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Abstract

The liquid metal battery has been shown to be a viable candidate for grid-scale
energy storage, due to its fast kinetics and ability to be constructed from economically
feasible materials. Various of the liquid metal couples that form high stable voltages,
such as the calcium chemistries, are rate limited because they tend to form solid
intermetallic compounds with high melting points. In order to understand and better
engineer these batteries, the kinetic properties of these liquid alloys, in particular the
chemical diffusivity, must be known accurately so that it can be used as input in
computational simulations to avoid the nucleation of any solids. Unfortunately, the
dominant experimental methods for measuring diffusion in liquid metals today are
unreliable because the measurement timescales are on the order of days, require long
capillaries susceptible to buoyancy-driven flow from temperature fluctuations, and
composition analysis must be done ex-situ as a solid. To counter all these problems,
a new and novel method for measuring the chemical diffusivity of metals in liquid
alloys derived from electrochemical principles is presented in this thesis. This new
method has the advantage of operating in shorter times scales of minutes rather than
days, and requires the use of small capillaries which collectively minimize the effect
of convectively-driven flow caused from temperature gadients. This new method
was derived by solving the same boundary conditions required by the galvanostatic
intermittent titration technique for solid-state electrodes. To verify the validity of the
new theoretical derivation, the method was used to measure the chemical diffusivity
of calcium in liquid bismuth within the temperature range of 550 - 700 'C using
a three-electrode setup with a ternary molten salt electrolyte. Three compositions
where studied (5% Ca-Bi, 10% Ca-Bi, and 15% Ca-Bi) for comparison. The chemical
diffusion coefficient was found to range between (6.77 ± 0.21)x10- 5 cm 2/s - (10.9 ±
0.21)x10-5 cm 2 /s at 5% Ca-Bi, (4.95 ± 0.65)x10- 5 cm 2 /s - (7.93 ± 0.37)x10- 5 cm 2 /s
at 10% Ca-Bi, and (6.22 ± 1.2)x10- 5 cm 2/s - (10.2 ± 0.26)x10- 5 cm 2 /s at 15% Ca-Bi
which, to our knowledge, are the first successful measurements of calcium diffusivity in
the liquid state. Arrhenius fits with good correlations revealed the activation energy
for diffusion to be (21.4± 1.7) kJ/mol, (23.0± 2.4) kJ/mol, and (17.7 ±5.9) kJ/mol as
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the calcium concentration increased, which are in excellent agreement with literature
published values and lie in the same range of 15-30 kJ/mol that is reported for most
liquid metals. The chemical diffusivity value was then used as input in finite element
simulations to model how convection affects the overall transport inside a 20-Ah liquid
bismuth electrode under the influence of different thermal boundary conditions. Also,
a phase field model was created to simulate the motion of the two interfaces inside a
liquid metal battery during operation, which to our knowledge, is the first time phase
field has been extended beyond two phases. Experimental kinetic values can then be
used as input in these numerical models to help characterize and optimize the entire
battery.

Thesis Supervisor: Donald R. Sadoway
Title: John F. Elliott Professor of Materials Chemistry
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Chapter 1

Introduction

The main motivation behind the research presented in this thesis was driven by the

need for grid scale energy storage, and the potential of using liquid metal batteries

(LMBs) to asses that need. In this chapter I briefly discuss the potential of using

LMBs for storing energy at the grid scale, as well as the fundamentals of how the

LMB operates, and the importance of how knowledge of the chemical diffusivity leads

to optimizing the kinetic performance of LMBs.

1.1 Grid Scale Energy Storage

The deployment of large scale energy storage is one approach to meet our increasing

demands on todays electric power grid. The lack of grid storage capacity requires

that power generation is safely adjusted to meet fluctuating consumer demands, and

needs to be achieved economically. Solar and wind power are renewable alternatives

to fossil fuels, but their intermittent power generation resulting from environmental

conditions make them unreliable and incapable of following fluctuations in consumer

demand [1]. Now, this doesn't mean they are bad candidates and should never be

used because of nature's mercurial personality, but that we should find ways to store

the energy generated by these intermittent sources. An example of an alternative

technology is the liquid metal battery [2]. It has the potential to store energy at the

grid-scale and increase grid efficiency by storing energy during off-peak hours, and
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returning it during peak time. In this mode, the production of electricity does not

need to be ramped up drastically to meet consumption, hence reducing the need of

conventional generators while allowing for a more economical and stable production

of electricity. Analytical studies on energy storage applications such as frequency

stability, peak shaving, and transmission line upgrade deferral, have demonstrated

the need for large energy storage systems, but the current leading technologies are

not economically feasible [3].

1.1.1 Current Energy Storage Technologies

1mo 1day 1h
10,000

pumped hydro Li-ion

11000 flow pell,

A cm 1 min

0 .100 -. 3Na-

0.6

liquid metal battery

10
10 100 1,000 10,000

Energy cost ($ kWh')

Figure 1-1: Power cost ($/kW) versus energy cost ($/kWh) [2].

Energy can be stored in many forms. Batteries and fuel cells store energy in chem-

ical bonds, capacitors in electric fields, while flywheels store energy mechanically. In

order to make grid-scale energy storage possible, it must be done economically by

incorporating cheap, abundant materials. Current modern battery technologies are
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designed for portable electronics and transportation, which require expensive elec-

tronics, high specific volume and mass power/energy densities. Large-scale batteries

are not bound by the same mass and volume requirements; therefore, chemistries

other than lithium can be considered with the following metrics [4]:

o The storage system must have a capital cost of less than $150/kWh.

o Deliver energy for longer than 4 hours.

o Have an energy efficiency greater than 80%.

o Cycle longer than 3000 times.

Some of the leading energy storage technologies are outlined in appendix A. From

here on we will focus only on the LMB storage technology.

1.2 From Hall-H6roult to Liquid Metal Batteries

Aluminum is an abundant and cheap metal, which is no surprise given how much of

it we use daily. It's used by the automotive industry, we use it to wrap left overs

with, and to contain beverages. To meet our high demands, in 2010 we produced 40.8

million metric tons of aluminum [5], the enabler being molten-salt electrolysis.

1.2.1 Hall-Heroult Process

The molten-salt electrolysis method is The Hall-H roult process, where the electrolyte

is a molten bath of cryolite (NaAlF 3) with dissolved alumina (A12 0 3 ) at 960 0C [6].

Cryolite is the only molten salt known to dissolve alumina, and it is so corrosive,

the only material capable of sustaining it for long periods of time is solid cryolite.

Figure 1-3 is a schematic of the process; a cathode sits at the bottom of the electrolyte,

reducing A13+ ions to molten aluminum metal that is syphoned out as it is produced.

A graphite anode above the electrolyte oxidizes 02- anions to produce CO 2 gas,

consuming the graphite anode making it an irreversible process [6]. The overall

reaction is [7]
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Figure 1-2: Paul Heroult operating the first aluminum electrolysis cell.

2Al203(is) + 3C(s) + 3CO2 () + 4A(i) (1.1)

The electrolysis process consumes GWh amounts of electrical energy and oper-

ates at current densities of 0.7A/cm 2 with current efficiencies above 90% [8]. The

immiscibility between the electrolyte and aluminum contributes to the high current

efficiency, and demonstrates that a large-scale electrolysis can remain stable when

two high-temperature, self-segregated liquids are in contact.
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+e) 302 -+ %CO2(} + 6e

contains Al3+,2-

cell

aluminum deposition
graphite call Boor 2Al3* + 6e~ -+ 2 Al(fiq)

(cathode)

Figure 1-3: A schematic of the Hall-Heroult process to produce aluminum. The
electrolyte dissolves the alumina, allowing the 02 anions to travel to the top graphite
anode and bubble away as CO 2 gas while simultaneously reducing All+ cations at the
bottom cathode during electrolysis. The operating temperature is 960 C. [9]

1.3 Liquid Metal Batteries

In the 1960s and 1970s, Argonne National Laboratory investigated the possibility of

making a battery out of a molten salt and liquid metal electrodes [10]. Cairns et

al. demonstrated the first concept of such a battery, called a thermally regenerative

galvanic cell system (fig. 1-4). The system consists of a galvanic cell to generate

electricity, and a heat exchanger to balance the heat between the galvanic cell and

the regenerator. The regenerator is used to vaporize the anode metal at temperature

T 2, which then condenses at a lower temperature T at the top of the galvanic cell.

The vapor metal oxidizes at the top electrode-electrolyte interface undergoing the

chemical reaction A -+ A+ + e-, allowing for the anion A+ to migrate down to the

cathode alloy and react to produce A+ + e- +C -+ AC (in C). A main disadvantage

of this system is the low overall efficiency, defined as the ratio of integrated power

over time to the total heat in, which is always less than the Carnot-cycle efficiency.

Cairns defines the overall efficiency as the product of the Carnot efficiency, Gibbs free

energy efficiency, and the heat-exchanger efficiency given by
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Figure 1-4: Thermally Regeneratice Galvanic Cell System created at Argonne Na-
tional Laboratory [10].

Effs = Effc EffG -Effh. (1.2)

The table in figure 1-5 was taken from Cairns report to show the predicted overall

efficiency of some selected thermally regenerative cells, which are on the low side.

System Li-Sn Na-Sn Na-Pb Na-Bi

Regeneration temperature. T2, *K 1323 1073 1100 1310
Condenser temperature, TI, *K 1005 785 795 859
Regeneration pressure, P, Torr 0.75 5.3 6.38 4.9
Carnot-cycle efficiency, Effc, % 24 21 27 38
Gibbs free-energy efficiency, EffG, % 60 60 60
Heat-exchange efficiency, Effh, ID 75 75 75 75
Overall efficiency, Effs, % 11 12 12 12

aComputed for 20 m/o anode metal in cathode metal.

Figure 1-5: Efficiencies for Thermally Regenerative Bimetallic Cells [10].

We can conclude from the information that one needs a very high regeneration

temperature of around 1500'C, and a low cell temperature of 700'C. This will be

extremely difficult to achieve due to the energy requirements and minimal material

selection that are stable at extreme temperatures. The requirements that need to be

satisfied in order to make these galvanic cells possible are:
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e Anode metal should have a low electronegativity.

" Cathode metal should have a high electronegativity.

* Both cathode and anode should form intermetallic compounds with large neg-

ative free energies of formation.

" Anode and cathode metals should melt below the desired cell-operating tem-

perature (500-800K).

" The anode, cathode, and intermetallic should have low solubilities in the elec-

trolyte at the cell-operating temperature.

" The electrolyte should have a low melting point, low vapor pressure, and high

ionic conductance at the cell-temperature.

" The electrolyte should contain a large concentration of the anode metal cation.

* All cell componcnts should be inert with containment materials to minimize

corrosion.

And for the regenerator, the requirements are:

" The anode metal needs to be much more volatile than the cathode metal to

ease separation.

* The intermetallic compound should not be super stable, and should decompose

readily at the regeneration temperatures.

* The vapor liquid look should not intersect the solid-liquid equilibrium line on

the phase diagram at the pressure of the operating temperature.

" The regenerator should operate such that it maximizes the anode vapor pres-

sure.

* The regenerator should be inert.
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It might seem impossible to find candidates that can meet the stringent requirements

mentioned above. One can also see how the problem could be minimized if we can

get rid of the generator and heat exchanger, which will allow one to focus on just the

galvanic cell part. This is what the team did at Argonne National Laboratory when

they switched cell designs to the schematic shown in figure 1-6. The cell enclosure

was made of stainless steel, and it contained six cooling lines to keep the silicone

rubber gasket that was sealing the cell from melting. The top current collector was a

1.5 mm-thick stainless steel spiral made to hold the liquid sodium upon charging. It

contained electric ring heaters on the top and bottom to heat the cell to temperature,

and it was predominantly insulated for obvious reasons.

COOLING COIL

ELECTRICAL INSULATO -DIU ,
.ODIUM RETAINER

ELEC OLYT
N-Bi ALO~O

-'SODIUM

ALUMINA SPACER THERMAL INSULATION

SILICONE RUBBER ELECTRIC RING HEATER
GASKET

Figure 1-6: Sodium-bismuth secondary cell with liquid electrolyte and improved de-
sign. [10].

The main advantage of this cell was that it did not need a heat exchanger, re-

generator, nor condenser to operate, making the regenerator restrictions mentioned

above inapplicable. This enabled the use of stronger interacting alloys which can

form more stable intermetallic compounds with higher cell voltages. The new cell

worked in a similar fashion, metal A atoms oxidize at the top electrode-electrolyte

interface producing A -+ A+ + e~ while it is simultaneously reduced at the bot-

tom electrode-electrolyte interface A+ + e~ -> Ac(l). Ac(l) is the liquid alloy AllC
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stable during electrolysis that does not form an intermetallic, a requirement for the

thermally regenerative cells first tested [101.
The main disadvantage for this cell was not the physics behind its operating prin-

ciples - it was the geometry. The cell was designed with cooling lines near the silicone

rubber gaskets to keep them from melting. This creates huge thermal gradients, which

then forces the heaters to output more power to keep the cell components at temper-

ature'. Unfortunately, this work was discontinued shortly after these reports where

written due to funding issues, and not much attention was devoted to research in

molten salts.

It wasn't until the mid 2000s when similar type of work resurfaced at MIT inde-

pendent to what was done at Argonne National Laboratory. Bradwell et al. [11] used

the concept of the aluminum smelter as a model for an energy storage system. The

problem was aimed at finding compatible materials that could substitute in for the

irreversible part of aluminum electrolysis, which is the production of carbon dioxide

at the anode. The energy storage system created was dubbed the liquid metal battery

(LMB), designed to self-segregate when liquid at high temperatures, and have high

charge transfer interfacial kinetics with low overpotentials. What makes this battery

unique is the ability to cycle many times at high rates while retaining a high charge

capacity, making it a bidirectional process. The liquid state of matter of the two

electrodes and electrolyte allows the current density to be limited only by the mass

transport of the active species, eliminating metrics related to solid electrodes such as

electrochemical shock caused by diffusion-induced stresses [12-14].

Ambipolar Cell

The first liquid metal battery created at MIT was called the ambipolar cell. It

was composed of liquid magnesium as the cathode, liquid antimony as the anode,

and a molten magnesium antimonide electrolyte [9]. This clever setup allowed for

the simultaneous reduction and oxidation of two metal species, known as ambipolar

'For part of my thesis, I created two dimensional FEA thermal models using this cell type to
estimate the required operating power, the results are outlined in chapter 6
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electrochemical reaction. The key lies in selecting an electrolyte which can dissolve

the reaction product Mg 3Sb 2. Upon dissolution, the compound breaks down into its

respective ionic species:

Mg 2 Sb 2 (,) -+ 3Mg2+ + 2Sb3- (1.3)

Molten Species

lMagnesium (Mg) Antimony (Sb) E Electrolyte

40cm

50cm

Figure 1-7: Ambipolar electrolysis cell, composed of magnesium
electrodes with a magnesium antimonide molten electrolyte [11].

and antimony as

Upon charging the cell, the dissolved intermetallic in the electrolyte is consumed by

the following reaction at the cathode

3Mg2+ + 6e~ -+ 3Mg(). (1.4)

And the anode the following reaction takes place

2Sb3- - 6e- + 2Sb(i) (1.5)

making the overall reaction

Mg 3 Sb2 -+ 3Mg(j) + 2Sb(l). (1.6)
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The opposite happens when the cell discharges, the above reaction is reversed causing

the electrolyte to grow making it a bidirectional process. The Gibbs free energy of

formation AG,X for Mg 3 Sb2 is what drives the cell to discharge, and can be calculated

using an Ellingham diagram. The corresponding cell voltage from the free energy can

then be obtained using the following relation

Erxn = - ", (1.7)
zZ F

where zi is the number of electrons involved in the chemical reaction, and F is the

Faraday constant (96, 485C/mol).

Overall this cell proved difficult to operate as a battery, but not as a recycling

method. Bradwell extended the electrochemical principle behind the ambipolar cell to

extract cadmium and tellurium from dissolved cadmium telluride in a molten salt [15],

which enabled an alternative method for recycling the cadmium telluride used in solar

cells. Besides this novel application, the ambipolar process served as the fundamental

basis for the current LMB used, the alloying cell.

Alloying Cell

e- G
Uquid Metal A Liquid Metal A

AA

e-

(a) (b)

Figure 1-8: Schematic of alloying electrochemical cell. (a) Discharging of cell, cation
A is oxidized at its electrode electrolyte interface resulting in the reaction A -+ A+ +
e- (b) After the cation A+ travels through the electrolyte, it is reduced at the bottom
electrode-electrolyte interface resulting in A+ + e- - A(in B)

Figure 1-8 is an illustration of the alloying cell. The liquid phase helps the in-
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terfacial kinetics to occur extremely fast compared to mass transport, making it a

reversible reaction. Electric potentials of reversible systems can be modeled using the

Nernst equation and a voltage can be obtained for the following chemical reaction

Anode:

A(,) - A++ e-

Cathode:

A+ + e- AB(I)

Overall:

A(i) -> AB(I)

For the overall reaction 1.10, the Gibbs free energy is

AGrx : AGn + RT In a(A in B)
rxn rxnaA

(1.8)

(1.9)

(1.10)

(1. 11)

where AG. is the Gibbs free energy in standard state, R the gas constant, T the

absolute temperature, aA the activity of pure component A, and a(A in B) is the activity

of A in the B electrode. Using equation (1.7) we can rewrite the Gibbs free energy as

an electric potential between the two electrodes as

(1.12)iErxn- AEr - RT aA

zjF a(A in B)

where Erxn is the electric potential of the reaction in standard conditions (unit activ-

ity).
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Figure 1-9: Periodic table of the elements. On the left we have the negative electrode
candidates suitable to build a LMB composed of alkali and alkaline earth metals. On
the right we have the positive electrode candidates located under the chalcogens and
pnictogens.

1.3.1 Calcium Chemistries

Economics will ultimately govern which alloys can be used as electrode couples in

LMBs. Keeping this in mind, we set forth to discover cheap abundant materials

with the theoretical potential to form high stable voltages. The first place to look

is at the periodic table while keeping the requirements in mind that where outlined

earlier in this section. Knowing that we have to limit ourselves to cheap materials, an

examination of the Al lB elements on figure 1-9 was done to select suitable candidates.

This was achieved by comparing the theoretical potentials in table 1.1 with the cost

per mol in table 1.2 to calculate the energy cost ($/kWh). These results are outlined

in table 1.3.

B\A Li Na K Mg Ca

Sn 0.64 0.33 - 0.27 0.64
Pb 0.55 0.33 0.33 0.17 0.6
Sb 0.92 0.73 0.77 0.45 0.99
Bi 0.82 0.65 0.67 0.32 0.85

Table 1.1: Table showing the theoretical cell potential between A B couples [2].

One might be inclined to conclude the Ca|Sb couple to be the optimal choice
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Metal $/mol

Li 0.43
Na 0.057
Mg 0.069
Ca 0.14
Sn 3.2
Pb 0.52
Sb 1.8
Bij 4.9

Table 1.2: Prices for selected metals [2].

B \ A Li Na K Mg Ca

Sn 210 370 - 480 190
Pb 64 64 630 180 36
Sb 89 93 330 180 69
Bi 240 300 550 560 220

Table 1.3: Table showing the theoretical energy cost for Al B couples in $/kWh [2].
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Figure 1-10: Calcium-antimony phase diagram [16].
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Figure 1-11: Calcium-bismuth phase diagram [17].
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because it yields the highest cell voltage (0.99V) and is the cheapest ($220/kWh),

but this is not necessarily the case. The phase diagram for this couple (fig. 1-10)

reveals the liquid temperature for this system to be over 600 C, which will require a

greater amount of energy to keep it at that temperature. The operating temperature

is another critical constraint when it comes to engineering LMBs, therefore a system

(electrodes and electrolyte) that can be liquid at significant lower temperatures needs

to be selected.

Another couple of interest is Ca||Bi, which is the chemistry I used to do the

electrochemical experiments presented in this thesis. The phase diagram (fig. 1-11)

for this system reveals nice high temperature intermetallics, but more exiting, it shows

the wide liquid composition range in the bismuth-rich side to be at a significant lower

temperature than that of Ca| Sb.

1.4 LMB Operating Principles

1.4.1 Thermodynamics

Equation 1.7 was used to convert the Gibbs free energy of the cell AGr11 (eq 1.11) to

an equivalent cell voltage A Erxn (eq 1.12) one can measure during equilibrium. This

cell voltage is directly related to the activity of an electrode surface, which for species

i is defined as

ai = yixi. (1.13)

Equation 1.13 is the product of the activity coefficient, 'yj, and the species mole

fraction, xi. The activity coefficient is the parameter describing how binary systems

will energetically interact at the atomic level. In an ideal solution, the interaction

energies between all the permutations of A and B atoms are assumed identical, so the

activity coefficient is defined as one. In a regular solution, such as the chemistries we

use for LMBs, this is not the case and the activity will deviate from ideality depending

on the interatomic interactions between the alloying atoms.
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Binary alloys can deviate ways away from ideal behavior if the interaction energy

between similar atoms (EAA, EAA) an dissimilar ones (EAB - EBA) are significantly

different. Its deviation depends on the following two cases [18]:

1. EAA > EAB < EBB-

2. EAA < EAB > EBB-

The first case describes the atomic interactions of identical components to be greater

than the energy between the two alloying components. This will make the mixture

unstable, and will phase separate due to their immiscible nature. The Gibbs free

energies for these type of binary couples are positive, meaning one must add extreme

energies to make such reactions possible. This is the preferred interatomic interactions

desired between the electrolyte and liquid metal, and the material housing the LMB

because it will help minimize corrosion and contamination.

The second case describes a binary system where the energy of attraction between

dissimilar atoms A and B is greater than that of identical constituents. This is

a system favoring compound formation and mixing, so the activity will negatively

deviate from the ideal solution behavior. These interatomic interactions are essential

for LMBs because binary alloys that are 'happier' together than when separated are

desired. This 'happiness' factor is the Gibbs free energy of formation, and first order

approximations of the expected voltage can be calculated from Ellingham diagrams

[19] using the free energy of interest in equation 1.7.

1.4.2 Kinetic Processes

The total flux, Ji, of species i in an LMB is described by the Nernst-Planck equation

[20],

zi F
i = -DjVc 2 - Dic V# + civ (1.14)

RT

where Di is the diffusion coefficient (cm2/s) of the ith species, ci is the species con-

centration (moles/cm3 ), F is the Faraday constant, R is the gas constant, T is the
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operating temperature (K), and v the fluid velocity (cm/s). The three terms in the

Nernst-Planck equation describe the forms of transport found in most liquid systems

which are summarized in table 1.4.

Part Equation Description

Diffusion -DiVci Also known as Fickian diffusion, this
type of transport results from local con-
centration gradients.

Migration -MYDicjV# Describes the motion of charged
species, such as electrolyte compo-
nents, under the influence of an electric
field (V#).

Convection civ Transport due to the collective motion
of atoms under the influence of a force.

Table 1.4: Nernst-Planck transport component with description.

Historically, the influence of convection has been neglected when it comes to study-

ing transport mechanisms in liquid alloys. This is due to the existence of only one

closed-form solution to the momentum equations which account for convection, which

is solved on the surface of a rotating disc electrode [21]. Any other set of boundary

conditions will require lots of computational power (and patience) to generate so-

lutions for the boundary conditions of interest, so it's easier to instead design the

experiment such as to minimize the influence of it. Any significant buoyant forces

become a problem under temperature variations because they cause the density to

become unstable and possibly induce convection. This topic is further discussed in

the simulation chapter of this thesis.

As mentioned in section 1.4.1, the binary couples of interest are the ones with high

negative Gibbs free energy of formation, so LMBs can be built with suitable power

and energy density applicable for grid-scale storage. The higher the open circuit

voltage, the more energy efficient LMBs can be made because overpotentials become

significant less of an issue.
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1.4.3 LMB Limitations and Efficiencies

Voltage Overpotentials

The reason overpotentials become less problematic if the open circuit voltage is high

can be seen in the components of the cell voltage, defined as

Vceii Voc + 7lmt + Tlct + R7ohm- (1.15)

Voc, is the theoretical open circuit voltage, lmt is the mass transport overpotential

associated with the Nernst-Planck equation. ct is the charge transfer overpotential at

an electrode/electrolyte interface during a Faradaic process. It's essentially the extra

voltage needed to drive the chemical reaction forward or reverse, which is described

by the Butler-Volmer equation [21],

j = jo (e-fct - e(la) )ct, (1.16)

where j is the current density (mA/cm2 ), jo is the exchange current density (mA/cm2 ),

a is the transfer coefficient 2 , and f = F/RT. The Butler-Volmer equation can be

simplified in the limits of both high and low overpotentials. The last overpotential

affecting the cell performance is the ohmic contribution, iohm- This is purely due

to resistive heating in the cell components, primarily the electrolyte, during current

flow. This overpotential is calculated using Ohms law

T7ohm = iRQ, (1.17)

where Ra is the combined electronic and ionic resistance in the electrolyte, and it's

a function of the cell geometry.

Coulombic Efficiency

Electrochemical side reactions inside a LMB can lead to the loss of current during

battery operation. This current, commonly known as the self-discharge current, will

2The value of a ranges between 0 and 1, and 0.5 for a reversible reaction.
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reduce the overall coulombic efficiency of the battery, resulting in reduced energy

efficiency. The coulombic efficiency is defined as the ratio of the discharged (Qd) to

charged (Qc) number of coulombs in a cycle, written as

EffQ - Qd f (1.18)
Qc f ictdt

id and i, are the discharge and charge currents, and td and te are the discharge

and charge time respectively. What this current loss really signifies is the internal

discharging of the battery where the electrons do not flow through the external circuit

load, and instead are involved in side reactions.

Energy Efficiency

Perhaps the most important efficiency metric is the energy efficiency (Effu) which

describes the overall energy round-trip efficiency. This parameter is defined as the

product of the coulombic efficiency to the voltage efficiency given by,

Effu = EffQ - Effv, (1.19)

where the voltage efficiency is defined as the ratio of the discharge voltage, Vcei, d, to

the charging voltage, Vcei, d which can be computed from the governing voltages and

overpotentials during operation.

Electrolyte Kinetic Limitations

The interfacial chemical reactions of an alloying cell are kinetically limited by mass

transport of the electroactive species in the electrolyte, and once reduced by the trans-

port within the electrode itself. The three entities governing transport phenomena

are diffusion, migration, and convection, which can be modeled by the Nernst-Planck

equation (eq 1.14). There is no convective influence in solid-state batteries which dras-

tically simplifies the math, but this assumption cannot be made when characterizing

the performance of liquid electrodes. One tends to neglect any kinetic limitations

from the electroactive species in the electrolyte because most ionic diffusion coeffi-
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cients vary over various orders of magnitude [22-24]. This assumption is true for the

calcium-bismuth system studied in this thesis because of the large current densities

induced (over 1 mA/cm 2 ) under potentiostatic conditions, as seen in figure 1-12.

Current vs Time During Electrode Cleaning
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Figure 1-12: Over 1 A/cm 2 current density induced during potentiostatic step of 0.7
V.

The important fundamental material parameters that play a critical role to the

onset of natural convection under a thermal gradient are density, diffusivity, and vis-

cosity. The focus of this thesis involves chemical diffusivity measurements of calcium

in bismuth, but before I begin talking about diffusion and only diffusion for the re-

mainder of this document, I'd like to take a moment to discuss the structure of liquid

metals.

