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Doctor of Philosophy in Aeronautics and Astronautics

ABSTRACT

Active integral twist control for vibration reduction of helicopter rotors during forward
flight is investigated. The twist deformation is obtained using embedded anisotropic
piezocomposite actuators. An analytical framework is developed to examine integrally-
twisted blades and their aeroelastic response during different flight conditions: fre-
quency domain analysis for hover, and time domain analysis for forward flight. Both
stem from the same three-dimensional electroelastic beam formulation with geometrical-
exactness, and are coupled with a finite-state dynamic inflow aerodynamics model. A
prototype Active Twist Rotor blade was designed with this framework using Active
Fiber Composites as the actuator. The ATR prototype blade was successfully tested
under non-rotating conditions. Hover testing was conducted to evaluate structural
integrity and dynamic response. In both conditions, a very good correlation was ob-
tained against the analysis. Finally, a four-bladed ATR system is built and tested to
demonstrate its concept in forward flight. This experiment was conducted at NASA
Langley Transonic Dynamics Tunnel and represents the first-of-a-kind Mach-scaled
fully-active-twist rotor system to undergo forward flight test. In parallel, the impact
upon the fixed- and rotating-system loads is estimated by the analysis. While discrep-
ancies are found in the amplitude of the loads under actuation, the predicted trend
of load variation with respect to its control phase correlates well. It was also shown,
both experimentally and numerically, that the ATR blade design has the potential for
hub vibratory load reduction of up to 90% using individual blade control actuation.
Using the numerical framework, system identification is performed to estimate the
harmonic transfer functions. The linear time-periodic system can be represented by
a linear time-invariant system under the three modes of blade actuation: collective,
longitudinal cyclic, and lateral cyclic. A vibration minimizing controller is designed
based on this result, which implements classical disturbance rejection algorithm with
some modifications. The controller is simulated numerically, and more than 90% of
the 4P hub vibratory load is eliminated.

By accomplishing the experimental and analytical steps described in this thesis,
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the present concept is found to be a viable candidate for future generation low-
vibration helicopters. Also, the analytical framework is shown to be very appropriate
for exploring active blade designs, aeroelastic behavior prediction, and as simulation
tool for closed-loop controllers.

Thesis supervisor: Carlos E. S. Cesnik, Chair
Title: Associate Professor of Aeronautics and Astronautics
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h

HB

I

k

J

K

[K]

K(s)

KB

Kij

L

m

ma

M1

M 2, M 3

M~a)

M~a), M~a)

MB

MdB

n

nc

nh

N

N

AP

PB

harmonic transfer function

thickness of the shell surface

angular momentum column vector

3 x 3 inertial matrix

sectional elastic curvature vector

cost function

kinetic energy density per unit span of the blade

general 6 x 6 stiffness matrix

transfer function of the feedback compensator

sectional stiffness matrix measured in the B frame

beam stiffness components

length of the shell

blade mass per unit span length

external moment vector

beam torsional moment

beam bending moments

actuation component of beam torsional moment

actuation components of beam bending moments

internal moment column vector in the B frame

actuation column vector for internal moment

column vector of the viscous moments in the B frame

number of data points in input vector u

number of chirps that have already been generated

number of harmonic transfer functions to be evaluated

number of the one-dimensional elements for blade spanwise

discretization

number of chirp to be generated in input signal

frequency modulation (block diagonal) matrix

sectional momentum vector measured in the B frame
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PB linear momentum column vector

q external load vector per unit span measured in the a frame

r submatrix (1,1) of the cross-section flexibility matrix

r non-dimensional radial station

r't projection of the position vector r on the tangential vector

rn projection of the position vector r on the normal vector

R radius of the rotor blades

s submatrix (2,2) of the cross-section flexibility matrix

s, (coordinate with respect to the middle surface point along the

surface

t submatrix (1,2) of the cross-section flexibility matrix

td actuation period

t, no actuation period between chirps in an input sequence

t non-dimensionalized time

pseudo time obtained by shifting time vector based on

system phase

T system period

T control response matrix

Tc chirp period

Td delay time

Tr rotor rotational period

u(t) input signal in time domain

u displacement of an arbitrary point on the beam reference line

to the deformed configuration, measured in the a frame

u vector of discretized u(t)

u vector of b/rev actuation amplitudes

ui position of an arbitrary point on the beam reference line

before deformation, measured in the a frame

u (x) displacement field of the cross-section reference point
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us, O6, F constant vectors of the corresponding quantities at each

Mi, P, Hi node i

U potential energy density per unit span of the blade

U(jw) input matrix with elements in frequency domain

U matrix with modulated and Fourier transformed input data

vector elements

Uc chirp input vector for rotor system

v1, vS, v displacement field of an arbitrary point in the shell frame

v1")(s) actuation contribution to the out-of-plane displacement

V magnitude of the electric field distribution shape

V vector for rotor actuation mode selection

VB linear velocity column vector in the B frame

Wa initial angular velocity of a generic point on the a frame

WB2, WB3 component of the relative wind velocity in the B frame

6W virtual work of applied loads per unit span

x beam axial coordinate

x(t) state vector in state-space formulation

X column matrix of the structural variables in one-dimensional

beam formulation

X harmonic state vector

X steady components of the structural variables X

1(t) perturbed motion components of the structural variables X

y output vector in the state space representation of the beam

y, z Cartesian coordinates with respect to the reference point in the

cross section

y vector of discretized y(t)

y(t) output signal in time domain

Y column matrix of the inflow state variables in one-dimensional

beam formulation

23



Y steady components of the inflow state variables Y

V(t) perturbed motion components of the inflow state variables Y

Y(jw) output matrix with elements in frequency domain

z vector of vibration amplitudes

zo vector of vibration amplitudes with no actuation (baseline)

Za arbitrary vector Z represented with respect to the a frame

Zb arbitrary vector Z represented with respect to the b frame

ZB arbitrary vector Z represented with respect to the B frame

Zik = Zi eisk

a scalar for weighting difference operator matrix

as rotor shaft tilt angle in the rearward direction

6A virtual action at the ends of the beam and at the ends of

the time interval

61la variational quantity of total potential energy in the a frame

6Fii M over the i-th element

&0p virtual rotation vector measured in a frame

A 3 x 3 identity matrix

Ali length of the i-th spanwise beam element

#c phase of the chirp

4(x) twist angle of the cross section

state transition matrix over interval [0, T]

IuU product of U and conjugate transpose of U

)UY product of U and conjugate transpose of Y

", K generalized strain column vectors

YB, KB components of the sectional strain vector, measured in the B frame

A induced flow velocity

y advance ratio

ps damping coefficient to represent the beam structural damping

0 rotation vector expressed in terms of Rodrigues parameters
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00 collective pitch angle setting

p weight density of the blade

Poo air mass density

W input frequency to excite the system

W sectional angular velocity vector

Wp major frequency of the system

Q rotor rotational frequency

Q1 component of the blade rotation speed along B 1 direction

QB angular velocity column vector in the B frame

Q0 nominal rotational speed of the rotor system

local coordinate of each beam finite element

blade azimuth angle

vector of azimuthal locations

azimuthal location of the blade in the rotating frame

(), ( )' derivative with respect to time

derivative with respect to the beam span coordinate, xi

geometrically-exact kinematical quantity in the a frame

( ) boundary values of the corresponding quantities

( ) skew-symmetric matrix
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Chapter 1

Introduction

1.1 Background

Rotorcraft has been a very important mode of aerial transportation due to its capa-

bility of vertical take-off and landing, enabling many unique missions such as rescue

operation at sea. However, it has also been under several serious constraints such

as poor ride quality due to high levels of vibration [1] and noise, restricted flight

envelope, low fatigue life of the structural components, and high operating cost. The

primary source of those problems is the complex unsteady aerodynamic environment

which is generated near the rotor blades mainly during forward flight [2]. An in-

stantaneous asymmetry of the aerodynamic loads acting on the blades at different

azimuth location is developed, and such asymmetry becomes more and more adverse

as the forward flight speed increases. Therefore, the rotor system is the major com-

ponent from which helicopter vibrations originate, and the resulting vibratory load

becomes a dominant factor of reducing the life of fatigue-critical components and

poor ride quality. These vibrations also limit the performance of the helicopters such

as forward flight speeds, and tend to decrease payload due to the addition of extra

vibration-alleviation devices. The coupling between the structural and mechanical

components such as rotor, fuselage, engine, and transmission adds another degree of

complexity to this problem.

A typical aerodynamic environment of the helicopter main rotor during forward
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Figure 1-1: Aerodynamic environment in forward flight [3]

flight is illustrated in Fig. 1-1 [3], where helicopter flight velocity adds to the blade

element rotating velocities on the advancing side (00 < # < 1800), and subtracts from

it on the retreating side (1800 < @ < 360). The resulting aerodynamic environment

may be characterized as follows: high tip Mach number on the advancing side, and

blade stall effects on the retreating side. A reverse flow region is also generated

at the inboard on the retreating side. Such a complicated environment results in

an instantaneous asymmetry of the aerodynamic loads acting among the blades at

different azimuthal locations. This results in a vibratory response of a flexible blade

structure, adding more complexity to the air loads asymmetry. This vibration is

transmitted to the fuselage at the frequency of b/rev through the rotor hub, where

b is the number of blades. This mechanism becomes a primary source of fuselage

excitation.

The rotor blades usually have a built-in twist which is to relieve the lift difference

between the inboard and outboard sections during hover, improving hover thrust.

However, the larger the rotor blades have the built-in twist, the more severe fuse-

lage vibrations result in forward flight. Therefore, helicopter designers traditionally

trade-off the amount of built-in twist based on hover performance and forward flight
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vibrations.

1.2 Helicopter Vibration Reduction

There have been considerable efforts to reduce the vibration in helicopter [4, 5],

and vibration alleviation methodologies employed by the helicopter designers may

be categorized into the following three groups:

1. Varying passive structural properties of the rotor system or fuselage by tuning

its dynamic characteristics [6];

2. Employing passive or active vibration absorbing devices either at the rotating

system or the fixed system [7];

3. Direct modification of the excitation forces, principally aerodynamic forces to

reduce vibration.

The first and second categories involve installation of vibration absorbing devices

which produce counteracting inertial and damping forces. They are still used in most

of the rotorcraft flying today although they also bring unavoidable penalties in terms

of weight and tend to affect vibrations only at discrete points. Therefore, an effort to

modify directly the excitation forces has been sought by the helicopter community,

that is, to eliminate or reduce vibrations by modifying unsteady aerodynamic forces

acting on the rotor blades. During the last two decades, this has been investigated

and different implementations were attempted. Higher harmonic control (HHC) and

individual blade control (IBC) are the typical examples of these efforts. Higher har-

monic control is accomplished by manipulating a conventional swashplate to enable

blade pitch control of a higher multiple frequency than an integer multiple of rotating

frequency, i.e., (kb ± 1)/rev. Individual blade control installs a feathering actuator in

each blade rather than modulating the swashplate, and allows for blade pitch control

at arbitrary frequencies. Several outstanding results were obtained regarding vibra-

tion reduction capability of these concepts, and they comprise of analytical studies

searching for an optimal control scheme [8, 9, 10], wind tunnel tests with either small
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or full-scaled model [11, 12, 13, 14, 15], and flight tests [16]. However, these concepts

based on employing additional hydraulic actuators installed on either non-rotating

(beneath swashplate) or rotating (between pitch links) frames have not successfully

entered into full-scale application. Typical disadvantages were identified in these con-

cepts, such as adverse power requirement and limitation on excitation frequencies in

HHC, and extreme mechanical complexity of hydraulic sliprings in IBC.

Recently, there appeared an opportunity of having multiple lightweight sensors/

actuators embedded or surface-mounted at several locations in the rotor blades and

optimally distribute actuation with the aid of modern control algorithm [17, 18, 19].

By employing active materials for such sensors/actuators in order to implement in-

dividual blade control, one can potentially obtain advantages in terms of weight and

power consumption when compared with traditional hydraulic systems. Basically

these new actuators only requires electrical power to operate. Two main concepts

have been under development for the active material application: rotor blade flap ac-

tuation and integral blade twist actuation [20]. The rotor blade flap actuation concept

has been studied in various ways. Millott and Friedmann conducted a comprehensive

study on its theoretical basis [21]. A bimorph servo-flap actuator is one of its primary

implementations [22, 23, 24]. Recently a trailing-edge flap operated by piezostack-

actuated X-frame was successfully fabricated and tested at a hover spin stand [25].

Other flap implementations [26, 27] and variants [28] are also under development, and

the associated modeling being conducted [29].

On the other hand, the integral actuation concept [30, 31, 32, 33] presents itself

as an aggressive alternative with several potential benefits. One of the advantages

is simplicity of its actuation mechanism compared with that for the flap actuation.

Besides providing redundancy in operation, the integral concept does not increase

the profile drag of the blade just as discrete flap does. Moreover, the actuators once

embedded in the composite construction become part of the load bearing structure,

making the active blade a truly integrated multifunctional structure that allows for

effective construction and assembly of future low vibration and low noise rotor blades.

30



1.3 Previous Work Related with Integral Twist

Actuation

1.3.1 Actuators Applicable for the Integral Concept

An anisotropic actuator is required for the implementation of integral blade twist

actuation with certain required characteristics. First, it must be flexible enough to

be inserted in the curved shape of the blade assembly. Also, it should have its own

structural integrity to withstand the pressure applied during blade fabrication and the

external loads during the blade operation. It must have high levels of strain-inducing

capability at an appropriately applied electric field. Anisotropy of the actuation is

required so that tailoring in the blade design may be possible. Finally, cheap actuator

is preferred considering the final blade cost. Candidates which are presently available

include Active Fiber Composites (AFC) and Macro-Fiber Composites (MFC).

The AFC is an anisotropic, conformable actuator, which can be integrated with

the passive structure [34]. It was originally developed at MIT and now being com-

mercialized by Continuum Control Corporation, Billerica, Massachusetts. The AFC

actuator utilizes interdigitated electrode poling and piezoelectric fibers embedded in

an epoxy matrix. This combination results in a high performance piezoelectric ac-

tuator laminate with strength and conformability characteristics much greater than

that of a conventional monolithic piezoceramic. Fig. 1-2 shows AFC packs being

inserted in the blade assembly conducted as part of this thesis. However, some dis-

advantages are also identified for this actuator: difficulty of processing and handling

expensive piezoelectric fibers during actuator manufacturing and high actuator volt-

age requirements. Basic material characterization and proof of concept of an integral

twist-actuated rotor blade was investigated at MIT's Active Materials and Structures

Laboratory [35].

The MFC has been recently developed at NASA Langley based on the same idea as

the AFC in using the piezoelectric fibers under interdigitated electrodes [36]. In this

actuator, shown in Fig. 1-3, the piezoelectric fibers are manufactured by dicing from
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Figure 1-2: AFC being inserted at active blade assembly

Figure 1-3: MFC actuator

low-cost monolithic piezoceramic wafers. Thus, it retains most advantageous features

of the AFC with a potentially lower fabrication cost. This actuator is currently

being tested for its basic characteristics, and it has been considered for use in many

aerospace applications.

1.3.2 Previous Integral Helicopter Blades

For the integral blade twist actuation concept, the actuators may be embedded

throughout the structure, which provides redundancy in operation. A major chal-

lenge with integral blades is to develop a design that presents sufficient twist author-

ity while providing the torsional stiffness required for the aeroelastic performance of

the blade. Chen and Chopra, based on the piezoelectric actuator presented in Barrett
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[30], built and tested a 6-ft diameter two-bladed Froude-scaled rotor model with banks

of piezoceramic crystal elements in +450 embedded in the upper and lower surfaces

of the test blade [31, 37]. Using dual-layer actuators, the active blade achieved 0.50

of maximum experimental tip twist actuation, still lower than the 10 to 20 necessary

for the possible vibration control applications. Bernhard and Chopra studied another

twist concept that incorporates an active bending-torsion actuator beam within the

blade spar [28]. Tip twist angles of 0.15* to 0.50 (at 100 V) were achieved during

Froude-scaled blade hover test.

The most relevant work for this thesis, however, is the one conducted by Rodgers

and Hagood [32] as part of a Boeing/MIT program sponsored by DARPA [38]. They

manufactured and hover tested a 1/6th Mach-scaled CH-47D blade in a two-bladed

rotor where the integral twist actuation was obtained through the use of AFC. In order

to design the blade structure and predict the actuation performance, a rudimentary

single-cell active composite beam model [39] was used. Also, an intentional reduction

by 50% on the baseline torsional stiffness was imposed and regarded to improve twist

actuation. Hover testing on the MIT Hover Test Stand Facility demonstrated tip

twist performance between 10 and 1.50 in the rotating environment. Boeing/MIT

continues this work that eventually should lead to forward flight wind-tunnel tests

and full-scale blade section manufacturing [38].

1.3.3 ATR Blade - Previous Work

Another example of an integral blade twist concept has been studied by the author

and his co-workers [33, 40] as part of a NASA/Army/MIT Active Twist Rotor coop-

erative agreement program. The structural design of the ATR prototype blade em-

ploying embedded AFC actuators was conducted based on a newly developed analysis

for active composite blade with integral anisotropic piezoelectric actuators [41]. The

formulation is one of the first attempts for asymptotically-correct analysis of active

multiple-cell beams presented in the literature. The approach is based on a two-step

solution of the original three-dimensional electromechanical blade representation by

means of an asymptotical approximation: a linear two-dimensional cross-sectional
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analysis and a nonlinear one-dimensional global analysis. The cross-sectional analy-

sis, the first step, is based on a modified formulation originally proposed for passive

beams by Badir [42]. The original formulation was revised and extended, providing

the stiffness matrix and piezoelectric actuation vector in analytic form. A numerical

validation of the stiffness matrix and actuation constants was carried out through

comparison against VABS-A [43], a general asymptotically correct finite-element-

based cross-sectional analysis intended for generic geometry (multiple cells, thin or

thick walls, or even solid active beams). Very good agreement between these formula-

tions was obtained, and only small discrepancies (< 3%) were found for model blade

constructions [41, 43]. The second step is the one-dimensional global analysis, and a

direct expansion of the mixed variational intrinsic formulation of moving beams was

utilized. It is a nonlinear analysis considering small strains and finite rotations, and

its original (passive) formulation was presented by Hodges [44]. Verification of the

one-dimensional global beam results combined with the cross-sectional analysis was

conducted by comparing with other active beam models and few experimental cases

(including CH-47D active blade) showing good agreement [41].

