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Abstract

As the number of vehicles in China has relentlessly grown in the past decade, the energy demand,
fuel demand and greenhouse gas emissions associated with these vehicles have kept pace. This thesis
presents a model to project future energy demand, fuel demand and carbon dioxide emissions for the
Chinese light duty vehicle fleet. Results indicate that China can offset rapid vehicle energy demand
growth with reductions in fuel consumption and new vehicle technologies. These reference scenario
results indicate that future light duty vehicle energy demand and carbon dioxide emissions will peak
below 400 mtoe and 1700 mmt carbon dioxide, respectively. In addition, a scenario based sensitivity
analysis reveals that vehicle stock, vehicle fuel consumption and vehicle fleet electrification are the most
significant drivers in determining future light duty vehicle energy demand, fuel demand and carbon
dioxide emissions.

The Chinese government is concerned with these trends. In a complementary analysis, I investigate
existing government policy strategies that may affect future automotive energy demand. I find that
policy strategies are fairly well aligned with the significant drivers to reduce automotive energy demand.
However, I also find that national government policies are often not implemented as intended at the local
government level. Finally, I analyze current domestic and joint venture brand vehicle technology, where
I find that domestic car technology lags joint venture car technology.
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Chapter 1

Introduction

1.1 Motivations

1.1.1 China: a growing consumer of transportation energy

By all metrics, China’s energy demand and China’s transportation energy demand are growing fast.

During the multiple periods of political instability in the 20th century, China’s economy stagnated or

regressed. The past thirty years have sharply reversed that trend. As a result, China’s total energy

consumption has ballooned, both in relative and absolute terms. Chinese energy consumption as a

share of international energy demand grew from 10.5% in 1990 to 17.5% in 2010 (IEA, 2012b). In

absolute terms, China’s transportation energy demand has grown more than tenfold since 1971 (Figure

1-1). Comparing total transportation energy demand to road transportation energy demand shows that

much of that growth is directly attributable to growth in road transport. Diesel oil was not used in road

transportation until the 1990s but road fragmentation accounted for the majority of growth in diesel

demand since the 1990s. Motor gasoline has always fuel road transportation, but gasoline consumption

has more than doubled since 1990. As a result, while China accounted only for 2.45% of international

transportation energy demand in 1990, it now in 2010 accounts for 7.45% (IEA, 2012b).

The past decade has seen a rapid increase in consumer energy demand across many sectors. His-

torically, while China’s industrial energy demand increased quickly to support its manufacturing sector,

the Chinese people consumed relatively little energy. The rise of a robust middle class during the past

two decades has generated new sources of energy demand growth. These consumers purchase new real

estate, passenger cars and other luxury goods. Hence, the portion of the vehicle fleet composed of pri-

vate passenger cars has dramatically increased (Figure 1-2). Almost singlehandedly, growing sales of the

“small passenger” vehicle category (light green), corresponding with a conventional passenger car, has

led to a doubling of vehicle stock between 2002 and 2010. The more encompassing passenger vehicle

category that includes both cars and buses increased fivefold from 1990 to 2002.

Partially as a result, the portion of energy the transportation sector consumes as a share of total

energy demand grew from 5.76% in 1990 to 11.57% in 2010. It is still far below the world average

of 27.22% (IEA, 2012b). But because the transportation sector is one of the fastest growing energy

consuming sectors in China, this fraction is expected to double before 2050 (Zhou et al., 2011).
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Figure 1-1: Historical Chinese transportation energy in million tons per year. Note: The spike in natural
gas consumption in 2003 is an anomaly found in the original database source. Source: IEA
(2012c).

Figure 1-2: Historical Chinese vehicle stock in millions of vehicles per year. Source: China Statistical
Yearbook (2011).
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1.1.2 Transportation: a tenacious source of energy demand and CO2 emissions

Although transportation energy research often focuses on the negative externalities of transportation,

transportation itself carries many positive benefits. Access to a rapid form of transportation enhances

mobility, letting an individual move faster from place to place. It can thus dramatically improve acces-

sibility, the measure of an individual’s access to desired opportunities (Lynch, 1984). More accessibility

brings a greater diversity and number of jobs, entertainment and housing. However, the technology

developed countries have adopted to fulfill rapid transportation desires is not wholly positive. The car,

a favored form of personal transportation, carries many negative externalities that impact humans now

and in the future. The challenge rapidly growing countries such as China face is minimizing these neg-

ative externalities while maximizing citizen accessibility (Wachs, 2010). In countries such as China,

where hundreds of millions have no access to reliable transportation save walking, the potential benefits

of improved mobility are vast.

Developed countries have adopted the personal automobile as a means of rapid transportation for

a variety of reasons. The personal automobile is convenient and flexible; powering it has traditionally

been cheap. Nevertheless, road transportation and car transportation in particular contribute to a range

of negative environmental, social and economic impacts both in the short term and long term. Vehicle

production itself consumes material and energy. Rising numbers of vehicles on the road compromise

safety and contribute to the psychological and economic effects of high congestion. As discussed in the

preceding section, vehicles consume large amounts of energy, which is not a limitless resource. Cars

generally use gasoline or diesel for propulsion and governments consider dependence on these fuels a

geopolitical and thus economic risk. In addition, burning these and other fuels emits carbon dioxide

and other greenhouse gases that contribute to global warming and climate change with corresponding

environmental, societal and economic impacts. Finally, vehicles also emit other pollutants such as NOx,

SOx, and particulate matter that contribute to local air pollution and negative health impacts.

Economic theory explains these impacts are not internalized in the price of vehicle transportation

and are therefore made worse than they otherwise would be if priced properly. Policymakers design

and promote policies that minimize these market failures through pricing or regulating the externalities.

In doing so, they generally choose among a number of different levers that impact automotive energy

demand. Together, these levers create an identity that expresses the energy and environmental impacts

of road transportation:

Vehicle impacts = f (volume)× f (use)× f
�

e f f icienc y
�

× f
�

f uel
�

(1.1)

Vehicle impacts depend on the volume of vehicles, distance these vehicles drive, energy efficiency of

these vehicles, and fuels these vehicles depend upon. The expression is a variant of the general trans-

portation Activity-Mode share-Fuel intensity-Fuel source identity (Schipper et al., 2000) transportation

energy researchers have popularized in literature throughout the previous decade. Thus, a policy in-

tended to minimize the negative vehicle transportation impacts mentioned above would target one of

these four levers. (Figure 1-3). Not all levers can target all impacts. To address vehicle congestion,

policies should seek to alter the volume or use of vehicles. To mitigate negative consequences of global

warming, policies can seek to reduce or alter volume, use, efficiency or fuels of vehicles. However, a

rebound effect could cause a policy that specifically targets one lever to create spillover effects among

other levers.1

1For example, banning odd numbered plates from driving on Mondays would target lower use but could cause citizens to
purchase a second vehicle and increase vehicle volume.
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Figure 1-3: Vehicle impacts identity with negative impacts. The top bar describes the vehicle impacts
identity while the arrows describe which portions of the vehicle identity policies seeking to
affect a given externality can target. Energy demand is shaded separately because it is not
negative per se.

Having adopted the personal automobile as the default mode of rapid transportation, curbing nega-

tive externalities is far easier in theory than in practice. First, once citizens have attained a high level of

mobility, restricting vehicle travel is akin to reducing and restricting accessibility. Unless an equally fast

and convenient mode of transportation were available, such a policy would decrease people’s quality of

life by decreasing access to jobs, social pursuits, and recreational opportunities. It would run counter to

the basic goal of most governments and countries. In many places, no equally flexible and far-reaching

mode of transportation alternative currently exists. Therefore, policymakers commonly target the effi-

ciency and fuel parts of the impacts identity. However, no equally good and cheap technology alternative

exists to the basic internal combustion engine (ICE). Furthermore, the internal combustion engine au-

tomobile does not exist as a single technology, but as a technology embedded within a system. The

technology is locked in to a system that encompasses road networks, automotive oriented development,

fuel distribution networks, cultural imagery and more (Unruh, 2000). Shifting to an alternative solution

would require not only the new technology be less expensive or better, but also that it be sufficiently

better to overcome the inertia of the technology lock-in. The fourth, economic solution would be to price

transportation in accordance with the emissions externalities they produce. While this could reduce mo-

bility because transportation would become more expensive, such a Pigouvian tax would merely correct

a market failure whose cost should already have been internalized. Although this approach would be

efficient, it could inequitably distribute impacts across portions of the population and also face high po-

litical barriers. Finally, extricating a society from an automotive lifestyle is a complex task that requires

long-range planning. However, governments and the individuals that steer them are generally evaluated

upon short term and not long term results.

1.1.3 China’s transportation system: an opportunity to act now

China could acknowledge the difficulty of reducing the impacts of transportation and focus on mitigat-

ing energy use in other portions of the economy, especially as transportation energy is yet only a small

portion of China’s total energy demand. Zhou et al. (2011) note that even if policies could effect signifi-

cant changes, the impact on mitigating overall Chinese energy demand would be small. However, China

has been a net crude oil importer since 1996 and imports now account for over half of China’s available

crude oil (China Energy Statistical Yearbook, 2000-2002, 2007, 2010). Energy security remains a top
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policy priority (Andrews-Speed, 2010). Second, serious air pollution in Chinese cities is due increasingly

to motorized transportation and not coal combustion (Wang, 2011). Local air pollution has become a

significant citizen concern in recent years and is becoming an important public policy issue. These two

challenges are transportation specific and cannot be mitigated merely by reducing energy demand in

the overall economy. China is urbanizing and its transportation sector energy consumption is growing

quickly. In this light, China has a unique opportunity to act now: by creating the policy solutions that

will avoid automotive technology lock-in, it might mitigate the worst effects of rapidly rising vehicle

energy demand and emissions before they occur.

1.2 Research questions

The Chinese government has proposed various policy strategies to address and control the energy de-

mand, fuel demand and emissions road transportation creates. These will often target different parts of

the vehicle impacts identity in an effort to reduce overall energy demand, conventional and imported

fuel, local air pollution, and CO2 emissions. However, successfully addressing these vehicle transporta-

tion consequences will require evaluating said strategies and prioritizing them thereafter. Such an eval-

uation might consider potential impact, cost or political feasibility as criteria. This thesis compares

different strategies according to potential impact in reducing energy demand, conventional fuel demand

and CO2 emissions. The thesis also considers the strategies in the context of current Chinese transporta-

tion and industry policy, investigating each strategy’s political feasibility. To complete these two tasks, I

pose and answer two sets of questions. The first set is technical in nature and seeks to better understand

the problem; the second is policy oriented.

The technical half of the thesis builds a model in order to quantify future energy and emissions.

1. How will the future number, energy demand, fuel consumption and CO2 emissions of light duty

vehicles in China evolve?

2. Which are the most important drivers to determine future energy demand, fuel consumption and

CO2 emissions?

It is important to note already that the answer to the first question cannot be packaged and presented

as one definitive future. As will become evident in Part II, Drivers of the fleet outputs, many factors that

affect future energy demand and emissions (ownership, distance, fuel consumption etc.) are difficult to

predict. As the follow-up question explains, it is how significant the factors are relative to each other

that matters. The policy half of the thesis thereafter places the answers to the technical questions in

context.

1. How well does the current policy orientation address the important determinants of future vehicle

energy use?

2. How do political stakeholder interests pose institutional barriers to implementation on policies

that address future vehicle energy use?

1.3 Thesis structure

The chapters that follow tackle the questions presented above in roughly chronological order. The

technical portions of the thesis are presented in Chapter 3, Sections 4.1 and 4.2, sections in Chapters 4
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through 7 entitled “Model implementation” and “Comparison across models”, and Chapter 8. The policy

portions of the thesis are presented in Chapter 2, sections in Chapters 4 through 7 entitled “Progress and

policies to date,” Section 6.1, and Chapter 9. A reader could choose to read only the technical portions

or the policy portions of the thesis. However, the two are integrated as the policy analysis is intended to

complement the technical analysis that defines the thesis structure.

The remaining chapters in Part I, Fleet modeling in China, focus on providing the necessary back-

ground for the chapters that follow. Chapter 2, Stakeholder priorities, presents a discussion of Chinese

political structures that can affect relevant policy implementation. Chapter 3, The fleet model, motivates

the choice of model and provides both a mathematical and schematic description.

Part II, Drivers of the fleet outputs, thereafter devotes one chapter each to discuss the major model

inputs and the policy context each acts in. These are also the four components of the vehicle impacts

identity as described in Section 1.1: Chapter 4, Vehicle ownership; Chapter 5, Vehicle use; Chapter 6,

Vehicle technologies; and Chapter 7, Vehicle fuels. In each, I discuss model implementation and critically

compare my future trends against those of other comparable models. In addition, I present a historical

view of policies to date and for some policies, investigate how political and economic structures have

impacted policy implementation.

Part III, Results and policy implications, delivers results and discusses the policy implications that

follow. Results are two-part: Section 8.1 presents an aggressive yet feasible reference scenario for crit-

ical comparison against other fleet model results and Section 8.2 analyzes the relative importance of

different drivers in controlling future automotive energy demand, automotive fuel demand and automo-

tive CO2 emissions growth. Chapter 9, Implications, thereafter ties the significance of these results to

current Chinese society. It evaluates previously discussed government policy strategies both by ability

to effect change and by likelihood of being stymied by political barriers to implementation. Chapter 10,

Conclusions, summarizes the thesis, reviews the major findings, and offers final remarks.
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Chapter 2

Stakeholder priorities

China is politically centralized, but economically and administratively decentralized. It was not always

so, but fiscal reforms over the past thirty years have gradually assigned local governments more eco-

nomic and administrative responsibility than is the norm worldwide. In 1988, the central government

ended its formal responsibility for financially supporting local expenditures, returning to the Maoist ide-

ology of “self-reliance” (Saich, 2008). Fiscal reforms in the early 1990s further transferred economic

responsibility to local governments and extended them property rights over the local state-owned en-

terprises (SOE) – companies where the government is a majority shareholder – while also redirecting

far more revenue to the central government (Baum and Shevchenko, 1999). Specifically, dismantling

complete state ownership of corporations during the 1980s and letting SOEs compete in a marketplace

had eroded their profits and thus also diminished the main source of government tax revenue. The new

tax sharing system rerouted a majority of tax revenue to the central government, which then committed

to redistributing a portion of this to the local governments (Wong, 2000). Nevertheless, richer areas

tend to get proportionally larger transfers (Mountfield and Wong, 2005) and few local governments had

enough.

A rich literature explores the effects of the fiscal reforms on the Chinese economy and society, as

well as the resulting power balance between the central and local governments. When evaluating po-

tential policies to control automotive energy demand growth, these political relationships may impose

constraints on available policies and pose barriers to implementation. In this chapter, I explore relevant

policy priorities and political relationships among central government, local governments, SOEs and

Chinese citizens. Throughout the chapters that follow in Part II, I examine the effectiveness of existing

policies that could control automotive energy demand growth. I examine policies through a bureaucratic

process lens and see policy creation and implementation as effects of negotiation among different politi-

cal actors Allison (1969). Indeed, Baum and Shevchenko (1999) argue that “central-provincial relations

have increasingly been marked by bilateral bargaining and compromise rather than unilateral command

and control” following fiscal reforms, even as they note that scholars disagree on who holds the bargain-

ing power. I thereby argue that policies and behavior among various levels of government do not align

in purpose and are at times contradictory. This may create insurmountable barriers to implementation

for the policies I evaluate in Chapter 9.