1.5 Liquid Structure Background

In 1855, Adolph Fick [25] published the fundamental laws that mathematically de-

scribed diffusion in liquids. He realized how the same phenomena causing a substance

to diffuse was the same that caused heat to flow in a material, and electrons to flow

in a conductor. This was a significant contribution to science, but questions still

remained about the atomic structure of liquids. Questions such as "what type of

interatomic interactions dominate when liquids mix, and how does it affect the rate
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of diffusion?", and "does liquid structure resemble that of the solid phase?" There

was no way to answer such questions without knowledge of the atomic structure of

materials.

Ten years after Fick's discoveries, James Clerk Maxwell published his work on elec-

tromagnetism titled A Dynamical Theory of the Electromagnetic Field [26], where he

presented the four equations which describe the interaction between electricity and

magnetism. He proved to the world how light was an electromagnetic wave with a

fixed speed that could be calculated from the two fundamental constants in electro-

magnetism, the permeability and permittivity of free space. This proved powerful

because we now had a method to mathematically predict how electromagnetic waves

would behave under certain conditions. Thirty years after Maxwell's achievements the

full potential of his theoretical work on electromagnetic theory was finally unleashed

with the discovery of the X-ray.

In 1895 Wilhelm Conrad R6ntgen was studying the effects of electric discharge

inside vacuum tubes. His work led to the discovery of X-ray radiation which was

published in his famous paper On A New Kind of Rays [27], and subsequently won

him the first Nobel Prize in physics in 1901. In 1912, William Lawrence Bragg and

William Henry Bragg derived Bragg's law of diffraction after noting how crystalline

solids formed distinct patterns of reflected X-rays. This work allowed us to use X-rays

for imaging solids at the atomic scale, which paved the way for developing methods

to understand liquid structure.

In 1915, Peter J. W. Debye [28] made a significant contribution in understanding

liquid diffraction by demonstrating how electrons surrounding atomic nuclei must

diffract electromagnetic waves. Throughout the years more contributions where made

to the field of liquid diffraction in an effort to better understand the structure, but the

overall progress was rather slow. In 1925 Debye furthered our understanding of liquid

diffraction by introducing a probability function which described the chances atoms

would be near each other within an interatomic distance. Two years later, Zernike

and Prins [29] derived the well known radial distribution function p(r) that is widely

used today. The radial distribution function is a continuous function that describes
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the probability per unit volume of an atom being a distance r from a central atom.

It calculates the average number of nearest neighbors around a central atom between

the interatomic distances r and r + dr, and it's most commonly written as 47rrp(r)dr.

Figure 1-13 shows the region of integration of the radial distribution function.

Figure 1-13: Radial distribution function schematic.

1.5.1 Pure Liquid Metals and Semi Metals

The difference in the number of nearest neighbors between a liquid and solid are

graphically represented in Figure 1-14. In (a), every atoms is surrounded by exactly

six atoms, but in (b) the atom labeled A is only surrounded by five. The atom to the

left of the A in (b) looks to be surrounded by seven, and a couple atoms above it's

only surrounded by six. From here we can see how the number of nearest neighbors

for liquids is a statistical average making it impossible for long-range order atomic

interactions to exist.

In fact, Frank [31] reasoned how a liquid metal was structurally different than

its solid counterpart, and used the principle of supercooling to argue his point. He

believed supercooling existed because the difference in atomic structure between the

two phases giving rise to an energy difference with the solid lattice having the highest

energy. He proposed a liquid pseudo-structure with five-fold symmetry consisting of
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a b

Figure 1-14: Both the solid (a) and liquid (b) contain the same number of atoms, the
only difference is the number of nearest neighbors surrounding the A atom. In (a) it
has six, while (b) has five [30].

an atom surrounded by twelve nearest neighbors, which yielded a configuration with

a higher binding energy. As a result, the five-fold symmetry prohibited the liquid

from exhibiting long-range lattice interactions.

Since the number of nearest neighbors changes upon melting for most metals

(fig. 1-16), the radial distribution function should also change. In fact, figure 1-15

portrays very well the difference in the radial distribution function between a liquid

and solid gathered from X-ray diffraction experiments. Solids always conform to a

crystal lattice, so atoms are surrounded by a well defined number of nearest neighbors.

In a liquid, atoms do not have a constant number of surrounding atoms, instead they

will vary over time making the radial distribution function appear as an average rather

than a step function. 3

Interesting trends in coordination changes have been observed for metals and semi-

metals conforming to different crystal structures. These trends change some of the

material properties, most notably the electrical conductivity as shown in figure 1-17.

For example, solid mercury has a rhombohedral structure with six nearest neighbors,

which is more complex when compared to cubic lattices. When mercury melts, it

31n reality, there will be a finite width to the radial distribution function of a solid due to lattice
defects and vibrations.
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Figure 1-15: Radial distribution function comparision for (a) liquid mercury and (b)
solid mercury [32].

gains six more nearest neighbors making it a more compact and simpler structure.

The opposite effect was observed when metals with face-centered cubic structures

melted. The liquid phase usually has a smaller coordination number than the solid

phase, while body-centered cubic metals such as sodium and potassium observed

virtually no change in coordination (see Figure 1-16).

Semimetals such as Sn, Sb, Bi, Ga, Ge undergo the largest change in entropy [33]

upon melting due to their drastic changes in both material and electronic structure.

Property changes most notable are magnetic susceptibility [34], and heat capacity

dependence on temperature cp. At the atomic level, one can see how this will reduce

vibrational frequency modes, specially if the nature of the bond changes upon melt-

ing, so the heat capacity will be significantly affected. The electronic bandstructure

changes the most for these semimetals compared to metals, especially in Bi, which

was measured using nuclear magnetic resonance (NMR) by Knight et al. [34]. The

NMR study showed a strong correlation between the arrangement of nearest neigh-

bors and the electronic structure because of the notable shift observed in the NMR

line. Since the NMR shift is directly related to the magnetic susceptibility, it will

also estimate the change in the density of states at the Fermi level. Other techniques

such as the Hall Effect [35] show a large difference in the free electron value between
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Figure 1-17: Table showing the the variation of material properties [30]

the solid and liquid, and photoelectron spectroscopy [36], used for probing the band

structure in condensed matter, agrees with the notable trend of these semimetals

showing significant structural changes upon melting (fig. 1-18).

Bismuth also has the property of increasing its density upon melting, which came

as no surprise when Sharrah [37] and Chamberlain [38] used X-ray and neutron diffrac-

tion to show how on average each bismuth atom gained two more nearest neighbors

upon melting (from six to eight) making it a more compact structure. It is also be-

lieved that this is due to bismuth having mixed metallic and directional bonds [33]

in the solid state, but not in the liquid state, where most of the directional bonds are

lost and electrons are allowed to pass more freely into the conduction band.
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Figure 1-18: The energy distribution curves of photoemitted electrons from solid (300
K) and liquid (820 K) Bi at a photon energy of 21.2 eV. [36]

1.5.2 Liquid Alloys

These interesting changes in the properties of metals and semimetals led to asking

questions about the atomic interactions between dissimilar 4 metals such as bismuth

and lead. If two metals with different solid crystal structures are alloyed at various

compositions in the liquid state, say one gains and the other looses nearest neighbors

upon melting, what happens to the material properties of the alloy? How does the

diffusion coefficient vary in these liquid metals as a function of composition and

temperature? Can the alloy material characteristics be predicted by numerically

combining the component properties measured with techniques such as diffraction,

optical, magnetic, and resistivity measurements? To begin answering these type of

questions, Sharrah [37] performed X-ray diffraction experiments on bismuth in lead

as a function of composition.

The XRD spectra in figure 1-19 shows bismuth and lead to be a little similar

because both contain eight nearest neighbors at approximately the same distance

(3.4 A for lead, 3.32 A for bismuth) but lead has another four slightly less than

1 A radially away from the initial eight making it 12 total. The results show the

4 Liquid Bi and Pb have different number of nearest neighbors when measured with diffraction

methods.
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Figure 1-19: Relative intensities of X-ray scattering from lead, bismuth and five alloys.
Composition is in wt%. The monotonic curves represent the calculated independent
scattering [37].
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Figure 1-20: Summary of diffraction and density results [37].
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lead-bismuth alloy maintained a coordination number of 12 when alloyed up to 60 -

mol% bismuth (fig. 1-20) before decreasing asymptotically to that of pure bismuth.

There really is no way of predicting such behavior from the phase diagram (fig. 1-

21) or chemical diffusivity experiments. Figure 1-22 shows the chemical diffusivity of

bismuth reaching an asymptotic value over the range of composition where the number

of nearest neighbors decrease from 12 to eight. This is baffling because in the lead-rich

region, the density decreased upon melting and the results showed a coordination of

12 with a mean distance shorter than that of the crystal. This led him to suggest

a liquid structure model having the symmetry of a pentagonal dodecahedron, which

also described the lack of long range order in a liquid. These results are not surprising

because lead has a coordination number of 12 at a distance of 3.49 A in the solid

state, and when it melts, it switches to an 8+4 coordination at the average distances

of 3.40 A + 4.37 A. This will cause the average local volume occupied by the same

number of nearest neighbors to increase, which in return will decrease the density.
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Figure 1-21: Bismuth-lead phase diagram

It is difficult to guess what the trend in chemical diffusivity will be as a function

50



20

10

v>7

E
%-5

0

x 3

2

1

i t523K

I
11

0 05

T 443K
I

1
X8, (-)

Figure 1-22: Chemical diffusivity of bismuth in lead measured using the capillary-
reservoir method [39].
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of composition of a liquid alloy by looking at XRD data, therefore it is of extreme

importance to measure it experimentally.

1.6 Interest in Liquid Diffusion

Since the mid-20th century, liquid metals have been of interest to the scientific com-

munity, not only out of curiosity, but because of their applications. Their high ther-

mal conductivity made them applicable as coolants for atomic reactors [40-42] in the

nuclear industry. Also, because nuclear reactor waste is recycled from liquid met-

als [43,44], an accurate knowledge of the transport properties could help optimize the

reprocessing rate. The diffusivity in liquid alloys also plays a critical role in the kinet-

ics of solidification because it dictates how the microstructure will evolve [45]. Other

applications where diffusion plays an important role include soldering [46], weld-

ing [47],diffusion bonding such as transient liquid phase bonding [48], and the latest

being Liquid Metal Batteries (LMBs) [2,4,9,11]. The boom of the electronic industry

furthered the interest of obtaining more efficient ways to measure this liquid diffusiv-

ity because the interactions between the liquid soldering alloy and copper substrates

have tendencies to form intermetallic compounds [49] leading to the degradation of

solder joints over time. Over the years many techniques such as the shear cell [50-59],

capillary [39,52,58,60-71,71-77], neutron scattering [78-80], radiotracers [81], pulsed

ion beam [82] and electrochemical [83,84] where developed and selectively applied to

different liquid alloy systems.

1.7 Sensitivity Analysis - Impact of Chemical Dif-

fusivity to the Transport in LMBs

The definition of a liquid is a material having a definitive volume, but lacks shape,

usually settling at the bottom and taking shape of whatever is containing it. This

simple definition might not mean much, but if one dives deeper into its root, it can be

concluded that liquid atoms exert very strong atomic interactions, possibly stronger
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than that of solids if the metal densifies upon melting. Since most of the material

properties for liquid metals are very similar to their solid state, it made it easy to treat

the liquid as a solid, with the exception of mechanical deformation. The force required

to shear a liquid is orders of magnitude smaller than that required for a solid, therefore

causing the fluid to flow upon stressing. The rate of deformation, or fluid flow, is

proportional to the shear force by a constant known as the viscosity. Deformation

cause by shearing will depend on the atomic properties of the metal in question, which

inherently depend on temperature. This 'deformation' implies permanent relocation

of atoms, making the viscosity a function of self-diffusion. Similar to the viscosity,

the diffusion coefficients in liquid metals have been shown to be orders of magnitude

higher that solids.

In order to understand the transport properties of liquid metals, the atomic inter-

actions between atoms have to be well understood. Frost [30] was first to propose how

the properties of a liquid metal alloy as a function of composition resemble that of its

solid phase. He came to the conclusion after comparing the latent heats of fusion to

the latent heat of vaporization for certain metals, and noticing that of fusion being

much smaller, indicating the material properties of liquids would be more similar to

the solid state than the gas state. Also, the electrical and thermal conductivity of

liquid metals was shown to drop by about half its value upon melting when compared

to its solid state, so he concluded that the structure of liquid metals was not very

different than its solid since these material properties rely heavily on the arrangement

of atoms within their lattice.

We know LMBs are composed of three liquid layers separated by immiscibility

and difference in density. The liquid state allows the battery to operate at higher

than normal kinetic rates when compared to standard solid-state batteries, but have

also proven difficult to characterize as they scale-up in size. To begin optimizing the

performance of the LMBs, the chemical diffusivity must be known as a function of

temperature and composition because it dictates how the concentration profile will

transiently evolve in the electrode. This allows one to compute specific operating

conditions that maximize the energy capacity per cycle for a specific LMB. The
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chemical diffusivities for a very limited number of liquid metal couples have been

measured before using various experimental techniques and have shown to range

between 10-4 cm 2 /s and 10-6 cm 2 /s [39,58,75-77,85-89]. Even though the chemical

diffusivity database for liquid alloy couples is sparse, it still spans three orders of

magnitude, which makes it difficult to form educated guesses on desired values. One

such desired value is the chemical diffusion of calcium in liquid bismuth because it is a

promising electrode LMB candidate due to its high voltage and earth abundance [17].

To our knowledge, the diffusion coefficient of calcium in the liquid state has never been

measured in any host liquid metal. This can be attributed to the extreme difficulty of

working with calcium because of its affinity to oxidize and react violently with other

materials.
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Figure 1-23: Sensitivity analysis on a 5cm thick electrode. The chemical diffusivity
was varied over three orders of magnitude.

The true impact of the chemical diffusivity on the transport in a liquid electrodes

can be seen by simulating a galvanostatic process. Figure 1-23 shows the simulated

diffusion profiles at six hours after titrating calcium with a constant current density of
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250 mA/cm2 in the absence of convection5 at 600'C. The LMB will begin to experi-

ence rate limitations when the electrode surface concentration surpasses the liquidus

composition of 23 - mol % calcium because the system will become unstable and start

to nucleate the Ca11 Bi10 intermetallic compound. Once the compound is formed, the

LMB cannot be operated at high rates because the kinetics of the system will be

hindered by the slower diffusivity of calcium in the intermetallic. Also, the inter-

metallic will grow as a function of time eventually forming a solid layer between the

electrolyte and electrode, completely eliminating the liquid-liquid interface. There-

fore it is imperative to operate the battery within current densities and times that

will keep the electrode surface concentration from exceeding the critical composition.

The battery can in theory be operated beyond the 23 - mol % because the alloy

still maintains a high voltage [17] up to the composition of 60 - mol % Ca when

measured with respect to pure calcium, but will have to be operated at much lower

current densities. The chemical diffusivity also dictates how the penetration depth

of the titrated species will vary, hence we can optimize the electrode thickness for a

particular galvanostatic application.

1.8 Conclusion

During the 1950's theoretical advances were made in understanding the electronic

properties of liquid metals so that we can use that knowledge to better comprehend

their structure, just as we had done with solid metals. Solids are easier to characterize

because the atoms periodically arrange themselves to form a crystal lattice, therefore

we can use experimental tools such as X-ray diffraction to decipher its structure. A

huge advantage to studying solid metals was the ability to mathematically describe

their material properties with either the theory of electronic structure or dislocation

theory. Contrast to solid metals, liquid metals have no long-range order, therefore

exhibit random atomic fluctuations making them extremely difficult to study.

Historically, liquid diffusion coefficients have been difficult to experimentally mea-
5 Convection scales withthe Rayleigh number, smaller capillaries yield smaller velocity fields.
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sure, having an uncertainty of up to 50 pet [90]. This is due to the extreme tem-

peratures needed to keeping the metals liquid, which make it very difficult to handle

and maintain at a constant temperature. If the temperature fluctuates, the liquid

density's dependence on temperature will induce convection which will affect the

transport and enhance the diffusivity value, therefore it is imperative to maintain ex-

perimental conditions that will allow one to keep a constant temperature throughout

the entire duration of the measurement.
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Chapter 2

Diffusion - Theory and Experiment

This chapter focuses on the fundamental concept of diffusion and various techniques

used throughout the years to measure such phenomena in liquid systems.

2.1 Fundamentals of Diffusion

In 1905 Einstein published his famous paper on Brownian Motion [91], describing how

diffusion leads to the homogenization of spherical particles in a mixture. This diffusive

process, most commonly known as a random walk, is a stochastic Markov process that

is independent of the history and relies solely on the current state. Einstein derived

the well known Stokes-Einstein equation using the drag force in Stokes law [92] to

describe the diffusion of spherical particles of radius r through a continuous medium

with viscosity r, given by

kBT
D = , (2.1)

67r7r

where D is the diffusion coefficient, kB is Boltzmann's constant, and T is the absolute

temperature. Equation 2.1 is intended to be used for a system of noninteracting

particles which is a fundamental assumption in the derivation of Stokes law.
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2.1.1 Probability Associated With Diffusion

Figure 2-1 is a generic illustration of a probability function p(r) decaying with time,

and the general form can be derived using the Central Limit Theorem [93]. p(r) is

defined to be the probability distribution function for a displacement r, and PN(R) is

the probability distribution function for the position after N steps1 . If independent

and identically displacements are assumed during the random walk, the probability

distribution can be written as

PN+1(R) = Jp(r) - PN(R - r)dr. (2.2)

Other assumptions require the displacement steps to be isotropic, defined as < r >=

f rp(r)dr = 0, and for the length scale 1 to be finite satisfying the condition < r 2 >

d < r2 12 < O

Figure 2-1: Probability distribution function at various times.

p(r) is localized at the scale 1 which is much less than the scale describing the dy-

namical spreading of the distribution function. With this, we can Taylor expand

PN(R - r) inside the integral,

(2.3)PN+1(R) = PN(R) - r - VPN(r) + r - (VVPN(r)) - r p(r)dr.

1After N = 1 steps, they equal each other p(r) = Pi (R)
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We can further simplify equation 2.3 by writing the gradient operators as infinite

sums 2

PN+1(R) = PN(R)

d-I
i=O

SRN
i=1 j=1

rirj - N (R) p(r)dr

which simplifies to

PN+1(R) I
d

PN(R)p(r)dr -S( rip(r)dr)
&R(R)
aRi R

+ (rirjp(r)dr) ( N R)

d da2P
PN(r + T T N<rir3 > (R).

i=1 j=1 4R

(2.5)

(2.6)

(... ) represents higher order terms from the Taylor expansion that are negligible.

Since the displacement vector varies with time r, we can rearrange equation 2.6 and

use the following substitution < rirj >= oss - to get

PN+1(R) - PN(R)

T

(2)

2dr VRPN(R) =

Atomic Diffusion

As noted above, PN(R) is the probability associated with one random walk after

N steps at time T. The probability associated with M random walks then is the

concentration (c), which is the product of the two, c(R, t = NT) = MPN(R). This

can be used in conjunction with the differential form of equation 2.7 to get

ac
at

DV 2c, (2.8)

2r VPN(r) = Ti-' R-? (R) and r . (VVPN (r)) r j I E R__ (R)
j=1
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where D = 12/2dr is the diffusion coefficient, and d the space dimension of the system.

2.2 Diffusion in Liquid Metals

In general, this thesis focuses on the chemical diffusivity of component A (DA) in

the Al|B liquid alloy, which describes how component A diffuses under the influence

of a gradient in its concentration. The following sections talk about both diffusion

in liquid metals, the first focuses on theoretical models, and the second section on

experimental methods used to measure the diffusion coefficients in liquid metals.

2.2.1 Theoretical Models

Free Volume Model

In 1959, Cohen and Turnbull [94] published a theoretical model for the diffusion

constant (D) in liquids that is best described by hard-spheres. Their model was

related to the free volume Vf of the liquid because their derivation originated from

the statistical ordering of the spherical atoms, which can fluctuate and create enough

free volume for diffusion to occur. They called the inverse of the viscosity the fluidity

= 1/r/) and related it to the diffusion coefficient using the Stokes-Einstein relation

D = kBT (2.9)
3irao

where ao is the diameter of a spherical molecule. They used the fluidity description

because of the features observed experimentally, such as its negligible dependence

on temperature, and strong dependence on pressure. In fact, because the fluidity

decreases with increasing pressure, the authors reasoned how the fluidity was related

to the molecular average free volume, defined as

Vf = V - vo, (2.10)

with V being the average volume of a spherical molecule in the liquid and vo the van

60



der Waals molecular volume. Their view focused on diffusion occurring due to atomic

volume fluctuations, which is an activated process. Using a probability function that

described the chance free volume will form, they obtained the expression

D = ga*uexp(--yv*/vf) (2.11)

for the diffusion coefficient, where g is a geometrical constant, a* is approximately

the molecular diameter, u is the average particle velocity, -y is a correction factor for

the free volume overlap, and v* is the critical volume that needs to be exceeded for

diffusion to happen.

Equation 2.11 accurately predicts diffusivities for simple liquids if the product yv*

is approximately that of the molecular volume [94]. Their model eliminates the need

to characterize liquid diffusion as an activated process of Arrhenius behavior because

the average molecular velocity u is proportional to the square root of temperature

(v'T), and Vf increases linearly with temperature [18]. The authors showed how

the equation was able to predict the self-diffusion coefficients for simple metals, such

as Na, Hg, Ag, but was 30% off when predicting the self-diffusion of tin [94]. To

conclude, their theoretical description of liquid diffusion agrees well when it is used

to describe van der Waals-type liquids such as hydrocarbons, but it lacks the ability

to describe diffusion in more complicated systems such as liquid metals, or in my

case, liquid metals mixed with semimetals.

Thermodynamic Models

R. A. Swalin [95] proposed a liquid diffusion model around the same time as Cohen,

that originated from the theory of fluctuations due to the belief that diffusion resulted

from small atomic movements caused by density fluctuations. His theory assumes

there being no activation energy for diffusion to occur, with the implication that

thermodynamic properties contribute to solute diffusion, given by

D = 1.29 x 10-8 H (2.12)
A H'a2l

61



where AH, is the enthalpy of vaporization, and a is related to the interatomic po-

tential's dependence on separation distance. Although he claims the theory to be

non-Arrhenius, his data shows linear behavior when plotting ln(D) vs 1/T with an

activation energy proportional to temperature, Q = 2RT. Nachtrieb [52] was first

to point out the main discrepancy behind Swalin's theory, by explaining how Swalin

made an error in his derivation by assuming the partition functions for both acti-

vated and ground states could be cancelled on the basis that they are equal. This

throws away the terms containing the free energy functions, which indirectly makes

it a non-activated process. This theoretical effort still served to be valuable because

it emphasized on the importance of very small atomic displacements.

2.2.2 Experimental Techniques for Measuring Diffusivity

Electrochemical Methods

Rickert [96] was the first to investigate diffusion in liquid metals using electrochemi-

cal techniques. Unfortunately it did not involve only liquid metals because his work

focused on the diffusivity of oxygen, a nonmetal, in copper and silver. Several other

authors have since studied oxygen diffusion in liquid metals [97-100]. Our interest lies

purely in the electrochemical measurement of the chemical diffusivity within binary

liquid alloys, an area not well investigated. Just recently in 2011, a paper was pub-

lished by Murakami [84] claiming to be the first to use electrochemical methods for

measuring the diffusion coefficient in liquid binary alloys. This is not necessarily true

because in 1984, Oakeson [83] electrochemically measured the chemical diffusivity of

sodium in liquid tin. Oakeson's method used sodium-8"-alumina as the electrolyte

because of its superb ability to conduct sodium ions at an efficient fast rate which

proved suitable for studying the kinetic properties of liquid alloys. Figure 2-2 is the

schematic of their electrochemical cell used in these experiments.

Oakeson used both equilibrium and transient methods to measure the chemical diffu-

sivity. The equilibrium method consisted of solving Fick's second law (eq. 2.8) with
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Figure 2-2: A schematic illustration of the sodium-3"-alumina electrochemical cell
used in the diffusivity measurements of sodium in tin [83].
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the following boundary conditions 3

c(x, 0) = co

c(0, t) =c

ac
(1, t) = 0

ax

to get the following infinite series solution [83]:

c(x, t) = cO + Z
m=O

4(co - c0) sin
7r(2m + 1)

Their procedure included the application of a constant voltage for a time ti to generate

generate the concentration profile shown in figure 2-3.

CO

x=0 x=L

Figure 2-3: A schematic drawing
the diffusion problem as well as a
t > 0 [83].

showing the boundary and the initial conditions of
schematic illustration of the composition profile for

The applied voltage was removed after time ti (around an hour), and the concentra-

tion was allowed to equilibrate. The new average composition is given by

3 The length in the equations 1 is the same as the schematic length L.
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0 < x <l

t > 0

t > 0

(2.13)

(2.14)

(2.15)

[(m+
1) 7rxl

2 1
exp m + )2

2
(2.16)

T2Dt
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) = c(x, ti)dx (2.17)
0

which can be applied to equation 2.16 to obtain the full solution. The authors assumed

Henrian 4 behavior, and wrote the concentration of sodium as a function of voltage

using the Nernst equation to get

csn F R(t1 )exp -
YNa RT

0 8(co - co) 2m + 12 7r2Dti
c + E (cm-c0 ) exp [- 2 (2.18)

By applying a constant voltage for the time ti, and keeping the first couple of terms

in the series solution, the authors calculated the diffusion coefficient of sodium in tin.

Their transient method involved examining the relaxation behavior of the cell

potential after removal of the external applied voltage. The initial concentration is

given by equation 2.16 evaluated at ti. There is no flux of sodium into the cell during

the evolution of the potential, so the end boundary conditions are simply

Oc Oc

Solving Fick's second law with these boundary conditions gives the following solution,

c(x, t) =f (()d( +

0

2 Zcos (n7 ) exp -- 2 7r2 Dt] cos (7) f(()d(, (2.20)
n=1 0

where f(() = c(x, t1 ) (equation 2.16 evaluated at ti). Equation 2.20 is evaluated

at the surface, then related to the cell voltage using equation 2.18. The chemical
4They wrote the activity of sodium as aNa - 7Na c CSr 7Na C
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diffusivity was calculated by fitting a curve to the data (fig. 2-4).

0.72

D,= 2.60x 10~5 cm2 sec'(=D)
EXPERIMENTAL

0.70 TEMPERATURE 713 K (440PC)

~0.68 -

z0.66

0.64

_ 0.60 -
0

2 4 6 8 10 12 14 16 18 20

TIME (x10 3sec)

Figure 2-4: Curve of open circuit potential against time at 440 'C. The decay curve
calculated with D = 2.6 x 10-5 cm 2/s agrees with the experimental decay curve [83].

Both methods proved that on could fit the derived concentration-voltage relations

to the experimental data and extrapolate the diffusion coefficients, but both did not

agree well with each other. The transient method gave consistent higher diffusivity

values compared to the equilibrium method, which they attributed to the relaxation

being influenced by the faradaic activity at the liquid metal//" -alumina interface,

particularly the electrical double-layer effect. This is not necessarily true because the

electrical double-layer only influences the signal within the first milliseconds. Also,

the authors failed to use a reference electrode in their measurements, so the mea-

sured voltages could of possibly been influenced by changes in activity at the counter

electrode from polarization effects. They used a cell diameter of 2 cm, but failed

to mention the length 1 or the effect of convection. Convective transport probably

did affect their measurements because the sodium, which is seven times less dense

than tin, is being introduced from the bottom of the cell. This coupled with thermal

gradients will induce convection, but it's difficult to say because they did not provide
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details on the thermal stability during the experiments.