Using those set of analyses and loads originated from CAMRAD II, the ATR blade

design was conducted, and it is described in detail in [33, 45]. The blade employed a

total of 24 AFC packs placed on the front spar only, and distributed in 6 stations along

the blade span. During the process of ATR blade design, a trend study was conducted

in parallel to identify the relationship between torsional stiffness and twist actuation

performance of the active blade [46]. It was shown analytically that the traditional

effort of blade torsional stiffness reduction does not always bring twist performance

improvement. According to the final selected design, a couple of testing articles

were manufactured in advance to the full prototype blade for the structural integrity

testing. Experimental structural characteristics of the prototype blade compared well

with design goals, and modeling predictions correlate fairly with experimental results

[33]. Bench actuation tests showed lower twist performance than originally expected

due to the failure of 6 actuators among 24 embedded and limitation of high voltage

amplitude down to a half amplitude from the scheduled magnitude [45]. Static tip
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twist actuation was experimentally observed of 1.10 peak-to-peak.

Even though the new vibration reduction approach using the active materials

technology showed promising results from the conceptual point of view [47, 40] and

successful preliminary hover testing with small-scaled models [32, 481, experimental

forward flight tests were not performed until recently [49]. Moreover, an active aeroe-

lastic environment to design, analyze, and simulate the behavior of integrally-twisted

active rotor systems needed to be created. This should impact the ability to design

active rotors and will support the design of their control law.

1.4 Present Work

This thesis concentrates on the study of vibration reduction using integral twist actu-

ation on helicopter rotor blades. It includes the development of an analytical frame-

work to identify dynamic characteristics of active rotor system in different flight

conditions. The analytical model for forward flight combines a geometrically-exact

theory for the dynamics of moving beams with active materials constitutive relations

and a finite-state dynamic inflow theory for helicopter forward flight aerodynamics.

The solution of this is conducted in time domain. Numerical results from the ana-

lytical models are correlated with experimental data obtained from bench, hover and

forward flight testing. For this purpose, two main steps are taken. First, a hover

testing using the ATR prototype blade previously manufactured is conducted, and

the numerical results from the analytical hover model are correlated with the ex-

perimental data. Among other things, this step ensures the adequacy of the blade

design and evaluates the twist actuation performance in the rotating condition. At

the same time, the validity of the proposed analytical framework is demonstrated in

both non-rotating and rotating conditions. Secondly, a four-active-bladed rotor sys-

tem based on the prototype blade design is manufactured and tested in the open-loop

control manner for the forward flight condition in the wind-tunnel. In parallel, an

active aeroelastic analysis model is upgraded to deal with active twist rotor system

during forward flight. Regarding the experimental work, an approach similar to the
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Figure 1-4: Overview of different stages of the NASA/Army/MIT ATR program

conventional HHC vibration reduction methodology [14] is pursued. The theoretical

model is used for the system identification of the ATR rotor system, and by com-

bining these frequency response functions corresponding to various flight conditions,

a library of system transfer functions is composed. Within this effort, linear time-

periodic components of the sensitivity functions are identified and compared with

linear time-invariant members to see the degree of their contribution to the rotor sys-

tem characterization. Finally, a closed-loop controller is designed and demonstrated

for its vibration reduction capability. An overview of the different stages of this study

is summarized in Fig. 1-4.

The specific objectives of this thesis are:

1. Develop a structural dynamics model for analysis and design of strain-actuated
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helicopter blades

2. Extend it to an aeroelastic analysis framework to simulate helicopter flight with

active twist rotor blades and evaluate its response functions

3. Correlate the analytical model with experiments conducted in the bench, hover

and forward flight

4. Assess helicopter vibration reduction capability using active twist rotor blades

with an appropriate closed-loop control algorithm.
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Chapter 2

Analytical Framework

2.1 Introduction

For analyzing helicopter blades with embedded strain actuators, a framework is

needed such that the effects of the active material embedded in the structure are

kept throughout all the stages of the analysis. The framework should also contain an

appropriate aeroelastic analysis component to predict the blade behavior under actu-

ation during different operating conditions such as non-rotating, hover, and forward

flight. For this purpose, a specific analytical framework for an active helicopter rotor

system is proposed and its schematic is illustrated in Fig. 2-1.

A base element from which the framework originates is the structural model of a

general composite beam with embedded anisotropic actuators, and this corresponds

to the dashed block at the upper part in Fig. 2-1, designated as "3-D electroelastic

beam." In this structural model, an asymptotical analysis takes the three-dimensional

electromechanical problem of a rotor blade and reduces it into a set of two analyses:

a linear analysis over the cross section and a nonlinear analysis of the resulting beam

reference line. Such separation of the blade problem makes it convenient for aeroe-

lastic analysis and consistently accounts for the active material effects. Using the

structural model previously developed in [41, 45], the ATR prototype blade design

was conducted, and its static twist actuation performance was evaluated [45]. Impor-

tant elements included in the structural model are recapitulated in this chapter.
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Figure 2-1: Schematic diagram of the analytical framework for an active helicopter
blade and its aeroelastic behavior
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The previous structural model is extended and improved in this thesis to investi-

gate the dynamic characteristics of the active rotor system in the bench, hover, and

forward flight conditions. This corresponds to the lower dashed block in Fig. 2-1,

called "Aeroelastic solution." In this extension, the global beam analysis element

from the previous structural model is combined with an appropriate aerodynamics

model to compose an aeroelastic system. However, the system is still dependent upon

the cross-sectional analysis regarding the beam cross-sectional properties. Solution of

the resultant aeroelastic system is obtained in either frequency or time domain, and

it includes the blade loads, hub vibratory loads, and blade motion.

Specifically, for hover calculation, a mixed form of the geometrically-exact beam

analysis model [44] is modified to account for integral actuation, and combined with

finite-state dynamic inflow unsteady aerodynamics [50]. Based on the idea of small

perturbation from a steady-state equilibrium position, frequency response functions

of the active blade are determined using Laplace transform of the state-space repre-

sentation. By performing hover analysis, more insight into the fidelity of the present

modeling can be explored. Also, the behavior of the integral actuator under rotating

condition can be assessed before examining the overall actuation authority of the

ATR system.

In forward flight analysis, the same geometrically-exact beam formulation is uti-

lized but in displacement-based form. Also, the forward flight version of the same

aerodynamics model is used, and their solution is performed in time domain. For im-

plementation, an existing multi-body dynamics code [51] is modified for the needed

active beam analysis. Time domain integration is selected since it is adequate for

simulation of the blade response under open-loop actuation. This enables system

identification for the sake of modern control, and ultimately closed-loop performance

of ATR systems can be studied.

41



2.2 Cross-Sectional Analysis

Stiffness and actuation forcing constants for an active anisotropic beam in its cross-

section are obtained from a variational-asymptotical formulation. The derivation

stems from a shell theory, and the displacement field (including out-of-plane warping

functions) is not assumed a priori but rather results from the asymptotical approach.

It is presented in detail in [45] for thin-walled cross sections, and [52] presents a

generalization of the previous formulation for generic (thin or thick-walled, even solid)

cross sections. The thin-walled restriction allows for closed form solutions of the

displacement field (which is derived and not assumed), and stiffness and actuation

constants, helping determine design paradigms on this new type of blade. These

stiffness and actuation constants are then used in the active beam finite element

discretization of the blade reference line.

Even though the details of this formulation can be found in [45], the main results

are reproduced below for completeness. With an assumed linear piezoelectric consti-

tutive relation and starting from a shell strain energy, the two-dimensional original

electroelastic shell formulation is condensed to a one-dimensional beam problem. Ac-

cording to the notation presented in Fig. 2-2, the displacement field is found to be of

the form:

Vi = Ui(x) - y(s) u'(x) - z(s) '(x) + G(s) #'(x) + gi(s) u'(x)

+ g2(s) U'2'(x) + g3(s) U'3'(x) + V(s)

Vs= u2 (x) - + u3 (x) - + #(x)rn (2.1)
ds ds
dz dy

og = 2 2(X) --- Us(X) - - #(x)rtds ds

where the superscript (a) indicates that the component is function of the applied elec-

tric field (in the case of thin-walled cross sections, the actuation only influences the

out-of-plane component of the displacement field). The functions G(s) and gi(s) are

the warping functions associated with torsion, extension, and two bending measures.
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Figure 2-2: Two-cell thin-walled cross section beam

Associated with this displacement field, the beam constitutive relation

beam generalized forces (axial force, twist, and two bending moments,

with beam generalized strains (axial strain, twist curvature, and two

vatures) and corresponding generalized actuation forces is obtained in

form:

F1

M1

M2

Ms3

Ku

K 12

K 13

K 1 4

K 12

K 22

K 23

K 2 4

K 1 3

K 23

K 33

K 3 4

K 1 4

K 24

K 3 4

K 4 4

K 1

K 2

K3

which relates

respectively)

bending cur-

the following

F a)

M ")

M a)

Ma)

(2.2)

where [Kij] is the stiffness matrix function of geometry and material distribution at

the rotor cross section. 71 is the axial strain, Ki is the elastic twist, and K2, K3 are

two bending curvatures. The actuation vector is a function of the geometry, material

distribution, and applied electric field. Detailed expressions for the stiffness matrix
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Figure 2-3: Degradation of free strain actuation with the frequency of excitation for

the piezoelectric actuators used in the ATR blade

and actuation vector are found in [41]. Eq. (2.2) is consistently utilized in the further

global beam analyses providing the numerical values of structural properties and

actuation forcing vectors of active twist blades at several different discrete spanwise

locations.

Since the free strain properties of piezoelectric material are dependent on the ex-

citation frequency, the actuation forcing vector is not only dependent on the overall

cross-sectional material distribution and geometry, but also on the magnitude and fre-

quency of the electric field excitation. Moreover, the actuation performance degrades

with the increase in frequency of the electric field due to the inherent capacitive nature

of the piezoelectric material. To account for such actuation dependency on frequency,

a correction is added to the above constitutive relation. This correction is obtained

experimentally by curve fitting the data shown in Fig. 2-3, which is characteristic of

the active material system used in the ATR blades [53]. Therefore:

Free strain actuation at f _(%) = af -2.117x10 2  (2.3)
Free strain actuation at 1 Hz

where a = e4 601, and f is the actuation frequency in Hz (R 2 = 0.9932). The amplitude
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dependence is assumed linear here, with a linearization of the actuators properties

conducted around the operating condition. In practice, some nonlinear behaviors of

the ATR prototype blade with respect to applied voltage were observed during bench

test [33].

2.3 Global Beam Analysis

2.3.1 Mixed Form for Hover Analysis

The nonlinear one-dimensional global analysis considering small strains and finite

rotations is presented here as a direct expansion of the mixed variational intrinsic

formulation of moving beams originally presented by Hodges [44], and implemented

by Shang and Hodges [54]. The notation used here is based on matrix notation and

is consistent with the original work of Hodges [44]. Some steps of the original work

are repeated here to help understanding the modifications required in this extended

active formulation.

As shown in Fig. 2-4, a global frame named a is rotating with the rotor, with its

axes labeled ai, a 2 and a3. The undeformed reference frame of the blade is named b,

with its axes labeled bi, b2 and b3, and the deformed reference frame named B, with

its axes labeled B 1 , B 2 and B 3 (though not shown in Fig. 2-4). Any arbitrary vector

V represented by its components in one of the basis may be converted to another

basis like

V = CObVa, VB = CBaVa (2-4)

where Cba is the transformation matrix from a to b, and CBa is that from a to B.

There are several ways to express these transformation matrices. Cba can be expressed

in terms of direction cosines from the initial geometry of the rotor blade, while CBa

contains the unknown rotation variables.

The variational formulation is derived from Hamilton's principle which can be

written as

[6(K -U) +6W] dx 1 dt =6A (2.5)
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a
3

a
2

a 1

Figure 2-4: Blade frames of reference for the global analysis

where ti and t 2 are arbitrarily fixed times, K and U are the kinetic and potential

energy densities per unit span, respectively. 6A is the virtual action at the ends of

the beam and at the ends of the time interval, and 6W is the virtual work of applied

loads per unit span.

Taking the variation of the kinetic and potential energy terms with respect to VB

and QB, the linear and angular velocity column vectors, respectively, and with respect

to -y and r,, the generalized strain column vectors, yields

FB = ( ) MB a= -

PB (aK) T  HB = (2.6)
(aVB 49QB

where FB and MB are internal force and moment column vectors, and PB and HB are

linear and angular momentum column vectors, all expressed with respected to the B

frame.

The geometrically-exact kinematical relations in the a frame are given by

= CBa (C"bei + U) ei

K cba(A2)O/

4

VB = Ba (Va + ia -| )ana)
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B ba ( ) CBaa (2.7)
1+ --0

where ua is the displacement vector measured in the a frame, 0 is the rotation vector

expressed in terms of Rodrigues parameters, e1 is the unit vector [1, 0, 0 ]T, A is the

3 x 3 identity matrix, va and wa are the initial velocity and initial angular velocity

of a generic point on the a frame. () is a derivative with respect to time, and ( )' is

a derivative with respect to the spanwise curvilinear coordinate. () operator applied

to a column vector is defined as (~)n = -enmk( )k, with enmk being the permutation

tensor.

To form a mixed formulation, Lagrange's multipliers are used to enforce the sat-

isfaction of the kinematical equations, Eq. (2.7).

Manipulating the equations accordingly [54], one can obtain the a frame version of

the variational formulation based on exact intrinsic equations for dynamics of moving

beams as

/t2jt6a dt =0 (2.8)

where

6Ua = j{6U'CTCabFB + 6U[(CTCabpB + aCTCab PB

+6 CTCabMB - -TCCab( +~y)FB

+63T[(CTCabHB) + Da CTCabHB + cTcabV~B PB

- F CTCab(el + ) - Cab _ 6a a

+ -( + )cabr - 6Mo
2 4

+P (CTCbVB - Va - WaUa) _ 6PaUa

+6H - + 2)(CT CabB - Wa)
22

-6Ha - oU fa - 60gma}dx1

- (6UT~j a +Y A Ja 6F~ia~ M§6 (2.9)a ka a a a a 0
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and the rotation matrix C is the product CBagab and is expressed in terms of 0 as

(1 - L), - (2 +10
C - 4 2

1+ --

In Eq. (2.9), fa and ma are the external force and moment vectors respectively,

which result from aerodynamic loads. The () terms are boundary values of the

corresponding quantities. The generalized strain and force measures, and velocity and

momentum measures are related through the constitutive relations in the following

form:

B = [K] -

MB K Mia)

PBB B
PB1 = MA -MB VB (2.11)
HB B I B

and these expressions are solved for -y, n, VB, and QB as function of the other measures

and constants and used in Eq. (2.9). The stiffness [K] is in general a 6 x 6 matrix,

function of material distribution and cross sectional geometry. As described in [55],

the 6 x 6 stiffness matrix is related to the 4 x 4 one. The latter is used in this thesis,

where the stiffness matrix and column vector for the piezoelectric actuation comes

from the variational asymptotical analysis of active cross sections as presented in the

previous section.

Adopting a finite element discretization by dividing the blade into N elements,

Eq. (2.8) is written as

o t2 1i dt = 0 (2.12)

where index i indicates the i-th element with length Ali, oli is the corresponding

spatial integration of the function in Eq. (2.9) over the i-th element. Due to the

formulation's weakest form, the simplest shape functions can be used. Therefore, the
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following transformation and interpolation are applied within each element [54]

x =xi + /Ali, dx = Ali d(, ()'

6Ua = - ) + oui+

6Fa

1 d

Ali d

Ua =Ui

0 = 0,

FB= F

(2.13)

MB =M

PB = Pi

6Ha - 6Hi, HB = Hi

where ui, O6, F, Mi, P and Hi are constant vectors at each node i, and all 6 quantities

are arbitrary. ( varies from 0 to 1.

With these shape functions, the spatial integration in Eq. (2.12) can be performed

explicitly to give

N- {ouf + Tfoi +E~ -T M '+ Pi TH{6uf~ ±6Vh~,p +F 3FfF, + WM'fm, + 6P- fp, + 6FH

-T -T -T
+6uT+ 1fw +6fVi+ifi++6Fi+1F + 6Mi+1 fM,+1 }

6T -T -T M---T
= oN+1 N+1 + 60N+1 N+1 - 6FN+1fiN+1 - 6M N+10N+1

-oUT -T AI + -Ta -~A~ 1 (2.14)

where the f,, fev ,..., fMu+, are the element functions explicitly integrated from the

formulation.

In each element function, -y and r, should be replaced with an expression that is

function of FB and MB using the inverse of Eq. (2.11), along with the piezoelectric

forcing vector F(a) and Mi"). So do VB and QB with an expression function of PB
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and HB. The modified functions become

Al-
fp = -CTCabMi - iCTCab[el + {r(Fi + F(a)) +t(Mi + M(a))}]Fi

+ 2l(iaCTCabHi + CTCab7p) + Ai(CTCabHX)' -m2 2

fF, = - ~i [CT ab(ei + {r(F, + F(a)) + t(Mi + M a))}) - Cabe1]

fM, = i- -L(Aab+T Fl + Fa)) + s(M + M 
f~ z 2 2 4ab

f CabM - C+e +{r(F + F(a)) + t(Mi + Mia))}

+i(aCT CabH CTCbPi) + C a ) - 1

f 2 2
ccbAli Ta e i+~)

i+1 T + {r(F + Fa)) + t(M + M}- CabeI
2

-0i ~- (A + - )bIt(F. + F") + s(Mi + M a))} (2.15)
2 2 4 )}(.5

where the new symbols are submatrices of the flexibility matrix, i.e.,

[K]~1 (2.16)

2.3.2 Displacement-based Form for Forward Flight Analysis

For possible simulation of the active rotor system in open and closed-loop control man-

ner, a time domain formulation is needed. The multi-body dynamics code DYMORE,

developed by Bauchau and co-workers [51], is based on similar geometrically-exact

beam equations as presented before and it already couples these to the aerodynamics

of Peters and He [56] (described next). This makes it a natural implementation to be

modified for this study, which was done for this thesis.