I am not the first to suggest such an interpretation for the automotive industry. In his book The

Chinese Automobile Industry, Eric Harwit views each Chinese bureaucratic organization as rational actor

but argues those institutional leaders acting through bureaucratic processes (Harwit, 1995). Harwit

identifies bargaining both within the central government and between central and local government.
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Several authors have used “fragmented” to describe the automotive industry. In Changing Lanes in

China, Thun takes a more nuanced approach (2006). Taking the codependence of firms and local

governments as given, Thun draws attention to variation among political and economic structure of

different local governments and how this affects automotive sector development. Thun also argues that

central-local relations provide not only opportunities but also constraints for local governments. Chin

(2010), however, after balancing the fragmented authoritarianism with the unified and strong state,

adopts a position closer to Allison’s rational actor model. He argues that a strong centralized state

has been able to effectively leverage foreign direct investment from multinational corporations, thus

challenging the usual decentralized state interpretation of China’s economy.

2.1 National government

One of China’s central government top priorities is to ensure favorable conditions for continued economic

growth and increasing prosperity among China’s citizens. To do so, it sets blueprints, standards and

guidelines to shape economic development and social progress. However, while the central government

sets plans, it leaves achieving these targets to the local governments (Liu and Salzberg, 2012). Indeed,

China is vast and retaining oversight over all local government activity would be exceedingly difficult.

Instead, the national government sets targets (for GDP growth, population growth etc.). It divides these

up among the provinces, which then further divide the targets among local governments. Targets come

in two forms: hard and soft. Officials at all levels must meet hard targets in order to be considered for

promotion to a higher position (Saich, 2008).

To develop industries, the central government has retained elements of central planning from the

past. Every five years since 1950, the government has promulgated a Five Year Plan that sets a vision for

China’s development over the next five years. The national government named the automotive industry

a “pillar industry” in 1986 (Thun, 2006) and sought to encourage private household car ownership

(Mehndiratta et al., 2012). In the plans since, the government has continued to shine a spotlight on

the automotive industry. In the twelfth Five Year Plan (2011-2015), the central government selected

the “new energy vehicle” (NEV) industry of electric and plug-in hybrid electric vehicles as one of seven

strategic sectors and funded research, development and pilot project commercialization. These seven

sectors were to contribute 8% to GDP by 2015 (Li and Wang, 2012).

The national government will also coronate a select number of companies in a sector to be state

“champions” handpicked to become undisputed leaders in the field. Market consolidation would make

shape around these firms the small number of hubs that would help the Chinese automotive industry rise

to success (Dunne, 2011). Political leaders in 1988 chose the “Three Big and Three Small” (San Da, San

Xiao) companies to be First Auto Works (FAW), Second Auto Works (now Dongfeng), and Shanghai Au-

tomotive Industry Corporation (SAIC) for the big, and Beijing Automotive Industry Corporation (BAIC),

Guangzhou Automotive Company (GAC), and Tianjin Auto for the small (Harwit, 1995). Since then,

central government has continually pushed for industry consolidation into larger conglomerate groups

to mimic Japanese and Korean successes, with limited success (see Chapter 6).

The government also sets guidelines for urban planning and transportation planning as well. For

example, it reviews all the largest plans for cities, investment projects and land use conversion plan,

as well establishing best standards for public transit and other urban services. However, inadequate

national funding for these development projects means central government only partially monitors the

progress (Liu and Salzberg, 2012).

To transition the economy to innovation-based sectors, the government spends research capital on
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designated technologies. In order to promote innovation policies, the national government frequently

supports demonstration projects in various cities. These projects encompass the strategic NEV industry.

The “Tens of Cities, Thousands of Vehicles” project has sought to encourage many large cities across

China to adopt electric vehicles among their government fleets and incentivize private electric vehicle

purchases (see Chapter 6). In addition, since the 1990s, various ministries the national government

has aided a number of provinces and cities to develop pilot low-carbon development cities to fulfill its

priority of helping cities achieve greater sustainability. These demonstration projects are spread out

across provinces and have achieved mixed success (see Chapter4).

The central government is also concerned with maintaining adequate resource supplies for strategic

reasons. Grain is one such resource, and the central government strives to prevent the loss of agricul-

tural land. Farmland per capita in China is only one-third of the world average and shrank 4% from

1978 to 1996 (Ho, 2001). The twelfth Five Year Plan includes a binding target not to reduce farmland

reserves at all from the current level. The national government also works toward energy self-reliance.

Andrews-Speed (2010) explains that these aspirations have a long history in China. Foreign compa-

nies are excluded from participating in China’s energy sector except when their expertise cannot be

found within China’s borders. Such collaboration is expressly intended improve chances for future self-

reliance. More recently, the dogged intent for energy security has only grown among government and

citizens alike since China began importing oil in the mid 1990s.

2.2 Local governments

China’s local governments have a clear priority: economic development. Unlike local governments in

Western countries, local governments in China are accountable and responsible for growing the local

economy and jobs. In addition, while the central government sets standards and guidelines for ser-

vices, local governments are responsible for delivering and managing these services. Nevertheless, local

governments are limited in their ability to finance such services (Saich, 2008).

Chinese local governments are responsible for their entire economy to a greater extent than local

governments in other countries. Mayors constantly compete against mayor in other cities and predeces-

sors in their own cities (Liu and Salzberg, 2012). Furthermore, performance is measured almost solely

upon GDP growth. If local officials do not meet the hard targets for tax revenues, GDP growth levels

or family planning quotas (to maintain the one child policy), they receive no promotions or monetary

rewards. Focus is placed squarely on attaining goals at maximum speed and quantity. Although Saich

points out that higher government levels are testing new, holistic evaluation criteria, nationwide rollout

is uncertain(Saich, 2008). Together, these performance metrics foster a focus on short term resulls to

the detriment of long term sustainable planning.

Moreover, Chinese governments are limited in their ability to raise finances. Most local government

revenues collected must go to the central government, but local governments are not allowed to exact

property taxes on local citizens. Fiscal reforms have “pushed (or pulled)” . . . “governments into a va-

riety of creative new partnerships with entrepreneurs and other emerging societal forces.” As a result,

governments have sought sources of extrabudgetary revenues and employed “scores of administrative

caches” to help them collect more revenue Baum and Shevchenko (1999). Baum and Shevchenko further

argue that “a cadre’s value is increasingly measured by his or her ability to generate – and successfully

tap into – new revenue streams.” These new revenue streams might include earmarked central govern-

ment transfers for pilot projects, such as low carbon cities or electric vehicle projects. Neither do local

governments have access to traditional Western methods of raising funds. Saich (2008) explains that
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because governments are not allowed to issue bonds, their ability to borrow money is limited. Instead,

governments rely on off-budget revenues that may total 20% of GDP and range from 30% to 70% per-

cent of local government income. If this does not suffice, local governments set up municipal investment

corporations that can borrow funds and thus finance the development projects governments rely upon

for GDP growth.

One method of generating off-budget revenues is rural land conversion and subsequent land sales.

I explore this literature and its implications for automotive travel in Chapter 4. Competition among

cities likely exacerbates the incentives to sell land, generate revenue and build new developments and

infrastructure. Bai and Qian (2010)find that highway infrastructure, a local government expenditure,

has expanded far more rapidly than the centralized railways transportation infrastructure.

Even though policy directives are often set centrally, “policy implementation in China allows for flex-

ibility and fine-tuning at the local level because the provincial government is often given the discretion

to decide on the details and schedule of implementation” (Cheung, 1998). That is, central government

policy is often vaguely worded, leaving local governments to interpret it (Winebrake et al., 2008). Some-

times the resulting local government experimentation goes too far: Cheung explains that provinces have

been known to disobey and defy central government directives. In the automotive industry, Dunne de-

scribes the race among cities to become king of the automotive industry as “ruthless.” Each wants to

become the “Detroit of China” (Dunne, 2011), and contrary to central government directives, this has

led to a proliferation of several independent brand automotive companies. I explore this issue further in

Chapter 6.

2.3 State-owned enterprises

State-owned firms grew out of China’s controlled past. In the 1980s, the central government partially

privatized SOEs as it transitioned close to a market economy. Although many private firms exist to-

day in China, SOEs still enjoy numerous perks. Although Stigler’s concept of regulatory capture occurs

anywhere specialized interests can exert undue control over the policy agenda (Stigler, 1971), China’s

political system exacerbates it. Although SOEs decide on day-to-day managerial decisions, the Chi-

nese government retains the right to decide on mergers and acquisitions and appoint CEOs of public

companies (Fan et al., 2007). Chin (2010) confirms that the government tends to do this in the large

automotive SOEs.

Fan et al. (2007) use a CEOs status as a former or current government official as a proxy for politi-

cal connection and conclude that companies with politically connected CEOs perform worse than those

without. In addition, their boards are more often composed of government officials without relevant

professional experience. This creates a situation where management extracts rent in order to fulfill

objectives counter to the company’s profit maximizing interests. In fact, management may fulfill po-

litical local government objectives instead. The political-SOE connection works the other way as well.

Many senior bureaucrats from the energy industry have graduated into powerful government positions

(Andrews-Speed, 2010). Furthermore, Li et al. (2009) demonstrate that SOEs have easier access to

long-term debt. However, they too find that being a state-owned firm is negatively correlated with firm

performance.

These tight connections between industry and politics have implications on both local and national

levels. Wong (2013b) explains how this has prevented tailpipe emissions standards from becoming more

stringent. Even though diesel vehicles are the worst motorized polluters, Chinese diesel sulfur levels are

23 times as high as those in Europe. The oil industry SOEs have significant input on environmental
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standards, several representatives sit on the committees researching fuel standards, and the committee

is housed within an oil company. The Ministry of Environmental Protection cannot force the committees

to adopt more stringent targets, and even if the committee does, Wong estimates the companies may very

well flout the rules. Beyond regulatory capture, this example illustrates how formal political structures

legitimize SOE interests.

In Chapters 4 and 6, I discuss how local governments cater to their own local SOEs.

2.4 Chinese citizens

Although Chinese citizens have no formal political power, they hold informal political power insofar as

various government entities wish to maintain social stability. Wang (2008) argues the “popular pressure

model” is frequently used to set the policy agenda in China today in contrast with the authoritarian

methods of mass mobilization and unilateral decision-making of years past. By the new method, agenda

initiators mobilize the popular opinion. A “focusing event” can help the agenda initiator appeal to mass

media for in-depth coverage or instigate a vehement, passionate online response. This forces the issue

to the fore of government attention. Mertha (2009) supports this view and demonstrates how NGOs

and media can capture the policy-making process through examining a couple of hydropower dam case

studies in southern China.

Local air pollution serves as a poignant example. Air quality in China’s major cities is very poor.

In 2007, the average air quality of the 31 cities in China’s City Statistical Yearbook was 94 ug/m3 of

PM 101 (China City Statistical Yearbook, 1997-1999, 2001-2005, 2007-2008). This compares with the

WHO’s 2009 world average from 1098 major cities spanning all continents of 71 ug/m3 (WHO, 2011).

The WHO recommends a safe level of PM 10 air pollution does not exceed annual average of 20 ug/m3

(WHO, 2005).

In January 2013, Beijing was hit with four toxic smog attacks and media coverage of the event

indicates this could have served as a “focusing event.” The Beijing government reported levels of PM 2.5,

even smaller and more dangerous than PM 10, exceeding 900 ug/m3. Citizens discussed the polluted

situation endlessly online, and official media covered the episode in meticulous detail. Until recently,

the Chinese news media has avoided candidly discussing pollution and only in 2013 did the Ministry

of Environmental Protection order 74 cities to report PM 2.5 levels (Wong, 2013a). Thus, during the

episode, many Western analysts marveled at this novel transparency. In response, both the Beijing

government and the vice premier publicly pledged to take action. The vice premier promised to step up

enforcement of environmental laws as part of the long term challenge to curb air pollution (Wu et al.,

2013). The Beijing government committed to closing hundreds of heavily polluting plants, reforesting

66 000 hectares of land, replacing 44 000 aging coal fired heating systems, removing nearly 200 000

old vehicles from the road and implementing emergency control measures for extremely polluted days

(Xin, 2013). Nevertheless, many barriers remain. As discussed above, the largest oil industry SOEs deter

standards to tighten clean fuel standards. This is not surprising, as regulated fuel prices that strongly

disincentivize any efforts to produce cleaner fuel through more expensive refining processes (Spegele

and Ma, 2013). Even as local air pollution becomes a more pressing policy issue, the ability of the

government to take unilateral action is not secured.

1Particulate matter no more than 10 microns in diameter
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Chapter 3

The fleet model

This fleet model builds off previous work completed in the “On the Road” group at MIT. This previous

work created a fleet model of the US with base year 2007 that used sales growth rates and ratios of

sold to scrapped vehicles to predict stock. An exponential decay function predicted annual Vehicle Miles

Traveled (VMT) per vehicle. The model thereafter differentiated among naturally aspirated gasoline

vehicles, turbo charged vehicles, hybrid electric vehicles, plug-in hybrid electric vehicles, and electric

vehicles. Various research efforts applied and adapted this model to the US market (Bandivadekar

et al., 2008), major European countries (Bodek and Heywood, 2008), and Japan (Nishimura, 2011). In

Chapter 9, Implications, I also compare my results with another concurrent analysis of US fuel demand

(Bastani et al., 2012).

For this thesis, I adapted the original model to suit the Chinese data and context. A scrappage func-

tion predicts future stock from sales. The base year is shifted forward to 2010. Previously, electric

efficiency and plug-in hybrid electric power utilization rates were constant; I allow them to change over

time. I add diesel as a potential powertrain option. Previously, future fuel consumption declined in

percentage points per year; now I use ratios of future fuel consumption rates to base year fuel consump-

tion rates to define rates of decline. The model can now incorporate alternative fuels such as methanol,

ethanol, biodiesel and compressed natural gas (CNG). Future energy demand can be measured in both

million tons of oil equivalent (mtoe) and billion liters of fuel. In addition, a researcher can adjust sce-

narios from the main page instead of working through all individual spreadsheets, thereby improving

ease of use.

3.1 China fleet model literature review

Different research efforts have also created China-specific fleet models estimate vehicle energy demand.

International organizations frequently also break out China from overall global projections. I will refer

to these studies multiple times throughout the text to contextualize my assumptions and results, but I

introduce most of these efforts here:

• In a series of four papers, a team at Tsinghua University led by Hong Huo built a detailed fleet

model spanning all types of vehicles and building off a series of detailed field studies and surveys

(Huo and Wang (2012); Huo et al. (2012c,a,b)). The model built a business-as-usual scenario and

evaluated energy demand reductions for scenarios that varied powertrain mixes, fuel consumption

and fuel mixes. This built off an earlier study at Argonne National Laboratory in the United States
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(Wang et al. (2006); Huo et al. (2007)).

• A second Tsinghua research team published a pair of papers based on a passenger vehicle fleet

model (Hao et al. (2011d,a)). It is the only previous model to model effects of policies con-

straining vehicle ownership and use. It also examines energy demand effects of fuel consumption

improvements, vehicle downsizing, and electrification in order to inform future policy decisions.

• A third group at Tsinghua University also built a fleet model to explore the future energy demand

effects of their previous extensive analysis on lifecycle emissions of alternative fuels (Ou et al.,

2010b). The study examines future energy demand for all road transport and recommends future

policy strategies.

• A British duo at University of London used the Stockholm Environment Institute’s LEAP tool to de-

velop a fleet model that also examined effects of implementing alternative fuels (Yan and Crookes,

2009).

• Various international organizations use fleet models in global energy demand scenarios, including

the International Council for Clean Transportation (ICCT) (Cristiano Facanha et al., 2012). Its

model focuses on predicting future emissions and transport demand, not energy demand.

• The IEA’s 2012 World Energy Outlook bases its projections off a highly complex mobility model

with a fleet model grounding its road transportation projections (IEA, 2012a). In its International

Energy Outlook, the EIA also breaks out the China as a separate region (EIA, 2011).

