observed level in U.S. (2005) 13.48 8.59 2.59 2.29

Forecast w/o Regulations 12.28 7.82 2.49 2.16
95% CI Upper Bound 20.40 12.32 6.35 5.06
95% CI Lower Bound 7.85 5.17 1.27 .96

Number of Obs. 550 550 550 550

Number of Clusters 50 50 50 50

State FE Yes Yes Yes Yes

Year FE Yes Yes Yes Yes

Each column presents results from estimating equation (1.1) with suitable covariates. Standard errors clustered

by state in parentheses. Data on state regulation of managed care obtained from the NCSL. The regulations variable

is the sum of all regulations in force in the given state and year. Data on the percentage of state population enrolled in

HMOs in 1995 is obtained from the Statistical Abstract, originally from Interstudy. Data on health expenditures and

GSP from CMS. Private health expenditures are defined as the difference between total expenditures and Medicare

and Medicaid expenditures.To compute the 2005 forecast, I draw 500 independent observations from the distribution

of the coefficient vector and dynamically simulate the counterfactuals of all regulation variables being set to zero.
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Table 1.4

Alternative Specifications

(1) (2) (3)

Diff
Total Total Total
Share Share Share

Lag. DV .929** .858**
(.035) (.034)

Regs (T-1) -.007 -.008 -. 000
(.006) (.006) (.009)

Regs (T-1) X HMO (1995) .093** .112** .048
(.025) (.023) (.037)

Estimation Method NLS OLS AB
No. Observations 550 550 550
No. Clusters 50 50 50
R 2 .38
Observed U.S. level (2005) 13.48 13.48 13.48

Forecast w/o Regulations 12.28 11.92* 12.68
95% CI Upper Bound 20.40 13.13 18.32
95% CI Lower Bound 7.85 10.53 9.06
State FE Yes Yes Yes
Year FE Yes Yes Yes

Column 1 presents results from estimating equation (1.1) via the Hausman-Pinkovskiy procedure with suitable
covariates, column 2 presents results from estimating equation (1.2) via OLS, and column 3 presents results from
estimating equation (1.1) via Arellano-Bond. Standard errors clustered by state in parentheses. Data on state
regulation of managed care obtained from the NCSL. The regulations variable is the sum of all regulations in force in
the given state and year. Data on the percentage of state population enrolled in HMOs in 1995 is obtained from the
Statistical Abstract, originally from Interstudy. Data on health expenditures and GSP from CMS. To compute the
2005 forecast, I draw 500 independent observations from the distribution of the coefficient vector and dynamically
simulate the counterfactuals of all regulation variables being set to zero.
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Table 1.5

Robustness Checks

Dynamic Panel Specification

Dep. Var. is Total Health Share of GSP

(1) (2) (3) (4) (5)

Spec. Base State Demo GDP 4 Groups
Line Trends Graph. Counts

Lag. DV .929** 1.133** .964** 1.047** .946**
(.035) (.007) (.040) (.038) (.040)

Regs (T-1) -.007 .005** -.005 -.010+
(.006) (.001) (.005) (.005)

Regs (T-1) X HMO (1995) .093** .063** .077** .098**
(.025) (.003) (.025) (.023)

Access Regs (T-1) X HMO (1995) -. 114+
(.069)

Appeals Regs (T-1) X HMO (1995) .417
(.367)

Mandates Regs (T-1) X HMO (1995) .357+
(.195)

Provider Regs (T-1) X HMO (1995) .435**
(.141)

Observed level in U.S. (2005) 13.48 13.48 13.48 13.48 13.48

Forecast w/o Regulations 12.28 9.90* 12.17 11.79 12.19
95% CI Upper Bound 20.40 13.30 23.23 28.92 25.10
95% CI Lower Bound 7.85 6.84 6.65 3.82 6.95

Number of Obs. 550 550 550 550 550
Number of Clusters 50 50 50 50 50
State FE Yes Yes Yes Yes Yes

Year FE Yes Yes Yes Yes Yes

Each column presents results from estimating equation (1.1) with suitable covariates. Standard errors
clustered by state in parentheses. Data on state regulation of managed care obtained from the NCSL. The
regulations variable is the sum of all regulations in force in the given state and year. Data on the percentage
of state population enrolled in HMOs in 1995 is obtained from the Statistical Abstract. Data on health
expenditures and GSP are from CMS. Column 3 includes demographic controls for (log) proportion of the
population over 65 (in Medicare), proportion black and female, proportion black and male, proportion white
and male, and proportion white and female. Column 4 includes log GSP per capita as a control, and column
5 breaks down regulations into 4 groups as in 1.1 (main effects are suppressed). To compute the 2005 forecast,
I draw 500 independent observations from the distribution of the coefficient vector and dynamically simulate
the counterfactuals of all regulation variables being set to zero.
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Table 1.6

Leads and Lags

Dynamic Panel Specification

Dep. Var. is Total Health Share of GSP

(1) (2) (3) (4)

Lag Structure: -1 0 -1/1 -2/2

Lag. DV .929** .922** .926** .926**
(.035) (.034) (.036) (.036)

Regs (T-2) X HMO (1995) .069
(.067)

Regs (T-1) X HMO (1995) .093** .176* .065
(.025) (.075) (.104)

Regs X HMO (1995) .092** -.100 -.051
(.024) (.102) (.111)

Regs(T+1) X HMO (1995) .010 -.004
(.081) (.142)

Regs(T+2) X HMO (1995) .013
(.097)

P-value Leads are Zero .85 .98
P-value Lags are Zero .03 .09
Observed level in U.S. (2005) 13.48 13.48 13.48 13.48
Forecast w/o Regulations 12.28 12.40 12.52 12.73
95% CI Upper Bound 20.40 19.93 21.41 21.33
95% CI Lower Bound 7.85 8.10 7.70 7.82
Number of Obs. 550 550 550 550
Number of Clusters 50 50 50 50
State FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes

Each column presents results from estimating equation (1.1) with suitable covariates and state and year
fixed effects. Standard errors clustered by state are in parentheses. Data on state regulation of managed
care obtained from the NCSL. The regulations variable is the sum of all regulations in force in the given
state and year. Data on the percentage of state population enrolled in HMOs in 1995 is obtained from the
Statistical Abstract. Data on health expenditures and GSP are from CMS. All regressions contain main
effects that are suppressed. To compute the 2005 forecast, I draw 500 independent observations from the
distribution of the coefficient vector and dynamically simulate the counterfactuals of all regulation variables
being set to zero.
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Table 1.7

Robustness to Other Health Insurance Regulations

Dynamic Panel Specification

Dep. Var. is Total Health Share of GSP

(1) (2) (3) (4) (5) (6)

Other Reg: Other Small Indiv. Mcd All
Mandated Group Mrkt. Simltd Other
Benefits Reform Reform Elig. Regs.

Lag. DV .929** .937** .925** .937** .937** .952**
(.035) (.033) (.036) (.034) (.036) (.032)

Regs (T-1) -.007 -. 018 -.009 -.005 -.009 -.016
(.006) (.013) (.005) (.006) (.006) (.013)

Regs (T-1) X HMO (1995) .093** .153** .098** .088** .095** .148**
(.025) (.046) (.024) (.025) (.025) (.046)

Oth. Reg. (T-1) .031 .119 -.558** .659
(.027) (.104) (.157) (.913)

Oth. Reg. (T-1) X HMO (1995) -.142 -.251 2.392* -.085
(.116) (.720) (1.160) (5.466)

Observed level in U.S. (2005) 13.48 13.48 13.48 13.48 13.48 13.48

Forecast w/o Regs 12.28 12.18 12.32 12.13 12.36 11.94

95% CI Upper Bound 20.40 20.32 20.35 19.92 20.78 20.18
95% CI Lower Bound 7.85 7.52 7.90 7.76 7.74 7.17

Number of Obs. 550 550 550 550 550 550

Number of Clusters 50 50 50 50 50 50

State FE Yes Yes Yes Yes Yes Yes

Year FE Yes Yes Yes Yes Yes Yes

Each column presents results from estimating equation (1.1) with suitable covariates and state and year fixed

effects. Standard errors clustered by state in parentheses. Data on state regulation of managed care obtained

from the NCSL. The regulations variable is the sum of all regulations in force in the given state and year. Data

on the percentage of state population enrolled in HMOs in 1995 is obtained from the Statistical Abstract. Data

on health expenditures and GSP are from CMS. Data on mandated benefits, small group reforms and individual

market reforms is obtained from Blue Cross Blue Shield's "State Legislative Health Care and Insurance Issues." The

mandated benefits variable is the sum of mandated benefits. Following Simon (2000) I consider a state to have passed

a small group reform if it has guaranteed issue, guaranteed renewal and rating reform, and the individual market

reform is coded similarly. Data on simulated Medicaid eligibility from Kosali Simon. To compute the 2005 forecast,

I draw 500 independent observations from the distribution of the coefficient vector and dynamically simulate the

counterfactuals of all regulation variables being set to zero.
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Table 1.8

(1.8)

Each column presents results from estimating equation (1.1) with suitable covariates and unit and
year fixed effects. Standard errors in parentheses, clustered at the state level. Data on state regulation of
managed care obtained from the NCSL. The regulations variable is the sum of all regulations in force in the
given state and year. Data on the percentage of county population enrolled in HMOs in 1995 (aggregated up
when necessary) is obtained from an original dataset compiled by Laurence Baker, originally from Interstudy.
Data on hospital total expenditures is obtained from the AHA Annual Survey, and data on county personal
income (aggregated up when necessary) is obtained from the BEA. In column (1), the dependent variable is
total health spending as a share of state personal income.
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Robustness to Regional Disaggregation

Dynamic Panel Specification
Dep. Var. is Total Hospital Share of Unit Personal Income
and Total Health Share of State Personal Income in Column 1

(1) (2) (3) (4) (5)

Lag. DV .974** .856** .869** .859** .847**
(.030) (.052) (.060) (.044) (.059)

Regs (T-1) -. 006 -.000 -.002 -.000 -.003
(.006) (.003) (.002) (.002) (.002)

Regs X HMO (LB) (T-1) .089** .026+ .035* .011 .024*
(.020) (.014) (.014) (.008) (.010)

No. Observations 550 550 1067 4971 9143
No. Units 50 50 97 455 835
No. Clusters 50 50 50 50 50
Observed U.S. level (2005) 16.2 5.44 5.44 5.44 5.44
Forecast w/o Regulations 14.87 5.04 5.06 5.22 5.31
95% CI Upper Bound 17.43 5.95 6.21 6.16 6.32
95% CI Lower Bound 12.36 4.22 4.08 4.39 4.42

Unit of Analysis State State MSU MSA Zone



Table 1.9

Other Outcomes

Dynamic Panel Specification

(1) (2) (3) (4) (5) (6)

Dep. Var. Hospital Payroll Hospital Hospital Hospital Adj.
Expend. Expenditures Emplmt. Avg. Sal. Inp. Days Mort.
Share of Share of Share of Share of Share of Rate

GSP GSP Pop. GSP p/c Pop.

Lag. DV .877** .875** .883** .851** .521** .868**
(.049) (.053) (.045) (.063) (.147) (.028)

Regs (T-1) -.001 -. 001 -.000 -.012 .007+ .124
(.002) (.001) (.000) (.071) (.004) (.127)

Regs (T-1) X HMO (1995) .033* .020** .004 .740* .016 -. 255
(.014) (.007) (.003) (.346) (.025) (.290)

Observed level in U.S. (2005) 4.56 2.39 1.62 147.69 6.48 808.40
Forecast w/o Regulations 4.06 2.12 1.56 133.73 6.01 795.51
95% CI Upper Bound 7.15 4.02 2.70 285.06 14.42 1133.41

95% CI Lower Bound 2.54 1.24 .99 75.84 3.66 563.87
Forecast Growth, % 12.22 12.83 3.67 10.43 7.79 1.62

Number of Obs. 550 550 550 550 550 550

Number of Clusters 50 50 50 50 50 50

State FE Yes Yes Yes Yes Yes Yes

Year FE Yes Yes Yes Yes Yes Yes

See Table 2.3. Data on all dependent variables is obtained from
CMS.

the AHA Annual Survey. Data on health expenditures and GSP obtained from
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Table 1.10

Instrumental Variable Estimates

Dynamic Panel Specification
Dep. Var. is Total Health Share of GSP

(1) (2) (3)

OLS GMM GMM
Lag. DV .929** .929** .962**

(.035) (.001) (.001)
Regs (T-1) -.007 -.008** -.013*

(.006) (.002) (.006)
Regs (T-1) X HMO (1995) .093** .095** .116**

(.025) (.012) (.025)

Excl. P-val., Regs .00 .00
Hansen P-val. .93 .92
Hausman P-val. vs. Baseline .65 .34
P-val. Dem. Exog. Vars. .00
Observed level in U.S. (2005) 13.48 13.48 13.48
Forecast w/o Regulations 12.28 12.45** 12.41**

(3.13) (.27) (.35)
Dem. Insts. Yes Yes
Phys. Dom X Dem Inst. No No
Dem. Cntrls. in Stage 2 No No
No. Observations 550 550 550
No. Clusters 50 50 50
State FE Yes Yes Yes
Year FE Yes Yes Yes

Each column presents results from estimating equation (1.1) via nonlinear GMM using the exclusion
restrictions implied by the instruments. Standard errors clustered by state in parentheses. Data on state
regulation of managed care obtained from the NCSL. The regulations variable is the sum of all regulations
in force in the given state and year. Data on the percentage of state population enrolled in HMOs in
1995 is obtained from the Statistical Abstract. Data on health expenditures and GSP from CMS. Data on
Democratic control obtained from the Statistical Abstract of the United States. Data on physician dominance
of health interest groups (fraction of health lobby organizations by primary care clinic organizations obtained
as personal communication from Virginia Gray. Column 3 contains the Democratic controls (with and
without interaction with South dummy) included as exogenous variables but not as instruments. The
coefficient estimates for these variables are not reported for brevity.
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1.11 Appendix I: Difference Specification Results

In this appendix, I describe the results that I obtain when I use the difference specification (1.2).
Using this specification is tantamount to imposing that the coefficient on the lagged dependent variable in
specification (1.1) is equal to unity. Such an assumption substantially decreases the standard errors of my
forecasts, allowing me to conclude that many of these forecasts are statistically significantly different from the
observed levels of the variables in question in 2005. Setting the lagged dependent variable coefficient to unity
also enables estimation via OLS. However, the difference specification imposes an additional restriction on
the data relative to my main specification (1.1), and this restriction is rejected for some of the specifications
that I estimate, so I present results for it in an appendix.

Figure 1.9 shows an elementary set of robustness checks in which I plot the partial relation between the
growth of the private health share of GSP and the interaction of backlash regulations with HMO penetration
in 1995, as well as bounds from estimations of equation (1.2) dropping individual states, regions, or years.
The bounds are reasonably tight around the baseline estimate of 0.112 (the lower bounds are not less than
0.099, while the upper bounds are not greater than 0.134), suggesting that the results are not driven by
outlier states, or outlier years, or by any single region (which is important to verify, since HMO penetration
differs greatly by region).

Table 1.11 shows analogous results to Table 1.3 (Baseline) for the difference specification. The interaction
coefficients and the forecasts are close to those produced using the dynamic panel specification. The forecast
total and private health shares of GDP are lower than for the dynamic panel specification, and they are
significantly different from the observed 2005 levels at 5% because the standard errors of the prediction are
much lower. The forecast Medicaid health spending share is substantially lower than in Table 1.3, but is not
significantly different from the observed 2005 level even with the reduced standard errors.

Table 1.12 presents the same results as Table 1.5 (Robustness Checks) for the difference specification
(1.2). The results are very similar to the dynamic panel results, except that the counterfactual when state
trends are added is higher (12.71%) and the interaction coefficient is no longer significant, though of the
same magnitude as in the dynamic panel specification. In addition, I perform a more demanding robustness
check in Column 5 by including the interaction between log GSP and HMO penetration. The coefficient
on the regulations-HMO interaction becomes insignificant and shrinks to about 0.4. Upon examination of
this result, I find that the estimates strongly depend on outlier observations; excluding the state of Oregon
would raise the interaction coefficient to 0.77. Therefore, column 6 reestimates the specification in column 5
using median regression, which is more robust to outliers. The interaction coefficient remains insignificant,
but rises in magnitude 50% to 0.6, and the counterfactual estimate becomes 12.71%, the same as when state
trends are included, and slightly lower than when GSP is included as a main effect only.

Table 1.13 presents analogous results to Table 1.6 (Leads and Lags) for the difference specification
(1.2). The results are less clear, with the magnitude of the lead coefficients equal to one-half or two-thirds
that of the lag coefficients, and with no individual coefficient being significant. The joint F-tests suggest
that the lags are significant while the leads are not in the two-lag specification (in which the lead coefficients
are the largest in magnitude), but that both groups of coefficients are jointly insignificant in the one-lag
specification. It is likely that the mean reversion present in Table 1.13 can be explained by the slight
negative correlation between the level of the health care share and its change over time, which is explicitly
captured by the dynamic panel specification in Table 1.6.

Table 1.14 replicates the analysis in Table 1.7 (Other Health Insurance Regulations) for the difference
specification (1.2). We see that virtually nothing changes, except the counterfactual forecast of the health
share of GDP rises to 12.6% when all the other health insurance regulations considered are controlled for.

Table 1.15 repeats and enhances the analysis in Table 1.8 (Regional Disaggregation). In addition
to the regressions from Table 1.8, it also includes a county-level regression, which involves too many fixed
effects to be computed via nonlinear optimization. The results of Table 1.15 are somewhat stronger than in
Table 1.8, with larger and more significant interaction coefficients, and lower counterfactual forecasts. We
see that, just as in Table 1.8, the results for MSAs are weaker than all the other results, but the results when
the unit of analysis is the county are as strong as the results for states and MSUs. Therefore, it is the fact
that looking at MSAs skews the sample towards cities, rather than the fact that MSAs are too disaggregated,
that explains the low impacts of backlash regulations for MSAs. However, these results should be treated
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with caution because from Table 1.8, it appears that the lagged dependent variable coefficient is less than
unity, so the results from Table 1.8 should be preferable.

Table 1.16 replicates and enhances the results in Table 1.9 using the difference specification (1.2)
(Other Outcomes). The interaction coefficient estimates and the are broadly similar, although the implied
counterfactual growth rates are much larger. The counterfactual increase in the hospital share is now 26%,
and te counterfactual increase in the hospital payroll share is now 20%. All these counterfactual forecasts
are significantly different from zero. The counterfactual increase in average hospital salaries (as a fraction
of average income) is now 19%, and also significantly different from zero. I also estimate the association
between backlash regulations and the number of facilities in hospitals per capita in a state (a proxy for
technological intensity). The interaction coefficient in the technology regression is now positive (as would be
predicted if the backlash had its effects on technology through a change in the behavior of managed care)
and the counterfactual forecast is that the number of facilities per capita is 17.92% higher than without the
backlash. Both the main effect and the interaction coefficient in the mortality regression are also positive,
suggesting that backlash regulations increased mortality, but once again, the standard errors of the forecast
are too large for meaningful value-of-life calculations.

Table 1.17 repeats the second-stage instrumental variables analysis in Table 1.10 for the difference
specification using conventional two-stage least squares rather than nonlinear GMM. The results change very
little. The standard errors on the coefficients increase, which leads to the Democratic main effects in Column
3 no longer being significant.
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Partial Relation, Diff in Private Share on Lagged Regulations X HMO
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Table 1.11

(1.11)

Each column presents results from estimating equation (1.2) with suitable covariates. Standard errors clustered
by state in parentheses. Data on state regulation of managed care obtained from the NCSL. The regulations variable
is the sum of all regulations in force in the given state and year. Data on the percentage of state population enrolled in
HMOs in 1995 is obtained from the Statistical Abstract, originally from Interstudy. Data on health expenditures and
GSP from CMS. Private health expenditures are defined as the difference between total expenditures and Medicare
and Medicaid expenditures.To compute the 2005 forecast, I draw 500 independent observations from the distribution
of the coefficient vector and dynamically simulate the counterfactuals of all regulation variables being set to zero.
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Baseline Estimates

Diffence Specification

(1) (2) (3) (4)

Diff Diff Diff Diff
Total Private Medicare Medicaid
Share Share Share Share

Regs (T-1) -. 008 -.011* -.002 .004+
(.006) (.004) (.001) (.002)

Regs (T-1) X HMO (1995) .112** .106** .013* -. 007
(.023) (.015) (.005) (.009)

R .38 .28 .59 .23
Observed level in U.S. (2005) 13.48 8.59 2.59 2.29
Forecast w/o Regulations 11.92* 7.42* 2.59 1.92
95% CI Upper Bound 13.13 8.31 2.89 2.37
95% CI Lower Bound 10.53 6.38 2.24 1.39
Number of Obs. 550 550 550 550
Number of Clusters 50 50 50 50
State FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes



Table 1.12

Robustness Checks

Difference Specification

Dep. Var. is Diff., Total Health Share of GSP

(1) (2) (3) (4) (5) (6) (7)

Spec. Base State Demo GDP GDP GDP 4 Regs
Line Trends Graph. X HMO X HMO Counts

Median
Reg.

Regs (T-1) -.008 -.006 -.005 -.010+ -.005 -.005
(.006) (.013) (.004) (.005) (.008) (.009)

Regs (T-1) X HMO (1995) .112** .068 .083** .077** .041 .060
(.023) (.075) (.024) (.026) (.045) (.057)

Log GSP (T-1) 2.228** 1.989** 1.609*
(.419) (.455) (.745)

Log GSP X HMO (T-1) 1.520 .957
(1.658) (2.220)

Access Regs (T-1) X HMO (1995) -.007
(.089)

Appeals Regs (T-1) X HMO (1995) .187
(.379)

Mandates Regs (T-1) X HMO (1995) .186
(.219)

Provider Regs (T-1) X HMO (1995) .437*
(.174)

R2 .38 .43 .40 .42 .42 . .38
Observed level in U.S. (2005) 13.48 13.48 13.48 13.48 13.48 13.48 13.48
Forecast w/o Regulations 11.92* 12.71 12.20* 12.97 13.23 12.71 12.03*
95% CI Upper Bound 13.13 14.93 13.27 14.29 14.68 14.62 13.45
95% CI Lower Bound 10.53 10.57 11.04 11.48 11.80 10.93 10.69
Number of Obs. 550 550 550 550 550 550 550
Number of Clusters 50 50 50 50 50 50 50
State FE Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes

(1.12)
Each column presents results from estimating equation (1.2) with suitable covariates. Standard errors

clustered by state in parentheses. See notes to Table 1.5. Column 5 adds an interaction between log GSP
and HMO penetration, and column 6 reestimaetes column 5 using median regression. Column 7 breaks
down regulations into 4 groups as in 1.1 (main effects are suppressed). To compute the 2005 forecast, I draw
500 independent observations from the distribution of the coefficient vector and dynamically simulate the
counterfactuals of all regulation variables being set to zero.
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Table 1.13

Leads and Lags

Difference Specification

Dep. Var. is Diff., Total Health Shae of GSP

(1) (2) (3) (4)

Lag Structure: -2 0 -1/1 -2/2

Regs (T-2) X HMO (1995) .092
(.065)

Regs (T-1) X HMO (1995) .112** .122 .025
(.023) (.086) (.122)

Regs X HMO (1995) .106** .036 .044
(.018) (.131) (.125)

Regs(T+1) X HMO (1995) -. 062 -.011
(.086) (.139)

Regs(T+2) X HMO (1995) -.066
(.104)

R2 .38 .37 .38 .38
P-value Leads are Zero .75 .79
P-value Lags are Zero .22 .02
Observed level in U.S. (2005) 13.48 13.48 13.48 13.48
Forecast w/o Regulations 11.92* 12.26* 12.15 11.81
95% CI Upper Bound 13.13 13.42 14.30 13.77
95% CI Lower Bound 10.53 10.90 10.30 9.57
Number of Obs. 550 550 550 550
Number of Clusters 50 50 50 50
State FE Yes Yes Yes Yes

Year FE Yes Yes Yes Yes

Each column presents results from estimating equation (1.2) with suitable covariates and state and year
fixed effects. Standard errors clustered by state are in parentheses. Data on state regulation of managed care
obtained from the NCSL. The regulations variable is the sum of all regulations in force in the given state and
year. Data on the percentage of state population enrolled in HMOs in 1995 is obtained from the Statistical
Abstract. Data on health expenditures and GSP are from CMS. All regressions contain main effectsthat are
suppressed. To compute the 2005 forecast, I draw 500 independent observations from the distribution of the
coefficient vector and dynamically simulate the counterfactuals of all regulation variables being set to zero.
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Table 1.14

Robustness to Other Health Insurance Regulations

Difference Specification

Dep. Var. is Diff., Total Health Share of GSP

(1) (2) (3) (4) (5) (6)

Other Reg: Other Small Indiv. Mcd All
Mandated Group Mrkt. Simltd Other

Benefits Reform Reform Elig. Regs.
Regs (T-1) -.008 -.019* -.010 -.008 -.008 -.020*

(.006) (.009) (.006) (.006) (.006) (.010)
Regs (T-1) X HMO (1995) .112** .149** .113** .112** .106** .146**

(.023) (.042) (.022) (.024) (.024) (.047)
Oth. Reg. (T-1) .037+ -.002 -.040 .014

(.020) (.081) (.292) (.679)
Oth. Reg. (T-1) X HMO (1995) -. 101 1.000 -.565 2.254

(.098) (.615) (2.075) (3.578)
R2 .38 .38 .38 .38 .38 .39
Observed level in U.S. (2005) 13.48 13.48 13.48 13.48 13.48 13.48
Forecast w/o Regs 11.92* 12.40 12.05* 11.85* 12.06* 12.59
95% CI Upper Bound 13.13 13.87 13.30 13.05 13.27 14.13
95% CI Lower Bound 10.53 10.80 10.58 10.47 10.67 10.92
Number of Obs. 550 550 550 550 550 550
Number of Clusters 50 50 50 50 50 50
State FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes

Each column presents results from estimating equation (1.2) with suitable covariates and state and year fixed
effects. Standard errors clustered by state in parentheses. Data on state regulation of managed care obtained
from the NCSL. The regulations variable is the sum of all regulations in force in the given state and year. Data
on the percentage of state population enrolled in HMOs in 1995 is obtained from the Statistical Abstract. Data
on health expenditures and GSP are from CMS. Data on mandated benefits, small group reforms and individual
market reforms is obtained from Blue Cross Blue Shield's "State Legislative Health Care and Insurance Issues." The
mandated benefits variable is the sum of mandated benefits. Following Simon (2000) I consider a state to have passed
a small group reform if it has guaranteed issue, guaranteed renewal and rating reform, and the individual market
reform is coded similarly. Data on simulated Medicaid eligibility from Kosali Simon. To compute the 2005 forecast,
I draw 500 independent observations from the distribution of the coefficient vector and dynamically simulate the
counterfactuals of all regulation variables being set to zero.
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Table 1.15

(1.15)

Each column presents results from estimating equation (1.2) with suitable covariates and unit and
year fixed effects. Standard errors in parentheses, clustered at the state level. Data on state regulation of
managed care obtained from the NCSL. The regulations variable is the sum of all regulations in force in the
given state and year. Data on the percentage of county population enrolled in HMOs in 1995 (aggregated up
when necessary) is obtained from an original dataset compiled by Laurence Baker, originally from Interstudy.
Data on hospital total expenditures is obtained from the AHA Annual Survey, and data on county personal
income (aggregated up when necessary) is obtained from the BEA. In column (1), the dependent variable is
total health spending as a share of state personal income.
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Robustness to Regional Disaggregation
Differnce Specification

Dep. Var. is Diff., Hospital Expenditure Share of Unit Personal Income
and Diff., Total Health Share of State Personal Income in Column 1

(1) (2) (3) (4) (5) (6)

Regs (T-1) -.009* .000 -.002 -.002 -. 002 -.001
(.004) (.003) (.002) (.002) (.002) (.001)

Regs (T-1) X HMO (LB) (1995) .099** .036** .049** .023* .035** .033**
(.015) (.011) (.010) (.010) (.010) (.005)

No. Observations 550 550 1067 4971 9143 24592
No. Units 50 50 97 455 835 2469
No. Clusters 50 50 50 50 50 50
R2 .54 .35 .2 .03 .02 .06
Observed U.S. level (2005) 16.2 5.44 5.44 5.44 5.44 5.44
Forecast w/o Regulations 14.91* 4.58* 4.54* 5.18 4.91* 5.07*
95% CI Upper Bound 15.84 5.17 5.09 5.75 5.38 5.37
95% CI Lower Bound 13.83 3.89 3.92 4.50 4.36 4.72
Unit of Analysis State State MSU MSA Zone County



Table 1.16

Other Outcomes

Difference Specification

(1) (2) (3) (4) (5) (6) (7)

Diff Diff Diff Diff Diff Diff Diff
Hospital Payroll Hospital Hospital Hospital Number of Adj.
Expend. Expend. Emplmt. Avg. Sal. Inp. Days Facilities Mort.
Share of Share of Share of Share of Share of Per Million Rate

GSP GSP Pop. GSP p/c Pop.

Regs (T-1) -.000 -.001 -.001 .000 .000 .016 .017
(.003) (.001) (.001) (.080) (.003) (.825) (.140)

Regs (T-1) X HMO (1995) .042** .026** .004 1.031** .028 3.314 .249
(.012) (.007) (.004) (.332) (.023) (2.788) (.467)

R2 .22 .58 .10 .58 .09 .11 .41

Observed level in U.S. (2005) 4.56 2.39 1.62 147.69 6.48 469.19 808.40

Forecast w/o Regulations 3.61* 1.98* 1.64 124.10* 5.80 397.87 801.74
95% CI Upper Bound 4.20 2.33 1.82 138.95 6.75 530.48 829.10
95% CI Lower Bound 2.94 1.57 1.43 107.37 4.79 240.26 769.95

Forecast Growth, % 26.02 20.82 -1.40 19.01 11.66 17.92 .83

Number of Obs. 550 550 550 550 550 550 550

Number of Clusters 50 50 50 50 50 50 50

State FE Yes Yes Yes Yes Yes Yes Yes

Year FE Yes Yes Yes Yes Yes Yes Yes

(1.16)

See Table 1.11. Data on the percentage of state population enrolled in HMOs in 1995 is obtained from the Statistical Abstract. Data on all

dependent variables is obtained from the AHA Annual Survey. Data on health expenditures and GSP obtained from CMS. Technology count is

weighted count of all facilities in state, with weights following Baker and Spetz (1999) equal to percentage of hospitals lacking the facility in 1995.



Table 1.17

Instrumental Variable Estimates

Difference Specification

Dep. Var. is Diff., Total Health Share of GSP

(1) (2) (3)

OLS IV IV
Regs (T-1) -.008 -.000 -.022

(.006) (.008) (.015)
Regs (T-1) X HMO (1995) .112** .094+ .151*

(.022) (.052) (.060)
Excl. P-val., Regs .00 2.02e-16
Excl. P-val., Regs X HMO 3.51e-28 2.49e-12
P-val. Dem. Exog. Vars. .66
Hansen P-val. .55 .66
Hausman P-val. vs. Baseline .58 .68
Observed level in U.S. (2005) 13.48 13.48 13.48
Forecast w/o Regulations 11.92* 11.45 12.73
95% CI Upper Bound 13.07 13.85 15.84
95% CI Lower Bound 10.59 8.91 9.18
Dem. Insts. Yes No
Phys. Dom X Dem Inst. No Yes
Dem. Cntrls. in Stage 2 No Yes
No. Observations 550 550 550
No. Clusters 50 50 50
State FE Yes Yes Yes
Year FE Yes Yes Yes

Each column presents results from estimating equation (1.2) via two-stage least squares.Standard errors
clustered by state in parentheses. Data on state regulation of managed care obtained from the NCSL.
The regulations variable is the sum of all regulations in force in the given state and year. Data on the
percentage of state population enrolled in HMOs in 1995 is obtained from the Statistical Abstract. Data on
health expenditures and GSP from CMS. Data on Democratic control obtained from the Statistical Abstract
of the United States. Data on physician dominance of health interest groups (fraction of health lobby
organizations by primary care clinic organizations obtained as personal communication from Virginia Gray.
Column 3 contains the Democratic controls (with and without interaction with South dummy) included as
exogenous variables but not as instruments. The coefficient estimates for these variables are not reported
for brevity.
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1.12 Appendix 1I: More on the Dynamic Panel Specification

This section draws heavily on Hausman and Pinkovskiy (2013).
We are interested in estimating the coefficients 6 and y in the equation

P,,t = 6Ps,,- 1 + X,,tY + esst (1.A1)

under the assumption

E (e.,tIX,,-r) = 0, for all s, t, o and r, and E(eS,teG,T) = 0 for all (s, t) $ (o, r) (LAA1)

without using instrumental variables. (Some of the components of X,,t may be state or year fixed effects).
I assume that we have covariates and dependent variables from period 1 to period T, and we also observe
the dependent variable in period 0, so that we have exactly T observations.