Murakami [84] used a chronopotentiometry method to measure the diffusivity of

rare-earths (La, Pr, Nd, Gd, Y, and Sc) in liquid cadmium, driven by the application

of optimizing the pyrometallurgical reprocessing kinetics of spent nuclear fuels. They

started with a known concentration of rare-earth metal M (c*) in liquid cadmium,

then applied a constant anodic current to oxidize the rare-earth metal M(in Cd liq) -

Mn+ + ne- into a LiCl-KCl melt. Figure 2-5 is an illustration of the concentration

profile during the chronopotentiostatic pulse, and a solution for the concentration

equation is obtained when Fick's second law is solved using the following boundary

conditions 5:

&cM I_
D (0t) = (2.21)

Ox nFA
CM (X, 0) cM (2.22)

CM(00, t) = CM. (2.23)

The derived solution is

I (Dt) X2~
CM (X, t) =cM - FAD 2 -) exp (- ut - xerf 2 , (2.24)

but evaluating it at x = 0 reduces to

CM (t) - - (225)
nF A 'rUD

The concentration will decrease during the application of a current until cM (t) reaches

zero, which happens at time t = T. At this transition time T, equation 2.25 simplifies

to

51 is the applied current, A is the electrode surface area, and F the Faraday constant in equa-
tion 2.21
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LiCl-KC melts M"' * M Liquid metal
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21v = F U, 75t(22t

t='r C

Figure 2-5: The concenptual change of the concentrations of solute M in liqud metal

(solid line) and M' ion in LiCl-KCl melts (dotted line) during constant current
electrolysis. C*M+ is the initial concentration in the electrolyte, and c* is the initial
concentration in the liquid metal [84].

21VT = nFAc'_rDj, (2.26)

which they used to calculate the chemical diffusivity because the electrode poten-

tial would deviate drastically at T (fig. 2-6). Equation 2.25 is also known as the

Sand equation [21], and there are several practical issues one needs to consider when

measuring the transition time T. If a significant double-layer is present, then it will

charge proportional to dE/dt and the Faradaic current will be slightly different than

the applied one. This effect is mostly dominant during the beginning and end of

the pulse, which makes short pulses unreliable. This capacitive effect will increase

with surface area, therefore it is imperative to minimize the area of contact between

the electrode and electrolyte. These transition time problems have historically dis-

couraged the use of controlled-current techniques compared to controlled-potential

methods [21]. Besides issues with measuring the transition time, the authors did not

use a true reference electrode, instead they utilized a pseudo-reference electrode and

did not mention any potential issues regarding polarization effects. They also did not
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account for convection, which they should at least briefly mentioned because of the

relatively large cell surface areas used of roughly 5 cm2.

Capillary Methods

Most of experimental values for diffusion in liquid metals reported in literature have

been measured using capillary techniques [39, 52, 58, 60-71, 71-77]. Anderson and

Saddington [101] first proposed the capillary-reservoir method in 1949. It consisted

of a 1 mm diameter, 2-10 cm long capillary containing a radioactive liquid metal

that is immersed in a bath of the same liquid metal that is of ordinary composition

(nonradioactive), shown in figure 2-7.

The capillary is immersed just above the surface of the liquid, the experimental time

begins once the capillary is completely covered. The boundary conditions to solve

Fick's second law, ac/8t = D (82c/8X2) , at t = 0 are
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Figure 2-7: Schematic of capillary-reservoir apparatus used by Meyer
the diffusion of liquid sodium.

c = co for 0<x<l

c = 0 for x > l,

[60] to measure

(2.27)

(2.28)

and for t > 0

c = f(x, t) for 0 < x < l

c = 0 for x > l.

(2.29)

(2.30)

co is the initial tracer concentration in the capillary, 1 is the capillary length, and x is

the distance from the side of the capillary in contact with the reservoir. Solving Fick's

law gives the following solution of the average tracer concentration in the capillary

c 8 0 exp (2n+ 1)27,2Dt

av 8 412

co 72 (2n + 1)2

(2.31)

The series solution (eq. 2.31) converges rapidly as the number of terms grow, so only
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the first couple of terms are necessary to compute the diffusivity.

The capillary techniques do offer ways to measure the diffusion of liquid metals,

but it does so at the expense of errors that are impossible to eliminate. The main

source of error, as you might have guessed, is convection. Convection can become a

very serious issue under the influence of temperature gradients, and simulations are

needed to estimate such conditions. Unfortunately, the majority of the work published

in liquid alloy diffusion was done before powerful computers existed, so authors only

speculate on the onset of convection, which led to large discrepancies between reported

values. In some experiments, the capillary was manually rotated to maintain c = 0

at the open boundary, which could deplete the tracer concentration if the rotation

is too rapid [52]. Buell's [68] work on the interdiffusion of tin in bismuth used a 10

cm capillary, and although the work was elegant, there are too many sources of error

to ignore. For example, due to the large volume required to fill the capillary, there

was significant volume change upon melting adding a constant source of error. Their

method of calculating the diffusion coefficient was to measure the resistivity in-situ of

the alloy by placing tungsten electrodes along the capillary, 1 cm apart. This required

a significant amount of current (due to the accuracy of their equipment) to measure

a reliable voltage drop, which led to Joule heating (convection) and electrotransport.

After collecting data for weeks, the resistances were converted to concentrations using

the work of an unpublished masters thesis [68], which inherently incorporated the

sources of the author's errors into the diffusion coefficient calculations.

Convection is a dominant source of error for these methods because of the need to

use long capillaries to cary on these experiments. The longer the capillary, the more

difficult it will be to maintain it at constant temperature with a furnace, specially for

weeks at a time. The error is clearly seen on the concentration-penetration profiles

for the interdiffusion [76] of tin in bismuth (fig. 2-8). One notices significant scatter

in the data as the capillary size increases, which they attributed to the influence of

convection. There is no doubt the scatter in the data could be a result of convection,

but to make the claim that convective transport increases with increasing capillary

diameter is merely a speculation because no effort was made to explain the effect
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solidification has on the concentration profile. Other authors [62] believe the opposite,

that small-diameter capillaries will experience 'wall-effects' near the wall because of

the no-slip boundary condition, so more reliable results could be obtained with larger

diameters.
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Figure 2-8: Effect of capillary diamater on concentration-penetration
interdiffusion of Bi in liquid Sn at 700 'C [76]

profiles for the

In the long capillary technique, the radioactive metal is brought in contact with

the nonradioactive metal (fig. 2-9(a)) then heated until it melts and allowed to dif-

fuse (fig. 2-9(b)). After some time (days), the liquid metal is solidified so that it can

be analyzed. The issue, as briefly mentioned above, arises when the alloy solidifies.

Freezing will more than likely start from the bottom of the capillary and proceed

up the walls as shown in figure 2-9(c). This will create a flux of tracer diffusion

from the center of the capillary to the wall, driven by solidification turbulence, effec-

tively creating a parabolic-shaped interface which will vary depending on the thermal

conductivities of the solidified metal and capillary wall. This will cause the tracer

diffusion concentration to be greater at the wall compared to the center which can be

seen in figure 2-9(d).
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Figure 2-9: (a) Initial concnetration profile. (b) Concentration profile after melting.
(c) Freezing interface of metal thread. (d) Concentration profiles at capillary asis and
wall. [52]

Shear Cell Method

The shear cell method [50-59] is similar to the capillary method, the main difference

being that it is sectioned before the liquid metal is solidified for analysis. This method

was created to eliminate the dominating sources of error in the capillary-reservoir

method which are solute diffusion during solidification, convection from thermal gra-

dients, length corrections, and segregation due to nonuniform solidification [102].

Figure 2-10 is a schematic representation of the shear cell used by Bruson [102] to

measure the interdiffusion coefficients of antimony, tin, and silver in molten copper.

The cell used by Bruson is made from stacking 20 disks that are 4 mm thick

and 42 mm in diameter. Two 1.5 mm diameter holes are drilled, one is filled with

copper spanning the length of the stacked disks, and the other is the height of one

disk (fig. 2-10(1)) filled with the radioactive species. The shear cell is then heated in

a furnace to the operating temperature, while keeping the liquid metals separated.

Once at temperature, the experiment clock starts ticking when the disks are rotated

(sheared) until the radioactive metal is perfectly sandwiched between liquid copper.

At the end of the experiment, the disks are rotated to segregate the capillary into
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A C

Figure 2-10: Schematic representation of the shear cell: (1) intermediate disk with-
radiactive alloy; (2) filling reservoir: A, configuration of the cell during the heating
of the system; B, the radioactive isotope is put into contact with the long capillary;
C, at the end of the diffusion run, each capillary is sectioned into 20 beads. [102]

the 20 parts (fig. 2-10C) before cooling it down. This eliminates the turbulent effect

solidification has on the transport within a capillary, as described in the section before.

To calculate the chemical diffusion coefficient, Fick's second law must be solved

with unique boundary conditions. Assuming the capillary length is infinite within

the time scale of the experiment, the initial concentration is given by

c(x, 0) = coe(x + h)[1 - E(x - h)], (2.32)

where co is the initial alloy concentration, 2h is the thickness of the center disk

containing the radioactive species, and E(x) is a step function. With this, one can

derive the following concentration solution

co h -x h + x (233c(x, t) = - erf + erf1, (2.33)
2 2L 5t )V \2D/j

and then perform a least-squares fit of the equation to the data so the the diffusion

coefficient can be extrapolated.
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This technique was created to counter the sources of error of the capillary-reservoir

and long capillary method, but large discrepancies in the reported literature suggests

that other sources of error are at play. Convection can be induced when the cells are

sheared [103], which simulations show it affecting the initial concentration distribu-

tion the most. Also, the materials used to contain the liquid metals must be inert

and stable during thermal cycling because the metals can leak if the disks expand

asymmetrically over time.

Other Methods

Other methods that have been used in the past to measure liquid diffusion include

neutron radiography [80], melting point experiments [74, 104-106], and laser tech-

niques [107,108].

2.3 Conclusion

The current methods available for measuring the diffusion in liquid metals are not

reliable, require long operation times, and include many inherited errors from the

experimental setups caused by convection. Most of the work was done in the 1960s

and 1970s before powerful computers could help calculate the effect of convection,

which is probably why reported values do not agree with each other. Convection can

be minimized if one uses small capillaries. Unfortunately the experimental methods

require the use of large capillaries because diffusion is orders of magnitude faster in

liquid alloys compared to solids.
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Chapter 3

Theoretical Derivation of Chemical

Diffusivity in Liquid Alloys

In 1977, W. Weppner and R. A. Huggins [109] created the galvanostatic intermittent

titration technique (GITT), an experimental method used to accurately measure the

chemical diffusion of lithium in the intermetallic compound Li3Sb. GITT combines

the use of both kinetic and thermodynamic measurements on solid electrodes, which

are measured with respect to a stable reference electrode with minimal polarization

effects. This is possible because the electrode potential is a direct measure of the

lithium activity in Li3Sb at the electrode-electrolyte interface. The electrode potential

can be related to the surface concentration using the Nernst equation. This is the

key enabler for calculating the chemical diffusion coefficient in liquid alloys. Fick's

laws can be solved with specific boundary conditions to derive a relation between

concentration and diffusivity. This chapter describes this process, but re-derived

for the purpose of studying diffusion in binary liquid alloys, which is proven to be

fundamentally different than the solid-state equation when compared.
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3.1 Chemical Diffusivity of A in the AllB Binary

Liquid Alloy

In order to measure the chemical diffusivity of component A (DA) in a liquid alloy

Al B as a function of mole fraction XA and temperature T, the surface concentration

of the electrode has to be related to its potential. Figure 3-1 is an illustration of

the electrochemical setup used in the experiments. While in equilibrium, the cell

potential is given by the Nernst equation,

RT aA(RE)

ZAF aA(A2B1_,)
(3.1)

z=0z

Figure 3-1: Schematic of alloying cell. Current is passed between the negative elec-
trode and positive electrode, while the potential is measured versus the reference
electrode ARE. The electrode-electrolyte interface is at z = 0 and the bottom of the
electrode is z = 1.

To show how the chemical diffusivity can be measured electrochemically, a mathe-

matical description for the electrode surface concentration is needed which is acquired

by solving Fick's laws of diffusion.
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3.1.1 Surface Concentration Solution

Let's assume an electrode of length z = 1 (fig. 3-2(a)) and at time t = 0 has an initial

molar concentration

CA(Z, 0) = cA'

t= 0

electrolyte alloy A-B

CA(Z,O) = Co

z=0 z=I

(a)

(3.2)

z= U z=I

(b)

Figure 3-2: Boundary conditions, (a) initial molar concentration at t = 0, and (b)
fluxes during galvanostatic pulse.

0

0
EV

0 T Time, t

(a)

Figure 3-3: GITT pulse (a) Applied current density jo at t = 0.
electrode potential.

(b) Evolution of

Then a constant current density pulse jo is applied externally at z = 0 (fig. 3-2(b)) for

a time t = r (fig. 3-3(a)), and the transient evolution of the electrode potential1 E is

recorded versus a reference electrode (fig. 3-3(b)). The resulting electrode-electrolyte

interface flux J = jo/zAF from the applied current is related to the chemical diffu-

sivity by Fick's first law

'Since the electrode potential gives us the surface activity, it will change under any external ap-
plied current that induces a Faradaic reaction at the electrode surface in contact with the electrolyte.
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dc(O, t) _ jo (33)
dz ZAFbA

where zA is the number of electrons and F the Faraday constant. Since the liquid

electrode has a fixed length 1, there will be no flux through the end of the electrode,

so the following boundary condition at z = 1 must be satisfied

dc(lt) = 0. (3.4)
dz

Using the previous boundary conditions 2 (eqn. 3.2-3.4) to solve Fick's second law

CA(Z,t) = bA CA(z, t) (35)
at az2

yields an infinite series solution at z = 0 [109,110]

2jo vt 2n1 (n + 1)1 36

cA (z = 0, t) = CA + -E ierfc ~7 + ierfe c36
ZAF DA n=O [ \ DAt \ DAt

which is valid at all times. The infinite series makes it difficult to apply to a finite

system, but we can get around this by taking a closer look at the arguments of the

integral of the complimentary error functions in eq. 3.6. Let's consider only the n = 0

term in the concentration solution

CA(Z=0,t) =C 0 2j Vi ierfc (0) + ierfc . (3.7)
zA FN V'/_A t)..

The first term is easily evaluated since ierfc(0) = i/xf (see Appendix B). The second

term, ierfc(l/v/DAt) is what complicates the solution, so modifications are needed to

approximate it to zero. This is achieved by comparing the characteristic time scale

for diffusion, TD = 12 /A to the experiment time t = T. It has to be such that it

2The solution assumes no boundary motion at the interface, which is a correct approximation
when the overall change in composition for the electrode is minimal, so the average volume V during
a coulometric pulse is considered constant.

3Appendix B show the error function related equations.
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makes the limit of the argument approach infinity4 (1/ /DAt - oc). This is possible

only when the experiment pulse time (r) is much much smaller than the characteristic

diffusion time scale (TD).

Assuming the pulse time is indeed much shorter than the characteristic diffusion

time (T << 12 /DA), equation 3.7 becomes

CA (01,t)CA+ 2jo
ZAF/ rDA

and if the electrode volume V remains constant, it can be written as

(3-8)

CA(0 t)- =nA(0, t)
V

no 2jofi
V zAF rDA

where nA is the moles of component A at the electrode surface.

3.1.2 Composition Relation to Potential

1.5

42

0

1.0

0.5

0.0 1 I i I .4 .6 0. .0I

0.0 0.2 0.4 0.6 0.8 1.0

Mole fractionxca

Figure 3-4: EMF data of calcium in bismuth between 600-800 C [17].

4 This will inherently make all the other higher terms in the series (n = 1 ... oo) reach zero faster
than the initial n = 0.
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E.m.f. diagrams show how the electrode potential varies with mole fraction under

constant temperature and pressure, see figure 3-4 for example. The Nernst equation

(eq. 3.1) is heavily used in these thermodynamic measurements because it describes

quantitatively how potential varies with composition, so it is safe to assume the

electrode potential varies only with surface mole fraction E(XA) if the temperature

fluctuations are small. Therefore, with equation 3.9 we can write the mole fraction

of A as a function of the surface concentration

0 2joV Vr

CA(t) A ZAF rA
zA (CA (3-10)

CA(t) ~ CB nB + + 2joVV7

ZAFNIrDA

We are interested in how a small change ( 0.25%) in mole fraction of A transiently

affects the electrode potential. This is achieved by writting the electrode potential as

E(XA(CA(Vt))), (3-11)

with the assumption that the electrode potential is only a function of composition

(E = f(XA)) and concentration only a function of time (CA = g(t)) at the electrode-

electrolyte interface (z = 0). Note that this equation was derived assuming very small

fractional mole changes of the active species with the titration time constrained, so

the chain-rule was applied to equation 3.11 to get the potential dependence on time

dE dE dxA (3.12)
= -td A (0 < t T). (.2

dd dXA g(t) d t t

The exact form of how the electrode potential evolves with surface concentration

(dE/dXA) is unknown, but it can be approximated to a good degree from steady-

state bulk measurements because the induced changes in composition are very small.

In fact, if it's linear over the range in composition studied then it is indeed a good

linear approximation, and we can write it as

dE AE
d Z-E (3.13)

dxA g(t) AXA
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which is approximated from open circuit voltage measurements induced from the

small changes in composition.

dxA/dfI is computed by differentiating equation 3.10

dXA 2 flBjoV 2(3.14)

dgA 2dVi ZAF /WDA fB img 2JoVV

ZAF

In theory, the surface concentration is constant with square root of time, but the mole

fraction is not, therefore it is important to examine how it deviates. The chemical

diffusivity appears twice in equation 3.14, and if the time-dependent factor ( 2joVVi )
ZAF /TDA

changes the value drastically during pulsing, then it can only be solved numerically.

On the other hand, if it can approximated to be constant, then we can simply solve

for the chemical diffusivity. To see whether or not dXA/dvl can be treated as a

constant, sensitivity analysis has to be done on the current density jo, volume V, and

the square root of the pulse time /t. This was done (shown in Appendix C) with the

variables used in the experiments, and can conclude that for our experimental system

the following approximation is valid

2joVfi- 0 (3.15)
ZAF1/7rbA

because equation 3.14 is virtually constant during the entire pulse sequence. With

the use of the approximation it is safe to write the surface mole fraction as

dxA 2iBJOV
dXA n~j0 )2(3.16)

d vf ZAF/7bA (rB + no 2

3.1.3 Chemical Diffusivity Equation

Substituting equations (3.13), and (3.16) into (3.12) yields the complete time-dependent

potential equation

dE _ AE 2 nBj 0

dIt- Z\XA ZAF /7rDA (rB + 3 .2

83



Now we can solve for DA in (3.17) to get the chemical diffusivity

1 2nB1oV

DA = (3.18)
zaF (nB + no 02 d

3.2 Chemical Diffusivity Derivation of A in the

Ay+ 6B Binary Solid Intermetallic Compound

Weppner and Huggins [109] proposed GITT as a method for determining kinetic

parameters in intermetallic compounds Ay± 6B. Their coulometric titrations consisted

of small current pulses (Io) to induce the following change in stoichiometry

6 = IMB (3.19)
ZAmBF

where r is the pulse time, MB is the atomic mass of B, mB is mass of B, and F is

the Faraday constant. Dimensional analysis shows this is just the ratio of A moles

titrated during the pulse to that of component B present. The Fickian concentration

used by the authors has units of particles per volume with a surface rate

dc- 2Io
di Sz2q1 (t << 12 /b). (3.20)

d Vt SziqVF=7

If the molar volume (VM) of the intermetallic compound remains constant during the

galvanostatic pulse, the concentration ci can be related to the change in stoichiometry

by

NA
dci = -d, (3.21)

VM

where NA is Avogadro's number.

Equation 3.21 is used to write the concentration differential (eq. 3.20) as a stoi-

chiometry differential
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d6 - d- dc 2IoVM (3.22)
d V dc dv7 SzjNAq D1

and since the changes in stoichiometry are very small, they expand it by dE to get

the cell voltage dependence on time

dE _

dy

2IoVM- dE (3.23)
SFzj VDi d6

dE/d6 is the difference in open circuit voltage divided by the change

(eq. 3.19) measured at equilibrium.

They then solve for the chemical diffusion coefficient (D) to get

b= 4 (y M 2

7r SFzj

1dE 12Ed6
d J

in stoichiometry

(t << 12 /) (3.24)

3.3 Difference Between Liquid and Solid-State Dif-

fusivity Equations

Let's compare the chemical diffusivity equation for liquid alloys (eq. 3.18) to solid in-

termetallic compounds (eq. 3.24). Equation 3.18 can be rewritten to closely resemble

equation 3.24

-(AE 2

DA AXA
zAF (nB 0 2

1 ( Ai d Th-t

[IOX AE 12
dE

d 7t

The difference between the two arises from the definition of how the electrode potential

changes with the corresponding change in activity. For solid electrodes, dE/d6 is the

change in electrode potential AE due to the change in stoichiometry A6 (eq. 3.19)

measured at equilibrium, given by

dE AE AEZAFmB _ AEzAF AE
= = nB Bdo d IOMBT 10T R

(3.26)
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where nB MB/MB is the moles of B and n' = IOT/ZAF is the added moles of A.

The equivalent of equation 3.26 for liquid alloys derived in this thesis is

B AE (3.27)
AXA

In the limit of very small changes in composition of A in the liquid A lB alloy, the

change in mole fraction of A is approximated as

A niB nnB
AXA 0 A 2 1 (3.28)

(nA + nB+ n (no +A B) -(nA + B)2

so equation 3.27 is written as

AE AE
XB = (ni7+n '.9)

AxA RA

The fundamental difference between the two chemical diffusivity equations can be

seen in the new derivation (eq. 3.29), which incorporates to total number of moles

for the binary system, not just that of component B (eq. 3.26). Equation 3.29 can be

rewritten as

AE AE
xB (3.30)

and interpreted as the change in electrode (AE) potential due to an infinitesimal

change in mole fraction (n- /(nB oi)). This is more applicable to our electrochem-

ical system because we apply very small pulses (AIA < 0.25%), and the electrode

potentials we measure are directly related to the surface activity which is a measure

of the surface mole fraction.

3.4 Conclusion

The diffusion equation for liquid alloys derived in this thesis (eq 3.18) can be applied to

any molten-salt electrochemical system by using a suitable electrolyte that minimizes

self-discharge currents along with a stable, non-polarizable reference electrode. A
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great amount of effort has been invested at MIT to find candidates that meet the

above requirements, one being calcium-bismuth due to its high voltage. Results are

presented in chapter 5 using such couple, in the liquid range between 500 'C and 700

'C at 5%, 10%, and 15% calcium atomic percent.

A close inspection of the chemical diffusivity equation 3.18 reveals what needs to

be experimentally measured. Besides a couple of constants, we have full control of the

sample volume, pulse time, and electrode surface area, but must measure the change

in open circuit voltage at equilibrium and the electrode response during the applied

galvanostatic pulse. A three-electrode setup is used where the working electrode

potential is measured vs. a two-phase 35% - mol Ca-Bi reference electrode proven to

be stable during the time scale of these experiments [17].
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Chapter 4

Electrochemical Experiments and

Procedure for Measuring the

Chemical Diffusivity in Liquid

Alloys

The experimental procedure for calculating the chemical diffusivity values consists of

two parts. The first is the initial galvanostatic titration to the desired composition

(fig. 4-6), and the second is a sequence of constant current pulses (fig. 4-7) designed

to determine the chemical diffusivity. But first, the electrochemical system of interest

is described.

4.1 Experimental Setup

4.1.1 Materials Selection

It is of extreme importance to use the most inert, cost effective, materials that can

withstand months in contact with molten salts and liquid metals without corrosion

degrading the mechanical integrity. With this in mind, we aimed to select the the most

stable materials in the temperature range of operation, which is between 550 'C - 700
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'C. Figure 4-1 is the test vessel, along with the materials used. The electrical leads

were made from 99.9% pure tungsten wire and had a diameter of 1 mm. The leads

were sanded with 600 grit sandpaper and rinsed with ethanol to eliminate impurities.

THERMOCOUPLE

ELECTRICAL LEADS

EPOXY

ULTRA-TORR FITTING

SANITARY FITTING

COOLING COILS

GASVACUUM PORT

BAFFLE PLATES

STAINLESS STEEL
VACUUM CHAMBER

ALUMINA SIEATH

CELL

ALUMINA CRUCIBLE

Figure 4-1: Experiment test vessel.

High purity boron nitride crucibles1 were used to contain the liquid alloy electrodes

with the dimensions shown in table 4.1. Figure 4-2 shows how the electrochemical cell

was spatially organized inside the test vessel. The main crucible containing the elec-

trodes/electrolyte and electrode sheaths were made from alumina due to its inertness

with the molten salt electrolyte.

Radius (cm) Height (cm) Thickness (cm) Sample height (cm)
WE 0.3 1.2 0.2 0.5
RE 1 0.4 1.2 0.2 0.9
RE 2 0.4 1.2 0.2 0.9

CE 1.5 1.2 0.2 0.9

Table 4.1: Electrode dimensions.

'The MIT machine shop precission made the electrodes used in the GITT experiment.

90



Figure 4-2: Cell layout. The outer perimeter is the alumina crucible, and it is not
drawn to scale.

4.1.2 Electrochemical System

Cell

Figure 4-3: Three-electrode cell schematic. Current is passed between the counter
electrode and working electrode, while the working electrode potential is measured
with respect to the reference electrode.

Our system of interest is the Ca-Bi alloy couple, and the goal is to apply the newly

derived equation for liquid alloys to measure the chemical diffusivity of calcium in

liquid bismuth. This new method offers a new way to measure kinetic properties of

super reactive liquid metals no possible before. The counter electrode is the source

of calcium, and is composed of a 17% - mol Ca-Bi alloy. It was chosen because it is a

liquid during the entire temperature range of operation. It also ensures that there will
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be no kinetic limitations from the counter electrode which is imperative for these type

of electrochemical measurements. A 35% - mol Ca-Bi biphasic reference electrode was

used because of its stability [17] due to the electrochemical potential being constant in

the two-phase regime. This ensures the voltage will not drift with any small deviations

in concentration over time, so it provides a true reference point. The electrolyte,

a mixture of 38.5% LiCl - 26.5% NaCl - 35% CaCl2 , was pre-melted to maximize

homogeneity 2 . This electrolyte composition was heavily studied by Kim [2], and it

proved to work well while minimizing calcium solubility. The entire electrochemical

cell was assembled inside an argon glovebox with oxygen and water ppm levels less

than 0.1 to minimize contamination, and oxide formation.

Due to the affinity for the Ca-Bi couple to form high temperature intermetallic

compounds, the reference electrode alloy was first pre-melted using an arc-melter

under argon atmosphere. All the electrodes were then melted in the BN crucibles

using an induction-melter that was custom-added to the glovebox. This procedure

is explained in more detail in appendix D.2. The test vessel was slowly heated from

room temperature to operating temperature using a procedure aimed at drying the

electrolyte 2. The furnace was covered with aluminum foil and a copper mesh, and

was grounded along with the vessel to minimize the noise from the furnace or any

spurious electromagnetic noise that can affect the signal. The data was collected

using a Metrohm Autolab potentiostat and a National Instruments@ data acquisition

card (fig. 4-4).

2The premelting procedure can be found in appendix D.
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Autolab System

Figure 4-4: Experiment setup

4.2 Electrochemical Pulse Sequences

4.2.1 Initial Composition Titration

Figure 4-5 is the Ca-Bi phase diagram with labels, and it provides a good visual where

the system stands during operation. Figure 4-6 part A shows the working electrode

being held constant at 0.7 V vs reference electrode for around 6000 seconds to remove

the calcium from the previous test. A titration to composition, either 5%, 10%, or

15%, as shown in part B, followed by relaxation to the open circuit voltage (part C).