3.2 Model presentation

The fleet model is best described through a diagram (Figure 3-1). The grey boxes denote fleet model

inputs and the purple fleet model outputs.

The model generates four sequential outputs - stock, energy demand, fuel demand and CO2 emissions

- that are loosely based on the four levers of vehicle impacts identity. The first output, vehicle stock,

corresponds with the volume portion of the vehicle impacts identity. The vehicle distance traveled input

corresponds with the use portion of the vehicle impacts identity, while fuel consumption and powertrain

mix together correspond with the e f f icienc y portion. This generates the second energy demand output.

I disaggregate energy demand by fuel to calculate the fuel demand output. Finally, specifying sources

for different fuels corresponds with the f uels portion of the impacts identity and also generates the final

CO2 emissions output.

The bottom of the model diagram shows different ways to present output results. For example, I can

express not only total light duty vehicle stock, but also total stock by component vehicle types. Similarly,

I can express not only total fuel demand but also fuel demand for different vehicle types, different

vehicle fuels or different vehicle powertrains. It may be relevant to know how much gasoline and diesel

consumption alternative fuels displace, even if total energy demand remains unchanged.

3.3 Model equations

A series of equations underlie the schematic view of the model process:

Stockv,MY,CY = Salesv,MY,CY × Survivalv,MY,MY−CY (3.1)
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Figure 3-1: Model diagram.
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The stock of vehicles for a given calendar year (CY ), model year (MY ) / age (MY − CY ) and vehicle

type (v) is calculated by multiplying the appropriate sales number with the appropriate survival ratio.

Ener g y DemandP,CY =
∑

MY,v

Stockv,MY,CY × V DTv,MY,MY−CY × Power t rainv,P,MY × FCv,P,MY (3.2)

Overall energy demand per vehicle powertrain (P) for a given calendar year is determined by multi-

plying together the number of vehicles in a year by how far each vehicle travels in a year (VDT) by the

fuel each vehicle consumes to drive that distance. More specifically, the count of vehicles unique for a

given model year, calendar year and vehicle type is multiplied by the VDT associated with that count.

The marketshare mix for different powertrains for a given model year and vehicle type divides this count

and thereafter associates each count of vehicles with its appropriate fuel consumption. Summing over

model years and vehicle types gives energy demand per powertrain and calendar year.

Fuel Demand f ,CY =
∑

P

Ener g y DemandP,CY × Fuel f ,P,CY (3.3)

Annual fuel demand, broken down by fuel
�

f
�

, is determined by multiplying Fuel, the fraction of

powertrain energy demand supplied by a given fuel, by the energy demand for a powertrain.

EmissionsCY =
∑

f ,i

Fuel Demand f ,CY × Source f ,i,CY (3.4)

Emissions are determined by classifying each source by fuel and carbon intensity (i) and multiplying

each fuel’s average carbon intensity for a given year with that given year’s fuel demand to generate

overall emissions.

Equation 3.1 corresponds with Chapter 4, Vehicle ownership. Equation 3.2 corresponds with both

Chapter 5, Vehicle use, and Chapter 6, Vehicle technologies. Equation 3.3 and Equation 3.4 correspond

with Chapter 7, Vehicle fuels.

3.4 Sensitivity analysis

Several historical statistics and over a dozen assumptions inform future energy demand and emissions.

While certain assumptions are fixed, others vary. Each such variable input has three potential sets of

future values: reference, high and low. Each of the four chapters in Part II contains a “Model imple-

mentation” section that presents and explains these variables. Chapter 8 presents reference scenario

future energy demand and emissions based upon the reference values for each variable input. In addi-

tion, Chapter 8 presents a sensitivity analysis. In this sensitivity analysis, all inputs are kept at reference

values save one that adopts either its high or low values. Repeating this process for all variable inputs

illustrates the relative importance of each driver.

3.5 Model limitations and justifications

As with any modeling technique, this approach to analyzing China’s vehicle energy demand has limita-

tions. First, it relies heavily on specific historical data as well as numerous input assumptions. Especially

in China, amassing this data and understanding the local context that informs the input assumptions is
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time-consuming and occasionally impossible. In addition, the data may be unreliable and the collection

methods obscure. Third, the model lacks feedback mechanisms among various inputs. For example,

decreasing fuel consumption might correlate with lower vehicle stock growth rates because technology

costs will make vehicles more expensive and less affordable. However, the model includes no mechanism

to automatically change vehicle sales in response to vehicle fuel consumption. Instead, I would have to

adjust such responses manually. Finally, this is an engineering model and not an economic model. As

such, it does not consider vehicle prices or consumer preferences for vehicle ownership. My judgment,

based upon an expectation of how these values could evolve, informs the input assumptions that gov-

ern outcomes. As a final relevant consideration, the model results, discussed in Chapter 8, Results, are

used to recommend future policy decisions. However, the results are also dependent on the model in-

puts, which in some cases acknowledge current policy. This interdependency could potentially cloud

interpretation of results and I strive to make it as clear as possible.

The model’s weaknesses are also its strengths. The input assumptions, while numerous, are trans-

parent. It is easy to gauge the individual impact of one assumption. Second, because the model lacks

complex feedback mechanisms, it is relatively easy to adjust: new alternative fuels or powertrains can be

added when a specific objective calls for it. Finally, although the fleet model lacks economic inputs, it is

well suited to model the command and control policies China’s government readily adopts to influence

vehicle output.

As stated in Section 1.2, the technical portion of the thesis seeks to understand how various factors

influence future energy demand and emissions and which are the most important. Stated another way,

this research question is more suited to an exploratory than a consolidative1 model (Bankes, 1993).

This model type is appropriate for identifying unexpected relationships among input factors, prioritizing

strategies to address future vehicle energy demand and emissions, and isolating extreme cases that may

justify immediate action. For example, the reference scenario is only the predicted future if each of the

inputs grow at the expected rate. Although I predict the reference scenario results as a likely future

among all future scenarios, it is unlikely to be the exact future. Interpreting the reference scenario

result as stemming from a consolidative model is immature: there exist only about ten to fifteen years of

reliable historical trends for the inputs and the eventual market uptake of disruptive powertrain and fuel

technologies is unpredictable. Prompting action is another reason to use an exploratory model. Solely

employing a predictive model approach can defer policy action (Sarewitz and Pielke, 1999). Instead, this

model can help advance decisions before researchers have amassed all the possible data and statistics

about China’s future vehicle energy demand by preparing policymakers for a range of futures.

1A model that predicts future values and events
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Chapter 4

Vehicle ownership

With certainty, China’s vehicle stock will continue to grow. However, it is not certain how much it will

continue to grow. Vehicle ownership depends on myriad factors, many of which are difficult to quantify.

While population projections and GDP growth projections give an idea of how many people can afford

to purchase a vehicle, the projections do not necessarily indicate how likely a person is to purchase a

vehicle. This chapter explains the specific vehicle types into which I subdivide the light duty vehicle

fleet, vehicle stock growth and policies to date, model stock projections, comparison with other models,

and an overview model stock projection methods.

4.1 Vehicle types

4.1.1 Chinese classification systems

China has different methods of vehicle classification that remain inconsistent across agencies and history.

The official country statistics from the China Statistical Yearbook classifies vehicles as freight or passenger

vehicles. This corresponds with trucks or buses and cars, and since 2002 the Yearbook has further broken

these categories into large, medium, small and mini categories. The statistics report both vehicle sales

and vehicle stock, also reporting private vehicle stock (China Statistical Yearbook, 2011a) A minitruck

weighs less than 1.8 metric tons (Wang et al., 2006). While smaller, this corresponds fairly well with the

US light duty truck whose curb weight is less than 6000 pounds (Tit, 2011). The China City Statistical

Yearbook reports information on all cities in China at the prefecture level of above, and includes taxi

stock among their statistics (China City Statistical Yearbook, 1997-1999, 2001-2005, 2007-2008).

Since 2005, the China Association of Automobile Manufacturers (CAAM) and the China Automotive

Technology Association Research Center (CATARC) have used a very different classification system based

upon use and weight. The six categories are M1, M2, M3, N1, N2 and N3. M1 vehicles are passenger

vehicles and M2, M3 and N vehicles are commercial vehicles (Huo and Wang, 2012), though because

vehicles are classified by model, the distinction is not clear-cut: a taxi is often an M1 vehicle while a

US pickup truck could be classified as an N1 vehicle. M1 vehicles are passenger cars, minivans with

fewer than nine seats and sport-utility vehicles. M2 are passenger vehicles with nine or more seats but

less than 5000 kg. M3 are passenger vehicles with nine or more seats but weighing more than 5000

kg. N1 are trucks weighing less than 3500 kg, N2 trucks weigh from 3500 to 12000 kg, while N3 are

heavy duty trucks weighing more than 12000 kg (Huo et al., 2012a). The CATARC and CAAM China

Automotive Industry Yearbook (CAIY) also provides data for sport-utility vehicles (SUV), multi-purpose
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Figure 4-1: A “mianbaoche” in Beijing. Source: author.

vehicles (MPV) and crossover vehicles (China Automotive Industry Yearbook, 2011b).

4.1.2 Selected vehicle types

My goal in this study is to model the light duty vehicle fleet in China. The light duty vehicle fleet in-

cludes the non-freight and non-bus vehicles a private citizen would potentially purchase. This includes

passenger cars, minitrucks and minibuses as reported in CAIY. Passenger cars and minitrucks correspond

with the US light duty vehicle fleet of cars and light duty trucks while the minibus category is sufficiently

large to warrant separate attention. While unknown in the US, the minibus “mianbaoche” category is

modeled off the Japanese K-car (Figure 4-1; see description in Nishimura, 2011). CAAM and CATARC

classify SUVs with passenger cars (China Automotive Industry Yearbook, 2011b) and not light trucks

as in the US. This model retains that classification and therefore the Chinese minitruck category is far

smaller than the US light duty truck category. Over the past decade, rising incomes and increasing

private car purchases has shrunk the non-private car share of total car stock (Figure 4-2). Given differ-

ent scrappage and use patterns, I separate private vehicles from non-private vehicles (see Appendix B,

Private and non-private vehicles).

This model excludes all heavy duty vehicles but also certain other lighter vehicles. It does not include

motorcycles or electric two-wheelers. This mode of transport is popular in China, with around 28 million

gasoline and electric powered motorcycles, scooters and bicycles sold in 2006.1 Local policies and public

transit availability provide both encourage and discourage growth in two-wheeler stock (Weinert et al.,

2008). Because it is unclear whether two-wheelers and light duty vehicles are complementary, substitute

or unrelated goods and information on them is lacking, I exclude them from analysis. In addition, they

have low fuel consumption. I also exclude the rural vehicle category from analysis. Used for low-speed

goods transport in rural areas, China produced three times as many rural vehicles as passenger cars in

2002 (Sperling et al., 2005). Despite being generally small and privately owned, because they are used

for freight, I do not include them among light duty vehicles. Finally, I exclude the “zhuliche” vehicles

1This compares with 3.8 million passenger car sales (China Statistical Yearbook, 2011a)
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Figure 4-2: Ratio of private cars to non-private cars in China. Source: China Statistical Yearbook
(2011a). .

commonly found as taxis in Chinese cities (Figure 4-3). Because they run on small, lead-acid batteries,

these three-wheelers have more in common with two-wheelers than with passenger cars.

4.1.3 Comparison across models

Other fleet modelers examine the entire Chinese vehicle fleet, but break up the light duty vehicle fleet

in different ways. Yan and Crookes (2009) model light duty trucks, minitrucks, passenger cars, taxis

and minivans, and Ou et al. (2010b) passenger cars, minitrucks, minivans, light duty trucks and mo-

torcycles. My “minibus” category corresponds with their “minivan” category. Huo and Wang (2012);

Huo et al. (2012c,a,b) identify private light duty vehicles, business light duty vehicles, taxis and light

duty trucks. The light duty vehicle and light duty truck categories include larger and heavier vehicles

than my corresponding passenger car, minitruck and minibus categories do. Hao et al. (2011d) only

model passenger vehicles and split out private passenger vehicles, business passenger vehicles and taxis.

Business passenger vehicles and taxis correspond with my non-private car category.

4.2 Historical sales and stock

Vehicle stock

Until the mid 1990s, vehicles in China were few and far between. Figure 4-4 traces historical passenger

car stock. Taxis, in fact a subset of non-private cars, made up the lion’s share of all cars in the mid 1990s

and 36% of the non-private car stock in 2001. However, numbers of taxis have remained constant while

non-private cars and especially private cars have proliferated (see Appendix C, Stock). These growth

curves imply that China’s passenger car fleet is unusually young; my analysis shows the average Chinese

private car was only around four years old in 2010. If growth continues at this pace, the light duty

vehicle fleet could rapidly absorb new technologies. However, China’s passenger vehicle stock is unlikely
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Figure 4-3: A 3-wheeled Chinese “zhuliche” in Beijing. Source: author..

to continue increasing at the same dramatic rate. By this argument, China should introducing new and

disruptive technologies into the vehicle fleet now before it locks onto conventional, gasoline-driven, ICE

cars of regular size and materials.

Vehicle sales

Vehicle sales have shot up at similar speeds (Figure 4-5). While minitruck, minibus and non-private car

sales have steadily increased, private passenger cars have fueled overall growth.2 From 2000 to 2010,

car sales increased from 0.6 million to 9 million passenger cars per year, an annual 31.58% sales growth

rate increase. Nevertheless, pace of growth has been variable: over 55% from 2002 to 2003 to not even

7% from 2007 to 2008. The considerable volatility in car sales in the past decade makes it difficult to

predict future sales.

Projections

Forecasting future vehicle sales is difficult, especially in the near term. Over the past decade, analysts

have consistently underestimated the relentless acceleration of Chinese vehicle sales. This holds true

across academic and industry forecasts. To illustrate this, I gathered articles published in the English-

language Chinese newspaper “China Daily” between January 1, 2000 and December 31, 2009 citing

sales forecasts for the year 2010 (Figure 4-6; see Appendix D for a complete list). Forecasts do grow

increasingly accurate as 2010 approaches, but less than five years prior in 2006, a forecast of 6 million

passenger car sales in 2010 underestimates by 37% true sales of 9.49 million passenger cars. Meanwhile,

the average 2005 forecast for total 2010 vehicle sales at 9.47 million underestimates true sales of 18.06

million by 48%. Various factors explain the discrepancies between 2005 forecasts and 2010 sales. First,

relative vehicles prices declined steadily throughout the decade (Huo and Wang, 2012), potentially be-

cause several foreign vehicle manufacturers entered China and many new domestic automakers gained

strength. In addition, temporary favorable sales policies in 2009 and 2010 temporarily halved vehicle

2I derive private and non-private car sales from the China Statistical Yearbook and the CAIY in Appendix B.
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Figure 4-4: Historical Chinese passenger car stock in millions of vehicles per year. Source: China City
Statistical Yearbook (1997-1999, 2001-2005, 2007-1997-1999, 2001-2005, 2007-2008);
China Statistical Yearbook (2011a); China Automotive Industry Yearbook (2011b); and au-
thor analysis.

Figure 4-5: Historical light duty vehicle sales in millions of vehicles per year. Source: China Automotive
Industry Yearbook (2011b).
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Figure 4-6: Predictions for 2010 vehicle sales in China in millions of vehicles. Source: author analysis
for China data articles. The two markers at the end of 2010 are true sales figures.

taxes for small cars and subsidized rural light vehicle purchases (State Council,2009). I do not suggest

Chinese vehicles sales in 2018 will differ from current projections by half, but illustrate how volatile

future vehicle sales are on short time horizons. Therefore, it is difficult to gauge the accuracy of future

long term sales forecasts generated in vehicle fleet modeling with any mid or short term results.