DYMORE's original formulation adopts a similar geometrically-exact one-dimen-

sional beam formulation as the one employed in the previous section, with the differ-

ence of being in displacement-based form. Therefore, the same cross-sectional analysis

for active beams can be used with a properly modified version of the multi-body dy-

namics for passive beams so as to be applied to the analysis of active rotor system
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Undeformed State

a3 k

b2

U

B,
0

Deformed State

B2

Unwarped Cross Section

Figure 2-5: Beam in the undeformed and deformed configurations

during forward flight. The integral actuation forces and moments existing inside the

blade structure are realized in the form of finite element loads to the passive beam in

the modified time domain analysis. In what follows, an overview of the modifications

to the formulation for the forward flight analysis is presented.

The kinetic and strain energies of the beam are

T

K = VB PB dx 1  (2.17)
2IojB HB

T

U= 1 L B FB dX1

2Jo IB MB

The velocity-displacement and strain-displacement relationships are expressed as

VB cbaTCBbTfVB [ (2.18)
B [baTCBbTW
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B CbaTCBbT I U/)l ]
KB CbaTCBbTk

where w is the sectional angular velocity vector, with D - OBb0 BbT ; u, defines the

position of a point on the reference line before deformation, measured in a (See Fig. 2-

5); u defines the displacement of a point to the deformed configuration, measured in

a; and k is the sectional elastic curvature vector, with j = CBb'CBbT . The relations

presented in Eq. (2.18) are geometrically-exact, which means that they are valid for

arbitrarily large displacements and rotations, although the strains are assumed to

remain small. Virtual variations in sectional velocities and strains are

6VB W5 f TCBbba

637B Euj _ T  }bb
6 'YB 

+ 6 , T

where &0 is the virtual rotation measured in a, with 6,0 = CBb0 Ba T .

The equations of motion of the beam are derived again from Hamilton's principle

I[6(K - U) +6W~dt = 0 (2.20)

where 6W is the virtual work done by the externally applied forces. By using

Eq. (2.17), one obtains

T T
ftf 6VB PB E B FB +6W dt=0 (2.21)
ti l 6QB IIB 6KB MB J

The sectional momenta and forces can be represented by the same constitutive relation

as described in Eq. (2.11). The cross section analysis presented before provides the

numerical values for both stiffness and inertial matrices, as well as the actuation

vector.
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Substituting Eqs. (2.19) and (2.11) into (2.21), and integrating by parts yield the

governing equations as follows

(CBbCba pB) - (CBbCbaFB + (CBbCbaF a))' (2.22)

(CbCbaHB) TCBbcbapB (cBbcbaMB) + (U + U) CBbCbaFB

q - (CBbcbaM(a))' + (u' +U) CBbfbaFa)

where qT = L4T, 4T] are the externally applied loads per unit span, measured in

a. As described earlier, the effect of the actuation forcing vector is treated as an

additional external load in the right-hand side of Eq. (2.22), while considering the

transformation between the inertial frame and the deformed configuration.

2.4 Aerodynamic Analysis

2.4.1 Hover Aerodynamics

The external loads fa and ma along the B frame (Eq. 2.9) can be written as:

0

fB Po (WB 3 - -(1)WB - ' W ,

- WB3 )W 2 - LVB3 + E2d

EQ )W ~-B 16

mB 1 poc0 c3a { B2Q 0 + (2.23)

1 0

which is based on a thin airfoil theory [57]. Here, po is the air mass density, c is the

blade chord length, a is the lift curve slope, cd0 is the profile drag coefficient, WB2

and WB3 are the components of the relative wind velocity in B frame, and Q1 is the

component of the blade rotational speed along B1 direction. By the transformation

between the frames a and B, these forces and moments are converted to those in
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frame a. Additionally, WB2 and WB, can be represented by the following expressions.

WB 2  = e (VB + CbaCAe3)

WB3 = e3 (VB + baCAe 3 )

where A is the induced velocity. Since the current aerodynamic model contains the

induced velocity terms explicitly, it is necessary to solve them simultaneously.

In this analysis, finite-state dynamic inflow equations based on Peters and He [50]

are adopted, and can be summarized as

e Inflow expansion equation:

A(i~bJ) = #,"()[a'() cos(mV) + b'(t) sin(m)] (2.25)

m=0

n=m+1,m+3,...

where f is the non-dimensional radial station, 4 is the azimuthal location of the blade

in the rotating frame, t is the non-dimensionalized time Qt, and

n-1 (1q (n + q)!!
#'()= (2n+1)H; (q () (q + m)!

q-m,m+2,... (q - m)!!(q +i m)!!(ni - q - 1)!!

Hm = (n + m - 1)!!(n - m - 1)!!
" (n + m)!! (n -m)!!

where by definition

(n)!! = (m)(m - 2) . . . (2 or 1), (-3)!! = -1, (-1)!! = 1, (0)!! = 1

. Inflow state equations:

[K"]n {a'} [Br"][Vnm] -m[K,"] 1 {a"}

" {b'} J [m[K"] [B."][Vr"] {b'}
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1 1 {f~rfl}(2.26)

2 m Is

where

(n+t-2mn-2) 74n - -n-1i q
B ( 2 li (2n + 1)(2t +1) - H m ( -q1q-mHmt,...q (t q)(t + q + 1)

[K"']: diagonal matrix with K' = H"

[V"]: diagonal matrix with

I/3/ IaI for (m,n) = (0,1)

V m

2v la'I otherwise

where the absolute value is added to ensure the symmetry about the state of zero

inflow, or about the zero thrust level. The right-hand side of Eq. (2.26) is regarded

as a pressure integral.

2.4.2 Forward Flight Aerodynamics

The same finite-state dynamic inflow aerodynamics model presented in the previous

section is also used for forward flight analysis. This aerodynamic theory was originally

developed for both hover and forward flight conditions [56]. Moreover, the forward

flight part of this model was already implemented in DYMORE.

This model was constructed by applying the acceleration potential theory to the

rotor aerodynamics problem with a skewed cylindrical wake. More specifically, the

induced flow at the rotor disk was expanded in terms of modal functions. As a result,

a three-dimensional, unsteady induced-flow aerodynamics model with finite number

of states was derived in time domain. This model falls on an intermediate level

of wake representation between the simplest momentum and the most complicated

free wake methodologies. It does not require a severe computational effort, which

is usually the case in those that involve the vortex filament theory. Therefore, this
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model is applicable for the problems of rotor aeroelastic stability, basic blade-passage

vibrations, and higher-harmonic control studies.

2.5 Solution of the Aeroelastic System

2.5.1 Frequency Domain Solution for Hover Analysis

For the ATR hover study that follows, having a frequency domain solution is highly

desirable. Therefore, combining Eq. (2.14), (2.23), and (2.24) yield a set of nonlinear

equations. They can be separated into structural (Fs) and aerodynamic (FL) terms

and written as

Fs(X, Z, V) - FL (X, Y, i) = 0 (2.27)

where X is the column matrix of structural variables, Y is a column matrix of inflow

states and V is the magnitude of the electrical field distribution shape. In Eq. (2.27),

V is explicitly included in Fs due to the inverse expression of the first constitutive

relation, Eq. (2.11), and the linear piezoelectric constitutive relation as follows:

-1 FB + F")
= [Kf MK| ~

r MB + Mia)

F F(a)
= [K]-1 F + [K] 1  B

MB I

7mechanical + 7(a) 5 (2.28)

Kmechanical K(a)

where 'mechanical and Kmechanical are the mechanical strain components.

Similarly we can separate the inflow equations, Eq. (2.26), into a pressure com-

ponent (Fp) and an inflow component (F) yielding

-F(X, Y) + F1 (Y, Y) = 0 (2.29)

The solutions of interest for the two coupled sets of equations (Eqs. 2.27 and 2.29)
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can be expressed in the form

X X X(t)

t+ (2.30)

where () denotes steady-state solution and () denotes the small perturbation about

it.

For the steady-state solution, one has to solve a set of algebraic nonlinear equations

originated from Eq. (2.27) and Eq. (2.29):

Fs(X, 0, V) - FL(X, , 0) = 0 (231)
-Fp(X, ?) + F1(Y, 0) =0

The Jacobian matrix of the above set of nonlinear equations can be obtained

analytically and, even with the modifications caused by the active material embedded

in the structure, it is found to be very sparse. Note that the presence of the actuation

in the blade changes the original terms of the Jacobian in a similar manner it does

in Eq. (2.14). The steady-state solution can be found very efficiently using Newton-

Raphson method.

In order to investigate the dynamic response of the blade with respect to voltage

applied to the embedded anisotropic strain actuator, a state-space representation is

required once the steady-state solution is obtained. Perturbing Eqs. (2.27) and (2.29)

using Eq. (2.30) about the calculated steady state yields

[ Fsq _ 8T aFL '2 1l cFs OFL 0
OX OX (9Y + 8 X +&Fp O9FL _ fp J - JL 0 Qf Xx

ax ayYay X y a
Y=iV Y=iV

0 (2.32)

av
0 0] X=X

Y=Y
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from which the transient solution can be found. Since the aerodynamics is expressed

as coupled through the blades, the system equations must be transformed to multi-

blade coordinates resulting in a form of multi-harmonic series. In the present hover

analysis, only the collective components of those need to be considered. Detailed

expressions of the sub-matrices included in Eq. (2.32) are provided in Appendix A.

Eq. (2.32) constitutes the first part of a state-space representation, and can be written

in the following form

EX = AX + BV (2.33)

In order to extract the blade response at any locations, e.g., strain quantities cor-

responding to the sensors embedded along the blade, an output equation can be es-

tablished. This is accomplished by inverting the first constitutive relation, Eq. (2.11),

for the i-th element

FB[I(a)
[K| F + [K] 1  Ma)

I '~
M BJ B

7(a)
= [K] '[N]i + V (2.34)

,(a)

where [N] is a matrix which extracts FR and MB vectors from the mixed-form solution

vector Xi. _y(a) and ,(a) are the induced strains per unit voltage, as already presented

in Eq. (2.28), and their numerical values are provided from the cross-sectional analysis.

Enough numbers of beam elements are used so that the strain may be assumed

constant within a single element. Then, the strain quantites at desired location can

be extracted by referring to that of the relevant element

desired

=[L[Kj[N]k, + [L Vf+a (2.35)
,(a)

where [L] is a matrix containing unity only at the diagonal of the relevant element,
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and all other zeros. Eq. (2.35) becomes the second part of a state-space representation

with a generalized form as

y = CX + DV (2.36)

where y is the output vector corresponding to the sensors embedded along the blade.

Frequency response function of the blade can be calculated using Laplace trans-

form of the simultaneous equations which are composed of Eqs. (2.33) and (2.36)

P(s) - C(Es - A)- 1B + D (2.37)
V(s)

Note that the coefficient matrix E is usually singular due to the mixed formulation

of the beam model.

2.5.2 Time Domain Solution for Forward Flight Analysis

While the hover analysis presented in the previous section seeks frequency-domain

quantities of the blade response function, the forward flight analysis performs a di-

rect time integration of the blade response due to an integral actuation. This is

needed since system identification and open- and closed-loop simulations, all in time,

must be conducted. DYMORE, the original passive blade dynamics model, adopts

a time-discontinuous integration scheme with energy decaying characteristics in or-

der to avoid high frequency numerical oscillation [51, 58]. Such a high frequency

oscillation usually occurs during a finite element time integration of a complex multi-

body dynamic system. Details of the energy decaying time integration of the beam

formulation are found in [51, 58], and briefly summarized in Appendix B.

DYMORE is also capable of adjusting its time step size automatically to maintain

stability and accuracy of the integration scheme. Another advantage of adopting

multi-body formulation here is that the total shear force and moment exerted by the

rotor system can be easily extracted. By adding and monitoring a rigid body element

which represents a rotor shaft, the degree of vibratory load variation of the entire rotor

system can be directly evaluated. Finally, the control sensitivity functions due to high
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voltage actuation input for different forward flight conditions can be calculated by

Fourier transform of the time response of the blade or the entire active rotor system.
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Chapter 3

Experimental Setup

3.1 Overview

In the previous chapter, an analytical framework is proposed and established to pre-

dict aeroelastic behavior of an active rotor system and numerically evaluate its effec-

tiveness in vibration reduction. At the same time, an experimental effort was pursued

to substantiate the present integral blade actuation concept through a small-scale

wind-tunnel model. Results from these experiments are also utilized for correlation

with the predictions from the proposed analytical framework. Wind-tunnel tests were

conducted at NASA Langley's Transonic Dynamics Tunnel as part of the collabora-

tion between the U.S. Army Research Laboratory, at NASA Langley Research Center,

and MIT.

The ATR prototype blade was previously designed and successfully manufactured.

Preliminary bench testing was conducted to confirm its basic structural characteris-

tics. Details of the relevant work are found in [45], and summarized in this chapter.

The prototype blade is used for hover test with three other dummy blades to compose

the four-bladed fully-articulated rotor. Blade response under rotating condition is in-

vestigated in the hover test. A minor modification is added to the prototype blade

design, and four active blades are fabricated based on it. Using four-active-bladed

rotor system, forward flight test is performed in an open-loop control manner. The

results from the hover, and forward flight tests will be correlated with those predicted
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by the proposed analytical framework in Chapters 4 and 5.

3.2 Blade Design

3.2.1 ATR Prototype Blade

The aeroelastic design of the active twist blade was basically accomplished within

the framework presented here and it is detailed in [33, 45]. The basic requirements

for the ATR prototype blade came from an existing passive blade used by NASA

Langley. The baseline (passive) system has been well studied and characterized over

the years, and is representative of a generic production helicopter [40]. The new

ATR blade is designed based on the external dimensions and aerodynamic properties

of the existing baseline blade to be tested in heavy gas (R134a) medium. Table

3.1 summarizes the general dimension and shape characteristics of the baseline blade,

and Table 3.2 presents the main structural characteristics of the ATR prototype blade

design.

Table 3.1: General properties of the
gas test medium)

Rotor type
Number of blades, b
Blade chord, c
Blade radius, R
Solidity, bc/7rR
Airfoil section
Blade pretwist

Hinge offset
Root cutout
Pitch axis

Elastic axis

Center of gravity
Lock number

Tip Mach number
Centrifugal loading at tip

Rotor speed

Rotor overspeed

existing baseline rotor blade (considering heavy

Fully articulated
4
10.77 cm
1.397 m
0.0982
NACA 0012
-10' (linear from OR to tip)
7.62 cm
31.75 cm
25% chord
25% chord
25% chord
9.0
0.6
738.5 g
687.5 rpm
756 rpm
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Coincident flap-lag hinge location (3.0)

AFC actuator plies
(top and bottom)

Blade pitch axis
(0.25 c)

Center of
rotation

Blade chord, c (4.24)

Blade radius, R (55.0)

(UnIt:Inch)

Figure 3-1: Planform and cross-section of the ATR prototype blade (Dimensions are
in inches.)

- '- '1st Torsion

st Elastic Lag
2nd Elastic Flap

1st Elastic Flap

- -

Rigid Flap
Rigid Lag
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Rotor Speed (RPM)

Figure 3-2: Fan plot of the ATR prototype blade from the proposed analysis
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Fig. 3-1 shows basic blade planform and cross section characteristics selected, and

the fan plot of the prototype blade analyzed by the proposed framework is presented

in Fig. 3-2. The material properties of the passive prepregs and active ply are found

in the appendices of [45], and detailed distribution of the individual AFC packs in

the prototype blade is described in Appendix C.

3.2: Theoretical characteristics of the ATR prototype design

The selected concept [33] and final structural design of the ATR prototype blade

employs a total of 24 AFC packs placed on the front spar only, and distributed

in 6 stations along the blade span. Even though it does not reflect the highest

actuation authority concept, the chosen one satisfies all the requirements and provide

a reasonable cost option (where most of the cost comes from the AFC packs). The

AFC laminae are embedded in the blade structure at alternating +45' orientation

angles to maximize the twist actuation capabilities of the active plies. With an

even number of AFC plies, it is also possible to keep the passive structure of the

rotor blade virtually elastically uncoupled. This allows independent actuation of

blade torsional motion with practically no bending or axial actuation. The ATR
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Table

ATR Design I
Mass per unit span (kg/m) 0.6960

Center of gravity 24.9 %
Tension axis 30.8 %

EA (N) 1.637 106
GJ (N-m 2 ) 3.622 101

EIflap (N-m 2 ) 4.023 101
Ellag (N-m 2 ) 1.094 103

Lock No. 9.0
Section torsional inertia (kg-m 2/m) 3.307 10-4

1st torsion frequency @ 687.5 RPM 7.38/rev
Twist actuation @ 0 RPM,

4,000 V,,/1,200 VDC 4.52
(peak-to-peak, deg/m)

Maximum strain at the worst loading
condition (pistrain)

(1) Fiber 2,730
(2) Transverse 2,730

(3) Shear 5,170



prototype blade was originally expected to achieve static twist actuation amplitudes

of between 2.00 to 2.5' and hovering flight dynamic twist actuation amplitudes of

2.00 to 4.00 (based on CAMRAD II and PETRA simulations [40]) at the extended

cycle of maximum applied voltage of 4,000 Vpp/1,200 VDC. Structural integrity of

the new blade design was evaluated based on the worst loading conditions, which are

expected to occur within the rotor system operating envelope. In this design, forward

flight with the maximum speed is selected as the design loading condition. Then, the

largest magnitudes of the aerodynamic loads are extracted and combined with the

centrifugal loads in order to give the worst loading values. A safety factor of 1.5 was

used.

3.2.2 ATR Test Blade with Modification

Even though experimental structural characteristics and twist performance of the

prototype blade compared well with design goals [45], a concern was raised regarding

its structural integrity, especially affected by the fatigue loadings. There was not

enough experimental evidence that the prototype blade had the fatigue life according

to the criterion employed by NASA Langley Research Center for wind-tunnel testing

models [59]. Also, an empirical formula adopted by the contractor who planned

to build the ATR test blades for forward flight testing indicated that the design

should be improved in fatigue [60]. A modification was applied to the design of the

prototype blade to compensate this shortcoming. Different lay-up configurations were

suggested to increase the structural integrity within the range that its characteristics

is not greatly changed from that of the prototype blade. As a result, only one ply

of E-Glass fabric prepreg in 0/90' was added to the front spar assembly in order

to further withstand centrifugal loading. Using the active cross-sectional analysis

previously described, basic structural characteristics were computed for the updated

configuration, and listed in Table 3.3. The material properties of the passive prepregs

and the AFC plies used in the test blades manufacturing are slightly changed from

those in the prototype blade, and are summarized in Appendix D.
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Table 3.3: Basic characteristics of the modified ATR blade design

ATR Design
Mass per unit span (kg/m) 0.6998

Center of gravity 17.9 %
Tension axis 34.4 %

EA (N) 1.787 106
GJ (N-m 2) 3.143 101

Efap (N-m 2 ) 4.419 101
EIlag (N-m 2 ) 1.153 103

Section torsional inertia (kg-m2/m) 3.810 10-4

Twist actuation @ 0 RPM,
4,000 Vpp/1,200 VDC 4.92

(peak-to-peak, deg/m)

3.3 Prototype Blade Manufacturing

Two test articles were fabricated prior to the ATR prototype blade manufacturing.