4.2.2 Determination of D

After the system relaxes, the pulse sequence shown in Figure 4-7 is applied to calculate

the chemical diffusivity at the composition of interest. A single pulse consists of

three parts: an initial open circuit voltage measurement, the galvanostatic pulse, and

relaxation to open circuit voltage. The four applied pulses have one thing in common,

they all change the working electrode composition by 0.25% xca. Besides this, the

applied current density ranged from 5 - 20 mA/cm2 , incremented by 5 mA/cm2 each

time since in theory the diffusion coefficients should be invariant with respect to the

applied current. The pulse time r was adjusted to meet the common restriction of

equivalent mole fraction change. The procedure shown in table 4.2 was used, and the
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Figure 4-5: Calcium-Bismuth phase diagram [17].

Figure 4-6: Titration to composition. A) Potentionstatic cleaning of working elec-
trode. B) Coulometric titration to composition. C) Open circuit relaxation.
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average diffusivity value was calculated (see chapter 5).

Em, vs RE

/= 0

pulse I pulse 2 pulse 3 pulse 4

Figure 4-7: Custom four pulse sequence used for determining chemical diffusivity.
Each individual pulse changes the calcium composition by 0.25% Xca.
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% Ca Pulse (#) j (mA/cm 2) Time (s) Rate (mol/s) A%Ca

5 1 5 2029 7.123x10- 9  0.25
5.25 2 10 1020 1.425x10- 8  0.25
5.5 3 15 683 2.136x10- 8  0.25

5.75 4 20 515 2.848x10- 8  0.25
10 1 5 2261 7.123x10- 9  0.25

10.25 2 10 1137 1.425x10- 8  0.25
10.5 3 15 762 2.136x10- 8  0.25

10.75 4 20 575 2.848x10- 8  0.25
15 1 5 2535 7.123x10~9  0.25

15.25 2 10 1275 1.425x10- 8  0.25
15.5 3 15 855 2.136x10- 8  0.25

15.75 4 20 645 2.848x10- 8  0.25

Table 4.2: Pulse sequence parameters at 5%, 10%, and 15% Ca-Bi.

&
'U
4.'
0

3 2

~10Time (s)

Figure 4-8: Typical pulse sequence applied at 5%, 10%, and 15% - mol Ca-Bi. Each
individual pulse changes the calcium composition by 0.25% XCa.
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4.3 Conclusion

Two separate pulse sequences were used to gather the data used to calculate the

chemical diffusion coefficient. The first sequence consists of titrating the electrode to

a composition between 5% - 15% Ca-Bi. A four-pulse sequence consisting of differ-

ent current densities was applied after the open circuit voltage stabilized. Different

current densities between 5-20 mA/cm 2 were used because in theory b is invariant

to the applied current, so it provided a method for comparison. Natural convection

has to be minimized during the time-scale of the experiments to eliminate scatter in

the data from enhanced values affected by the flow. Extra insulation was added to

the experiment furnace to prevent the temperature from drifting. The hot-zone was

located near the center of the electrolyte rather than the bottom which in theory will

minimize any buoyancy-driven convection affecting the system. Careful consideration

was also made so that no vibrations perturb the liquid, which can come from the use

of mechanical equipment such as vacuum pumps. Also, since convection is governed

by the dimensionless Rayleigh number which scales with size, the electrode of interest

should be made as small as possible which is explained in section 6.4.
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Chapter 5

Results and Data Analysis

This chapter will present the electrochemical data and the analysis done to calculate

the chemical diffusivity of calcium in liquid bismuth. MATLAB@ was the software

used to analyze all the data generated for each diffusivity value which consisted of

four files (two Autolab, two Labview) containing all the experiment information. A

lot of effort went into writing the scripts, but was well worth it given how much time

was saved analyzing such a complicated data set. Please refer to Appendix F for more

information regarding the scripts.

5.1 Application of the Chemical Diffusion Equa-

tion (eq. 3.18)

Let's take a closer look at the chemical diffusivity equation derived in chapter 3 to

see which variables need to be experimentally measured:

1 2nBj V0 A

DA = I ZXA (5.1)
7T zAF (nB+ n E02 2

Equation 5.1 requires two voltage rates that need to be extrapolated from the data;

the difference in equilibrium potential caused by the titration pulse AE , and the

square root dependence of the transient potential -- The other variables do notd Vt
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change because of the constant volumel assumption, a fundamental basis used in the

derivation of the concentration solution, but nevertheless there are associated errors

with these assumptions that need to be propagated.

5.2 Sources of Error

5.2.1 Uncertainty in Voltage Measurements

Figure 5-1 is an example of the pulse sequence used to calculate the chemical diffusiv-

ity of calcium in the 5% Ca-Bi liquid alloy, which is shown along with the temperature

variations at 575 'C. The change in equilibrium voltage after each pulse is clearly seen

in the same figure, which are the five constant potential asymptotes. At the end of

each pulse, the change in calcium mole fraction was AXCa = 0.25%, so we can plot the

electrode's potential dependence on the change in composition to examine its linear

behavior between 5-6% Ca. This open circuit voltage is calculated by averaging the

last 250 data points(fig. 5-1), and the standard deviation was taken as the error (5-2).

0.09 .574.5

0.085- 57-574
0.08

0.075 573.5-

C E0.07- 573 (
0065

572.5
0.06-

0.05572
3 4 5 6 7 8 9

Time (hr)

Figure 5-1: Four-pulse sequence used in determining the chemical diffusivity of cal-
cium in bismuth at roughly 575 'C. The temperature fluctuations during the pulse
sequence are superimposed to aid in the analysis.

'One can calculate how much the volume changes with the extra calcium added during atitration,
assuming a linear relationship, and it changes by less than 0.3% which can be safely assumed to be

constant.
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Figure 5-2: Potential versus calcium mole fraction. 5% Ca-Bi, 5750C.

The uncertainty in the potential difference between the potentials E1 and E 2 were

added in quadrature (equation 5.13). The results are shown in figure 5-3.

In theory, the rate of change in potential with composition should be constant if

the compositional changes are infinitesimal. Their variation could be associated with

the temperature fluctuation experienced during data collection, or influenced by a

small leakage current, so it makes sense to assume the value to be constant and the

error to be the standard deviation of the four rates. If we treat this as the dominant

source of error, then the new propagated error grows, and can be seen in figure 5-4.

5.2.2 Differential Error Analysis

There are five fundamental sources of error the that need to be taken into account

when calculating the chemical diffusivity. The errors can be added in quadrature and

propagated to the individual data points. In order to do so, the chemical diffusivity

equation is written as
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dE/dx vs Pulse

2 2.5
Pulse

3 3.5

Figure 5-3: dE plotted for each pulse. In theory these values should be the same,
but deviations in temperature and other environmental changes will induce small
deviations.

dE/dx vs Pulse

x
W
w

1.5 2 2.5 3 3.5 4
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Figure 5-4: L error bars are the standard deviation
assumed valid because in theory they should be equal.

of the four values. This is
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= d (uBi 2 ZC 2 wzBc2 (abc) 2  (5.2)
rdxca (nBi+ nO z0CCFd 7rz2 CaF2 f

where the variables are defined as

dE

a = (5.3)

b = V (5.4)

c = jo (5.5)

f = (nBi+ n 0Ca )2 (5.6)
dE

g = d , (5.7)

and have the following associated uncertainty:

Aa = std(dE/dxca) (5.8)

Ab = VT Ca (5.9)

Ac = o-s (5.10)

Af = n Ca (5.11)

Ag = JAE. (5.12)

a is the average of the four values shown in figure 5-4, and Aa is the standard deviation

calculated from the four dE/dx values, which varies depending on concentration. At

5% Ca, it is around 0.1, but decreases in magnitude at higher concentrations to take

a value between 0.002 and 0.01.

b is the initial volume of the alloy. It is assumed to be the linear sum of the individual

component volumes calculated using the measured masses and densities at the oper-

ating temperature, which is around 0.1 cm 3 . Ab is assumed to be the added volume

during the calcium titration, Vga, which is roughly 104.

c is the current density, but the dominant uncertainty lies in the surface area for the
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electrode. The electrodes were machined at the MIT machine shop, and the diameter

was assumed to have a 1% relative error. Ac is then the propagated uncertainty in

the surface area, calculated to be 10-3.

f is the inverse square of the total number of moles initially present in the alloy. The

error is introduced assuming no change in f, so Af becomes the moles of calcium

added, which is typically around 10' (Axca < 0.25%).

Ag is a complicated source or error because it is what ultimately affects the deviation

of the four values, sometimes beyond the error bars calculated from the propagated

errors. This is because it is heavily dependent on the bounds separating the linear

component of the potential's response as a function of square root of time. It is

also sensitive to temperature fluctuations. In order the propagate this error, it was

defined to be the uncertainty from the standard deviation of the open circuit voltage

measurements

UAE= ~ UE 1
2 + UE 2

2 , (5.13)

divided by the square root of the pulse time uAEj/x/i-au Now that we have all the

variables defined, we can compute the error in the chemical diffusivity by applying

the following equation:

2 ~ 2 ~ 2 ~2 ~2

aD. B9Di 8Dj aDj aDj
Ub ( - 'Aa + ( Ab + Ac + Af + Ag

(5.14)

5.3 Calculated Chemical Diffusivities of Calcium

in Bismuth

In section 5.1 we analyzed how the derived chemical diffusion equation for liquid

alloys is used to calculate the chemical diffusivity at 5% Ca-Bi, 575 'C. We also

demonstrated how the calculated chemical diffusivities are independent of the applied

current density, which has to hold true in order to have confidence on the diffusivity
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values. This section will show all the calculated chemical diffusivities of calcium in

bismuth at 5%, 10%, 15% Ca-Bi between 550 0C and 700 0C.

The data was collected over a period of two months, and the electrochemical sys-

tem used was very stable after it equilibrated. The system was left at 650 'C overnight

before starting any coulometric titrations. Unfortunately this was not enough time to

allow the system to equilibrate even though the electrode potential response seemed

normal. This was discovered after the computed chemical diffusivities deviated greatly

from the overall trend shown when plotting all the calculated values together, seen

in figure 5-5. The error was due to the reference electrodes drifting (see E-7) during

electrolysis because the system was still equilibrating. There error analysis is clear to

point out the values which deviate greatly, and also gives us confidence the technique

works.

5.3.1 5% Calcium in Bismuth

io-s Dchem vs T 5pctallerror
13

12-

11

10-
E

.99-

8-

7-

6

5
800 820 840 860 880 900 920 940 960 980

T

Figure 5-5: Chemical diffusion coefficients at 5% Ca-Bi.

Figure 5-5 are the chemical diffusivity values calculated using the data collected at

5% calcium in liquid bismuth. There is a noticeable trend of the value increasing with
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T (K) Deheml (Cm2 /s) chem2 (Cm2 /s) Dchem3 (cm 2 /S) Dchem4 (Cm2 /s)

820.3 (6.46 ± 0.56)x10- 5 (6.85 ± 0.63)x10- 5 (6.89 ± 0.68)x10- 5 (6.87 0.73)x10-5
846.2 (7.29 ± 0.68)x10- 5 (6.90 ± 0.73)x10- 5  (6.82 ± 0.79)x10- 5  (7.17 ± 0.86)x10-5
874.2 (7.41 ± 0.75)x10- 5 (7.64 ± 0.84)x10- 5  (7.39 t 0.90)x10- 5  (7.69 i 0.96)x10-5

897.9 (7.33 i 1.14)x10- 5  (8.05 i 1.7)x10- 5  (9.46 t 1.9)x10- 5  (9.28 t 1.9)x10-5
925.6 (9.32 i 0.29)x10- 5 (9.07 t 0.31)x10- 5  (9.0 t 0.34)x10- 5  (10.2 i 0.40)x10-5
975.4 (10.7 t 0.88)x10- (10.7 + 0.97)x10~5  (10.9 ± 1.1)x10-5  (11.2 1.1)x10-5

Table 5.1: Chemical diffusion coefficients of Ca in 5% a Ca-Bi liquid alloy. Errors are
shown to one significant figure.

temperature, which is expected under the assumption that diffusion is an activated

process.

5.3.2 10% Calcium in Bismuth

Figure 5-6 is the plotted chemical diffusivity data shown in table 5.2. These values

were calculated using the same method described above for the 5% Ca-Bi liquid alloy.

The propagated relative errors are also shown to one significant figure.

E
a)

DchemvsT_1 OpctallerrorX 1O-

900
T

980

Figure 5-6: Chemical diffusion coefficients at 10% Ca-Bi.
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T (K) 5i (cm2/s) b 2 (cm2/s) 3 (cm2/s) b 4 (cm2/s)

822.3 (4.23 t 0.19)x10- 5 (4.66 ± 0.20)x10- 5 (5.16 i 0.22)x10- 5 (5.73 ± 0.24)x10-5
847.5 (4.89 ± 0.16)x10- 5 (5.12 ± 0.16)x10- 5 (5.24 ± 0.17)x10- 5 (5.21 ± 0.17)x10-5
872.1 (5.48 ± 0.27)x10 5  (5.25 i 0.21)x10 5  (5.86 i 0.22)x10 5 (6.07 ± 0.21)x10 5

896.5 (5.88 ± 0.37)x10- 5 (6.50 i 0.37)x10- 5 (6.89 ± 0.39)x10- 5 (7.31 ± 0.39)x10-5
924.1 (8.43 ± 0.72)x10 5  (5.70 i 0.34)x10 5  (7.25 ± 0.38)x10 5  (7.76 i 0.38)x10 5

974.7 (7.40 ± 0.43)x10 5  (7.98 t 0.41)x10 5  (8.05 i 0.40)x10~5 (8.28 0.41)x10 5

Table 5.2: Chemical diffusion coefficients of Ca in1O%Ca-Bi. Errors are shown to one
significant figure.

5.3.3 15% Calcium in Bismuth

Figure 5-7 is the chemical diffusivity data for 15% Ca-Bi, which is shown in table 5.3.

These values where calculated along with their uncertainties to show their true reli-

ability. At this composition, some of the values differ beyond their calculated errors,

more noticeable at 700*C.

14
Dchemvs_T1 5pctallerrorX1-5
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Figure 5-7: Chemical diffusion coefficients at 15% Ca-Bi.

This implies there are other sources of error inherited in the system. The uncertainty

is introduced when analyzing the transient potential variation with square root of

time d, which is discussed comprehensively in the section below.
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T (K) D1 (cm2/s) 52 (cm2/s) b 3 (cm2/s) 4 (cm2/s)

820.0 (4.39 ± 0.13)x10- 5  (6.93 ± 0.20)x10- 5  (6.65 t 0.22)x10- 5  (6.92 t 0.22)x10-5
848.2 (6.85 t 0.16)x10- 5  (6.59 ± 0.15)x10- 5  (6.91 t 0.15)x10 5  (6.73 t 0.15)x10-5
872.7 (4.24 ± 0.34)x10- 5  (7.80 ± 0.61)x10- 5  (7.56 ± 0.57)x10- 5  (7.66 t 0.56)x10-5
897.2 (8.73 ± 0.52)x10- 5  (7.73 ± 0.45)x10- 5  (7.41 ± 0.44)x10- 5  (8.49 ± 0.47)x10-5
923.0 (5.74 ± 0.68)x10-5  (5.83 + 0.74)x10- 5  (7.14 ± 0.79)x10- 5  (8.65 t 0.98)x10-5
974.1 (6.46 ± 0.35)x10- 5  (12.7 ± 0.70)x10- 5  (10.8 ± 0.48)x10- 5  (10.8 t 0.44)x10-5

Table 5.3: Chemical diffusion coefficients of Ca in15%Ca-Bi. Errors are shown to one
significant figure.

dE-
5.4 d- vs Temperature

The theoretical derivation of the chemical diffusion equation (eq. 3.18) for liquid alloys

in chapter 3 states the rate of change in electrode potential with respect to the square

root of time should be linear during the time scales of the experiments. Our liquid

electrodes do show the same behavior, but only after an initial nonlinearity, which

observed within the first 50-100 seconds of each pulse. The nonlinear behavior seems

to be independent of temperature because the calculated rates are very similar (fig. 5-

13). The nonlinearity is clearly seen in figure 5-8, which is a plot of the electrode

potential variation with square root of time during the applied galvanostatic pulses.

We initially believed the nonlinear behavior was due to either a kinetic limitation

from the electrolyte, or a local thermodynamic effect such as joule heating. We also

thought about the possibility that a surface passivation layer could be causing the

initial nonlinear behavior, but this is unlikely because we can still draw large current

densities without the potential deviating drastically. If a solid interface is present,

then solid calcium would be deposited onto the surface faster than it could diffuse

causing the voltage to exponentially shift, which is not observed. We now believe this

effect is a result from the electrode design. Recent work involving a new electrode

design shows the potential to be entirely linear with the square root of time, so we

now think that the nonlinearity is a mixed potential effect from the tungsten lead

being in contact with the electrolyte. The new electrode design isolates the tungsten
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lead from the electrolyte, effectively eliminating the mix potential problem. We are

confident this initial nonlinear behavior does not affect the diffusivity measurements,

which should prove true if the different diffusivity values calculated from the four

current densities are the same.

Potential vs Square Root of Time
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0.05
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Figure 5-8: Electrode potential dependence with the square root of time. The longer
pulse shown in blue corresponds to the smallest applied current density which was 5
mA/cm2

Figure 5-9 is a plot of linear L fits to the data. The fits had a lower bound todVti

exclude the initial nonlinearity, and an upper bound. The upper bound might be a

little confusing, but it will make more sense if we look at the entire residual (fig. 5-10)

after excluding the initial nonlinearity from the pulses. One can see the residual fit

is linear between Vt/ = 10 and V7 = 25, then falls off nonlinearly until the end of the

pulse, which is why the upper bound limit was imposed.

The nonlinearity observed at later times is caused by the 'end-effects' of the cell

because the titration pulses were applied for times longer than what the constraint

time T << l2/Jboa allows. To show this, we ran finite element simulations 2 (which will

be the focus of next chapter) to solve for the transient surface composition using the

calculated ba values. The surface concentration was then mapped to the electrode

2 Simulations used the full numerical form of the solution to solve for the surface composition,
unlinke the simplified version used in the experiments.

109



Data and Fits
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Figure 5-9: Top: Linear fits to electrode potential variation with square root of time.
Bottom: Residual plot from the fits and data showing random scatter averaged at

zero, signifying good fits.

potential by using a linear polynomial fitted to the equilibrium voltage variation with

composition (5-2). The results are in excellent agreement with each other and can be

seen in figure 5-11.

The next step is to compare the slope values inside the bounded region, so fitting

a linear polynomial with the same bounds used in the analysis (red fit and residual in

fig. 5-12) of the experimental data to the simulated rate gives a value of -8.56x10-5

Vs-1 /2 , which is less than 1% difference when compared to the experimental value,

-8.48x10-5 Vs-1 /2 (table 5.4). This validates the assumption that we can use bulk-

average equilibrium potentials (AE/xc~a) in the diffusivity equation when relating

it to the transient potential that evolves during the application of a galvanostatic

pulse.

The analysis using the experimental value is was carried to demonstrate how
the nonlinearity affected the rate. The simulated dEj result did not exhibit an initial

nonlinear behavior, and was within 1% of the measured value, allowing us to conclude

that it had no effect.

The diffusion data shows an overall trend of increasing diffusivity with tempera-

ture, but looks scattered at times because of the reference electrode drifting during
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Figure 5-10: Top: Linear fits to electrode potential variation of pulse 1 with square
root of time. Bottom: Residual plot from the linear fit and data.
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Figure 5-11: Top: Linear fit to simulated electrode potential variation of pulse 1 with
square root of time. Bottom: Residual plot from the linear fit and data.
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Pulse 1 Potential vs Square Root of Time
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Figure 5-12: Top: Linear fits to simulated electrode potential variation of pulse 1
with square root of time. Bottom: Residual plot from the linear fit and data. The
residual fit in red has both upper and lower bounds, and the slope in that region is

= -8.56x10- 5 Vs-1/2.

electrolysis. The d dependance on temperature and electromagnetic noise also con-

tributed to the scatter in the data, and is more evident at 10% and 15% Ca-Bi. This

does not necessarily make the data flawed because we can do corrections to it by

examining the entire data set as a whole. This requires to examine how the chemical

diffusivity will vary collectively over the entire range of temperature.

There is no way to predict how L will vary with temperature, and it seem to

trend in a way that are constant with temperature and only vary with applied current.

This trend can be true because the e.m.f. data (fig. 3-4 of Ca-Bi shows the electrode

potential curves to be virtually the same between 500 'C-700 'C, so one would expect

the transient electrode potential rate to be constant with temperature. In fact, the

dVj values get closer to each other as current pulse (p1 = 5, p2 = 10, p3 = 15, p4 =

20 (mA/cm 2 )) increases 3 independent of temperature. A reason for this could be due

to a much faster rate of change in surface potential, so variations in temperature and

3 The percent differences are 19.1%, 9.3%, 4.4%, and 3.7% for pulse 1, pulse 2, pulse 3, and pulse
4 respectively.
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electromagnetic noise do not affect the rate as much when compared to the smaller

current density pulses.

The J rates at 10% Ca-Bi are roughly half the value measured at 5% Ca-Bi. This

intuitively makes sense because at 10% Ca-Bi, the e.m.f. curve is not as steep as it

is for 5%. Also, the rate of change in surface mole fraction under a constant current

is technically smaller at 10% Ca-Bi than at 5% Ca-Bi. This makes the electrode

potential more vulnerable to environmental changes such as temperature drift, and

can be seen by how the data in table 5.5 varies slightly more compared to the 5%

Ca-Bi data in table 5.4. These small variations in the dVI rate at 10% are indeed

affected by the temperature drift, and can be seen in the 10% Ca-Bi-potential and

temperature variation data in Appendix E.

Table 5.4:
Ca-Bi.

T (K) dEP( ) dEP2( ) dEP3(V dEP4 ( )

820.3 -8.74x10- 5  -1.608x10- 4  -2.24x10- 4  -2.74x10 4

846.1 -8.480x10- 5  -1.55x10- 4  -2.143x10- 4  -2.65x10-4
874.1 -8.92x10 5  -1.604x10- 4 -2.207x10- 4 -2.748x10-4
897.8 -9.58x10- 5  -1.64x10 4  -2.177x10 4  -2.70x10-4
925.6 -7.91x10- 5  -1.494x10- 4  x -2.71x10-4
975.4 -8.42x10- 5 -1.55x10- 4 -2.16x10- 4 -2.721x10-4

Rate of change of electrode potential versus square root of time at 5%

T (K) dVP' () dE2 IL) dEP3 (V) dEP4 (VI)

822.3 -4.24x10- 5 -8.26x10- 5 -1.17x10- 4 -1.52x10-4
847.4 -4.46x10- 5 -8.70x10- 5 -1.25x10- 4 -1.67x10-4
872.1 -4.42x10- 5 -8.83x10- 5 -1.25x10- 4 -1.61x10-4
896.4 -4.37x10- 5 -8.51x10- 5 -1.21x10~ 4 -1.53x10-4
924.1 -4.26x10- 5 -8.35x10~ 5  x -1.62x10 4

974.7 -4.47x10- 5 -8.43x10- 5 -1.23x10- 4 -1.58x10-4

Table 5.5: Rate of change of electrode potential versus square root of
Ca-Bi.

time at 10%
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T (K) dE ( dEP2 (v) dE (--) )

822.3 -3.35x10- 5 -5.59x10- 5 -7.68x10- 5  -10.1x10-5
847.5 -3.21x10- 5 -5.67x10- 5 -8.59x10- 5 -11.08x10-5
872.1 -3.75x10- 5 -6.39x10- 5 -9.07x10- 5 -11.29x10-
896.5 -3.08x10- 5 -5.22x10- 5 -7.71x10- 5 -10.06x10~ 5

924.1 -3.16x10- 5 -6.21x10-5  x -11.69x10-5
974.7 -3.60x10- 5 -5.70x10- 5 -7.82x10- 5 -10.27x10-5

Table 5.6: Rate of
Ca-Bi.

change of electrode potential versus square root of time at 15%
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Figure 5-13: Potential variation with square root of time plotted as a function of
temperature. The error bars is the standard deviation of the values assuming they
only rely on current density.
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5.5 Average Diffusion Coefficients

To incorporate the error associated with the deviation in -, the chemical diffusion

coefficients were averaged and their standard deviation used as the uncertainty (ta-

ble 5.7). The diffusion coefficients are not dependent on current density, and their

variation has been shown to be heavily rely on the potential dependence with com-

position and temperature. Therefore, the standard deviation of the average value

provides a good way to see the uncertainty in the values.

The chemical diffusivities, along with their standard deviations are plotted to-

gether as a function of composition in figure 5-17. The data agrees with the work

of Buell [68], which shows the same trend for the diffusion of tin in liquid bismuth.

The phase diagrams for Ca-Bi and Sn-Bi are not similar, so it is difficult to associate

the trend having to deal with atomic ordering of the interacting species. The one

similarity between calcium and tin is that both have been measured to have roughly

11 nearest neighbors in the liquid state [111]. Bismuth has 8.8 nearest neighbors

when liquid, so this trend in the diffusivity could potentially be due to the atomic

properties of liquid bismuth.

T (K) fa5 (cm 2 /s) f 10% (cm 2 /s) b1i% (cm 2 /s)

820.0 (6.77 ± 0.21)x10- 5  (4.95 ± 0.65)x10- 5  (6.22 ± 0.12)x10-5
848.2 (7.04 ± 0.22)x10- 5  (5.12 t 0.16)x10- 5  (6.77 ± 0.14)x10-5
872.7 (7.53 ± 0.15)x10- 5  (5.67 t 0.37)x10- 5  (6.82 t 0.17)x10-5
897.2 (8.53 ± 1.0)x10- 5  (6.65 + 0.61)x10- 5  (8.09 ± 0.62)x10-5
923.0 (9.39 ± 0.54)x10 5  (7.28 t 1.2)x10 (6.84 ± 0.14)x10 5

974.1 (10.9 t 0.21)x10- 5  (7.93 ± 0.37)x10- 5  (10.2 ± 0.26)x10- 5

Table 5.7: Averaged chemical diffusion coefficients. Errors are shown to one significant
figure and are the standard deviation of the averaged values.
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Figure 5-14: Average chemical diffusion coefficient at 5% Ca-Bi.
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Figure 5-15: Average chemical diffusion coefficient at 10% Ca-Bi.
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Figure 5-16: Average chemical diffusion coefficient at 15% Ca-Bi.
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Figure 5-17: Averaged chemical diffusivity values.
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5.6 Diffusion Activation Energies

We calculate the activation energy, HDj, for diffusion as a function of composition j

by treating the system as Arrhenius using the following equation,

Dca,j = D exp -_ RT (5.15)

where bD is the frequency factor, R is the gas constant, and T is the Temperature.

For convenience we rewrite it as

ln (bCa,j) = ln (D) - (5.16)

by taking the natural log of the equation. We then calculate the activation energy for

diffusion (HD,j) from the slope (HD,j/R) in equation 5.16. To use this method, the

natural log of the chemical diffusivity values is plotted versus the inverse temperature

(in Kelvin), and a least-squares regression is then fitted. The data is shown in table 5.8

and plotted in figure 5-18.