4.3 Progress and policies to date

Worldwide, vehicle ownership has historically linked closely with per capita income (Dargay et al.

(2007)). Thus, as China’s goal is to develop economically, vehicle ownership will also increase. However,

although vehicle ownership correlates well with income per capita, vehicle ownership in some countries

is nonetheless higher or lower than Dargay et al.’s predicted levels. For instance, car ownership in the

US has historically been higher than at comparative income levels in Japan or Germany (Dargay et al.

(2007)) even though all three countries are major automobile producers. The challenge for China, then,

is to craft policies that increase per capita income levels while encouraging only modest automotive

ownership.

A country’s vehicle stock also depends on innumerable other variables. Both the ability, need and

desire to purchase a vehicle factor in, as do demographics. Considering just the light duty vehicle

fleet, an individual’s ability to purchase a vehicle will depend on income, relative vehicle price, and

fuel price. Across a whole population, not only average income but also income distribution will be

important. Second, an individual’s need to purchase a vehicle depend on where she lives and what her

environment resembles. Population density, urbanization, land use policy, comparative utility of other

modes of transportation may all be relevant factors. Third, cultural norms that dictate how desirable

vehicle ownership is may alter the desire to purchase a vehicle even if one does not need it. Finally,

demographic factors translate the likelihood that a given individual will purchase a vehicle to total

vehicle stock. Not only is total population important, but so is the proportion of population of driving
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Figure 4-7: Private car and urban household vehicle stock in millions of vehicles per year. Source:
author analysis from China Statistical Yearbook, 2011 and China Automotive Industry Year-
book, 2011, and author analysis from China Statistical Yearbook, 2011, respectively.

age. Family structures and gender can also influence the size of the potential vehicle owning population.

This section examines policies to date that discourage or encourage an individual’s need to purchase a

vehicle. I examine demographics and cultural norms in Section 4.6.

4.3.1 The built environment

In developed countries, auto ownership is higher in rural areas than in urban areas (see Dargay (2002)

for instance). So far, China has showed the reverse trend: vehicle ownership is much higher in urban

households than rural households. This is reasonable because urban incomes in China are far higher

than rural incomes. Eventually, when rural income distributions allow a majority of residents to purchase

vehicles, rural automotive ownership may quickly surpass urban automotive ownership. Nevertheless,

the current pattern of ownership in China, where urban private household vehicle stock constitutes

a majority of private cars (Figure 4-7) indicates that understanding the drivers or urban automotive

ownership in China is key to understanding overall automotive ownership. The trends also hold true

across provinces; rural household vehicle ownership is consistently lower than urban household vehicle

ownership (Figure 4-8). Moreover, because poorer provinces do not even measure rural household

vehicle ownership, this sample of eight provinces includes many of the richest provinces. On a household

basis, ownership is even lower.

China is rapidly urbanizing, but determining the effect of urbanization on vehicle ownership and use

is difficult. Evidence indicates that increasing urbanization in a middle income country does increase

energy use per capita (Poumanyvong and Kaneko, 2010). Urban residents are much richer than rural

residents in China, and it is logical they use more energy. However, the design and shape of the city

may also play a role. A rich literature has explored the relationship between urban form and vehicle

ownership and vehicle use on both the macroscale and microscale. At the macroscale, several stud-

ies have found strong correlation between rising urban densities and declining vehicle use and vehicle

fuel demand ((Newman and Kenworthy, 1989; Kenworthy and Laube, 1999, 1996)). These macroscale

measurements, of course, give little insight into the specific urban form conducive to low automotive

ownership and vehicle use. Therefore, they offer no prescriptive solutions for how China should de-

velop. Microscale studies try to measure how diversity and design of cities affect urban form as well.
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Figure 4-8: Urban and rural household vehicle ownership in eight provinces in vehicles owned per
100 households. Source: Beijing provincial yearbook (2011); Fujian provincial yearbook
(2011); Hainan provincial yearbook (2011); Henan provincial yearbook (2011); Jiangsu
provincial yearbook (2011); Jiangxi provincial yearbook (2011); Shandong provincial year-
book (2011); Tianjin provincial yearbook (2011) .

Studies indicate that although effects exist, they are smaller than expected (Crane, 2000). Other stud-

ies indicate that diversity and design influence automotive travel behavior more than density (Ewing

and Cervero, 2010). While crude, density matters across a large population, but the design of individ-

ual neighborhoods is crucial as well. In this section, I examine urban densities in China, forces that

encourage Chinese city sprawl, and policies that encourage automotive ownership and use.

Urban densities

Chinese cities have traditionally had very high population densities, but urban density is quickly declin-

ing (Figure 4-9). The six major cities of Beijing, Shanghai, Tianjin, Guangzhou, Hangzhou and Ningbo

had an average population density of 164 people per hectare in 1990 and 146 people per hectare in

1995 (Kenworthy and Hu, 2002). This small set contained a notable density range from 251 persons per

hectare in 1990 in Shanghai to 119 persons per hectare in Guangzhou in 1995. Two more recent studies

used a wider dataset of cities to estimate population densities in 2000. An analysis of population densi-

ties in 2000 in the 41 largest cities in China and four provincial capitals found urban population densities

to range between 68.13 persons per hectare (Huhehot) and 211.74 persons per hectare (Wuhan) and

found a median population density of 107.39 persons/hectare (Suzhou) (Chen et al., 2008). Another

recent study analyzed a much larger sample of 135 cities, and found a lower density of 94.6 persons per

hectare with values ranging from 40 persons/hectare (Kalamyi) to 220 persons/hectare (Fuzhou City)

(Tan et al., 2008). Finally, Liu et al. (2012) find that in 2008, the average population density for 30

cities in China was 95.5 persons/hectare. The data thus indicates that Chinese urban population density

decreased from 1990 to 1995 to 2000, a trend in line with development worldwide. Second, the larger

datasets include smaller cities the smaller datasets do not, and the larger datasets’ average or median
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Figure 4-9: Urban densities in China in persons per hectare. Labels refer to the number of cities used
analyzed for datapoint. Source: Kenworthy and Hu (2002); Chen et al. (2008); Tan et al.
(2008); Liu et al. (2012).

population densities tend to be smaller. This indicates that in China, urban density rises with increasing

population size.

Both urban population and city size are difficult to measure in China. Zhou and Ma (2005) provide

the best explanation to date for how various statistical agencies measure China’s urban population.

China has traditionally divided its citizens into agricultural and non-agricultural workers. While the

concept originally reflected reality, many “agricultural” citizens will now live in urban environments.

Thus, equating non-agricultural workers with urban residents will undercount the true population of

urbanites. However, counting the official urban population with urban residents will create an overcount.

In China, the urban population includes all people living within the administrative boundaries of a city,

which includes land that is not built up and therefore descriptively rural. In addition, China’s citizens

are also formally attached to one location through a “hukou.” If a person moves to a new city, he

is considered a migrant and not officially part of the host city. Various studies examine how this has

prevented rural to urban migration patterns, has dictated which cities grow, and which cities remain

static (Bosker et al., 2012; Au and Henderson, 2006; Xu and Zhu, 2009). All these consideration matter

when measuring urban densities in China.

It is therefore worthwhile to briefly discuss methodology for the urban density studies. Both Chen

et al. (2008) and Tan et al. (2008) explicitly state they use the non-agricultural population statistic,

which counts the urban population in the city proper and exurban districts. Tan et al. (2008) also

measure population density with only the city population data to calculate population density and find

a higher population density of 131.5 persons/hectare. Kenworthy and Hu (2002) do not specify which

population statistic they use, but it is likely the non-agricultural population as it is the one reported in

statistical yearbooks. Both Kenworthy and Hu (2002) and Tan et al. (2008) adjusted the data for built

up area.

Land-use policy

China’s unique approach to land property rights motivates a political explanation for urban sprawl.

While governments own all urban land in their jurisdiction, rural land is collectively owned. The gov-

ernment cannot sell its land outright, but can offer long-term leases. Tian and Ma (2009) explain that

the system encourages local governments are pressured to oversupply land leases in order to capture
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short term revenues. Recall from Chapter 2 that local governments are underfunded and limited in the

ability to raise taxes. Local government can sell land use rights, and Tian and Ma (2009) cite evidence

that these sales accounted for 15.9% of local government revenues between 2000 and 2006. These sales

contribute to sprawl. Tian and Ma (2009) demonstrate that urban land expansion in China far outpaced

urban population growth between 1990 and 1995, and continued to do so by 10% until 2005. The gap

narrowed in large part because the central government mandated that all local governments use an auc-

tion and tender system to lease land instead of the previous artificial allocation through negotiation. The

new market based allocation increased prices over the previous artificial allocation, but did not retard

land leases.

When an actor is only compensated financially for new developments, there is no incentive to further

develop existing land (Yang et al., 2007). Local governments are in this position because they cannot

exact property taxes but receive a lump sum payment when land is initially leased. Thus, to retain a

steady stream of revenue, a governments must continually seek new sources of land to develop. Local

governments can expand city borders by absorbing rural land. Because rural citizens have little power,

local governments can easily undercompensate farmers and expropriate the land (Ding, 2007; Yew,

2012; Yue et al., 2012). The governments can thereafter lease this newly acquired land at higher prices

than they obtained it.

The result is urban sprawl of a particular type. While in the West sprawl is often characterized by

large, low-density residential suburbia, in China it consists of “leapfrog” developments unconnected to

the rest of urban development containing large industrial parks, university campuses, or half-urbanized

villages. This “leapfrog” growth comprised 50.55% of Hangzhou’s growth from 1995 to 2005 as Hangzhou

grew from 1.44 million to 4.1 million people and 96 km2 to 314km2 (Yue et al., 2012). It can also con-

sist of residential developments. These are customarily built as highrise towers with high population

density.

The central and local governments view land supply different. To local governments it represents a

financial resource. To the central government, it is the resource that must feed the population (Zhang,

2000). The central government feels China has a shortage of farmland (Lichtenberg and Ding, 2009)

and as localities expand, cultivated land shrinks. Nevertheless, cities continue to expand. For example,

Shanghai grew by over 4000 ha per year from 1979 to 2008, but two-thirds of the acquired land orig-

inated as cropland (Zhang et al., 2011). An amendment to the 1998 land management law required

State Council approval for converting any farmland, cultivated land over 35 hectares and any land over

70 hectares. A 2006 notice required budgets to include land use revenues for inspection by higher levels

of government in another attempt to curb excessive land use right sales (Tian and Ma, 2009).

Nevertheless, land use right sales have constituted 30 to 70 percent of local government revenues

recently Yew (2012), increasing dependency on this resource. With the central government policies in

place, how does land expansion continue? Yue et al. (2012) explain that local governments create land

use plans subject to central government oversight. Central government oversight operations, however,

are underfunded and it is easy for local governments to frequently revise plans and reserve less and less

land for agricultural uses.

Several more specific mechanisms increase unnecessary urban development. In order to capture

additional revenue from land, governments will often build public infrastructure before leasing land in

order to drive up prices (Yew, 2012). This can lead to unnecessary construction. Many local governments

will also build large public spaces – because the cost of land for the government is close to zero, marginal

costs of large developments are small. Yang et al. (2007) write that city government’s “monopolistic role

in the land market” has led many to build “government buildings as luxurious as the Capitol of the
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United States.” Actual government spending, they write, is decoupled from spending on public services

and needs, partially because the cadre system rewards such spending.

Fierce competition among cities to elevate their urban centers to cosmopolitan icons as well as in-

centives for local politicians to gain recognition and seek advancement also contribute to excess urban

development projects (Yew, 2012). This competition pushes cities to cater to local industries in order to

ensure economic development and job growth (for which local governments are responsible). Yue et al.

(2012) explain that local governments often acquiesce with industrial enterprises who want to locate

business in an area not planned to be urban. Previously, urban governments would often cater to these

companies to locate by offering low land prices: Yue et al. (2012) find that while average industrial

land prices were just 8.3% of average residential land prices in Hangzhou in 2004 – 559 yuan / m2 vs.

6735 yuan/m2. Since then, however, national policy has required governments to sell land through auc-

tions (Yang et al., 2007). Finally, local governments have also zealously engineered large development

zones thought to attract industrialization and foreign investment. The unfortunate result is extra and

half-empty infrastructure, as well as isolated and oversized development zones (Yew, 2012).

All sprawl will not necessarily push up automobile ownership. Yue et al. (2012) relate that Zhejiang

university sold its old, urban campus in order to relocate on the outskirts of Hangzhou. The sold land has

been reconverted to high-end commercial land use. Considering that university students in China are

unlikely to own vehicles, the effect on automotive travel behavior of this particular suburbanization is

questionable. A few studies on specific cities in China have therefore tried to model transport behavior

resulting from land use changes. Various city-specific studies have use integrated land use-transport

models to simulate these actions. Zhou et al. (2012) examine what happens with transportation energy

on urban Xiamen Island if development continues and the population grows much richer compared

with a scenario that promotes mixed land uses and economic incentives to develop and encourage

public transportation. The former increases transportation CO2 emissions by more than 10%, the latter

decreases it by about 5%. As more integrated land-use transport planning studies like this enter the

literature, it will be interesting to see how urban design in China contributes to transportation energy

use.

Low-carbon cities

In the publication Sustainable Low-carbon City Development in China, (Baeumler et al., 2012) overview

eco-city projects in China. Both the Ministry of Environmental Protection and the Ministry of Housing

and Rural-Urban Development have developed eco-city standards that Baeumler et al. argue will incen-

tivize cities to develop towards these goals. At the same time, they criticize the standards for keeping a

narrow focus on physical indicators.

Eco-cities are the demonstration projects for low-carbon city concepts both the national government

and select pilot provinces have worked to build in the past decade. In 2009, the Ministry of Housing

and Rural-Urban Development selected thirteen cities and districts as pilot projects. In 2010, the Na-

tional Development and Reform Commission (NDRC) selected five provinces and eight cities to set their

next Five Year Plan with climate change in mind. These cities have crafted development plans, selected

performance indicators, and identified key priorities. Nevertheless, many initiatives have failed because

of financial constraints, lack of local government attention, mismanagement or failure to adapt to local

conditions. In particular, the authors point out the “Ecologically Sustainable” village in Huangbaiyu,

Benxi, Liaoning was a poor village before plans were drawn up to build up new state-of-the-art green

houses. But villagers refused to live in the houses because the yards were too small for animals while

many homes were built with car garages, an unaffordable luxury for the farmers. In conclusion, Baeum-
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ler et al. opine that eco-city demonstration projects can be beneficial on the road to low-carbon cities,

but are not as easy and foolproof to implement as developers and officials may think. It is not enough

for the central government to allocate money to projects without ensuring that local governments have

the ability, capacity and incentives to see the projects through.

Automotive friendly policies

On a smaller scale, China has also encouraged automotive development. Many cities have banned two-

wheelers, implicitly encouraging motor vehicle use as a form of rapid private transportation. 148 cities

in China had banned gasoline two-wheelers in 2006, many citing air pollution concerns. A number of

cities have also banned electric two-wheelers, citing safety concerns and desires to improve traffic flow

Weinert et al. (2008). This implies that traffic safety officials prioritized automobile traffic flow to other

traffic flow. This is not unquestionably obvious. In fact, in his book Fighting Traffic, Norton (2011)

describes how in the 1920s the US socially reconstructed streets from belonging to people to belonging

to cars. That cities in China are doing so now with two-wheelers and cars indicates that China may be

tending towards a city design where automobiles take priority over pedestrians, bicycles and low-speed

motorized vehicles like two-wheelers.