The blade root is a co-cure assembly of graphite/epoxy prepreg, which was completely

modified from the original design of a metal block attachment. The AFC packs, man-

ufactured by Continuum Control Corporation, Billerica, Massachusetts, were inserted

in the blade, and individually tested for their actuation and capacitance. Those were

characterized at two different cycles: 3,000 Vpp/600 VDC ("representative cycle")

and 4,000 Vpp/1,200 VDC ("extended cycle") for 1 and 10 Hz. A flexible circuit was

inserted to distribute the high voltages into the AFC packs, and it was also success-

fully tested for high-voltage isolation prior to the blade manufacturing. For the ATR

prototype blade, a total of 10 sets of strain gauges were embedded inside the spar

assembly. These strain gauges were used to monitor the deformation and load level

during spinning, and also to assess the individual AFC pack actuation during the

bench test. Two tantalum weight pieces were aligned and attached at the nose and

web for inertia balancing. Once the spar was cured, the six flexible circuit layers were

soldered to the corresponding AFC flap connectors using high-temperature solder.

The fairing was attached in a second cure. The final shape of the ATR prototype is

shown in Fig. 3-3.
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Figure 3-3: ATR prototype blade

3.4 Aeroelastic Tests

3.4.1 Wind Tunnel

The Langley Transonic Dynamics Tunnel (TDT), whose schematic is shown in Fig. 3-

4, is a continuous-flow pressure tunnel capable of speeds up to Mach 1.2 at stagnation

pressures up to 1 atm. The TDT has a 16-ft square slotted test section that has

cropped corners and a cross-sectional area of 248 ft 2. Either air or R-134a, a heavy gas,

may be used as a testing medium. The TDT is particularly adequate for rotorcraft

aeroelastic testing due to several advantages associated with the heavy gas. At first,

the high density of the testing medium allows model rotor components to be heavier,

and this satisfies the structural design requirements easily while maintaining dynamic

scaling. Second, the low speed of sound in R-134a (approximately 170 m/sec) allows

lower rotor rotational speeds to match full-scale hover tip Mach number. Finally, the

high-density environment increases Reynolds number throughout the testing envelope,

which enables more accurate modeling of the full-scale aerodynamic environment of

the rotor system. Both hover and forward-flight tests of the ATR system are primarily

conducted in the heavy gas testing medium at a constant density of 2.432 kg/m 3

3.4.2 Test Apparatus

The Aeroelastic Rotor Experimental System (ARES) helicopter testbed, whose sche-

matic drawing is illustrated in Fig. 3-5, is used for both hover and forward-flight
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Figure 3-4: The Langley Transonic Dynamic Tunnel (TDT) [481

testing. The ARES is powered by a variable-frequency synchronous motor rated at

47-HP output at 12,000 rpm. The motor is connected to the rotor shaft through a

belt-driven, two-stage speed reduction system. Rotor control is achieved by a conven-

tional hydraulically-actuated rise-and-fall swashplate using three independent actua-

tors. Similarly, inclination angle of the rotor shaft is controlled by a single hydraulic

actuator.

Instrumentation on the ARES testbed permits continuous display of model con-

trol settings, rotor speed, rotor forces and moments, fixed-system accelerations, blade

loads and position, and pitch link loads. All rotating-system data are transferred

through a 30-channel slip ring assembly to the testbed fixed-system. An additional

slip ring enables the transfer of high-voltage power from the fixed-system to the

rotating-system for actuation of the AFC actuators embedded in the ATR blades. A

six-component strain gauge balance placed in the fixed-system 21.0 inches below the

rotor hub measures rotor forces and moments. The strain gauge balance supports

the rotor pylon and drive system, pitches with the model shaft, and measures all of
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Figure 3-5: Schematic of the Aeroelastic Rotor Experimental System (ARES) heli-
copter testbed (All dimensions are in ft.) [48]

the fixed-system forces and moments generated by the rotor model. A streamlined

fuselage shape encloses the rotor controls and drive system. However, the fuselage

is isolated from the rotor system such that fuselage forces and moments do not con-

tribute to the loads measured by the balance.

Fig. 3-6 shows the ATR blades mounted on the ARES helicopter testbed in the

TDT. For this configuration a four-bladed articulated hub with coincident flap and lag

hinges is used on the ARES. The feathering bearing for the hub is located outboard

of the flap and lag hinges, and trailing pitch links are used. The hub is configured

such that pitch-flap coupling of 0.5 (flap up, leading-edge down) is obtained and the

lag-pitch coupling is minimized. During the hover testing, the test section floor, and

the ARES testbed, is lowered approximately 3 ft to allow the rotor wake to vent into

the surrounding plenum volume, thus reducing recirculation effects. (In Fig. 3-6, the

test section floor is shown in its normal, raised position.).
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Figure 3-6: Aeroelastic Rotor Experimental System (ARES) 9-ft diameter rotor
testbed in Langley Transonic Dynamic Tunnel (TDT) with the ATR prototype blade.

3.4.3 Hover Testing

The ATR prototype blade is used with three other similar passive blades for hover

testing. The four-bladed fully-articulated rotor system was mounted inside the NASA

Langley Transonic Dynamics Tunnel as shown in Fig. 3-6. The blade tracking and

balance were accomplished by adjusting the active blade weight and its pitch angle.

This was done so the system could be checked in heavy gas. The hover testing

conditions performed with the ATR prototype blade is presented in Table 3.4.

Initial efforts during the hover set up were aimed at solving difficulties with the

high-voltage power delivery system since this system was installed in the ARES for

the first time. Initial checks were conducted at nonrotating condition, similarly to the

bench testing. Once confidence was gained in the high-voltage system, hover testing

was initiated. Initial hover tests were in air at low rotational speeds, which progressed

incrementally to the rotor design speed. Then, the tunnel test section was closed and

pressurized with heavy gas. Again, all these conditions are summarized in Table 3.4.

For each test condition, computer-controlled sine dwell signals ranging from 0 Hz
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Table 3.4: Hover test conditions for the ATR prototype blade

Testing Density Rotor speed Collective Voltage
medium (kg/m 3 ) (rpm) pitch (deg) amplitude (V)

Air 1.225 400 0 100
400 0 500
400 0 750
400 0 1000

Air 1.225 688 0 500
688 0 1000
688 4 500
688 4 1000
688 8 500
688 8 1000
688 12 1000

Heavy 2.432 688 0 500
gas 688 0 1000

688 4 500
688 4 1000
688 8 500
688 8 1000

Heavy 1.546 688 8 1000
gas 1.984 688 8 1000

2.432 688 8 1000
2.432 619 8 1000

to 100 Hz, in 5 Hz increments, at amplitudes of up to 1000 V were applied to the

ATR prototype blade. Data from the blade strain gauge bridges, the ARES testbed,

and the high-voltage amplifier channels were recorded at a rate of 3,000 samples-per-

second by the computer control system for 5-second durations. The signals acquired

through the channels during the test are listed in Table 3.5. Even though different

loads were measured in the test, correlation with the analytical framework is limited

to the blade torsion moments in this thesis. The total rotor loads were measured at the

fixed-system balance, and since the dynamics of the fuselage model (housing motors,

slip rings for data and power, etc.) is not completely available, these quantities are

not included in the present hover analysis model.

The acquired signal data in time were processed to obtain the transmissibility of

the system with respect to the sinusoidal actuation of the active blade in frequency
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Table 3.5: Data channels for the hover test.

Signal Components
Rotor system Axial, Normal, Pitch,
balance Roll, Side, Yaw
Active blade (6) Torsion, Chordwise Bending
deformation (3) Flap Bending
Rotor control Collective, Cyclic,
system Flapping, Lead-lagging
Pitch link Blade-1,
load Blade-3
Voltage Blade-1
Current Blade-1

domain. The undesirable noise was removed from the data by adopting a simple

smoothing algorithm. The transfer function can be obtained by the output signal

divided by input signal, both of which were transformed to frequency-domain by a

fast-Fourier transform (FFT) technique. Since sine dwell signals were used in the

test, one set of data corresponding to each discrete frequency generated a single point

in the transfer function plot.

3.4.4 Forward Flight Testing

The four-active-bladed rotor system was used for forward flight testing in Langley's

TDT. Testing was conducted to examine the effect of active twist on fixed- and

rotating-system vibratory loads and acoustic noise. Table 3.6 presents the conditions

tested in terms of advance ratio y, and rotor shaft inclination angle as. The suggested

conditions represent sustained 1-g level flight from low to high speed, and descending

flight. For each condition tested, the rotor was set to a rotational speed of 688 rpm,

and trimmed to a nominal thrust coefficient CT of 0.0066. At the same time, the

collective and cyclic pitch settings were adjusted so that the rotor could reach a

steady-state equilibrium. This equilibrium was maintained once the first-harmonic

blade flapping was approximately 0.10 [49], and is referred to as "baseline" condition

since no actuation was applied.

Once the steady-state equilibrium condition was obtained, either sine-dwell or
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Table 3.6: Forward flight test conditions for the ATR system

0.14 0.17 0.20 0.233 0.267 0.30 0.333 0.367
a,=+80  x
as =+5 0  x
as+40 x x x x x
a8 =+2 0  x x x
a8 = +10  x
a,=00  x x x x

a= -1 X X x
a 8 =-2 x x x
a 4= X X

a,= -6* x x
a, = 18 X

sine-sweep signal was applied by the high-voltage amplifiers. In case of sine-dwell

signals, only 3P, 4P, 5P frequency components were considered since (b+1, b, b-1)

frequency components are to influence significantly b-bladed rotor system. Available

blade control modes include collective twist, differential twist, and an Individual Blade

Control (IBC) mode where each blade actuates according to a prescribed schedule

with respect to its position in the azimuthal location. In collective twist mode, all

the blades are under the same synchronous twist actuation signals, while those of an

opposite sign are transferred to the blade at opposite azimuthal location (e.g., Blade

No. 1 and 3) in differential mode. For IBC actuation mode, the actuation on each

blade behaves in the same phase at a specific azimuthal location.

Also, a sweeping algorithm over control phase angle was considered within the

IBC scheme. It is worth noting that although control phase is indicated by the rotor

azimuth (i.e., 0' control phase is coincident with 0* azimuth), control phase is not

equivalent to rotor azimuth. For example, a 3P twist actuation with control phase of

1800 would impose the maximum twist control at a rotor azimuth of 60'. The second

and third cycles would achieve maximum twist control at 1800 and 3000, respectively.

This will be revisited in the IBC signal generation for the forward flight analysis in

Section 5.3.2.

The sine-sweep signal was also used for experimental system identification pur-
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pose, with varying frequency from 0.1P to 9P linearly over a determined time interval,

and with sweeps over the control phase angle around 3600. The signal generated for

this system identification purpose is explained in detail in Section 6.2.

Instrumentation during the forward flight testing included the same physical quan-

tities as measured in the hover test presented in Table 3.5. Additional accelerometers

were embedded at the tip of the active blades to measure their dynamic twist. Also,

PMI measurement was conducted in the tunnel to record the overall blade motion

during the test.
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Chapter 4

Characteristics of the ATR Blade

on the Bench and in Hover

4.1 Overview

Using the ATR prototype blade, two major tests are executed regarding its dynamic

response induced by a time-varying electric field applied to the embedded AFC actua-

tors. Bench top non-rotating actuation testing is conducted first. Then, the prototype

blade is used to build an active rotor system with the other dummy blades to be tested

in hover condition. Details of the hover experiments plan are already introduced in

Chapter 3. All these test data are compared with the results from the analytical

framework presented before, especially the model which obtains the solution of the

aeroelastic system in frequency domain.

4.2 Basic Bench Testing

Different characterization tests were performed on the ATR prototype blade at bench

top condition in order to validate the design and manufacturing procedures, and to

verify the performance of the prototype article. Also numerical results obtained from

the proposed analytical framework were compared with the test data at each stage

of the experiments since the model was developed and expanded to enable variety
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of analyses, such as static twist actuation performance. Detailed description of the

previous preliminary tests and the correlation with the numerical results are presented

in [45]. Among the tests conducted on the prototype blade, static twist actuation

measurement is updated using different apparatus, and described in this section.

For the non-rotating results, the prototype blade was mounted on the bench in

a single-cantilevered condition. Preliminary tests were performed on the spar first,

and then on the whole assembly (spar + fairing) at very low excitation frequency (1

Hz). The tip twist angle measurements along with model predictions are presented

in Table 4.1. Due to electric failures of the packs at higher voltages [45], tests were

limited to a 2,000 Vpp/0 VDC level. Based on the AFC material characterization

conducted on this voltage level, the theoretical actuation prediction using the model

developed in this study was conducted. However, as one can see, the analytical

model overpredicts the low-frequency actuation by 20% to 27% considering the laser

displacement sensor (LDS) measurements. Nonetheless, the quasi-static cross-section

actuation model had been validated well against other experimental data, and errors

of no more than 15% were expected based on the available AFC material data [41].

Later, closer inspection of the procedure used to perform those measurement indicated

the potential source of error. A metal strip taped to the blade and used to reflect

laser targets was not totally rigid, and its motion induced a lower reading on the LDS

system.

Therefore, another set of tests were performed using the Projection Moire Inter-

ferometry (PMI) at NASA Langley [49]. The PMI is a noninvasive mean of remotely

measuring shape, displacement, or deformation of an object. The setup used in the

current measurements have an average accuracy of 0.056' ± 0.042' for the large scale

system and 0.010* t0.012 for the small scale one for the blade rotation angle between

00 and 10 ("large" and "small scale systems" are associated with the field of view,

with the "large" one covering most of the blade's active region and the "small scale"

being only about 30% span). Based on 18 working AFC actuators, the measurement

on the peak-to-peak tip twist at 2,000 Vpp is also included in Table 4.1. By correcting

the twist actuation to account for the difference in the number of working AFCs, the
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Table 4.1: Peak-to-peak tip twist actuation of the ATR prototype blade (2,000 V,,/0
VDC, 1 Hz)

Present Experiment Experiment
Model (LDS) (PMI)

Spar only 1.40 1.10 -
Spar+fairing 1.20 1.00 1.10*

* only 18 active AFC packs.

experimental result from the PMI test is about 15% higher than the original LDS

measurements, and the difference from the analytical model is within 12%. This dis-

crepancy was expected and arises from variation in AFC material properties (between

packs) and uncertainty in the material properties used in the analysis.

4.3 Non-Rotating Frequency Response

The non-rotating dynamic characteristics of the prototype blade can be evaluated

from the frequency response of an applied sinusoidal excitation to the AFC actuators.

Figs. 4-1 - 4-4 show the results of the laser displacement sensor (for tip twist angle),

the blade strain gauges readings, and the predictions of the frequency domain analysis

at several blade stations as function of the AFC actuation.

As one can see, the first torsional mode is clearly identified at approximately 85

Hz, and this result matches well with model prediction. The model neither includes

structural nor stationary aerodynamic damping, resulting in infinite peaks at reso-

nance. This already indicates that some structural damping should be added to the

model. Once the aerodynamics is included in the problem, its damping will bring that

to a finite amplitude. While the strain results could be obtained at high excitation

voltages, the dynamic tip twist was measured at low voltages due to the limitation

on the range of the laser sensors. At 400 Vpp, the peak-to-peak tip twist response

of the blade is approximately 3.5'. Such an increased dynamic response around the

first torsional natural frequency is expected to affect the twist response over the fre-

quency range of interest when the blade is rotating. It makes the frequency response
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Figure 4-1: Tip twist response of the ATR prototype blade on the bench
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Figure 4-2: Equivalent torsional moment at 31% blade radius of the ATR prototype
blade on the bench
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quite flat after 1P (11.5 Hz), compensating for the inherent degradation authority of

the piezoelectric material with frequency. The analytical model presented herewith

captures this effect well, as can be seen from the good correlation with experimental

test on the frequency response for both tip twist actuation and torsional deformation

of the active blade.

4.4 Hover Frequency Response

4.4.1 Collective pitch sensitivity

From the analytical framework developed in this thesis, the frequency response of the

ATR prototype blade can be computed for the hover condition. In Fig. 4-5, equiva-

lent torsional moment at 31% blade radial station is compared with the experimental

data for the case of heavy gas environment, full 688 rpm, 2,000 Vpp excitation, and

varying collective pitch settings 00, 40, 80. As one can see from both magnitude

and phase of the torsion gauge readings, the actuation authority is insensitive to

the blade static loading (represented by the different collective settings). The differ-

ent blade loading results in corresponding flapping moments which in turn changes

the inplane stresses along the blade span. The piezoelectric effects of PZT materi-

als are dependent on these stresses, and the material tends to depole when subject

to tensile stresses. The AFC actuators used in the prototype blade are subject to

pre-compression during their manufacturing, increasing their robustness to tensile

operational loads [34]. Therefore, no significant effect of inplane loads was identified

due to change in collective setting. The first torsion resonance frequency appears at

the vicinity of 70 Hz (6.3 P), which is lower than the bench result (85 Hz). It is

considered to be associated with the pitch link flexibility, the aerodynamic damping

effects, and the effective change on the total length of the blade (due to its mounting

on the hub). The analytical model correlates well with the experimental observations.

It overpredicts, however, the magnitude of the blade deformation of approximately

0.17 N-m constant offset from very low frequencies up to 5P, with the relative error
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Figure 4-5: Equivalent torsional moment at 31% blade radius of the ATR prototype
blade in hover (688 rpm, heavy gas, medium density = 2.432 kg/ms, 2,000 Vpp actu-
ation, 0 = 0 , 40, 80).

varying from 40% to 25%, respectively. This constant offset may indicate the effects

of the local three-dimensional deformation field induced by the presence of collocated

actuators on the strain gauge bridge, and its effects on strain gauge calibration not

taken into account in these results. The phase component of the predicted equivalent

torsional moment correlates very well with the experimental results, with errors less

than 8% when approaching 10P, which is associated with initial saturation of the

power amplifiers during tests.