Chemical Diffusion Frequency Factor b9

By treating the system as Arrhenius, we assume the dominant mode of diffusion in

liquid alloys is analogous to solute diffusion via the vacancy method for solids. This

allows us to write the frequency factor as [18]

~( ASD= gfvra2 eXp (RS (5.17)

where g is a geometrical factor 4 , f is the correlation factor (assume f = 1), VD the

attempt frequency, a is the lattice parameter, and AS is the diffusion entropy. Do

contains the information related to entropy, so if liquid diffusion is to be described

by equation 5.15, then AS in equation 5.17 has to be positive. The difficulty lies in

knowing g, f, VD, and a. The geometrical factor g is equal to Z/6 [112] for cubic

structures, so for a first order approximation we will assume g is the same in liquid

4Usually g is of order one, e.g., g = 1 in cubic metals.
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alloys, and that a is equal to the mean distance of nearest neighbors. Bismuth has

an average of Z = 8 nearest neighbors [37] at an average distance of a = 3.36 A,
which makes g 2 1.3. The only variable left to analyze is the attempt frequency VD,

which deserves a little attention. For solids, it is usually customary to set the attempt

frequency equal to the Debye frequency' VD = kB TD The Debye temperature [113]

itself is TD = ( h 67 N 1/3, where - is the number density, and v, is the speed\27UICB / V

of sound through the material, so substituting it into VD gives

VD = ( ) 67r2N 1/3  (5.18)
(27 / V)

We see the Debye frequency is proportional to the speed of sound within the material,

and since the speed of sound in a liquid [114-117] is less than that of solids, it is

reasonable we approximate the value smaller than that of solids. Typical values of VD

for solids reported in literature [118-120] range between 1012 (s-1) and 1014 (s- 1), so

we decided to use the lower value of VD = 1012 (s- 1) in our first order approximation

of the activation entropy for diffusion.

We can now solve for AS using the average value of flo from table 5.11 to get a

sense of its magnitude and sign:

D = (1.3)(1)(1x10 1 2 )(3.36x10 10)2 exp = 1.45x10- 7  (5.19)

R exp = 1.02 -+ AS ~ 0.02R (5.20)

So, for a first approximation, the activation entropy for liquid diffusion is indeed

positive and around 0.2 J/mol-K which is very small. This gives us confidence that

we can describe diffusion in liquid alloys as an activated process, and assume the

chemical diffusivities conform to Arrhenius behavior.

5 kB is Boltzmann's constant, TD is the Debye temperature, and h is Planck's constant.
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5.6.1 Diffusion Activation Energies

The calculated activation energies at 5%, 10%, and 15% Ca-Bi (HD,j) are in excel-

lent agreement with reported activation energies of similar metals [58, 66,121,122].

Table 5.11 shows the tabulated activation energies along with the diffusion pre-factor

(b9). Tables 5.8, 5.9, and 5.10 are used to calculate the chemical diffusion coefficients

by fitting a least-squares regression to the data, for which the calculated uncertainty

in the slope is computed from the regression.

1(K-1) ln(bi)

1.22x10-3 -9.60i0.03
1.18x10- 3 -9.53+0.03
1.14x10- 3 -9.43+0.02
1.11xI0-3 -9.36±0.12
1.08x10- 3 -9.28±0.06
1.03x10- 3 -9.13+0.02

Table 5.8: Natural log of averaged chemical diffusivity for 5% Ca-Bi liquid alloy.
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Figure 5-18:
Ca-Bi.

Natural log of chemical diffusivity versus inverse temperature for 5%

The activation energy values for calcium diffusion in the Ca-Bi liquid alloy are

shown in table 5.11. The values are all around 20 kJ/mol, and show the activation
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(K-') ln(bi)

1.22x10~3 -9.91+0.13
1.18x10-3 -9.88±0.03
1.14x103- -9.77+0.06
1.11x10-3 -9.62+0.09
1.08x10- 3 -9.53±0.16
1.03x10- 3 -9.44+0.05

Table 5.9: Natural log of averaged chemical diffusivity for 10% Ca-Bi liquid alloy.
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Figure 5-19:
Ca-Bi.

Natural log of chemical diffusivity versus inverse temperature for 10%

Table 5.10: Natural log of averaged chemical diffusivity for 15% Ca-Bi liquid alloy.
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Figure 5-20:
Ca-Bi.

Natural log of chemical diffusivity versus inverse temperature for 15%

XCa Slope [HD,j/R] HD,j [mU in (by) bo [ 1]

5 2578±210 21.4±1.7 -6.50i0.23 1.51±0.05x10-3
10 2767±287 23.0±2.4 -6.7±0.32 1.40±0.06x10-3
15 2130±708 17.7±5.9 -7.11±0.8 1.47±0.9z10-3

Table 5.11: Activation energy for diffusion of Ca in Ca-Bi liquid alloy along with the
diffusion prefactor values and propagated uncertainties.
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energy to be higher at 10% Ca-Bi. This is not too surprising because the diffusion

coefficients calculated at 10% Ca-Bi seem to be lower than the other two compositions.

This by itself is rather remarkable because the dominant variables we have been

describing (-d, ' ) really influence the chemical diffusivity value, and differ greatlydVt'dxca au, ral
between compositions, and yet the calculated chemical diffusivities are very closer to

each other with the activation energies virtually indistinguishable.

5.7 Conclusion

The diffusion coefficient of calcium in liquid bismuth has been measured for the

first time ever. No literature data exists on the diffusivity of liquid calcium because

of the extreme difficulty involved in dealing with super reactive metals. The new

technique presented in this thesis does show reliable results that are in agreement with

published values of similar metals, therefore this method will open new opportunities

for studying the kinetic properties of highly reactive liquid metals.

Also, the activation energy as a function of composition was calculated from the

diffusivity data, which shows to range between 17.7 kJ/mol and 23.0 kJ/mol. We can

try to reason such values using the theoretical work of Takamichi [123] which focused

on predicting self-diffusion properties of liquid metals using a modified Stokes-Einstein

relation. Takamichi had predicted the self-diffusion of calcium to be 7.21x10-5 cm 2/s

with an activation energy of 29.2 kJ/mol, and the diffusion of bismuth to be 2.72x10-5

cm2/s with an activation energy of 12.5 kJ/mol. The activation energies calculated

from the diffusivity data are very close to these values, which is the right trend

predicted by Takamichi's work.
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Chapter 6

Transport Phenomena Simulations

Transport simulations of liquid metal batteries will be presented in this chapter. Some

of the work focuses on the effect convection has on the liquid electrode under a thermal

gradient. Ideally, a battery with liquid electrodes that can be more homogeneously

mixed at the end of a discharge is preferred because it will allow for a higher electrode

capacity, and also be energy efficient in the process. Therefore, it is imperative to

numerically model the induced velocity field in a LMB as a function of material

properties, geometry, and most importantly temperature gradients. Also, as a LMB

cycles, the Joule heating generated by the current passing through the electrolyte

needs to keep the cell at its liquid temperature, so thermal energy balance simulations

where also done on two cell geometries. We cannot simply do back of the envelope

calculations to estimate how the flow will vary because of how complex this system is.

The last section of this chapter focuses on the earlier simulation work done using phase

field to model the two electrode-electrolyte liquid interface kinetics simultaneously

during cell cycling.

Before we present and discuss the simulation results, we will first do a brief in-

troduction of the numerical method used, followed by the derivation of the governing

partial differential equations that are solved in order to obtain useful information

about the system of interest.
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6.1 Brief Introduction to Finite Element Analysis

(FEA)

Extremely complex physics needs to be coupled in order to obtain solutions to this

problem sought after in this thesis. To ease the numerical pain, finite element analysis

(FEA) was chosen as the method and COMSOL Multiphysics as the software. Since

the output of a simulation will only be as good as the input provided, it is important

to build a malleable model whose material properties can be quickly adjusted. Below

is a list of questions we set to answer via simulations:

" How does the magnitude of thermal gradients affect mixing inside a LMB cell?

" How does the fluid flow vary under the same thermal gradient for liquid metals

with significant different densities, thermal conductivities, etc?

" What is the difference in fluid motion for a bottom electrode if the electrolyte

is liquid vs solid?

" How does the velocity profile change in the bottom electrode as a function of

the liquid electrolyte's material properties?

" How does mixing vary if we change the size of the top current collector?

" Hoes does the Joule heat generated in the electrolyte affect the mixing and how

does it vary as a function of electrolyte thickness?

" What are the optimal dimensions for a self-heated cell?

Here I will briefly explain how FEA works, a more detailed discussion on the

subject can be found here [124]. FEA is also known as the finite element method

(FEM) and has been widely used in the design and interpretation of engineering

problems, particularly with fluids, solids, and complex structures. It is a powerful

computational tool aimed at predicting physical phenomena. A good understanding

of the physical laws governing the system is required to generate useful solutions
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related to specific boundary conditions. FEA works by breaking down a physical

geometry into multiple elements, and then connecting these elements at nodes as

shown in Figure 6-1.

Figure 6-1: Simple quadratic mesh on a rectangular geometry.
an element, 48 elements make up this geometry. Each point of
a node, so there are 63 nodes on the geometry.

Each square is called
intersection makes up

This process of connecting the nodes yields a simultaneous set of algebraic equations

that are then solved within the elements and nodes of the geometry [125]. The set of

simultaneous equations can be written in matrix notation

[K]{v} = {f} (6.1)

where K is a material property, v the material behavior, and f the action or force on

the system. In Table 6.1 below are examples of these variables.

Property [K] Behavior {u} Action {f}
Thermal conductivity temperature heat source

Fluid viscosity velocity body force
Electrostatic dielectric permittivity electric potential charge

Table 6.1: Physical examples of common FEA matrix variables.

With FEA, the interest lies in the behavior {u} of a system, therefore equation

6.1 is transformed to
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{v} = [K]--{f}. (6.2)

It is impossible to account for all the physical behavior observed in real systems using

FEA models, even with the most refined mathematical algorithms. Therefore, it is

necessary to validate the physical limitations of a FEA computational model. To

accomplish this, models were developed in the following order:

1. Presenting a physical problem.

2. Deriving a mathematical model for the problem using differential equations with

assumptions on geometry, material laws, boundary conditions, etc.

3. Solving a system using finite element software with optimal choice of mesh

density, finite elements, solution parameters, etc.

4. Verifying the accuracy of the FEA solution by comparing to a closed-form so-

lution.

5. Resolving inaccuracy in the solution through refining.

6. Interpreting the results in terms of real physical behavior and adjusting the

model accordingly.

6.2 Conservation Equations

There are two universal requirements to be able to mathematically describe transport

phenomena. The first is knowing the constitutive equation applicable to the transport

of interest. A constitutive equation is derived from material properties and measured

experimentally, which is merely the systems response to external forces. An example

of a constitutive equation is Fourier's law of heat conduction given by

q= -kVT (6.3)
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where q is the heat response to the applied thermal gradient VT, and k is the materials

thermal conductivity which will be a function of the material properties and can vary

spatially.

The other requirement is a conservation equation for the system, which stems from

first principles. Appendix G describes the general derivation of a conservation equa-

tion, below we discuss the ones applicable to LMBs used in simulations.

Conservation of Mass

We all know that mass is conserved, and it can be proved by letting1 c(r, t) = p(r, t),

where p is the mass per unit volume. If the material is moving with a velocity

v through the control volume, then the flux is simply J = pv. A quick check in

dimensional analysis shows J [ " ] = p ['] v [c], and since mass can't be created

nor destroyed in the control volume of interest, we set Rv = 0. Plugging it all in

gives

P= V - (pv) (6.4)
Ot

which is commonly known as the continuity equation. If the density is constant, then

equation 6.4 deduces to

V - (pv) = V - v = 0 (6.5)

which proves that the material of interest is incompressible, therefore the material

volume will not dilate. In other words, the material enters and leaves the control

volume at the same rate. We use the continuity equation extensively when solving

for fluid motion. The law of conservation of mass allows us to make use of the material

derivative

D 0- - + v - V (6.6)
Dt Ot

129

1c(r, t) is defined in Appendix G.



which describes the rate of motion being observed from the reference point of the fluid

for scalar quantities. With this, the general conservation equation (G.7) is written as

Dc
= -V -j + Rv, (6.7)

Dt

where j is the diffusive flux component of the total flux.

Fick's second law of diffusion is derived from equation 6.7, which is the partial

differential equation solved in COMSOL when describing the conservation of atomic

species. This is achieved by inserting the constitutive equation which describes atomic

diffusion (Fick's first law of diffusion 2 )

j = -DVc (6.8)

into equation 6.7 to get

Dc -DiV 2 c + Rv. (6.9)
Dt

Conservation of Energy

Conservation of energy, also known as the second law of thermodynamics, is a univer-

sal law describing how energy cannot be created nor destroyed, only transferred. If

a local energy density u (energy per unit volume) is assumed to exist with an energy

flux q, then it can be written as

OU -V -q. (6.10)
at

In COMSOL, the energy density conserved is that of heat and it is related to the heat

capacity with c = u = pcT. The diffusive heat flux then becomes j = q = -k - VT.

The constitutive equation comes into play as the heat flux, which is simply Fourier's

law of heat conduction. Since current is being passed through LMBs, Joule Heating

will be generated and the heat can be expressed by Ry = Qh. Inserting these relations

2Di is the diffusion coefficient not the material derivative, and it's assume constant.
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into equation 6.7 and assuming p, cy, and k are constant, gives

DT
PCp DT = kV 2T + Qh. (6.11)Dt

Conservation of Momentum

Newton's second law of motion, F = m-v, states that the rate of change of momentum

equals the force acting on a body. If the control volume contains a fluid with constant

material properties, Newton's second law becomes

dP
F - I pv dV. (6.12)

This introduces the time derivative of the velocity vector, so the Leibniz rule for

differentiation (equation G.2) can be applied, and after a little bit of math we can

write the force as a function of the material derivative

F = p DvdV (6.13)Dv
Jv(t) Dt

The next question to be answered is what constitutes the force F. There are two

types of forces that can act on a fluid. The first acts on the body of the fluid, which

are known as body forces (FB), and the second are surface stresses (Fs). The body

force used in COMSOL is the effect of gravity on the fluid,

Fv 1 (e pg dV. (6.14)

because it plays a major role in the onset of convection under thermal gradients.

Stresses on a surface are given by the stress vector s(n), which is the force per unit

area perpendicular to the fluid's surface. It is related to the total stress tensor (a)

by s(n) = n - o, so Fs is simply

Fs = j s(n) dS= I - a- dS. (6.15)

Balancing the forces results in
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pDv dV= pg dV +j
Dt JvWt s(t)

(6.16)
JV(t)

and applying Green's theorem to the surface integral yields the wanted differential

form

IV(t)
It can then be expressed as

(DvpD - pg - VDt
dV = 0. (6.17)

Dv
p Dv = pg +V. (6.18)

Equation 6.18 is the general form of the conservation of linear momentum for a

fluid. To model fluid motion, the Navier-Stokes equations are required. To derive

them, the stress tensor is expressed as the sum of the rest pressure (P) and viscous

stress (r)

o- = -P6 + -r, (6.19)

where 6 is the identity tensor which ensures the rest pressure only acts perpendicular

to the surface of the fluid. Applying the divergence to the stress tensor (V - o- =

-VP + V - r) yields the Cauchy momentum equation

Dv
p = pg + -VP +V.

Dt
(6.20)

For an incompressible Newtonian fluid, the viscous stress is given by

r = p[Vv + (Vv)t) = IV 2v. (6.21)

Taking the divergence of the viscous stress and inserting it in equation 6.20 gives the

Navier-Stokes equations in vector form:

Dv
p = pg + -VP + pV 2v.

Dt
(6.22)

Equations 6.5, 6.7, 6.11, and 6.22 are all that are needed to describe the physics
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behind LMBs.

6.3 Thermal Simulation Results

Thermal energy balance calculations are critical for calculating optimal operation

conditions for liquid metal batteries. It will be important to have high operating

energy efficiencies that produce usable electricity, rather than just using the energy

to keep a cell at temperature as LMBs are scaled-up in size. To simulate the best

results, the model requires accurate temperature and composition-dependent thermal

conductivities, densities, heat capacities, and electrical/ionic resistivities of all the

materials in the cell. Since accurate values are not readily available in the literature,

published data of similar materials was used and linearized for alloy compositions.

A top priority in scaling a LMB is to optimize the cell geometry and current density

maintaining a constant temperature at around 630 'C while having a high round-trip

energy efficiency. Our objective was to create a model that would serve as a basis

for optimizing a self-heated cells geometry, starting with two different geometries.

The first geometry was similar to that used by Cairns (fig. 1-6) at Argonne National

Laboratory, shown schematically in figure 6-2. The second cell geometry studied is

the one currently being used at MIT shown in figure 6-6 because it allows for better

thermal management, which is proven in the simulations results.

6.3.1 Argonne National Laboratory Cell Geometry

The first step was to create simple thermal models using heaters as the heat source, so

a 2-D radial numerical model was created to compute the power required to keep a cell

at a temperature. A radial cross-section of the 20-Ah Argonne National Laboratory

cell geometry used in the simulation is shown in figure 6-3, and the cell dimensions

on table 6.2. The thermal boundary conditions are shown in figure 6-4. The heaters

(shown in red) had a power density of q = 5.4 W/cm 3. The boundary condition at

the top and bottom of the insulation was set to simulate a stacked cell, and the rest of

the boundaries were set to loose heat by convection, except for the cooling lines which
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were set to room temperature. The cooling lines are necessary because it prevents

the rubber seal from melting, but are detrimental to the systems efficiency because

of the huge thermal gradient induced.

insulation
heaters

cooling lines

a spacer

17 m - liquid -L17 cm
components~- 

r
steel container

30 cm

Figure 6-2: Cell schematic of the geometry used at Argonne National Laboratory by
Cairns [101.

To maintain this cell at a constant temperature of 630 0C, our simulations show

that 1,054 W of power are required. This value is in excellent agreement with the ex-

perimental power measured by Dr Brice Chung for this geometry, but unfortunately

this power requirement is too high for the cell to be self-heated. Matching the simu-

lated and experimental power gave us confidence to run simulations using cells with

bigger diameters in order to find the critical size self-heating size. This was achieved

by simulating the power required to keep the cell at temperature, and comparing this

to the Joule heating power generated by a current passing through the electrolyte for

three different cell sizes of rAC = 50 cm, 100 cm, and 200 cm. The simulated power

requirements to keep the cell around 600 'C is shown in table 6.3. Now we need to

compare this simulated value to the Joule heating power generated in the electrolyte.

This is achieved by assuming the power generated is given by the relation P = 12 R

where I is the applied current, and R is the electrolyte resistance. Using the relations

I = jA, R = -, and A = Tr2c, the power is expressed as P = j
2
L , where L iscrA A o
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tWi

heater

'steel

top electrode

heater
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spacer

steel container
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insulation

AC active components
CL = cooling lines
TE = top electrode
BE bottom electrode

X (CL Y tCL 4-

Figure 6-3: Radial cross-section of simplified Argonne National Laboratory cell design
used in the simulations.

Dimension # (cm)

rAC 5
tsteel 0.9
t-elec 1
tBE 1.5
t_htr 0.9
t-ins 6.5
tCL 1
t-spcr 1

x 1

y 1
z 1

r_AC 5
r-ins 6.1
r-fin 0.63

Table 6.2: Cell dimensions used in the thermal simulation of the cell design shown in
figure 6-3.
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convective
heat transfer

- T = 300K

Figure 6-4: Thermal
cell geometry.

boundary conditions for the 20Ah Argonne National Laboratory

rAC [cm] P[W]

25 6,600
100
200

8,600
15,300

Table 6.3: Simulated power for the three radii of interest.
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the electrolyte thickness, and a the electrolyte conductivity. By setting the thickness

L to be 1 cm, and the conductivity 2 S/cm, we plotted the joule heating power P

(fig. 6-5) as a function of cell radius rAC for three different current densities j = 250,

500, 1000 mA/cm2

0
0

'1

n2

rAc [cm]

Figure 6-5: Joule heating generated as a function of cell radius for three different
current densities.

Comparing the simulated values in table 6.3 with figure 6-5, we see that the 100

cm radius cell can start reaching a self-heated size if the current density is operated

between 500 and 1000 mA/cm 2 . This is too high of a current density for a Ca-Bi

chemistry, which we saw from the chemical diffusivity sensitivity analysis in figure 1-

23. This, along with thermal expansion issues3 , added to the confidence of abandoning

such cell geometry.

6.3.2 MIT Cell Geometry

To counter the deleterious issues presented with the Argonne National Laboratory

cell geometry, a new cell (fig. 6-6) design was created. The new design, which I am
3The thermal gradients required for this geometry caused the 20-Ah cells to bow outward, which

made the cell unstable over time.
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calling the MIT cell geometry in this thesis, was engineered to minimize thermal

gradients in the cell. The cell dimensions were similar to those in table 6.2 with the

exception of the top insulation being 2.5 cm thick, and the bottom and side insulation

5 cm. At this point in time we were testing chemistries whose operating temperature

was 450 'C. To keep it at this temperature, the power requirement was calculated

to be roughly 36 W, again being in excellent agreement with the power measured in

the laboratory. This new power requirement is an order of magnitude smaller, and

allows for the possibility of a self-heated cell with convenient dimensions, which are

currently being investigated.
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Figure 6-6: Radial cross-section of simplified MIT cell design used in the simulations.
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6.4 Electrode Mixing Simulations

To optimize the performance and gain insight on the transport properties of these

liquid electrodes, the governing heat, momentum, and mass transport conservation

equations derived in section 6.2 were solved using the boundary conditions mentioned

below. The calculated diffusion coefficients were used in two separate convection-

diffusion 2D radial simulations using Ca-Bi. These simulations are imperative to

understanding the mixing behavior of the electrodes under thermal gradients, which

can ultimately lead to increasing the electrode capacity.

6.4.1 Uniform Temperature Gradient

Figure 6-7 is a radial cross section of a simple liquid electrode interest along with the

thermal boundary conditions required to induce convection. The boundary conditions

for fluid flow are no slip (v = 0) on the bottom and side of the cell, and slip on top

with the characteristics of a liquid-liquid interface.

T = = 600 *C

u 1q=J(T -T,)
r=0 r

T = T =601 *C

Figure 6-7: Radial schematic with thermal boundary conditions for liquid electrode.

A chemical diffusion coefficient of 6x10- 5 cm 2 /s and a current density of 200 mA/cm 2

was used in the simulation. The flow was allowed to stabilize for the first 500 seconds.

Calcium was then introduced uniformly through the top for an hour to observe the
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mixing behavior enhanced by convection. Figure 6-8 are the simulated results after the

hour, and it shows how the induced Rayleigh-B'nard cells had a maximum velocity of

1.4x10- 3 cm/s, and affected the overall composition profile in the electrode. The flow

forced the concentration of calcium to increase at the top of the cell, preferentially

near the center and next to the wall. The maximum composition of XCa = 16% was

attained at the center, which is not far from the liquidus composition. We want

to limit the formation of any intermetallic compound because they will hider the

kinetics of the system, so its essential to be able to find conditions that will enhance

the mixing if we are to operate at these current densities.

v.. = I.AxIO'cm /s

high concentration regions
Xn I Xc.16% Xe. ~12%

44

* 02 $4 00 64 12 1A 10 14 2 22 24 20 241 V 942241

Figure 6-8: Concentration and fluid velocity profile after titrating calcium for an hour
into a liquid electrode with a one degree per centimeter thermal gradient.

6.4.2 Nonuniform Temperature Gradient

We decided to change the boundary conditions slightly by adding the equivalent of

a cooling line to the bottom of the electrode, and set it to the same temperature

as the top of the electrode (600 'C). It was added because it made intuitive sense

that fluid flow would be perturbed because the results in figure 6-8 showed that to

be the region where the fluid was flowing dominantly upwards. The new numerical

results show a significant different concentration profile, this time with the maximum
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concentration occurring near the side wall as a consequence of the different induced

flow. This time the maximum velocity was 0.19 cm/s, two orders of magnitude

faster resulting in the highest concentration being XCa = 11%, which is 5% less than

the first simulation. Also, the concentration range at the end of the pulse for this

simulation was 3.6%, significantly less than the first simulation (10.1%) resulting in

better mixing. Therefore, we can effectively increase the electrodes capacity by tuning

the thermal environment of the cell.

T,. = 600 *C

q=h(T -TT.)

T,. =600 *C Th =601 *C

Figure 6-9: New boundary conditions to compare the mixing behavior.

*...4* SM*.90 <C 1.C 28 0 1-s41) A" V.2e . $tt*.44

I4

I'

-4'

0 *2 S4 0 1 . 1 12 14 14 t. 2 2.2 24 2 2.8 I

I*10

7$

V 7 *1(2

Figure 6-10: Concentration and fluid velocity profile after titrating calcium for an
hour into a liquid electrode with the modified boundary conditions seen in figure 6-9.
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6.4.3 Dimensionelss Numbers

It is no surprise that such a small change in the temperature boundary conditions

would generate very different result in the composition profiles. This is because the

dominant form of heat transfer in liquid metals is by conduction due to their uniquely

high thermal conductivities. As a result, liquid metals tend to have relatively small

Prandtl (Pr = g) numbers, usually ranging between 10-3 and 10-2 [20], which is a

dimensionless number relating the modes of heat transfer by convection to that of

conduction. This makes the thermal boundary layer thickness greater than the mo-

mentum boundary layer, causing heat to diffuse faster by means of conduction rather

than convection. The Schmidt (Sc = ) number for liquid metals, which relates mo-

mentum mass transfer to diffusion mass transfer, is usually in the 10 to 102 range [10].

This is considered high for liquids, but it's a property of liquid metals stemming from

their high kinematic viscosity, so transport by convection will dominate over diffusion

if simultaneous momentum and mass diffusion convection processes are happening.

If convection is to dominate diffusion, the liquid metal has to be flowing under an

appropriate gradient, which will rely on other parameters.

One of those parameters is the Rayleigh number (eq. 6.23), a dimensionless vari-

able associated with the heat transfer within a liquid. It is the product of the Grashof

number, which relates buoyant and viscous forces, and the Prandtl number. Convec-

tion will trump conduction as a transport mode if the Rayleigh number

Ra = Gr -Pr = -ATL 3, (6.23)

of a fluid surpasses a critical value (~ 1100). g is gravity, 3 is the thermal expansion

coefficient, AT is the difference in temperature along the characteristic length L, v

is the kinematic viscosity, and a the thermal diffusivity of the fluid. An order of

magnitude estimate for the Ra number applicable to for our system can be computed

if the characteristic length L is known. This can be difficult to define depending

on the gradient's direction that is driving the flow. Nonetheless, we can write an

expression for the Ra number generalized to our system using appropriate values for
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the material properties of liquid bismuth.

Literature values for the variables in equation 6.23 are needed to derive a Ra

number equation for a bismuth liquid electrode. The thermal expansion coefficient

of liquid bismuth [126 can be taken to be approximately k -10- K- 1 , but can

vary with other liquid metals [127-129]. Sobolev [130] recently published a scientific

report with values for the thermal diffusivity of liquid bismuth to be a = 10-2 cm 2 /s,

and the dynamic viscosity y = 10-3 Pa-s for our temperature of interest. The density

of liquid bismuth is roughly 10 g/cm 3, so the kinematic viscosity was taken to be

v = 10--3 cm 2/s. Plugging all these values into equation 6.23 gives the Rayleigh

equation specific to liquid electrodes

Ra ~ 10[cm 3 K]Z]A TL3  (6.24)

Equation 6.24 defines whether or not a thermal gradient AT across a bismuth

liquid electrode of length L will induce convection. The electrodes used in the simu-

lations are 1 cm in thickness, but on cannot assume this to be the characteristic length

because the convective boundary condition along the side wall along is a function of

its aspect ratio and will enhance it. This was evident in the simulations. For a thermal

difference of A T = 1 K and L = 5 cm, the Ra numbers begins to reach the critical area

where the onset of natural convection starts to dominate transport [131-133]. Once

convection dominates, there will be simultaneous momentum and diffusive transport

mechanisms active, which will make the Schmidt number important.