Note that assumption (LAA1) has two parts: first, all covariates are assumed to be strictly exogenous,
and second, the error term is assumed to be serially uncorrelated. The uncorrelatedness assumption is
necessary so that E (e,,t|Ps,o) = 0, since P,,O = f (e,1,...e,_ t.....), a function of all prior error terms.

We can recursively substitute equation (1.A1) into itself to obtain the equation

P,,t = 6P3,t-1+X 8 ,ty+ s,t (1.A2)
,r=t-1 r=t-1

= 6tp,,0 + Z 6 LrX', + ( e,_
r=0 r=0

T=t-1
= Stp P ±o +( 6'L T X',y + n.

-r=0

Then, it is clear that E (,,tIX,-r) VoVr = E (7,,t[P,,o) = 0 because of the assumptions on
so nonlinear least squares estimation of (LA2) will yield consistent estimates of 6 and y. Specifically,

( 6 NLS 17 NLS) will solve

/ i-=t-1 2
(3NLS 7 NLS) = arg minE (P., - btp 0 - 6T LUX.,ty)

6 ,,t r=o

We can weaken assumption (1.AA1) considerably. First, we can dispense with the uncorrelatedness
component by using lagged values of X,,t as instruments. In the case when the error term e,,t is correlated,
we have one endogeneous variable (P,o), and we have at least as many excluded instruments from the lagged
values of X,,t as there are independent variables. (Specifically, if we have K regressors and T periods, we
have K (T - 1) excluded instruments). Under the assumption

E (es,tIX,r) = 0, for all s, t, o and r (1.AA2)

and defining I,,t as the vector [X,,t, Xs,t_ 1, X,,t- 2 ...X,1, we have the exclusion restriction

(E ' Ps, -60P, 0 - ( 60L X,'t -Y = 60tE k=' )e~ 0
.9t- rP0 7=O0 -r= 0 t-

satisfied. Note that we used strict exogeneity here.
Then, the GMM estimator of (So, yo) solves

=- 

=Yo) ( i*p TX~(3GMM YGMM) = arg min P - -5P JrL T ~ k 6P
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where B is the optimal weighting matrix.
We can further weaken assumption (1.AA1) by assuming that X,,,t is only predetermined. Specifically,

we assume

E (e,tIX, ,,) = 0 unless -= s and r > t (1.AA3)

It is clear that the previous exclusion restriction fails because E (X' tes,1) cannot be assumed to be

zero for any t > 1, so ( 6 GMM, yGvM) are biased and inconsistent. We do however have the exclusion

restriction E (X 8 ,ie,r) = 0 for all r > 1, which gives us K instruments. Since we have K + 1 endogenous
variables, this is not enough, but if we have covariates for period zero, then we can get an instrument vector
X- = [X,,o, X,, 1 ]. (We can similarly use any covariates X,,, for t < 0 if they are available). We then have
at least 2K > K + 1 instruments, and we can proceed as before.

Reformulated with X , the following exclusion restriction holds:

t-=t-1

E XI' Ps-Tt - 60Po, - (X , LT X' o = Z d54E ( X-'es,tr) = 0
-r=o 7=0

and the new GMM estimator solves

/=t-1 T=t-1

6 GMM YGMM) = argmin P -6 - E LX 0  (X-) - P - i P- ( 6LTX7o

GMM estimation is computationally intensive, and occasionally fails to converge if rich covariates are
included. Therefore, I perform Hausman tests to show that we cannot statistically distinguish estimators
based on assumption (1.AA1) from those based on assumptions (1.AA2) and (1.AA3).

Table 1.18 presents several versions of the baseline specification. We see that failing to include lagged
dependent variables or failing to difference the dependent variable (use the growth rate rather than the log)
results in noisy estimates that suggest that backlash regulations lowered health care costs. OLS or Arellano-
Bond estimation yields a positive and significant interaction coefficient, but the interaction coefficient is
smaller than in the baseline specification, and the persistence coefficient on the lagged dependent variable is
about 0.8-0.87, suggesting less than complete persistence. Column 4 presents estimation of equation (1.1)
using the nonlinear least squares method of Hausman and Pinkovskiy (2013). We see that the persistence
coefficient is 0.93, barely distinguishable from unity at 5%. Columns 5 and 6 estimate (1.1) by nonlinear GMM
in order to check the robustness of the dynamic panel results to weaker assumptions about the exogeneity of
the error term. Column 5 instruments for the initial value using lags of the independent variables (backlash
regulations and their interaction with pre-period HMO penetration), and Column 6 instruments for all the
independent variables using backlash regulations and their interactions from 1995 (the first year of the
sample) and 1994. We see that the estimates in columns 5 and 6 are statistically indistinguishable from
those in column 4, and we verify it formally by using the Hausman test.
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Table 1.18

(1.18)

Standard errors clustered by state in parentheses. Data on state regulation of managed care obtained from the NCSL. The regulations variable is
the sum of all regulations in force in the given state and year. Data on the percentage of state population enrolled in HMOs in 1995 is obtained from
the Statistical Abstract. Data on health expenditures and GSP from CMS. Column 1 presents OLS estimates without the lagged dependent variable.
Column 2 presents OLS estimates of equation (1.1). Column 3 presents Arellano-Bond estimates of equation (1.1) with all feasible instruments used.
Column 4 presents the nonlinear least squares estimates of equation (1.1) under Assumption (1.AA1). Column 5 presents GMM estimates of equation
(1.1) under the assumption (1.AA2). Column 6 presents GMM estimates of equation (1.1) under assumption (1.AA3). Column 7 presents OLS
estimates of the difference specification equation (1.2).

Specification Analysis

(1) (2) (3) (4) (5) (6) (7)
Diff

Total Total Total Total Total Total Total
Share Share Share Share Share Share Share

Lag. DV .799*** .858*** .929*** .933*** .927***
(.032) (.034) (.035) (.005) (.001)

Regs (T-1) .002 -.006 -. 000 -.007 -.015 -. 008*** -.008
(.026) (.007) (.009) (.006) (.010) (.003) (.006)

Regs (T-1) X HMO (1995) -.196* .050 .048 .093*** .124*** .073*** .112***
(.101) (.031) (.037) (.025) (.035) (.014) (.023)

No. Observations 550 550 550 550 550 550 550
No. Clusters 50 50 50 50 50 50 50
R2 .94 .38
P-value of Hausman Test against Col. 4 .76 1
Observed 2005 Dep. Var. in U.S. 13.48 13.48 13.48 13.48 13.48 13.48 13.48
Forecast 2005 Dep. Var. in U.S. if no Regulations 14.27** 13.16 12.68 12.28 12.47 12.88** 11.92**
95% CI Upper Bound 14.46 17.10 18.32 20.40 14.90 13.18 13.13
95% CI Lower Bound 14.08 10.54 9.06 7.85 10.18 12.59 10.53
State FE Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes



1.13 Appendix III: More on Instrumental Variables

To parametrize the extent of Democratic control during the backlash period, I create 7
variables in total for the 7 combinations of Democratic control that can obtain in any given year.2 3

Each variable is the number of years since 1994 that the state government experienced the particular
configuration of Democratic control.The omitted variable is the number of years since 1994 that
Democrats have controlled no part of the state government. Since the dependent variable is the
total number of regulations outstanding in a given state by a given year, it makes sense to look at
the cumulative number of years of Democratic control rather than at whether Democrats control
the state government at the given point in time. The main motivation for such a parametrization
is that if support for backlash regulations was partisan, then the Democratic control variables
span the possible combinations of partisan control of the state government, and therefore, flexibly
capture any influences of partisan control.

Column 1 of Table 1.19 shows the regression of backlash regulations on the 7 Democratic
control variables. We see that while the coefficients of these variables have different signs, one year
of Democratic control of any combination of the branches of a state government increases the num-
ber of backlash regulations.2 4 However, none of the coefficients is significant, and the 7 Democratic
coefficients are insignificant jointly. The explanation for this failure of statistical significance is that
the relative support of the Democratic party for backlash regulations was not homogeneous across
the United States. Motivated by the Texas example, in which a Republican governor supported
backlash regulations, in column 2, I present the regression of backlash regulations on the 7 Demo-
cratic control variables as main effects, and on 7 interactions between Democratic control variables
and a dummy variable indicating that the state in question is a Southern state. The specification
in column 2 explicitly allows for differences in relative Democratic support for backlash regulations
between the South and the rest of the U.S. 2 We see that an additional year of Democratic control
of any configuration of state government branches increases the number of backlash regulations
outside the South (with the exception of just the control of the lower house), but not necessarily
in the South. Most importantly, we see that the 14 Democratic controls with interactions for the
South are jointly significant, and therefore, help explain the passage of backlash regulations.

Tables 1.20 and 1.21 provide some intuition concerning the relationship between back-
lash regulations, Democratic control, and pre-period physician dominance. Since in a specification
with Democratic main effects, Democrat-South interactions, Democrat-physician dominance inter-
actions, and Democrat-physician dominance-South interactions, there are 28 different coefficients, I
present these coefficients in columns 3 and 4 of Table 1.19 but do not discuss them. Instead, Table

23Hence, these variables are the numbers of years since 1994 that Democrats have controlled 1) the governorship,
2) the upper house, 3) the lower house, 4) both the upper house and the lower house, 5) both the governorship and
the upper house, 6) both the governorship and the lower house, and 7) the governorship, the upper house and the
lower house all together.

24To see this, consider a configuration of Democratic control, e.g. governor and upper house. An extra year of
this configuration of Democratic control will have an impact on regulations equal to the coefficient for a Democratic
governor, plus the coefficient for a Democratic upper house, plus the coefficient for the combination of a Democratic
governor and a Democratic upper house. We see that this sum is greater than zero. A similar analysis can be done
for all other configurations.

25There are two reasons why the relationship between Democratic control of the state government and the passage
of backlash regulations could have been different in the South as compared to the rest of the United States. First,
the Democratic and Republican parties were much more similar in the South than they were nationally in the 1990s
- many Southern Republicans had earlier been Democrats, and many Southern Democrats were maintaining their
party affiliation by force of habit rather than because of substantial agreement with the nationwide Democratic party.
Second, the 1990s saw a transition from virtually solid Democratic state government in the South to a substantial
presence of Republicans, which created further policy convergence because of political competition.
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1.20 provides the p-values that all regressors are zero, and the p-values that all regressors with

physician dominance interactions are zero for four specifications that explain backlash regulations

with the variables discussed. We see that controlling for differences in Democratic relative support

for backlash regulations between the South and the rest of the U.S. is crucial for joint significance of

all regressors. We also see that the Democrat-physician dominance interactions (with and without

South dummy interactions) are significant even when Democrat main effects are included in the

regression. In fact, these interactions are significant at 10% even when South dummy interactions

are not included (they are significant at 1% when they are included). Therefore, the political

variables I have identified have explanatory power for backlash regulations, and specifically, there

appear to be statistically significant differential effects on relative Democratic propensity to pass

backlash regulations as a function of pre-period physician dominance, so there is variation to ex-

ploit for my second, more conservative identification strategy. Unfortunately, Table 1.20 does not

provide good information for the direction of the effects: on whether Democrats are more inclined

to support backlash regulations relative to Republicans, and on how pre-period physician domi-

nance affects this relative support. Therefore, Table 1.21 presents the coefficients for regressions

when each Democratic control indicator is analyzed separately. Each regression has four variables:

the Democratic control in question, the Democratic control interacted with the South dummy, the

Democratic control interacted with pre-period physician dominance, and the triple interaction of

all three variables. No variable in any regression is statistically significant, so this exercise should

be interpreted as, at most, illustrative. We see that in all the regressions, the Democratic main

effect is positive, suggesting Democrats pass more backlash regulations outside the South than

Republicans do, as expected. The Democrat-South interaction is negative in all but one of the

specifications, suggesting this effect is decreased or reversed in the South, also as expected. The

Democrat-physician dominance interaction is positive in all but one specification, suggesting that

physician dominance of health interest groups increased the relative Democratic propensity to pass

backlash regulations outside the South. This is expected, because it is likely that the efforts of

physician groups and of Democrats to pass backlash regulations were supermodular (since physi-

cian groups could mobilize grassroots support for the regulations, while Democrats could vote the

regulations into law). Hence, physician interest groups were more capable of getting backlash reg-

ulations passed when Democrats were in office than when Republicans were. Finally, the triple

interaction coefficient is sometimes positive and sometimes negative. However, there is no reason

to expect this coefficient to be of a particular sign; in the South, physician interest groups may

have been especially helpful in increasing the differential Democratic propensity to pass backlash

regulations because this differential propensity was low to begin with, or they may have had less

of a differential effect on Democratic passage of regulations because both parties were sufficiently

similar to begin with. Hence, we have evidence that there exists experimental variation in back-

lash regulations that I can exploit for an instrumental variables strategy, and we have suggestive

evidence for a story that backlash regulations were passed more frequently by Democrats than by

Republicans, with this differential increased in the presence of physician-dominated health interest

groups.
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Table 1.19

Determinants of Regulations

Dep. Var. is # Backlash Regulations

1 (1) (2) (3) (4)

Governor

Upper Hse

Lower Hse

State. Leg.

Ctrl. All

Gov.+ UH

Gov.+ LH

Governor X South

Upper Hse X South

Lower Hse X South

State. Leg. X South

Ctrl. All X South

Gov.+ UH X South

Gov.+ LH X South

Governor X Phys. Dom.

Upper Hse X Phys. Dom.

Lower Hse X Phys. Dom.

State. Leg. X Phys. Dom.

Ctrl. All X Phys. Dom.

Gov.+ UH X Phys. Dom.

Gov.+ LH X Phys. Dom.

Governor X Phys. Dom. X South

Upper Hse X Phys. Dom. X South

Lower Hse X Phys. Dom. X South

State. Leg. X Phys. Dom. X South

Ctrl. All X Phys. Dom. X South

Gov.+ UH X Phys. Dom. X South

Gov.+ LH X Phys. Dom. X South

Number of Obs.
Number of Clusters
R 2

State FE
Year FE

.442
(.336)

.331
(.381)

.456

(.588)
-. 499

(.736)
-. 139

(1.029)
-. 444

(.608)
.148

(.863)

550
50
.87
Yes
Yes

.301
(.310)

.170
(.297)
-. 061

(.367)
.314

(.485)
-. 963

(.779)
-. 254

(.481)
.915

(.636)
.721

(.480)
1.428

(1.720)
3.317**
(1.088)
-5.203*
(2.334)
7.381+

(4.178)
-1.239

(2.071)
-6.801*
(2.755)

550
50
.89
Yes
Yes

59

.607+
(.360)
1.068

(1.241)
3.307+
(1.694)
-3.985

(2.489)
2.077

(3.157)
-1.498

(1.377)
-1.626

(2.496)

-. 096
(.108)
-. 266

(.392)
-1.489+
(.873)
1.706

(1.089)
-. 649

(1.654)
.465

(.424)
.584

(1.499)

550
50
.88
Yes
Yes

.441
(.400)
-.075

(.552)
-3.483*
(1.542)
3.917*

(1.696)
-6.243**
(1.997)

-.201
(.605)
5.928**
(1.815)
-1.039*
(.508)

21.965**
(3.751)
-41.584*
(19.545)

20.185
(22.784)

~25.088
(25.929)
-19.244**
(3.032)
43.992+

(22.645)
-.107

(.116)
.093

(.188)
1.654*
(.705)
-1.704*
(.760)

2.910**
(1.110)

.100
(.285)

-2.876**
(1.058)
.781**
(.192)

-16.252**
(2.828)
60.523*

(25.610)
-45.920

(27.957)
47.355

(28.893)
14.861**
(2.6 12)
-60.689*
(26.488)

550
50
.91
Yes
Yes

(1.19)



Table 1.20

(1.20)

Standard errors clustered by state in parentheses. Data on state regulation of managed care obtained
from the NCSL. The regulations variable is the sum of all regulations in force in the given state and year. Data
on the percentage of state population enrolled in HMOs in 1995 is obtained from the Statistical Abstract.
Data on health expenditures and GSP from CMS. Data on Democratic control obtained from the Statistical
Abstract of the United States. Data on physician dominance of health interest groups (fraction of health
lobby organizations by primary care clinic organizations obtained as personal communication from Virginia
Gray.

60

Determinants of Regulations: Full Specifications

Dep. Var. is # Backlash Regulations

(1) (2) (3) (4)

Dem. Ctrls. Yes Yes Yes Yes
Dem. Ctrls. X South No Yes No Yes
Dem. Ctrls. X Phys. Dom. No No Yes Yes
Dem. Ctrls. X Phys. Dom. X South No No No Yes
Number of Obs. 550 550 550 550
Number of Clusters 50 50 50 50
R2 .87 .89 .88 .91
P-value All Regressors are Zero .41 .00 .15 0
P-value Phys. Dom. Intracts. are Zero .07 0
StateFE Yes Yes Yes Yes
YearFE Yes Yes Yes Yes



Table 1.21

(1.21)

Standard errors clustered by state in parentheses. Data on state regulation of managed care obtained
from the NCSL. The regulations variable is the sum of all regulations in force in the given state and year. Data
on the percentage of state population enrolled in HMOs in 1995 is obtained from the Statistical Abstract.
Data on health expenditures and GSP from CMS. Data on Democratic control obtained from the Statistical
Abstract of the United States. Data on physician dominance of health interest groups (fraction of health
lobby organizations by primary care clinic organizations obtained as personal communication from Virginia
Gray.

61

Determinants of Regulations: Demonstration

Dep. Var. is # Backlash Regulations

(1) (2) (3) (4) (5) (6) (7)

Dem. Ctrl. Type Dem. Dem. Dem. Dem. Dem. Dem. Dem.
Gov. U. Hse L. Hse Gov. Gov. State. Cntrl

+ UH + LH Leg. All
Dem. Cntrl. .263 .064 .202 .027 .325 .063 .092

(.236) (.219) (.246) (.233) (.397) (.239) (.373)
Phys Dom. X Dem. Cntrl. -. 026 .024- .005 .068 .042 .050 .082

(.055) (.071) (.101) (.076) (.183) (.092) (.154)
Dem. Cntrl. X South -.226 -. 221 .027 -. 798 -1.074 -. 252 -1.053

(.680) (.416) (.493) (.858) (.918) (.491) (.995)
Phys Dom. X Dem. Cntrl. X South .177 .075 -.070 .266 .423 -. 040 ~ .428

(.181) (.188) (.479) (.238) (.400) (.469) (.396)
Number of Obs. 550 550 550 550 550 550 550
Number of Clusters 50 50 50 50 50 50 50
R2 .86 .86 .86 .86 .86 .86 .86
StateFE Yes Yes Yes Yes Yes Yes Yes
YearFE Yes Yes Yes Yes Yes Yes Yes



Chapter 2

Economic Discontinuities at Borders:
Evidence from Satellite Data on
Lights at Night

2.1 Introduction

Does political economy matter for economic growth? If yes, what are the channels through which

it matters? A critical difficulty in answering this question is the endogeneity of political economy
and politically determined variables such as institutions, public goods provision, macroeconomic

policies, education and others: they may be correlated with unobserved variables that also affect
growth. In particular, they may be correlated with geographic variation: countries that are more
favorably endowed by geography may have better institutions and a better-functioning govern-

ment. A large and fruitful literature has endeavored to resolve the endogeneity problem by using

instrumental variables (La Porta et al. (1998), Acemoglu et al. (2001)) and found large effects of

institutions.
This paper presents an alternative approach to measuring the impact of political economy,

as opposed to geography, on growth: exploiting spatial discontinuities created by national borders.
While borders are obviously determined endogenously (e.g. through war or national reunification),
their precise location is often arbitrary, following a river or a line of latitude or longitude, and
without regard to the characteristics of localities within 30 or 50 kilometers of the proposed line.

Therefore, it may be expected that nearby locations separated by national borders should be similar
in terms of geography and other local variables, but different in terms of national-level variables
including political economy. Moreover, if these localities are small enough, it is overwhelmingly

likely that while they are affected by national-level variables of the country that they are part of,
they do not affect these variables themselves. Hence, we can view locations near the border as

subjected to a natural experiment, in which they are randomly assigned to different national-level

institutions, and in particular, to political economy.
While many potential determinants of growth change discontinuously at national borders,

I argue that border discontinuities can be used to assess the impact of political economy on eco-

nomic activity because these determinants are produced by government activity. Institutions, such

as existence of the rule of law, protection of property rights and political freedom, are perhaps a

62



classic example of such a "spillover" determinant of growth.1 Some public goods, such as a na-
tionwide infrastructure grid, or a program of universal education provision, may also exhibit such
spillovers through decreasing transaction costs and creating human capital externalities. Finally,
culture and the level of trust may be affected by national-level shocks through centralized television
programming and the presence of a common language. However, all of the spillover effects described
above are mediated by the one economically relevant variable that necessarily changes at a national
border: the identity of the national govermnent. Governments choose (or perpetuate) institutions
of private property and manage the national stocks of public goods. To the extent that culture is
affected by national-level shocks, it tends to be shaped by the actions of the government, such as the
creation of a government television or radio channel that is accessible in all parts of the country, or
a policy of cultural and linguistic homogenization. Therefore, discontinuities in economic activity
at borders should be interpreted as estimates of the importance of government activity (short-run
policies or long-run institutions and culture) for the level and growth of the economy, for good or

for ill. The presence of large border discontinuities in economic activity suggests that actions taken
by governments (again, over the short or the long run) have powerful effects on income per capita,
whereas their absence indicates that economic shocks, rather than political actions, account for
differences in the wealth of nations.

An alternative view of borders could be that they are discontinuities in the level of trans-

action costs in the purely private economy. The fact that language and culture are different on

different sides of borders, as well as the existence of explicit tariffs and subsidies that discourage
trade, imply that the economies on the two sides of the border are less connected by trade than

two economically comparable regions within the same country. Therefore, a shock to the private
economy in a region of one country (such as a poor harvest, an influx of immigrants, a commodity

bubble, a discovery of natural resources or a labor dispute) that spills over into neighboring regions

in terms of changes in wages, prices and demand, may fail to spill across a national border because

of the discontinuous increase in transaction costs along that border. Therefore, border disconti-
nuities in economic activity may exist without being mediated by government activity. However,
this explanation relies entirely on trade as a transmission channel of economic disturbances, and

therefore, is easy to confirm or rule out. In Section 2.5, I present evidence that the (normalized)
amount of trade between two countries does not explain the size of the economic discontinuity at

their border or its relationship to key variables that are determined by governments.

To compute GDP and growth in narrow bands around national borders, I use satellite
data on lights at night collected by the Earth Observation Group (NOAA) in the DMSP-OLS
satellite program. The night lights dataset has been first described by Henderson et al. (2011),
who have shown a strong correlation between the amount of light emitted from a country and

its GDP, both for levels as well as for growth rates. Night lights are an ideal and indispensable

data source for this project because they are one of the few indicators of economic activity that
exist at a sufficiently fine resolution to allow the analysis of narrow neighborhoods around national

borders, as well as because the method of their collection is continuous across national borders.

National accounts data is fundamentally unsuitable for such a project because it is available, at

best, only at a regional level, and does not permit considering regions other than large political

subdivisions, thus making it inappropriate for a regression discontinuity analysis. Survey data may

overcome this problem as it samples individuals or villages rather than geographical units, but it

would introduce an artificial discontinuity at borders because each survey is conducted within a

In developing countries where the central government is weak, institutions may be nonuniform across a country,
as hypothesized by Acemoglu and Dell [2010]
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single country. Hence, errors attributable to the questionnaire or to the performance of different
survey teams would be different on different sides of national borders. On the other hand, even if
there is important spatial heterogeneity in the way that satellites record lights data, the remote
sensing process should be continuous, and therefore, roughly stable within a neighborhood around
a given border.2

This paper is part of a large literature on the effects of political economy on growth that
includes Dell (2010) on the impact of colonial forced labor in Peru, Banerjee and Iyer (2005) on the
present-day influence of taxation systems in British India, Nunn (2008) on the persistent effects of
the African slave trade, and Larreguy (2011) on the persistence of colonial institutions in Nigeria.
This paper is closest to Michalopoulos and Papaioannou (2011a), who use night lights data to
look at the (non)importance of institutions for economic activity within African ethnicities split
by national borders. The innovation of this paper is 1) its much wider scope in considering the
universe of borders around the globe rather than an institution in a particular country, 2) its use
of regression discontinuity neighborhoods rather than existing regions, and 3) its development of
an econometric theory to accommodate the special nature of the data used.

Using the amount of lights per capita as a proxy for economic activity around borders,
I document a strong and highly significant relationship between national GDP and GDP at the
border. As one moves from a poorer to a richer country sharing a border, the amount of light per
capita (calibrated to be comparable to GDP per capita) rises on average by 40 log points (50%).
Moreover, for every 1% difference in GDP per capita between the two bordering countries, there is
a 0.63% difference between the amount of light per capita at their borders. More surprisingly, there
also exists a relationship between differentials in growth of lights per capita across a border and
differences in growth in the bordering countries over a 20-year period from 1990 to 2010.3 As one
moves from a slower-growing to a faster-growing country, the 20-year growth rate of light per capita
rises on average by 2.6 percentage points, and for every 1 percentage point difference in the growth
rates of GDP per capita of two bordering countries, there is a 0.88 percentage point difference
in the growth rate of lights per capita of these countries at their mutual border.This finding is
unexpected because while differentials in levels of income (the world distribution of income) tends
to be persistent, growth rates are much more volatile, both across time and within a single country.
Therefore, an association between differences in national growth rates and differences in border
growth rates suggests that border discontinuities represent not only accumulated effects of large
historical events in the past, but that they represent factors that promote or stymie current economic
activity and the ability of people to take advantage of or overcome their past. If discontinuities at
the border can be attributed to political economy, this finding shows a substantial effect of suitable
government activity for growth in a country over a short period of time.

The finding can be highlighted in two pictures, both based on Elvidge (2003). The first,
Panel 1 in Figure 2.1 is a satellite photo of North Korea and South Korea, the former covered in
darkness, the latter lit up, with the light beginning right at their common boundary. The second,
Panel 2, is a comparison of two satellite photos of Ukraine and its neighbors: the first taken in
1992 and the second taken in 2000. Areas that gained light are represented in white, whereas areas
that lost light are represented in black. The comparison reflects the obvious fact that during the

2The recorded brightness of lights may depend on cloud cover, humidity and other atmospheric conditions in a
region, but it is implausible that national borders consistently conform to atmospheric fronts. Robustness checks
with controls for temprerature, precipitation, altitude and slope on both sides of borders do not alter the results.

3 Strictly speaking, this is an 18-year growth rate because the lights data does not start until 1992. However,
high-resolution population data is not available for 1992 but is available for 1990, so that is the data I use to compute
per capita growth rates. I will refer to this measure as a 20-year growth rate throughout.
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transition from communism in the 1990s, Ukraine (and its ex-Soviet southern neighbor Moldova)
contracted much more severely than did Poland, Romania and Hungary, which had exceeded their
1992 GDP by 2000. What is striking about the picture is that there is a border discontinuity in
growth in nighttime lights - there are very few white dots in Ukraine and Moldova and very few
black dots in Poland, Hungary and Romania (except for some in the Carpathian mountains, which
are not on a border). Almost all places in the former Soviet republics had contracted, and almost
all places in Eastern European nations had expanded between 1992 and 2000, even those very close
to the borders between these two sets of countries. Particularly striking is that the westernmost tip
of Ukraine (Ruthenia) had been part of Ukraine for only 50 years before the time period in question
and had been in a political union with Hungary, Slovakia and Romania for most of its prior history4,
and yet, it experienced a decline in lights as did the rest of Ukraine, while the neighboring parts of
these countries experienced growth in lights. Moreover, Moldova and Romania (southwest corner of
picture) share the same language, religion and culture (although they have been politically separate
for most of their modern history), but have had radically different growth experiences in the 1990s
with Romania growing, Moldova shrinking, and the growth experience changing discontinuously
at the border. Figure 2.2 formalizes Figure 2.1 by presenting local average lights per capita (and
growth in local average lights per capita) for the places described. We can see very strong and very
clean discontinuities at borders in all three graphs. My finding in this paper is that these pictures
are not anomalies, but rather very stark depictions of a general pattern.

It is also intuitive that border discontinuities present lower bounds for the importance
of government activity for the economy. First, borders are porous, which means that trade and
migration may mitigate differences created by government activity on the different sides of the
border. Second, and more fundamentally, border discontinuities are biased downward in the night
lights dataset because of blooming: satellite-recorded light tends to spread away from its source,
thus leading light generated on one side of the border to be seen on the other side of the border. In
Section 2.5, I document that poorer countries tend to experience a rise in lights per capita relative
to richer countries as one approaches their mutual border.

The above results are most straightforwardly obtained by considering lights in narrow
neighborhoods around borders, which is a version of local constant regression discontinuity esti-
mation and is known to be biased (with the bias going to zero asymptotically) if the derivative
of the outcome variable with respect to the running variable at the border is large (if lights per
capita converge rapidly very close to the border). Regression discontinuity estimates with better
bias behavior can be obtained by using local polynomial estimation. A complication in using local
polynomial estimation to calculate border discontinuities with nighttime lights data is that the
data generating process does not obey the standard assumption of independently generated data
with the number of observations at each site going to infinity. Instead, the nighttime lights data
constitute a global census of visible nighttime lights, taken at a fixed resolution. Therefore, the
asymptotics for the regression discontinuity estimator must be calculated as the resolution of the
data goes to infinity (the pixel size goes to zero) rather than as the domain of the pixels expands to
infinity. Such an asymptotic scheme is referred to as infill asymptotics in the spatial econometrics
literature. A natural assumption for such data is that the errors from trend of neighboring data
points are correlated. A contribution of this paper is to derive the properties of the local poly-

4Ruthenia had been a part of the Kingdom of Hungary since 1526, and of the Habsburg empire (which included
Hungary, Slovakia, and the parts of Poland and Romania that are visible in this picture) since 1699. After the collapse
of the Habsburg empire as a result of World War I, Ruthenia became a part of Czechoslovakia in 1918. Ruthenia
was annexed by the Soviet Union in 1945 as a result of World War II, and attached to the Ukrainian Socialist Soviet
Republic, which became the independent country of Ukraine in 1991.
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nomial estimator under infill asymptotics with correlated errors. I prove that with very general
assumptions on the covariance structure of the outcome variable the local polynomial estimator
is consistent, and has a smaller asymptotic variance than it would if the errors from trend were
independent. 5 Intuitively, the local polynomial estimator exploits the correlation in the errors, so
that only their unpredictable component contributes to the asymptotic variance. In the special
case that the error from trend is mean-square continuous (has no unpredictable component), the
local polynomial estimator converges at a nonstandard rate of 1/vii, where h is its bandwidth.