Density of new Chinese developments exceed new developed world developments (Mehndiratta

et al., 2012). Nevertheless, travel behavior is not only a matter of density; design matters as well.

This can refer to street width, building layouts, or development layouts. Consider setbacks, the min-

imum distance from building to road curb. Chinese municipalities traditionally dictate distances of

five to fifteen meters. Nevertheless, cities have proposed setback distances of forty meters for primary

arterial roads, citing safety in the case of natural disasters. This would create very large building to

building distances that encourage automotive reliance (Mehndiratta et al., 2012). As anybody who has

spent time China will know, this type of street planning is common. Major streets in Beijing are often

very wide, have white metal barriers to prevent unwanted pedestrian crossings, and large, infrequently

spaced pedestrian overpasses. In addition, new developments in China, even if they are dense, are often

built on large, isolated blocks. These have limited number of entrances and promote automotive access

(Cervero and Day, 2008).

Parking practice in Chinese cities favors automotive use. First, parking enforcement is lax in many

cities and it is easy to spot cars parked on sidewalks. Mehndiratta et al. (2012) explains this is due to in-

stitutional fragmentation - traffic police enforce laws only on streets while a different divisions manages

sidewalks, but this division often lacks the authority to give parking fines. In addition, Mehndiratta et

al. explain that building codes specify minimum levels of parking provision and that government bodies

set parking prices, making them unnaturally low.

4.3.2 Transportation system development

Beyond land-use, the transportation system China develops is equally important in dictating future travel

patterns. If China restricts automotive ownership or automotive use, it must provide good contexts

for alternative transportation systems in order to provide its citizens with high levels of accessibility.

Until this point, undue attention has been given to roadway development at the detriment of public

transportation development.
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Roadway development

Infrastructure development is neither a wholly central government nor local government affair. Bai

and Qian (2010) show that while railway investment has remained centrally planned and growth in

business volume has lagged GDP growth, highway investment burden rests with local governments

and growth in highway length has exceeded GDP growth. Industry aids local governments in funding

highway expansion, often foreseeing the lucrative toll collection that can accompany it. While low rates

of return on railway investments due to low prices make profit-minded investors uninterested in railway

infrastructure, rates of return on investment for highways is much higher. Return on investment for

twelve publicly listed highway companies was 10.5%.

Furthermore, the system is highly sensitive to regulatory capture and overinvestment. The companies

that invest in highway infrastructure, while profit-driven, are also often majority government held. The

close connection between local government and local companies creates strong incentives to overdevelop

and oversupply highway infrastructure (Bai and Qian, 2010).

Public transportation development

It is difficult to know whether China undersupplies public transit or not. Yang et al. (2007) argue it does:

while city governments can rake in revenues with land development, transit development is by itself not

profitable. Transportation planning is an afterthought: many cities have no dedicated transportation

planning staff but route other city officials as needed. Thus, when a city expands to a new area, it

only routes rail lines for central institutions. This leaves gaps in the transportation system in new de-

velopments and encourages private paratransit operators or reliance on two-wheelers and automobiles.

By treating transportation planning as an afterthought, transit services remain delayed and undersup-

plied. (Zhang, 2007) describes that although Beijing has quickly developed rail-transit networks and

new housing communities have developed next to these networks, business has not followed and these

have developed into pure commuting neighborhoods. Stations furthermore often fail to integrate into

the local neighborhood, creating unnecessarily long transfers and confusing walkways paths.

4.3.3 Demand management interventions

Despite new roadway and public transportation infrastructure, congestion in Chinese cities has rapidly

expanded during the previous decade. Average speeds on major arteries in Beijing fell from 45 kmph in

1994 to 12 kmph in 2003 (Cervero and Day, 2008). Wang et al. (2008) find that rush hour in Beijing

can reduce automotive travel speeds on freeways by half. Peak hour speeds on arterial roads range from

23 to 39 kmph, reduced from off-peak average speeds by 11% to 35%.

To mitigate this congestion, a handful of large Chinese cities have set caps on the annual number

of new vehicles allowed onto roads. Shanghai curtailed its private vehicle sales with an auction in

1994. The city government released about 10 000 plates every month to private vehicles (Wang, 2010).

Commissioned to the Shanghai International Auction Company, citizens can enter the auction in person

or online (Feng and Ma, 2010). The auctions have become more expensive and competitive in recent

years: 26 526 people vied for one of 9 500 plates released this past July, paying on average 58 271 yuan

($9,140) to obtain one (Shi, 2012). This is more than the price of cheap domestically manufactured

cars.

Beijing adopted a similar policy at the beginning of 2011, sharply curtailing its vehicle sales by more

than half: the capital registered almost 900 000 new vehicles in 2010, but just around 400 000 in 2011
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(China Statistical Yearbook, 2011a). In Beijing’s policy, aspiring private vehicle owners may enter the

lottery free of charge and winners are randomly selected once a month.

Citizen response is generally negative to these policies, especially the Shanghai plate quota, and

the government appears to allow for policy leakage for just this reason (Chen and Zhao, 2013). That

said, as a result of this policy, at the end of 2009, Shanghai had about 3 times fewer vehicles per

capita than Beijing: 72 to 212 vehicles per 1000 people (Hao et al., 2011b). Car plate quotas are

nevertheless vulnerable to side effects. Any major city in China has a large proportion of publicly owned

vehicles, and cities with large proportions of publicly owned (government and state enterprise) vehicles

achieve smaller effects private vehicle license plate quotas. For example, though Beijing had 2.5 times

as many vehicles as Shanghai in 2010, Beijing had 782 100 publicly owned vehicles to Shanghai’s 718

000 publicly owned vehicles (China Statistical Yearbook, 2011), suggesting Shanghai’s policy had not

restricted public sector vehicle growth. In addition, despite restricting driving during rush hour to only

Shanghai-plated vehicles, a significant number of Shanghai residents purchased vehicles in nearby cities

to circumvent the sales cap, although no formal statistics are available (Wang, 2010). One estimate sets

it at 10% of vehicles (Hao et al., 2011b).

The main impediment towards widely implementing this policy is likely to be central government

response. If just ten cities restrict their automotive sales by 200 000 vehicles annually, this represents

over 2 million loss in vehicle sales (as sales would likely have increased without a cap) - 10% decrease

in the Chinese vehicle market. At this point, the central government might step in to protect automotive

sales.

4.4 Model implementation

Projecting vehicle stock by incorporating quantitative projections of all the drivers presented in the

preceding Section 4.3 is unrealistic. However, normalizing vehicle stock to population enables me to

compare vehicle stock across different countries. Among the 34 OECD countries, for example, it is

unusual to have more than 600 vehicles per 1000 capita or fewer than 400 vehicles per 1000 capita. The

United States, at 797 vehicles per 1000 capita, is highest but Finland, Canada, Greece, Italy, Australia,

New Zealand, Luxembourg, and Iceland also have rates above 600. Turkey, with 155 vehicles per 1000

capita, is lowest, but Chile, Mexico, Israel, Hungary, South Korea and Slovakia also have rates below

400 (World Data Bank, 2013). The statistics for OECD countries are useful because although they do

not represent all the wealthiest countries, they exclude the wealthy island nations and other very small

countries that are unrepresentative for China’s future.

For model implementation, I set three alternatives for Chinese vehicle ownership in 2050: 400 ve-

hicles / 1000 capita as a low projection, 500 vehicles / 1000 capita as a reference projection and 600

vehicles / 1000 capita as a high projection. The reference scenario projection is lower than the cur-

rent OECD average of 564 vehicles per 1000 people (World Data Bank, 2013), but considering China’s

current high urban population density and income disparities, a lower ownership rate is reasonable.

The three relevant model inputs are base year vehicle sales, percentage point annual sales growth

rates, and survival curves. Survival curves represent the fraction of vehicles that survive as a vehicle

ages (Figure 4-10). I use a decay function using average vehicle age and rate of scrappage to model

this relationship. These values can be determined with field studies or by fitting appropriate values

to historical sales and stock. I assume survival rates are constant over time (see Appendix B, Vehicle

scrappage, for further explanation). With fixed survival curves and base year vehicle sales, I set annual

sales growth rates for five and then ten year increments to achieve desired ownership rates in 2050. I
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Figure 4-10: Light duty vehicle survival curves by vehicle age.

supplement my light duty vehicle stock projections with heavy duty vehicle stock projections from Ou

et al. (2010b) and population forecasts from UNESCAP (2012) to measure projected future vehicle per

1000 capita values. I assume sales growth rates will slow over time because lower predicted economic

growth and future declining population are unlikely to sustain high sales rates. I also assume sales

growth rates are consistent among all four vehicle types (see Appendix B, Vehicle sales, for a detailed

explanation).

These projected future sales, combined with survival curves, generate predicted future stock (Figure

4-11).

In all cases, most growth in vehicle stock occurs before 2030. Future sales growth exhibits kinks

because I lower sales growth rate projections in five and ten year intervals, but continually slows down

throughout the model timeframe. Future vehicle stock can also be disaggregated according to vehicle

type or powertrain as described in 4.1 and 6.5.2. Minibuses and private cars continue to dominate vehi-

cle stock. Diesels will compose a very small portion of future vehicle stock, while electrified powertrains

will slowly gain acceptance, especially after 2030. Meanwhile, turbocharged vehicles will replace NA-SI

vehicles as the most common ICE vehicle between 2030 and 2040.

4.5 Comparison across models

Other China fleet models use a variety of techniques to project future vehicle stock and arrive at similar,

but not identical, projections that range from 375 to 575 million vehicles in 2050 (Figure 4-13). This

study’s reference case projection is among the highest of all studies. Hao et al. (2011d) exceeds the

projection while Meyer et al. (2007) and Huo and Wang (2012) come close. Similar to this study, two

other studies also set percentage increases in sales growth rates in five and ten year intervals: Ou et al.

(2010b) and Yan and Crookes (2009). However, neither study pegs these numbers to a target future

stock as this study does, although Yan and Crookes explain they attempted to mimic the periods of rapid
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Figure 4-11: Future light duty vehicle sales and stock.

Figure 4-12: Future light duty vehicle stock by vehicle type and by powertrain in millions of vehicles.
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Figure 4-13: Stock comparison across models in millions of vehicles.

motorization followed by slowing vehicles sales growth other countries have historically experienced.

Other techniques explicitly index vehicle stock against developed countries’ historical experiences, use a

economy-wide economic model to extract vehicle stock, or relate vehicle ownership to equations based

on economic indicators.

Historically, large countries with domestic automotive industries have undergone expansive and

brief periods of motorization. Wang et al. (2011b) average out motorization trends from seven large,

automotive-industry countries and use the resulting trend to project China’s vehicle sales growth. This

generates a more accelerated growth curve in the coming fifteen years than do other methods. This may

indicate that most projections underestimate the rate at which rapid motorization can occur.

Kishimoto et al. (2012) extract vehicle stock from their analysis of future Chinese household travel

energy demand using a recursive-dynamic general equilibrium model. The model generates money spent

on own modes of transport which the researchers convert then to passenger car numbers.

Income is the most important factor in vehicle purchases and many studies use the so-called Gom-

pertz equation to model this relationship. Huo and Wang (2012) devise a method taking into account

ownership in different income brackets, relative vehicle prices and population. Hao et al. (2011d) use

different methods for different types of vehicles. For private household vehicles, they take rural and ur-

ban vehicle ownership of different income brackets, relative vehicle prices and population into account.

For taxis, they assume vehicle density increases over time to a saturation point, while government and

business vehicles increase in line with GDP growth. Meyer et al. (2007) do a complete global stock

projection based on multiple regions, of which China is one. They assume North America is represen-

tative of vehicle ownership saturation. It is worth noting that they also employ other stock projection

techniques that also predict far lower ownership in China than does the Gompertz curve method.
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Figure 4-14: Population and driving age population projections. Source: UNESCAP (2012) and author
analysis.

4.6 Other determinants of vehicle ownership

As mentioned previously, the desire to own a car and underlying population can also affect vehicle

ownership.

4.6.1 Demographics

Demographics determine the size of the potential vehicle buying population in China. Total population

represents the most basic demographic indicator and this model incorporated vehicle population projec-

tions into pegging future vehicle ownership to that of other countries. Projections indicate that China’s

population will peak at 1.40 billion in 2026 and decline thereafter, surpassing 0.5% per year by 2046

(UNESCAP, 2012). Were it not for population decline, sales growth rates could have been higher to

achieve the same ownership levels.

Other demographic factors, however, can also affect future vehicle stock. As China’s population ages,

the population of eligible drivers will shrink. The number of 15-64-year-olds in China will peak in 2016

at 1.00 billion (Figure 4-14). Analyzing the UNESCAP projections suggest this section of population will

decline more rapidly than the overall population: more than 1% annually between 2030 and 2040 and

nearly 1% between 2025 and 2030 as well as after 2040. This decline should depress vehicle purchases

in China. However, changing family and housing structures could also increase vehicle ownership.

Zhang and Goza (2005) point out that while elderly care has traditionally been a family responsibility.

However, the one-child policy has shifted the multigenerational family structure and parents are less

likely to live with grown children than before. An increasing number of small households could increase

vehicle purchases.
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4.6.2 Culture

A population’s ability and need to purchase a vehicle are important vehicle stock determinants, but so

is desire. The utility a person derives from a vehicle can be divided into functional and symbolic utility,

where functional utility reflects the need for a car and the improved accessibility that car provides

whereas symbolic utility reflects the social stature or other non-accessibility related benefits one derives.

Lu (2008) explains that in rapidly developing China, becoming wealthy and purchasing the luxury goods

that can accompany this lifestyle is an important life goal. Students are no exception(Zhu et al., 2012).

The “three most-wanted” has traditionally described the most desirable consumer goods in China.

While it included a bike and watch in the 1950, it now includes housing, an automobile and a kids

education (Peo). This affects mate selection as well. Many young urban Chinese men today lament the

harsh financial criteria against which they are judged for potential marriage suitability. On a reality TV

dating program, a model caused a social media stir for defending choosing a rich partner but an unhappy

relationship rather than the reverse (Sebag-Montefiore, 2012), while a 30-old-Beijing resident recalls

arriving to dates by public transportation and purposefully leaving the car at home to find a woman

interested in more than his financial standing (Jacobs, 2011). A “perfect mate” must have “a car, an

apartment, a good salary and, preferably, a tall stature” (Sebag-Montefiore, 2012) or be able to provide

these items at time of marriage (Lim, 2013). Because owning a car in China symbolizes affluence and

stability, its value extends beyond an intrinsic, monetary sticker price. The social currency the car brings

a family social standing and a single man a better chance of finding a wife. The desire for car ownership

will push up number of vehicles in China. The elasticity of vehicle ownership in China will be lower

than if the cultural importance of vehicle ownership were smaller. This concept has been integrated into

a predictive vehicle ownership model (Wu et al., 1999). It will be important to incorporate this concept

into future China vehicle ownership models.
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Chapter 5

Vehicle use

Once an individual owns a vehicle, the marginal cost of using the vehicle compared with its purchase

price is low, and individuals will drive it. Nevertheless, countries differ in average annual distance driven

per vehicle (VDT). Several factors can affect VDT and many are similar to those that affect ownership

itself: the built environment, availability of public transportation, cost of driving, and culture. In ad-

dition, policies that influence the cost of driving will also affect vehicle use: these include fuel prices,

road prices (congestion charging, toll roads, and parking pricing) or road availability (road bans). This

chapter examines the current Chinese policies increase the cost of driving in China, describes VDT trend

implementation in the model, and compares the trends with those of other studies.