We can also use equation 6.24 to predict if the electrodes used in the liquid exper-

iments (table 4.1) will experience convective issues. Assuming the same temperature

gradient for the length L = 1 cm, the calculated Ra number is 10, hence convection

is negligible. This was also confirmed with FEA simulations using the same bound-

ary conditions shown in figure 6-7 on the small electrode geometry, which show the

maximum velocity attained from convection was on the order of 106 cm 2/s. We

can take this value and do an order of magnitude estimate of the relative impact

convection has on transport compared to diffusion. To do this, lets imagine a small
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infinitesimal volume originating from the electrode-electrolyte interface that travels

away in the liquid bismuth at the velocity equal to the numerical value of 10-6 cm 2/s

for a time t = 103 s. After the time is over, the infinitesimal volume has traveled a

linear distance of Lc = vet, = 10- cm. The equivalent diffusive characteristic length

is the penetration depth equation, Ld = V6Dt. If we use a chemical diffusivity4

value of D = 10-, we get a diffusive distance of x = 0.8 cm. So, we can conclude

from this order of magnitude analysis and simulation results that diffusion transport

overwhelmingly dominates convection within our timescale t, of interest.

Through simulation we can predict fluid velocity magnitudes associated with dif-

ferent boundary conditions, therefore we can check to what degree convection affects

the overall transport by defining the following ratio:

Lc - Vet _ ve t1/2. (6.25)

If 4 << 1, convection can be neglected, but if # >> 1, then convection dominates

the mode of transport displacing a fluid during the time t,. Equation 6.25 can also be

used to estimate the time when convective transport becomes important, by assuming

this occurs when 4 0.1 and solving for tP. Doing so gives us a time

t = 6D2 2 , (6.26)

and solving it gives us a time of 2.5x10 6 s, which is around 70 days. This time is

too long for convection to be of any real influence on the transport properties of the

electrodes used to measure the chemical diffusivity of calcium in liquid Ca-Bi.

The same analysis can be done using the calculated velocities of the two MIT 20-

Ah simulations, which were vc =1.4x10- 3 cm/s first simulation (fig. 6-7), and Vc2 =

0.19 cm/s for the second (fig. 6-9). For the operating time of an hour, the calculated

,0 values were 3.4, and 465 respectively which are much greater than one signifying

convection will drastically affect the overall transport. This is clearly evident when the

concentration difference of both simulations at the end of the hour run are compared.

4The experimental chemical diffusivity values measured range between 510-5 and 110-4
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The model with the modified thermal boundary conditions resulted in a faster velocity,

and the electrode was indeed better mixed.

6.4.4 Induced Velocity as a Function of Geometry

6.5 Phase Field Simulations

Phase field was the first simulation work I did when I first started working on mod-

eling LMBs.This last section describes the transport work done using the phase field

method to model the simultaneous motion of three liquid layers of a LMB during cy-

cling. To the best of our knowledge, this has never been done before and was achieved

with the use of Heaviside step functions.

6.5.1 Phase Field Theory

There are a handful of numerical algorithms within FEA one can use to model the mo-

tion of an interface, one of those being phase field. The phase field method indirectly

tracks the boundary between two phases by solving the evolution of the conserved

ordered parameter #, which is governed by the Cahn-Hilliard [134] differential equa-

tion. In order to do so, the free energy density at a position (f(r)) is written as a

function of #, f(r) = f(#(r), V#(r)). In the absence of gradients, the homogeneous

free energy density5 is fhom(#) = f(#, V# = 0). Expanding the free energy density

about the order parameter and its gradient, and integrating it over the entire system

gives the following approximation for the molar free energy [18,135-137]

F(#) = Noj f (#, V)dV = No I 2 dV. (6.27)

( and E are phase field variables that are adjusted to control the interface thickness

(6 ~ E/() and surface energy (-y ~ /e). The first term in equation 6.27 is the

homogeneous free energy, and the second term is the energy contribution from gra-

5The molar free energy F(#) is calculated from F(#) = NoVfhom(#), where N, is the number of
atoms in the local volume V
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dients in #. The field variable # in the homogeneous free energy evolves to take the

value of either +1 or -1, which differentiates the two phases of interest continuously

across the interphase.

In order to model an electrochemical system consisting of three phases, the free

energy functional in equation 6.27 had to be modified to include the electrostatic

contribution to the free energy (EZ Fzici4b) of species ci having charge zi that is

influenced by the electric potential <D. Doing so gives us the free energy functional

F(#) = N j [ fho" + .V 5 2 +Z Fzici4j dV (6.28)

which is valid throughout the entire electrochemical system assuming the electrostatic

contribution is a function of the order parameter #.

The electrostatic energy contribution is dominant in the electrolyte because ions

are influenced by the electrochemical potential difference between the two electrodes,

therefore the ionic properties must be written as functions of the evolved field vari-

ables, the same way Wanida [138] did for the analysis of Fe-FeO. For simplicity, the

electrolyte was assumed to be pure molten CaCl2. Defining # = 1 to be in the elec-

trolyte, we can write the calcium and chlorine atomic fractions as XCa2+ = 1(2 - )

and xCi- = ( + 1). Assuming the molar mass of the molten salt6 M is linear, we

can write the ionic concentrations in the electrolyte as7

cca = (2- ) (6.29)
3M

cci = 3M(5+ 1) (6.30)

These concentrations are substituted in equation 6.28 to obtain the free energy func-

tional

'M = McaXca + MciXci, where Mca and Mci are the atomic masses of calcium and chlorine.
7For simplicity, we will omit the ionic charge number in the variable.
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F(#) = N j [fhom(0) + 2 1 + Fcp(2-#)

which is specific for the CaCl2 molten salt system.

Since the field variable # is a measure of particle number, the variational derivative

of F(#) with respect to # is the chemical potential for the system:

6F Fof horn
p = =- No (9 o Fp)(3M ZCa)] (6.32)

Letting ZCa = +2z and zCi = -z, the chemical potential simplifies to

6F o[f hom zFpA] (6.33)
6# 09# M _'

with z being a dummy variable that allows the differentiation between the molten

salt electrolyte and liquid metal. z takes the value of one in the electrolyte, and zero

in the metal, so to do this the principle of electroneutrality is invoked:

(6.34)ZiCi = ZCaCca + ZCiCCi = 0 -+ zCa = -zC .I

One can assume zcl = -1 through the entire system because it only exists in the

electrolyte, and since zCa = +2z, we can write z as

z = 1 . (6.35)
2(2 - )

Substituting equation 6.35 into equation 6.33 yields the full chemical potential

(6.36)No [ fhom -

p = o (- e&2#

which is valid in both electrolyte and metal.
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6.5.2 Derivation of Custom Source Term

The electrostatic term in the chemical potential in equation 6.36 was added as a source

modification to the governing equations in COMSOL. We did this by rewriting the

chemical potential as y = y + pei, where

N2Fp
JPel = 2M

2 -) #
(6.37)

We can compute the added flux using the relation Jel = 7mVLel where ym is the

mobility. Taking the divergence of Je gives

t +V - J= 0
at#

+±V -(J +Je) ->
0t +17 - J =0-V - Je = RPF,

where RPF is the source term contribution from the electrostatic free energy term

added as a modification to COMSOL. The final result is shown below in equation 6.39:

2+ 1) L 2 }* aear ear

(-2)

2(#+1) (+

(05-2)3

2 (0 + 1)
(#-2)2

( +1) 2,

2 a

(#-2 )2  (0-

+ ( + 1) 2
2

2 2 a-)r2 az
2)( -2)

(D a2.

@ #+ 1) L2

0- _ 2

The surface tension y is added to the Navier-Stokes equations as a body force,

defined as the product of the chemical potential and the gradient of the phase field

variable.
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6.5.3 Phase Field Modification for Three Phases

The phase field method is only applicable using two phases, but we were still able to

use the theory to model the motion of two boundaries simultaneously, corresponding

to three coexisting phases. Figure 6-11 is a radial cross-section of the three phases of

interest in modeling. To do so, two separate phase field partial differential equations

where solved; one for the Ca-Mg and electrolyte, and the other for the bismuth and

electrolyte. The use of Heaviside step functions were employed to distinguish between

the two volume fractions

VfI = flc2hs(#) (6.40)

Vf2 = flc2hs(-#), (6.41)

which have the property shown in figure 6-12; it's zero for negative values of the

phase field variable #, and one for positive values. It's basically a step function, but

special because the first two derivatives are continuous. The trick allowing the use of

two separate phase field governing equations lies in writing the density of the three

phases as a function of volume fractions, which requires the use of a third Heaviside

step function that is dependent on geometry. The density was then written as

P = Psalt - Vf1 + [PBi + (PCa-Mg - PBi) f lc2hs(z - a)] -V2. (6.42)

A quick check confirms the density is indeed differentiated by the Heaviside step

functions (fig. 6-13).

6.5.4 Results

Ohm's law and Fourier's law of heat conduction were also coupled with the phase field

equations. The wetting angle was fixed at 450, and the surface tension was chosen to

be 0.5 N-m 2. Figure 6-14 shows the three coexisting phases as the simulation starts.

After 50 seconds, the bottom electrode has grown at the expense of the top electrode
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z=a

zL

r

Figure 6-11: Cell schematic used in the phase field model with the appropriate con-
served order parameter values.

$<0 *=0 *>0

Figure 6-12: Heaviside function used to differentiate the volume fractions of the
different phases.

Bis'muth 1

Electrolyte
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Figure 6-13: The density from equation 6.42 self-segregates with the help of Heaviside
step functions.
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as seen in figure 6-15, with the two interfaces moving coherently. The trick with

Heaviside functions has proven to be successful, and to our knowledge it was the first

time phase field has been used to model the kinetics of three different phases.

Figure 6-14: Simulation of three phases and two boundaries simultaneous moving at
a time t = 2 s.

Figure 6-15: Simulation of three phases and two boundaries simultaneous moving at
a time t = 50 s. Compared to figure 6-14, the bismuth electrode has grown at the
expense of the calcium-magnesium.

Mass has to be conserved, so an integration coupling variable was used to calculate

the stability of the mass as it evolves in the entire system. Figure 6-16 shows that mass

was indeed conserved during the run of the simulation since the percent difference of

its variation was less than 1%.
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Electrolyte

Figure 6-16: Mass loss of each component as a function of time calculated using an
integration coupling variable over the entire system. The variation was less then 1%
signifying mass conservation.

6.6 Conclusion

The finite element method is a great tool for better understanding the kinetics of

LMBs. Phase field is only applicable to two phases because the phase field variable

# can only evolve to two values, unless you can utilize the geometry to write out the

density as a function of the three phases. This is exactly what was done in order to

use the phase field method to model the three coexisting phases inside a LMB during

cycling. The thermal model using the Argonne National Laboratory cell schematic

was far from being able to self-heat because of the huge thermal gradients that arose

from its design. Thermal cycling also caused the cell container to mechanically expand

over time, changing the overall structure of the cell. On the other hand, the MIT cell

design proved to be more energy efficient because it requires a power density that is

an order of magnitude less than the previous design to maintain it at temperature.

The mixing results show how one can begin to engineer the insulation surrounding

the cell in order to change the temperature profile, which will directly change the flow

pattern. Under the same gradient, the velocity increased with electrode height and

was more distinct at larger radii. The increase of convection as the system scales up

in size is good for LMBs, but not for doing sensitive experiments such as measuring

the chemical diffusivity. To measure the chemical diffusion coefficient, we need very

small capillaries as predicted by the simulation results. The key is to have full control

of the temperature gradients, so one can then control the flow inside a cell.
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Chapter 7

Conclusion

This thesis outlines the derivation of a new technique that was created to measure the

chemical diffusivity in liquid alloys. It was created because the previous techniques

used to measure such phenomena contain many sources of error. The main source of

error is primarily the effect of natural convection arising from thermal gradients that

are unavoidable. Besides the inherent errors, the other methods require the liquid

metal to be quenched in order to examine the composition profile, and cannot be

applied to extremely reactive metals. This new electrochemical method offers the

possibility to do kinetic measurements on reactive metals. This was demonstrated in

this thesis by calculating the chemical diffusivity of calcium in liquid bismuth from the

electrochemical data collected specifically for this purpose. This is the first time such

measurements have been performed, and we are pleased to report the first diffusivity

values of calcium in the liquid state. The chemical diffusion coefficient has been shown

to be extremely important in the optimization of LMBs. Depending on the value,

LMBs can be operated under very different kinetic conditions. In LMBs, convection is

not necessarily an issue because it helps increase the capacity of the liquid electrodes.

If one can fully control the thermal gradients inside a LMB, then convection can be

optimized to enhance the mixing behavior. This will keep the surface concentration

from reaching the liquidus concentration, which will in return increase the operating

times of these liquid batteries.
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Appendix A

Energy Storage Technologies

A.1 Pumped-Hydro Storage

Pumped-hydro storage is the most mature and economical energy storage technology,

costing roughly $100/kWh [11]. In1 pumped-hydro, water is pumped up to a higher

elevation reservoir during off-peak hours, and allowed to flow back down through a

turbine generator during peak hours. The main disadvantage of this technology is

geographical limitation; huge reservoirs at higher elevations are needed. Because of

this, the capital cost can vary depending on the location.

A.2 Sodium-Sulfur (NaS) Battery

First researched by Ford Motor Co., the NaS battery is composed of a sodium anode,

sulfur cathode, and a solid beta-alumina electrolyte/separator [139]. It can achieve

an open circuit voltage (OCV) of 2.075 V at 350 'C, but the grid-scale limitation is

the high capital cost, more than $400/kWh [3] which makes this system economically

unsuitable for large scale storage.
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A.3 Lead-Acid Battery

Lead-acid batteries are the most mature electrochemical technology for energy stor-

age. Limitations in using this battery chemistry for large scale storage applications lie

in the relative low specific energy density, the short life (-1000 cycles) when deeply

discharged, unstable performance at low temperatures (< 0 'C, and the high capital

cost comparable to NaS [3].

A.4 Lithium-Ion Battery

Although lithium-ion batteries have high energy and power densities, their high cap-

ital costs (greater than $1000/kWh), potential for thermal-runway, and need for spe-

cialized charging electronics make them unsuitable for large-scale energy storage [140].

A.5 Flywheels

Flywheels store mechanical energy in the rotational inertia of a disk. Flywheels boast

high power densities and fast response times, but lack the energy density for the long

charge-discharge cycles required by grid-scale energy storage. [140].
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Appendix B

Error Function Related Equations

Error Function - erf(x)

2
erf(x) =

\/Tr)

x

e~2 ds
0

erf(x) is a gaussian integral with the limits erf(O)=O and erf(oO)=1

Complimentary Error Function - erfc(x)

erfc(x) 1 - erf(x) = 1 - e-s ds
7T) o

erfc(x) has the limits erfc(O)=1 and erfc(oo)=O

Integral of Complimentary Error Function ierfc(x)

ierfc(x) = 2 erfc(s)ds =

In the limit as x -+ 0, ierfc(x) -+

1
exp(-X 2 ) - x[1 - erf(x)]
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Appendix C

Sensitivity Analysis on dXA

.dXA _2nBjOV (C. 1)

dvdv5

d ZAF DrbA (fB + n0 + 2joVV 2

zAF

To show how this differential will vary, we will use the experimental variables for

5% calcium (A=Ca) in bismuth (B=Bi) at 575 0C.

They are: nBi = 5.2x10- 3 [mol], n'oa = 2.74x10- 4 [mol], ZCa = 2, V = 0.1198

[cm 3 ], F = 96485 [C/mol], bca = 7x10 5 [cm 2 /s], and jo =5, 10, 15, 20 [mA/cm 2].

Figure C-1 shows how the rate varies over the duration of the pulse, the longest

time corresponding to the smallest current density. The percent differences where

0.68%, 0.98%, 1.21%, 1.37%, for jo =5, 10, 15, 20 [mA/cm 2] respectively. We can

conclude that this value is indeed negligle and we can further approximate equa-

tion C.1 to be

dXA_ 2nBjOV

d t ZAF /rA (rB ± 0)2 C.22
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Appendix D

Experiment Preparation

D.1 Electrolyte

The primary electrolyte used in the experiment was the 38.5% LiC1 - 26.5% NaCl

- 35% CaCl 2 ternary system. The following salts were used: LiCl (99.995%, Alfa

Aesar, Stock No. 13684), NaCl (99.99%, Alfa Aesar, Stock No. 35716), CaCl2

(99.99%, Alfa Aesar, Stock No. 44280). The salts were mixed together inside an

argon glovebox, and placed inside quartz crucibles that were then loaded inside the

same stainless steel vessel used in the titration experiments. The vessel was removed

from the glovebox and placed inside a 5" Thermo Scientific® crucible furnace (max

1200 'C). A vacuum was pulled on the vessel and when the pressure dropped below

10 mTorr, the temperature was ramped to 80 'C at a rate of 1 'C/min and held for

12 hours. The temperature was then ramped to 230 'C using the same rate, and held

for another 12 hours under vacuum. Argon wan then introduced inside the vessel at a

steady flow rate of 25 c.c., and the temperature was ramped up to 700 'C and held for

three hours to ensure the electrolyte was melted. The vessel was then cooled to room

temperature, and brought inside the glovebox. Inside the glovebox, the electrolyte

was broken down to small piece then blended and stored inside a plastic bottle for

future use. Figure D-1 shows the pre-melted salts inside the glovebox.
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Figure D-1: Pre-melted salts inside quartz crucibles before

D.2 Electrodes

D.2.1 Reference Electrodes

The reference electrodes used were composed of 35-mol% Ca in Bi, and were prepared

by first arc-melting the metals together using an Edmund Biihler GmbH arc melter

(figure D-2. The alloy was placed inside the arc-melter as seen in figure D-3, pumped

under vacuum for five minutes before introducing argon inside. This was done three

times to ensure the alloy was in an inert environment before melting. The RE alloy

was melted (figure D-4), and turned over three times and remelted each time, then it

was broken up into four small piece, and remelted again while turning it over another

three times to ensure maximum homogeneity.

The alloy was then broken into small pieces. 1.8 g of it was induction melted inside

an 8 mm inner diameter boron nitride crucible that was 14 mm in height, along with

the tungsten lead to facilitate the cell assembly. Two of these electrodes were made.
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Figure D-2: Arcmelter used to prepare the reference electrodes.

Figure D-3: Calcium and bismuth metals inside arc-melter.
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Figure D-4: 35-mol% Ca-Bi alloy premelted inside the arc-melter.

D.2.2 Working Electrode

The working electrode was made of high purity bismuth, and was also induction

melted inside a 6 mm inner diameter boron nitride crucible.

D.2.3 Counter Electrode

The counter electrode was a 15-mol% Ca in Bi, also induction melted inside the

glovebox in a boron nitride crucible.
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Appendix E

Supplementary Data
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E.1 5% Ca-Bi: Electrode Potential Pulse Sequence

(a) 550 0C (b) 575 *C
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Figure E-1: 5%: Electrode potential and temperature with time.
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E.2 10% Ca-Bi: Electrode Potential Pulse Sequence

and Temperature

(a) 550 0C

8

6

5

5

(c) 600 0C

(b) 575 *C

(d) 625 *C

Time (hr)

(e) 650 0C (f) 700 0 C

Figure E-2: 10%: Electrode potential and temperature with time.
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E.3 15% Ca-Bi: Electrode Potential Pulse Sequence

and Temperature

(a) 550 0 C (b) 575 0 C

(c) 600 0 C (d) 625 0 C

(e) 650 0C (f) 700 0C

Figure E-3: 15%: Electrode potential and temperature with time.
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Potential Variation With Time
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E.5 10% Ca-Bi: Potential Variation With Time
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Figure E-5: 10%: Potential versus square root of time.
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E.6 15% Ca-Bi: Potential Variation With Time
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Figure E-6: 15%: Potential versus square root of time.
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E.7 5% Ca-Bi: Reference Electrode
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Figure E-7: 5%: Reference electrode stability.
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E.8 10% Ca-Bi: Reference Electrode
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Figure E-8: 10%: Reference electrode stability.
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E.9 15% Ca-Bi: Reference Electrode

RE Voltage vs Time

8 9 10 11 12
Time (hr)

(a) 550 *C

x 10-6 RE Voltage vs Time

15

S10

wio

-5

0

515

0 b

7 8 9 10 11
Time (hr)

(c) 600 *C

x 10, RE Voltage vs Time
106

7 8 9 10 11 12
Time (hr)

(e) 650 OC

w

2.5

2-

1.5

0

Cu 0.011

0.011
wU

RE Voltage vs Timex 10,

Time (hr)

(b) 575 *C

RE Voltage vs Timex

7 8 9
Time (hr)

10 11

(d) 625 *C

RE Voltage vs Time

(f) 700 0C

Figure E-9: 15%: Reference electrode stability.
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E.10 5% Ca-Bi: Counter Electrode
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Figure E-10: 5%: Counter electrode stability.
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E.11 10% Ca-Bi: Counter Electrode
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Figure E-11: 10%: Counter electrode stability.
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E.12 15% Ca-Bi: Counter Electrode
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Figure E-12: 15%: Counter electrode stability.
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Appendix F

MATLAB Data Analysis Scripts

1 clear

2 global Ipulsel

3 cd ~/Dropbox/MATLAB/scripts/

4 Z = 0

global pctdiff;%% Parameters

rad = .3; %WE1 radius

% rad = .35; %WE2 radius

% rad = .4; %WE3 radius

11 % mBi 1.08904; %WE1 GITT4 mass

12 %m_Bi = 1.4817; %WE2 GITT4 mass

13 %mBi = 1.92968 %WE3 GITT4 mass

14

15 mBi = 1.

16% m_Bi

17 % mBi =

08716; %WE1 GITT5 mass

= 1.47417 %WE2 GITT5 mass

1.93145 %WE3 GITT5 mass

19 %% Start of code

20 cd ~/Dropbox/MATLAB/GITTDataDP_2/GITT5_DP/TempDP/WE1/

21 Temp-labview

183

6

7

8

9

10



22 Voltlabview

23 cd ~/Dropbox/MATLAB/GITTDataDP_2/GITT5_DP/

24 GITTcompositiondata

25 GITTpulsedata

26 GITTCalculationsDP

27 percenttitration

28

29 cd(filepath)

30 makedir = num2str(round(Ca-mole.percent start))

31 mkdir(makedir)

32 cd(makedir)

33

34 Ddifferentiation

as Dnumerical

36 Ddifference

37 plotALLDP

1 % 20111027 SalB: This script inputs the data from the autolab

text file,

2 % concatenates the data arrays, and plots voltage vs time for

the pulse

3 % sequences. The generic value of 40 should only be changed

if you have

4 % more than 40 data sequences with headers written to it in

the file.

s format long

6

7

s %% code below asks the user to select the input file

9 [file-name , file-path] = uigetfile ('*.txt','Select Temperature

Data File');

10 cd(file-path);
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1 fid = fopen(file-name);

12

13 %% the for loop below writes each data sequence (according to

the headers)

14 % to its own column in a cell array.

15

16 headers = textscan(fid, 'Xs',39);

17 data = textscan(fid,'%f %f %f %f');

18

19

20

21 fclose (fid)

22 Tbulk = data{1,1};

23 TWE1 = data{1,2};

24 TWE2 = data{1,3};

25 TWE3 = data{1,4};

26

27

28 TimeT = 0:1:numel(T-bulk)-1;

29 TimeT = TimeT';

30

31 Temp = T-bulk;

32 Tavg = mean(T-bulk);

33 Trange = range(T-bulk);

34 Tstd = std(T-bulk);

1 % 20111027 SalB: This script inputs the data from the autolab

text file,

2 % concatenates the data arrays, and plots voltage vs time for

the pulse

3 % sequences. The generic value of 40 should only be changed

if you have
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s % more thn 40 data sequences 'with headers written to it 2

the file.

5

6 format long

7

8 %% code below asks the user to select the input file

9 [filename , filepath] = uigetfile ('*.tXt','Select Voltage

File');

10 cd(filepath);

11 fid = fopen(file-name);

12

13 %% the for loop below writes each data sequence (according to

the headers)

14 % to its own column in a cell array.

15 for m = 1

16 headers = textscan(fid,'%s',21); %#ok<NASGU>

17 data = textscan(fid,'%f %f');

18 V1 = data{1,1};

19 volt1{:,m} = V1;

2o V2 = data{1,2};

21 volt2{: ,m} = V2; %#ok<*SAGROW>

22 end

23

24 fclose (fid);

25

26 VoltRE = voltl{1,:};

27 VoltCE = volt2{1,:};

28 TimeV = 1:1:numel(VoltCE);

29 TimeV = TimeV';

1% 20111021 SaiB: This script inputs the data from the autolab

text file,
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2 concatenates the data arravs, and plots voltage vs time for

the pulse

3 % sequences

4 format long

s %% code below asks the user to select the input file

6 [file-name , file-path] = uigetfile ('*.txt','Select XCa

Titration File');

7 cd(file-path);

8 fid = fopen(file-name);

9

1o for m = 1:40

11 headersc= textscan(fid,Xs' ,6); %#ok<NASGU>

12 datac = textscan(fid,'%f Xf Xf');

13 ti = datac{1,1};

14 timec{:,m} = ti;

15 V = datac{1,2};

16 voltc{:,m} =

17 A = datac{1,3};

18 currentc{ ,m} = A; %#ok<*SAGROW>

19 end

20

21 fclose(fid);

22

23 %% finds empty cell arrays and deletes them

24 test = cellfun('isempty', voltc);

25 testi = find(test<1);

26 voltc = voltc(1:numel(test1));

27 currentc = currentc(1:numel(test1));

28 timec = timec(1:numel(test1));

1 % 20111027 SalB: This script inputs the data from the autolab

text file,
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2 % catenates the data arrays, and plots voltage vs time for

the pulse

3 % sequences

4 format long

5 %% code below asks the user to select the input file

6 [f ilename , f ile-path] = uigetfile ('*.txt ','Select Pulse Data

File ') ;

7 cd(file-path);

8 fid = fopen(file-name);

9

10 for m = 1:40

11 headers = textscan(fid,'%s',6); %#ok<NASGU>

12 data = textscan(fid,'%f %f %f');

13 ti = data{1,1};

14 timep{:,m} = t1;

15 V = data{1,2};

16 vOltp{:,m} = Y;

17 A = data{1,3};

18 currentp{: ,m} = A; -#ok<*SAGROW>

i end

20

21 fclose(fid);

22 %% finds empty cell arrays and deletes them

23 test = cellfun('isempty', voltp);

24 testi = find (test <1) ;

25 voltp = voltp(1:numel(test1));

26 Currentp = currentp (1: numel (testl)

27 timep = timep(1:numel(testi));

28

29 %% averages the the voltages

30 for n = 1:numel(testl)

31 Vm = voltp{:,n};
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32 Im = mean(abs(currentp{:,n}));

33

34 if Im < 0.00001

35 Em = mean(Vm(numel(Vm)-250:numel(Vm)));

36 Eavg{:,n} = Em;

37 Eocv(n) = Em;

38 else

39 Em = mean(Vm(numel(Vm)-2:numel(Vm)));

40 Eavg{:,n} = Em;

41 E-ocv(n) = Em;

42 end

43 end

1 %% Fundamental constants

2 q = 1.602176565e-19;

3 k = 1.3806488e-23;

4 NA = 6.0221415e23;

s R = 8.3144621;

6 Z = 2;

7 F = 96485.3415;

8 S = pi*(rad^2-.05^2);

9

10 for n = 1:numel(test1)

11 Vm = voltp{:,n};

12 Im = mean(abs(currentp{:,n}));

13

14 if Im < 0.00001

15 Em = mean(Vm(numel(Vm)-250:numel(Vm)));

16 Eavg{:,n} = Em;

17 E-ocv(n) = Em;

18 else

19 Em = mean(Vm(numel(Vm)-2:numel(Vm)));
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Eavg{:,n} = Em;

E-ocv(n) = Em;

end

end

= voltp{:

= voltp{:

= voltp{:

= voltp{:

1}

3}

4}

6}

%ocv before second pulse, 500s

%ocv after pulse, relaxation. Typically

s

= voltp{:,7};

= voltp{:,9};

= voltp{:,10};

= voltp{:,12};

= [OCVp1_1 OCVp3_1];

= [OCVp2_1 OCVp4_1];

= [OCVp1_2 OCVp3_2];

= [OCVp2_2 OCVp4_2];

E_ocvl = ocv2p13(:,1);

E_ocv2 = ocv2p24(:,1);

E_ocv3 = ocv2pl3(:,2);

E_ocv4 = ocv2p24(:,2);

E_ocv-avgl = mean(E-ocvl(numel(E-ocvl)*2/3:numel(E-ocv1)))

E_ocvavg2 = mean(E-ocv2(numel(E-ocv2)*2/3:numel(E-ocv2)))

E_ocvavg3 = mean(E-ocv3(numel(E-ocv3)*2/3:numel(E-ocv3)))

E_ocvavg4 = mean(E-ocv4(numel(E-ocv4)*2/3:numel(E-ocv4)))

%% variables

Time-pulse = vertcat(timep{1,1:numel(testl)});

Volt-pulse = vertcat(voltp{1,1:numel(testl)});
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0

OCVp1_1

OCVp1_2

OCVp2.1

OCVp2_2

~300

OCVp3_1

OCVp3_2

OCVp4_1

OCVp4_2

ocvlpl3

ocvlp24

ocv2pl3

ocv2p24

43

44

45

46

47

48

49
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si Current-pulse = vertcat(currentp{1,1:numel(testl)});

52

53 Timel =

54 Volti =

55 Currenti

vertcat(timec{1,:});

vertcat (voltc {1,:);

= vertcat(currentc{1,:});

56

57 Time_titrate = timec{1,3};

58 Volt_titrate = voltc{1,3};

59 Current_titrate = currentc{1,3};

60 Currentclean = currentc{1,2};

61 Timeclean = timec{1,2};

62

63

64

65

Time-exp = vertcat(Timel,Time-pulse);

Volt-exp = vertcat(Voltl, Volt-pulse);

66 x1 = round(timep{1,1}(1));

20120731

67 x2 = round(max(Time-pulse))

68 x2 = round(max(Time-pulse))

after pulsing

69 maxVCE = nmax(VoltCE(xl:x2)

70 minVCE = min(VoltCE(x1:x2)

71 maxVRE = max(VoltRE(x1:x2)

72 minVRE = min(VoltRE(x1:x2)

73 T_pulse = Tbulk(round(xl):

74 Tavg = mean(T-pulse);

7 T = 273.15+T-avg;

initial time before pulsing

abs(x2-numel(T-bulk)); % final time

) + 0.05*max(VoltCE(xl:x2)

) - 0.05*min(VoltCE(x1:x2)

) + 0.2*max(VoltRE(x1:x2))

) - 0.2*min(VoltRE(x1:x2))

round(x2));

76

7n rhoBi

78 rhoCa

= (10811-(1320*T/1000))/1000; %density at

= 1.378-0.00023*(T-avg - 842);%Ca density

temperature

vs Temp

79

80 %% calculation for Ca mole deposition and mass addition

191



81

82

83

Iti =

MCa =

Ca-mol

du.