A further complication of using local linear regression is contamination of the night lights
dataset. It is well known (Doll 2008) that the satellites recording nighttime light density tend to

attribute light generated at a particular site to nearby sites as well. For example, the Pacific Ocean

is lit up as far as 50 kilometers away from the California shore near Los Angeles. This phenomenon

is known as overglow. While local linear regression is very important for recording the potential

narrowing of differences in economic activity at borders because of cross-border trade, it also will

pick up the convergence of nighttime lights density at borders because of overglow, which will
complicate finding any discontinuities in economic activity that may exist. In this paper, I propose

a novel correction for overglow by calibrating an overglow function over territories on the borders
of wastelands and using this function to correct nighttime lights values at borders. I implement

this correction to improve my local linear estimates and demonstrate that while overglow can be a

substantial problem for local linear analysis, it ceases to be a problem once the correction is made.

I then go beyond providing evidence of discontinuities at national borders, and hence of
the importance of political economy to economic activity, and attempt to uncover which politi-

cally determined variables are useful in understanding and explaining border discontinuities. First,
I show that richer sides of borders do not tend to have more public goods - specifically, roads,
railroads and utilities - in narrow neighborhoods of the border than poorer sides of borders do.

Therefore, one cannot explain border discontinuities through differences in local public good pro-

vision. However, public goods provision could still explain border discontinuities if it has large
spillovers - for instance, good infrastructure in the country as a whole may benefit a region with

worse infrastructure through endowing the region with richer trading partners from other regions.

Restricting myself to analyzing discontinuities in growth rates, I perform a correlational

analysis to see whether they can be explained by several national-level variables frequently discussed
in the cross-country growth literature. I show that when the extent of the World Bank measure

of the rule of law (which considers the impartiality of the judicial system, the quality of contract
enforcement, and the protection of private property against confiscation) is accounted for, the

correlation between differences in national growth and differences in growth at the border falls

substantially and becomes insignificant, while differences in the rule of law between two countries are

associated with higher differences in subsequent growth at their borders. While there is similarly an

association between differences in countries' initial levels of public goods provision (proxied by the
fraction of roads paved) and differences in their subsequent growth rates at the border, controlling

for public goods provision does not eliminate the association between differences in national growth

and differences in growth at the border. Accounting both for the rule of law and for public goods

provision, the association between differences in the rule of law and differences in border growth

remains intact, while the association between differences in public goods and differences in border

growth shrinks substantially. I further show that the rule of law retains its explanatory power when

I control for contracting institutions (Acemoglu and Johnson [2005]), political freedom, the average

amount of education, and a measure of interpersonal trust from the World Values Survey.

5 This result is most closely related to Card and Lee (2008)
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The paper is organized as follows: Section 2.2 describes the data. Section 2.3 discusses

the efficiency improvement of the local polynomial estimator in an infill asymptotics setting with

correlated errors. Section 2.4 provides baseline results on border discontinuities in GDP and growth

rates as robustness checks to accounting for local climate and public goods variation. Section 2.5
explores the role of property rights protection in generating border discontinuities and provides

evidence that border discontinuities do not arise because of the discontinuous barriers to trade that

borders pose. Section 2.7 concludes.

2.2 Description of the Data

2.2.1 The Night Lights Dataset

Data on light radiance at night is collected by the DMSP-OLS satellite program and is main-

tained and processed by the Earth Observation Group and the NOAA National Geophysical Data

Center. Satellites orbit the Earth every day between 20:30 and 22:00, sending images of every

location between 65 degrees south latitude and 65 degrees north latitude at a resolution of 30 arc-

seconds (approximately 1 square km at the equator). The images are processed to remove cloud

cover, snow and ephemeral lights (such as forest fires and gas flaring) to produce the final product

available for download at

http://www.ngdc.noaa.gov/dmsp/downloadV4composites.html

Each pixel (1 square kilometer) in the radiance data is assigned a digital number (DN)

representing its radiance. The DNs are integers ranging from 0 to 63, with the relationship between

DN and radiance being

Radiance oc DN3/2

(Elvidge et al. 1999). However, pixels with DN equal to 0 or 63 may be top- or bottom-

censored. Another known problem with the lights data is the presence of overglow and blooming:

light tends to travel to pixels outside of those in which it originates, and light tends to be magnified

over certain terrain types such as water and snow cover. All of these problems tend to make nearby

pixels more similarly lit than they should be, thus working against the hypothesis of this paper.

The night lights dataset has been extensively analyzed in the remote sensing literature for

its utility in predicting economic activity; see Elvidge et al. (1997), Sutton et al. (2007), Doll

(2006), Ghosh et al. (2010) and Elvidge et al. (2012). Baugh et al. (2009) thoroughly describes

the construction of the night lights dataset, and Doll (2008) comprehensively discusses its uses and

pitfalls. Its pioneering use in the economics literature has been Henderson et al. (2011). Chen

and Nordhaus (2010) discuss the limitations of the lights dataset; in particular, they argue that

the relationship between light density and output density becomes uninformative because of top-

censoring and bottom-censoring at DN = 63 and DN = 0. Michalopoulos and Papaioannou (2011a

and b) use the night lights dataset to construct a proxy for output per capita in African ethnic

territories to assess the consequences of partitioning ethnicities during the Scramble for Africa.

2.2.2 Gridded Population of the World Data

The Gridded Population of the World (GPW) dataset is constructed and maintained by the

Socioeconomic Data and Applications Center (SEDAC) at the Center for International Earth Sci-
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ence Information Network at the Earth Institute at Columbia University. The dataset compiles
population information from national censuses for very small political units (municipalities, cen-
sus tracts) in order to achieve its resolution. Within a political unit, population is distributed
uniformly.

2.2.3 Other Data

In Sections 2.4 and 2.6 I use a number of geographic, political and social variables to vali-
date the regression discontinuity and explore correlations between discontinuities in growth rates
at national borders and politically affected determinants of economic growth for the bordering
countries. I obtain data on the distributions of temperature and precipitation levels (means, me-
dians, annual and mean daily ranges, coefficients of variation) at 30 arcsecond resolution from
the dataset constructed by Hijmans et al. (2005) and distributed on the WorldClimate website:
http://www.worldclin.org/. I obtain elevation at 30 arcsecond resolution from the USGS Shuttle
Radar Topography Mission (SRTM), and use the data to compute slope in ArcGIS. Data on roads,
railroads and utilities is from the US National Imagery and Mapping Agency, and originally from
the Digital Chart of the World. I also use several country-wide covariates from standard sources
in the literature. I obtain data on the presence of the rule of law and other governance indicators
from the World Governance Database (WGI) sponsored by the World Bank. 6 Data on the fraction
of roads paved and on the amount of time required to enforce a contract is obtained from the
World Bank's World Development Indicators. Religious composition and legal origin of countries
is obtained from La Porta et al. (1998). Political freedom is measured using the Freedom House
Political Rights Index, from Acemoglu, Johnson, Robinson and Yared (2008). Average years of
education are obtained from Barro and Lee (2010). A measure of trust is obtained from the World
Values Survey via La Porta (2011). Bilateral national-level trade data is obtained from the IMF,
Direction of Trade Statistics. Finally, I use national GDP data from the Penn World Tables, Mark
7.1.

2.3 Regression Discontinuity under Infill Asymptotics

2.3.1 Discussion of Literature

The methodology for regression discontinuity has been extensively developed by Hahn, Todd
and van der Klaauw (1999), Porter (2003) and Card and Lee (2008) and is reviewed in Imbens
and Lemieux (2008) and Lee and Lemieux (2010). However, the asymptotics in these papers
assume either that observations are independent or that the diameter of the domain from which
observations are drawn expands to infinity as the number of observations tends to infinity. In
the context of estimating border discontinuities from nighttime lights data, these assumptions are
unsuitable because the nighttime lights represent a regular grid of observations in a fixed domain

(a neighborhood of the border in question). Moreover, nearby values of lights are very likely to
be, correlated. In particular, it makes sense to think of asymptotics in the nighttime lights dataset
as an improvement in the resolution of the regular grid rather than as an increase in the number
of observations. Such an asymptotic analysis, while very uncommon in econometrics, is frequently
performed in spatial statistics and geology, and is referred to as infill asymptotics. One contribution

6 In results not reported, I also use average protection from expropriation risk between 1985 and 1995 from
Political Risk Services via Acemoglu, Johnson and Robinson (2001), and an index of property rights protection from
the Economic Freedom of the World database (variable 2C).
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of this paper is to develop the asymptotic properties of the local polynomial estimator in an infill
asymptotics setting.

There is an emerging literature on the econometrics of processes defined on two-dimensional
surfaces rather than on a time axis (Conley 1999, Hansen et al. 2008, Robinson 2011), which extends
insights from the time series literature in multiple dimensions. However, this literature concerns
itself entirely with increasing-domain asymptotics: it is assumed that as the number of observations
increases, the domain of the grid tends to infinity. There is substantial discussion of processes under
infill asymptotics in the spatial statistics literature, most notably by Stein (1987, 1999), particularly
in the context of kriging, or spatial interpolation and extrapolation. Stein's results are derived for
covariance stationary Gaussian processes when the statistician has substantial prior information
about the shape of the covariance function, such as the functional form. The results presented here
will be valid for substantially more general processes without any functional form assumptions,
and without the assumption of covariance stationarity. General references on spatial statistics are
Cressie (1993) and Schabenberger and Gotway (2005).

This section is closest to Card and Lee (2008), who consider regression discontinuity esti-
mation when the running variable is observed at a number of discrete sites, and perform asymptotic
analysis as the number of these sites goes to infinity. However, Card and Lee (2008) assume that
the errors between the assumed and the true functional forms of the relationship between the out-
come variable and the running variable are independent. The analysis in this paper will relax this
assumption, which will entail a substantially different analysis from that of Card and Lee.

2.3.2 Properties of the Local Polynomial Estimator under Infill Asymptotics

I consider the properties of the standard local polynomial estimator computed for an outcome

variable y that is observed on a regular one-dimensional grid;7 hence, for the sequence {y ( } .
As N goes to infinity, it is clear that y is never observed outside of [0, 1], but it is observed at

an increasing frequency. The running variable x is distance: x = {(g) } 1 The core result is
that for estimation of a regression discontinuity at a single point, the local polynomial estimator
is consistent, and its asymptotic variance is smaller than the probability limit of the traditional
White estimator for heteroskedasticity based on the residuals of the local polynomial estimator.
The intuition for this fact is that when the errors from the deterministic relationship between the
outcome and the running variable are correlated, the weighting scheme of the local polynomial
estimator exploits this correlation to predict the outcome at the discontinuity, which makes the
effective magnitude of the error equal to that component of it that is unpredictable. The White
estimator, however, assumes that all errors are independent and computes the variance accordingly.
Therefore, when facing infill data with correlated errors, the typical variance estimator is overly
conservative. 8

I further present an estimator that is consistent for the true asymptotic variance of the

local polynomial estimator. Instead of being based on the squared residuals, it is based on squared

differences of residuals from adjacent observations. This estimator filters out both the deterministic

7 The mathematical results for a two-dimensional grid are straightforward extensions of the results presented in
the Appendix. The empirical results are also very similar, but computationally more difficult to obtain.

8The only substantive assumption necessary to prove this is that the process of error terms can be decomposed
into the sum of a process of independent random variables and a process of correlated random variables whose
covariance function is sufficiently smooth. If there is no unpredictable component to the error term (the error process
is mean-square continuous), the local polynomial estimator converges to its probability limit at a nonstandard rate
of 1/ v.
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trend and the correlated component of the residual, regardless of their functional form and correla-

tion structure, leaving only the idiosyncratic variability at each site to contribute to the estimated

variance. Hence, the variability in the correlated component of the error term is not (mistakenly)

attributed to the estimator.
The variance estimator I propose is given by

V1,N = 2 1 NN, N Nh D Ne1 (2.1)

where k () is a kernel, h is the bandwidth, N is the number of observations in the fixed

interval under consideration, X () is a vector of polynomials in distance to the border, DN is the

denominator of the local polynomial estimator, el is a vector with first component equal to 1 and

all the others equal to zero, and BN,u (Q) = ( ) - 6 (") is the difference between adjacent

residuals obtained from local polynomial estimation. One should contrast this variance estimator

with the traditional White estimator, which is given by

N
OLS = eiDe ( 2 ( k2U X 1X De

(U=1

It is also useful to note the relationship between the proposed variance estimator V1,N to
the classical estimator of the variogram proposed by Matheron (1962) (see also Schabenberger and

Gotway 2005). Matheron's estimator of the variogram y (r) = E ((e (u) - e (U - T))2) is given by

S (r) = 1 E (e (s) - e (s +,r))2
IA(r)|

where A (r) is the set of pairs of points in the space that are r apart.

The proposed estimator V1,N can be thought of as estimating the limit of the variogram as

-r goes to zero. The kernel density estimation ensures that the limit is computed for the variogram

that holds at x = 0, and therefore allows for the variogram to be nonstationary and change over

regions of space.
The estimator V1,N converges in probability to a smaller value than the estimator #NLS

but in finite samples, -OLS may be numerically smaller. Therefore, I use the minimum of the

two estimators when computing the variance. I also consider data at a resolution of 1 km (the

resolution at which the night lights data is available), which brings V1,N closer to its probability

limit. All propositions and proofs are relegated to the Appendix.

2.4 Baseline Results

2.4.1 Calibration

To convert lights data into a single quantity comparable to GDP, I assume a low-parameter

function approximating the relationship between DN and output density, and calibrate its para-

meters using aggregate light density for countries and national accounts data on GDP per capita.

Specifically, I estimate the parameters of the function using nonlinear least squares, in which I try

to explain GDP density per unit area in a country with measures of light density for the country

constructed using pixel digital numbers. The assumed relationship is

70



In (1 + yi) = c + In (I + co * vo,i + c *z * o'i + ci * VOsi + ei (2.2)

where i indexes countries, yi is GDP density of country i (obtained from the World Bank),
vy,i is the fraction of pixels with digital number equal to j in country i, and ei is the error term.
I use the transfer function In (1 + x) rather than In (x) because the latter is not defined for x = 0
while the former is defined for all nonnegative x (and some negative values of x as well). This is
not a problem in the estimation of the calibration equation, as the light density of no country is
equal to zero; however, the light density at some borders does attain the value zero, which explains
the need to use such a specification. For reasonable values of the output density yi, In (1 + yi) is
indistinguishable from in (ye), while the parameters on the right hand-side allow full parametrization
of the scale of the index of fractions of pixels relative to 1. Note that the measure of light density
used by Henderson et al. (2011) would be equivalent to setting

co = ci = 0, d = 1

and the measure used by Chen and Nordhaus (2010) would amount to

co = ci = 0, d = 3/2

(The values c and cb would be set sufficiently large in magnitude to make the 1 in the
parentheses inconsequential). I estimate equation (2.2) for every satellite-year in the DMSP-OLS
dataset, using the Chen and Nordhaus (2010) specification as my.initial values. For multiple years
(in particular 2000 and 2005), the estimates of the top-censoring and bottom-censoring coefficients
co and cl are equal to zero, suggesting that top-censoring and bottom-censoring is not a particularly
important limitation of the data.

2.4.2 Descriptive Analysis and Graphs

Computation of the Dependent Variable

Since national borders tend to differ substantially in length, I standardize them by dividing each
border into pieces corresponding to its intersection with a 1-degree by 1-degree grid superimposed
on the world map. I obtain 1352 border pieces, having started with 270 borders. In all my
computations of standard errors, I cluster the standard errors by border (rather than border piece)
so I have 270 clusters. Throughout the rest of the paper, I will refer to border pieces as borders to
minimize terminology unless I need to make the distinction explicit.

To obtain a lights-based proxy for economic activity around a given border for a given
year, I construct neighborhoods containing all points whose shortest distance to the border is less
than X kilometers, and use an ArcGIS Python program to compute the fraction of pixels with each
digital number for each side of the border within the neighborhood. I then use the calibrated values
of C, Co, ci, Cb and d to compute the right-hand side of equation (2.2) for each side of the border,
thus obtaining a proxy for the output density of the given country within X kilometers of the given
border. Finally, I multiply by the area and divide by the population of this region (as discussed
in Section 2.2, I obtain population at 2.5 arcminute resolution from the Gridded Population of the

World dataset) to obtain a lights-based estimate of GDP per capita for the given country within
X kilometers of the given border.

There are good reasons to expect that this calibration procedure creates a variable that is,
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on average, close to the true value of GDP per capita in the region of interest. Henderson et al.
(2011) and Chen and Nordhaus (2010) document the tight association between GDP density and
measures of light density that are similar to the one used in this paper (in fact, they are special
cases of my measure). The fit of the selected specifications to the GDP data for countries is very
good as the first panel of Figure 2.3 attests: the lights explain approximately 73% of the variation
in GDP per capita, and the plot looks approximately linear. I also present the relationship between
the growth of the calibrated lights series and the growth of GDP per capita in the second panel of
Figure 2.3. The fit is not as good (the lights explain only 23% of the variation in growth), but still-
quite strong, and the positive correlation is unmistakeable.

Descriptive Statistics

Table 2.1 provides descriptive statistics for the main variables of interest: log lights per capita

at borders and their growth rate, log lights per capita and log GDP per capita nationwide, with
their growth rates, and some covariates related to institutions and public goods. I present the
mean and the standard deviation of each variable, as well as the mean and the standard deviation
of each variable computed over the richer (or higher-growing) and poorer (or lower-growing) sides
of borders exclusively. The descriptive statistics foreshadow more formal results. We immediately
see that log lights per capita are higher on richer sides of borders than on poorer ones, and that the
mean difference between the two is about half of the mean difference between nationwide log lights
per capita (or nationwide log GDP per capita) of the bordering countries. We see even starker
results for differences in growth rates of light per capita between higher-growing and lower-growing
countries at their mutual border. In panel 2 of the table, where we look at institutions and public
goods, we see that the rule of law of the higher-growing country at a border are much better on
average than the rule of law of the lower-growing country at that border. Public goods (proxied
by the fraction of roads paved) are also better in the higher-growing country at a border, but not
by much, as is trust and the number of years of schooling. Interestingly, local public goods (log
roads near the border) are very close to each other on the higher-growing and lower-growing sides
of borders on average.

Elementary Discontinuity Plots and Correlations

I now present several elementary graphs that suggest large discontinuities in GDP per capita
and its growth rate at national borders. Panel 1 of Figure 2.4 shows a discontinuity plot of lights
per capita (predicted GDP per capita using lights) against distance from border in the direction

of the richer country at the border as predicted by the lights calibration. To construct this plot, I
identify the richer country and the poorer country at each border according to which one has the
higher lights per capita. I then pool all points over the portions of the discontinuity neighborhoods
that belong to the poorer countries, and compute the average lights per capita for 5-km intervals of
distance to the border. I repeat the same procedure for the richer countries and plot the averages
as a function of distance to the border either for the richer (on the right) or for the poorer (on the
left) side.

It is apparent that there is a discontinuity at the border crossing point, with the richer

(according to lights) side of the border having a GDP per capita at least 0.2 log points (about 22%)
higher than the poorer side. The last point on the poorer side (at -5 km) is approaching the points
on the richer side, but the other points on the poorer side are far removed from those on the richer
side (by at least the 0.2 of the discontinuity). This can be explained by overglow in the data: light
from the richer side of the border illuminates the poorer side, making it appear to be richer.

72



Panel 2 of Figure 2.4 presents the same discontinuity plot, but with countries categorized
as rich or poor on the basis of GDP per capita from the Penn World Tables rather than on the
basis of national lights per capita. Constructing this plot has both advantages and disadvantages
compared with Panel 1: I use a real rather than calibrated output measure in this plot, but I also
have to compare lights to GDP in this plot, which introduces measurement error. We again see a
clear discontinuity at zero that is substantially larger than any other difference between consecutive
points, with a somewhat smaller magnitude than before.

The discontinuity plots in Figure 2.4 elide the fact that countries are extremely heteroge-
neous and the difference in economic activity at the border between a poorer and a richer country
may vary widely, even if it is large and positive on average. One would instead expect the difference
at the border to be somehow related to the difference in economic activity between the two countries
overall: countries with wide disparities in income per capita (like North Korea and South Korea)
should have larger discontinuities at their common border than countries with similar incomes (like

France and Germany). Panel 3 of Figure 2.4 presents a plot of differences in log lights per capita
at a border against differences in log lights per capita in the bordering countries (each border
difference being weighted by population). The positive correlation and its strength are manifest.
Panel 4 shows that if differences in log lights per capita at the border are plotted against national

differences in log GDP per capita (from the World Bank), the correlation is similar.
It is perhaps not very surprising that GDP per capita may be discontinuous at national

borders since borders change infrequently, and in many cases remain stable for decades and even
centuries, allowing a discontinuity to accumulate. However, just as there is a discontinuity in GDP
per capita across borders, so there is one in GDP growth over relatively short periods of time. Panel

1 in Figure 2.5 presents a discontinuity plot similar to Panel 1 in Figure 2.4, but computing the
average annualized 20-year growth rate in lights rather than the average amount of lights at each

location, and comparing countries with higher growth in national lights per capita with countries
with lower growth in national lights per capita rather than richer countries with poorer countries.

There is an extremely prominent discontinuity in growth of lights per capita at the border,
with the higher-growing country (according to lights) growing by over 1 percentage point more

each year for 20 years, on average, than the lower-growing country. Thus, not only have borders
contributed to (static) discontinuities in levels over the decades that they remain unchanged, but
they also create (dynamic) discontinuities in growth rates over time periods as short as 13 years.
Panel 2 of Figure 2.5 shows the same discontinuity plot with countries categorized as higher-growing
or lower-growing based on national GDP per capita growth. The discontinuity is again prominent,
but more modest in magnitude. Panels 3 and 4 show correlation plots between differences in growth
at the border and differences in national growth in output per capita (measured with lights or GDP)
similar to the same panels of Figure 2.4: the conclusions are the same.

2.4.3 Overglow Correction

A problem in the analysis of nighttime lights data, which is particularly severe for its use in a

regression discontinuity design, is the presence of oveglow and blooming. The satellite sensor tends
to observe light in territories that are devoid of human activity, but are close to densely settled areas.

For example, Doll (2006) presents an illustration of light from Los Angeles being observed over the

Pacific Ocean as far as 50 kilometers away the California shore. In a regression discontinuity
analysis, overglow operates continuously across borders and transforms any discontinuities into

nonlinearities. In Figure 2.2, we saw the profound effect of overglow at the border between the two

Koreas, and in Figures 2.4 and 2.5 we see the discontinuity gaps shrinking as one approaches the

border.
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To alleviate the impact of overglow, I construct a parsimonious model for the overglow
process, estimate the parameters of the model, and use it to correct my measures of nighttime light
density. I assume a one-dimensional autoregressive model (to parallel my approach to estimating
border discontinuities) in which light observed over one 10-km strip of land increases the amount
of light observed in neighboring 10-km strips (the width again chosen to parallel the border dis-
continuity setting). Specifically, if I divide a tract of territory into square sites, subdivide it into
10-km strips of territory, and assume no overglow across sites (if the square sites are large enough),
I posit

D

Us,d = Us,d ± E3 Pjns,d±j + 8 s,d (2.3)
j=1

where Us,d is the amount of light generated in site s and strip d, and fls,d is the amount
of light observed in site s and strip d. All strips of land in a site are ordered, so that strip 0 is
adjacent to strips 1 and -1, which in turn are adjacent to strips 2 and -2 respectively, and so on.

The variable Us,d is unobserved, which prevents me from estimating equation 2.3 without
additional assumptions. A straightforward approach would be to look for regions in the globe where
I can construct strips such that Us,d = 0 for some strips d. One such approach could be to use
overglow into oceans; however, there is reason to believe that the reflective properties of light over
oceans (and hence, the parameters of the overglow relationship in equation 2.3) are likely to be
different from the reflective properties of light over land. Instead, I look at the edges between land
subject to some kind of economic development and economically unexploited wasteland. Figure
2.6 shows the wasteland areas of the globe as defined by CIESIN in black: they are mostly deserts
(Sahara, Arabian peninsula, Kalahari, Central Asia, the Australian Outback), rain forests (Amazon,
Congo basin), mountains (United States, Chile) and tundra (Siberia and the Canadian north).

I break up the world map into 1 x 1 degree squares and extract those that contain boundaries
between wasteland and non-wasteland areas. I then break up each square into 10-km wide strips
parallel to the wasteland boundary and estimate equation 2.3 for wasteland strips in each square,
assuming that for these strips, Us,d = 0. Table 2.2 presents my results from assuming various
orders of autoregression in the overglow relationship captured by equation 2.3. We see that the
first-order autoregression is large and statistically significant, while subsequent orders are smaller
in magnitude and only marginally statistically significant if at all. In particular, I fail to reject the
null hypothesis that all autoregressive coefficients beyond the first are joinly zero unless I use a 10%
significance level, in which case I marginally reject this null hypothesis in one of the specifications.
Hence, a reasonable assumption for the overglow process is that it is first-order autoregressive, with
the autoregressive coefficient being about 0.23.

I implement my overglow correction by inverting equation 2.3 to recover the amounts of
light generated at the strips of land near the borders. Specifically, I obtain

Ub,d = max (fb,d - 0.23 * (nb,d-1 + b,d+1), M) (2.4)

where M is the recorded minimum value of light density, the censoring done to prevent

negative values of light density.

2.4.4 Baseline Results

I now present formal analysis to document economic discontinuities at borders. I first run

regressions at each border piece in each year of the form
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Yi,b,t,d = Yi,b,t + 6 i,b,td + Th,b,t,d, weighted by 1 (d < h)

where Yi,b,y,d is the value of the dependent variable (lights per capita, or growth of lights
per capita) in country i, year t, border piece b and distance d away from border b. The parameters
to be estimated are gi,b,t, the value of y at the border in country i, and 3 i,b,t, the slope of y at the
border. I choose the bandwidth h to assign greater weight to observations close to the border using
a cross-validation procedure that selects the bandwidth to maximize the accuracy of predictions 10
km away from the border for each regression I run.

Having obtained estimates of log lights per capita and its slope at borders, I run regressions
of the form

W + /3U)Uwvb +cW (2.5)

Yi,b,t = a"t + 7 ,"t + ei,b,t (2.6)

where i,b,t is the local linear estimate of log lights per capita at border piece b in country i
and year t, yw' is a measure of log output per capita (using method w, lights or national accounts)

for country i as a whole, uw"t is an indicator that country i has the larger log output per capita

(measured by w) of the two countries at border piece b, a is a border piece-year fixed effect, and

E ,t is the error term. The parameters of interest to be estimated are /3, the average percentage rise
in output per capita as one crosses a border from a poorer to a richer country, and 7, the elasticity
of the ratio of output per capita at the border to the ratio of output per capita of the bordering

nations. I weigh all observations by the population in a 70-km neighborhood of the border, and
I cluster all standard errors by border (not border piece). Finally, I augment the variance of the
regression by the first-step variances of the dependent variables from the local linear estimation
according to the formula:

V = N K ('Wk) 1 (SklW (diag (s2) + V) W'$) (k'kW )1

where N is the number of observations, K is the number of regressors (including fixed effects),
diag (s2) is a diagonal matrix of the squared residuals, W is a weight matrix, k is the matrix
of regressors including the fixed effects, and V is a diagonal matrix of the first-step local linear
estimation variances.

The first four columns of table 2.3 presents estimates of 3 and y for different choices
of the national output series as well as robustness and placebo checks. The first row shows the
baseline estimates, in which I have corrected the data for overglow before computing the local

linear estimates. We see that when national output is measured by log lights, light density jumps

on average by 0.58 log points or nearly 80%, upon crossing from a poorer country into a richer one.

About 65% of the difference in log output per capita between two bordering countries persists up

to their joint border. Both of these findings are significant at 5%. If we look at discontinuities
in light density at borders when national output is measured by GDP per capita, the results are
slightly muted: light density jumps on average by only 0.4 log points (49%, and this is significant

only at 10%), but 63% of the difference in log output per capita between bordering countries

persists to the border. The average bandwidth used to obtain these estimates is large, about 51
km (I restrict my analysis to a 70-km neighborhood of the border). To assess the sensitivity of my
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estimates to bandwidth choice, I provide results with a bandwidth of 30 km for all countries. The

coefficients 3 in the specifications with indicator variables (2.5) decline and lose significance, but the

coefficients y in the elasticity specifications (2.6) remain significant at 5%, though their magnitude

is somewhat smaller. While the sensitivity of my result for indicator variables to the bandwidth is

concerning, it is intuitive that the elasticity specifications are more flexible in accounting for the

fact that discontinuities at different borders are of different size than are the indicator variable

specifications. Moreover, any residual overglow after the correction is a much larger problem for a

smaller bandwidth than for a larger one.9

A natural falsification exercise for my results is to re-run my regressions using fake borders,
for which I should not expect a discontinuity. I perform two such exercises: one in which I draw

the fake borders at a distance of 30 km from the real borders into the interior of the richer country,
and one in which I draw the fake borders at a distance of 30 km into the interior of the poorer

country. All the discontinuity estimates at the fake borders are less than half the size of the baseline

estimates and statistically insignificant (although some of the fake indicator estimates are close in

magnitude to the indicator estimates for the 30-km bandwidth), which gives reassurance to the

hypothesis that there is something meaningful about national borders that creates discontinuities

at them.
In the remaining rows of Table 2.3 I demonstrate both the importance and the plausibility

of the overglow correction. A telltale feature of overglow should be that the slope of light density

on the poorer side of the border should be negative (because light density is rising towards the

border through contamination from the richer country) and that the slope of light density on the

richer side of the border is positive (because light density is falling towards the border as there

is no reinforcement of light from the poorer country). Hence, the slope of the light density from

the local linear estimation on a given side of that border should be negatively associated with the

output on that side. In the second row of Table 2.3 I run the regressions (2.5) and (2.6) that

produce my baseline estimates, but I use the local linear slope rather than the intercept as the

dependent variable (standardizing it for ease of interpretation). For my baseline estimates, the

correlation between the local linear slope and output at each side of the border is insignificantly

different from zero, and low in absolute value, though positive, suggesting some residual overglow.

In rows 6-9, I present discontinuity estimates for log light density and its slope without the overglow

correction, and with a cruder overglow correction in which I simply omit the last 10 km before the

border from my analysis. The last correction is not preferred, because along with the overglow, it

ignores any convergence in the level and growth rate of economic activity that might be going on

over these last 10 km. We see that without an overglow correction, the discontinuities in log light

density across borders are significant only at 10%, and substantially lower in magnitude than in my

baseline results. However, the local linear slopes are radically higher on richer sides of borders -

by as much as 0.3 standard deviations - which is consistent with substantial overglow. Correcting

crudely for overglow by omitting the last 10 km yields discontinuity estimates much closer to the

baseline, although the local linear slopes are still statistically significantly higher on richer sides of

borders (though not by as much as without the overglow correction). Hence, we see that the data

is consistent with the hypothesis that overglow is muting discontinuities in economic activity at

9 In results not reported, I estimate equations 2.5 and 2.6 in which the weights are divided by the estimation
variance from the discontinuity step for each observation in order to obtain feasible GLS estimates. For borders with
very low estimation variance (e.g. borders with zero light density), I censor the reciprocal of the estimation variance
at a fixed value, and about 27% of the observations (country-border piece-year) are so censored. The point estimates
are similar to the ones reported (in fact, slightly larger) and the t-statistics of the point estimates increase, but the
FGLS results cannot be distinguished from the baseline results by the Hausman test.
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borders, and that correcting for overglow in various ways yields estimates of similar magnitude.
Since national-level variables are expected to affect GDP per capita in some manner, and

since national borders change very infrequently, it may not be very surprising that there is a dis-
continuity across borders in GDP per capita produced by a long-term and consistent operation of
national-level variables. What is more surprising to find is that 20-year growth rates in GDP show
a similar discontinuity. Given that differentials in growth rates between countries are much less per-
sistent than are differentials in GDP per capita, such a result suggests that national variables affect
output rapidly and profoundly enough for changes to be noticeable over short periods of time.The
last four columns of Table 2.3 present similar discontinuity estimates for average annualized 20-year
growth rates. Here, the parameter 3 measures the average percentage point difference in annual-
ized 20-year growth rates between higher-growing and lower-growing countries at borders, and the
parameter -y measures the fraction of the percentage point differences in nationwide growth rates of
two bordering countries that persists to the border. We see that discontinuities in economic growth
are, if anything, even stronger than discontinuities in the level of economic activity. Crossing a
border from a lower-growing into a higher-growing country is associated with a 2-3 percentage point
rise in the average annualized growth rate. The differential between the nationwide growth rates
of two bordering countries, on average, persists up to the border almost completely, or actually
increases near the border. Using a smaller bandwidth, if anything, strengthens these results, and
the falsification exercises with the fake borders show no discontinuities away from the true national
borders. Overglow appears to be a smaller problem for measuring discontinuities in growth rates
than in levels: the crude overglow correction of dropping the last 10 km before the border produces
insignificant differentials in the slopes of growth rates on higher- and lower-growing sides of borders
just as the more comprehensive overglow correction discussed in the text.