5.1 Progress and policies to date

Before 2000, when taxis and government vehicles comprised a majority of China’s passenger car fleet,

annual VDT per vehicle in China was high compared with that of other countries. Taxis, for example,

are constantly on the road and can easily surpass 100,000 km per year. However, the average annual

VDT of passenger cars in China dropped quickly between 2000 and 2010, coinciding with the advent

and rise of private citizen car ownership. Although China has not collected official statistics on vehicle

distance traveled, several researchers have sampled vehicles in different cities in China over the past

decade and recorded evidence for this trend (Huo et al., 2012c; Hao et al., 2011a; Vehicle Emissions

Control Center,2010; see Appendix C, VDT). These studies have also noted a clear difference in VDT

between private cars and non-private cars, as well as evidence that taxi VDT continues to grow.

Few policies in China directly target VDT from an energy consumption perspective. Instead, cities

such as Beijing have implemented vehicle driving bans for certain days of the week as an attempt to curb

severe congestion and mitigate local air pollution. For the Olympic Games in 2008, Beijing restricted

50% of vehicles from driving on its roads between July 1st and September 20th. Vehicles with an odd-

numbered license plate could only drive on odd-numbered calendar days, while special purpose vehicles,

transit buses and taxis were exempt. The Beijing government has continued the policy, instituting a 20%

restriction by matching a given weekday with two license plate final digits, with the same exemptions as

before. Digit pairs rotate about every month to make difficult to circumvent the ban with two vehicles.

Meanwhile, 30% of government vehicles were forbidden from driving on each weekday. Since 2010, this

restriction has been implemented during peak driving hours (Hao et al., 2011b). In the rest of China,

driving bans have slowly gained in popularity among larger cities with populations of a couple million

53



inhabitants. As of March this year, Beijing, Chengdu, Hangzhou, Lanzhou, Guiyang and Changchun had

all implemented some form of driving ban (Ma, 2012). That said, the effectiveness of these policies

are still in question. Following the Olympics, during one day per week bans, flows on main street were

reduced by 4.1% and on the ring roads by 2.8%, while passenger flow on public transport increased

by 20.8% (Hao et al., 2011b). Hao further estimates that up to 30% of vehicles purchased in Beijing

since the driving bans were intended to circumvent the restriction. Although Beijing’s vehicle purchase

restrictions now limit this policy, it is easy to think of other possible rebound effects. For example, they

may retain a secondary old vehicle longer to have a back-up option on restricted days or rent a vehicle.

In addition, people may substitute planned drives on weekends or other non-banned days. In other

words, it’s questionable what effect driving ban restrictions would have on reducing total VDT. Hao et al.

(2011b)’s estimates suggest that effects are not 20% (from banning 20% of license plates), but rather

on the order of 5%. Even if many cities were to adopt such a policy, the overall effect would be small.

China lacks policies that price driving in order to discourage it. The exception is China’s expressways

that link different cities together and carry high tolls on par with those of many developed countries (Hu

et al., 2010). Partially because these expressways carry such high tolls, policymakers have been hesitant

to add further driving charges in the form of fuel taxes (Winebrake et al., 2008). A proposed fuel tax in

the late 1990s was derailed due to central and local government tensions. Wong (2000) explains that

the Ministry of Finance wished to consolidate the patchwork of local fees on vehicle purchases and use

into a fuel tax that would be redistributed to local governments. The localities, however, were suspicious

of the central government’s promises after the tax redistribution scheme in 1994 had left them with far

lower budgets. Lack of local government support created an institutional barrier to fuel pricing, and

the case exemplifies how Chinese politics is based upon mutual agreement and bargaining rather than

unilateral action.

In the early 2000s, fuel prices in China were on par with those in the US in the early 2000s. In 2005,

they surpassed those in the US, but in 2010 remained one third lower than those in Europe (Mehndiratta

et al., 2012). Now, local governments retain the right to tax fuel at optional rates of 30%, 50% or 80%,

which is still low in comparison with most European countries (Hu et al., 2010).

5.2 Model implementation

VDT is commonly reported as a fleetwide average annual distance traveled per vehicle. While no official

statistics are available, I approximated average results from other studies that relied on field surveys to

set appropriate historical VDT values (Huo et al. (2012c); Hao et al. (2011a); Table C-4). These studies

separate taxis from non-private cars and I reaggregated them to correspond with my non-private car

category. Information on private cars, non-private cars and taxis is more abundant than for minitrucks

or minibuses. I use the data available for minitrucks and assumed its VDT over the past decade showed a

similar declining trend as cars. I assume minibus VDT will resemble non-private car VDT. Unlike private

cars, minibuses are frequently used for utilitarian purposes: transporting many people or much material.

See Appendix C, VDT, for details.

Concerning future VDT, it is reasonable that average annual VDT will continue to drop for all vehicle

types. Chinese private car VDT was above that of most other OECD countries in 2010 at around 16000

km/vehicle/year while non-private car VDT was far higher. For future VDT, I set a reference, higher

and lower projection (Figure 5-2). To develop these, I benchmarked future Chinese private passenger

car VDT against current average annual car VDT for OECD countries sourced from Euromonitor (2013).

10000, 13000 and 16000 km/vehicle/year are the model predicted 2050 low, reference and high sce-
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Figure 5-1: Chinese light duty vehicle VDT in km per vehicle per year.

nario predictions. In 2010, Mexico, South Korea, Slovakia, Turkey, Hungary, Poland and Spain had car

VDT values below 10000 km per year, while the Netherlands, Ireland, Austria and the USA had values

above 16000 km per year. The OECD average was 13618 km/vehicle/year and has been falling since a

peak of 14774 km/vehicle/year in 2003. For all scenarios, I assumed the majority of change in average

annual VDT would occur before 2030.

I include no explicit feedback mechanism between ownership and VDT. Although during the past fif-

teen years rising ownership in China has correlated with falling VDT per vehicle per year, this trend does

not hold across OECD countries. Analysis of both the Euromonitor (2013) and World Data Bank(2013)

shows little correlation between OECD countries’ car ownership and per vehicle VDT.

For the model, average annual VDT is an aggregate measure because it differentiates VDT by model

year and vehicle age. This means the group of five-year-old private cars sold in 2005 have a unique

annual average VDT per vehicle associated to the group. This allows me to accurately incorporate the

tendency for vehicles to be driven fewer kilometers as they age. An exponential decay equation models

this relationship with a mileage degradation rate as a decay factor and a new car VDT. The model keeps

mileage degradation constant at 5% per year (see B for details) and uses a percentage point annual

change in new car VDT to incorporate changes over time. I set these percentage point annual change

values in five or ten year increments for each vehicle type so the fleetwide average annual VDT for each

vehicle type I thereafter calculate accords with the target scenario projection values in 2050 defined

above (see Appendix B, Vehicle distance traveled, for details).

In this process, I disaggregate car VDT projections into private cars and non-private cars but ensure

the weighted average average annual VDT equals the target values. Non-private cars include not only

government and company vehicles, but also taxis. Non-private car VDT is sensitive to taxi VDT: although

they will make up less than 10% of non-private vehicles, their average annual VDT is over 100000

km. Nonetheless, as I benchmark projections to set values, I assume taxi VDT will settle at 110,000

km/year/vehicle and compose 5% of the non-private vehicle fleet. I then combine the weighted average

of non-taxi and taxi non-private cars with private car VDT to achieve 2050 target car VDT values (see
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Figure 5-2: Future light duty vehicle VDT in km per vehicle per year.

Appendix B, Vehicle distance traveled, for details). I assume minibus VDT will be similar to average car

VDT and minitruck VDT will remain higher than car VDT but also drop (see Figure 5-2).

5.3 Comparison across models

My projections for VDT trends are similar to those of other research teams. Huo et al. (2012b) have a

high and low use projection for passenger cars at 9900 km and 13600 km in 2050, Hao et al. (2011a)

project 12000 km in 2050, while Ou et al. (2010b) have the highest projection at 15000 km in 2050.

That said, Hao et al. (2011a) allow for lower VDT in one of their scenarios that specifically targets

VDT. My upper and lower extreme VDT projections bound these projections, while the reference VDT

projection is only slightly lower than the average of the three other research teams’ 2050 projections.
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Chapter 6

Vehicle technologies

Automotive ownership and use comprise the first half of the vehicle impacts identity. Vehicle efficiency

and fuel intensity define the second half. Policy often targets these latter two characteristics more di-

rectly, even if policy is inherent in both. This chapters begins by examining how local and national

government interests have shaped the Chinese automotive industry. It then systematically examines fuel

consumption progress and policies to date. The third section of the chapter uses a dataset compiled

from the Ministry of Industry and Information Technology (MIIT) to compare joint venture (JV) and do-

mestic brand vehicles. After reviewing alternative powertrain progress and policies to date, the chapter

discusses model implementation and a compares chosen values with other modeling efforts.

6.1 The industry perspective

6.1.1 Automotive industry development

During the years of industrial state planning in China, a few hand-picked automotive manufacturers

produced the nation’s vehicles. Many of these SOEs live on today as the “Three Big” (San Da): First

Automotive Works (FAW), Dongfeng, and Shanghai Automotive Industry Corporation (SAIC) (Harwit,

1995). Nevertheless, in the late 1970s and early 1980s, the national government attached little priority

to the automotive industry as it was focused on developing the agricultural sector and rural industry

(Chin, 2010, pp 53). The existing companies produced trucks. Passenger car production made up no

more than 2% of national output in any year before 1979, and accounted for over 5% first in 1988

(World Motor Vehicle Data,1990). The firms that manufactured vehicles did so inefficiently: in 1987

China had the world’s largest motor vehicle industry in terms of employment (1.2 million), but one of

the world’s smallest in terms of output (400 000 units). Chinese automotive labor productivity was one

sixtieth that of Japan (Womack, 1987, pp 31-32). Womack further describes a tour at a Beijing Truck

Plant I tour where skilled machinists used individual tools to create identical parts. Nevertheless, data

shows that 1990 marked a definitive upward shift the passenger car segment’s importance in the Chinese

automobile industry. The passenger car segment’s importance grew rapidly to top 25% of sales in 1994

and 50% of sales in 2001 (Ward’s,2009, 2011-2012).

China’s passenger car market was nonexistent for long because private cars were seen as an unnec-

essary luxury good (Oliver et al., 2009). When China loosened trade controls in the 1970s and 1980s,

demand for imported passenger cars and light trucks bounded upwards. The Chinese government’s

solution was to develop indigenous truck manufacturing capabilities and establish JV firms with for-
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eign automotive manufacturers in order to access desirable foreign models (Chin, 2010, pp 54). China

awarded the first JV approval to Beijing Automotive Industry Corporation (BAIC) and American Motor

Company (AMC) in 1983 to produce Jeeps. The national government approved Shanghai Volkswagen

in 1984 and Guangzhou Peugeot Automotive Corporation (GPAC) in 1985 (Thun, 2006, pp 136-137).

Unfortunately, both Beijing Jeep and GPAC went sour and the parent companies terminated cooperation.

Womack blames the Chinese government for imposing burdens on the foreign firms that prevented

them from applying their own, tested “foreign” practices. For instance, requirements to “reuse existing

facilities and tools made it difficult or impossible to lay out plants in a world-class manner” (Wom-

ack, 1987). Chin (2010) also points out after the most successful automotive firms of the day snubbed

China’s high demands to enter a risky, unproven domestic market, two of the three firms who did in-

vest were in financial trouble. They could not devote the attention necessary to establish the robust

local supply chains required for long term success but relied on importing complete vehicle kits (Chin,

2010, pp 66-72). This is only a partial explanation, because institutional relationships in China con-

tributed to Shanghai’s success in establishing a local network where Beijing and Guangzhou failed. Each

municipality had received central government approval to fulfill the vision of developing a domestic

Chinese automotive industry. When implementing this vision, Thun argues that Shanghai’s close ties

with the central government ensured effective communication and cooperation. Shanghai’s complete

control over its automotive sector also enabled it to steer necessary supply chain investments. Beijing

and Guangzhou, however, were unwilling or unable to fulfill this central government vision. In Beijing’s

case, authorities declined to favor local supply firms and invest the time to develop their organization

capabilities. In Guangzhou’s case, they had other, more lucrative industries to invest in. (Thun, 2006,

ch 5). Meanwhile, “lack of coordination on the Chinese side, between central authorities and local

representatives” prevented the Chinese firms from effectively bargaining with foreign firms to receive

the skills, training and expertise they needed to develop a strong automotive industry (Chin, 2010, pp

76). By the mid-1990s, China only produced nine car models (Oliver et al., 2009). China’s automotive

industry was still small and not yet entered a period of significant, sustained growth. It was already

clear, however, that the existence of a central government vision did not necessarily translate into local

government implementation.

The central government prioritized the automotive industry gradually. It was designated a “pillar

industry” in 1986 and goals included consolidating the industry under central control, prioritizing pas-

senger cars, developing local capability, and partnering with international firms (Thun, 2006, pp 55).

These goals were formalized in the 1994 “Automotive Industry Policy” that sought to imitate Japanese

and Korean success and avoid the overinvestment and duplication that could result from “unregulated

market competition.” Between 2000 and 2010, the central government would consolidate the industry

into 3-4 large, internationally competitive conglomerates by offering priority access to finances, finan-

cial markets and foreign investment (Chin, 2010, pp 112). This national policy also laid out the JV

policy where the Chinese partner had to have at least a 50% stake in order to retain “state power” and

“promote national goals” (Chin, 2010, pp 116). This bold vision formed the start of a continual central

government commitment to the automotive sector.

The automotive sector grew. In 2002, it employed 1.57 million Chinese and accounted for 5%

of manufacturing industry employment and 6.1% of manufacturing industry value (Gallagher, 2006).

However, the JV ownership structure had not produced desired results. The Chinese government had

hoped JV partnerships would create a means and incentive for foreign vehicle manufacturers to transfer

new and cleaner technology to their local partners, but foreign companies transferred only outdated

products to local partners. (Gallagher, 2006). Transferring outdated products allowed foreign compa-
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Figure 6-1: Chinese passenger car production volume 2010, divided by manufacturer. Geographic lo-
cations correspond with domestic company headquarters, and foreign partners in any joint
ventures are listed below. (Volvo is the exception; Geely wholly owns Volvo). Circle size
corresponds with relative marketshare, and joint venture and domestic brands are grouped
together. Source: Ward’s World Automotive Data, 2009, 2011-2012.

nies to extract more profitable years from aging models, while transferring knowledge and proprietary

innovations to a potential future competitor was entirely irrational. Concerning clean vehicle technology

regulation, Gallagher further argues the government was locked in a “vicious circle” where they were

reluctant to impose fuel consumption or emissions limits for fear of jeopardizing the commercial viability

of the domestic brands, but that the lack of such policies created insufficient incentives for foreign JV

partners to transfer clean technology. As described in Section 8.2, the government eventually did impose

these standards. However, as standards now grow even tighter, it is plausible that concerns over hurting

domestic brands may once again delay action.

6.1.2 Current Chinese automotive companies

Two words describe the Chinese automotive industry: large, but fragmented (Figure 6-1). Nine domestic

automotive companies produce passenger cars with a JV partner, and their headquarters are spread out

among nine different provinces, in stark contrast to the strong regional Midwestern concentration found

in the United States. A full 20 companies hold over a one percent marketshare (Ward’s World Automo-

tive Data, 2009, 2011-2012) with headquarters spread over twelve provinces and factories located in

many more. The largest Chinese car conglomerate today, SAIC, produces only 23.8% of China’s cars. In
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addition, it is evident that JV brands still account for the majority of Chinese car sales. In fact, the most

successful domestic brands are those unattached to a joint venture. This evidence shows that national

government intentions for large SOEs to develop into strong automotive brands has gone awry as it

is the independent and purely domestic automanufacturers who have developed the successful home-

grown brands. The following section examines how national government vision and local government

implementation has led to this outcome.