4.4.2 Medium density sensitivity

When changing the testing medium density, the resulting frequency response func-

tions are shown in Figs. 4-6 and 4-7 for equivalent torsional moment obtained at 31%

and 51% spanwise locations, respectively. As one can see, the medium density vari-

ation does not influence the actuation authority, except at the torsional resonance

frequency due to the change in the aerodynamic damping with density. It is also
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Figure 4-6: Equivalent torsional moment at 31% blade radius of the ATR prototype
blade in hover (688 rpm, 2,000 Vpp actuation, 00 = 8', medium density = 1.546
kg/ms, 1.984 kg/ms, 2.432 kg/m').

found that the analytical results follow well the experimental trends so that the peak

magnitude around the torsional resonant frequency increases as the test medium den-

sity decreases. However, quantitatively the model still overpredicts the experimental

data.

4.4.3 Rotational speed sensitivity

Frequency response sensitivity with respect to rotor rotational speed is shown in

Figs. 4-8 and 4-9 for 688 (100%) and 619 (90%) rpm. Again, the actuation is quite

insensitive to perturbation from the centrifugal loads away from the torsion resonant

peak, indicating that the changes in inplane stresses due to rotational speed are

not affecting the actuator performance. Around the resonance point, however, the

variation of the aerodynamic damping is responsible for the changing in magnitude

of torsional moment. The analytical model predicts those trends very well, and again

overpredicts the magnitude of the equivalent torsional moment.
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Figure 4-7: Equivalent torsional moment at 51% blade radius of the ATR prototype
blade in hover (688 rpm, 2,000 Vpp actuation, 0. = 80, medium density = 1.546
kg/mn, 1.984 kg/m 3, 2.432 kg/m 3).
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Figure 4-8: Equivalent torsional moment at 31% blade radius of the ATR prototype
blade in hover (2,000 Vpp actuation, 0 = 81, medium density = 2.432 kg/m 3 ).
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Figure 4-9: Equivalent torsional moment at 51% blade radius of the ATR. prototype
blade in hover (2,000 Vpp actuation, 60 = 80, medium density = 2.432 kg/m 3).

4.4.4 Discussion

Overall, the analysis correctly captures the trend observed in experiments. The degra-

dation of the actuation performance with frequency is well captured and can be ob-

served at low frequency range (below 10 Hz) on all the hover results. The structural

resonance, even though occurring at higher frequency, has a broad bandwidth that

influences the low frequency range, bringing the twist actuation up. The phase cor-

relation is excellent, both qualitatively and quantitatively. The magnitude of the vi-

bratory torsional moment has been consistently overpredicted, with a constant offset

in the iP to 5P range. As discussed above, this indicates a local three-dimensional

effect on the strain gauges caused by the active piezoelectric element. This error

should have been accounted for during calibration of the strain gauge bridges but

was not for the presented experimental data. The lack of structural damping is the

primary source responsible for discrepancies around the peaks as already concluded

from the bench results. Another source of damping present in the experiment but

not taken into account in the present model is a lead-lag damper. This was used in
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Tip Twist Response
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Figure 4-10: Blade tip twist amplitude predicted by the proposed analytical frame-
work (2,000 Vpp actuation, 680 rpm, 0. = 80, medium density = 2.432 kg/nm3 )

the experimental setup to avoid ground and air resonance of the rotor system. The

coupled pitch-flap-lag motion may bring some of those effects to influence the results

above. Forward flight part of the proposed analytical framework has a capabilty of

modeling lead-lag damper, therefore better correlation is expected with regard to this

matter.

Since no specific sensor for tip twist measurements were included in the prototype

blade, the blade tip twist can only be estimated based on the analytical framework.

Fig. 4-10 presents such results. As it can be seen, between 3P and 5P, the blade tip

twist amplitude varies between 1.0* and 1.30, which, according to previous CAMRAD

II simulations [40], should be enough to provide 60% to 80% reduction on 4P hub

shear vibratory loads. Forward flight test and analysis in Chapter 5 will be addressing

this issue in detail.
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Chapter 5

Dynamic Characteristics of the

ATR System in Forward Flight

5.1 Overview

The forward flight regime is of great interest for the vibration reduction problem.

The blade twist control is suggested to alter the undesirable unsteady aerodynamic

environment which develops in that flight regime. As mentioned previously, wind-

tunnel testing is conducted on the active rotor system with the ATR test blades. At

the same time, confidence on the established analysis model for forward flight is to

be obtained through its correlation with experimental data.

Initially, the bench top static actuation testing is revisited in this chapter. This is

to exemplify basic validation of the active time domain analysis. Then, the potential

impact upon the fixed- and rotating-system loads by the integral blade actuation

during forward flight is examined. Both experimental and analytical efforts focus on

an open-loop control and their correlation. By accomplishing this, the present forward

flight model can be taken for further analytical tasks related with system identification

and closed-loop controller design, which will be introduced in Chapters 6 and 7.
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5.2 Non-Rotating Frequency Response

In order to verify the modifications introduced to the forward flight analysis, which

was introduced in Section 2.3.2, the bench actuation testing results of the ATR proto-

type blade are used here. A sine-sweep high-voltage signal, which varies its actuation

frequency linearly from 1 Hz to 100 Hz within the interval of 1 s, is generated for this

purpose. Then, it is applied to the embedded AFC actuators in the prototype blade

which is cantilevered at bench, and the blade response and internal loads during the

same period are simulated. A time history of the tip twist angle in this simulation

is shown in Fig. 5-1. During the actuation period, a resonant response appeared and

then undesirable beating phenomenon showed up. In order to eliminate the beating

phenomenon to a certain degree, an appropriate level of structural damping is needed

in the beam model in the analysis. The non-rotating dynamic characteristics of the

blade can be obtained in frequency domain by applying the FFT technique to the

time history response. Figs. 5-2 - 5-3 show the experimental measurements of the tip

twist rotation and the blade strain gauge readings, respectively. In the same figures,

predictions from both models, which are frequency and time domain models origi-

nally developed for hover and forward flight analysis, respectively, are also shown as

function of the actuation frequency. The two analytical models developed in this the-

sis capture the overall behavior quite well, as can be seen from the good correlation

with experimental data on the frequency response for both tip twist actuation and

torsional deformation of the active blade.

The first torsional mode is experimentally identified at approximately 85 Hz, and

both models capture it very well. The frequency domain analysis neither includes

structural nor stationary aerodynamic damping, resulting in infinite peaks at res-

onance. This is already observed in Section 4.3, indicating that some structural

damping should be added to the numerical analysis. On the other hand, for the time

domain analysis, structural damping of magnitude 10- is found to be appropriate to

capture the finite peak at resonance. The coefficient of structural damping used here
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is defined as follows:

FdB -= pIKB 'f (5.1)
MdB I kB

where FdB and MdB are the column vectors of the viscous forces and moments to

represent damping in the beam, and y, is the damping coefficient. The addition of

structural damping brings the location of the peak at a frequency which is slightly

lower than that without damping, and proves that the magnitude provided is enough

to give the correct response amplitude.

5.3 Forward Flight Response

5.3.1 Analysis Model without Pitch Link

Fig. 5-4 shows the model of the four-active-bladed ATR system used in the forward

flight time domain analysis. The hub is modeled as a rigid body, and connected with

a revolute joint underneath. It is under a prescribed rotation with nominal rotating

speed Q. Root retention is a passive elastic beam rigidly attached to the hub, and

the reaction loads at the attachment point are extracted and added over four of them
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Figure 5-4: Detailed multi-body representation of 4-active-bladed ATR system

to give the hub vibratory loads. Since the ATR system is fully-articulated, three

revolute joints are consecutively located between the root retention and the active

blade to represent flap, lead-lag, and feathering hinges. As shown in Fig. 5-4, the

flapping and lead-lag hinges are coincident. Among the three joints, a prescribed

collective and cyclic pitch control commands are applied at the feathering hinge, and

their numerical values are based on those used in the wind-tunnel experiment. These

are summarized in Table 5.1. Finally, active beams are attached to represent the ATR

blades, and they are discretized during the analysis with at least four beam elements

per blade, each with the 3rd-order interpolation polynomials. Therefore, there are

approximately 900 degrees of freedom to be solved at each time step, including the

Table 5.1: Trim control inputs for the forward flight test conditions

Advance Rotor shaft Collective Longitudinal Lateral
ratio inclination angle Pitch cyclic pitch cyclic pitch

(deg) (deg) (deg) (deg)
0.14 -1.0 7.5 -3.5 -3.1
0.17 -1.0 7.0 -3.6 -3.0
0.20 -1.0 7.1 -3.9 -3.1

0.233 -2.0 7.5 -4.3 -3.3
0.267 -2.0 7.8 -4.8 -3.4
0.30 -4.0 8.0 -5.0 -3.3
0.333 -6.0 10.7 -6.2 -4.2
0.367 -6.0 11.2 -6.7 -4.4
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dynamic inflow state variables for aerodynamics.

5.3.2 Individual Blade Control Signal

As introduced in Section 3.4.4, three modes of blade actuation were considered in the

forward flight open-loop control experiment. Among these modes, the collective and

differential modes were experimentally found to be less effective in altering the fixed-

system vibratory loads than the IBC mode [49]. It was also observed that simulated

ig level flight conditions generated larger fixed-system vibratory loads than did the

descending flight conditions. Therefore, the experimental results presented in this

thesis will be limited to those obtained during the simulated 1g level flight conditions

while in the baseline (no actuation) and IBC mode of actuation. In order to efficiently

impose an IBC-mode sine-dwell signal with control phase variation, a series of high-

voltage input is generated using the following formula

V(t) Vamplitude x cos{27rWactuation(t - #control phase) + 2 Nact7r - #bade i} (5.2)

where,

Vamplitude = 500, 750, or 1, 000 V,

Wactuation = Nact X frotation,

#control phase =0, 0.83, ..., 1.0 (12 divisions over 3600),

Nact = 3, 4, or 5,

#blade i = 0. (Blade No. 1), 0.25 (Blade No. 2),

0.5 (Blade No. 3), 0.75 (Blade No. 4)

An example of the high-voltage input signal generated for an IBC-mode 3P actuation

with 12 divisions of control phase angle is displayed in Fig. 5-5. No actuation is

applied for the initial 3 seconds to establish a steady-state equilibrium for the given

flight condition. At the same time, the baseline (no actuation) quantities are extracted

during the last period of this interval, say between 2.5 and 3.0 s, to be compared with
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Figure 5-5: Example of high-voltage input generated for an IBC-mode 3P actuation
with 12 divisions of control phase angle

those under actuation. Then, for each 0.5-s period of actuation, each with different

control phase angle, and another 0.5-s period of no actuation is applied between them.

These are applied one after the other as shown in Fig. 5-5.

In each 0.5-second period of actuation cycle, there exists a sine-dwell signal corre-

sponding to a frequency 3P with different phase angles for each blade. 3P sine-dwell

signals generated in this fashion are clearly seen in the magnified plot at the right

side in Fig. 5-5. By applying this control phase algorithm, the blades exhibit the

maximum amplitudes of the sinusoidal electric field at certain azimuthal locations as

exemplified in Fig. 5-6. The maximum amplitude occurrence during the first and sec-

ond actuation periods shows an azimuthal difference of 100 corresponding to 1200/12

divisions, although it is designated as a phase difference of 300 corresponding to

3600/12 divisions in terms of control phase.

5.3.3 Results of the Model without Pitch Link

As a result of the simulation, a time history of the quantities of interest, for ex-

ample, the forces and moments exerted at each blade and root retention, blade tip

displacements, flapping and lead-lag motions at the articulated hinges, and aerody-

namic forces generated at the blades are recorded. Among the flight conditions tested
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Figure 5-6: Azimuthal locations where the maximum amplitude occurs for the first
two actuation periods during the 3P actuation input generated in Fig. 5-5

in the experiment, as summarized in Table 3.6, two conditions are selected here to

present the analytical results and their correlation with the experimental observations.

First, a flight condition is selected with pL = 0.140, as = -P, CT = 0.0066 where

CT is the non-dimensionalized rotor thrust coefficient, and this represents low-speed

level flight. Second, a high-speed level flight condition is selected that y = 0.333,

as = -6o, CT = 0.0066.

Fixed-system loads in the low-speed level flight case

The hub reaction loads of the rotor system can be obtained from summation of all

the loads in the four root retention elements at root location. Fig. 5-7 shows the

simulated vertical component of the hub shear forces developed in the ATR system

when 3P sine-dwell actuation is applied as described in Fig. 5-5. The steady-state

trim condition is y = 0.140, as = -1', CT = 0.0066. As one can observe from

Fig. 5-7, there is a considerable change in the magnitude of the vibratory loads for

certain control phase actuation. The highest reduction happens in the interval of 9

to 9.5 s and 10 to 10.5 s. Notice, however, that there has been an increase in the

average thrust of about 2% at the minimum vibration condition.

These time domain quantities can be transferred to frequency domain to examine

the magnitude of the frequency content of interest, which is 4P in the four-bladed

rotor system. Results are shown in Fig. 5-8 with the corresponding experimental data
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Figure 5-7: Simulated time history of hub vertical shear forces when the 3P actuation
is applied as described in Fig. 5-5

for 3P, 4P, 5P actuation applied during the same steady-state trim condition. In the

figures, the lines are simple interpolation of the solution points which are obtained

from the analysis at discretely increased control phase, while the experimental data

are still displayed with the discrete symbols.

The variation of the 4P hub vibratory load components are calculated with respect

to the variation of the control phase angles in the vertical, forward, and sideward

directions, respectively. The hub sideward component is not included in Fig. 5-8

since its magnitude is too high compared to the other force components, indicating a

problem with the measuring device.

The load predicted from the analysis shows significant discrepancy in amplitude

from the experimental results, although their variation trends in terms of control

phase are in good agreement. As one can see from Fig. 5-8, 3P frequency sine-dwell

actuation appears to be the most effective in reducing the hub shear vibratory loads

in both cases of vertical and forward components. More specifically, 3P actuation

is most effective in hub vertical shear load reduction, resulting in 95% reduction at
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2100 control phase. It also reduces the hub forward shear loads by 80% at about 180*

control phase. Such a hub shear vibratory load reduction performance numerically

predicted here shows similar trend as it was observed in the experiment. Further

discussion on the comparison between the current analytical results and the experi-

mental data will be given at the end of this chapter. Since the dynamics of the test

apparatus (ARES) used for the wind-tunnel test is not included in the model, this

may be responsible for the discrepancies. Upgraded input model for the same ATR

system including the pitch link and all the linkage components in the swashplate is

attempted for better correlation, and will be described in a later section. Also, experi-

mental characterization of the ARES testbed used in the wind-tunnel test is expected

to be conducted in the future for the precise modeling of these extra components.

Rotating-system loads in the low-speed level flight case

Quantities in the rotating frame, for example, the flap and chordwise bending mo-

ments, and torsional moments are calculated in the reference blade and can also be

correlated with the experimental results. The span location where these quantities

are calculated is selected to match those of the strain gauges embedded in the test

blade. While the fixed-system quantities, such as hub shear vibratory loads, were

investigated only in 4P frequency components, those in the rotating frame are ex-

tracted and examined in their 3P, 4P, and 5P frequency components. Figs. 5-9 - 5-10

show blade loads at those frequencies.

Again, the lines are simple interpolation of the solution points from the analysis,

and symbols represent the experiments. The 3P frequency components of the flap

bending moment at 28.7% span location are extracted and shown in Fig. 5-9 (a). The

results are for the condition of p = 0.140, as = -1*, CT = 0.0066, and 1,000 V twist

actuation at 3P, 4P, 5P with respect to control phase. 4P frequency components for

the same flap bending moment are presented in Fig. 5-9 (b), and 5P components are

in Fig. 5-9 (c). As well as in the fixed-system quantities, the present model captures

the trend of variation in the rotating frame values as they were observed in the exper-

iments. However, discrepancies can be observed in the amplitude by approximately
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20 - 50% between the numerical results and experimental data. Torsional moment at

33.6% span location are calculated and shown in Fig. 5-10 for the same steady-state

condition and amplitude of actuation as before. The 3P, 4P, and 5P components of

the torsional moments in each of the cases are significantly increased by the actua-

tion loads in their respective frequencies. This is an aspect of the ATR concept that

requires special attentions since it may affect blade integrity and life.

Polar plot of the fixed-system loads in the low-speed level flight case

A simplifying assumption has been used by researchers investigating higher harmonic

control technology using conventional swashplate actuation. It is based on the exper-

imental finding that an approximate linear relationship can be extracted between the

harmonic control inputs and the resulting fixed- and rotating-system loads [11, 12].

This relationship was well observed from the relevant wind-tunnel experiments when

the fixed- and rotating-system loads obtained under the harmonic swashplate actua-

tion were plotted in polar format. A similar polar plot is attempted on the present

analysis result obtained to check if a linear relationship may be extracted. In the

present section, only three shear force components of the fixed-system loads are dis-

played in polar format. 4P hub vertical shear loads due to 3P actuation is shown

in Fig. 5-11 (a) for y = 0.140, as = -1', CT = 0.0066. It is observed that the 4P

vibratory load level at discretely-varying control phase (which is noted beside the

individual points) compose an ellipse around a reference point corresponding to no

actuation (designated by "Baseline"). Similar ellipse shape can be observed for the

other components, such as 4P hub forward shear loads displayed in Fig. 5-11 (b),

and sideward loads in Fig. 5-11 (c). These results show essentially the same trend

as it was observed in the previously mentioned HHC studies. It leads to the same

simplifying assumption that all the points on the ellipse can be obtained from the

central point by adding an incremental vector which is almost linearly dependent on

the 3P actuation input. This relationship can be described by the following relation
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where F4c and F4, are the cosine and sine component of 4P hub shear vibratory

loads, respectively, with respect to its phase. F c) and F (") are the cosine and sine

component of 3P twist actuation inputs, respectively. The shape of the actuation

point grouping becomes elliptical since, as the control phase of the harmonic twist

actuation input changes, the orientation of the harmonic feathering motion waveform

of the blade changes relative to the forward flight velocity. For some control phase

(300 in Fig. 5-11 (a)), the harmonic feathering effects add to the local velocity effects

to produce the largest incremental load vector. At the opposite control phase (2100

in Fig. 5-11 (a)), the interaction is also strong but exactly opposite, producing an

almost equally long incremental load vector in the opposite direction. However, for

some intermediate control phases and the phase exactly opposite to it (120' and

300' in Fig. 5-11 (a)), the interaction is weakest, producing the shortest incremental

vectors.