2.4.5 Results by Continent

It is important to understand which borders contribute most to my baseline finding. Table
2.4 presents estimates of discontinuities in log light density and in the growth rate of light den-
sity at borders between OECD countries, between post-Communist countries and other European
countries, in Asia, Africa and in the Americas.1 0 It is apparent that the borders with the strongest
discontinuity estimates are Asian borders and the borders of post-Communist European countries,
followed by borders in the Americas and among OECD countries. One noticeable fact is that bor-
der discontinuities are much weaker in Africa than everywhere else. One reason why Africa may
have much smaller border discontinuities is that as a result of Africa's colonial experience, borders
of African nations tend to be relatively underdeveloped hinterlands, with most political and eco-
nomic activity concentrated around capital cities. Therefore, African nations having heterogeneous
government activity in their heartland may have similar government activity (i.e. none) at their
borders, and therefore, they may fail to exhibit border discontinuities.

2.4.6 Robustness Check to Geographic Controls

One potential problem with the results may be if national borders tend to be drawn at dis-
continuous changes in geographic variables, such as altitude, slope of the terrain (Nunn and Puga's

1"The Americas are treated as a single continent because they are contiguous, and the number of borders in the
Americas is comparable to that in Europe, Asia or Africa. Since the latter three continents form a continuous
landmass, I define Russia, Turkey, Egypt and Israel to be part of two continents at once. I count the borders of
these countries to belong to the continent of the bordering country: e.g. Russia's border with Estonia is a European
border, but Russia's border with China is an Asian border. I count the Egypt-Israel border to be an Asian border.
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[2009] ruggedness), and climatic zones (because differences in altitude may lead to differences in

soil type, temperature and precipitation). To address that problem, I calculate average values

of altitude, slope, and statistics of temperature and precipitation (means, maximums, minimums,
variability measures) on either side of every border, obtained from WorldClimate at 30 arcsecond

resolution. I also calculate, on either side of every border, the fraction of land belonging to each

of the 14 climatic zones defined by the International Geosphere Biosphere Programme, by using

the Global Land Cover Characteristics Data available from USGS, also at 30 arcsecond resolu-

tion 11. I include these covariates in the regressions (2.5) and (2.6) as control variables on the

right-hand side. I present estimates of the main coefficients of interest from both the levels and

growth regressions in the second row of Table 2.5. It is clear that including the covariates does

not change the results, and, if anything, strengthens them slightly. I also rerun the specifications

given by equation (2.5) replacing the dependent variable by each of the 35 geographic variables

used. Out of 140 possible tests, exactly 8 reject at 5%, which is approximately the number that

one would expect if none of the geographic variables were discontinuous. I present the local linear

regressions for some geographic variables thought to be potentially important for economic growth

in Table 2.6: population density, altitude, ruggedness, mean temperature, temperature standard

deviation, mean precipitation and fraction of land that is cropland. All the variables are scaled to

have mean zero and standard deviation equal to unity. We see that richer sides of borders may

be more rugged than poorer sides are, which is counterintuitive because ruggedness is typically

associated with lower economic activity (Nunn and Puga 2009). They also have a lower degree of

seasonal temperature variation, which is more alarming as a more moderate climate may improve

economic activity, but as the magnitudes of the coefficients show, this tendency is very low even

though statistically significant. All the other important measures show no tendency to be different

on richer sides of borders from poorer sides of borders. There is also no tendency of these measures

to be different on higher-growing sides of borders and lower-growing sides of borders.

2.4.7 Local Variation in Public Goods

I now consider potential explanations for discontinuities in economic activity across borders.
First, I check whether public goods, for which extensive geographic information exists, are discon-
tinuous across borders. If public goods are more extensively provided on richer sides of borders
than on poorer sides of borders, it is conceivable that the output and growth differentials between
the two sides are explained by the local effects of public goods. An example of local public goods
driving income differentials is found by Dell (2010), who documents that road density falls discon-

tinuously as one crosses a border into a Peruvian region in which forced labor was practiced during

colonial times, and provides anecdotal evidence that road quality in that region is critical for access

to markets.
I obtain spatial data on roads, railroads and utility lines (power and telephone lines) from

"The climatic variables are: (1) Annual Mean Temperature, (2) Mean Diurnal Range, (3) Isothermality, (4)
Temperature Seasonality, (5) Max Temperature of Warmest Month, (6) Min Temperature of Coldest Month, (7)
Temperature Annual Range, (8) Mean Temperature of Wettest Quarter, (9) Mean Temperature of Driest Quarter,
(10) Mean Temperature of Warmest Quarter, (11) Mean Temperature of Coldest Quarter, (12) Annual Precipita-
tion, (13) Precipitation of Wettest Month, (14) Precipitation of Driest Month, (15) Precipitation Seasonality, (16)
Precipitation of Wettest Quarter, (17) Precipitation of Driest Quarter, (18) Precipitation of Warmest Quarter, and
(19) Precipitation of Coldest Quarter. The land cover categories are: (1) Evergreen Needleleaf Forest, (2) Evergreen
Broadleaf Forest, (3) Deciduous Needleleaf Forest, (4) Deciduous Broadleaf Forest, (5) Mixed Forest, (6) Closed
Shrublands, (7) Open Shrublands, (8) Woody Savannas, (9) Savannas, (10) Grasslands, (11) Permanent Wetlands,
(12) Croplands, (13) Urban and Built-Up, (14) Cropland/Natural Vegetation Mosaic.
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the Digital Chart of the World. In results not reported, I confirm that the national aggregates of
roads and railroads match up well with national-level statistics presented by the World Bank, and
that there is a strong positive association between the log total public goods in a fixed neighbor-
hood of a border and the amount of lights per capita in that neighborhood. In Table 2.7, I obtain
estimates of discontinuities in the densities of these public goods variables per capita across na-
tional borders, which I construct using the two-step local linear procedure described in Section 2.4.
I normalize the dependent variable to have mean zero and unit variance in all specifications. We
see that road density is not systematically higher on the sides of borders corresponding to richer-
or higher-growing countries (the estimates of the difference are positive, as might be expected if
higher road density is associated with higher economic growth or development, but they are quan-
titatively small and statistically insignificant). An important component of public goods provision
not captured by the road density maps is road quality. The Digital Chart of the World classifies
roads as "primary or secondary roads," "divided highways" and "paths or trails." Presumably, trails
are of lower quality than are the other two types of roads, so the fraction of roads that are not
trails should be a reasonable measure of road quality. However, as we see in column 2, the fraction
of roads that are not trails does not vary discontinuously across borders. Column 3 of Table 2.7
presents the results for railroads. The estimates are larger, but not significant (except the estimate
for differences in GDP growth rates, which is significant at 10%). Finally, column 4 presents the
same analysis with the dependent variable being log total length of utility lines (most frequently
these are power lines, but also included are telephone lines and pipelines). The results are even
more striking because they show that poorer sides of borders have more utility lines than richer
sides of borders do, the result being statistically significant. Lower-growth sides of borders also
have more utility lines than do higher-growth sides of borders, though this result is not statistically
significant. This finding is particularly surprising given that the electricity used to generate the
lights almost certainly is going through the power lines being measured. A reconciliation of this
finding with the baseline result may be that the power lines are used with different intensity on
different sides of borders, with more (and more energy-intensive) houses and factories using the
power lines on richer sides of borders than on poorer sides.

It is instructive to look at maps of road density for the regions in which we observed
significant discontinuities in the level and growth rate of light density per capita. In contrast, these
regions appear to have continuous road density across borders. Superimposed on a road map of the
Korean peninsula, the North Korea-South Korea border is imperceptible. In Eastern Europe, road
networks rarefy in the sparsely populated Carpathian mountain region that straddles Ukraine and
Romania, but have the same density on either side of the Ukraine-Poland or the Romania-Moldova
borders. Hence, it is plausible that road networks are continuous across borders more generally,
and hence, that discontinuities in economic activity at borders are not accounted for by variation
in road networks.

Finally, I estimate the baseline regression with levels of public goods being included as
independent variables. Rows 2 and 4 Table 2.5 present the results for my baseline specification
with the different varieties of public goods included as independent variables, either by themselves
(in row 2) or together with geographical and climate controls (row 1). The coefficients on the
country-level output variables are very similar in magnitude and significance to the baseline in
Table 2.3. Therefore, variation in local public goods is unlikely to account for border discontinuities
in economic activity. However, variation in the national level of public goods still may be important
if the main benefits from public goods are global rather than local (e.g. a high national level of
public goods enriches everyone sufficiently that places with low local public goods benefit from
having richer trading partners).
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2.5 Potential Mechanisms

I now turn to exploring the association between discontinuities in the growth rate of lights per capita

at borders and national-level variables of the bordering countries that are commonly hypothesized to

be determinants of economic growth. This analysis will not use any further sources of identification

and will be much closer to a correlational study of determinants of growth. However, because

areas close to national borders can be considered as having been "randomly assigned" vectors

of determinants of growth, whereas countries as a whole obviously have developed these vectors

endogenously over the course of history, an important source of endogeneity will be absent. If an

exhaustive list of determinants of growth existed, the identification problem in trying to explain

discontinuities in economic activity at the border would be solved. While such a list does not exist,
accounting for its most important components is conceivable.

The past decade has been extremely fruitful in investigating how govermnent activity may affect

economic growth. Acemoglu et al. (2000, 2001) argued that the degree of property rights protection

and the constraints faced by the country's executive have a strong causal impact on economic
activity. La Porta et al. (1998) and, less formally, de Soto (2000) have suggested that contracting

institutions such as the simplicity of procedures to enforce contracts and trade property improve

economic growth. However, Acemoglu and Johnson (2005) argue that controlling for property

rights institutions, contracting institutions do not matter for growth. Glaeser et al. (2004) and

more recently La Porta et al. (2008) contend that an important determinant of economic growth

is human capital, which in almost all countries is substantially affected by government policies.
Algan and Cahuc (2010) find a causal effect of trust on growth, and a line of thought stretching

back to Weber (1910) posits that cultural attitudes formed by religion affect economic growth. Since

government policies tend to homogenize religion and culture within their borders, these variables

may also be discontinuous across borders, and thus, may be potential channels through which

border discontinuities in economic activity arise.
While the literature has identified institutions of various kinds to be a fundamental cause of

economic growth, it has not yet fully explained the channels through which these institutions bring
about growth. One strand of thought, dating back to the founding of economics as a science,
has considered that security of property enables citizens to optimize their well-being by trading
and producing in the market, bringing about prosperity without much further action from the

government except to enforce the property rights system. In the words of Adam Smith (1776)
"Little else is required to carry a state to the highest degree of affluence from the lowest barbarism
but peace, easy taxes, and a tolerable administration of justice; all the rest being brought about by
the natural course of things." An alternative theory, however, may be that secure property rights

and tight constraints on the executive enable citizens to control their government and ensure that it

provides adequate amounts of high-quality public goods, the latter being necessary for development

and long-run growth. While I am unaware of recent work postulating this theory, the literature on

economic growth and political economy has established both theoretically and empirically that a

causal channel of institutions on growth that runs through public goods is conceivable. Dell (2010)

and Huillery (2009) document the importance of public goods for positive economic outcomes.

Acemoglu (2005) presents a model in which "consensually strong states," in which the citizens are

strong relative to the government, collect higher taxes and spend more on public goods (as the

citizens desire) than states in which government is not checked by citizens.
The regression of interest is

= Y + g!, + ZA + sw (2.7)
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where Zi is a vector of country-level determinants of growth and A is a vector of their coefficients,
which, together with y', the correlation between differences in growth at the border and differences
in national growth, form the variables of interest. All other variables are defined as in equation
(2.6). I use the 20-year growth rate of Penn World Table 7.1 GDP as my independent variable for
the growth rate.1 2

The determinants of growth that I consider are as follows: the measure of the rule of law
obtained from the World Governance Indicators, which are maintained by the World Bank; fraction
of roads paved (a public goods variable motivated by Gennaioli and Rainer [20071) obtained from
the World Bank's World Development Indicators (WDI) for 1990 or the closest year; the amount of
time necessary to enforce a contract (a measure of contracting institutions), also from the WDI for
1990; an index of political freedom based on the Freedom House measure, obtained from Acemoglu,
Johnson, Robinson and Yared (2008); average years of education in 1990, obtained from Barro and
Lee (2010); and the proportion of respondents from the given country answering that "most people

can be trusted" in the World Values Survey, from La Porta et al. (2008). The governance measures,
public goods and contracting institutions variables span nearly the whole sample of countries, while

other variables tend to be missing for many countries, which removes borders from analysis.
A key variable in the analysis will be the rule of law variable from WGI, which is defined as "the

extent to which agents have confidence in and abide by the rules of society, and in particular the
quality of contract enforcement, property rights, the police, and the courts, as well as the likelihood

of crime and violence." This variable (as well as the other WGI indicators) has been constructed
using an unobserved components model using expert evaluations and surveys of businesses, NGOs
and other agencies. A list of the questions in the surveys that were used to construct this variable
is available at

http://info.worldbank.org/governance/wgi/pdf/rl.pdf

The questions from these surveys used to construct the rule of law variable ask about security
of property, the willingness of the government to honor its contractual obligations and follow its

own laws, and the independence of the judiciary, as well as the ease of using the judicial system
to enforce private contracts, which makes the rule of law variable a composite of a measure of
private property protection and of a measure of contracting institutions. However, since most of

the questions used do not concern the enforcement of private contracts, I consider that the rule of
law variable is much closer to a measure of private property institutions than it is to contracting

institutions. I use the rule of law variable in this analysis rather than other measures of property
rights institutions such as protection against expropriation risk from Political Risk Services or the

property rights variable from the Fraser Institute because the rule of law variable is available for
many more countries than either of these two variables. In Appendix Tables 2.A1 and 2.A2, I
estimate the specifications in (2.8) using modified versions of these measures (with missing values
for one measure predicted using the other measure) and obtain very similar results.

Table 2.8 presents results from estimating equation (2.7) for several versions of the vector

of determinants Zi using the two-step local linear procedure described in Section 2.4. For com-

parability purposes, all covariates (except the World Bank growth rate) have been standardized

before regression, so the unit of each covariate is a standard deviation. Column 1 reproduces the

1 2The results are not robust to using the nationwide 20-year growth rate of light density in place of the 20-year

Penn World Tables growth rate. However, if the climate and local public goods controls are included, the results are

qualitatively similar to the GDP-based results, although none of the coefficients except for the 20-year nationwide

lights growth rate are significant.
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baseline estimate of yg, the baseline association between border and national differences of growth,
for comparability purposes. Column 2 includes the rule of law as a covariate. We see that the
coefficient on the rule of law is positive and statistically significant, with a 1 standard deviation
increase in the difference of bordering countries' expropriation protections being associated with
an increase in the difference of their average annualized 20-year growth rates at the border of 2.5
percentage points. The coefficient on the difference in national growth rates is halved (to 0.44)
and becomes only marginally statistically significant. 13 Column 3 leaves out the rule of law, but
includes public goods (percent of roads paved). We see that public goods with a coefficient of about
1.8, hence a 1 standard deviation increase in the difference between two countries' fractions of roads
paved increases the difference of their 20-year growth rates at the border by 1.8 percentage points.
However, this coefficient is not statistically significant at conventional levels, and the coefficient on
the national growth rate, yg, remains significant, with nearly the same magnitude as in the baseline

specification (0.74). Column 4 includes both rule of law and public goods. We now see that the

coefficient on the rule of law remains very close to the one from the second specification (2.31) and
is significant at 1%, while the coefficient on public goods shrinks markedly to 0.67. The coefficient
on the national growth rate shrinks to a marginally significant 0.44. Thus, controlling for the rule
of law, public goods do not appear to matter for growth. Column 5 adds the climate and local

public goods covariates at borders from Table 2.5. The estimate of the rule of law coefficient is
unaffected, but the paved roads coefficient turns negative (though it remains insignificant) and the
coefficient on the countrywide 20-year growth rate becomes slightly larger (0.54) and significant
at 5%. In subsequent columns I retain the climate and local public goods controls to reduce the
standard error of the regression; my results do not change if these controls are excluded. These
results, especially column 4, show that of two ways that institutions that can matter for growth -
creating a rule of law to protects private property in the market, and creating a consensual state
to provide public goods - only the rule of law appears to matter for economic growth at national
borders, in accordance with Adam Smith. Moreover, the rule of law is such an important variable
that once differences in the respect for the rule of law are accounted for, differences in national
growth rates are of limited use in predicting differences in border growth rates.

The additional columns of Table 2.8 present further checks of the importance of property
rights protection compared with other determinants of growth. Column 6 compares private prop-
erty institutions and contracting institutions by including the amount of time necessary to enforce
a contract as a covariate; the coefficient is positive (counter to expectations) and statistically in-
significant. The coefficient on the rule of law variable remains unchanged. Another hypothesis
can be that property rights protection is proxying for political freedom. Column 7 replaces the
contracting institutions variable with average value of the Freedom House Political Rights Index
between 1990 and 1999. We see that, if anything, political freedom appears to decrease growth
rates at the border once economic freedom is controlled for.14 The coefficient on the rule of law
variable rises by over 50% to 3.9. However, the Freedom House Political Rights Index is not avail-
able for some countries, which reduces my sample of borders by about one-third. In Column 10, I
add the estimate of average years of education from Barro and Lee (2010) to the specification in

13 The magnitudes of the two coefficients are not comparable because expropriation protection has been standardized
while the national growth rate has not. I estimate this equation using beta coefficients, and find a beta coefficient of

0.1 for the national growth rate and a beta coefficient of 0.25 for expropriation protection. Therefore, the magnitude

of the association between expropriation protection and border growth, conditional on border fixed effects, is about
2.5 times larger than the magnitude between the association between national growth and border growth when both

are expressed in like units
1 4 The coefficient on the Freedom House variable is negative and statistically significant at 5%, but is only significant

at 10% if the climate and local public goods covariates are excluded.
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Column 5. Like the Freedom House measure, the Barro-Lee education measure is not available for
some borders, which reduces my sample. The coefficient on the rule of law variable rises somewhat
compared to Column 5 (to 3.3), and the coefficient on the Barro-Lee variable is negative, large in
magnitude, and statistically significant at 5% (-2.7). Finally, column 9 includes a variable for trust
measured by the World Values Survey.15 Unfortunately, data on trust from the WVS is available
for only 80 countries, which severely restricts the sample. Therefore, I construct an augmented
trust variable by predicting trust using region dummies for countries without trust data. Given
that cultural variables tend to be similar within regions (see the map by Ingelhart and Welzel,
http://www.worldvaluessurvey.org/), this approach appears to be reasonable. The coefficient on
the rule of law remains very close to the baseline, and the coefficient on trust is negative and
insignificant. In all the above specifications, the coefficient on the fraction of roads paved is sta-
tistically insignificant, and frequently negative. Hence, the rule of law appears to be resilient to
controlling for other potential determinants of growth.

2.5.1 Border Permeability

An important concern for interpreting border discontinuities as estimates of the impact of govern-
ment activity upon the economy is that national borders act as discontinuous increases in trans-
action costs. Even in a world with countries having identical institutions, public goods provision
and other political structures, we could then still see discontinuities in economic activity at borders
because local economic shocks would not transmit to neighboring countries but would remain con-
tained in the country of origin. If borders were completely impermeable to trade, different market
equilibria would prevail in each country, and shocks that affect one country's equilibrium would
have no effect on its neighboring country, thus creating a discontinuity in prices, wages, quantities,
and most likely economic activity and growth across the countries' common border.

I test whether the transaction costs channel is important by looking at whether the presence of
trade mitigates discontinuities in economic activity at borders, and whether accounting for trade
changes the ways in which the covariates discussed in this section affect discontinuities at borders.
Since the transaction costs channel should manifest itself through differences in trade flows, if the
amount of trade across the border (suitably normalized to account for obvious determinants of
trade) does not affect whether or not border discontinuities are present, then it is unlikely that
borders pose sufficient barriers to trade to explain the existence of border discontinuities. For the
key independent variable of this part of the analysis, I obtain data on bilateral trade for all borders
in 2000 from the IMF's Direction of Trade Statistics. As my trade variable, I use the log volume
of trade, normalized by the product of the bordering countries' GDPs to take into account gravity
effects. This trade variable is obviously at the border level, and hence is captured by border fixed
effects, so I use it only to create interaction terms in regressions.

The regression of interest becomes

Qi,bt = abt +(7W + tw x T) yt + Zl (A + TZ x TO) + Ez,t (2.8)
d~w

where T is the trade measure, and tg' and r are coefficients on the interactions of this trade
measure with the national growth measure and with the covariates, respectively. All other variables
are as in equations (2.6) and (2.7). For ease of interpretation, I standardize T to have mean zero

15 The exact text of the relevant WVS question is: "Generally speaking, would you say that most people can be
trusted or that you need to be very careful in dealing with people?" The two responses are "Most people can be
trusted," and "Can't be too careful."
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and variance 1.
Table 2.9 presents some key specifications from the previous sections estimated using the two-

step local linear regression methodology in Section 2.4. The first four columns present results for

reestimating the baseline equation (2.6) with trade interactions. The coefficient on national output

per capita or national growth in output per capita decreases, and the interaction with trade enters

negatively for the regressions of log output per capita (the coefficient being insignificant if lights data

is used to construct the output measure and marginally significant at -0.23 if GDP data is used),

which suggests that some of the discontinuities in output per capita might be explained by trade.

However, the trade interaction coefficients are statistically insignificant, small and positive for the

growth rate regressions, which contradicts the hypothesis that trade effaces border discontinuities,
and hence, that border discontinuities can be explained by trade. The subsequent four columns

replicate columns 2, 3, and 4 of Table 2.8, the analysis of the rule of law and public goods. We see

that nothing important changes: the magnitudes of the interaction coefficients are tiny, and the

stylized facts of the rule of law explaining border discontinuities and of public goods not explaining

them as well remain.
In theory, the volume of trade should be a sufficient statistic for economic interaction between

two countries, regardless of the source of the barriers to such interactions. However, trade flows

are not a good proxy for economic interactions between two countries because of the difficulty of

valuing trade in services, or because some trade might be informal and not recorded in official

statistics. Appendix Tables 2.A3 through 2.A5 therefore provide estimates of equation 2.8 in which

the trade measure T is constructed using average tariffs between two countries (obtained from the

World Bank), migration between the two countries normalized by their populations (again, from the

World Bank) and genetic distance between the two countries (from Spolaore and Wacziarg 2009).

Note that the tariff barriers and genetic distance measures should be negatively correlated with

border permeability, so positive rather than negative interaction coefficients suggest that higher

border permeability decreases discontinuities at borders. We observe that discontinuities in growth

rates, and their relationship to differences in the rule of law and public goods provision on different

sides of borders, are not affected by accounting for differential border permeability (in fact, for

the trade barriers measure, lower tariffs at borders appear to increase rather than decrease the

magnitude of the discontinuities). The border permeability effects on discontinuities in levels are

small (or the wrong sign) for some measures, but larger for others. One potential explanation may

be that the economic channel for creating discontinuities at borders operates over a longer time

horizon than does the political channel, since economic shocks may propagate slowly over a country,
while changes in incentives brought about by changes in political institutions may be immediate.

Hence, border permeability may not affect discontinuities in economic growth but might contribute

to discontinuities in levels of economic development.

2.6 Conclusion

This paper uses satellite data on nighttime lights to find large and statistically significant discon-

tinuities in economic activity at national borders. More surprising than the discontinuities in the

levels of economic activity is the finding that there are equally large and significant discontinuities

in growth rates of output over a 20-year period. Furthermore, I derive the properties of local poly-

nomial estimators when the data generating process remains bounded but increases in resolution

asymptotically, and use the derived variance formulae to compute local polynomial estimates of

border discontinuities. In addition, I propose a novel procedure for removing overglow from night-

time lights data in a way that does not respect national borders and implement it to improve the
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performance of local linear estimation.
I interpret the estimated discontinuities in economic activity at the border as measures of

the absolute effect of government activity (both short-run through policy and long-run through
institutions) on economic activity. An alternative explanation for border discontinuities could
be that they arise because borders discretely raise transaction costs, thus creating discontinuities
between prices, wages and other nonpolitical variables across the border. Using data on trade
flows between countries, I show that such an explanation is implausible because the magnitudes of
border discontinuities do not seem to respond to differences in the flow of trade across the borders. I
present a correlational analysis of potential determinants of border discontinuities, and find that the
discontinuities in economic growth across borders can be explained by differences in the rule of law.
In particular, once the rule of law is accounted for, differences in national growth no longer have
a statistically significant association with differences in growth at the border, and other potential
determinants of growth such as public goods, education, contracting institutions, political freedom
and interpresonal trust either do not matter or do not account for the impact of the rule of law on
growth.
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Fig. 2.4
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Fig. 2.6

Areas denoted as wasteland by CIESIN shown in black.
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2.8 Tables

Table 2.1

Descriptive Statistics

Panel 1: Lights on the Border and Nationwide

Mean, Mean, Low Mean, High Number of
Overall Ntwide Side Ntwide Side Borders

Log Lights per Capita, Border 4.73 4.52 4.93 270
(1.74) (1.78) (1.67)

Log Lights per Capita Nationwide 8.00 7.58 8.41 270
(1.40) (1.47) (1.19)

Growth in Lights per Capita, Border 2.70 1.37 4.13 270
(4.54) (4.09) (4.56)

Growth in Lights per Capita, Nationwide 3.38 1.94 4.92 270
(3.28) (2.84) (3.02)

Log Lights per Capita, Border 4.73 4.59 4.86 270
(1.74) (1.76) (1.70)

Log GDP per Capita, WB 7.87 7.60 8.15 270
(1.21) (1.23) (1.14)

Growth in Lights per Capita, Border 2.70 1.95 3.47 270
(4.54) (4.18) (4.76)

Growth in GDP per Capita, WB 2.48 1.57 3.43 270
(1.91) (1.70) (1.62)

Panel 2: Covariates

Mean, Mean, Low Ntwide Mean, High Ntwide Number of
Overall Growth GDP Side Growth GDP Side Borders

Log Roads in 30-km Border Neighborhood 3.02 2.96 3.09 270
(1.67) (1.74) (1.60)

Log Population 16.06 15.99 16.14 270
(2.05) (2.11) (1.97)

Rule of Law, WB -. 34 -. 49 -. 19 266
(.91) (.90) (.89)

Percent of Roads Paved, WDI -. 26 -. 30 -. 22 264
(.90) (1.00) (.77)

Average years of Education, BL -. 57 -. 63 -. 51 186
(.88) (.85) (.91)

Trust, WVS .19 .03 .32 98
(.83) (.76) (.86)

(2.1)

Descriptive Statistics. Standard deviations are in parentheses. There are two observations per border piece:

one for the poorer (or lower-growing) side, and one for the richer (or higher-growing) side. Data for lights at border

and their growth rate are for 70-km neighborhoods around the border. Data for roads in 70-km neighborhood of

border from Digital Chart of the World. Data for rule of law and fraction of roads paved from the World Bank and

WGI. Data for education from Barro-Lee (2010). Data for trust from WVS.
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Table 2.2

(2.2)

Overglow Correction. Each observation corresponds to a 1-degree grid square on a world map, split up into

10-km wide bands that are parallel to the frontier between wasteland and non-wasteland in that square. Wasteland

areas are defined according to CIESIN as shown in Figure 2.6.