The central government designed the JV model to allow foreign entrants access to the Chinese market

while developing SOE expertise and technology. This has indeed resulted in remarkable gains as Chinese

passenger car production has sharply increased and many luxury models are now produced in China.

However, “for Chinese state planners... realizing world-class quality and productivity standards inside

China is not enough. The nationality of the firms matters” (Chin, 2010, pp 207). Unfortunately, the

structure among the SOEs, local governments and central government has not produced the desired

incentives to create strong domestic brands. Chin quotes a former head of FAW, who blames the “JV

structure” for encouraging management to concentrate on selling profitable JV cars instead of investing

R&D into domestic brands. Chinese SOEs abandoned R&D efforts in the 1990s, instead transferring

skilled engineers and managers to the JVs in order to use the JVs protected status to overprice the

models and gain handsome profits (Chin, 2010, 209-210). This is logical. Foreign firms had little

incentive to transfer state-of-the-art technologies to China or train Chinese partners to produce top-notch

vehicles and become future competitors. As municipalities largely owned the SOEs, they could reap easy

revenues from the setup, and logically had little incentive to invest in costly R&D. Because the national

government had decided the limited number of who could and who could not sell vehicles in China,

the resulting near monopoly conditions, coupled with quickly rising sales, created few reasons to invest.

National government vision and local government priorities failed to align - the local governments were

content with steady profits. Chin relates that the general manager of FAW said “we have no time to do

development now as we are very busy ... producing Jetta and Bora. We should wait some 20 years to

have strong development capabilities” (Chin, 2010, 211).

Even if the national Chinese government could keep unwanted foreign brands from manufacturing

in China, it could not prevent enterprising local companies from seizing the opportunity. These new

entrants were not content to wait twenty years to develop Chinese brands. These independent automak-

ers focus on the low end market that has benefitted from the rise of an urban Chinese middle class.

The group includes Chery Automobile, BYD Auto and Zhejiang Geely. Because the central government

strictly regulates companies that are and are not allowed to manufacture vehicles, these companies have

often had to defy the system in order to pursue their business. Hessler relates that Chery built their first

automotive assembly line in secret, only asking the national government for a manufacturing license

after their successfully producing their first vehicles. This infuriated the government and Shanghai-

VW who had negotiated contracts with supposedly exclusive suppliers (Hessler (2005)). Dunne writes

bluntly that “officials in charge of the automotive industry gave car production licenses only to compa-

nies featured in the central government plans. Chery was never part of the official plan.” Yet Wuhu’s

local government successfully lobbied the central government to successively allow Chery to produce

engines, produce vehicles but only sell them only in Wuhu, and produce vehicles and sell them in China

(Dunne, 2011, pp 125-131). Local governments can defy central government directives. While the cen-

tral government may unilaterally set automotive policy, promulgating is not implementing. In addition,

Chery, in combination with other independent brands, have shown themselves to be ambitious and risk-

taking: BYD touts electric vehicle ambitions (Dunne, 2011, pp 207) while Chery has aggressively begun

selling vehicles abroad (Chin, 2010, pp 191-192). Their ambitious behavior has paid off: they produce
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the most successful domestic brands (Figure 6-1). Besides showcasing the disconnect between central

government and local government interests, the mavericks’ success also shows that central government

planning is underperforming local government initiatives.

Not all vehicle manufacturers in China have been so successful. Industry defragmentation is also

evident in the “long tail” of dozens of dysfunctional or defunct automotive manufacturers. Many were

former automotive components or other industrial components manufacturers. Consolidating these is

one of the national government’s thorniest headaches, but has so far proved unsuccessful. In the 1980s,

attempts to rationalize existing assembly and components manufacturers into a limited number of des-

ignated product lines and assembly facilities and compensate the municipalities losing assembly oper-

ations did not work (Womack, 1987). Womack notes that “decision making on investments, products,

and foreign tie ups now seems more than ever to be at the provincial, municipal, and even enterprise

level.” However, as noted in Chapter 2, these years were when local governments were given both

greater ownership over SOEs and greater financial burdens to provide economic growth and jobs in

their home districts. The central government may have wanted to consolidate the automotive industry,

but local governments pushed back. Thun describes that local governments might prohibit products

produced outside their jurisdiction, levy extra fees on these out-of-district vehicle sales, or require SOEs

and government bodies to purchase vehicles from the local manufacturing factory only (Thun, 2006,

pp 58-59). Recall from Chapter 4 that non-private vehicles comprised a majority of sales at the time:

this last requirement could significantly impact overall vehicle purchases. In addition, although only the

central government could issue licenses to sell vehicles nationwide, local governments could provide au-

thorization for production and sales within their own jurisdiction (Thun, 2006, pp 59). They did so and

the number of automakers continued to grow. According to Gallagher, there were over 100 automotive

manufacturers in China in 2005, the same number there was in the US in 1914. But while there were

only a dozen manufacturers in the US in 1924 and three controlled 90% of sales (Gallagher, 2006),

dozens of Chinese vehicle manufacturers remain. Granted, the automobile industry was still nascent

worldwide in the early 20th century, but the lack of consolidation can also be attributed to economic

and government structure. The automotive industry is a source of pride as a pillar industry, receives

significant national support through R&D and demonstration programs (see Section 6.4.3), and employs

millions of workers. Furthermore, the vehicle industry is growing quickly, and as local governments

own SOEs, they can profit from investing in their local SOEs. It is no surprise that national government

intentions to consolidate the industry have thus far been unsuccessful. Local governments have strong

interests in maintaining their automotive companies. Unfortunately, because many Chinese companies

lack the critical mass necessary for economies of scale, this industry defragmentation itself is a barrier

to greater research, innovation and development.

Meanwhile, domestic manufacturers struggle to achieve decent passenger car marketshares. In 2003,

they accounted for less than 20% of Chinese car sales (Oliver et al., 2009). Share of manufacturing

output has increased somewhat faster from 10% in 2002 to 42.5% in 2005 (Chin, 2010, 183). Analysis

of Ward’s World Automotive Data reveals that passenger car market shares have held relatively steady

from 2007 and accounted for 30.3% of sales in 2010. Domestic brand share of light trucks are much

higher and have varied between 70% and 90% of sales between 2007 and 2010 (Ward’s, 2009, 2011-

2012). Though domestic brand sales have topped 30% in recent years as was the goal outlined in the

“Automobile Industry and Restructuring and Revitalization Plan” (2009), they have not achieved the

40% the plan set as a future goal.

For the domestic Chinese automotive industry, it was beneficial that national government attempts

to consolidate it have thus far failed - the rise of Chery, Geely, BYD and other independent automakers
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would not have been possible under unilateral state control. Some analysts argue this is part of the

solution. The Ministry of Science and Technology urges central government support be distributed

among the successful independent companies such as Chery and Geely rather than concentrated among

JVs and their SOE parents (Chin, 2010).

Developing a strong, internationally competitive automotive industry remains an important national

goal for China, and has been so for over a decade (Gallagher, 2006). There is still progress to be

made. As the remainder of this Chapter shows, the inherent technology levels of domestic Chinese

manufacturers still lag that of JV counterparts. Meanwhile, grand central government plans to catalyze

a thriving electric vehicle industry have short-circuited. Can the national government simultaneously

consolidate the industry and raise the domestic brand sales marketshare while tightening fuel standards

and promoting electric vehicles? We don’t know yet.

6.2 Progress and policies to date: fuel consumption

6.2.1 First and second phase fuel consumption targets

In the mid 2000s, the Chinese central government concluded fuel consumption standards were necessary

as a measure to control conventional fuel demand growth (Wang et al., 2010). Concerns over energy

security (see 2) and a need to keep pace with foreign government regulation in order to eventually

export vehicles may also have played a large part. Oliver et al. (2009) argue the Chinese government

initially focused regulation on passenger vehicles because of international precedence and the segment’s

fast rate of growth among vehicles.

The first set of standards took effect for new models on July 1, 2005 and for continuing models on

July 1, 2006. This set of standards did not require automakers to make undue adjustments in model

lineups but rather sped up the retirement of outdated models (Wagner et al., 2009). The second set of

standards that took effect for new models on January 1, 2008 and for continuing models on January 1,

2009 did require technical improvements. Both standards created sixteen weight classes ranging from

below 750 kg to above 1500 kg. All car models had to adhere to the standard in their class, or else not

be manufactured and produced (Wagner et al., 2009). Oliver et al. (2009) point out the standards are

designed to be easier to meet for lighter vehicles than heavier vehicles, and (Wang et al., 2010)), who

contributed to designing the policy, confirms this. The purpose of this, Wang et al. (2010) explains, was

to discourage the proliferation of large, heavy cars. The policy was thus beneficial to Chinese domestic

automotive manufacturers who have the largest comparative marketshares among small cars

The standards were, however, easier to meet for vehicles with special structures: SUVs, vehicles with

three or more rows, and vehicles with automatic transmission. Vehicles with three or more rows of seats

are largely designed for transporting passengers or goods in rural areas and as such are given more

lenient standards (Wang et al., 2010).

6.2.2 Progress to date

The fleet fuel economy in China improved in the mid-2000s in response to China’s first fuel economy

standards. Early efforts to document fuel economy in China are sparse, and results contradict each other.

Using a 1998 model year database with label fuel consumption values1 and a 28% derived adjustment

factor for passenger cars, He et al. (2005) calculated on-road passenger vehicle fuel consumption2 to
1Fuel consumption as tested by an idealized drive cycle
2Fuel consumption in real conditions, taking terrain, traffic and other considerations into account
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Figure 6-2: Passenger car fuel consumption in L / 100 km.

9.07 L / 100 km for 1997 – 2002 vehicles. Two years later, Wang et al. (2007) used 16.2 L / 100

km for the fleet wide on-road passenger vehicle fuel consumption in 2000. Because of the significant

discrepancy in these values, I use no model year 2000 fuel consumption in the model calibration.

Numerous studies on passenger cars since 2002 show declining fuel consumption (Figure 6-2). Re-

garding on-road fuel consumption, CATARC calculated 9.11 L / 100 km as on-road passenger vehicle

fuel consumption in 2002 (Wang et al., 2010), but the methodology used is unclear. Ten years later, Huo

et al. (2011) found on-road fuel consumption to be 9.06 L / 100km, using an identified 15.5% adjust-

ment factor from label fuel consumption. For label fuel consumption, data points are rich since 2002.

Knörr and Dunnebeil authored a report with 8.4 L / 100 km as the passenger vehicle fuel consumption

in China in 2002 (Knörr and Dunnebeil, 2008). Following this, MIIT began publishing batches of infor-

mation of vehicle characteristics for each variant of each model approved for sale on the Chinese market.

By corresponding this data set with sales data available through the Chinese Automotive Industry Year-

book, it is possible to determine fleet wide fuel consumption. The ICCT in An et al. (2007) reported

8.17 L / 100 km for model year 2005. For model year 2006, calculations clustered around 8 L / 100 km:

studies cited 8.06 L / 100 km (Wang et al., 2010), 8.05 L / 100 km (An et al., 2007) and 7.95 L / 100

km (Wagner et al., 2009). The Innovation Center for Energy and Transportation (ICET) has compiled

an annual study of Chinese fleet-wide fuel consumption from 2007 (An et al., 2011). Meanwhile, Huo

et al. (2011) calculated model year 2009 fuel consumption as 7.8 L / 100 km and a recent ICCT anal-

ysis measured the same value for 2010 (He and Tu, 2012). The seven years of reported fleet wide fuel

consumption statistics for passenger cars cluster well around a linear trendline. This derived trendline is

used to model fuel consumption for the ”private cars” and ”non-private cars” in the model for all years

preceding and including 2010 (see Appendix B, Future fuel consumption, for further explanation).
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6.2.3 Third phase fuel consumption targets

Recently promulgated policies have announced ambitious fuel consumption targets. The State Council

officially announced the upcoming targets in July, 2012. The new targets require an average corporate

label fuel consumption of 6.9 L / 100 km in 2015 and 5 L / 100 km in 2020 (State Council, 2012). While

the previous fuel economy standards were weight based, the new fuel economy standards are modeled

on the US Corporate Average Fuel Economy standards. The new standards will put China on par with

newly released standards in the US and EU standards (Cristiano Facanha et al., 2012). Both targets may

prove difficult to meet: the former because it is merely two years away, a very short time span in an

automotive development cycle, and the latter because many companies are not near this target. Both

JV and domestic brands may struggle - JV brands focus on the larger passenger market while Chinese

domestic brands focus on small cars (He and Tu, 2012). JV brands will either have to adopt much more

stringent technology among their existing product lines or downsize their vehicles and vehicle engines

and compete in new market segments. Chinese firms, meanwhile, already produce small vehicles. They

will have to improve their technology and may face stiffer JV competition. In addition, more technology

will raise average vehicle prices, potentially putting Chinese firms at a disadvantage because low prices

is a major part of many domestic brands’ value proposition.

While it seems contradictory that the national Chinese government would support a policy that could

harm their domestic automotive industry, the policy is necessary. The national government wants to de-

velop an internationally competitive automotive industry. To do so, it must conform to the international

regulatory norm. Because the US and the EU have already independently set their targets, China is

therefore responding. In regulatory parlance, the Chinese government is converging its policies to high-

est common denominator (Murphy, 2002). By the same argument, one reason the US and the EU may

have adopted stricter policies is specifically to shield their markets from international entrants.

6.2.4 Stakeholder analysis of proposed policies

Even if the national government supports these policies, support may not be unanimous across all stake-

holders (Figure 6-3). Additionally, policy responses may change over time. For instance, if the majority

of domestic companies consistently fail fuel consumption standards, the national government may in-

tervene and lighten the standards. In another scenario, domestic companies may be able to adhere to

standards, but must concentrate on only small engine vehicles to do so. In this case, JV companies might

regain marketshares they have lost over the previous five years and the national government may lighten

standards to allow domestic companies to compete. Fuel consumption targets, while aggressive, may

not be met. Hence the model also does not assume they will be met but uses a different method to set

future fuel consumption values.

Local governments are not equal. The most successful Chinese domestic companies that have suc-

ceeded in selling cheap vehicles to first-time car buyers may be able to continue to do so. However,

domestic companies on average will oppose the policy. They do well in the cheaper side of the market

but the new regulations will require them to invest in more expensive technology and increase vehicle

cost. JV firms will have a mixed response to the policy. While they must develop the technology in home

markets to meet regulations, in China they have been able to focus on larger vehicles. Depending on

how the policy will be formulated, this may place pressure on JV firms to start gaining market shares in

the small vehicle segment, an area they are not as strong in. However, because they must meet high US

standards, they will push for high standards in China as well.

In many other industrial sectors, Chinese manufacturing has been able to achieve cost savings and
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Figure 6-3: Stakeholder analysis for new fuel consumption targets.

more efficient production processes (solar and wind energy, for example). Some researchers suggest

because China has reached success by concentrating resources in other industrial sectors such as mili-

tary technology and spacecraft, it is the lack of effort that has prevented this in the automotive sector

(Gallagher, 2006). Almost ten years after that analysis, the Chinese domestic vehicle industry has not

caught up. It is possible that the first and second phase targets were not stringent enough to induce a

flurry of innovation. However, rising fuel consumption standards are hard to marry with cost savings.

In addition, the automotive sector may be industry but it creates consumer products. A formula of cost

saving and production processes may not be enough to succeed in a consumer oriented sector.