However, the local wind velocities are constant with azimuth in hover, so the

length of the incremental vector is independent of the harmonic input phase; thus

the grouping will become circular. Such a linear relationship between input harmonic

and output loads leads to the so-called T matrix approach [13]. It has been one of

the traditional approaches to identify transfer functions, adopted by those who study

conventional higher harmonic control. In this thesis, however, the polar plots are just

used to support a completely different approach which is introduced in Chapter 6.

Results of the high-speed level flight case

For the high-speed level flight condition selected, a corresponding trim control com-

mands are extracted from Table 5.1, and used to establish the required steady state

equilibrium. Then, the same IBC-mode sine-dwell blade actuation signal as used in

the previous low-speed flight case is applied. By processing the time domain results

in the same way, fixed- and rotating-system loads for the high-speed level flight condi-
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tion are obtained. Their correlation with the experimental data is shown in Figs. 5-12

- 5-14. Again, the loads predicted from the analysis show significant discrepancy in

amplitude from the experimental results, although their variation trends in terms of

control phase are in good agreement.

5.3.4 Analysis Model with Pitch Link

As discussed in the previous section, the ATR system modeled without the detailed

components such as pitch link and swashplate failed to exhibit precise load prediction

regarding the fixed- and rotating-system loads when compared with the experimental

results. Therefore, an upgrade of the input model was attempted. Detailed task

of the upgrade includes to model a pitch horn as a rigid body and attach it at the

feathering hinge. Also, two swashplate components, upper (rotating) and lower (non-

rotating) are created as rigid bodies, and attached in the middle of the rotor shaft.

These two components are connected with each other with a revolute joint so that

they can exhibit the same vertical and tilting movement along the rotor shaft. Then,

a pitch link, which is modeled as an elastic beam, is used to connect the pitch horn to

the upper swashplate. In order to spin the upper swashplate independently, a scissor

mechanism is also generated as a series of links and attached between the upper rotor

shaft and the upper swashplate. Pitch control commands are applied at the lower

swashplate as a vertical movement for collective pitch angle and two tilting angles for

longitudinal and lateral cyclic pitch angles; these movements are transmitted to the

upper swashplate. The upgraded input model including the detailed components is

depicted in Fig. 5-15, where the pitch link mechanism is displayed only for one blade

for convenience.

The geometry data for the updated model is based on the ARES test apparatus

measurement used in the forward flight experiment, and summarized in Table 5.2.

Most newly included components are modeled as rigid bodies, reflecting the fact that

the ARES system is extremely stiff compared with the practical helicopter fuselage

and components. However, the pitch link and rotor shaft are modeled as elastic beam,

where the pitch link dynamics is specified with a stiffness value that represents the
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Figure 5-15: Upgraded input model of ATR system
plate components

including pitch link and swash-

flexibility of the whole control system. According to NASA Langley, the rigid feather-

ing mode of the ATR system is observed at frequency between 15P and 16P. Based on

the pitch inertia of the ATR test blade and pitch link geometry, an axial stiffness of

the pitch link is estimated as also included in Table 5.2. By including the pitch link

mechanism in the model, the pitch/flap coupling existing in the ARES apparatus,

which amounts to 0.5 in flap up/leading edge down fashion, is automatically imple-

mented. Due to the dynamic interaction among the control linkage, the feathering

motion at the blade root in the rotating condition shows discrepancy from those in

Table 5.2: Geometry and material property of the upgraded ATR system model

Parameter Value

eflap, lag 0.0762 m
epitch 0.1143 m

xPL 0.03556 m

yPL 0.05715 m
xsp 0.027686 m

ySp 0.04445 m
EApitch link 3.822 10 3 N
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the static condition estimated to obtain the same pitch control commands. Therefore,

an adjusted movement at the swashplate is added to compensate such discrepancy

for the dynamic analysis.

5.3.5 Results from the Model with Pitch Link

The same IBC-mode sine-dwell signal generated in the previous section is applied in

the upgraded analysis model, and both fixed- and rotating-system loads are recorded

during the simulation. By processing the time domain results in the same way as in

Section 5.3.3, corresponding frequency domain components are obtained. These are

shown in Figs. 5-16 - 5-18 together with the experimental data and the analytical

results previously obtained from the one without pitch link. A correlation on the

pitch link load is possible for this upgraded model, and shown in Fig. 5-19.

Upgraded input model including the pitch link and all the linkage components in

the swashplate is attempted for better correlation. However, this increase in model

detail has shown little impact on the load prediction. Most of all, the discrepancies

in the baseline load prediction are seldom cured by the model upgrade. Therefore, it

is concluded that the sources from which the present discrepancies originate are still

not properly included in the analysis. Sources of the discrepancies between analysis

and experiment are discussed further in the following section. By observing a slight

improvement obtained from the model upgrade, it is determined that the previous

analysis model without pitch link will be used for further analysis. Although the

previous model is crude in its representation of the swashplate control system, it is

capable of exhibiting similar details on the dynamic characteristics of the ATR system

with much lower computational effort.
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Figure 5-16: Variation of 4P hub shear vibratory loads for p = 0.140, as = -1',
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Figure 5-18: Variation of torsional moment at 33.6% span location for y = 0.140,
as = -1*, CT = 0.0066, and 1,000 V twist actuation at 3P, 4P, 5P with respect to

control phase: experiment, analysis without pitch link, and analysis with pitch link
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Figure 5-19: Variation of pitch link axial loads for y = 0.140, as = -1, CT = 0.0066,
and 1,000 V twist actuation at 3P, 4P, 5P with respect to control phase: experiment,
and analysis with pitch link
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5.4 Correlation of Forward Flight Analyses with

Experiments

Both of fixed- and rotating-system loads predicted from the forward flight analysis

exhibit significant discrepancy in amplitude from the experimental results, although

their variation trend in terms of control phase is in good agreement. It should be

further noted that the baseline amplitude in most of the cases are significantly un-

derpredicted by the numerical analysis.

A study to improve the correlation of the baseline load amplitude is performed.

For the analysis model without pitch link, blade structural modeling accuracy was

studied with respect to the stiffness matrix and chordwise c.g. location, regarded

as factors which affect the dynamics of the rotor system. According to the cross-

sectional analysis results shown in Table 3.3, the ATR test blade has its chordwise

c.g. at 18%, although the blade manufacturers suggested that the blade had required

25% c.g. location. Also, the analysis indicates that the shear center is located at

30% chord instead of the 25% chord that coincides with the blade reference line. This

effect can be included in the analysis by simply using the fully-populated stiffness

matrix. Therefore, different models of the ATR dynamics were constructed and their

prediction of the baseline loads were obtained for the low-speed level flight condition,

as shown in Table 5.3. Changes in the load prediction resulted from the variation

in the structural modeling. However, these changes fail to significantly improve the

correlation with the experiments. Finally, the model with pitch link did exhibit an

improvement even with a crude structural modeling for the blade; however, it is

again a slight improvement. Therefore, an analysis model with a diagonal stiffness

representation, 30% shear center and 25% c.g. locations, has been used for all the

analytical results presented in this chapter, and is also used for further analysis in

the following chapters.

Also, the experimental 4P hub sideward baseline force (See Table 5.3) presented

unreasonably high magnitude when compared to the other two hub force components.

This suggests that further characterization of the whole experimental apparatus is
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Table 5.3: Fixed-system baseline loads predicted with different blade structural rep-
resentations and c.g. locations (p = 0.140, as = -1', CT= 0.0066)

Stiffness matrix Chordwise Baseline loads (N)
representation c.g. (%) Vertical Forward Sideward

Model without diagonal 25 31.1 29.3 15.3
pitch link diagonal 18 14.1 10.6 3.6

fully-populated 18 19.4 16.1 4.5
Model with diagonal 25 34.8 29.3 36.9
pitch link

Experiment - - 92.0 23.6 142.8

desirable. Once this is done and the information brought to the model, an improved

correlation between them is expected. In this thesis, the basic active aeroelastic

characteristics of the ATR system has been captured by the analysis, and the study

will continue based on that.

There exist other factors which may influence the accuracy of both analysis and

experiment. In the analysis, the predicting accuracy is influenced by the aerodynam-

ics model used. As described in Section 2.4.2, the one adopted in this thesis was

considered accurate enough for the present type of rotor aeroelasticity study. How-

ever, it was recently found [61] that more sophisticated wake model, e.g. free wake,

might be required to precisely estimate the aerodynamics, especially in the case of

higher harmonic control investigation. Also, it is suggested by Peters [56] that the

present aerodynamics be reinforced by an appropriate dynamic stall model, which is

not included in the present implementation.

In the experiment, noise induced in the instrumentation may be a significant

factor on the accuracy of the result. In the present experiment, instrumentation

noise was manifested in the rotating-system loads measurement. For example, flap

bending strain gauge measurements showed irregular variation in Fig. 5-14 (c). Also,

recirculation in the tunnel may contribute to changes in response, even though this is

deemed unlikely by the researchers at NASA Langley, based on previous experiments

with the ARES testbed.
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Chapter 6

System Identification of the ATR

System in Forward Flight

6.1 Overview

The forward flight analysis model established in this thesis exhibited sufficient details

of a typical helicopter and its rotor blade dynamic behavior, although it showed

inaccuracy in amplitude of the predicted loads. Therefore, it is selected to be used in

this chapter for system identification of the ATR system in forward flight.

During forward flight, the helicopter rotor blade exhibits an aerodynamic envi-

ronment which varies itself with a period corresponding to the rotor revolution. This

situation is illustrated in Fig. 1-1. This signifies that the helicopter rotor system

is basically a linear time-periodic (LTP) system during forward flight. Therefore,

a methodology considering this periodicity is required for its characterization. In

this thesis, a method is adopted which results in multi-component harmonic trans-

fer functions [62]. The theoretical background of the adopted methodology is briefly

summarized in Appendix E with its implementation schemes that include additional

assumptions imposed on the transfer functions. The sine-sweep input signals cre-

ated for computation of such harmonic transfer functions are described in detail in

this chapter. The results of the system identification is presented for each different

mode of blade actuation. Finally, certain characteristics of the present ATR system
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are drawn from the system identification results, which may simplify the closed-loop

controller design.

6.2 Input Signals for System Identification

A comprehensive and accurate system characterization effort requires input signals

to possess appropriate frequency content, and also phase quantities in case of LTP

system. As described in Appendix E.2, sinusoids are used to determine transfer func-

tions, and more specifically, sine-sweep waves (chirp signals) are used to obtain the

system response over a specific range of frequencies. The chirps may have frequencies

that vary either linearly, quadratically, or logarithmically with time. The frequency

content and time interval of the chirp is dependent on the system characteristics. It is

also important to take the chirp phase into consideration in the case of LTP system.

For a helicopter rotor system with b blades and rotor rotational period T, the

system period T will be T,/b. Then, the output frequencies due to an input signal

at frequency w will be shifted by positive and negative multiples of the blade passage

frequency wp, where

Wp = 27rb/T, (6.1)

Since a linearly varying sine-sweep signal is considered in the present identification,

the frequencies of the input signal are a linear function of time, as

fi - fo
f = fo + t (6.2)

where fo is the initial signal frequency (Hz), fi is the final frequency (Hz), and T is

period of the sine-sweep (summation of single actuation period td and no actuation

time between two successive actuations t,). 1P and 1OP frequencies are selected for

the numerical values of fo and fi, respectively, since such a range is found to have

important frequency content for the present ATR system. Integration of the frequency
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equation, Eq. (6.2), will give the phase angle of the chirp #, as

#c ( = fot + f i-f t2) 27r (6.3)

where the phase is in radians. The sine-sweep signal is generated using the unwrapped

azimuthal location quantities. The relation between rotor rotational speed Q (rpm)

and the azimuthal location 0 is
360 t (6.4)
60

where time t is in seconds. A pseudo-time t is introduced based on the previously

established relations, and uniformly distributed phase of N chirps over 3600 can be

produced by considering the number of the chirps that have already been generated,

nc, and shifting the time vector accordingly, so that

t= - -360 + mod 360 , 360 60 (6.5)

where "mod" is the modulo function that returns the remainder obtained from the

division of two arguments. The constructed chirp signal vector Uc with amplitude

Ac for the rotor system can be represented as

Uc = Ac sin [2-7rc (i) V (6.6)

where V is a vector of length b, and collective, cyclic, and differential mode of actu-

ation among the blades can be achieved by adjusting the elements of V. In case

of four-bladed rotor system, V for collective mode will be [ 1 1 1 1 ]T, while

[ 1 -1 1 -1 ]T for differential mode. A block diagram which generates the sine-

sweep input signals described so far is illustrated in Fig. 6-1, and it is a part of the

actual Simulink program used to implement chirp actuation during the forward flight

testing.

Using the algorithm established, a collective mode chirp input signal is constructed

with the amplitude of 1,000 V and nine phase angle divisions over 360' for the present
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Generates Blade Contrd Veor for the Four Blades

Figure 6-1: Simulink model of the sine-sweep input signal generator
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Figure 6-2: Collective mode sine-sweep signals generated with 9 divisions of phase
angles

four-bladed ATR system identification. According to the definition of collective mode,

all four blades have the same synchronous input signals for actuation, therefore one

signal corresponding to Blade No. 1 may become a representative of all the input

signals. In Fig. 6-2, representative signal generated for each different phase angle

is overlapped with one another along the azimuthal location. It can be clearly seen

that the initiation phase angle for each signal is uniformly separated, therefore all the

signals conduct one complete sweep of 3600 azimuthal location.

6.3 Results of the ATR System Identification

6.3.1 Collective Mode of Actuation

Using the constructed sine-sweep input signal, fixed- and rotating-system response

of the ATR system at the low-speed level flight condition which was considered in

Chapter 5 are calculated by the time domain analysis. At first, a series of collective

mode actuation signal, as shown in Fig. 6-2, is applied, and its response is examined
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Figure 6-3: Time history of hub vertical shear loads from which the baseline loads
are subtracted when the collective mode twist actuation is applied as described in
Fig. 6-2

for the system identification. Before applying the system identification algorithm

suggested in Appendix E.3, the amplitude of baseline loads must be subtracted from

those under actuation. The amount of loads added to the baseline quantity becomes

the object of transfer relationship. Time history of the ATR hub vertical shear loads

from which the baseline loads are subtracted are shown in Fig. 6-3 from the simula-

tion result using the collective mode sine-sweep actuation signal. Note that the hub

vertical shear loads now oscillates around zero N, not near 1,000 N as in the case

including the baseline loads.

The system identification scheme proposed in Appendix E.3 is now applied with

the weighting factor a amounting to 1014, and it is attempted here to estimate five

harmonic transfer functions, i.e., G- 2, G_ 1, Go, G+ 1, G+ 2, at a time. Resulting

transfer functions estimated are shown in Fig. 6-4, and Go is found to have amplitude

which is significantly larger compared with the others.

This leads to the possibility that the response of the ATR system could be de-
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Figure 6-5: Component remaining from the original response after subtracting the
one represented by Go

scribed only by its Go component, just like in a linear time-invariant system. Such

simplification can be verified by showing how large the remaining components will be

from the total response by subtracting those represented by Go. In Fig. 6-5, the rem-

nant component from the original response after subtracting the one described by Go

is plotted in time domain. As it is compared with the original response in Fig. 6-3, it

is reduced by more than 1/3 in its amplitude. This implies that the energy contained

in the remnant component becomes less than 1/9 of that in the original response since

the energy is proportional to the square of the amplitude. It is therefore concluded

that approximately 90% of the ATR system response can be described by Go alone

when it is under the actuation of collective mode. This leads to the idea of regarding

the present ATR system as a LTI system, and it will be verified once again by the

polar plot later in this section.

More insight about the blade dynamics can be extracted from a Bode diagram

of the hub vertical shear load, Go, which was already described by its fan plot in

Fig. 3-2. It is recognized that the peaks approximately match the frequencies of rigid

and elastic flap bending modes and elastic torsion mode of the blades, as illustrated
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Figure 6-6: Harmonic transfer function Go of the hub vertical shear loads during the
collective mode actuation

in Fig. 6-6. Furthermore, the property of Go being able to approximate the LTP

system can be verified by comparing with the polar plot of the hub vertical shear

loads obtained in Section 5.3.3. An amplitude of 47 N and phase delay of 3170 can

be read from the Bode diagram of Go in Fig. 6-6 at 4P excitation frequency. This

information exactly matches those included in the polar plot of the hub vertical shear

loads under the sine-dwell actuation at frequency 4P, which is illustrated in Fig. 6-7.

In fact, IBC-mode 4P sine-dwell actuation considered in Chapter 5 generates exactly

the same actuation signal as the collective mode considered here. The maximum

amplitudes during IBC-mode 4P sine-dwell actuation occur at 90*, 1800, 2700 azimuth

after blade No. 1, respectively, which eventually places them at Blade No. 2, No.

3, No. 4, respectively. This results in equivalent signal used in the collective mode

of actuation. Therefore, both of open-loop control simulation using IBC-mode sine-

dwell actuation in Chapter 5 and system identification using sine-sweep actuation

here describe the system behavior in a consistent manner.
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Figure 6-7: Polar plot of 4P hub vertical shear loads variation during 4P sine-dwell
actuation

Another important characteristic of the present ATR system under collective mode

of actuation can be extracted from the polar plot in Fig. 6-7. As indicated in this

figure, the load variation under actuation can be approximated by a circle centered

around the baseline load point. Therefore, this confirms again that the present ATR

system behaves very similar to a LTI system under collective mode actuation. Based

on this simplification to a LTI framework, a closed-loop controller will be designed.

6.3.2 Cyclic Mode of Actuation

Based on the same formulas introduced in Section 6.2, sine-sweep input signals for

longitudinal and lateral cyclic mode of blade actuation may also be generated. By

using these input signals and executing the same identification processes as described

in Section 6.3.1, harmonic transfer functions corresponding to these two modes of

actuation are estimated as well. Again, all the other components except Go in the

result turn out to have much lower magnitudes. Therefore, the LTI simplification is
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Figure 6-8: Matrix of Go estimated for three components of 4P hub shear vibratory

loads versus three modes of blade actuation

still valid for these modes of actuation. All the identification results including the

collective mode previously obtained may be represented as a transfer matrix relating

three components of the hub shear loads versus three modes of blade actuation signal

as shown in Fig. 6-8. Note that the vertical component versus the collective mode

actuation (the uppermost and leftmost one) is only drawn in different scale from the

others for an easy examination of the plots.