90

Overglow into Wasteland

Dep. Var. is Light Density in Wasteland

(1) (2) (3)

Light Density, 10 km Away .23*** .29*** .35***
(.02) (.05) (.05)

Light Density, 20 km Away -.03* -.06*
(.02) (.03)

Light Density, 30 km Away .02
(.01)

No. Observations 2949 1996 1123
No. Squares 888 768 631
R2 .55 .59 .63
P-value higher lags are 0 .1 .17



Table 2.3

Local Linear Estimates of Border Discontinuities

(1) (2) (3) (4) (5) (6) (7) (8)

Dep. Var. Log Log Log Log Growth, Growth, Growth, Growth,
Lights Lights Lights Lights Lights Lights Lights Lights

p/c p/c p/c p/c p/c p/c p/c p/c

Indep. Var. Dummy Dummy Dummy Dummy
Log Log Log Log Growth, Growth, Growth, Growth,

Lights Lights GDP GDP Lights Lights GDP GDP
p/c p/c p/c p/c p/c p/c p/c p/c

Baseline Estimates (H=51) .58** .65*** .40* .63** 3.56*** 1.29*** 2.63** .88***
(.23) (.23) (.23) (.29) (.98) (.30) (1.07) (.34)

Baseline Slope .04 .04 .05 .10 -.20 -.07 -.12 -.03
(.08) (.08) (.08) (.11) (.31) (.09) (.31) (.10)

Estimates with BW=30 km .28 .46** .14 .56** 4.10*** 1.49*** 2.39** .97***
(.20) (.22) (.18) (.28) (.92) (.28) (1.02) (.31)

Placebo Estim'ates at -30 km .16 .05 .14 -.09 -. 15 -.09 .37 .06
(.25) (.24) (.25) (.28) (.70) (.22) (.67) (.24)

Placebo Estimates at ±30 km -.02 -.01 -.04 -.07 -. 12 .15 .40 .12
(.19) (.15) (.19) (.19) (1.13) (.33) (1.09) (.45)

Baseline Estimates, No Correction .25* .23* .12 .23 1.11* .46*** 1.26** .44**
(.13) (.13) (.12) (.14) (.60) (.15) (.57) (.20)

Baseline Slope, No Correction .31*** .37*** .33*** .45*** .63*** .21*** .38* .16*
(.08) (.08) (.08) (.10) (.20) (.06) (.21) (.08)

Baseline Estimates, 10 km off .53*** .58*** .39*** .61*** 2.41*** .93*** 2.53*** .89***
(.15) (.16) (.14) (.17) (.73) (.21) (.68) (.28)

Baseline Slope, 10 km off .18** .19** .20** .26** .00 -.01 -. 20 -.01
(.09) (.09) (.09) (.11) (.23) (.08) (.23) (.11)

Border-Year Fixed Effects Yes Yes Yes Yes Yes Yes Yes Yes

No. Observations 6760 6760 6760 6760 1352 1352 1352 1352
No. Borders 270 270 270 270 270 270 270 270
R 2 of first row .02 .03 .02 .03 .00 .00 .00 .00'

(2.3)

Data on lights and population available from the NOAA and CIESIN, respectively, for 1990 (1992 for lights),

1995, 2000, 2005 and 2010. Observation unit is a country-border piece-year. Robust standard errors clustered on

border and taking into account infill asymptotics in parentheses. Each observation weighted by population in the

respective buffer piece.
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Table 2.4

Border Discontinuities by Continent

(1) (2) (3) (4) (5)

Continent OECD Post-Soviet Asia Africa America
Indicator, Log Lights per Capita .30 .67*** .84** .06 .75*

(.22) (.23) (.42) (.29) (.42)
Log Lights per Capita 1.24* 1.30*** .80*** -.03 .70**

(.66) (.37) (.31) (.28) (.35)
Indicator, Log GDP per Capita .09 .34 .84** -. 30 .30

(.26) (.27) (.38) (.27) (.34)
Log GDP per Capita .67 .66* 1.14*** -. 25 .66*

(1.07) (.38) (.42) (.27) (.40)
Indicator, Growth Lights per Capita .89* 10.44*** 5.31*** -.25 2.16

(.48) (2.92) (1.33) (1.36) (1.40)
Growth Lights per Capita .93*** 2.54*** 1.66*** .19 1.93*

(.32) (.56) (.45) (.27) (1.08)
Indicator, Growth GDP per Capita -.61 6.53* 3.79** 1.11 -.18

(.48) (3.45) (1.66) (1.32) (1.54)
Growth GDP per Capita -.32 3.22** 1.16** .14 1.42

(1.13) (1.62) (.52) (.33) (1.10)
Border-Year Fixed Effects Yes Yes Yes Yes Yes
No. Observations 122 174 420 442 240
No. Borders 23 45 75 93 36
R 2 of first row .00 .14 .08 .00 .04

Data on lights and population available from the NOAA and CIESIN, respectively, for 1990 (1992 for lights),

1995, 2000, 2005 and 2010. Observation unit is a country-border piece-year. Robust standard errors clustered on

border and taking into account infill asymptotics in parentheses. Each observation weighted by population in the

respective buffer piece.
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Table 2.5

Data on lights and population available from

1995, 2000, 2005 and 2010. Observation unit is a

the NOAA and CIESIN, respectively, for 1990 (1992 for lights),
country-border piece-year. Robust standard errors clustered on

border and taking into account infill asymptotics in parentheses. All control variables rescaled to have mean 0 and

variance 1, and are described in the text. Each observation weighted by population in the respective buffer piece.
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Border Discontinuities with Controls

(1) (2) (3) (4) (5) (6) (7) (8)
Dep. Var. Log Log Log Log Growth, Growth, Growth, Growth,

Lights Lights Lights Lights Lights Lights Lights Lights
p/c p/c p/c p/c p/c p/c p/c p/c

Indep. Var. Dummy Dummy Dummy Dummy
Log Log Log Log Growth, Growth, Growth, Growth,

Lights Lights GDP GDP Lights Lights GDP GDP
p/c p/c p/c p/c p/c p/c p/c p/c

Baseline Estimates .58** .65*** .40* .63** 3.56*** 1.29*** 2.63** .88***
(.23) (.23) (.23) (.29) (.98) (.30) (1.07) (.34)

Climate Controls .70*** .90*** .47** .69*** 3.62*** 1.28*** 2.74*** .92***
(.19) (.20) (.18) (.25) (.83) (.26) (.97) (.28)

Local Public Goods Ctrls. .60** .68*** .40* .62** 3.69*** 1.30*** 2.54*** .83***
(.23) (.25) (.23) (.30) (.88) (.27) (.95) (.31)

All Controls .72*** .92*** .45*** .66*** 3.68*** 1.25*** 2.53*** .84***
(.18) (.21) (.17) (.25) (.75) (.23) (.90) (.25)

Border-Year Fixed Effects Yes Yes Yes Yes Yes Yes Yes Yes
No. Observations 6760 6760 6760 6760 1352 1352 1352 1352
No. Borders 270 270 270 270 270 270 270 270
R 2 of first row .04 .08 .02 .04 .12 .17 .06 .04

(2.5)



Table 2.6
Behavior of Geographical Covariates across Borders

(1) (2) (3) (4) (5) (6) (7)

Dep. Var. Log Log Log Mean Log Log Fraction
Population Altitude Slope Temperature SD Temp. Precipitation Cropland

Indicator, Log Lights -.01 .01 .12** -.01 -.01*** .00 -. 02
(.04) (.02) (.05) (.01) (.00) (.00) (.03)

Indicator, Log GDP -.02 .01 .09* -.01* -. 00* .00 -. 03

(.03) (.02) (.05) (.00) (.00) (.00) (.02)

Indicator, Growth Lights -.01 .00 .06 -.00 -.00 -. 00 -. 03
(.05) (.03) (.07) (.01) (.00) (.01) (.03)

Indicator, Growth GDP -.05 .01 .09 -.01 -.00 .00 .00
(.05) (.03) (.07) (.01) (.00) (.01) (.03)

Border-Year Fixed Effects Yes Yes Yes Yes Yes Yes Yes
No. Observations 1352 1352 1352 1352 1352 1352 1352
No. Borders 270 270 270 270 270 270 270
R 2 of last row .00 .00 .07 .02 .01 .00 .00

Data on lights and population available from NOAA and

SRTM. Data on climatic variables available from WorldClimate

CIESIN. Data on altitude

2.6

and slope obtained from

(Hijmans et al. 2005). All climate variables rescaled

to have mean 0 and variance 1. Observation unit is a country-border piece-year. The last (10 km) observation on

each side of the border is excluded to minimize overglow. Robust standard errors clustered on border and taking into

account infill asymptotics in parentheses. Each observation weighted by population in the respective buffer piece.
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Table 2.7

2.7

Data on lights and population available from NOAA and CIESIN. Data on roads, railroads and road type available

from the Digital Chart of the World for 2003. Observation unit is a country-border piece-year. All dependent variables

rescaled to have mean 0 and variance 1. Robust standard errors clustered on border and taking into account infill

asymptotics in parentheses. Each observation weighted by population in the respective buffer piece.
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Behavior of Local Public Goods across Borders

(1) (2) (3) (4)

Dep. Var. Log Fraction Log Log
Roads Roads Railroads Utilities

Indicator, Log Lights -.01 -.00 .12 -.64***
(.06) (.01) (.14) (.21)

Indicator, Log GDP .03 -.01 .13 -. 48**
(.05) (.01) (.13) (.21)

Indicator, Growth Lights .07 -.01 .16 -. 14
(.08) (.01) (.16) (.26)

Indicator, Growth GDP .01 .00 .29* -.25
(.08) (.01) (.16) (.25)

Border-Year Fixed Effects Yes Yes Yes Yes

No. Observations 1352 1352 1352 1352
No. Borders 270 270 270 270
R2 of last row .00 .00 .02 .00



Table 2.8

Correlates of Border Discontinuities

Dep. Var. is 20- Year Growth Rate of Light per Capita

(1) (2) (3) (4) (5) (6) (7) (8) (9)

20-Yr. Growth, GDP .88*** .44* .74*** .44* .54** .54 .35 .28 .52**

(.34) (.26) (.26) (.25) (.25) (.33) (.37) (.38) (.26)

Rule of Law, WB 2.54*** 2.23*** 2.31*** 2.34*** 3.93*** 3.32*** 2.35***

(.85) (.69) (.59) (.60) (1.12) (.69) (.63)

Frac. of Roads Paved, WB 1.80 .67 -.56 -.52 1.09 -.69 -.54

(1.11) (.91) (.86) (.91) (.91) (.90) (.87)

Time to Enforce Contract .47

(.79)

Freedom House Score -3.32**

(1.60)

Schooling, Barro-Lee -2.66**

(1.25)

Predicted Trust, WVS -.22

(.62)

Border-Year Fixed Effects Yes Yes Yes Yes Yes Yes Yes Yes Yes

Clim. and Pub. Gds. Ctrls. No No No No Yes Yes Yes Yes Yes

No. Observations 1352 1342 1336 1336 1336 1282 952 968 1336

No. Borders 270 266 264 264 264 254 180 184 264

R2 .04 .10 .07 .10 .28 .29 .43 .38 .28

(2.8)

Data on lights and population available from NOAA and CIESIN. Data on determinants of growth described in the text.

All covariates except 20-year growth normalized to have mean 0 and variance 1. Robust standard errors clustered on border

and taking into account infill asymptotics in parentheses. Each observation weighted by population in the respective buffer

piece.
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Table 2.9

Permeability: Trade

(1) (2) (3) (4) (5) (6) (7)

Dep. Var. Log Log Growth, Growth, Growth, Growth, Growth,

Lights - Lights Lights Lights Lights Lights Lights

Nat. Output / Growth .54** .44* 1.33*** .87** .46 .73** .40

(.23) (.25) (.32) (.40) (.34) (.36) (.35)

Nat. Output / Growth X Trade -. 15 -.28* .10 -. 00 .07 .13 .15

(.12) (.15) (.17) (.15) (.15) (.17) (.15)

Rule of Law 2.62*** 2.39***

(.89) (.76)

Rule of Law X Trade -. 36 -.24

(.55) (.48)

Fraction of Roads Paved 1.83 .53

(1.16) (1.00)

Fraction of Roads Paved X Trade -.75 -.86

(.80) (.71)

Output Source Lights GDP Lights GDP GDP GDP GDP

Border-Year Fixed Effects Yes Yes Yes Yes Yes Yes Yes

No. Observations 6760 6760 1352 1352 1342 1336 1336

No. Borders 270 270 270 270 266 264 264

R2 .09 .06 .17 .04 .10 .07 .11

Data on lights and population available from NOAA and CIESIN. Data on trade is from IMF's Direction of Trade Statistics

for 2000. Trade volume normalized by product of bordering country GDPs and to have mean zero and unit variance. Observation

unit is a country-border piece-year. Robust standard errors clustered on border and taking into account infill asymptotics in

parentheses. Each observation weighted by population in the respective buffer piece.
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2.9 Appendix I: Additional Tables

Table 2.A1

Correlates of Border Discontinuities: Expropriation Risk as Rule of Law Measure

Dep. Var, is 20- Year Growth Rate of Light per Capita

(1) (2) (3) (4) (5) (6) (7) (8) (9)

20-Yr. Growth, GDP .88*** .50* .74*** .49* .58** .70** .68** .41 .59**

(.34) (.26) (.26) (.25) (.24) (.31) (.34) (.36) (.25)

Avg. Protection ctr. Exp. AJR 2.54*** 2.44*** 2.55*** 2.67*** 3.32*** 3.63*** 2.55***

(.89) (.92) (.82) (.87) (.87) (.96) (.81)

Fraction of Roads Paved, WB 1.80 .34 -. 88 -.75 .96 -1.24 -. 93

(1.11) (.87) (.93) (.95) (.78) (1.06) (.94)

Time to Enforce Contract .30

(.81)

Freedom House Score -1.84*

(1.11)

Schooling, Barro-Lee -1.97*

(1.06)

Predicted Trust, WVS .32

(.57)

Border-Year Fixed Effects Yes Yes Yes Yes Yes Yes Yes Yes Yes

Climate and Public Goods Ctrls. No No No No Yes Yes Yes Yes Yes

No. Observations 1352 1342 1336 1336 1336 1282 952 968 1336

No. Borders 270 266 264 264 264 254 180 184 264

R 2  .04 .14 .07 .14 .31 .32 .46 .43 .31

(2.A1)

Data on lights and population available from NOAA and CIESIN. Data on determinants of growth described in the text.

All covariates except 20-year growth normalized to have mean 0 and variance 1. Robust standard errors clustered on border

and taking into account infill asymptotics in parentheses. Each observation weighted by population in the respective buffer

piece.
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Table 2.A2

Correlates of Border Discontinuities: Alternative Rule of Law Measure

Dep. Var. is 20- Year Growth Rate of Light per Capita

(1) (2) (3) (4) (5) (6) (7) (8) (9)

20-Yr. Growth, GDP .88*** .69** .74*** 64** .71*** .76** .75* .59 .72***

(.34) (.27) (.26) (.25) (.24) (.32) (.40) (.37) (.25)

Property Rights, Fraser Institute 2.00** 1.70** 1.78*** 1.92*** 1.91*** 2.65*** 1.78***

(.82) (.69) (.56) (.59) (.65) (.65) (.56)

Fraction of Roads Paved, WB 1.80 .97 -. 28 -. 22 1.97* -. 31 -.30

(1.11) (.92) (.88) (.92) (1.09) (.93) (.89)

Time to Enforce Contract .55

(.80)

Freedom House Score -1.16

(1.25)

Schooling, Barro-Lee -1.99*

(1.16)

Predicted Trust, WVS .15

(.57)

Border-Year Fixed Effects Yes Yes Yes Yes Yes Yes Yes Yes Yes

Climate and Public Goods Ctrls. No No No No Yes Yes Yes Yes Yes

No. Observations 1352 1342 1336 1336 1336 1282 952 968 1336

No. Borders 270 266 264 264 264 254 180 184 264

R2 .04 .09 .07 .10 .27 .28 .40 .38 .27

(2.A2)

Data on lights and population available from NOAA and CIESIN. Data on determinants of growth described in the text.

All covariates except 20-year growth normalized to have mean 0 and variance 1. Robust standard errors clustered on border

and taking into account infill asymptotics in parentheses. Each observation weighted by population in the respective buffer

piece.
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Table 2.A3

Permeability: Migration

(1) (2) (3) (4) (5) (6) (7)

Dep. Var. Log Log Growth, Growth, Growth, Growth, Growth,

Lights Lights Lights Lights Lights Lights Lights

Nat. Output / Growth .66*** .68** 1.40*** .99** .59* .87*** .59*
(.24) (.30) (.30) (.39) (.30) (.32) (.30)

Nat. Output / Growth X Migration .01 .11 .21 .15 .20 .17 .20

(.11) (.13) (.13) (.14) (.16) (.14) (.15)

Rule of Law 2.86*** 2.53***

(.91) (.77)

Rule of Law X Migration .07 .07

(.55) (.55)

Fraction of Roads Paved 2.01* .71

(1.20) (1.00)

Fraction of Roads Paved X Migration .03 -. 04

(.70) (.72)

Output Source Lights GDP Lights GDP GDP GDP GDP

Border-Year Fixed Effects Yes Yes Yes Yes Yes Yes Yes

No. Observations 6760 6760 1352 1352 1342 1336 1336

No. Borders 270 270 270 270 266 264 264

R2  
.08 .04 .18 .05 .11 .07 .11

(2.A3)

Data on lights and population available from NOAA and CIESIN, respectively, for 1990, 1995, 2000, 2005 and 2010. Data
on migration from the World Bank. Migration normalized by product of bordering country populations and to have mean zero
and unit variance. Observation unit is a country-border piece-year. Robust standard errors clustered on border and taking into
account infill asymptotics in parentheses. Each observation weighted by population in the respective buffer piece.
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Table 2.A4

Permeability: Tariffs

(1) (2) (3) (4) (5) (6) (7)

Dep. Var. Log Log Growth, Growth, Growth, Growth, Growth,

Lights Lights Lights Lights Lights Lights Lights

Nat. Output / Growth .63*** .60* 1.47*** 1.05** .60* .90** .59*

(.24) (.31) (.30) (.45) (.35) (.36) (.34)

Nat. Output / Growth X Barriers .11 .06 -.66** -.34 -.33 -.36 -. 34

(.22) (.26) (.26) (.34) (.30) (.31) (.30)

Rule of Law 2.76*** 2.44***

(.98) (.86)

Rule of Law X Barriers .00 -. 07

(.82) (.75)

Fraction of Roads Paved 1,99* .75

(1.17) (.97)

Fraction of Roads Paved X Barriers .43 .49

(.91) (.85)

Output Source Lights GDP Lights GDP GDP GDP GDP

Border-Year Fixed Effects Yes Yes Yes Yes Yes Yes Yes

No. Observations 6620 6620 1324 1324 1316 1310 1310

No. Borders 261 261 261 261 258 256 256

R2 .09 .04 .21 .05 .11 .08 .11

Data on lights and population available from NOAA and CIESIN, respectively, for 1990, 1995, 2000, 2005 and 2010. Data

on tariff barriers from the World Bank. Tariff barriers normalized to have mean zero and unit variance. Observation unit is a

country-border piece-year. Robust standard errors clustered on border and taking into account infill asymptotics in parentheses.

Each observation weighted by population in the respective buffer piece.
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Table 2.A5

Trade Channel: Genetic Distance

(1) (2) (3) (4) (5) (6) (7)

Dep. Var. Log Log Growth, Growth, Growth, Growth, Growth,

Lights Lights Lights Lights Lights Lights Lights

Nat. Output / Growth .59*** .53** 1.29*** .90*** .47* .77*** .45*

(.20) (.24) (.28) (.34) (.25) (.26) (.25)

Nat. Output / Growth X Gen. Dist. -.24** -.31* -.25 .22 .33** .24 .32**

(.11) (.17) (.21) (.18) (.15) (.16) (.16)

Rule of Law 2.69*** 2.52***

(.94) (.77)

Rule of Law X Gen. Dist. -.32 -.31

(.55) (.58)

Fraction of Roads Paved 1.80 .58

(1.17) (1.07)

Fraction of Roads Paved X Gen. Dist. -.55 .19

(.52) (.51)

Output Source Lights GDP Lights GDP GDP GDP GDP

Border-Year Fixed Effects Yes Yes Yes Yes Yes Yes Yes

No. Observations 6760 6760 1352 1352 1342 1336 1336

No. Borders 270 270 270 270 266 264 264

R2 .11 .06 .18 .05 .11 .08 .11

(2.A5)

Data on lights and population available from NOAA and CIESIN, respectively, for 1990, 1995, 2000, 2005 and
2010. Data on genetic distance is from Spolaore and Wacziarg. Genetic distance normalized to have mean zero
and unit variance. Observation unit is a country-border piece-year. Robust standard errors clustered on border and
taking into account infill asymptotics in parentheses. Each observation weighted by population in the respective
buffer piece.
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2.10 Appendix II: Proof of Proposition

2.10.1 Setup

I consider the properties of the standard local polynomial estimator in an infill asymptotics context. The core result
is that the local polynomial estimator has smaller standard errors if the random shocks of the stochastic process are
correlated than if they are not, and that a feasible and consistent estimator exists to estimate these standard errors.

To present the results formally, define the following notation: let

G = -~j
{ ttNu=- N

be a sequence with resolution N. Let s denote a generic element of G. Note that the domain of G remains
bounded, and is contained in [-1, 1], which is an arbitrary interval in R up to a normalization. The process is
assumed to have a discontinuity at s = 0. In particular, we are interested in using the sequence

{y ( U)I1N{ ( u=- N

where y (s) is a scalar, to predict the value

y+ (0) :=limy (U)Ut0

The value y- is defined analogously:

y- (0) :=limy (U)
uTO

The discontinuity at 0 is defined to be

A = y+ (0) - y- (0)

Estimating y+ (0) and y_ (0) is of central interest in this document.

Define the local polynomial estimator of y+ (0) by

4 ( IN ()k ()Q)()' ( N~ () ~~(
N -1 k Xh N X kNh) X yh N N

U=1 U=1

where X () is a K x I vector of polynomials, and k (u) is a positive kernel. Define the local polynomial estimator

of y- (0) similarly by &-. For convenience, define DN = (N) k (n) X () X (*)', the denominator of
this expression and note that it is nonstochastic and converges to D = fo k (u) X (u) X (u)'du. Then, the local

polynomial estimator of the discontinuity at zero is given by

AN =N -N

Finally, I define the increment of a stochastic process y (s) to be given by

YN,s = y(s) -y s

Assumptions on the Bandwidth and Kernel

B1. Define the bandwidth h (N). Then, lim h (N) = 0, lim Nh (N) oo and lim Nh (N)2  0
N-ao N-oo N-+oo

B2. The kernel k () satisfies fo (f" k (v) v-dv) du < oo for all p < K.

Assumptions on y (s)

We assume that we can decompose y (s) as

y (s) = F (s) + v (s) + e (s)

Consider some assumptions on the components of y (8):
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1. F (s) E C [0, 1] is a deterministic function.

2. v (s) is a random shock that is independent across realizations: E (v (s)) = 0, E (v (s) (t)) = (s) -

I (s = t), with V (s) E C [0, 1], and E (V (8)26) < K < oo.

2' v (s) is identically zero.

3. e (s) is a random shock such that E (e (s)) = 0, E (e (s) v (t)) 0, but

E (e (s) e (t)) = C (s,t)

for some function C (s, t) that a) belongs to C 2 {(s, t) E [0, 1]2 : s 4 t}, b) satisfies lim C (s, t) lim C (s, t),

and c) satisfies V (s) = C (s, s) E C' ([0, 1]). Moreover,

cov (NeN,U, NeNu) = 0 cov NeN,u, eN,u

3' e (s) is defined as in Assumption 3, but with an additional assumption.

o- (s) := V' (s) - 2 lim C1 s, s - - > 0, Vs E [0, 1]
N ooN

4. The increments of the error process eN,u = e (a + ) - e (g) are associated if N is large enough.

It is insightful to compare these assumptions with standard assumptions from the geostatistics literature, which
deals with spatially correlated processes. A very general assumption in that literature is that the zero-mean stochastic
process y (s) has a stationary variogram, which is continuous everywhere except at zero. Hence,

E (y (s) y (t)) = [V (s) + V (t)] - -Y (Is - t|)

where -y is a continuous function with -y (0) = 0 and lim-y (s) =: co > 0. Defining ~y (s) = y (s) - co, we can then

write

1
2

Now, under Assumptions 1, 2 and 3, we have

E ((v (s) + e (s)) (v (t) + e (t))) = C (s, t) + f/ (s) - (s =t)

where C (s, t) is any positive definite, continuous function satisfying some smoothness conditions, and V (s) is
also a continuous function. Hence, any sufficiently smooth (except at zero) variogram and variance function satisfy
these assumptions. It is immediate that any random field with co = 0 satisfies assumptions 1, 2' and 3. Moreover, the
geostatistics literature tends to work with Gaussian stochastic processes (or Gaussian random fields), and it is known
that jointly Gaussian random variables x and y satisfy cov (x 2, y 2 ) = 2cov (x, y) 2 by Isserlis's Theorem. Therefore,
any Gaussian random field with a sufficiently smooth variogram and variance function satisfies Assumptions 1, 2 and
3'. Therefore, the set of assumptions considered is extremely general.

2.10.2 Propositions
We then have the following propositions (with V (0) being the variance of e (0) and V (0) being the variance of v (0))

Proposition 1 Suppose that Assumptions 1, 2 and 3 hold. Then, &+N consistently estimates y+ (0) - v (0), and

(&+ - (y+ (0) - v+ (0))) -+ dN (0, V)

V1 : = (0) e'D (j (k(u))2X(u)X(u)'du) D'ei
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Moreover, a feasible and consistent estimator of V is

lN = eID1 [ 2UI 2

Proposition 2 Suppose that Assumptions 1, 2 and 3 hold. Then the White estimator of the variance of &+ asymp-

totically overestimates the true variance in expectation. Specifically,

NhE (Pobs) -+ (V (0) + V (0)) e' D-' (f (k (u))2 X (u) X (u)' du) D 1
ie

Proposition 3 Suppose that Assumptions 1, 2', 3' and 4 hold. Then, &+ consistently estimates y+ (0) and

(v) (a+ - y+(0)) dN (0, V2 )

V2 : = -(0) e'D- ( k (v) X (v)dv) ( k (v) X (v) dv) du) D- e1

Moreover, a feasible and consistent estimator of V2 is

2 [1A k22 U=1DN L .
e'DN h (N) S (v) X ()) (N] D e1( k

2.10.3 Proof of Proposition 1

Consistency

Suppose that Assumptions 1, 2 and 3 hold. Consider

= e'1 ( ( k (u)X (F (u F+ (0))

(0))

+e'D ( ( k )X ( u ) (e Q )- e+ (0))

I first show that a+ is asymptotically unbiased: lim E (Zk) = 0. To do this, I present a

that will be useful in further analysis.

very simple lemma

Lemma 4 : Suppose lim EN 1(-L)S ( u foS (u) du exists in R, and F (x) is a continuous function on
N1oo UThen,

[0,I1]. Then,

Proof.

x(~S Uh)(N)t=jV1
F () -F(0)I <K sup JF(u) - F(0) S

+ sup IF(u)-F(0)| NuE [0,1] =T
kNhJ'Nh)
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lim
N-ao E NhU=1 ( )

S (u)F = F (0) f S (u) du

U X( )y2v,

Nh

U=1



Since F is continuous, we have lim sup IF (u) - F (0)| = 0. Moreover, since N1 S u) is a

Riemann sum, it is immediate that

Therefore, for any e, we can find a r (e) small enough that sup IF (u) - F (0)1 < e, and an N large enough
uE [oT(e)]

that 4-d=s)Nh hU NO N

Hence, EN= 1 (-L) S ( ) F ()- F (0) < s (1-N + sup |F (u) -
uE[o,1)

F (0)] and taking the limit as c goes

to zero completes the proof. 0

To prove lim E (ZN+) = 0, I apply Lemma 4 (because F is continuous):
N -+o

lirn E (ZN) = lin e'D
N-oox N-~ooIN

Now, I show that lim var (Z, + v+ (0)) 0

var (Z+ + v+ (0)) = E ((ZZ + v+ (0))2) E (ZZ + v+ (0))2

E eID-1

+E ([e'D

k X (I)

- e+ (0)))] 2)

Consider term (I). We have

DN'e1

where V(g) E(v(g)). Now, since nim N 
2 () X( )X(' = fk 2 (u) X (u) X (u)'dua N () is conin s w La

and V (u) is Continuous, we can appeal to Lemma 4 to argue that

lim NhE euD k 1((I Nh X ( W) ]

because

N-~oo_ Nh/
X X

Now, consider term (II). We can rewrite it in terms of increments eN,= e (a) - e ( - ) as the following:

N (N

k

2

eN,u

by noting that

N ZCN,U
)) U=1
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rN

N-+o 00 Nh S (Nh
fS (u) du and lim S( U 0, Vr> 0

1 k (u)X (U)e(u

_1 ( N ( I ) ))12)

[elD'N E Vh- k ( U ) X ( u ) v ( -U
U=1 Nh Nh N

I , D-1 )k 2 ( U )X( U )X( U
Nh U=1 Nh Nh Nh Nh

(u)' du D lei =: Vif/r+ (0) e'D- 1 (f k 2 (U) X (U) X
0

(II) = De1D X(

,(V) -e+(O)= (,-(U)-e,(u
N N NU=1

N )k(u )X
E( I-j; h- Vh-U=1

-F+ (0)) = 0

(N ( , )U1E Vh-



We can further break down term (II) by noting that

N

(II) - e~'1Dn

+el D'

k I

N k

X(k) N (Nh) X ( ) E (eN,u) DN' ei (1)

Now, by Assumption 3, we have

= C(st)-C (s't -

= C(St)-(C S(t)- (C - Cs

- - C (s,t)N;2 (98at

and

E (eN, )

(s))V sN [sa

[AV (s) - 2A1C s8"s- , - V' (s) - 2lim C1

if C (s, t) is not twice differentiable at s = t with uniformly bounded second derivatives. (If it is twice differentiable
at s = t, then E (eNu) = 0 ( )

Under the boundedness conditions on 82 C(s,t), C 1 (ss- N) and V'(s), the convergence can be taken as
uniform, and

a2
sup stC(st) K 2 <oo

(s,t)E [O,12 S
and

sup V' (s) - 2lim C(, 8 s K1 < oo

Therefore,

lim sup (II)
Nw o

and hence,

Therefore,

< hKi e',- (fO(.D k (v) X (v)) IC k (v) X (v)) du) D-le1+h K 2e ID-' [(f

2K ' k (v) X (v)) du) ( j k (v) X (v)) du)] D e

(II) = 0 (h)

var (ZN + v+ (0)) = V + 0 (Nh2 ) -+ 0 as N -+ oo

and consistency is proved.
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Asymptotic Distribution

To find the asymptotic distribution of a+, we note that

v/Ih (a+N - (Y+ (0) - V+ (0))) x/-el DN-1 ' k X ( F - F+ (0)) (1)

+v/Nhe'lDN 1 k( uX( v-) (2)
U=1 - h h N

- e+ (0)) (3)

By decomposing Term 1 into increments as in the proof of consistency, we see that

N

(1) = vI e'Dk' (
U=1

Since F (s) is continuously differentiable by Assumption 1, we have that FN,u = AFN,U -- + F' (I). Under

the boundedness conditions of Assumption 1, we therefore have

sup F'(s)<_ K <oo
sE[O,1]

Therefore,

(1 _KvI-e'Dl ( k( U X(
N IIA/E\/U\/U\

N ( Nv k(U / (

KhVNhe'D k X

(1) -- K lim hv/Ih e'D' k (v) X (v) dv) du)

and

Hence, if lim hVNih = 0, the asymptotic bias is zero. This is implied by the bandwidth assumption lim Nh 2

0.
By the variance results from the consistency proof, term (2) is 0, (1), while term (3) is op (1). Therefore, we are

interested only in the asymptotic distribution of term (2). Since v (s) is independent of v (t) for all t and s, term (2)
is a sum of independent random variables. To satisfy the hypotheses of the Liapunov Central Limit Theorem, we
must prove that

lim var vaIde' k X <o

and

N

U=1

The first condition follows from the computation of the variance. The second condition follows because
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lin JE v5I-e'D- )k( u X(u) u

= NN (Nh)2 e'1D X k))2+6] E (v2+6

N- co (Nh)6/2 1(e'1D X(u)) ] k2 +6 (u) E (v26 (u) du = 0

since E (v 2
+

6 (u)) < K < oo. Therefore, the hypothesis of the Liapunov CLT are satisfied, and we have

v5h deN N(0, V)

as desired.

Feasible Estimation

Finally, I show that a feasible and consistent estimator of V 1 is

1,N ~elD7 [62±Nu 2 (h) X ()X De

which replaces the residuals in the OLS estimator with the residual increments eN,u
To prove this, we show that 91N = Nh N 12,u ( k (g) X k ( u) X ( u))' is a consistent

estimator of VN 0 2 (u) X (u) X (u)' du

First, we see that 9A1N is asymptotically unbiased for VAN:

E(V1AN)

N 

I

1
e 1D ~T C

N= ' (k ( u) X ( u)) k (-I&) X ( )) x

E (v (u) -vo(--)) + E(6 2,u

+E AFN,U - -AX ()'E (i) + kAX ()' (E ( ) - _#)))

+E ((kAFN,u - AX (p)' E (i) + k AX (u)' ( - )) (vN,u + eN,u))

e'1 N (k uX U)ku)( )'Vu) ( X- +0o(1)2 N E j['-N V\h/kNhI \ NhI NhI\kN kil

Now, invoking Lemma 4, it is clear that lim [EN_ 1  (k(u)X ( )) (k(u)X ( )) ? (y) =V(0)f k 2 (u) X (u) X (u)'

since V (u) is continuous. The analysis for EN 1 (k () X ()) (k () X ())' (y) is similar. Hence,

E ( c m,N t -v 
a V1.

To compute the variance of I N, note that

E(62,u6,u') E (v2,v2Ngu) + E (e2,ue2,u) + E (v2,u) E (e2,') + E (V E (e2,u) +0

= E (v,uvN,u') + o

Moreover,
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E N - E (,u)v E (12, -

[E( ) - E (v ( )) : 31 ( ) if - '| - 1

(E o ()) - (E (v (y

+ ( (- (uE)4)_(E (v (u-,)2))2) So (u) if u

+4E (o (y)2) E (o (u 1)2)

O if u -uI >1

Therefore,

(Nh) 2 E (1N)

N N -( )2

E 1 N +O1 N 
, 2

E E kh

2U2 X X X X E (e2 u2,'

k 2 k 2 X u X (u X X )E (eN 'eNu:

+ k X ( X So

XSX S

Finally, note that

N
(1')2k X (x So

<U) sup k( U X (U)X -> ,2 _) 0.

and similarly for E 1 ( )2 k4 (g) X ( ) X (L) 31 (y). Therefore,

E(1) - + [EV1

A straightforward application of the Slutsky theorem is sufficient to show that 1,N is a consistent estimator of

V1.