M Ca =

abs(mean(currentc{:,3})) ;Titration current

40.078; % Ca atomic mass (g mol)

= Iti*round(range(timec{:,3}))/z/F;%Ca mole deposition

ing titration

M_Ca*Camol;% Ca mass deposition from titration

MCa/rhoCa;%Ca molar volume

= VCa*Camol;%Ca sample volume

85 VCa =

86 VolCa

87

88

89

90

91

92

93

94%% Alloy mixture calculation

95 mtot = mBi+m_Ca;total mass

96 Vol = VolBi+VolCa;%total volume

97 cCai = (Ca-mol)/Vol;%initial calcium concentration

9s amu = (m-tot)/(Bimol+Ca-mol);effective atomic mass

99 MV = Vol/(Bi-mol+Ca-mol);%effective molar volume

100

101 % OCV current_1 = mean(current{:,1]);

102 % Cleaning current-avg mean(current{:,2});

103 % Titrationcurrentavg mean(current{:,3});

104 % OCV current_2 = mean(current{:,4});

105

106 %% Pulsing data

107 Volt-pulsel = v

108 Volt-pulse2 = v

109

110

III

192

ertcat(voltp{1,1:3});

ertcat(voltp{1,4:6});

-% bismuth WE variables

M_Bi = 208.9804; %Bi atomic mass

V_Bi = MBi/rhoBi; %Bi molar volume

Bimol = mBi/MBi; %Bi moles

VolBi = mBi/rhoBi;% Bi sample volume

if n > 10

Volt-pulse3 = vertcat(voltp{1,7:9});
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112 Voltpulse4 = vertcat(voltp{1,10:12});

113 end

114

115 %% pulse 1

116 taul = round(range(timep{:,2));

117 I_pulsel = (mean(currentp{:,2}));*current during first GITT

pulse

118 IR1 = Z*Ipulsel;% IR from ACI

119 vvl = voltp{:,2};

120 ttl = 1:1:numel(vv1);

121 tti = tt1'I;

122 sqttl = sqrt(ttl);

123 Espi = E-ocv-avgl - Eocv(l);

124 Etp1 = E-ocv(2) - Eocv(l);

125

126 Ca.ti-pl = abs(I-pulse1*tau1/z/F);%Ca moles added during 1st

GITT pulse

127 mCa-p1 = MCa*Ca-ti-pl;% Ca mass deposition from lst pulse (g

)

128 VolCa-pl = mCa-pi/rhCa;%Ca sample volume

129 Voll = Vol+VolCa-p1;

130 cCai2 = (Ca-mol+Cati-p1)/Vol1;%new Ca concentration after 1

st GITT pulse

131 XCal = Ca-mol/(Camol+Bi-mol); % initial Ca mole fraction

132 XBil = 1-XCal;

133 XCa-pulsel = (Ca-ti-p1+Ca-mol)/(Ca-mol+Bi-mol+Cati-pl); %

final Ca mole fraction

134 Delta_Xl = XCapulsel - XCal; % Ca mole fraction titrated

during pulsel

135 dEdx(l) = Espl/DeltaXl;5 delta ocv divided by Ca mole

fraction titrate
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136 Li = (Vol+Vol1)/2/S; Raverage height of sample after lst

titration

137 dlna_dlnx_1 = -(z*F*XCa1*Espl)/(R*T*DeltaXl); %thermodvnamic

enhancement factor

138 dina_dlnx(1) = dlna-dlnx_ ;

139 Volt-pulsel = vertcat(voltp{1,1:3});

14o Time-pulsel = 1:1:numel(Volt-pulsel);

141 Time-pulsel = Time.pulsel';

142

143

144 TimeOCVp1_1 = 0:1:numel(OCVp1_1)-1;

145 TimeOCVpl_1 = TimeOCVp11';

146 global TimeOCVpl_2;

147 TimeOCVp1_2 = 0:1:numel(CVp1_2)-1;

148

149

150

TimeOCVpi_2 = TimeOCVp12I;

151 %% pulse 2

152 tau2 = round(range(timep{:,5}));

153 I_pulse2 = (mean(currentp{:,5}));%current during second GITT

pulse

154 IR2 = Z*I-pulse2;

155 vv2 = voltp{:,5};

156 tt2 = 1:1:numel(vv2);

157 tt2 = tt2';

158 sqtt2 = sqrt(tt2);

159 Esp2 = E-ocv-avg2 - E-ocv(4);

160 Etp2 = E-ocv(5) - Eocv(4);

161

162 Ca-ti-p2 = abs(I-pulse2*tau2/z/F);-Ca moles added during 2nd

GITT pulse
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163 mCa.p2 = MCa*Ca-ti-p2; Ca mass deposition from 2nd pulse (g

164 VolCa-p2 = mCa-p2/rhoCa; % Vol of Ca added during 2nd pulse

165 Vol2 = Voll+VolCa-p2;

166 c _Ca-i3 = (Ca-mol+Ca-ti-pl+Ca-ti-p2)/Vol2;%new Ca

concentration after 2nd GITT pulse

167 XCa2 = (Ca-mol+Ca-ti-p1)/(Ca-mol+Bimol + Cati.pl);

168 XBi2 = 1-XCa2;

169 XCa-pulse2 = (Ca-ti-pl+Ca-mol+Ca_ti.p2)/(Ca_ml+Bi-mol+

Cati_pl+Ca-tip2);

17o DeltaX2 = XCa-pulse2 - XCa2;

171 dEdx(2) = Esp2/DeltaX2;

172 L2 = (Voll+Vol2)/2/S; %average height of sample after 2nd

titration

173 dlna_dlnx_2 = -(z*F*XCa2*Esp2)/(R*T*DeltaX2); %thermodynamic

enhancement factor

174 dlna-dlnx(2) = dna_dlnx_2;

175 Volt.pulse2 = vertcat(voltp{1,4:6});

176 Time-pulse2 = 1:1:numel(Vlt-pulse2);

177 Time-pulse2 = Time-pulse2';

178

179

18o TimeOCVp2_1 = 0:1:numel(OCVp2_1)-1;

181 TimeOCVp2_1 = TimeOCVp2_1';

182 TimeOCVp2_2 = 0:1:numel(OCVp2_2)-1;

183 TimeCVp2_2 = TimeOCVp2_2';

184

185 if n > 10

186 *, pulse 3

187 tau3 = round(range(timep{:,8}));

18i I-pulse3 = mean(currentp{: ,8});

189 IR3 = Z*I-pulse3;
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190 vv3 = voltp{:,8};

191 tt3 = 1:1:numel(vv3);

192 tt3 = tt3';

193 sqtt3 = sqrt(tt3);

194 Esp3 = E_ocv-avg3 - E-ocv(7);

195 Etp3 = E_ocv(8) - E-ocv(7);

196 Cati-p3 = abs(I-pulse3*tau3/z/F);%Ca moles added during 3

rd GITT pulse

197 mCa-p3 = MCa*Ca-ti-p3; % Ca mass deposition from 2nd

pulse (g)

198 VolCa-p3 = mCa-p3/rhoCa; % Vol of Ca added during 2nd

pulse

199 Vol3 = Vol2+VolCa-p3;

200 Camol-endp3 = Ca-mol + Ca-ti-pl + Cati.p2 + Ca-ti-p3;

201 cCa-i4 = (Ca-mol.endp3)/Vol3;%new Ca concentration after

4th GITT pulse

202 XCa3 = (Ca-mol + Ca-ti-p1 + Cati-p2)/(Camol + Cati-pl

+ Cati-p2 + Bi-mol);

203 XBi3 = 1-XCa3;

204 XCa-pulse3 = (Ca-ti-pl+Ca-mol+Ca-ti-p2+Catip3)/(Camol+

Bimol+Ca-ti-p1+Cati-p2 + Ca-ti-p3);

205 DeltaX3 = XCa-pulse3 - XCa3;

206 dEdx(3) = Esp3/DeltaX3;

207 L3 = (Vol2+Vol3)/2/S; %average height of sample after 3rd

titration

208 dlna_dlnx_3 = -(z*F*XCa3*Esp3)/(R*T*DeltaX3); %

thermodynamic enhancement factor

209 dlna-dlnx(3) = dlna_dlnx_3;

210 Volt-pulse3 = vertcat(voltp{1,7:9});

211 Time-pulse3 = 1:1:numel(Volt-pulse3);

212 Time-pulse3 = Time-pulse3';

213
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214

215 TimeOCVp3_1 = 0:1:numel(OCVp3_1)-1;

216 TimeOCVp3_1 = TimeOCVp3_1';

217 TimeOCVp3_2 = 0:1:numel(OCVp3_2)-1;

218 TimeOCVp3_2 = TimeOCVp3_2';

219

220 %% pulse 4

221 tau4 = round(range(timep{:,11}));

222 I-pulse4 = mean(currentp{: ,11})

223 IR4 = Z*I-pulse4;

224 vv4 = voltp{:,11};

225 tt4 = 1:1:numel(vv4);

226 tt4 = tt4';

227 sqtt4 = sqrt(tt4);

228 Esp4 = E_ocv-avg4 - E-ocv(10);

229 Etp4 = Eocv(11) - E-ocv(10);

230

231 Ca-ti-p4 = abs(I-pulse4*tau4/z/F);%Ca moles added during 4

rd GITT pulse

232 mCa_p4 = MCa*Cati-p4;% Ca mass deposition from 4th

pulse (g)

233 VolCa-p4 = mCap4/rhoCa; % Vol of Ca added during 4th

pulse

234 Vol4 = Vol3+VolCap4;

235 Ca-mol-endp4 = Camol + Ca-ti-pl + Catip2 + Ca-ti-p3 +

Ca-ti-p4;

236 cCai5 = (Camolendp4)/Vol4;

237 XCa4 = (Ca-mol + Ca-ti-p1 + Ca-ti-p2 + Catip3)/(Camol

+ Ca-ti-pl + Ca-ti-p2+Ca-ti-p3 + Bimol);

238 XBi4 = 1-XCa4;

239 XCapulse4 = (Ca-ti-pl+Ca-mol+Ca-ti-p2+Cati-p3 +

Ca-ti-p4)/(Ca-mol+Bi-mol+ ...
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240 Ca-ti-p1+Ca-tip2 + Cati-p3 + Ca-tip4);

241 DeltaX4 = XCa-pulse4 - XCa4;

242 dEdx(4) = Esp4/DeltaX4;

243 L4 = (Vol3+Vol4)/2/S; *average height of sample after 4th

titration

244 dlna_dlnx_4 = -(z*F*XCa4*Ep4)/(R*T*DeltaX4); %

thermodynamic enhancement factor

245 dlna_dlnx(4) = dlna_dlnx_4;

246 Volt-pulse4 = vertcat(voltp{1,10:121);

247 Timepulse4 = 1:1:numel(Volt-pulse4);

248 Time_pulse4 = Time-pulse4';

249

250 vvp13 = [vvi vv3];

251 vvp24 = [vv2 vv4];

252 VP13 = [Voltpulsel Voltpulse3];

253 VP24 = [Volt._pulse2 Voltpulse4];

254

255

256 TimeOCVp4_1 = O:1:numel(OCVp4-_)-1;

257 TimeOCVp4_1 = TimeOCVp4_1';

258 TimeCVp4_2 = 0:1:numel(OCVp4_2)-1;

259 TimeCVp4_2 = TimeOCVp42 ';

260

261

262

263 OCV1 = [OCVp1_1 OCVp2_1 OCVp3_1 OCVp4_1];

264

265

266 I-pulse = -EIpulsel I-pulse2 I-pulse3 I-pulse4];

267

268 J-pulsel = abs(I-pulsel/S)*1000;

269 J-pulse2 = abs(I-pulse2/S)*1000;
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270 J-pulse3 = abs(I-pulse3/S)*1000;

271 J-pulse4 = abs(I-pulse4/S)*1000;

272 J-pulse = [J-pulsel J-pulse2 J-pulse3 J-pulse4];

273 Esp = [Espi Esp2 Esp3 Esp4];

274 tau = [taul tau2 tau3 tau4];

275

276 end

277

278 Ca_moleend = Ca-mol+Ca-ti-pl+Catip2+Ca-ti-p3+CaEti-p4;

279 Ca.molepercentstart = Camol/(Ca-mol+Bimol)*100

280 Ca-mole-percentend = Camoleend/(Camoleend+Bimol)*100

281

282 pctdiff(dEdx) % pct diff of dEdx

283 dEdx-pct-diff = pct-diff;

284

285 pctdiff(dlna-dlnx); %pct diff of enhancement factor

286 dna-dlnx-pct-diff = pctdiff;

287

288

289

290

291 global ocvlYmax ocvlYmin ocv2Ymax ocv2Ymin

292 ocvlYmax = Eocv(1)+0.1*(E-ocv(1) - E-ocv(9));

293 ocvlYmin = E-ocv(9)-0.1*(E-ocv(1) - E-ocv(9));

294 ocv2Ymax = Eocv(3)+0.1*(E-ocv(3) - E-ocv(12));

295 ocv2Ymin = E-ocv(12)-0.1*(E-ocv(3) - E-ocv(12));

%% Calculates the percent titration by integrating the current

2

3 b = Current-titrate;

4 c = Timel;

5 charge-titrated = round(c(2)-c(1))*trapz(b);
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6 Ca_moletitrated = abs(charge-titrated/2)/F;

8 Camolepercent.titration = Camoletitrated/(Ca-moletitrated

+Bimol)*100

1 % fits slope to selected data and calculated D based on dEdsqt

from slope

2 % of fit assuming constant volume. .. but using average volume

3 global pctdiff cf_1 cf_2 cf_3 cf_4;

4 global tjlongl tjlong2 tjlong3 tlong4

5 createFit2(sqttlvvlsqtt2,vv2,sqtt3,vv3,sqtt4,vv4);

6 dEdsqtl = cfl.pl;

7 dE-dsqt2 = cf_2.pl;

8 dE-dsqt3 = cf_3.pl;

9 dEdsqt4 = cf_4.pl;

1o dE.dsqzerol = cf_1.p2;

11 dE-dsqzero2 = cf_2.p2;

12 dE-dsqzero3 = cf_3.p2;

13 dE-dsqzero4 = cf_4.p2;

14 dE-dsqt = [dE.dsqtl dE-dsqt2 dE.dsqt3 dE.dsqt4];

15

16 Ddiffi = (1/pi)*((2*L1*(Bimol+Ca-mol+Catipl)*(Bimol+

Ca.mol)*Espl)/(taul*(Camol+Bi-mol+0.5*Ca-ti-p1)^2*dE-dsqt1

))^2; %chemical D of pulsel

17 Ddiff2 = (1/pi)*((2*L2*(Bi-mol+Ca-mol+Ca-ti-p1+Cati.p2)*(

Bi-mol+Ca-mol+Cati_pl)*Esp2)/(tau2*(Camol+Bi-mol+Cati-p1

+0.5*Ca-ti-p2)^2*dE-dsqt2))^2;

18 Ddiff3 = (1/pi)*((2*L3*(Bi-ml+Ca-mol+Ca-ti-pl+Ca-ti-p2+

Ca-ti-p3)*(Bi-mol+Ca-mol+Ca-ti-pl+Ca-ti-p2)*Esp3)/(tau3*(

Camol+Bimol+Ca-ti-pl+Ca-tip2+0.5*Ca-ti-p3)^2*dE-dsqt3))
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19 D-diff4 = (1/pi)*((2*L4*(Bi-mol+Ca-mol+Ca-ti-pl+Ca-ti-p2+

Catip3+Ca-ti-p4)*(Bi-mol+Ca-mol+Ca-ti_pl+Ca_ti_p2+

Catip3)*Esp4)/(tau4*(Ca-mol+Bi-mol+Cati-p+Ca-ti-p2+

Catip3+0.5*Ca-ti-p4)^2*dE-dsqt4))^2;

20 Ddiff = [D-diff1 D-diff2 Ddiff3 Ddiff4];

21 Ddiff _avg = mean(D-diff)

22

23 pctdiff(D-diff);

24 Ddiff-pctdiff = pct-diff;

25

26 DCadiff1 = Ddiffi/dlna-dlnx_1; %component D of pulsel

27 DCadiff2 = Ddiff2/dlna-dlnx_2;

28 DCadiff3 = Ddiff3/dlna-dlnx-3;

29 DCadiff4 = Ddiff4/dlna_dlnx_4;

30 DCadiff = [DCadiff1 DCadiff2 DCadiff3 DCa-diff4];

31 DCa-diffavg = mean(DCadiff)

32

33 pctdiff(DCa diff);

34 DCadiff-pct-diff = pct-diff;

1

2

3 figure

4 fitOCV1(TimeOCVpl_1,OCVp1_1,TimeOCVp2_1,OCVp2_1,TimeCVp3_1

,OCVp3_1,TimeOCVp4_1,OCVp4_1);

5 close

6 dVocv_dtl = cfl.pl; efirst 500s ocv before pulsing

dVocvdt2 = cf_ 2 .pl;

8 dVocv-dt3 = cf_3.pl;

9 dVocv-dt4 = cf_4.pl;

io V01 = cfl.p2;

11 V02 = cf_2.p2;
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V03 =

V04 =

Vifit

V2fit

V3fit

V4f it

cf_3 p2;

cf 4 p2;

= V01+dVocv-dt1*TimeOCVp1_1;

= V02+dVocvdt2*TimeOCVp2_1;

= V03+dVocv-dt3*TimeOCVp3_1;

= V04+dVocv-dt4*TimeOCVp4_1;

Vfit = [Vifit V2fit V3fit V4fit];

OCVdatawfit = [OCVp1_1 OCVp2_1 OCVp3_1 OCVp4_1 V1fit V2fit

V3fit V4fit];

xt2 = numel(TimeOCVp1_2);

xtl = xt2-500;

27 fitOCV2(TimeOCVp1_2 ,OCVp1_2 2,TimeOCVp2_2 ,OCVp2_2,T imeOCVp3_2

,OCVp3_2,TimeOCVp4_2,OCVp4_2);

close

dVocv2_dtl

dVocv2_dt2

dVocv2_dt3

dVocv2_dt4

%% percent

= cf1.p1;%last ocv after pulse

= cf_2.pl;

= cf_ 3 .p1;

= cf_4.pl;

differences

DeltaVvvfit1 = vvl(1) - dE-dsqzerol;

DeltaVvvfit2 = vv2(1) - dE-dsqzero2;

DeltaVvvfit3 = vv3(1) - dEdsqzero3;

DeltaVvvfit4 = vv4(1) - dE-dsqzero4;
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41 DVvvf = [DeltaVvv-fitl DeltaV-vv-fit2 DeltaVvvfit3

DeltaV-vv-fit4];

43 % Eocv minus the zero point extrapolation

44 DeltaV-ocv-fitl = E-ocv(1) - dE-dsqzerol;

45 DeltaV-ocv-fit2 = E-ocv(4) - dE-dsqzero2;

46 DeltaVocvfit3 = E-ocv(7) - dE-dsqzero3;

47 DeltaVocv-fit4 = E-ocv(10) - dE-dsqzero4;

48

49 DVocvf = [DeltaVocvfiti DeltaVocvfit2

DeltaVocv-fit4];

50 figure

51 fitVvvocv(I-pulse, DVocvf)

52 close

53 dVvocfdJ = cfl.pl

54 VvocO = cf_1.p2;

55 figure

56 FIT1_res(sqttl ,vvl)

57 figure

58 FIT2_res (sqtt2 ,vv2)

59 figure

60 FIT3_res (sqtt3 ,vv3)

61 figure

62 FIT4_res (sqtt4 ,vv4)

2 Ddeltal = (1/pi)*(

of pulsel

3 Ddelta2 = (1/pi)*(

of pu.lse2

4 D_delta3 = (1/pi)*(

of pulse,3

of dE/dcsqt (t)

DeltaVocvfit3

(2*L1*Espl)/(taul*dE-dsqtl))^2; *chemical D

(2*L2*Esp2)/(tau2*dE-dsqt2))^2; %chemical D

(2*L3*Esp3)/(tau3*dE-dsqt3))^2; %chemical D
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D_delta4 = (1/pi)*((2*L4*Esp4)/(tau4*dE-dsqt4))^2; %chemical

D of puise4

6 Ddelta = [D-deltal Ddelta2 D-delta3 Ddelta4];

7 Ddeltaavg = mean(D-delta)

8

9 pctdiff(D.delta);

1o Ddelta.pctdiff = pctdiff;

11

12 DCadeltal = D-delta1/dlna-dlnx_1; %component D of pulsel

13 DCa.delta2 = Ddelta2/dlna-dlnx_2;

14 DCa-delta3 = Ddelta3/dlna-dlnx_3;

15 DCadelta4 = D-delta4/dlna-dlnx_4;

16 DCadelta = [D_Cadeltal DCadelta2 DCadelta3 DCadelta4

];

17 DCadelta-avg = mean(DCa-delta)

18

19 pctdiff(DCadelta);

20 DCadeltapct-diff = pct-diff;

1 global tpljow tplhigh tp2_low tp2_high tp3_low tp3_high

tp4_low tp4_high

2 global cf_1 cf_2 cf_3 cf_4 pct.diff;

3

4 al = 10;

5 a2 = 20;

6 tpllow = al;

7 tplhigh = a2;

8

9 tp2_low = al;

10 tp2_high = a2;

11

12 tp3_low = al;
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13 tp3_high = a2;

14

is tp4_low = al;

16 tp4_high = a2;

17

18 createFit-bounded(sqttl,vvl,sqtt2,vv2,sqtt3,vv3,sqtt4,vv4);

19

20 dE-dsqt-bndl = cf_1.pl;

21 dE-dsqt-bnd2 = cf_2.p1;

22 dE-dsqt.bnd3 = cf_3.pl;

23 dE-dsqt-bnd4 = cf_4.pl;

24

25 dE-dsqt-bnd = [dE-dsqt-bndl dE-dsqt-bnd2 dE-dsqt-bnd3

dE-dsqt-bnd4];

26

27 Dchem-fixedl = (1/pi)*((2*dEdx(1)*L1*Bi-mol*Cati_pl)/((Bimol

+Camol)^2*tau1*dE-dsqt-bnd1))^2; %chemical D of pulsel

28 Dchemfixed2 = (1/pi)*((2*dEdx(2)*L1*Bi-mol*Ca_tip2)/((Bi-mol

+Ca-mol+Ca-ti-p1)^2*tau2*dE-dsqt-bnd2))^2;*chemical D of

pulse2

29 Dchem_ fixed3 = (1/pi)*((2*dEdx(3)*L1*Bi-mol*Ca-ti _p3)/((Bimol

+Ca-mol+Ca-ti-p1+Ca-ti-p2)^2*tau3*dE-dsqtbnd3))^2; %

chemical D of pulse3

30 Dchem_ fixed4 = (1/pi)*((2*dEdx(4)*L*Bi-mol*Ca_tip4)/((Bi-mol

+Ca-mol+Cati-p+Catip2+Cati-p3)^2*tau4*dE-dsqt-bnd4))

^2;%chemical D of pulse4

31 Dchemjfixed = [Dchemfixed1 Dchemfixed2 Dchemfixed3

Dchemfixed4];

32

33 pctdiff(Dchem-fixed);

34 Dchmfxddiffpctdiff = pct-diff;

35 Dchemfxdavg = mean(Dchemfixed);
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36 Dfixed.poly-exp;

i function createFit _bounded(sqttl ,vvlsqtt2,vv2,sqtt3,vv3,sqtt4

,vv4)

2 global tpllow tplhigh tp2_low tp2_high tp3_low tp3_high

tp4_low tp4_high

3 global cf_1 cf_2 cf_3 cf_4

4

5 %CREATEFIT Create plot of data sets and fits

6 % CREATEFIT(SQTT1, VV1,SQTT2, VV2,SQTT.3, VV3, SQTT4, VV4)

7 % Creates a plot, similar to the plot in the main Curve

Fitting Tool,

8 % using the data that you provide as input. You can

9 % use this function with the same data you used with CFTOOL

10 % or with different data. You may want to edit the function

to

n1 % customize the code and this help message.