This transfer matrix leads to the idea of a multiple-component closed-loop con-

troller which combines the three modes of blade actuation simultaneously. It may be

designed for elimination of either single component of hub shear force or multiple-

components of them at a time. For example, suppose the case of eliminating only

the vertical components of 4P hub shear vibratory loads. From the analytical results

presented in Fig. 5-8, the baseline amplitude for this component of the hub vibratory

load was predicted as approximately 31 N. However, from Fig. 6-8, the amplitudes
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of the hub vertical vibratory loads altered by the application of each actuation mode

are found to be 47 N, 34 N, and 35 N at 4P frequency, respectively. Therefore, it

can be concluded that the application of the collective mode only of blade actuation

is theoretically enough for a complete elimination of the 4P hub vertical vibratory

loads at this flight condition. This possibility of complete elimination by the collec-

tive mode actuation is also implied by the polar plot in Fig. 6-7. In the figure, the

plot encloses the origin, meaning that 4P hub vertical vibratory load may become

zero by adjusting the amplitude (less than the maximum amplitude considered in

Fig. 6-7) and phase of 4P IBC mode actuation (which is the same as 4P collective

mode) appropriately. This conclusion may contradict the observation in the open-

loop control sine-dwell test that the collective mode of actuation was less effective in

vibration reduction. This contradiction may lie in the same context as the discrep-

ancy generally found in the load amplitude results, because different degrees of the

vertical load variation were obtained by 4P IBC-mode sine-dwell actuation between

analysis and experiment (See Fig. 5-8 (a)). Moreover, an appropriate combination of

the three actuation modes becomes equivalent to IBC mode, which was shown to be

most effective in the open-loop control test. This combination is expected to bring

an additional elimination of the other components besides the vertical loads. More

discussion on the multiple-component closed-loop controller is given in Chapter 7.
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Chapter 7

Closed-loop Controller for

Vibration Reduction in Forward

Flight

7.1 Overview

The results from system identification in Chapter 6 are utilized here to design a

closed-loop controller for hub shear vibratory load reduction. As briefly mentioned

in Section 5.3.3., the so-called T matrix approach has been traditionally used by

researchers investigating higher harmonic control to identify transfer matrix [8, 13].

This approach resulted in a rather complicated structure of a closed-loop controller in

order to implement the modulation and demodulation phases of the scheme. However,

it was recently found that such a complex controller structure can be reduced to a

classical disturbance rejection algorithm [9, 10]. This results in a simple LTI feedback

compensator. In this thesis, a closed-loop controller based on this simple structure is

attempted. Stability of the closed-loop system is checked first. Then, the vibratory

load reduction capability of the designed controller is demonstrated numerically by

combining with the time domain analysis built for the ATR system.
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7.2 LTI Feedback Compensator for Disturbance

Rejection

As introduced in Eq. (5.3), under the assumption of quasisteady condition and linear-

ity, the amplitudes of the sine and cosine components of the vibrations at the b/rev

frequency can be represented by

z = Tu + z. (7.1)

where z is a vector of vibration amplitudes, T is the constant control response matrix,

u is the vector of b/rev actuation amplitudes, and zo is the vector of the vibration

amplitudes with no actuation (baseline). Here, z. is the disturbance to be rejected.

The algorithm traditionally adopted by previous researchers [8, 14, 16, 11, 12, 13]

is based on the idea of canceling the disturbance zo by use of the higher harmonic

swashplate input u. Since the disturbance z. is unknown, the approach is to measure

the vibration at each time step and adjust the swashplate input u to just cancel that

disturbance. The resulting control becomes

un1 = un- T-1 z, (7.2)

where the subscripts denote the index of the time step. The measurement of the

vibration Zn is accomplished by a Fourier decomposition of the vibration at the b/rev

frequency. A block diagram of the resulting controller is shown in Fig. 7-1. This

control algorithm exhibits a quite complicated structure because of the modulation

and demodulation tasks which are located in front of and behind the inverted -T

matrix. The necessity of these modulation and demodulation tasks is originated

partly from the fact that the constant control response matrix T is evaluated by the

sine-dwell open-loop actuation at b/rev frequency.

However, it was recently shown that such a complex higher harmonic control

algorithm for vibration rejection can be reduced analytically to a single input/single
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d(t)

z(t)

sin bQt z sin b~t

Figure 7-1: Block diagram of the higher harmonic control system adopted by re-
searchers using quasisteady helicopter plant model [9]

output LTI system for a given plant transfer function G(s) [9, 10]. According to

this derivation, the block diagram shown in Fig. 7-1 is equivalent to an LTI feedback

compensation structure, as illustrated in Fig. 7-2. The feedback compensator, K(s),

becomes

K (s) -2k(As + BbQ) (73)
s2+ (bQ) 2

__1

k =I
T

A = Real B = -Imag
G(jbQ) 'G(jbQ)

where T is the blade passage period. Furthermore, this LTI feedback compensator

structure turns out to be essentially the same as a classical disturbance rejection

algorithm, which is to eliminate an almost pure harmonic signal at constant frequency

w0 with the following compensator

H(s) - C1 + C2  (7.4)
Sse p md

Stability and performance issues of the closed-loop system associated with this feed-
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Figure 7-2: Block diagram of the LTI feedback compensator equivalent to HHC al-
gorithm for vibration rejection [9]

back compensator were analytically investigated by the same authors and included in

[9, 10]. In this thesis, a closed-loop controller for reducing hub shear vibratory loads

during the ATR forward flight will be designed based on this feedback compensator

using the LTI plant transfer function identified in Section 6.3.

7.3 Stability of the Closed-loop System

7.3.1 Original Feedback Controller

Before implementing the controller, the stability of the closed-loop system should

be evaluated in order to ensure whether it is an appropriate controller. For this

purpose, a loop gain, which is the product of the identified plant transfer function

Go(s) (shown in Fig. 6-8) and the designed compensator K(s), is investigated in

frequency domain. Among the transfer matrix components presented in Fig. 6-8,

the one for the hub vertical shear related only with the collective mode actuation is

considered first. This implies a single-input single-output controller which reduces the

hub vertical vibratory loads by use of the collective mode of blade actuation only. Its

capability of complete vibration elimination within the hub vertical loads is already

predicted from the transfer function estimate in Section 6.3.2.

Bode plot of the loop gain for the present closed-loop system is calculated and

shown in Fig. 7-3. There exists a possible instability at the frequencies where the

gain of the loop transfer function exceeds unity. Since the designed compensator has
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Figure 7-3: Bode plot of the loop transfer function

an infinite weighting at 4P frequency, the gain of the loop transfer function goes to

infinity at the same 4P frequency, which makes it exceed unity over a narrow region

centered at this frequency. Then, the variation of the phase within this region will

determine the stability of the closed-loop system.

Another useful method of checking the stability of the controller is to examine

the magnitude versus phase plot (Nichols plot) of the loop transfer function. Nichols

plot of the present closed-loop system without any modification applied to K(s) is

displayed in Fig. 7-4 (a). The stability of the system is ensured if no encirclements of

the critical point (unity magnitude at 1800 of phase). This critical point is designated

by a small circle in Fig. 7-4. In the same plot, contours of constant disturbance

attenuation (or amplification) are also plotted according to the following relation

d 1 + K(s)Go(s)(75

The closed contours around the critical point with positive figures represent degrees of
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Figure 7-4: Nichols plot of the loop transfer function
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vibration amplification. The inverted U-shaped contour with thicker line represents

0 dB boundary, where no vibration attenuation or amplification is obtained. The

other contours indicate how much attenuation results (in dB) for the corresponding

loop gain. Also, along the loop gain line, corresponding frequencies are designated by

asterisks to see which frequency content is involved with a possible instability near

the critical point. According to Fig. 7-4 (a), the present controller with the original

K(s) turns out to have gain margin of approximately 5.4 dB, and phase margin of

360. In principle, this level of stability margin is regarded as enough for a general

feedback compensator.

7.3.2 Modified Feedback Controller

When the gain of the controller is increased, i.e, the closed-loop gain line is shifted up-

ward, there appears a chance of instability since it makes the gain margin diminished.

Instability induced from this lack of gain margin is practically manifested during the

numerical simulation, which will be described in the following section. Therefore, a

modification on the original controller is needed to avoid this type of instability. The

solution for this is to alter the closed-loop gain to have new phase characteristics,

which is shifted by 450 from its original one. This modification is implemented by

changing the transfer function for K(s) in the following way

K (s) = 2k(A's + B'bQ) (7.6)
82 + (bQ)2

where

A' = Real {(A - jB)ej(-450)}

B' = -Imag{(A-jB)ej(-450)

where A and B are the same parameters as defined in Eq. (7.3). The resulting

controller with the modification generates a new Nichols plot which is shown in Fig. 7-

4 (b). Examining the result, the phase of the modified closed-loop gain is shifted

as desired. Notice, however, that the magnitude of the closed-loop gain is slightly
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changed in Fig. 7-4 (b). The amount of such change in magnitude is observed as so

small that no significant impact on the overall system characteristics is expected.

From the preliminary simulation of the resulting closed-loop controller, it is also

observed that the steady component of the hub vertical loads is decreased by the

controller engagement, as well as 4P vibratory component. This is due to the fact

that the suggested controller K(s) has a significant amount of gain at zero frequency.

To improve the controller regarding this problem, a pole is added to its current

transfer function, Eq. (7.6), at 0.4P frequency location. This will make the controller

have negligible gain at zero frequency so that it may not affect the steady component.

Therefore, the final form for the controller transfer function K(s) becomes

K(s) s 2k(A's + B'bQ) (7.7)
(s + bQ/10) s2+ (bQ) 2

So far, the sole component of the transfer function from the previous system

identification, Go(s), has been used to represent the plant for the stability check and

preliminary performance estimation. This simplification is due to the finding that

more than 90% of the system response can be represented by Go(s) only under the

three modes of blade actuation. In the following section, however, the time domain

analysis will be used for the demonstration of the resulting controller. This signifies

that the original plant with all its harmonic transfer function components will be

present, and the performance of the closed-loop controller based on the simplified

design can be numerically tested.

7.4 Numerical Demonstration of the Closed-loop

Controller

In the preceding section, the task of the closed-loop controller design and its stabil-

ity check was conducted by considering only the LTI component Go(s) among the

estimated harmonic transfer functions. However, it is expected that the resultant

controller will still behave well when combined with the original plant which has
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all the components of the harmonic transfer functions. In this section, a numerical

demonstration of this situation is attempted using the time domain analysis.

The resulting LTI feedback compensator, whose transfer function in continuous-

time is described by Eq. (7.7), can be easily incorporated in the time domain analysis

by transforming it into a discrete-time state-space approximation. Using the c2d

command based on a Tustin approximation, which is provided in MATLAB, an ap-

proximately equivalent discrete time state-space representation of the same feedback

compensator can be obtained with the specific time step size selected for the analysis.

The equivalent LTI feedback compensator which is transformed into the discrete-time

state-space version can be expressed as

xk+1 = Ax + Buk (7.8)

yk = CXk - Duk

where Xk is the state variables internal to the controller estimated at time step k. Uk

is a sensor measurement from the plant, i.e., hub vertical shear load measurement in

this case, and yk is a controlled quantity of electric field applied at the blade integral

actuators at time k in collective mode. Since the resultant controller is described as

a third-order system in Eq. (7.7), its state-space representation involves three state

variables, meaning that Xk becomes a 3x 1 vector.

After incorporating the matrix representation described in Eq. (7.8) into the time

domain analysis, a simulation is executed in order to evaluate the performance of the

closed-loop controller. It is still required to establish the steady-state equilibrium for

a specific flight condition before engaging the vibration minimizing controller. Other-

wise, huge hub vibratory loads which are induced during the transient period before

the steady state equilibrium is reached may generate unrealistically large control sig-

nal. Therefore, the initial 3-second period of no actuation is applied again to obtain

the trim condition. Then, the controller is engaged with a different magnitude of its

gain constant discretely adjusted at 0.5, 1.0, and 2.0 within each 2-second period.

The result of the time domain analysis is displayed as a time history of the hub
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Figure 7-5: Time history of the hub vertical shear loads for A = 0.140, as = ,
and CT = 0.0066 without and with the closed-loop controller engaged

vertical shear loads in Fig. 7-5. As one can see, the vibratory load components with-

out control action is significantly reduced by the engagement of the controller. By

adjusting the constant gain in the controller, different response behaviors are ob-

tained. At first, by increasing the gain, the settling time for the response is improved.

This is clearly seen when comparing the settling time between the case of gain 0.5

and that of 1.0. However, when it comes up to gain 2.0, an instability occurs, which is

induced from insufficient gain margin of the system. Although the current controller

should be protected from this instability, a considerable amount of vibration near at

2.5P frequency is present in the response of gain 2.0. The other components of the

hub shear loads are influenced little by the current controller engagement.

Qualitatively looking at Fig. 7-5, all the gains produce a similar degree of vibra-

tion reduction control. This suggests to examine the result in a quantitative way. For

this purpose, one needs to investigate a power spectral density distribution of the hub

vertical loads with respect to response frequency. Using the psd command provided

in MATLAB, power spectral density distributions of the hub vertical shear load am-

plitudes without and with the controller engaged are computed in Fig. 7-6. It is seen
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Figure 7-6: Power spectral desnity distribution of the hub vertical shear loads for
p = 0.140, as = -1', and CT = 0.0066 without and with the closed-loop controller

engaged

that the vibratory component at 4P frequency is decreased by different degree for

each gain constant applied. According to this result, more than 90% of the 4P vibra-

tory load existing in the original response is eliminated by the controller engagement.

However, outside the narrow band of 4P frequency, it is observed that undesirable

increase of vibratory load components are caused by the controller. Also, another

significant vibration amplitudes are found at integral multiples of 4P frequency (e.g.,

amplitude at 8P frequency in Fig. 7-6). These vibration components are rarely af-

fected by the current controller design, and explain the remnant vibration after the

4P component is eliminated. Therefore, it is recommended to improve the present

controller into one that can eliminate disturbance in multiple harmonic components

[25] in order to reduce other vibration components simultaneously.
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Chapter 8

Conclusions and Recommendations

8.1 Summary

This thesis presents the numerical and experimental investigations of integral twist

actuation of helicopter rotor blades as a mean to reduce vibration induced in for-

ward flight. Active rotor blade with embedded anisotropic piezoelectric actuators

is designed using the analytical framework established in this thesis. An analytical

framework is proposed to investigate integrally-twisted helicopter blades and their

aeroelastic behavior during different flight conditions. This framework is composed

of frequency domain analysis for hover, and time domain analysis for forward flight.

Both analyses are based on the same three-dimensional electroelastic beam formu-

lation with geometrical-exactness, and are coupled with the appropriate finite-state

dynamic inflow aerodynamics model. A prototype blade is manufactured and bench

tests are conducted to confirm its structural characteristics and adequacy of the im-

plementation process. Hover test of a four-bladed fully-articulated rotor is performed

using the prototype blade with the other dummy blades. A good correlation is ob-

tained regarding the control sensitivity of the active blade at hover condition. Based

on the prototype blade design, four ATR test blades are manufactured in order to

compose a fully-active-blade rotor system. This rotor system is tested in the NASA

Langley Transonic Dynamics Tunnel in a first-ever forward flight condition for an

integrally-twisted rotor.
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The aeroelastic analysis developed for hover condition proved to be appropriate

for predicting dynamic behavior of the active blade both at static and hover condition.

However, the time domain analysis for forward flight condition showed a significant

discrepancy in amplitude of loads predicted in both fixed- and rotating-frame when

compared with the wind-tunnel testing data. Factors that influence the discrepancy

may be grouped into two classes. From the standpoint of aerodynamics, in order

to predict accurately unsteady loads acting on helicopter rotor blades during for-

ward flight, more sophisticated aerodynamics model may be required in the analysis,

for example, a model considering dynamic stall, free wake, etc. Such sophistication

in aerodynamics becomes even more important when dealing with higher harmonic

control of blade twist. From the structural point of view, further dynamic charac-

terization of the ARES testbed is required, and its representation should then be

brought into the proposed framework. Although the test apparatus was configured to

avoid mis-balance in the rotating system, any structural factor that was beyond the

standard balancing effort was not pursued. This may have induced different vibration

level, and this factor needs to be identified and included in the analysis.

However, the trend of the fixed-system load variation with respect to control phase

showed a good agreement between the analysis and experiment, and the analytical

results included sufficient details of typical helicopter and rotor blade dynamic be-

havior exhibited in forward flight. This supports to proceed to the tasks of system

identification and closed-loop controller design based on the established forward flight

analysis model.

System identification based on the linear time-periodic system theory was con-

ducted to estimate the harmonic transfer functions between integral actuator electric

field and hub shear vibratory loads. It turned out that only the linear time-invariant

component was dominant under the three modes of blade actuation: collective, lon-

gitudinal cyclic, and lateral cyclic. This simplification into a LTI system has been

observed by previous researchers investigating higher harmonic control of helicopter

blades.

A closed-loop controller was designed based on the system identification results
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and on the classical disturbance rejection algorithm. A preliminary stability check was

conducted, and the resultant LTI feedback compensator was demonstrated numeri-

cally by incorporating it in the time domain analysis model. Even with the original

plant with all the LTP components, the designed controller showed a satisfactory

vibration reducing capability.

This thesis has addressed several issues related with helicopter vibration reduction

technology with integrally-twisted rotor blades, which are:

1. Development of an analysis framework for the rotor system with actively-twisted

blades in hover and forward flight

2. Investigation of dynamic characteristics of ATR blade due to its integral actu-

ation at bench and in hover

3. Investigation of impact upon the ATR fixed- and rotating-system loads due to

blade twist actuation in forward flight

4. Estimation of harmonic transfer functions of the ATR system in forward flight

based on the linear time-periodic system theory

5. Design and numerical demonstration of closed-loop controller which minimizes

helicopter vibration by integral blade twist actuation

8.2 Conclusions

A number of conclusions can be drawn from the current helicopter vibration reduction

study, and they are summarized as follows.

e Experimental structural characteristics of the prototype blade compare well

with design goals, and predictions by the established framework correlate well

with bench test results.

e The design strategy of the present ATR blade prove to be appropriate by con-

firming the actuation capability and structural integrity exhibited by the pro-

totype blade and the modified test blades.
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" The aeroelastic analysis developed for hover proves to be appropriate in pre-

dicting dynamic behavior of the active blade in both static and hover condition.