2.10.4 Proof of Proposition 2
The White estimator of the variance of the local polynomial estimator is given by

OLS = 1VN e1 DN (&2 (U ~k2 X~ X (rh)e1

where

2 (U) = y - X

and / is the local polynomial estimator of the entire vector of derivatives of y (s) at zero. Therefore, X (0)' =
a+. Note from the previous proof that 3 is a consistent estimator of its expected value, and in particular, that

v NN (a E (a .=0(1).

110

+0 ()

'U



Therefore,

& U F(u) - X ()E ( + v ()+e () + X b E

and

E (VOLS) = eD (f( k X ~ ~ i)(yk ( )X ( )V())D2'e1 (1)

+eDN1 ( ( k ( X ( ( k ( ) X (u)) V()) D le1 (2)
+e1D kN Xh kh Xh Fh -X EN e 3

+eDN (k ( ) X (i)) (uk ( ) X (2) (F)(N - X ( ) X

+2eD Dele (4)

E~~ (Vh )h -N X (i)' Eh #N

+e1 k (u)X (Uk X X var(F() (u)N X ) D e ()

It is clear that Nh- (1) and Nh- (2) converge to

V(O) e 1 D (j k2 (u)X(u)X(u)'du) D eI

and

V(O) eiD (F k 2 (u) X (u) X(u)' du) D e

respectively. Since Nlin X () E -b F+ (0), we have that Nh - (3) -+ 0. Now, we know from the proof of

N N-N00

Proposition 1 that vNh (N - E (IN converges to an 0, (1) random variable, and therefore, so does (Nh) 2 . (4)

Hence, Nh- (4) -+ 0. Finally, we know that Nhvar (N) -> 0(1), so (Nh) 2 (5) -+ 0(1) and hence, Nh- (5) -+ 0.

Therefore,

NhVOLS -+ (V (0) + V(0)) e1 D (j0 k2 (u) X (u) X (u)'du) Dei

which is strictly larger than the true asymptotic variance of the local polynomial estimator. Intuitively, the White
estimator assumes that the errors around the trend are independent, and fails to account for the fact that the local
polynomial estimator exploits correlations between errors to improve its predictive power. Only the "independent"
part of the error contributes to the asymptotic variance; the "correlated" part of the error can ultimately be perfectly
predicted as the resolution of the data becomes infinite.

2.10.5 Proof of Proposition 3
For this proof, we assume that o (s) =0 for all s

Consistency

We have already shown that a4 is consistent for y+ (0) - v+ (0) in proposition 1. It therefore remains to compute
its asymptotic variance.

Under assumption 2', the leading term of the variance in Proposition 1 is zero. Therefore, we considert erm (II)
from the proof of Proposition 1:
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(II) = e'D k (

N=1 N 1 ' N )
U=I=1 (VU -1U

Now, following the proof of Proposition 1,

N N

U=1~ V=

(vh) X (i))

( ) X (A)

= -(0) k (v) X (v) dvJ k Nv) X (v) d du) (lim h

so

(1) = O (h (N))

and

11
u=1 U'1

Ilq#I

U=1 V=U

< sup E (eN,.eN,u'

u=1 u'=1

= h(N)2 (1) (

() X ) N N -Lk ( v) X ' E (eN ,ueN ,u')
U'=1 V=U/

.h NhI kNhI 1:-Nh-E - hNhI
U ))/ U1\V=U

Therefore,

Ivar(a+) --+-(0) (0 k(v)X(v)dv) k(v)X(v)dv) du V2

since the second term is 0 (h 2
)

Asymptotic Distribution

I now consider the asymptotic distribution of ( Y+ (0)):

'DN1 ( k ()X( u () (F - F+ (0)) (1)

+ e'D -' [

Term (1), the bias, is 0 (V-), and therefore goes to zero. Term (2) is a sum of mean-zero random variables:
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X Nh)

-k XE (eN,ueN,u') DN' eil

N 
I

1: -Nh k
V=U

U U
- 2A1C

(N'N N

N I N 1 (v) (V) N ,(N -L X(v))

U=1 V=U ))(U=1 V=U'

(7+N - Y+ (0))

X E (e2,u) D-e e (1)

X (h)

N 
I

1: Vh- k
V=U

NUh)
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N

(2) = AN (u) + Op()
U=1

where

AN (u) = (e/ D D ('- k (h) X eN,u

Now, by Assumption 4, the increments eN,u, and hence, AN (u) are associated. For associated random variables
(Charles M. Newman, 1984), we have the following condition:

N N N

- fiE (exp (itAN (V))) t' E cov (AN (v) , AN (V'))
V= i =1 V 1

vu
t

'

and EN N 1 cov (AN (v) , AN (V')) can be expressed as
VltV'

N
I u'='1:L-

h~U elU
(lh) X A)E (eN,uCN,u') D'ei 0= (h (N))

Since

IIE (exp (itAN (V))) -- *N 4) (t, 0, V2)

where 4 (z, y, 2 ) is the Gaussan distribution function with mean y and variance u 2 , we have

E exp it AN (V) - ((t, 0, var (AN)) o (1) + O (h (N)) 2  
+N 0 for each t.

Hence,

1 a+ - y+(0)) -_+d N (0, V2)
/h (N) (N Y

Feasible Estimation

The formula

V := a (0) e'1 k (v) X (v) dv) k (v) X (v) dv du)] D-e

contains the unknown constant o (0) that must be estimated. I argue that the estimator:

N heD k ( ) X y )

is a feasible and consistent estimator of o (0) under Assumption 2'.

To prove this, we compute the moments of VN and show that E (VN) -+ V (0), while E (?VN) -+ [E (VN) 2
.

First, we see that VN is asymptotically unbiased for o (0):
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( ')[X () - (el D k

= e'i k()D ( ) (Fup + E (eN I

Now, invoking Lemma 4, it is clear that lim e'1D N k (g) X (n) E (Ne2N )=

since o- (s) is continuous. Hence, E (VV) -+ V (0).

To compute the variance of VN, note that

N 2 E (yN 2) = F F + E (eNe2N) N 2 E (eNveNu') +

Therefore, we need to show only that

l (D N [
-+ e'1D Nhk Nh Nh

Under the assumption

cov (NeNu, NeN,) 0 (cov (VNeN,uj v'KeN,u'

(satisfied for a Gaussian process) we have

(Ne2NNe2Nv) =0 (cov (V eN,u, VNeN,u') + E (NeNu) E (Ne2N,)

Therefore,

e'D- k( u )

-(e'1D
N k X 2

k( UX( )ENeN

= De1 D k ( X(U)) ( 1 k

since cov (VieN,u, VNeN,u') = E (NeNueN,u') = 0 (!) . Consistency is proved.

Covariance of a+ and a-

Under Assumption 2, it was obvious that the leading stochastic term of 4 was composed of independent random
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variables, and that the covariance between ae and a- is zero. However, with Assumption 2', the leading stochastic
term of a+ involves correlated random variables. Here, we check that the asymptotic covariance between a+ and
c remains zero.

The above equation is valid so long as cov (a+, a-) o (h (N)). To prove this, I extend Assumption 3', so that
for s > 0 and t < 0, we have the following covariance structure:

E (e (s) e (t)) = C (s, t)

where C (s, t) satisfies the hypotheses of Assumption 3'. Then, define

N N

U=1

We have

CO a Ia 1 U11=1 N N Ne)
N N

- e~'1Dn Cy (u) CO (u')'E (eueiu,) Daei (1')
u=1 u'=1

N N

+e'1Db1 COv (U) CON (u')' FN,Fyv,, DN ei (2')
U=1 u'=1

It is obvious that (2') - 0 (h (N)2 ), since FN, = 0 (1/N), and (1') = 0 (h (N) 2 ), because it contains only
covariance terms.

2.10.6 Implementation
We are ultimately interested in running regressions of the form

Yi,b (0) = ab + Xi,w7 + si,b

Therefore, under the assumption that v+ (0) = v_ (0) = v (0), the independent term goes into the fixed effect and
does not need to be predicted. Hence, I can compute the variance of Yi,b (0) as Vi,b = VN. I then compute the variance
of -y as the appropriate submatrix of

- N t ~-1 -1 ' 'k kw W
V N -X (k'W (diag (e2) + V) W' S'WSk

N-K \ I 'W'1 k
where K is the number of regressors (including fixed effects), diag( 2 ) is a diagonal matrix of the squared

residuals, W is a weight matrix, X is the matrix of regressors including the fixed effects. and V is a diagonal matrix
of the estimated variances.

115



Chapter 3

World Welfare is Rising: Estimation
Using Nonparametric Bounds on
Welfare Measures

3.1 Introduction

'There is a substantial literature on estimating the evolution of the global distribution of

income over time to assess whether global poverty and inequality are rising or falling. An important

strand of the literature argues that while inequality between countries treated as observations of

equal weight is rising, inequality between all people on the globe is falling, as some of the fastest-

growing countries (China and India) have initially been among the poorest. This claim has been

advanced by, e.g. Schultz (1998), Bhalla (2002), Bourguignon and Morrisson (2002), and most

recently Sala-i-Martin (2002a and b, 2006) and Chotikapanich et al. (2007). Similarly, Bhalla

(2002), Chen and Ravallion [2001, 20101 and Sala-i-Martin (2002a and b, 2006) document that world

poverty has been falling since 1990 (or 1970). There also is an alternative part of the literature

(Dikhanov and Ward [20011, Milanovic [2002, 2005, 2012] that contends that global inequality, even

if measured between individuals, has increased. The results derived in the literature are often cited

to buttress or undermine the contention that the recent period of globalization has been good for

the global poor, e.g. Bhalla (2002) or Milanovic (2005).
A common feature of this literature is that all its results are computed using grouped data

on within-country inequality, typically obtained from a secondary dataset such as that of Deininger

and Squire (1996) or its successor, the World Income Inequality Dataset (WIID). This has been

done because data on income distributions, particularly for developing countries, is typically avail-

able only through tabulations, quintile shares, or Gini coefficients, with the microdata either not

existing (as with very old surveys) or not being available to the public (as with many surveys ad-

ministered by national statistical agencies, including those of critically important countries such as

China). 2 While the World Bank has released some unit record data through its Living Standards

'This article (with minor differences) has been published in the January 2013 issue of the Journal of Public
Economics. Elsevier grants permission for its authors to reproduce their articles in theses, as is explained on its
Author Rights and Responsibilities page, http://www.elsevier.com/authors/author-rights-and-responsibilities

2Reddy and Minoiu (2007) comment on the paucity of unit record data: "The analysis of unit data may be
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Measurement Surveys (LSMS), it is extremely difficult to find, not to mention exploit, a sufficient

number and variety of surveys to obtain even one survey per country, let alone come close to the

degree of coverage provided by a panel dataset like the WIID. The authors writing in the literature

on estimating the world distribution of income implicitly or explicitly use parametric distributional

assumptions to convert the grouped data into a distribution of income. Bourguignon and Mor-

risson (2002) and Milanovic (2002) assume that the distribution inside each quintile or decile3 is

egalitarian. Bhalla (2002) and Chen and Ravallion [2001, 2010] use parametrized Lorenz curves

(for instance, Bhalla (2002) uses the World Bank's Simple Accounting Procedure). Dikhanov and

Ward (2001) approximate the income distribution using a polynomial approximation, and Chotika-

panich et. al. (2007) fit rich parametric distributions, such as the four-parameter generalized beta

distribution, to income data.

However, there is no consensus on what is a good parametric assumption for the distrib-

ution of income. The literature on functional forms for income distributions is large and largely

inconclusive, going back to Pareto (1897) for the Pareto distribution; Gibrat (1931), Kalecki (1945),
Aitchitson and Brown (1957), and more recently Lopez and Serv6n (2006) for the lognormal dis-

tribution, Salem and Mount (1974) for the gamma distribution, Singh and Maddala (1976) for

the Singh-Maddala distribution, and McDonald and Xu (1995) on the generalized beta family of

distributions, nesting all the above. All of the above distributions are unimodal; Zhu (2005) has

suggested that empirical income distributions may be multimodal, which opens the door to further

candidate distributions.4 Given the number of distributions considered as plausible candidates, it

is hard to be particularly confident about any given parametric assumption.

Parametric assumptions have a deeper methodological problem: since they yield point

estimates of income distributions, parametric assumptions force the researcher to reach a conclusion

on the evolution of the distribution of income. Yet, it may be the case that the data are not fine

enough to reach any conclusion; there may exist valid income distributions that generate the data,
yet imply that the overall distribution of income has widened, and there may also exist equally

valid distributions that also generate the data and imply the overall distribution has narrowed. A

critical question is: can we know if this is ever the case? Yet more generally: if the functional

forms that the literature has been assuming are wrong, it gives no guidance as to what alternative

paths global poverty and inequality might have taken, and what paths they most certainly could

not have taken. While there have been many proposed time paths of global poverty and inequality

based on parametric assumptions, are there any paths of poverty and inequality measures that can

be ruled out on the basis of the data we have?

Hence, it is interesting to ask whether we can dispense with parametric assumptions com-

prohibitive in terms of time and manpower, and since unit data may be unavailable for numerous country-years...unit

data from nationally representative household surveys for many countries... .are not publicly available.

3 Hereafter; quintiles, deciles, and other partitions of the income distributions will be referred to as fractiles.
4 An alternative approach is to use nonparametric estimators to obtain the world distribution of income strictly from

the data. Sala-i-Martin (2002a and b, 2006) uses kernel density estimation on fractile means to obtain estimates for

country income distributions, and integrates them to obtain the world income distribution. Such an approach avoids

the critique of making arbitrary distributional assumptions that the parametric approach is subject to, and succeeds in

obtaining an estimate for the world income distribution as a whole, rather than just of some of its statistics. However,

the approach estimates income distributions consistently only as the grouping of the data becomes arbitrarily fine,

while in practice, income distribution data is presented in only a few groups (5 or 10). Therefore, there is need for

bounds on poverty and inequality measures of the world distribution of income that are valid for any underlying

functional form of the individual country distributions.
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pletely. In particular, to analyze a time series of the values of some functional of the world dis-
tribution of income (e.g. poverty or inequality), we do not want point estimates, but sharp upper
and lower bounds on the value of this series at each point in time, so that there may exist in-
come distributions compatible with the data such that these bounds are attained, but there exist
no distributions compatible with the data that imply estimates for the series outside the bounds.
Such a pair of sharp bounds would completely summarize what the data implies about the series in
question: any series passing outside the bounds would be impossible, whereas any series contained
in them would be conceivable.

Another feature of the literature on analyzing the world distribution of income is that it
analyzes poverty and inequality separately, and typically reaches normative conclusions without a
formal aggregation of the two in some theoretically justified manner. While different ways have
been proposed to aggregate growth and inequality into a measure of welfare, no measure has been
selected as definitive, and the papers looking at welfare measures are few (Pinkovskiy and Sala-
i-Martin [2009], Atkinson and Brandolini [2010]). There has neither been an attempt to provide
bounds for the evolution of such a measure based on weak and plausible assumptions. However,
the need for such a measure in the normative analysis of the trends in the world distribution of
income is crucial. It is clear that the assertion that inequality has risen does not imply that welfare
has fallen for most reasonable notions of welfare; the rise in inequality may have accompanied a
Pareto improvement. Similarly, an assertion that poverty has risen need not automatically imply
that welfare has decreased, since such a connection would be valid only if the welfare function was
concerned exclusively about the poor. Otherwise, rapid growth for a large number of people in
other parts of the distribution could (for a suitable welfare function) offset the negative effects of
a rise in poverty. Without a well-specified welfare function that is derived from clear axiomatic
normative principles, we cannot rigorously weigh the differential benefits of poverty and inequality
reduction.

The contributions of this paper are threefold. First, I derive sharp nonparametric bounds
for the Atkinson welfare measure (which is commonly calculated and theoretically justified) in terms
of the inequality statistics typically made available by statistical agencies: fractile shares and Gini
coefficients. The formula for a tight upper bound to any inequality measure when fractile means
and boundaries are known is well-known and is presented in the review by Cowell (2000). Cowell
(2000) also reviews tightening of the bounds under the assumption that the density of income is
monotonic decreasing in a given fractile, while Cowell (1991) provides tight upper bounds in cases
in which the fractile boundaries are known, but the fractile means are unknown. However, to my
knowledge, there has been no work on deriving the bounds for the Atkinson welfare index using
the Gini coefficient, with or without fractile shares. 5 This problem is useful, since Gini coefficients
are often reported by statistical agencies and used in the literature, and deriving bounds for the
Atkinson welfare index based on the Gini coefficient allows the researcher to deduce something about
the first measure from the second, both for empirical and theoretical purposes. The mathematical
problem of deriving the bounds given the richest available data is nontrivial, but important to solve
as taking advantage of all the available data substantially decreases the width of the bounds.

5 The most related part of the literature derives tight upper bounds to the Gini coefficient based on fractile shares.
Gastwirth (1972) provides a tight upper bound on the Gini coefficient given fractile means and boundaries, while
Murray (1978) provides such a bound when fractile means are unknown, and Mehran (1975) calculates the bound
when fractile boundaries are unknown.

This paper also belongs to the more general econometrics literature on nonparametric bounds, e.g. Manski (1995).
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Second, I compute the welfare bounds for all possible countries and years using traditional
GDP and inequality data from the literature: the Penn World Tables (PWT) and the World
Income Inequality Database (WIID) maintained by UNU-WIDER. Notwithstanding that the ways
to compute some of the bounds have been previously known, to my knowledge, there has not
been any work systematically applying these bounds to the problem of calculating world welfare,
and a fortiori, no previous work has used the sharp bounds that I derive. Under very conservative
imputation assumptions for countries and years without inequality data, I aggregate up the country
welfare bounds to obtain bounds for world welfare. My first and main conclusion is that between
1970 and 2006, world welfare has risen unambiguously. The lower bound on world welfare growth
in the baseline specification implies that welfare rose by 88%, with the effect being equivalent to an
increase in the income of every person in the world of over $2,600 in PPP-adjusted 2005 U.S. dollars.
While the fact that world welfare measured in this way has increased may not be very surprising
owing to the strong GDP growth enjoyed by the world over this period, the extent of growth is
remarkable. Moreover, the sharper bounds that I derive allow a finer analysis of the consistency of
welfare growth over the sample period: using these bounds, one can conclude that world welfare
growth was always positive for any 10-year period under consideration, whereas under the bounds
of Cowell (2000), such a conclusion could not be drawn. I subject my results to a battery of
increasingly radical robustness checks that confirm that neither the finding that world welfare rose
nor (to a lesser extent) the magnitude of this rise are sensitive to neither the necessary assumptions
of my procedure nor the more substantive challenges to the validity of either the mean income or
the survey data

A related result is that the traditional data used in calculating the world distribution of
income cannot reject the hypothesis that world inequality has risen. For almost all variations in the
methodology of computing the bounds, my estimates are compatible with world inequality rising,
or world welfare growing slower than world GDP per capita. The lower bound estimate for the
baseline scenario suggests that welfare rose by only 93% of what it would have potentially risen by
under uniform GDP per capita growth. However, I can reject the hypothesis that rising inequality
destroyed more than 50% of the welfare growth that would have obtained under uniform GDP per
capita growth for most robustness checks for different methodologies of computing the bounds, and
for many robustness checks I can reject the hypothesis that rising inequality destroyed more than
20% of potential welfare growth. In particular, no robustness check can yield a conclusion that
inequality has unambiguously risen.

The paper is organized as follows: Section 2 presents the Atkinson measure of welfare
and reviews its microfoundations. Section 3 presents the derivations of the nonparametric bounds.
Section 4 discusses the data, the numerical implementation of the bounds, and the imputation
assumptions made in order to construct bounds for world welfare. Section 5 presents the baseline
results for world welfare and inequality, and discusses the gains from basing the bounds on more
inequality statistics. Section 6 presents the robustness checks: 1) sampling error, 2) alternative
imputation procedures, 3) alternative survey selections from the WIID dataset, 4) replacing the
WIID dataset with the UTIP-UNIDO dataset pioneered by Galbraith and Kum (2005), 5) replacing
the Penn World Tables GDP data by World Bank GDP data with different PPP, and 6) accounting
for failure of survey coverage at the top. Section 7 concludes.
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3.2 The Welfare Measure

An important aspect of the debate concerning the world distribution of income is the question of

what are the appropriate metrics of poverty, inequality and welfare. In this paper, I will concentrate

on a single family of welfare measures and its associated family of inequality measures, appealing to a

well-known theoretical argument for the use of this family. This is the family of Atkinson equally-

distributed income equivalents and inequality indices, introduced in Atkinson (1970). Atkinson

treats the problem of assigning a welfare rating to an income distribution as equivalent to the

problem of assigning utility ratings to lotteries. The Atkinson equally-distributed income (hereafter

the welfare measure) is the certainty equivalent of the distribution of income treated as a lottery,
whereas the Atkinson inequality measure is the risk premium divided by the mean income. If it

is assumed that utility is CRRA with risk aversion y, which is a standard assumption in most

empirical work, and is empirically supported in e.g. Chiappori and Paiella (2006), the relevant

welfare index becomes

W ( J) = ( Xz1 ddF (x)

and the relevant inequality index is

W (y)
A (-) = 1 -

where L is the mean income.

In terms of choice over lotteries, A (y) is the relative risk premium of the income distribution.

Atkinson's index resolves the chief problem in the construction (or even conceptualization)

of a welfare index: the need to make interpersonal comparisons. Instead of assuming that the

evaluator has some social preferences that allow her to trade off some utilities against others, the

evaluator treats the income distribution as a lottery out of which she must draw a prize, and values

this distribution accordingly. The choice of the (perfectly selfish) evaluator is then the choice

she would make behind the Rawlsian veil of ignorance (although the welfare index would be the

Rawlsian SWF only for y -> oo).

It is obvious that for 7 1, any income distribution with an atom at zero income produces

maximum inequality (an Atkinson index of 1, or an equally-distributed income of zero), and it is

also immediate that no allocation of fractile shares nor any value of the Gini coefficient can rule

out the income distribution having an atom at zero income, so for all -y 1, it is impossible to

construct a lower bound for welfare. Moreover, as y -+ 1 from below, the lower bound continuously

drifts towards zero. Hence, bounds based on the fractile shares and the Gini coefficient can only

be constructed for y C (0, 1). (In particular, using the Rawlsian SWF or attempting to test for

first-order stochastic dominance cannot be done if one is to remain totally agnostic about the

distribution as is done in this paper). I will use the central value in this interval, -y = 0.5, as

the baseline for this paper. Statistics for the Atkinson inequality index for -y = 0.5 are routinely

reported by developed countries (e.g. the United States Bureau of the Census reports Atkinson

inequality indices for y = 0.25, y = 0.5 and y = 0.75; the Luxembourg income study reports indices

for y = 0.5 and y = 1), although I will show that the baseline result holds for y as high as 0.9. I

also perform a robustness check for values of 7 higher than unity by assuming a lower bound for

income equal to 1/5 of the lowest fractile mean. Under this assumption, my baseline results are
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valid for y as high as about 1.5.

3.3 Analytical Derivation of Uniform Bounds

In this section, I will first list a few facts about Lorenz curves and about the formulation

of the optimization problems that yield the bounds in Lorenz curve space. I will then solve the

optimization problems when the Gini coefficient is specified. Finally, I will then describe the

solutions of the problems with fractile shares only, which is known by the literature on bounding

inequality measures, and is reviewed in Cowell (2000).

3.3.1 General Remarks

I first review a number of basic facts about Lorenz curves, which can be found in, e.g. Gastwirth

(1972) or derived by inspection.

1. The Lorenz curve L (p) of a nonnegative random variable distributed according to F (x) is

L (p) = _ xdF (x), where p E [0, 11. This is an increasing and convex function, such

that L (0) = 0 and L (1) 1 (if a set of measure zero of the population holds a set of positive

measure of income, then L (1) < 1).

2. Conversely, for any increasing and convex map L (p) of [0, 1] into itself, there exists a distrib-

ution function F (x) such that L (p) is the Lorenz curve of the nonnegative random variable

distributed according to F (x) .Hence, the set of Lorenz curves is

Z = {L E C [0, 1]: L is increasing, convex, L (0) = 0, L (1) 1}

3. Any Lorenz curve is continuously differentiable at all but countably many points, and where

it exists, L'(p) = E,where x = F- 1 (p).

4. The Gini coefficient of a distribution with Lorenz curve L (p) is G = 1 - 2 f L (p) dp.

5. The Atkinson welfare index of a distribution with Lorenz curve L (p) is W ( ,) = y (fJ (L' (p)) dp)

Now, suppose we are given k fractile shares, or statements that individuals from the pith

to the pi+1st percentile (or in [pi, pi+1]) own fraction Qi of the national income, with the
cumulative share of national income owned by the lowest pi earners being qi. Suppose also

that the mean of the income distribution is normalized to 1; then, the fractile boundaries,
a- and at are defined as the (normalized) incomes of the pith and pi+1st percentile of the

income distribution respectively. The (normalized) mean income of fractile i is defined as
mi = Qi/ (pi+1 - pi) -

6. By the definition of a Lorenz curve, an assignment of fractile shares equivalent to a set of

constraints L (pi) = qi, i = 1, ... k, where pi is the fraction of the population in or below fractile

i, and qi is the cumulative share of national income owned by this fraction of the population.

7. The statement that the boundaries of fractile i are [a-, at] is equivalent to the constraint

limL'(pi) a- and at > lim L'(pi) (the inequalities are strict whenever there is no mass
pip Z PIPi+1

in the distribution of income around the pith or pi+1st percentile).
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Therefore, the main analytical problem of this paper can be formulated as follows:

max or min (L'(p))adp st. 1)Vi = 1, ..., k, L (pi) =qi,
/ll

2)10 L (p) dp = 0.5 (1 - G)=:

where a E (0, 1)
It will be useful to define the constraint set:

£c= LE5:O=foj L(p)dpandVi=1,..,k, L(pi)=qi}

Maxima

Maxima with Gini only

The optimization problem to maximize W (1 - a) for given Gini is

max (L' (p))a dp st. = L (p) dp
LE2 0o 0

Since the objective function is concave in L, the maximum is unique and is attained in the inte-
rior, so this is a standard problem in the calculus of variations, since L (p) is a.e.-twice differentiable.
To solve this problem, I form the Lagrangian

£ = (L'(p)") - AL (p)

and compute the Euler equation:

--L = - -- e A =a (1 -- a) (L' (p) a-2 L"1 (p)
aL dp WL

Proposition 5 The solution to the optimization problem is given by

- c2

where the constants c1 , c2 and the Lagrange multiplier A can be calculated from the equations L* (0) =

0, L* (1) = 1t et. L* (p) dp.6
Proof. In text. E

Note that the solution is a convex function, and thus a valid Lorenz

the optimum attained corresponds to a sharp lower bound.

6The implied CDF of this distribution is F(x) = c - for x E

F(x) = 0 for x < p (c1~t, and F(x) = I for x > i (c1- ) .

curve. Hence, the value of

pIL(c1) ,pt (c1 - y) ,
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Maxima with Gini and fractile shares

The optimization problem to maximize W (1 - a) for given Gini and fractile shares is

max] (L'(p))" dp st. 1) C = L (p) dp and 2) Vi = 1, .., k, L (pi) = qi (3.2)LE 2 0 0o

The Euler equation is the same as in problem 1, however, the constants cl and c2 are now

allowed to vary by the interval i. An upper bound could be obtained by calculating the values

of ci,i and c2,i from the conditions L (pi) = qj, however, unless the sequence {c2,j} is monotone

increasing, the resulting solution is not convex, and hence, does not belong to Z. Hence, although
it provides a greater lower bound than the solution when only the Gini constraint, or only the

fractile shares are present, this bound is not sharp.

If in addition to the fractile shares, the fractile boundaries {a- , af } were given, a sharp

upper bound could be obtained by solving the equivalent problem:

max (L'(p)) cdp st. 1) G = L (p) dp, 2) Vi = 1,.., k, L (pi) = qi
LEZ 0 0o

3)limL' (p) a- and lim L' (p) > at
PTPi PiPi+1

for some {a7, af },1 where a- is the lower bound of interval i, while at is the upper bound of

interval i. Now, define

R (p) := max {a, (p - pi) + qi, at (p - pi+1) + qi+1}
i=1,...,k

and consider the modified optimization problem:

max J1(L' (p))"c dp st. 1) 0 = L (p) dp, 2) Vi = 1,7.. k, L (pi) = qi, 3) L (p) > R (p) (3.3)
LE2 0 J

Since the optimal solution must be convex, we have

limL'(p) 5 aT and lim L'(p) 2 at Vi = 1,.., k,
\PTPs PiPi+1 /

SL (p) max {a- (p - pi) + qi, at (p - pi+1) + q+1} : R (p)
z=1,...,k

so the two problems are equivalent.

By Kamien and Schwartz (1991), the solution to this latter problem is characterized as follows:

1. If L (p) > R (p), then L (p) = (ci - p) - c 2,i for some ci,i and c2 ,i

2. If p is a "switching point" between L (p) and R (p) (so Ve, 3p-, p+ E N, (p) st. L (p) > R (p)
on [p_, p] and L (p) = R (p) on [p, p+], or vice versa), then, L (p) = R (p) and L' (p) = R' (p).

Hence, the solution L* (p, a)'taking the vector of fractile boundaries a: = {aT , af } as given

is characterized as follows:
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Proposition 6 Vi = 1,...,k, 3 pi p : pi p- < pt < pi+1 st. L* (p, a) = R (p) on

pi,7 p,-] U (p , pi+1] and L* (p, a) = (c1, - -2,i on [p-, pt], where A solves G =

L* (p, a) dp, while p, pi, ci,i and c2,i solve

1-a A1.(ci'i - p - c2,j = R (pi) aj- (p., - pi) + gi

2. A(ci, l -p a- c2,i = R (pf) =at (pt - pi+i) + qi+1

13. (cli, - Ap7.) 1a> a,. with strict inequality iff p- pi, and

4. (c1,i - Ap at with strict inequality if pt = pi+1-

Proof. In text. U

The problem reduces to the finite-dimensional problem of optimization along the finite sequence

a, which can be done with standard software. If the fractile boundaries are known, the formula can

be used directly and no optimization is required.

Minima

The problem is

inf (L' (p)) a dp st. 1) a= L (p) dp, 2) Vi = 1,1.. k, L (pi) = qi (3.4)
LEZ 0o 0

It can be shown that the infimum of this problem is attained by a Lorenz curve that is a

linear spline with corners (possibly) at the points {pi} and with no more than one corner in any

interval (pi, pi+1).

Proposition 7 Consider the minimization problem (3.4). Then, the value of this problem is iden-

tical to the value of the following finite-dimensional problem:

mi__ { A + (1 - Ai) ( ) (3.5)

at-m-
st. Vi =1, ..., k, Ai = + - , a mi af a- 1 and= ]L(p,a)dp

ai - a J

where L (., a) is the Lorenz curve defined by the sequence {a-,a4 } .

Proof. See appendix. U

The proof relies on the following lemma:

Lemma 8 (3-2) Lemma: Suppose that L E 2e is piecewise linear with finitely many corners. Then,
there exist numbers {a7,at I _1 such that Vi = 1,..., k, a- < mi at < a-±1, and the Lorenz

curve

L = max {max {a- (p - pi) + qj, at (p - pi+1) + qi+1}}

satisfies L C 2c and f (I ) ()) dp < fo (L' (p)) dp.

Proof. See appendix. U
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The 3-2 Lemma states that any piecewise linear Lorenz curve with finitely many kinks that

are off the fractile constraints can be replaced with a modification with only 2k such kinks that
satisfies the constraints in the minimization problem (3.4), and decreases the value of the program.
Heuristically, the minimizing curve must have no more than one kink in each interval, or no more
than 2k kinks overall, which makes the family of possible minimizing curves finite-dimensional, and
allows them to be computed by standard numerical methods.If the fractile boundaries are known
(or assumed), the formula can be used directly and no optimization is required.