Number of data sets: 4

Number of fits: 4

Data from data

X = sqttl:

Y = vvl:

Unweighted

Data from data

X = sqtt2:

Y = vv2:

Unweight-ed

set "vv1 vs. sqttl":

set "vv2 vs. sytt2":

% Data from data set "vv3 vs. sqtt3":
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13

14

15

16 %

17 %

18 -

19 %

20

21 %

22 %2

23 %

24 %

25

26

%C

%0



27 % X =3:

28 %c Y vv3:

29 Unweight ed

30

31 % Data from data set "vv4 vs. sqtt4":

32 X = sqtt4:

33 Y = vv4:

34 Unweighted

35

36 % Auto-generated by MATLAB on 04-Feb--2013 18:25:37

37

38 %% Set up figure to receive data sets and fits

39 f_ = CIf;

40 figure (f._)

41 set (f_- , 'Units ' , 'Pixels ' , 'Position' , [905 1 672 481])

42 % Line handles and text for the legend.

43 legh_ = [];

44 legt_ = {};

45 % Limits of the x-axis.

46 xlim_ = Inf -Inf]

47 % Axes for the main plot.

48 ax_ = axes;

49 set (ax_., 'Units', 'normalized', 'OuterPosition' , [0 .5 1 .5]);

so % Axes for the residuals plot.

51 ax2_ = axes;

52 set (ax2_, 'Units ', 'normalized', 'OuterPosition' , [0 0 1 .5]);

53 set (ax2_ , 'Box ', 'on');

54 % Line handles and text for the residuals plot legend.

ss legrh_ = [];

56 legrt_ = {};

57 set (ax_ , 'Box ' , 'on')

58 axes(ax_ );
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hold

61 % Plot data that was originally in data set "vv1 vs.

sqtt"

62 sqttl = sqttl(:);

63 vv1 = vv (: ) ;

64 h_ = line(sqttl, vvl, 'Parent ', ax, 'Color', [0.333333 0

0.666667],...

65 'LineStyle','none', 'LineWidth',1,...

66 'Marker', ' .', 'MarkerSize',12);

67 xlim_ (1) = min(xlim_ (1) ,min(sqttl) ) ;

68 xlim_ (2) = max(xlim_ (2) ,max(sqttl)) ;

69 legh_ (end+l) = h_

70 legt_{end+1} = 'vv1 vs. sqttl';

71

72 % - Plot data that was originally in data set "vv2 vs. sytt2

sqtt2 = sqtt2(:);

vv2 = vv2 (: ) ;

h_ = line (sqtt2, vv2, 'Parent', ax_, 'Color' ,[0. 333333 0.666667

0] , ...

'LineStyle','none', 'LineWidth' ,1,...

'Marker' , ' . ' , 'MarkerSize' , 12);

xlim_ (1) = min(xlim (1) ,min(sqtt2));

xlim. (2) = max(xlim_ (2) ,max(sqtt2)) ;

legh_ (end+1) = h_;

legt_{end+1} = 'vv2 vs. sqtt2';

83 --- Plot data that was originally in data set "vv3 vs. sqtt3

if

84 sqtt3 = sqtt3(:);

85 vv3 = vv3 ( :) ;
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86 h_ = line(sqtt3,vv3, 'Parent ',ax, 'Color' , [o 0 0],...

87 'LineStyle','none', 'LineWidth',1,...

88 'Marker' , ' . , 'MarkerSize' ,12);

89 xlim_ (1) = min(xlim_ (1) ,min(sqtt3) ) ;

90 xlim_ (2) = max(xlim_ (2) ,max(sqtt3)) ;

91 legh_.(end+1) =

92 legt_{end+1} = 'vv3 vs. sqtt3';

93

94 -- Plot data that was originally in data set "vv4 vs. sqtt4

95 sqtt4 = sqtt4(:);

96 vv4 = vv4(:);

97 l_ = line (sqtt4 , vv4, 'Parent ',ax_ , 'Color ',[0.333333 1

0.666667], ...

98 'LineStyle','none', 'LineWidth',1,...

99 'Marker' , ' . ' , 'MarkerSize ' ,12);

100 xlim_ (1) = min(xlim_ (1) ,min(sqtt4) ) ;

101 xlim_ (2) = max(xlim_ (2) ,max(sqtt4)) ;

102 legh_ (end+1) = h_-;

103 legt-_{end+1} = 'vv4 vs. sqtt4';

104

105 %% Nudge axis limits beyond data limits

106 if all(isfinite(xlim_ ))

107 xlim_ = xlim_ + [-1 1] * 0.01 * diff (xim_);

108 set(ax_,'XLim',xlim_)

109 set(ax2_,'XLim',xlim_)

110 else

tin set (ax_ , 'XL im' ,[ -0. 75173133498611055536,

75.924864833597155211]);

112 set(ax2_ , 'XLim ' ,[-0.75173133498611055536,

75.924864833597155211]);

113 end
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114

115 Create fit "fit 1"

116

117 % Apply exclusion rule "bocund"

118 ex_ = (sqttl <= tpi-low I sqttl >= tplhigh);

119 ok_ = isfinite(sqttl) & isfinite(vvl);

120 if ~all( ok_ )

121 warning( 'GenerateMFile:IgnoringNansAndInfs',...

122 'Ignoring NaNs and Infs in data.' )

123 end

124 ft_ = fittype('polyl');

125

126 % Fit this model using new data

127 if sum(~ex_(ok_))<2

128 % Too many points excluded.

129 error( 'GenerateMFile:NotEnoughDataAfterExclusionRule',...

130 'Not enough data left to fit ''s'' after applying

exclusion rule ''s ...

131 'fit 1', 'bound' );

132 else

133 cf_1 = fit(sqttl(ok_),vvl(ok_),ft_,'Exclude',ex_(ok_));

134 end

135 % Alternatively uncomment the following lines to use

coefficients from the

136 % original fit. You can use this choice to plot the original

fit against new

137 % data.

138 cv = -1.8926162002725882002e-05,

0.062601823024445474308};

139 oCf_ = Cfit {ft_,Cv_{:]);

140

141 Plot this fit
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12 h_ = plot(cf1 ,'fit' ,0.95);

143 set (h_ (1) , ' Color ' , [1 0 01 ,...

144 'LineStyle ','-', 'LineWidth',2,...

145 'Marker','none', 'MarkerSize' ,6);

146 Turn off legend created by plot method.

147 legend off;

148 % Store line handle and fit name for legend.

149 legh_(end+1) = h_(1);

150 legt_{end+1} = 'fit 1';

151

152 % Compute and plot residuals.

153 res_ = vvl(~ex_) - cf_1(sqtt1(~ex_));

154 [x.,i_] = sort(sqttl(~ex_);

155 axes(ax2_);

156 hold on;

157 h_ = line (x_., res_ (i_) , 'Parent ',ax2_ ,'Color' ,[1 0 0],...

158 'LineStyle','none', 'LineWidth',1,...

159 'Marker','.', 'MarkerSize',6);

160 axes(ax_);

161 hold on;

162 legrh_(end+1) = h_;

163 legrt_{end+1} = 'fit 1';

164

165 --- Create fit "fit 2"

166

167 % Apply exclusion rule "bound2"

168 ex_ = (sqtt2 <= tp2_low I sqtt2 >= tp2_high);

169 ok_ = isfinite(sqtt2) & isfinite(vv2);

170 if ~all( ok_ )

171 warning( 'GenerateMFile:IgnoringNansAndInfs',...

172 'Ignoring NaNs and Infs in data.' );

173 end
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ft_ = fittype('polyl');174

175

176

177

178

179

180

end

185 % Alternatively uncomment the following lines to use

coefficients from the

186 % original fit. You can use this choice to plot the

fit against new

187 % data.

188 cv = { -2.7446888792954034127e-05,

0.060715683994276063717];

189 % Cf_ = cfit (ft-, cv :);

original

% Plot this fit

h_ = plot(cf_2,'fit',0.95);

set(h_(1) , 'Color' ,[0 0 1],...

'LineStyle','-', 'LineWidth',2,...

'Marker','none', 'MarkerSize',6);

% Turn off legend created by plot method.

legend off;

% Store line handle and fit name for legend.

legh_.(end+1) = h_(1);

legt_{end+1} = 'fit 2';

212

% Fit this model using new data

if sum(~ex_ (ok.))<2

% Too many points excluded.

error( 'GenerateMFile:NotEnoughDataAfterExclusionRule',...

'Not enough data left to fit ''s'' after applying

exclusion rule ''s' . ...

'fit 2', 'bound2' );

else

cf_2 = fit(sqtt2(ok_),vv2(ok_),ft_,'Exclude',ex_(ok_));
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202 % Comput e and pi ot resi dua ls.

203 res_ = vv2(~ex_) - cf_-2(sqtt2(~ex_));

204 [x_,i_] = sort(sqtt2(~ex_);

205 axes(ax2_);

206 hold on;

207 h_ = line(x_,res_(i_),'Parent' ax2_, 'Color',[0 0 1],...

208 'LineStyle','none', 'LineWidth',1, ...

209 'Marker','.', 'MarkerSize',6);

21o axes(ax_);

211 hold on;

212 legrh_(end+1) = h_;

213 legrt_{end+1} = 'fit 2';

214

215 Create fit "fit 3"

216

217 % Apply exclusion rule "bound3"

218 ex_ = (sqtt3 <= tp3_low I sqtt3 >= tp3_high);

219 ok_ = isfinite(sqtt3) & isfinite(vv3);

220 if ~all( ok_ )

221 warning( 'GenerateMFile:IgnoringNansAndInfs',...

222 'Ignoring NaNs and Infs in data.' )

223 end

224 ft_ = fittype('polyl');

225

226 % Fit this model using new data

227 if sum(~ex_ (ok_))<2

228 % Too many points excluded.

229 error( 'GenerateMFile:NotEnoughDataAfterExclusionRule',..

230 'Not enough data left to fit ''s'' after applying

exclusion rule ''s' . '...

231 'fit 3', 'bound3' );

232 else
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cf_3 = fit(sqtt3(ok_),vv3(ok_),ft_,'Exclude',ex_(ok_));

234 end

235 % Alternatively uncomment the following lines to use

coefficients from the

236 % original fit. You can use this choice to plot the

fit against new

237 % data.

238 CV = { 3.5146749800720710193e-05,

0.058798706315903385977;

original

239 % cr_ ci= C (E I __f) I

240

241 % Plot this fit

242 h_ = plot(cf_-3,'fit' ,0.95);

243 set(h_.(1) ,'Color' ,[0.666667 0.333333 0],.

244 'LineStyle', 5-', 'LineWidth ' ,2,...

245 'Marker', 'none', 'MarkerSize' ,6);

246 % Turn off legend created by plot method.

247 legend off;

248 % Store line handle and fit name for legend.

249 legh_ (end+1) = h_(1);

250 legt_{end+1} = 'fit 3';

251

252 % Compute and plot residuals.

253 res_ = vv3(~ex_) - cf_3(sqtt3(~ex.));

254 [x_,i_] = sort(sqtt3(~ex_));

255 axes(ax2_);

256 hold on;

257 h_ = line(x_,res_(i_),'Parent',ax2_,'Color',[0.666667 0.333333

0] ,...

258 'LineStyle','none', 'LineWidth',1,...

259 'Marker','', 'MarkerSize',6);

26o axes (ax_);
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261 hold on;

262 legrh_(end+1) = h_;

263 legrt_{end+1} = 'fit 3';

264

265 --- Create fit "fit 4"

266

267 % Apply exclusion rule "bound4"

268 ex_ = (sqtt4 <= tp4_low I sqtt4 >= tp4.high);

269 ok_ = isfinite(sqtt4) & isfinite(vv4);

270 if ~all( ok_ )

271 warning( 'GenerateMFile:IgnoringNansAndInfs',...

272 'Ignoring NaNs and Infs in data.' );

273 end

274 ft_ = fittype('polyl');

275

276 % Fit this model using new data

277 if sum(~ex_(ok_))<2

278 % Too many points excluded.

279 error( 'GenerateMFile:NotEnoughDataAfterExclusionRule',...

280 'Not enough data left to fit ''s'' after applying

exclusion rule '

281 'fit 4', 'bound4' );

282 else

283 cf_4 = fit(sqtt4(ok_),vv4(ok_),ft_,'Exclude',ex_(ok_));

284 end

285 % Alternatively uncomment the following lines to use

coefficients from the

286 % original fit. You can use this choice to plot the original

fit against new

287 % data.

288 cv_ { -4.1313451369437088673e-05,

0.05688693632z6529982666};
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289 -cf = fit (ft_,cv_{: )

290

291 % Plot this fit

292 h_ = plot(cf_4, 'fit' ,0.95)

293 set(h_ (1),'Color',[0.333333 0.333333 0.333333],...

294 'LineStyle','-', 'LineWidth',2,...

295 'Marker' , 'none', 'MarkerSize' ,6);

296 % Turn off legend created by plot method.

297 legend off;

298 % Store line handle and fit name for legend.

299 legh_ (end+1) = h_(1);

300 legt_{end+1} = 'fit 4';

301

302 % Compute and plot residuals.

303 res_ = vv4(~ex_) - cf_4(sqtt4(~ex_));

304 [x_,i_] = sort(sqtt4(~ex_);

305 axes(ax2_);

306 hold on;

307 h_ = line(x_,res_(i_) ,'Parent' ax2_, 'Color' ,[0.333333 0.333333

0.333333],...

308 'LineStyle','none', 'LineWidth',1,...

309 'Marker','.', 'MarkerSize',6);

310 axes(ax_);

311 hold on;

312 legrh_(end+1) = h_;

313 legrt_{end+1} = 'fit 4';

314

315 --- Finished fitting and plotting data. Clean up.

316 hold off;

317 % % Display legend

318 % leginfo_ = {'Orientation', 'vertical', 'Location', '

NorthEast'};
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319 ! Z-_ - egnd ,legh_,legt_, Leginfo_ { : } });

320 set (h_, 'Interpreter', 'none');

321 % leginfo_ = {'Orientation', 'vertical', 'Location',

NorthEast'); % properties of resid legend

322 % h_ = legend(ax2_,legrh_,legrt_,leginfo_{:);

323 % set (h_, 'Interpreter', 'none') ;

324 % Remove labels from x- and y-axes.

325 xlabel (ax_ , '' );

326 ylabel(ax_,1);

327 xlabel(ax2_,'')

328 ylabel(ax2_,'');

329 % Add titles to the plots.

330 title (ax_,'Data and Fits');

331 title (ax2_, 'Residuals');

332 set(f _, 'PaperSize', [7 5]); %Set the paper to have width 5

and height 5.

333 set(f_- , 'PaperPosition', [0 0 7 5]);

334 saveas(f_,'@@FIXEDFit-pulses-vs-sqttime','pdf')

335 saveas(f_,'@@FIXEDFit-pulses-vs-sqttime' ,'fig')

1 %%Takes into account the shape of the E vs XCa curve

2 global pctdiff cf_1 cf_2 Eocv

3 XCa = [XCal XCa2 XCa3 XCa4 XCa-pulse4];

4 Eocv = [E-ocv(1) E-ocv(3) E-ocv(6) E-ocv(9) E-ocv(12)];

5 createFitdEdXexp(XCa,Eocv);

6 createFit-dEdX-poly(XCa,Eocv);

7 createFitdEdXexp-poly(XCa,Eocv);

s var-a = cfl.a;

9 var-b = cfl.b;

10 var.c = cf_1.c;

a1 var-d = cf_1.d;

12 %slope of linear fit E(XCa) = cf 2.p1*XCa+cf 2.p2
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13 var-pl = cf_2.pl;

14 var-p2 = cf_2.p2;

15 syms XCa

16 E = vara*exp(var-b*XCa)+var-c*exp(var-d*XCa);

17 Elin = var-p1*XCa+var-p2;

18 dEdXCa = diff(E);

19 delta = .00125;

20 dEdXfixel = subs(dEdXCa,XCal+delta);

21 dEdXfixe2 = subs(dEdXCa,XXCa2+delta);

22 dEdXfixe3 = subs (dEdXCa , XCa3+delta);

23 dEdXfixe4 = subs(dEdXCa,X_ Ca4+delta);

24 dEdXfixe5 = subs(dEdXCa, X_Ca-pulse4+delta);

25 D_ fixel = (1/pi)*((2*dEdXfixel*L1*Bimol*Cati-pl)/((Bi-mol+

Camol)^2*taul*dE-dsqt-bnd1))^2; %chemical D of pulsel

26 D_ fixe2 = (1/pi)*((2*dEdXfixe2*L1*Bi _mol*Cati _ p2)/((Bi-mol+

Camol+Cati.p1)^2*tau2*dE-dsqt-bnd2))^2; %chemical D of

pulse2

27 D_ fixe3 = (1/pi)*((2*dEdXfixe3*L1*Bi mol*Catiip3)/((Bi-mol+

Camol+Cati-p1+Ca-ti-p2)^2*tau3*dE-dsqt-bnd3))^2; %

chemical D of pulse3

28 D_ fixe4 = (1/pi)*((2*dEdXfixe4*L1*Bi _mol*Catip4)/((Bi-mol+

Camol+Cati-pl+Ca-ti-p2+Ca-ti-p3)^2*tau4*dE-dsqt-bnd4))^2;

%chemical D of pulse4

29 Dfixe = [Dfixel D-fixe2 D_fixe3 Dfixe4];

30 D_fixeavg = mean(D-fixe)

31 pctdiff (Dfixe);

32 D.fixe.pctdiff = pct-diff;

33 %% Linear Fit

34 dEdXCalin = diff(E-lin);

35 D-fixpl = (1/pi)*((2*subs(dEdXCa-lin ,XCal)*L1*Bi-mol*Cati-p1

)/((Bimol+Ca-mol)^2*tau1*dE-dsqt-bnd1))^2; echemical D of

pu lsel
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36 Dfixp2 = (1/pi)*((2*subs(dEdXCalin,XCa2)*L1*Bi-mol*Ca-ti-p2

)/((Bi-ml+Ca-mol+Ca-ti-p1)^2*tau2*dE-dsqt-bnd2))^2; e

chemical D of pulse2

37 Dfixp3 = (1/pi)*((2*subs(dEdXCa-lin,XCa3)*L1*Bi-mol*Catip3

)/((Bi-mol+Ca-mol+Ca-ti-p+Ca-ti-p2)^2*tau3*dE-dsqt-bnd3))

^2; %chemical D of pulse3

38 Dfixp4 = (1/pi)*((2*subs(dEdXCajlin,XX-Ca4)*L1*Bi-mol*Cati-p4

)/((Bi-mol+Ca-mol+Ca-ti-pl+Ca-ti-p2+Ca-ti-p3)^2*tau4*

dE-dsqt-bnd4))^2;%chemical D of pulse4

39 Dfixp = [D-fixpl Dfixp2 D-fixp3 D-fixp4];

40 D_fixp-avg = mean(D-fixp)

41 pctdiff(D-fixp);

42 Dfixp-pct-diff = pct-diff;

43 plotPulseSeqTemp(Time-pulse./3600,Volt-pulse ,TimeT./3600,Temp

44 figure

45 plotDALL(J-pulse, Dchem_fixed,J-pulse , D_fixe,J-pulse , D-fixp

46 GITTlinear-nonlinearsep;

1 global Vocvstd sigmaEl sigmaE2 sigmaE3 sigmaE4

D_chem-uncl Dchemunc2 Dchemunc3 Dchem-unc4 D-sigEav

Eo-std

2

3 Vrelax1 = voltp{:,1};

4 V_relax2 = voltp{:,3};

1 Vrelax3 = voltp{:,6};

6 Vrelax4 = voltp{:,9};

7 V_relax5 = voltp{:,12};
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10 Vocv-meanl

))) ;

11 Vocvmean2

)));

12 Vocvmean3

= mean(V-relaxl(numel(V-relaxl)-250:numel(V-relax1

= mean(V-relax2(numel(V-relax2)-250:numel(V-relax2

= mean(V-relax3(numel(V-relax3)-250:numel(V-relax3

))) ;

13 Vocv-mean4 = mean(V-relax4(numel(V-relax4)-250:numel (V-relax4

))) ;

14 Vocvmean5 = mean(V-relax5(numel(V-relax5)-250:numel(V-relax5

15

16 Vocvmean = [Vocvmean1 V_ocvmean2 V_ocvmean3 Vocvmean4

V_ocvmean5];

17

18

19 Vocv_stdl

20 Vocvstd2

);

21 V_ocvstd3

22 Vocvstd4

23 V-ocv-std5

= std(V-relaxl(numel(V-relaxl)-250:numel(V-relaxl))

= std(V-relax2(numel(V-relax2)-250:numel(V-relax2))

= std(V-relax3(numel(V-relax3)-250:numel(V-relax3))

= std(V-relax4(numel(V-relax4)-250:numel(V-relax4))

= std(V-relax5(numel(V-relax5)-250:numel(V-relax5))

);

24

25 Vocv-std = [V-ocvstdl V-ocvstd2 V_ocvstd3 V_ocv-std4

V_ocv-std5];

26

27 Vocvfracunc V-ocv-std./V-ocvmean;

28

29 sigmaEl = sqrt(V-ocv-std1^2+V-ocvstd2^2);
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sigmaE2

sigmaE3

sigmaE4

= sqrt(Vocvstd2^2+V-ocv-std3^2);

= sqrt(V-ocv-std3^2+V-ocv-std4^2);

= sqrt(V-ocv-std4^2+V-ocv-std5^2);

34 sigmaE = [sigmaEl sigmaE2 sigmaE3 sigmaE4];

35

36 pulse.num = [1 2 3 4];

37

38 Esq-unc = 2*sigmaE./abs(Esp);

39

40 a=

41 de

0.1193;

la = 4e-4;

%

%0

%0

%0

53 b1

54 b2

5s b3

56 b4

57

b1

b2

b3

b4

= abs

= abs

= abs

= abs

del_b

del_b

del_b

del_b

= ab

= ab

= ab

= ab

58 delbi

59 del-b2

6o del-b3

61 delb4

1

2

3

4

(Esp1)

(Esp2)

(Esp3)

(Esp4)

= sigmaEl;

= sigmaE2;

= sigmaE3;

= sigma_E4;

s(dEdx

s(dEdx

s (dEdx

s (dEdx

= std(

= std(

= std(

= std(

(1)

(2)

(3)

(4)

dEdx)

dEdx)

dEdx)

dEdx)

30

31

32

33
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62 c = .275;

63 delc = .002;

64 d = taul;

65 deld = le-6;

66 f1 = dEdsqtbndl;

67 delfi = sigmaE1/sqrt(taul);

68 f2 = dEdsqt-bnd2;

69 delf2 = sigmaE2/sqrt(tau2);

70 f3 = dEdsqt.bnd3;

71 delf3 = sigmaE3/sqrt(tau3);

72 f4 = dEdsqtbnd4;

73 delf4 = sigmaE4/sqrt(tau4);

74

75 sigmaDl = 2*sqrt((del-a/a)

/d)^2+(del-fi/fi)^2);

76 sigmaD2 = 2*sqrt((del-a/a)

/d)^2+(del-f2/f2)^2);

77 sigmaD3 = 2*sqrt((del-a/a)

/d)^2+(del-f3/f3)^2);

78 sigmaD4 = 2*sqrt((del-a/a)

/d)^2+(del-f4/f4)^2);

^2+(del-b1/b1)^2+(del-c/c)^2+(del-d

^2+(del-b2/b2)^2+(del-c/c)^2+(del-d

^2+(del-b3/b3)^2+(del-c/c)^2+(del_d

^2+(delb4/b4)^2+(del-c/c)^2+(del_d

79

8o sigma-D =[sigmaD1 sigmaD2 sigmaD3 sigmaD4];

81

82 Dchem-unc = sigmaD.*Dchem-fixed;

83 Dchem-uncl = D_chemunc(1);

84 Dchemunc2 = D_chemunc(2);

85 Dchemunc3 = D_chemunc(3);

86 Dchemunc4 = D_chemunc(4);

87

88 Eoav = mean(abs(dEdx));

89 Eo.std = std(dEdx);
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90 sigmaEavg = 2*Eo-std/Eoav

91 DsigEav = sigmaEavg*Dchem-fxd-avg

92

93

94

95 createFitocvpoly(pulse-num,dEdx)
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Appendix G

Conservation Equations

Ii

S(t)

Figure G-1: Control volume V(t) with surface area S(t) that can change with time.
The surface normal vector (fi), surface velocity vs, and fluid velocity (v) all vary
with surface position and time.

It is extremely important to know very well how these fundamental equations are

derived and applied to specific systems when doing multi-physics modeling. Con-

servation equations are derived from the basis of continuum mechanics under the

assumption that a conserved quantity cannot be created or destroyed, it can only

be transported between places in a continuous motion. In elementary physics one

learns about the types of conserved quantities that exist such as mass, energy, and

momentum, and how to convert between one form to another. For example, we've all

heard of Einstein's famous E = mc 2 equation to which most can recite without even

knowing that it's actually a conservation statement. So how does one begin to con-
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serve physical quantities? Imagine a control volume V(t) exists in a region of space

with the surface area S(t) and can evolve with time (fig. G-1). Also, imagine there's

a concentration c(r, t) of stuff with a corresponding flux J(r, t) within the control

volume, and that this "stuff' can be added at a volumetric rate Rv(r, t) 1. Note that

since the control volume is not static, the surface area can sweep regions at a rate

proportional to the surface velocity given by vs - n dS. Now if we add up all the

components mentioned above to account for the total amount of stuff accumulated

per unit time inside the control volume, we arrive at the following conservation of

"stuff':

d c(r,t) dV= - j(r,t) -dS+ Rv(r,t) dV + c(r,t)vs - i dS.
dtv(t) sMt JvWt s1M

(G.1)

Equation G.1 can be further simplified by invoking the Leibniz rule for differenti-

ating Integrals which states that integrals with variable limits of integration can be

written as:

d of
- f(r, t) dV = dV + (n -vs)f dS. (G.2)

dt fv~ vWt oVW t sW1

Substituting equation G.2 appropriately into G. 1 yields a more simplified version that

does not depend on the surface velocity vs given by:

dV= - J(r,t) - n dS + Rv(r,t) dV. (G.3)
V(t) S(t) v(t)

Now, what equation G.3 is really saying is that as long as the concentration variable

c(r, t) remains continuous throughout the control volume, this general conservation

equation will always hold.

If we apply Gauss's theorem, which states that the volume integral of the diver-

gence of a vector field is equal to flux of the field across the surface enclosing the

volume,

'If its removal rather than accumulation, the volumetric rate of production switches signs to
-Rv(r, t)
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j(V -J) dV = (J - n) dS, (G.4)

to the surface integral in equation G.3, then we can rewrite the integral equation as

j 0 dV = - (V J) dV + Rv(r,t) dV (G.5)
V M) at vMt v M)

which can be further rewritten down to

9+ (V. J) - Rv dV = 0. (G.6)

This is a powerful statement. In the limit the control volume goes to zero (V -+ 0),

the argument inside the integral of equation G.6 remains constant making it a valid

general conservation equation down to a point in space. So with this, we can write

the general conservation equation in differential form 2

= -V - J + Rv (G.7)at
which yields the partial differential equations (PDE's) needed to describe the transient

evolution of the conserved quantity of interest.

We can then solve the PDE's to obtain solutions for the desired extensive property

that contains all the information regarding the history in time and position of how it

evolved. Since we are on the topic of conserved entities, we would like to show how

we can use equation G.7 to derive the conservation equations for mass, energy, and

momentum. One thing to note is that the total flux J can be written as the sum of

diffusive (j) and convective (cu) fluxes (J = j + cu) so, before continuing with the

derivations we rewrite equation G.7 as

= -V (j + cu) + Rv. (G.8)
st

2 For simplicity, let c(r, t) = c, J (r, t) = J, and Rv (r, t) = Rv
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