" The aeroelastic analysis model developed for forward flight condition in this

thesis shows an appropriate degree of agreement with the experimental data.

However, further refinements are recommended due to its significant discrepancy

in amplitude of load estimated both in fixed- and rotating-system.

" It is found by both analysis and experiment that integral twist actuation of

the rotor blades has a potential of the ATR system hub shear vibratory load

reduction up to 90% by an open-loop individual blade control.

" The active aeroelastic framework showed to be appropriate for design, analysis,

and simulation of future active twist rotor systems for vibration reduction.

" Only LTI component is found to be dominant among the harmonic transfer

function components estimated for the ATR system under the three modes

of blade actuation in forward flight. This enables the control problem to be

simplified into a LTI system.

* A closed-loop controller which reduces hub shear vibratory loads at given system

frequency is designed as a simple LTI feedback compensator, and more than

90% of the original hub vertical vibratory load is eliminated by the controller

engagement in the numerical demonstration.

8.3 Recommendations

From the effort to solve the remaining problems encountered in this study, some

recommendations follow, which will be beneficial to improve future integral blade

twist actuation development.

9 Refinement of the present active aeroelastic analysis for forward flight is recom-

mended since a significant discrepancy was found between the model prediction
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and the experimental data acquired in the amplitude of the fixed- and rotating-

system loads. Since the discrepancy is considered to result from the less sophis-

ticated aerodynamics model adopted, analysis with more sophisticated model

is recommended.

" The discrepancy in the in the amplitude of the fixed- and rotating-system loads

also results from incomplete representation of the structural components ex-

isting in the testing apparatus. Thus, further dynamic characterization of the

ARES testbed is recommended.

" System identification and closed-loop controller design was conducted based on

the established analytical model due to the limited availability of the experi-

mental data. However, in order to apply a closed-loop controller in the practical

system, experimental data is recommended for final tuning of the controller.

" Further improvement of the vibration reduction capability through optimization

study of the active blade design parameters is suggested. This includes tailoring

of active and passive plies included in blade lay-up, sizing of the active region,

etc. Basic dynamic characteristics of the blade such as the natural frequencies

may be another influencing factor for control authority in specific frequencies.

" It is desirable to use the concept of integral blade twist actuation as a means

of acoustic noise reduction for the rotor system. In order to analyze the active

rotor system for such purpose, more refined aerodynamics model is required to

accurately predict the pressure distribution around the blades in a specific flight

condition. For a wind-tunnel experiment, quiet environments are required so

that the reliable acoustic data may be collected. A noise-reducing closed-loop

controller can be designed and tested by conducting the procedures suggested

in this thesis.
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Appendix A

State-space Formulation for Hover

Analysis

Explicit expressions of the state space representation for hover analysis, Eq. (2.32),

are provided. Since detailed expressions of the sub-matrices included in the matrices

E and A in Eq. (2.33) are found in the appendices of [63], non-zero sub-matrices in

the matrix B are only described in this section.
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Appendix B

Time Integration Formulation for

Forward Flight Analysis

The energy decaying time integration of the beam formulation mentioned in Sec-

tion 2.5.2 is summarized as follows. The displacement-based form of beam formula-

tion, Eq. (2.22), can be expressed conveniently as

(RpB) + U[UI]RpB - (RfB)' - U[uj + ']RfB = q (B.1)

where

CBbcba 0
R=

0 CBbcba

0 0

[.] 0

Note that q in Eq. (B.1) now represents all the terms including the actuation forces

at the right hand side of Eq. (2.21). A time discretization scheme can be applied first

over the time step, from t; to tn+1:

+Pn1- Rp U - Gm] Pin + P1+1 (B.2)
At At 2
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r2- -fmfBm qm(QrnfB m)' - U I-o(W + u')Imf.a

where a, contains the components of the conformal rotation vector of the rotation

from B- to B-, measured in a. The subscript m denotes the time step mid-point,

and fm refers to elastic forces at this mid-point. Also,

Qm = Hm 0 (B.3)
0 Gm

CHbC"ba +C bCbaHm = +n
2

2CBbcba
Gm =

4 - ao

Similar discretization is then applied across the discontinuous jump, from t- to t+:

R (B.4)At [At :j 2

(QjfBj -~ 1lQ Bj =bQj

where b, are the components of the conformal rotation vector of the rotation from

B- to B+, measured in a. The subscript j denotes the time step mid-point, and fj

refers to elastic forces at this mid-point. Both of Eqs. (B.2) and (B.4) constitute a

time marching integration process for the present forward flight analysis.
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Appendix C

AFC Distribution in the ATR

Prototype Blade

The following table presents the electromechanical coupling coefficients (du, and d12 )

of the individual AFC packs embedded in the ATR prototype blade along its spanwise

location. It is noted that the distribution of the packs is designed so that those with

the best performance can be located at the inboard of the blade and the performance

difference between top and bottom surfaces at the same spanwise location is to be

minimized.
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Table C.1: Active properties of the AFC packs distributed in the ATR prototype
blade (pm/V)

BS 43.31 BS 58.80 BS 74.30
~_58.80 cm 74.30 cm 89.79 cm

Outer layer AFC d1u 413 322 309
at top surface d1 2  -172 -134 -129

Inner layer AFC di, 327 310 286
at top surface d1 2  -139 -129 -119

Outer layer AFC d1u 373 322 304
at bottom surface d1 2  -156 -134 -127
Inner layer AFC d1u 355 315 296

at bottom surface d1 2  -149 -132 -124

BS 89.79 BS 105.3 BS 120.8
~ 105.3 cm 120.8 cm ~ 135.8 cm

Outer layer AFC d1u 276 256 231
at top surface d12  -115 -107 -97

Inner layer AFC di, 259 238 210
at top surface d12  -108 -100 -88

Outer layer AFC d1u 273 256 222
at bottom surface d1 2  -114 -107 -93
Inner layer AFC d1u 263 239 221

at bottom surface d12 -109 -100 -93
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Appendix D

Material Properties of the ATR

Test Blade Constituents

The following two tables present the material properties of the constituent materials

used in the ATR test blades manufacturing.

Table D.1: Material properties of the constituents in the ATR test blades

E-Glass EA9628 Rohacell foam Rohacell foam
fabric adhesive spar fairing

Thickness (tm) 114.3 101.6 - -
Density (kg/m 3 ) 1,716 1,163 75 35

EL (GPa) 19.3 2.38 0.0896 0.035
GLT (GPa) 4.14 0.69 0.0296 0.0138

Fiber glass Flexible Front ballast Strain gauge
uni-tape circuit weight (tungsten) wires

Dimension thickness width diameter diameter
203.2 pm 6.604 mm 4.7625 mm 40x0.381 mm

Density (kg/m 3 ) 1,799 3,044 19,100 8,900
EL (GPa) 48.2 - - -

GLT (GPa) 5.7 - - -
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Table D.2: Properties of the AFC packs used in the ATR test blades

Thickness 218 pm
Density 3,967 kg/m 3

di- 309 pm/V
d12 -129 pm/V
EL 20.5 GPa
ET 11.6 GPa
vLT 0.454
GLT 4.0 GPa
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Appendix E

LTP System and its Identification

What follows is a summary of the identification technique for LTP systems presented

in [62].

E. 1 Characteristics of LTP system

Linear time periodic system can be represented in a state-space form as

i(t) = A(t)x(t) + B(t)u(t)

y(t) C(t)x(t) + D(t)u(t) (E.1)

where the matrices A(t), B(t), C(t), and D(t) are in general periodic, with period

T. When a sinusoidal signal excites an LTP system, the system responds with the

superposition of sinusoids not only of the input frequency W, but also of several other

frequencies, w + nw,, each with its own amplitude and phase, where n is an integer,

and w, is the system major frequency, given as

o, = 27r/T (E.2)

The frequencies w +nw, are shifted harmonics, and they are often referred to simply

as "harmonics."
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According to Floquet theory, which has been widely used in LTP system investi-

gation, the state vector x, at time t, is related to the one at period T away by the

discrete transition matrix P of the system.

x(t + T) = Qx(t) (E.3)

In general, it also satisfies that

x(t + nT) = ("x(t) (E.4)

If x(O) happens to be an eigenvector of 4, with corresponding eigenvalue z, the

solution will satisfy

x(t + nT) = z'x(t) (E.5)

for all t. This implies that x(t) has the form

x(t) = e's(t) (E.6)

where s = (log z)/T, and x(t) is periodic. That is, x(t) is an exponentially modulated

periodic (EMP) function. This suggests that EMP functions are the appropriate

signals to describe the LTP systems. This leads to a concept of using EMP signals

to determine the transfer functions of LTP systems. Expressing the EMP signals as

complex Fourier series of a periodic signal of frequency wp, modulated by a complex

exponential component, the appropriate input signal becomes

u(t) = E u e' (E.7)
nEZ

where Sn= s + njWp (s E C), and un are Fourier coefficients of u(t).

Similarly expressing the matrices in the state space representation, Eq. (E. 1), in
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terms of their Fourier series, and using the harmonic balance approach, one obtains

SnXn = 1 An-mrm + An-mUm
mEZ mEZ

yn = E Cn-mxm + Z Dn-mUm
mEZ mEZ

(E.8)

The summations in the previous expression, Eq. (E.8), can be transformed into matrix

form as

sX = (A -Nf)X +BU

Y = CX+DU (E.9)

The updated state vector X in Eq. (E.9) represents the original ones at various

harmonics of the system major frequency as

X-2

x- 1

xo

x 1

X2

(E.10)

The updated system dynamics matrix A

matrix given by

... Ao

... A1

... A 2

in Eq. (E.9) is a doubly-infinite Toeplitz

A-1

Ao

A1,

A_2

A_1,

Ao

(E.11)

where the submatrix An represents the n-th Fourier coefficient of A(t). B, C, and

D can be defined in the similar manner. The frequency modulation matrix K is an
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infinite block diagonal matrix given by

-2 -jwoI 0

-1 - jWI

Nr = 0 -joI (E. 12)

0 1 -jWI

2 - jwI

where I is the identity matrix of the same dimensions as A,.

The harmonic transfer function (HTF) is regarded as an operator which relates

the harmonics of the input to those of the output for LTP system, and can be derived

as follows.

O(s) = C[sI - (A - N)]-B+ D (E.13)

Although the matrices in Eq. (E.9) are infinite-dimensional, the number of the terms

in the Fourier series is truncated for practical purpose, and the smallest number of

them are retained which adequately represents the system dynamics.

E.2 Identification Methodology of the LTP Sys-

tem

As mentioned previously, an input sinusoid at single frequency generates a superpo-

sition of sinusoids at several frequencies of various amplitudes and phases in a LTP

system. It is exemplified that only three frequencies in the output are to be ac-

counted for in the following derivation. That means, the output Y comprises of the

linear combination of the responses due to inputs at frequencies, W, W + wp, W - Wp.

This is equivalent to regarding the system output as a linear combination of three

different transfer functions (each corresponding to one of the three frequencies): Go,
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Figure E-1: LTP system block diagram with three transfer functions [62]

G1, and G_ 1, respectively. Thus,

Y(jw) = Go(jw)U(jw) + G 1 (jw)U(jw - jWp) + GI(jw)U(jw + jwp) (E.14)

In time domain, Eq. (E.14) can be expressed using the convolution as follows

y(t) = go(t) * u(t) + gi(t) * [u(t)eWPt] + g_1 (t) * [u(t)e-WPt] (E.15)

A linear system represented by both Eqs. (E.14) and (E.15) is depicted in the block

diagram in Fig. E-1.

However, since there is only one equation available in order to estimate three

transfer functions Go, G1, and G_ 1, the identification problem becomes underdeter-

mined. This leads to the need of three different input applications for composing

three independent equations, each of which is similar to Eq. (E.14). Due to the peri-

odic nature of the system under consideration, it is extremely important to account

for the time of application of each input relative to the system period T. In order

for the system behavior to be completely analyzed, multiple identical input signals

are applied which are evenly located over the system period. In Fig. E-2, an example

of the input signals are shown. There, three input signals are created in sine-sweep
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T 3T 6T

1/3 T 12/3 T Input signal

Figure E-2: Input signals generated with appropriate time intervals over the system
period [62]

(chirp) form with uniformly separated initiation interval Td over the system period

T, where

Td = T/3 = 27r/3w, (E.16)

Among the three input signals, the first one should have no delay between the

start of the system period and its initiation time. Then, the input U and output Y

can be modeled as in Fig. E-1. For the second signal, there should be a delay Td

seconds between them, and the input can be described as U(jw)e-wTd, which results

in a block diagram shown in Fig. E-3. Similarly, delay for the third signal will be 2Td.

Then, the output vector Y can be described as follows

YO U(jW) U(jw - jW) U(jW + jp) Go

Y1/3 = U(jw) U(jw - jw)eP2 Td U(jw + jwp)e-srTd G1 (E. 17)

Y2/ 3 j U(jw) U(jw - joJP)ejup2T d U(jw + jwp)e -op2Td G-1

where Y1/ 3 and Y2/ 3 are the outputs due to the second and third chirp signals respec-

tively. By using the nomenclature that W = eiOPTd, one obtains from Eq. (E.16)

W = e27/3 (E.18)

From this definition, it can be derived that W- 1 = e' 2r/3, W 2 =j4-/3 = W- 1 , and

W = W-2.
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Figure E-3: Delayed input signal and corresponding output of LTP system [62]

Then, Eq. (E.17) becomes

YO U(jOW) U(jOW - jW) U(jOW + jop)

Yi/3 U(jW) U(jw - jwo)W U(jw + jW)W- 1

Y2/3 U(jW) U(jW - jOP)W 2 U(jw + jOP)W-2

When the W terms are separated, Eq. (E.19) becomes

IGo

Gi I (E.19)

0

U(jOW - jWp)

0

01

0

U(jj + j) J
U

Go

Gi

G_ 1

G

(E.20)

Notice that the first matrix multiplied to give U in Eq. (E.20) is the one that com-

monly arises in discrete Fourier transform. Eq. (E.20) can be simply written as

Y=UG (E.21)
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or to compute the transfer functions directly

G = U(Y (B.22)

The derivation so far is based on the assumption that the output measurements due

to each input signal must be conducted by allowing the response to settle down

significantly before the next input signal is initiated. Then, it can be reasonably

drawn that Yo is only due to the fist input, Y1/ 3 due to the second input, and so on.

However, to make the identification process faster, input signals with less intervals of

no actuation between successive signals is preferred. This leads to the idea of treating

the entire input sequence as a single input signal, and similarly the output signal.

Then, the problem becomes underdetermined again. In this case, some assumptions

on the certain characteristics of G is required to make the problem well defined. In

this thesis, a methodology of obtaining transfer functions is adopted which makes the

problem constrained with those assumptions.

E.3 Implementation of the Developed Methodol-

ogy

The identification methodology developed in the previous section requires three sets

of data, namely the input u, output y, and time measurements 0 (at which u and

y occur). In the case of rotor system identification, the information of 4' can be

extracted from the record of the azimuth measurements. These data are recorded in

a discrete manner with some fixed sampling frequency (in experiment) or time step

size (in analysis), therefore all the data can be assembled in a vector of length n,

where n is the total number of the data points. The input data can be expressed as

u = I U U2 Us ... Un (E.23)
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y and g, are similarly defined. If the transfer functions of the system as many as nh

need to be identified, an nh x n matrix U is constructed according to Eq. (E.20) with

an appropriately modulated and Fourier transformed vector u at each row, so that

.F{ [e"i*1 ui

.F{[e-mjs*1Ui

... em un]}

... elj**us]}

... e0'4 *us]}

... e-io-u ]}

... e-"'un]} -

where m - "h -1. Eq. (E.24) can be described in a more compact notation as

] T
(E.25)

Similarly, Y can be constructed as the discrete Fourier transform of the vector y as

Y =7 i [ Y2 Y3 ... Yn] (E.26)

Recalling that the empirical transfer function estimate (ETFE) of a linear time in-

variant (LTI) system involves the power and cross spectral densities of input and

output, these spectral densities can be defined in a similar manner for the present

LTP system as

<>uU = U*TU

<bUy = U*TY (E.27)
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where U*T is complex conjugate transpose of U. Then, the transfer functions can be

obtained for LTP system similarly as in LTI system as

G(w) = (@uu) 'uy (E.28)

where G(w) is the harmonic transfer function estimate with each transfer function gi

at its row as
-T

G(w)= Igm ... gi go 9-1 ... g-m]I (E.29)

However, computation of the transfer functions with Eq. (E.28) will not yield an

accurate result since only a few harmonics are considered instead of infinite number

of them. The cumulative effect of the neglected harmonics is significant so that it

can make the transfer functions estimated poorly. Suppose that a given system has

inherently Nh transfer functions of significant magnitudes, but only n of them are

evaluated. Then, its output can be expressed as

m

Y = Z u(w - kwp)gk + u(w - lW)gl (E.30)
k=-m m<|l|<M

modeled part unmodeled part

where m - n- 1 and M Nh-1 The unmodeled part essentially appears as an error

e, therefore

Y = $ u(w - kwp)gk+ e
k=-m

= UTSG+ e (E.31)

In addition to this modeling insufficiency, the constraints are not applied yet which

cures the underdeterminancy of the identification problem mentioned in the previous

section. In this regard, an assumption is applied that the transfer functions are

smooth enough that there are no rapid variations along with frequency. This generates

a minimization problem with a cost function J, which penalizes a quadratic error and
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curvature of the transfer functions, so that

J min (Y - UTG) 2 + o(D2)2] (E.32)

where D 2 is a second-order difference operator, and a is a weighting factor. By

taking the derivative of J with respect to G in Eq. (E.32) and setting it to zero, the

minimizing G can be found as

= [UTU + D4] -UTY (E.33)

where D 4 = D2 - D2. Eq. (E.33) is the final form that is utilized in the following

system identification, and more issues on the practical implementation of Eq. (E.33)

and solutions are provided in [62].
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