In the special case that there are no fractile constraints, it is easy to derive an explicit
formula for the maximum Atkinson given the Gini coefficient, as the optimal curve must have no
more than one kink.

Proposition 9 Consider the minimization problem (3.4) and omit the fractile constraints. Then,

the maximum value of the Atkinson index is given by

max (G,1 -(1 -G)-)

Proof. See appendix. 0

3.3.3 Results with Fractiles Only

Cowell (1977) proves that if there are k fractiles, each with known mean mi and fractile boundaries

[a-, at], then the maximum welfare is attained at intrafractile egalitarianism: the distribution is

concentrated at the fractile means, and the value of the problem is given by 1/)

The minimum welfare is attained by complete concentration on the fractile boundaries, or by the
solution to the finite-dimensional optimization problem (3.5) omitting the Gini constraint. In
particular, a crude (non-sharp) approximation to the minimizer of welfare with fractiles only can
be computed in closed form by setting a7 = mi_1 and at = m±i for each i.

Figures 3.1 and 3.2 presents plots of some welfare-maximizing and welfare-minimizing Lorenz
curves (the quintile shares that they are based on are denoted by bold circles in the diagrams). It
is clear that the welfare-minimizing curves are all piecewise linear, while the welfare-maximizing
curves that involve the Gini are nonlinear. Note how the crude approximations to both the welfare-
maximizing and welfare-minimizing curves are nonconvex.

3.4 Implementation

3.4.1 GDP Data: Penn World Table

The Penn World Table (hereafter PWT) is one of the most cited sources for purchasing-power-

parity-adjusted GDP data. The latest edition (version 7.0) has nearly comprehensive coverage of

189 currently existing countries since 1970 to 2009. I reconstruct GDP for currently nonexisting
countries (e.g. the Soviet Union, Czechoslovakia, East Germany) by applying the growth rates
of Penn World Tables version 5.6 to the implied GDP for these countries in version 7.0. This
procedure is discussed in detail in Pinkovskiy and Sala-i-Martin (2009).

A major controversy in the literature is whether estimates of GDP should come from
national accounts or from household surveys. Ahluwalia et al. (1979) pioneered the combination
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of national accounts GDP and survey inequality data, which is the dominant approach today,
and is used, e.g. by Bourguignon and Morrisson (2002), Sala-i-Martin (2002a and b, 2006) and

Bhalla (2002). Proponents of using national accounts to estimate the mean of the distribution of

income argue that survey means tend to understate mean income and sometimes yield implausible

implications (see e.g. the discussion in Bhalla (2002)). Moreover, national accounts estimates of

GDP, and the Penn World Table in particular, are extensively used in cross-country research on

growth and development: in particular, the seminal works of Barro and Sala-i-Martin (1992,1995);
Barro (1999); Acemoglu, Johnson and Robinson (2001, 2002, 2005); and Banerjee and Duflo (2004)

all use Penn World Table GDP, sometimes in conjunction with the Deininger-Squire dataset on

inequality, whereas no such paper to my knowledge uses survey means. Other papers, such as

Milanovic (2002) and Anand and Segal (2008), strongly criticize the use of national accounts on

the grounds that it is inconsistent to take the distribution of income from one source and the mean

of income from another. A practical consideration in favor of national accounts is that national

accounts estimates are calculated using common methodology for virtually all countries and years,
whereas survey means tend to be available for far fewer countries only in select years, so further

assumptions are required in order to use a series of survey means. Since the focus of this paper

is to present the methodology of the uniform bounds and to observe their implications for widely

used data on the distribution of income, I will use national accounts as my source of GDP, but I
will conduct a robustness check using survey means. Moreover, in the robustness check correcting

for nonresponse, I will attempt to control for possible mechanisms that lead national accounts and

survey means to diverge.

Figures 3.4 and 3.5 present a brief summary of the data. First, we see that GDP growth in

1970-2006 has been extraordinary - GDP has nearly doubled. 7 Second, we see that between-country

inequality - the value of the Atkinson inequality index with -y = 0.5 that would obtain if the income

distribution in each country were egalitarian - fell significantly, with much of the fall taking place

after 2000. These results are suggestive of the claim that world welfare has increased, but are not

conclusive, since if within-country inequality has increased by a substantial amount, welfare could

have actually fallen. In fact, these results could be perfectly consistent with a "nightmare scenario"

of a global elite, tiny in number but evenly distributed across nations, capturing most of the gains
to growth in the past several decades.

3.4.2 Inequality Data: The World Income Inequality Dataset

The World Income Inequality Dataset (WIID), maintained by UNU-WIDER, is a significantly

improved and expanded version of the Deininger-Squire (DS) dataset pioneered in 1996. It is

probably the most comprehensive, and the most cited source on income inequality around the

world', presenting over 5,200 surveys for over 150 countries and 79 years. Over 75% of the surveys
listed took place after 1970. All the survey data reported include an estimate of the Gini coefficient,
over 2,700 surveys contain quintile shares, and over 2,000 contain decile shares. Moreover, for nearly

all the surveys, the database records the coverage of the survey of different parts of the country in

question, the income concept asked for in the survey (income or consumption, gross income or net,
whether in-kind income is included), the conversion factor used to obtain inequality between persons

from household-level data, and the statistical agency conducting the survey and the researchers

7 Note that the sample period for this paper ends before the beginning of the global recession in 2008.
s The paper introducing the dataset, Deininger and Squire (1996), has 1,884 citations on GoogleScholar.
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reporting its results. 9 However, the WIID, as well as the DS dataset from which it was constructed,
errs on the side of comprehensiveness of coverage rather than quality of surveys. Atkinson and

Brandolini (2001) criticize the DS dataset for including poorly conducted and methodologically

unclear surveys alongside well-organized ones, and criticize much research using the dataset for

disregarding the noncomparabilities of surveys with different income concepts, different equivalence

scales, and different underlying populations. 10 Hence, an important problem for any researcher

using the dataset is to provide a method of selecting which surveys to use that avoids these pitfalls.

Choice of Surveys

I subdivide all surveys in the WIID into groups, hereafter surveygroups, within which all

surveys 1) describe the same country, and the same geographic, demographic and socioeconomic

population within the country, 2) have the same income concept, 3) collect income data on the

same unit, use the same unit of analysis, and use the same equivalence scale to convert between the

two if they are distinct, and 4) have the same primary and secondary source. I identify 2240 such

surveygroups in the WIID, which means that each contains on average a little over two surveys, but

some have much wider coverage than others. I then, instead of selecting separate surveys, select

entire surveygroups on a heuristic basis by weighting the following considerations in approximately

the following lexicographical order:

1. I give preference to those surveygroups that provide decile shares over those that provide only

quintile shares, and I give preference to surveygroups providing fractile shares over those that

only provide Gini coefficients,

2. I attempt to ensure that the surveygroups cover the longest date range for each country,
and be well-distributed over the sample period, preferring a few surveys in each decade to

thorough coverage of some periods at the expense of others,

3. I attempt to ensure that the surveygroups selected for each country have the same or similar

income concepts, the same or similar equivalence scales and geographical extent, and the

same primary source.

4. I attempt to maintain homogeneity in the characteristics of surveygroups selected across coun-

tries, with surveys asking about disposable income and equivalizing on the basis of household

per capita being preferred. However, there are gross exceptions to this (e.g. India offers

quintile shares only for consumption surveys).

9There may be concern that the Gini coefficients listed in the WIID are estimated from the presented fractile
shares. I have checked that no Gini coefficient that the WIID presents is given by either the minimum or the
maximum value of the Gini coefficient that is theoretically compatible with the fractile shares (formulas are given in
Mehran (1975)). The documentation to WIID mentions explicitly for a few surveys (121 out of 2240 survey groups)
that the Gini was constructed from the fractile shares. In results not presented, I have recomputed the baseline
estimates excluding these Gini data, and the results are indistinguishable from the baseline results reported in this
paper.

'0 However, it appears that the WIID has drawn lessons from the critique of the DS dataset; in personal commu-
nication, Tony Atkinson noted that "WIDER did a great deal to clean the original DS database; the WIID database
is much less subject to the kind of criticisms that [Atkinson and Brandolini (2001)] made." (Tony Atkinson, personal
communication, December 2009).
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5. In view of the fact that I will need to interpolate and extrapolate to estimate inequality for
years for which I do not have survey data, I choose some surveys outside the sample period
(i.e. before 1970).

I also maintain some region-specific conventions aside from these four general principles. In
particular, I use the Luxembourg Income Study surveys for OECD countries unless long and detailed
series are available in the WIID from the countries' own statistical bureaus. For Latin American and
Caribbean countries, I almost invariably use the surveys provided by the Socio-Economic Database
for Latin America and the Caribbean (SEDLAC), following the recommendation of WIID. For the
populous East Asian countries of China, India and Indonesia, I use survey data provided by the

national statistical bureaus. Finally, owing to a dearth of surveys for Africa, particularly from the

beginning and middle of the sampling period, I suspend many of the homogeneity requirements

and often use consumption surveygroups when these offer more extensive coverage than income
surveygroups do. Overall, I choose surveygroups containing 1094 surveys, of which 1011 lie in the
sample period.

For some countries and years, the unit records from household surveys are publically
available. Chen and Ravallion (2010) use a database of over 700 surveys, many of which were made
available to them as microdata, whereas others were provided only in grouped data form. Their
PovCal website contains a description of all the surveys, including whether their unit records were
available, and the parametric estimates of their underlying income distribution obtained using the
Kakwani-Podder method. Furthermore, the Luxembourg Income Study provides microdata for
many household income surveys in the OECD. For all countries and years for which microdata is
available, I use either the published inequality statistics (Atkinson inequality indices) directly, or
(in the case of the Chen-Ravallion data) I compute Atkinson inequality indices from the parametric
estimates obtained by Chen and Ravallion on the basis of the microdata they used, assuming that
these estimates are probably very close to the actual values of the Atkinson inequality indices in
the microdata. Using microdata decreases the width of my bounds slightly but noticeably in the
period 1995-2005 (to which most of the available microdata corresponds), and does not affect them
for the preceding period.'"

Breadth of Coverage

As is intuitive from Figures 3.4 and 3.5, inequality does not tend to vary much over short periods
of time, especially when compared to variation in GDP, so interpolation (as opposed, possibly, to
extrapolation) procedures to impute inequality measures for years without data should be relatively

reliable. Hence, while one intuitive measure of the breadth of coverage is the percent of the world

population in the given year who are covered by surveys, a potentially better measure is the percent

of the world population who are either covered by a survey in that year, or whose inequality measures
will be obtained by interpolation (rather than extrapolation). Hereafter, I define the core to be the
set of individuals who are so covered. Figure 3.6 presents these measures. While the direct coverage

measure is highly erratic (depending significantly on whether China and / or India are covered in

"For the OECD countries with Luxembourg Income Study data, the Atkinson inequality indices are available only
for - = 0.5 and y = 1. Whenever I compute Atkinson indices with other parameters, I use the -y = 1 index from the
LIS. This does not affect the qualitative conclusions reached.
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a given year), and tends to be below 60%, the size of the core as a percent of the world population

is remarkably continuous, and tends to be above 70% until about 1998, and around 90% for most

of the 1980s and 1990s. Hence, at least until the 2000s, coverage using the WIID is rather good.

3.4.3 Numerical Implementation

I have implemented numerically all the bounds described above except for the sharp bound for the

maximum welfare given both the Gini coefficient and the fractile shares. In its place, I am reporting

the crude upper bound for welfare based on Ginis and fractiles, which, while superior to both the

Gini and the fractile upper bounds taken individually, may only be attained by curves that are

not convex. All the other bounds for the maximum are very easy to implement, as they only rely

on finding the root of a monotonic function in one variable. The sharp bounds for the minimum

welfare given fractile shares (with or without the Gini) require numerical optimization over a long

vector of arguments, the sequence {a-, a} .2

3.4.4 Assumptions for Interpolation and Extrapolation

The bounds I have computed given fractile shares and the Gini coefficient say absolutely

nothing in theory about the behavior of inequality in countries and years for which we do not

have data, so the only fully conservative bound for those country-years is the trivial bound [0, 11.

However, it is accepted in the area of inequality research that inequality tends to change very slowly

and very continuously, 13 so in practice, inequality data in a given year should give a great deal of

information about inequality in that country in nearby years. The average coefficient of variation

of the Gini within a surveygroup is only 0.06, and it does not exceed 0.41 for any surveygroup.

A plausible and easy-to-implement interpolation assumption is that inequality in any given

year for which data is missing is bounded above and below by the inequality in the closest preceding

and following years (hereafter, closest available years) with data available. Then, the upper bound

of inequality for that year is the maximum of the upper bounds of the inequality in the closest

available years, while the lower bound is the minimum of the lower bounds. For country-years

outside the core, this method is tantamount to horizontal extrapolation of the bounds, which

is problematic as it may artificially truncate rising trends in inequality. Hence, I use a more

conservative extrapolation procedure that interpolates the upper and lower bounds linearly if this

would result in the bounds widening further apart, and horizontally otherwise. To avoid upper

and lower bounds from reaching implausible values, I bound them by the maximum upper and

minimum lower bounds obtained from the data within each World Bank region 14. As it is very

rare that inequality rises or falls at a linear rate for an extended interval of time, it is plausible

that such extrapolation would account for the possible dynamics of inequality at the ends of the

sample period.

1
2

It is possible to implement this optimization straightforwardly using the Matlab program fnincon on a standard

PC. While the solution does depend on the initial value chosen for the optimization, and while the program occasion-

ally fails to converge, the variation in the result as a function of the initial value is extremely small (the bound on

the inequality index varies by less than 1% of the maximum value of this index with y = 0.5 for most observations).

As a compromise between speed and accuracy, I run the program for each survey for no less than twenty randomly

selected starting values, and stopping at the first subsequent time the program converges.
3 See e.g. Bhalla (2002) or Galbraith and Kum (2005). The latter source considers changes of 5 Gini points or

more per year to be "unlikely, except when they coincide with moments of major social upheaval."
4 For a classification of countries into World Bank regions, see Sala-i-Martin (2006)
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A more difficult problem is to impute inequality for countries with no survey data at all.
Reasoning that countries may tend to be like other countries around them, and following Sala-
i-Martin (2006) and Pinkovskiy and Sala-i-Martin (2009), I impute these inequality measures on
the basis of the inequality of the other countries in their World Bank region. However, to be
conservative, I impute the upper bound in every year to be the maximum upper bound observed in
the data for all countries and years in that region, and the lower bound similarly. I will investigate
more and less conservative methodologies for interpolation in the robustness checks.

3.5 Baseline Results

3.5.1 A Simple Test for a Rising or Falling Series

The results for each time series will take the form of upper and lower bounds, rather than
point estimates. Under the assumptions for imputation, as well as under the assumption that the
data is valid, and that sampling error can be ignored, these bounds contain the true value of the
measure of interest with probability 1. Any path of the measure that is contained within the bounds
is therefore consistent with the data, whereas any path that violates the bounds at any point is
inconsistent with it.

There is a simple procedure for drawing conclusions as to whether a series increased or
decreased between two dates. If the lower bound of the series at the earlier date exceeds the
upper bound at the later date, the series fell for sure (with the caveats expressed in the previous
paragraph). If, on the contrary, the upper bound of the series at the earlier date is exceeded by
the lower bound of the series at the later date, the series rose for sure. However, neither of these
statements may be true; in which case, it is impossible to draw conclusions on whether the series
rose or fell between the two dates without further assumptions or data.

3.5.2 Example for a Single Country: Chinese Inequality

Before presenting my baseline results for inequality and welfare in the world as a whole, I
present upper and lower bounds on the Atkinson inequality index for China in order to demonstrate
the interaction of my bounding technique, interpolation and extrapolation on a single consistent set
of surveys. Moreover, estimates for China are interesting in their own right because microdata from
Chinese official income surveys is not released to the public. Figure 3.3 presents the series for the
- = 0.5 Atkinson inequality index for China. We see that inequality in China was between 0.07 and
0.24 in 1970 and 0.16 and 0.28 in 2006, which is consistent with Chinese inequality rising or falling
over this time period (which involved a transition to capitalism and is believed to have witnessed
a substantial rise in Chinese inequality). We also see that the interpolation and extrapolation
procedures appear to be reasonable and to yield results that are not radically different from the
observed values of the bounds.

3.5.3 Baseline results

All the baseline results and robustness checks are summarized in Table I. The table presents
for all variations (except sampling error) 1) the minimum and maximum amounts by which Atkin-
son welfare (interpreted as the certainty equivalent of the world distribution of income) increased
between 1970 and 2006, 2) the minimum and maximum percentage increases in Atkinson welfare

130



since 1970, and 3) the minimum and maximum percentage increases in Atkinson welfare as a per-

centage of what they would have potentially been if all incomes grew at the same rate (uniform

GDP growth). Thus, the lower bound in part 3) is informative as to how much less welfare growth

there is because of the fact that growth in GDP per capita is distributed unequally. Note that we

can reject the hypothesis that inequality rose if and only if the lower bound in part 3) is greater

than 100%; welfare grew faster than did GDP because inequality shrank.

I present the time series of world welfare for implied risk aversion y = 0.5 and y = 0.9

in Figure 3.7 For both indices of risk aversion considered, world welfare rose between 1970 and

2006. For y = 0.5, we can also reach the conclusion that world welfare rose between 1990 and 2006,
and even between 2000 and 2006. These are very important findings, since they establish that

for plausible levels of risk aversion, (and even for relatively high ones, such as y = 0.9, for which

fully nonparametric bounds may be expected to be difficult to construct), the only series consistent

with the data imply that even accounting for its uneven distribution, growth was sufficiently high

relative to any increase in inequality that overall welfare rose. This conclusion is also intuitive

given the more primitive facts of the dataset we use: if per capita GDP grew by nearly a factor of

two, and between-country inequality fell substantially, and within-country inequality as measured

by the Gini varied very little, the only way that welfare could have fallen was if movements in the

Gini coefficient and in the fractile shares were unrelated to movements in the Atkinson index. No

less important is it to note by how much welfare rose: Table I indicates that for y = 0.5, welfare

rose by at least 88% between 1970 and 2006.
From the time series of inequality in Figure 3.8, I must remain agnostic about the direction

of world inequality: it is impossible to tell whether inequality rose or fell without additional as-

sumptions. While I can almost reject the hypothesis that inequality rose according to y = 0.5 (the

relative risk premium of the income distribution could have, at most, risen from 0.396 to 0.414), it

is obvious by inspection that for y = 0.9, the data is consistent with many possible rising or falling

time paths of inequality. In particular, this finding indicates that the large drop in between-country

inequality could have been more than overridden by a rise in within-country inequality. However,
these bounds also display the relatively limited feasible variation in inequality. Table I shows that

for the baseline specification, rising inequality could have eroded at most 7% of the welfare benefits

of GDP growth, and for a risk aversion coefficient even as high as 7 = 0.9, the largest possible

inequality increase could have decreased the growth rate of welfare relative to uniform growth by

at most 31%.
The benefit of using uniform bounds is that this failure to reject should not be interpreted

as a "null result," but rather as a criticism of the (amount and presentation of the) data. It indicates

that, at least without stronger assumptions on the form and evolution of inequality within countries,
it is impossible to tell whether inequality rose or fell. If we wish to reach a conclusion, what is

required is more surveys, more finely presented. In the robustness checks, I will show that the

failure to reject comes largely from the paucity of information in the surveys (from the width of

the bounds when inequality data is given) rather than from the conservatism of my imputation

assumptions.

3.5.4 Gaiin from fine bounds

It is useful to see how much we gain by basing our bounds on additional data, and how much

we gain by using sharp rather than loose bounds. Figure 3.9 presents welfare estimates for y = 0.5

Using four- mthods:JLU6 1) cudeL" bundsU bsed onatil es 2)KUlvZ sarp bo un-d based'L onl frCttles,_ ) V
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sharp bounds based on the Gini, and 4) bounds (crude upper bound and sharp lower bound) based
on both the Gini and fractiles. We see that 1) including the Gini coefficient as well as the fractile
shares in estimating the bounds decreases the width of the intervals (more in the earlier than in
the later part of the sample because there are substantially more surveys with unit records in the
later part of the sample), 2) sharpening the fractile-based bounds does not appreciably decrease
the width of the intervals, and 3) while the lower bound on welfare based on the Gini is very poor,
the upper bound on welfare based on the Gini is quite good, and can be superior to the upper
bound based on fractile shares (which, in practice, tend to be decile shares). In particular, the
upper bounds on welfare are all extremely close together, which is consistent with the idea that
there is little gain in further improving the upper bound, so our omission of the sharp upper bound
with the Gini and fractile shares is not a large loss.

It is reasonable to ask whether there is anything that we gain from using finer bounds.
From Figure 3.9 , we see that if we could base our bounds only on the Gini coefficient, we could
not reject the hypothesis that welfare fell between 2000 and 2006 even for -y = 0.5. We can also
deduce from Figures 3.8 and 3.9 that if we did not have a formula for calculating the upper bound
on inequality given both the Gini and fractile shares, the data would be consistent with a large,
rather than a trivial, rise in inequality for risk aversion coefficient y = 0.5, and would have been
consistent with a rise in inequality for risk aversion coefficients much lower than 0.5. However, at
least within our baseline results, there are no other immediately obvious hypotheses that critically
depend on the use of the finer bounds.

The power of the finer bounds can, however, be seen if we turn to the analysis of the fine
structure of the welfare time series. It is of interest to ask what we can say about the rate of welfare
growth over the period 1970-2006. Given upper and lower bounds for welfare, bounds for welfare
growth can be easily constructed without losing sharpness by computing the upper bound of growth
as the growth between the lower bound at date 1 and the upper bound at date 2, and vice versa for
the lower bound of growth. It is easy to see from Figure 3.10 that the width of the bounds exceeds
the typical 1-year growth rate, so it is useful to compute average growth rates over long periods,
such as 10 years; however, this procedure prevents us from talking about growth trends at the ends
of the sample period.15 . Figure 3.10 shows bounds on the growth rate using fractiles only, and using
fractiles together with the Gini coefficient for averaging periods of 10 years. It is obvious that using
the finer bounds connotes an important improvement; we can reject the hypothesis that average
annual growth rates in any 10-year period in the sample were negative using the fine bounds, but
not using the fractile-based bounds. Moreover, the width of the bounds shrinks considerably when
the bounds are finer, and we can make some nontrivial statements about the level of growth in
different time periods with the fine bounds, such as the average annual growth rates being bounded
away from zero. Unfortunately, we cannot make any statements about welfare growth accelerating
or decelerating during the sample period, a question of obviously great interest.

3.5.5 Higher Atkinson Parameters

As mentioned in section 3.2, it is impossible to construct nontrivial bounds for Atkinson welfare
indices with coefficient greater than unity because the lower bound is zero whenever a distribution

1 5This limitation may actually be appropriate in practice, since the growth dynamics at the ends of the sample
period may be products of extrapolation. However, it is clear we can have too much of a good thing, as with 20-year
average growth rates, we lose more than half of our 36-year long sample period.
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of income with positive mass at zero is allowed. However, bounds for higher degree Atkinson indices

can be constructed under the assumption of a minimum income. A flexible procedure for selecting
such a minimum income is to assume that the minimum income is a fixed fraction of the lowest

fractile mean, which allows poorer countries to have lower minimum incomes than richer countries.

Figures 3.11 and 3.12 show plots for Atkinson welfare indices with -y = 1.25 and y = 1.5 under

the assumption that the minimum income is one-fifth of the mean income of the lowest fractile.

Since the magnitudes of the higher-parameter Atkinson indices are much lower than the magnitude

of the -y = 0.5 Atkinson index, the series are plotted at different scales, but the growth dynamics

of the higher-parameter Atkinson indices are clear. Even for these higher values of the Atkinson

parameter, welfare rises unambiguously, although we see from the figures and from Table I that

the bounds are much wider and are compatible with much smaller rises in welfare. For -y = 1.25,
rising inequality could have destroyed 31% of potential welfare growth, and for -y = 1.5, it could

have eroded as much as 69%.

3.6 Robustness Checks

The formulae for the uniform bounds given fractile shares and the Gini coefficient are derived

analytically, and hence need to be checked for robustness only to the relaxing the assumptions

underlying them. The substantive assumptions underlying the baseline results presented in the

previous sections are as follows: 1) the GDP data in the PWT and the inequality data in the WIID

selected as described in fact do describe accurately the true GDP and inequality measures of the

countries in question, and 2) the interpolation and extrapolation method assumed in section 4 is a

good approximation for the actual behavior of the time series in question. These assumptions will

be scrutinized in what follows.

3.6.1 Sampling error in the fractile shares and the Gini coefficient

The derivations in section 3 took the fractile shares and Gini coefficient to be known without

error; in fact, these quantities are survey estimates that depend on the sample collected, so there

may be a nonzero probability that the true values of the Atkinson index are not contained in the

bounds constructed from the empirical estimates. The idea that sharp bounds based on empirical

estimates may fail to contain the population value for which they have been constructed is explored

in McDonald and Ransom (1981) and is a serious problem. In the context of the paper, there is

reason to believe that this problem is small, since the WIID provides information on the sample

sizes of most of the listed household surveys, and these sample sizes are very large, with median

sample size equal to 23,900. However, since the surveys are nonrandom samples, and in particular,
probably have high degrees of clustering, the variances of the resulting estimates are higher than

the corresponding variances would have been had the surveys been simple random samples.

I perform a robustness check for sampling error by the following procedure:

1. I assume all underlying country distributions of income to be lognormal with inequality pa-

rameter implied by the Gini coefficient.

2. I draw 100 simple random samples from each survey with sample size equal to 1/10th of

the listed sample size in order to control conservatively for the variance-inflating effect of

nonrandom sampling procedures.
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3. I compute the decile share-based bounds (using the crude closed-form version of the bound
for the minimum welfare) for each draw.

4. I compute sampling-error-adjusted confidence bounds for welfare as the upper bound plus 2

standard deviations, and the lower bound minus 2 standard deviations.

5. I aggregate these bounds to obtain bounds for the entire world using the baseline imputation

assumptions.

This procedure is very conservative, as sampling error is likely to be independent (or very

weakly correlated) across surveys, so aggregating all the lower and upper bounds considers the very

unlikely case that sampling error (as opposed to systematic error) consistently was in a downward

(or upward) direction for all surveys in the dataset. Hence, the resulting confidence bounds contain
the true value of world welfare in a given year with a probability far higher than 95%. The graph

of the resulting bounds, along with the bounds based on the lognormal fractiles without sampling

error, are presented in Figure 3.13. It is obvious that adding sampling error, even in a highly
conservative fashion, does not substantially affect the bounds.

3.6.2 More conservative interpolation / extrapolation

One of the substantive assumptions that had to be made in the aggregation of country estimates

to get the world welfare estimates concerned the imputation of bounds for country-years without

any inequality data. Our baseline assumption is that the survey data gives us all the peaks and the

troughs of the time series, so observations for the missing country-years should be contained between
the outer envelope of the bounds of the closest available observations. An (extreme) alternative
methodology would be to compute the highest upper bound and lowest lower bound observed in the

data for the given country, and assume that inequality in this country never violates these bounds.

Hence, we relax our assumption that all the peaks and troughs of the inequality series are observed
to the assumption that we observe the highest peak and the lowest trough. Extrapolation is still

performed linearly, so as to allow inequality to grow to values not observed in the sample.
I present the resulting bounds for welfare along with the baseline bounds for -y = 0.5 in Figure

3.14 and Table I. It is clear that we can reject the hypothesis that welfare did not grow in favor of

the hypothesis that it grew for most periods of interest, and over the course of the sampling period.
The bounds do widen, and we see that rising inequality could have destroyed as much as 41% of

potential welfare growth (although the bounds are compatible with inequality falling as well).

One may argue that I fail to reject the hypothesis that world inequality rose because my interpo-

lation scheme is too conservative: in particular, 1) the bounds for countries without surveys are too

wide since they capture uncertainty in the level of inequality in the country as well as uncertainty

coming from functional form, 2) the outer envelope interpolation is too cautious, since inequality

tends to rise smoothly, 3) the linear extrapolation is too conservative as it inflates uncertainty due

to functional form. In particular, Sala-i-Martin (2006) and Pinkovskiy and Sala-i-Martin (2009)
impute inequality for countries with no survey data using regional average inequality, while Mi-

lanovic (2002) and Chen and Ravallion (2001) (implicitly) interpolate and extrapolate horizontally

by using surveys from nearby years to stand in for surveys in years of interest. Therefore, Figure

3.20 considers what happens to the baseline inequality series (y = 0.5) when these assumptions are

relaxed. One modification replaces the bounds for countries without data by the average (rather
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than the envelope) of the bounds for countries in the same region with data, and the second mod-

ification also interpolates the bounds within the core (rather than taking their envelope) and uses

horizontal extrapolation of the bounds rather than linear extrapolation. For the second modifi-

cation, it is possible to barely reject the hypothesis that world inequality rose (the lower bound

in 1970 is 0.4006 and the upper bound in 2006 is 0.3997), but this is entirely a result of using

horizontal as opposed to linear extrapolation. Hence, in order to understand whether inequality

has risen or fallen since 1970, it is necessary to collect more recent survey data (some of which has

probably not been processed in the case of recent surveys) in finer categorizations.

3.6.3 Alternative inequality data: different procedures for choosing surveys

As noted by, e.g. Atkinson and Brandolini (2001), in using the DS database or the WIID, it is

crucial to select comparable surveys so as to avoid comparing the inequality of conceptually different

distributions. While it is difficult to write a formula that can combine the various considerations

that go into determining which surveys to select, the methodology for selecting surveys that I

have presented in section 4 can be justly criticized for being heuristic and difficult to replicate.

Therefore, I provide two alternative methodologies; one that seeks to ensure comparability of the

surveys selected within each country at the cost of a substantial loss of coverage, and another

that attempts to control for the range of sampling and nonsampling error in the computation of

the Gini coefficient at the cost of not being able to use fractile shares to reduce the width of the

distribution-free bounds.

The first (hereafter homogeneous) methodology entails selecting the surveygroup with frac-

tile shares with the largest number of surveys within the sample period for each country, and taking

surveys for that country only from the selected surveygroup. Hence, all surveys for a given country

must be identical along all dimensions that are held fixed within a surveygroup: source, underlying

population, unit of analysis and equivalence scale, and income concept. However, this methodology

does not attempt to ensure homogeneity across countries, and recognizes that while within-country

trends in inequality will be measured using comparable data, the levels of inequality in different

countries will not necessarily be comparable. (Trying to ensure homogeneity across countries by fur-

ther excluding surveys from the WIID would do violence to the procedures, as either China, which

has almost exclusively income surveys, or the Indian subcontinent, which has almost exclusively

consumption surveys, would be excluded). From Figure 3.21, we see that this methodology drasti-

cally restricts coverage; only for the 1980s is more than 70% of the world covered even indirectly

(in the core), and (not shown) the inequality series for China stops in 1992.

The second methodology (hereafter the extreme Ginis methodology) involves ignoring the dif-

ferences between all surveys in terms of income concept and unit of analysis (but acknowledging

the differences in terms of the underlying population), and for each country-year, taking as the final

bounds the outer envelope of the bounds based only on the Gini coefficient for each Gini coefficient

presented in the WIID for that country-year. The extreme Ginis methodology conjectures that all

the income concepts and equivalence scales in the surveys are imperfectly implemented, but the

range of resulting estimates captures the Gini coefficient that would result from an ideal imple-

mentation of a consistent income concept and equivalence scale. The average standard deviation

of the Gini estimates is 0.042, which far exceeds the time standard deviation of the Gini coefficient

within a given surveygroup across multiple years (whose mean and median are approximately 0.02).

Hence, it is plausible that, given the wide range of the Gini estimates, this range contains the true

value of the Gini. Obviously, this methodology expands the coverage of the surveys: Figure 3.22
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shows that more than 90% of the world population are in the core until 2000, and more than 80%
until 2003, while about 60% are directly covered by surveys. 16

Figure 3.15 shows bounds for world welfare using the homogeneous methodology, while
Figure 3.16 shows the nonparametric bounds for world welfare for y = 0.5 for both the baseline
estimates and the extreme Gini estimates. Since the extreme Ginis methodology can use only
Gini-based bounds, I use the Gini-based baseline bounds for comparison. These estimates are
remarkably close to the baseline estimates, and yield the same implications; for the homogeneous
survey selection it is possible to conclude that world welfare rose for every decade for -y = 0.5,
and we see from Table I that any rise in inequality could have destroyed no more than 17% of
potential welfare growth. The fact that the extreme Gini estimates largely coincide with the
baseline estimates is not unexpected when one considers the great width of the Gini bounds, which
dwarfs most empirically plausible ranges of the Gini coefficient. 17

3.6.4 Alternative GDP data: Treatment of Chinese GDP

In 2007, in the wake of concluding a series of price surveys in the developing world, the World
Bank revised the prices it used in its purchasing-power-parity adjustments, which led to major
changes in its GDP series in the World Development Indicators, in particular, the lowering of
Chinese and Indian GDP by 40% and 35% respectively. This development has been reviewed in the
popular press (The Economist: Nov. 29, 2007; Dec. 19, 2007). The revision has been criticized,
in particular on the grounds that it considered prices in urban China only. Penn World Tables
version 7 fully incorporates these PPP revisions, but, mindful of the controversy of the new Chinese
PPP estimates, reports two estimates for China: one based exclusively on Chinese national income
accounts (version 1) and the 2005 ICP price survey for PPP adjustment, and the other one including
some further PPP adjustments to compensate for the potentially nonrepresentative geographical
character of the Chinese price surveys in the 2005 ICP (version 2). In my analysis, I have used the
version 2 China series from the Penn World Tables because it delivers more conservative results.
Figure 3.17 shows bounds for world welfare using the version 1 series for Chinese GDP. We see
from Table I that using the version 1 series actually strengthens my conclusion: world welfare rises
by at least 101% from 1970 to 2006, and in particular, rises by at least 107% of uniform growth,
suggesting that if we use the version 1 series, we could actually reject the hypothesis that inequality
rose. However, such a rejection would not be robust to alternative extrapolation and interpolation
methodologies, so I interpret this result cautiously.

3.6.5 Alternative GDP data: World Bank GDP

To check for robustness to the source of GDP more radically, I re-estimate world welfare and
inequality measures using World Bank estimates of GDP from the World Development Indicators
(hereafter WB). Figure 3.18 presents the WB welfare estimates for y = 0.5 along the baseline
results. The bounds are extremely close to each other. One may conjecture that the PWT GDP

6 1n results not reported, I also consider replacing the WIID survey data with data on Gini coefficients from
Galbraith and Kum (1999). The results are essentially identical to my baseline Gini results.

7in fact, the extreme Gini bounds are sometimes narrower than the baseline bounds. This is because using
Gini coefficients increases the number of country-years with surveys, thus replacing very conservative imputation
procedures with much narrower nonparametric bounds for these country-years.
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series might do a better job of describing GDP earlier in the sample period while the WB GDP
should do a better job later in the sample period, which would mean that welfare rose by less than
either set of bounds would imply separately. We see that even taking the outer envelope of the
nonparametric bounds for PWT GDP and WB GDP, we can conclude that welfare rose over the
sample period, and we can establish more restrictive hypotheses as well (e.g. welfare rose from
1990 to 2006). Hence the WB series does not substantially change our results.

3.6.6 Alternative GDP data: World Bank Survey Means

As discussed in Section 3.4.1, there is disagreement in the literature on whether to combine
national accounts GDP with survey data on inequality, or to use the survey mean as a measure
of the mean of the income distribution. In particular, Milanovic (2005) and Chen and Ravallion
(2001) use survey means in their calculations of world poverty and inequality. In this paper, I
have used national accounts data in order to 1) remain comparable to most of the literature on the
evolution of the world distribution of income and to the growth literature, and 2) avoid problems
relating to the unavailability of survey means for many countries and years, given that the coverage
of national accounts is nearly universal. In this section, I investigate the robustness of my results
to the use of survey means in place of national accounts GDP.

I use the data on survey means from the World Bank's poverty calculator, PovCalNet,
which is the most complete and consistent panel of survey means that I am aware of. However,
even this panel does not match the nearly complete coverage of the Penn World Tables. For 79
major countries (including China, India, Nigeria, Argentina, Mexico and the former Soviet Union) I
can obtain survey mean data from 1990 to 2004, extrapolating and interpolating the survey means

using the methods of section 4.4. I use the World Bank national accounts data to construct a
comparison sample of the same 79 countries during the same time period. There are substantial
differences between the national accounts and the survey means, which typically result in lower
income and slower growth in the survey means than in the national accounts. For example, China's
annual rate of growth is more than 1 percentage point smaller if computed using survey means than
using national accounts. There are many explanations for these differences (Deaton 2005, 2010),
such as intentional and unintentional survey misreporting, problems in monetizing in-kind income,
and inappropriate national accounting.

Figure 3.19 presents the sharp upper and lower bounds for the welfare series computed for
the 79-country composite using 1) the survey means, and 2) Penn World Table national accounts

data for the period 1990-2004. The increase and the growth rate of welfare in this sample is much
lower than for the baseline because the sample covers a much shorter period of time - in fact,
the average annualized growth rate in the 79-country sample is 1.6% per year, while the average
annualized growth rate in the baseline sample is 1.77% a year. It is clear that whether one chooses
to use national accounts or survey means, world welfare rises unambiguously during this period,
and, in fact, would rise unambiguously if we restricted our analysis to some subperiods of this

data, such as 1990-2000. Table I shows the minimum absolute rise in welfare and the minimum
growth rates for these welfare series. In particular, it is clear that in this subsample of countries,
and even using survey means, we can actually reject the hypothesis that inequality rose within the
subsample of countries because the lower bound of the ratio of welfare growth to per capita GDP
growth exceeds 100%.
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3.6.7 Accounting for nonresponse and nonrepresentativeness

A major problem with the survey data is that the people who respond to the surveys

might systematically differ from people who do not. This concern is raised in Deaton (2005), who

argues that falling response rates to many household surveys, and the large discrepancy between the

national accounts means and the survey means, are problems of the first magnitude for the validity

of the surveys. A particularly worrisome problem is that rich people in developing countries are

systematically not covered by surveys (e.g. they live in gated communities to which surveyors have

no access, or they openly lie to the surveyors for fear that their truthful answers might be given

to the government). Atkinson, Piketty and Saez (2009) make the general case for the importance

of inequality at the very top of the distribution in calculations of global inequality, and Banerjee

and Piketty (2005) argue that failure of the Indian NSS to cover the top of the Indian income

distribution may account for as much as 20%-40% of the much-documented growing gap between

Indian national accounts and survey means in the NSS.
Given that the Atkinson welfare measure is decomposable, a simple method to generate

sharp bounds given systematic nonresponse is to divide the population into two parts, respondents

and nonrespondents, and combine the bounds for respondents with worst-case assumptions about

nonrespondents. Specifically, suppose that the survey represents a fraction A of the population,
who have mean income pc. Note that A is bounded below by the response rate, but may in fact

be larger than the response rate if it is possible to adjust for nonresponse within the survey. Let

z := p/,1 and let ALB (-y) and AUB (y) be the upper and lower bound for the Atkinson inequality

index computed on the basis of the survey data without adjusting for nonrepresentativeness. Then,
the sharp nonrepresentativeness-adjusted bounds for A (y) are as follows:

[ 1~ - Az " /

lower bound: ALB (1 - a) = 1 - [A (z)a (1 - ALB (1 - a))' + (1 - A) (1-A

upper bound: AUB (l - a) = 1 - All/z (1 - AuB (1 - a))

with the restriction that Az < 1. This restriction always holds if z < 1. It is apparent

that ALB (1 - a) increases in (A, z, a), and AUB (1 - a) decreases in these variables, so as surveys

become less representative (A falls) and as survey mean income falls further below the national

accounts GDP (z falls), the confidence intervals widen. Therefore, if we want to make the broader

assumption that z > .z and A < A for some and A, we just compute the upper bound, and set the

lower bound at ALB (1 - a) = ALB (1 - a).

The variable A has the intuitive meaning of the response rate. The variable z is the ratio

of the mean income of respondents to true mean income. If A is equal to unity, and z < 1, then z
should be interpreted as the fraction of national income accounted for by the survey because 1 - z

is the fraction of income owned by the small number of unsurveyed super-rich individuals.

Unfortunately, the WIID does not contain data on the response rates to the surveys (either

in the database itself or in the documentation), and reports mean survey incomes very sporadically

(only one survey mean is ever reported for China). Therefore, for the purposes of this robustness

check, I will assume common values A and z for the entire world, and compute bounds on their

basis. Such bounds will, in a sense, be more informative, as these bounds will be valid for all values

of A and z higher than the values chosen, whereas attempting to retrieve z from the WIID would
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introduce additional sources of error. I let A take on values in {0.80, 0.90, 1}, following Korinek

et. al. (2003), who give a reasonable range for nonresponse of 10%-30%. I let z take on values

in {0.75, 0.875, 1} following Banerjee and Piketty (2005), who argue that the top 1% of the Indian

income distribution hold approximately 12% of Indian national income, and following Atkinson,
Piketty and Saez (2009) who document that the top 1% of the US income distribution hold a share

of national income approaching 25%.

First, suppose that nonresponse is negligible (A = 1) and is coming from a small group of

super-rich individuals who are not captured by the surveys. Figure 3.23 plots the welfare bounds

for the baseline case, for z = 0.875 and for z = 0.75. For either value of z, we can be confident that

welfare rose. We can barely fail to reject that welfare fell for the outer envelope of all the bounds

presented. Thus, under the assumption that the discrepancy between survey mean income and

national accounts income can be explained by part of the growth enriching a very small and very

rich minority, with full response otherwise, we can conclude that welfare rose even if the fraction

of national income held by this minority rose, for instance, from 0 to 25% over the sample period.

However, the bounds are consistent with rising measured inequality and a rising share of income

held by the super-rich substantially eroding welfare gains relative to uniform growth: Table I shows

that if z = 0.875, the realized welfare growth may have been only 68% of per capita GDP growth,

and if z = 0.75, the realized welfare growth may have been only 43% of per capita GDP growth.

These are of course much more demanding sets of bounds because they try to not only capture

the uncertainty in the population measured by surveys, but also attempt to account for factors

changing the composition and size of this population.

We now consider the more general case when only A of the population is covered by any

household survey, and its mean income is z of the true mean income. This situation is very general;

in particular, there are no assumptions at all on exactly how nonrandom the sampling is, and how

large or small inequality is in the fraction of the population not surveyed. However, if survey means

are low and nonresponse is high, the implication is that an increasingly large and economically

significant part of the population is not being covered, which leads to wide nonparametric bounds

and an inability to reach any conclusions without further assumptions. Figure 3.24 presents the

baseline bounds as well as the bounds for (A, z) = (0.9,0.875), (A, z) = (0.9,0.75) and (A, z) =

(0.8,0.875). It is clear that we are confident for each set of the bounds that world welfare rose, but

only barely so in some cases. In particular, setting the nonresponse rate to 30% (A = 0.7), which

is deemed possible by Korinek et al. (2003), would prevent us from rejecting the hypothesis that

welfare fell. While we can be confident that welfare rose if the nonresponse rate is sufficiently small

and if the mean income of respondents is sufficiently close to total mean income, we cannot be

confident that welfare rose essentially for any higher nonresponse rates, which might nevertheless

be plausible.

3.7 Conclusion

In this paper, I presented formulae for sharp, nonparametric bounds for typical measures of

inequality and welfare that can be computed from standard summary statistics of income distri-

butions that are routinely provided to the public. These bounds are valid independently of the

functional form of the underlying distribution of income. Hence, these bounds illustrate exactly

the extent of knowledge about the inequality measures in question that we gain from our data; they

render moot any questions about appropriate assumptions for the form of within-country or within-
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fractile income distributions and they help focus the debate over whether we have seen improvement
in living standards onto issues of the validity of the data from which they were computed.

Using national accounts GDP estimates and WIID survey data, the nonparametric bounds
imply that for any series compatible with these data, welfare must have risen, and risen substantially,
but it is not possible to conclude whether world inequality rose or fell. This claim is supported
through sensitivity analysis over the exact use of the WIID data as well as over the methodology used
to compute the national accounts GDP estimates. In particular, it appears reasonable to conclude
that notwithstanding the incomparability problems of surveys in the WIID, and notwithstanding
recent issues in adjusting national accounts for PPP, welfare has risen over the period 1970-2006, as
well as over most shorter periods of interest within this time. It is also unlikely that sampling error
or vagueness in the income concepts used in administering the surveys could change this result,
so long as surveys are fully representative of whatever income concept they are measuring. For
most of my robustness checks, I can rule out substantial rises in inequality, but if I use extremely
conservative interpolation procedures, or if I attempt to account for the possible deterioration of
survey representativeness of the population, substantial rises in inequality that destroy around 50%
of potential welfare growth are compatible with the estimated bounds.

Hence, the major challenge that remains to the claim that welfare rose consistently over
the period 1970-2006 is the concern that the WIID surveys are significantly nonrepresentative of
the underlying population because of selective nonresponse. While under some assumptions, this
concern does not overturn our conclusion, for some possible estimates of the extent of nonresponse,
we obtain that further assumptions are needed to conclude anything about the path of welfare
during the sample period. It is therefore of great importance to accurately gauge the reliability
of the survey data we are using in order to reach conclusions about what happened to welfare in
recent times.
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3.8 Proofs of Various Propositions

3.8.1 Proof of Lemma 1 (3-2 Lemma):

Suppose that the increasing and convex curve L (p) on [0, p*], where p* > 1, is defined by three line

segments, where the first segment is defined by q = mp, and the third segment is defined by q = zp-

(z - m), where 0 < m < z < oo. Let the second segment lie between the point (p, np) on the first

line and (1 + 4-M, q) on the third line, so its equation is M (p) := q = m + Z(q-mn) -

Therefore, L (p) = max mp, mp + (4 (p - p) , zp - (z - n)) on [0, p*]. Let the value of

the third line segment at p* be defined as rp*.

Then, the Gini constraint is

j (p)dp=K1 +K 2 [(q-m)(1-p)]=G

for some K 1 and K 2 that are constants in p and 4, so the Gini constraint is equivalent to 4= = +m,
for some S E [0, oo]. Note that P is then constrained to lie in the interval [0, P] for some < < 1,
since q < rp*

The objective is given by

0 = j (L'(p))a dp = pma + z-) (q - mi) (z (1 - p) + q - m)- + z (K - z -

If and only if it can be shown that 0 is minimized by some P E {O, P}, or that the problem of

minimizing 0 in p subject to the Gini constraint yields a corner solution, then the lemma is proved;

since then the line M (p) dominates either the first or the third line on [0, p*]. Hence, the lemma is

equivalent to the problem

mm n (1 - p) m, + z-( 1 a) -
PE[L6, 11 (S\P)

1 p 2) + p2) -

having a corner solution (where we replace p = 1 - p). Now, let w = p2 /S E (0, oo) . Then, we

obtain.

Dp = z[(+mw a(2 ((1 - a) + a +zw 1) + -L (1 -
2_ 2 [D + za _ +mw a 1 (__) +

-[Dp ± Z ( S+Z ) ( - i+mw)
A necessary and sufficient condition for a corner solution to

D, = 0 >. D2 < 0, or that

1+m' - (m) , and1+ZW z
2(1-a) z-m w ' \
(1+mw (1+zw))))
the optimization problem is that

= M 2 ((1-)( 1+znw

(ma 1+mw a

z ~1+zw

m 1+zw N
a- -1
zl1+mm/

1 (a(z-m)
- 1+M

1 1(+mm a,

2(1 -a)(z-m)w

+(1+mM)(1+zw) ,J}

which is trivially true.

Hence, the minimum of the problem is achieved at the boundary, and the optimizing segment

of the curve has only one interior corner rather than two. It is obvious by induction that for
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any piecewise linear curve with z corners between two consecutive constrained points, there exists
another piecewise linear curve that has only one corner between these points, satisfies the constraints
of the original curve, and attains a weakly smaller value of the program.

In particular, for any piecewise linear Lorenz curve L with finitely many kinks, there exists a
sequence {aT, af } such that a- < mi 5 at < a+ Vi = 1, ... , k, and the Lorenz curve given by

max {max{a- (p-pi) +qi,af(p-pi+1) +qi+1}}
i=1,...,k

satisfies the constraints and attains a weakly smaller value of the objective than does the curve
L.

3.8.2 Proof of Proposition 2:

The problem is

inf (L(p))a dp st. 1) = L (p) dp, 2) Vi = 1, .., k, L (pi) = qi

Since the functional f' (L'(p))" dp is bounded below by zero, it must be the case that S
inf fy (L'(p))a dp E R. Moreover, there must be a sequence {Li} E 2c such that lim fj (L (p))a dp =
LE2 i -+
S. Now, since the function L' (p) is Riemann integrable, it must be the case that for any e, and
for any i, there exists Li E 2c such that Li is piecewise linear with finitely many corners, and

fJ (L~ (p))& dp - f (4 (p) dp Ke.18 Hence, let {ei} E R be a sequence such that lim ei = 0,

and let {1L3 }be a sequence of piecewise linear functions with finitely many corners such that

fo (L (p))' dp - fo (i4 (p) dp K5ei. Then, lim f (4 (p)) dp = S.

Now, by Lemma 1, for every piecewise linear Lorenz curve Li E 2c, there exists a piecewise
linear Lorenz curve L (; aj) E Zc given by

L (p; ai) = max {max {a., (p - ps) + qs, ai, (p - ps+1) + qs+1
s=1, ... ,k's'

for some ai = {ai,, a} such that a- < ms :5 a - a such that f ( a8 } dp <
a 1 a

(I(p) dp. Hence, lim f (fL (p; a)) dp < S, and by definition of infimum, lim 0( (p; ai) dp

S. Now, let the set A be the set of all ai satisfying the restriction a- < m. at, < a- Vi
1, ... , k, and note that this is a closed subset of the compact set Pk, and is therefore compact.

Hence, the sequence {a}=1 has a convergent subsequence, {ai(k) =1, which converges to a limit

a. Finally, observe that by the definition of L (p; al), the integral fo (Li (p; az)) dp is continuous

in ai, so

S = lim fo (i (p; ai)) dp = 101 Li (p;ai(k>)) dp (p; a)) dp

and L (p; a) is a Lorenz curve that attains the infimum value S. Since L (p; a) is defined by 2k

parameters, its coefficients (f a, at }= can be solved for using standard numerical methods.

18I am very grateful to Paolo Siconolfi for help with this part of the proof.
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3.8.3 Proof of Proposition 3:

The 3-2 Lemma implies that if there is only a Gini constraint, the Atkinson is maximized by a

Lorenz curve L (p) with only one interior corner (p, q).

The Gini of this Lorenz curve is given by G = p - q, and the Atkinson is given by 1 - q'pl-a -

(1 - q) p(1 -p , so the parameters p and q of the optimal curve are given by

p=arg min (p-G)ap1-a +(1-p+G)"(1-p)1a}
pE [G,1)

and g = p - G. The second derivative of the minimand is given by

D,2= -a (1 -a) qalp~a =+ -2) + + -2)
Ip q1- 1q

which is negative, so any minimum must be a corner solution, and the maximized Atkinson is

given by max (G,1 -(1 -G) ).
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3.9 Table

Table I: Bounds on Increase and Growth of World Welfare

Diff. Diff. Growth Growth Rel. Growth, Rel. Growth,
Lower Upper Lower Upper Lower Upper
Bound Bound Bound Bound Bound Bound

3.7 Baseline 2626 3361 88 127 93 134
3.7 Garnma=0.9 1257 3234 65 330 69 350
3.9 Gini Bounds Only 1949 3937 65 190 69 201
3.9 Fractile Bounds, Sharp 2501 3579 83 147 88 156
3.9 Fractile Bounds, Crude 2484 3623 82 152 87 161
3.11 Baseline, lowest income at 2610 3331 87 124 92 131

0.2 of lowest fractile mean
3.11 Gamma=1.25, lowest income at 1052 2035 67 167 71 176

0.2 of lowest fractile mean
3.12 Gamma=1.5, lowest income at 382 1585 29 172 31 182

0.2 of lowest fractile mean
3.14 Extreme Interpolation 1731 4011 56 167 59 176
3.15 Homogeneous Survey Choice 2365 3541 78 132 83 140
3.16 Maximum Ginis 1510 3760 50 190 53 201
3.18 Alternative PWT Series for China 2804 3507 101 142 107 150
3.18 World Bank GDP 2548 3222 90 128 96 136
3.19 Survey Means 187 305 26 47 107 193
3.19 PWT GDP for Survey Means sample 780 1171 35 58 143 238
3.23 Super-Rich have <12.5 percent 1910 3695 64 160 68 169
3.23 Super-Rich have <25 percent 1214 4024 40 203 43 215
3.24 <10 percent Nonresponse, 984 4133 33 221 35 234

>87.5% Mean Income Ratio
3.24 <20 percent Nonresponse, 154 4524 5 306 5 324

>75% Mean Income Ratio
3.24 <10 percent Nonresponse, 419 4399 14 275 14 291

>87.5% Mean Income Ratio

Note: Table I summarizes the results from all the graphs. The number for every row indicates the graph
from which the relevant bounds are taken. The first two columns present bounds on the absolute increase of
world welfare (the certainty equivalent of the income distribution) in dollars. The next two columns present
bounds on the aggregate growth rate of world welfare in percent. The last two columns present bounds on
the ratio of the aggregate growth rate of world welfare to the growth rate of world GDP per capita in percent

(so 100 percent would correspond to welfare growing by as much as GDP per capita, or uniform growth).
The variations are:
Row 3.7 Baseline: PWT 7 GDP, WIID surveys selected by the procedure described in section 4.

Microdata used where available as described in section 4.
For country-years with no survey data: interpolate the bounds as the outer envelope of the bounds

of the adjacent years with survey data;
extrapolate the bounds as the outer envelope of horizontal and linear extrapolation of each bound;
impute bounds for countries with one or no surveys as the outer envelope of the bounds for all countries

in the given region at any time in the sample period.
Bounds based on Gini coefficient and fractile shares for all country-years with survey data. Atkinson

parameter y is 0.5
Row 3.7 y=0.9: Same as Baseline, but y=0.9
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Row 3.9 Gini Bounds Only: Same as Baseline, but bounds based on only Gini coefficient.
Row 3.9 Fractile Bounds, Sharp: Same as Baseline, but bounds based on only fractile shares (exact

computation)
Row 3.9 Fractile Bounds, Crude: Same as Baseline, but bounds based on only fractile shares (approxi-

mate computation)
Row 3.11 Baseline, lowest income at 0.2 of lowest fractile mean: Same as Baseline, but bounds computed

under assumption that the lowest income is 0.2 of the lowest fractile mean.
Row 3.11 7=1.25, lowest income at 0.2 of lowest fractile mean: Same as Baseline, but bounds computed

under assumption that the lowest income is 0.2 of the lowest fractile mean.
Row 3.12 y=1.5, lowest income at 0.2 of lowest fractile mean: Same as Baseline, but bounds computed

under assumption that the lowest income is 0.2 of the lowest fractile mean.
Row 3.14 Extreme Interpolation: Same as Baseline, except for country-years with no survey data,

impute the outer envelope of the bounds over the country over the sample period (if country has more than

one survey), or impute the outer envelope of the bounds over the entire region over the sample period (if

country has one or no surveys).
Row 3.15 Homogeneous Survey Choice: Same as Baseline, except choose longest survey series from the

same source and with same equivalization and income concept for each country from WIID.
Row 3.16 Maximum Ginis: Same as Baseline, except for each country-year with any WILD survey data

on a national scale, use envelope of all Gini-based bounds implied by WIID surveys in country-year.
Row 3.17 Alternative China GDP: Same as Baseline, except use the PWT 7 version 1 GDP series, which

bases Chinese GDP exclusively on the 2005 PPP revision without further adjustments.
Row 3.18 World Bank GDP: Same as Baseline, except use GDP data from World Development Indicators,

2008.
Row 3.19 Survey Means: Same as Baseline, except use survey means from the WIID instead of PWT

GDP for all years in which they are available.
Row 3.19 PWT GDP for Survey Means sample: Same as Baseline, except restrict to the sample of

countries with survey mean data.
Row 3.23 Super-Rich have <12.5 percent: Assume WIID statistics exclude a set of people of measure

zero who own at most 12.5% of national income respectively.
Row 3.23 Super-Rich have <25 percent: Assume WIID statistics exclude a set of people of measure zero

who own at most 25% of national income respectively.
Row 3.24 <10 percent Nonresponse, >87.5% Mean Income Ratio: Assume WIID statistics exclude non-

respondents, with respondents' mean income at least 87.5% of the overall mean income but the distribution

of this income among the nonrespondents is arbitrary.
Row 3.24 <20 percent Nonresponse, >87.5% Mean Income Ratio: Assume WIID statistics exclude non-

respondents, with respondents' mean income at least 87.5% of the overall mean income but the distribution

of this income among the nonrespondents is arbitrary.
Row 3.24 <10 percent Nonresponse, >75% Mean Income Ratio: Assume WIID statistics exclude non-

respondents, with respondents' mean income at least 75% of the overall mean income but the distribution

of this income among the nonrespondents is arbitrary.
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3.10 Figures

Fraction of Population

Legend

-- Minimum welfare, crude approximation

Minimum welfare, sharp approximation

Figure 3.2
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Maximum welfare, Gini only
Maximum welfare, fractiles only

Maximum welfare, fractiles + Gini (crude)

Maximum welfare, fractiles + Gini (sharp)
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Figure 3.3

World Inequality: China, 1970-2006
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Fig. 3.6
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Note: The source for Figures 3.4 and 3.5 is the Penn World Tables 7. The source for Figure 3.6 is the
WIID inequality database. In Figure 3.6, fraction covered directly is fraction of world population in given
year in countries with surveys used from WIID. Fraction in core is fraction of world population in given year
in countries with at least one earlier survey and at least one later survey.
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6000-

D 5000-E
0

iO 4000-

3000-

w 2000- -

1000t -

1970 1980 1990
Year

I
I

/
-ir

/
,

2000

-- Baseline, Gamma=0.5 - - - Gamma=0.9

148

(3.6)



Figure 3.8
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Note: Figure 3.7 (resp., Figure 3.8 ) shows the bounds on global Atkinson welfare indices (resp., global
Atkinson inequality indices) for parameters y = 0.5 and -y = 0.9. Each pair of identically formatted lines
represents a pair of bounds. The bounds are sharp given the fractile shares and Gini coefficient for any
household survey used, subject to interpolation, extrapolation and imputation for countries and years without
inequality data. Mean incomes to construct Figure 3.7 are taken from the Penn World Tables 7.

Fig. 3.9

6000-

E
0
o 5000-

- 4000-

3000-

2000-

(3.9)

Gains from Tighter Bounds
World WeWare, Gamma=0.5

''

1980 1990 2000
Year

Baseline, Gini + Fractiles
- - - Fractiles, Crude

- - - Fractiles, Sharp
-- ----- Gini, Sharp

Note: Figure 3.9 presents sharp global Atkinson welfare bounds based on different statistics from the
household surveys in the WILD database. Note that most of the upper bounds coincide.
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Note: Figure 3.10 presents sharp bounds on global Atkinson welfare growth based on different statistics
from the household surveys in the WIID database.
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World Welfare, 1970-2006
Gamma=1.25

1980 1990 2000
Year

-3500 2
E

-3000 E

-2500 E
0

-2000 3
:3

-1500

10
-1000 :1:7

W

Baseline, Gamma=0.5 - - - Gamma=1.25

All indices assume that minimum income is no less than 1/5th of lowest fractile m ean

150

Fig. 3.10

in
in

(9
*0
in

in

in

in

6



World Welfare, 1970-2006
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Note: Figures 3.11 and 3.12 presents sharp global Atkinson welfare bounds for higher values of the

parameter -y. Different series have their own y-axes because of the difference in scales in the indices.
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Robustness Check: Sampling Error (Lognonnal Model)
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Robustness Check: Extreme Gini Coefficients

-- Baseline, Gin bounds - - - Extreme Ginis

Fig. 3.17

Robustness Check: Different Versions of PWT for China
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Robustness Check: World Bank GDP
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Note: Figure 3.13 checks robustness with respect to sampling error by assuming the underlying inequality

distributions in WIID are lognormal and comparing the bounds based on the predicted quintile shares with

bounds that incorporate sampling error in the quintile shares. Figure 3.14 checks for robustness to imputing

country and regional extreme values of the Atkinson welfare index for countries and years with missing data

instead of extrapolation. Figure 3.15 checks for robustness to constraining all surveys selected from WIID

for a given country to come from the sanie source. Figure 3.16 checks for robustness to using the envelope of

the bounds for the highest and lowest Gini coefficient provided for every country-year with inequality data;

153

Fig. 3.16 (3.16)

4500

40M0

3 3500

o 300011:z25

(3.17)

Fig. 3.18 (3.18)

ooo

<2000-1

1970
'



the baseline series is also based only on Gini coefficients. Figure 3.17 checks for robustness to using GDP
from the 2008 World Development Indicators. Figure 3.18 checks for robustness to using an alternative GDP
series for China reported in the Penn World Tables.
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Robustness Check: Survey Means
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Note: Figure 3.19 checks robustness for the assumption that survey means provide a better measure

for mean income than do national accounts GDP. I compute bounds for a sample of 79 countries, which

includes the largest and most populous countries in the developing world. The series in red presents bounds

computed using survey means from the World Bank's PovCalNet website, while the series in blue presents

bounds computed using PWT 7 GDP. The left vertical axis is to be used with the survey means series, while

the right vertical axis is to be used with the national accounts series.
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Note: Figure 3.20 shows sharp bounds for global Atkinson inequality indices for three different
assumptions about interpolation, extrapolation and imputation of the country Atkinson inequality index
bounds when inequality data for the given country-years is not available. The three different assumptions
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are:
Baseline: interpolate the bounds as the outer envelope of the bounds of the adjacent years with

survey data. Extrapolate the bounds as the outer envelope of horizontal and linear extrapolation of each
bound. Impute bounds for countries with one or no surveys as the outer envelope of the bounds for all
countries in the given region at any time in the sample period.

Regional Means: same as Baseline, but impute upper (lower) bound for countries with one or no
surveys as the average of the upper (lower) bounds for all countries in the given region in that year.

Regional Means plus Interpolated Bounds: same as Regional Means, but for countries with more
than one survey, interpolate each bound linearly and extrapolate the bounds horizontally.
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Note: Figure 3.21 shows breadth of coverage when selecting only surveys from the same source from the
WIID database; Figure 3.22 shows breadth of coverage when selecting all surveys with national coverage

from WIID. Fraction covered directly is fraction of world population in given year in countries with surveys
used from WIID according to the selection procedure. Fraction in core is fraction of world population in
given year in countries with at least one earlier survey and at least one later survey selected by the procedure.
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Robustness Check: Correction for Nonresponse
Unreported Income of Super-Rich
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Z is the ratio of respondents' mean income to true mean income

Note: Figure Xa checks robustness for the assumption that the WIID statistics exclude a set of people

of measure zero who own <12.5% and <25% of GDP respectively. Figure Xb checks robustness for the

assumption that the WILD statistics exclude nonrespondents, and that the ratio between respondents' mean

income and true mean income is Z.
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