6.2.5 Other industry policies

In addition to fuel economy standards, the Chinese government has set sliding vehicle sales taxes ac-

cording to vehicle engine size (Table 6-1). This serves two benefits: just as relatively tougher standards

on large vehicles encourage sales of smaller vehicles, so do higher sales taxes on larger vehicles. In

addition, as Chinese manufacturers dominate sales of small vehicles, it benefits domestic firms. Nev-

ertheless, this policy has questionably achieved its intended effects as marketshares for vehicles with

engine displacements over 2.5 L did not sharply decline in 2006 when tax rates doubled. While after

lowering the tax rate for vehicles with a 1 - 1.5 L engine grew the relative marketshare grew, the low

tax rate for vehicles with engines smaller than 1 L has not improved their marketshare noticeably after

2008. It still hovers around 10% (Oliver et al., 2009).
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Engine size (cc) Before 4/1/2006 4/1/2006-8/31/2008 After 9/1/2008

<1000 3 3 1
1000-1500 5 3 3
1500-2000 5 5 5
2000-2500 8 9 9
2500-3000 8 12 12
3000-4000 8 15 25

4000+ 8 20 40

Table 6-1: Vehicle sales taxes and engine size marketshares. Source: Wagner et al. (2009).

6.3 Vehicle fleet characteristics

Technology analysis

Countries regulate vehicle fuel consumption, but the independent variables that companies manipu-

late as they produce vehicles does not include vehicle fuel consumption. Rather, they include ve-

hicle weight, vehicle power, vehicle engine displacement, transmission type, and others. For exam-

ple, all else being equal, increasing vehicle weight increases vehicle fuel consumption, as does in-

creasing vehicle power or vehicle engine displacement. All else being equal, switching to an auto-

matic transmission will consume more fuel. Other dependent variables co-exist with fuel consump-

tion as tradeoffs: shorter acceleration times are associated with worse fuel consumption and vice

versa. Fuel consumption, then, is a function of these independent variables and could be expressed

as f uel consumption = f
�

weight
�

× f
�

engine technolog y
�

where engine technology includes vehi-

cle power, vehicle engine displacement, transmission type etc.

The existence of a technology gap between Chinese domestic brand firms and JV firms is qualitatively

implicit in previous work. Some more recent work has begun to explore this difference quantitatively.

ICET has yearly published a corporate average fuel consumption review by company and type of com-

pany in China, dividing out Chinese independent brand firms, Chinese SOE conglomerates and JV firms

from each other (An et al., 2011). Their work shows how performance can vary astonishingly among

companies. However, it does not include other variables such as weight or power which may also vary

significantly among companies. The ICCT recently conducted a sales-weighted analysis of the vehicle

characteristics and technologies of passenger cars present in China (He and Tu, 2012). This is the first

comprehensive English language report to include statistics on engine size, power, and weight. The

purpose of the study was to compare the Chinese passenger fleet with the foreign passenger fleets;

hence, the study only separates domestically produced Chinese passenger cars from imported vehicles

and bypasses the domestic/JV brand categorization.

However, merely examining fuel consumption differences among Chinese and JV companies does

not suffice. All companies must adhere to the weight-based fuel consumption standards, and differences

therefore reflect positioning among market segments. If the data for vehicle weight, power, engine

displacement and fuel consumption exists, it should be possible to explore deeper and quantify the

technology gap in between the two types of companies.

In this section, I will show that although vehicle fuel consumption for Chinese and JV brand vehicles

in China is similar, there exists an engine technology gap between the two. Unfortunately, with the avail-

able data, it is not possible to comment on whether this potential technology gap is due to engineering

and innovation capability, or targeting less affluent consumers. The necessary price data would have to

be gathered separately.
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Data sources for vehicles characteristics

MIIT ensures vehicles meet standards and certifies them for sale. In 2006 when the first Chinese fuel

economy standards took effect, the NDRC began publishing data on all approved vehicles. Since 2010,

MIIT uploads this information online. I have collected complete time series data for 2006, 2007, 2010,

2011 and 2012 (NDRCNDR; NDR; 2013, 2013). In 2006, the dataset includes company, model, model

variant, weight and fuel consumption. 2007 adds transmission but excludes model. From 2010, data is

split by company, model, variant, weight, power, engine displacement, transmission, fuel consumption

and month. I manually add a classification for company type: domestic, joint venture or imported. I

classify companies according to the name: Chery is Chinese and domestic, FAW-Toyota contains Chinese

and foreign brand names and is a JV, while Porsche is foreign and imported.

The data is not sales-weighted. Because I am interested in the technology level of companies and not

the market uptake, this shortcoming does not compromise the findings. Nevertheless, potential errors

could influence the data. The database includes every variant of every vehicle model. However, some

companies include many variants per model and others hardly any; this would skew data in favor of

companies that favor many variants per model. To correct for this, I first analyzed the data on both a

per-variant and a per-model basis. For the per-model basis, I averaged each of the vehicle characteristics

for a given model across the variants. Very few differences in results arose. Second, because firms with

many variants per model are usually domestic, firms with few variants per model are JV and I analyze

the two categories separately, I minimize, but do not eliminate, errors in the variant-based approach. I

proceeded with the variant-based analysis.

Weight, power and other characteristics

Imported cars account for just 4.2% of overall sales (He and Tu, 2012). These vehicles are also luxury

vehicles. The list of foreign automotive manufacturers that export to China includes Audi, BMW, Lam-

borghini, Roll Royce, Ferrari, Maserati, Porsche and Jaguar. A more standard automotive manufacturer

such as Toyota will import luxury brands even if the majority of its vehicles are produced locally with an

SOE partner. The basic characteristics of an imported car stand out: compared with the average JV car

produced for the Chinese market, the imported vehicle is over 300 kg heaver, its engine is 1200 cc larger

and 74 kW stronger, and its fuel consumption is 2.3 L / 100 km worse (Figure 6-4). Because imported

vehicles only comprise a small portion of sales in China and they are unrepresentative of the average

Chinese passenger vehicle, I exclude them from further analysis.

The differences between the Chinese brand and JV vehicles are more subtle. The average domestic

vehicle weighs 1421 kg, while the average JV vehicle weighs 33 kg less at 1387 kg (Figure 6-4). However,

JV engines are larger than domestic engines - 1843 vs 1725 cc, respectively. Given that weight is similar,

fuel consumption should be as well. It is: 8 L / 100 km for domestic brand vehicles and 7.86 L /
100 km for JV vehicles. However, even if weight, engine displacement and fuel consumption vary little

between the vehicle classes, power does. The average JV engine is 25% more powerful than the average

domestic brand engine: 101 kW vs 82 kW. With this discrepancy in engine power one would expect

fuel consumption of JV vehicles to be worse. Instead, the discrepancy in engine power and lack of

discrepancy in fuel consumption and weight support the conclusion that there exists a difference in

engine technology. That is, JV engines are more efficient than their domestic counterparts.

Indeed, the average specific power (power divided by engine displacement) of JV engines is 28%

better than the average specific power of domestic engines (Figure 6-5). The histograms show that cer-

tain domestic brand vehicles have high specific power, while certain imported models have low specific
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Figure 6-4: Passenger car weight, engine displacement, power and fuel consumption. Clockwise from
top left: A) vehicle weight in kg, B) vehicle engine displacement in cc, C) vehicle power in
kW, and D) vehicle combined fuel consumption in L / 100 km. Blue denotes domestic brand
vehicles, red imported vehicles and green joint venture vehicles. Column height refers to
average values and errors bars mark one standard deviation.

68



Figure 6-5: Passenger car specific power and specific weight. A) specific power, measured as power
(kW) / engine displacement (L) and B) specific weight, measured as power (kW) / weight
(kg).

power. Certainly, differences in engine technology between JV and domestic companies do not hold true

across all companies or all vehicles: certain domestic companies are more technologically advanced,

or choose to provide larger engines with more power. On average though, a given JV car will have a

stronger engine than a given domestic brand car.

Distributions

Figure 6-6 and 6-7 show distributions of pairs of variables for domestic brand and JV brand passenger

vehicles. Graphs A, B and D use all vehicles released in 2010 - 2012; graph C also includes model years

2006 and 2007. As is clear from graph C, both domestic and JV vehicles achieve similar fuel consumption

for a given vehicle weight class. Because Chinese fuel consumption standards require every vehicle of

a certain weight class to attain a corresponding fuel consumption, this is entirely logical. However, the

slope of the JV weight-fuel consumption relationship is steeper by 22%. At higher weights, JV vehicles

consume more fuel. This could be indicative of JV models using more aggressive engines (shorter

acceleration times). At lower weights, JV vehicles consume less fuel, but the difference is negligible. All

these effects could be due to differences in engine size, engine power, or engine technology. Graph A

gives some indication of the differences: JV brand vehicle engines are more powerful than their domestic

brand counterparts for a given weight. For small vehicles around 1000 kg, the difference is small or non-

existent because these vehicles are generally inexpensive and rely on simply engine technology. Heavier

vehicles, however, often contain more powerful engines and therefore need more advanced technology

to keep fuel consumption low. Because JV engines are more powerful than the domestic alternatives at

the same weight, these engines therefore must use more advanced technology to achieve the same fuel

consumption limit. Graph B shows the same trend for engine displacement: JV engines are larger for a

given vehicle weight. These JV engines are also not only larger than their domestic brand counterparts,

but also more energy intensive (Graph D), which confirms the observations of specific power from the
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previous histograms. These trends hold up over time, even as both domestic and JV firms have decreased

fuel consumption.

Regression analysis

Various studies have applied regression analyses on vehicle characteristics to the US vehicle fleet for a

variety of different purposes. (Knittel, 2012) examined what US passenger car fuel consumption would

be if technology advances over the previous three decades had been used to improve fuel economy

and not increase power and (Mackenzie and Heywood, 2012) developed an improved methodology for

estimating vehicle acceleration

Here, I use the technique to derive a relationship among fuel consumption and various parameters

that influence it (Equation 6.1). I relate fuel consumption to weight, power, specific power, origin and

transmission. “Origin” refers to whether a vehicle is domestic or JV, where the default is JV. The default

transmission is AMT. Unsurprisingly, nearly the variables are significant in predicting fuel consumption

(Figure 6-8). By this estimate, all else being equal, a JV vehicle decreases ln (FC) by 0.057, meaning

it decreases fuel consumption by 0.15 L / 100 km. The difference in average characteristics was 0.3

L / 100 km. However, the difference in the regression analysis does not take into account differences

contained within the other variables: choices of transmission, differences in power, and differences in

displacement. The analysis here is a first attempt at quantifying the differences among domestic and

JV cars in China; many more questions remain to be investigated. Nevertheless, it is clear that there

exists an engine technology gap between Chinese and JV cars. Some is attributable to choices in engine

size. But much is attributable to engine efficiency in the form of specific power and other technology

differences. As the central Chinese government tightens fuel consumption standards, domestic cars

manufacturers may be at a technology disadvantage.

ln (FC) = a0+a1 ln
�
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�

+a2 ln
�

power
�

+a3

�

power
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�
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�
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��

(6.1)

6.4 Progress and policies to date: powertrain technologies

Among the established powertrains, passenger car fleets in China have been traditionally gasoline de-

pendent. A number of these are increasingly turbocharged. Meanwhile, the Chinese government has

strongly pushed for the proliferation of “New Energy Vehicles” (NEV) for over a decade. This section

examines the current marketshare balance of different powertrains.

6.4.1 Turbocharged vehicles

Available studies suggest turbocharged gasoline ICE vehicles are more prominent in the Chinese sales

mix (7%) than in the US light duty vehicle sales mix (3%) or the EU passenger car sales mix (4%) (He

and Tu, 2012).3 Turbocharged vehicles are likely more popular in China because vehicle sales taxes

increase with vehicle engine size. Because turbocharged engines deliver the same power for a smaller

volume, the difference in sales tax can offset the increased technology cost. He and Tu (2012) identify

3That said, the study also reports that 16% of the European gasoline-powered passenger car fleet is turbocharged. The Chinese
car fleet is almost entirely gasoline-powered
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Figure 6-6: Passenger car power, engine displacement, weight, fuel consumption distributions. Simple
linear regressions are applied to the blue domestic brand model variants and green joint
venture model variants.
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Figure 6-7: Passenger car power, engine displacement, weight, fuel consumption distributions. Simple
linear regressions are applied to the blue domestic brand model variants and green joint
venture model variants.
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Figure 6-8: Passenger car regression analysis.

what percentage of different manufacturers and car segments in China are turbocharged. Roughly 20%

of the imported fleet is turbocharged compared with less than 10% of the fleet manufactured in China.

Fully 35% of the FAW-VW joint venture produced vehicles are turbocharged while many other JV and the

majority of domestic manufacturers do not use any turbocharged technology. As expected, turbocharged

technology is also most common among the medium and large passenger car segments, as well as the

SUVs. Geely and Great Wall are the experimental exceptions among domestic manufacturers, with up to

5% of their fleets turbocharged. As pointed out in 6.1, the independent domestic Chinese manufacturers

are the more successful risk-takers, and it is thus unsurprising that two of these manufacturers are the

domestic brands exploring turbocharged technology.

More stringent fuel economy policies will drive adoption of turbocharged technology: it is one

method to significantly reduce the fuel consumption of ICE vehicles while retaining high power. That

said, even though penetration has been relatively high, it has been more concentrated among luxury ve-

hicles so far. It will take longer for turbocharged technologies to percolate into the rest of the automotive

fleet.

6.4.2 Diesel vehicles

Diesel vehicles not been very popular among passenger cars or smaller light trucks in China. While some

fleet model researchers do consider dieselization among possible options to reduce energy demand in

China (Huo et al., 2012a; Ou et al., 2010b; Yan and Crookes, 2009), automotive industry policy in China

has vacillated on whether or not to promote diesel cars. In 2004, the NDRC’s auto development policy

included car dieselization among prioritized technologies (Gong et al., 2012), but more recent policy

has focused on promoting electrified vehicles among passenger cars (State Council, 2012). Irrespective

of policy, the marketshare for diesel passenger cars in China has barely budged in the past decade: Ou

et al. (2010b) report diesel powered ~0% of passenger cars before 2007, and just 1% in 2007 and 2008.

Huo et al. (2012b) confirm the 1% figure in 2010 for both private light duty vehicles and business light
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Vehicle weight class Share of LDTs Gasoline Diesel

<1800 kg 24.5% 77% 23%
1800 - 3500 kg 38.8% 21% 79%
3500 - 4500 kg 22.9% 0% 100%
4500 - 6000 kg 13.9% 0% 100%

All LDTs 100% 26.9% 73.1%

Table 6-2: 2009 light duty truck gasoline and diesel marketshares. Source: Huo et al. (2012a).

duty vehicles (Huo et al., 2012a). Furthermore, sulfur content in diesel is more than thirty times higher

in China than in Europe (Wang et al., 2011a), making it difficult for diesel passenger vehicles to meet

emissions standards. Finally, China has experienced diesel fuel shortages (Wang et al., 2011a), making

it difficult to start a passenger car market for diesel fuel. Conversely, light duty trucks have increasingly

begun relying on diesel. Diesel powered 55% of light duty trucks in 1997, but 91% of light duty trucks

in 2007 (Ou et al., 2010b). However, the fuel shares are not evenly distributed among light duty vehicle

weight classes (See Figure 6-2). Gasoline powertrains dominate the small light duty truck fleet, but are

nonexistent among trucks weighing more than 3500 kg. Because this model only considers light duty

trucks weighing less than 1800 kg, the diesel share for these minitrucks is hence only 23%.

6.4.3 New energy vehicles

In China, the term “New Energy Vehicle” (NEV) generally refers to electric vehicles (EV), plug-in hybrid

electric vehicles (PHEV), hybrid electric vehicles (HEV), and fuel cell vehicles. Occasionally, it also

refers to alternative fuel vehicles (Gong et al., 2012). Developing these vehicles has captivated the

national Chinese government since the mid-1990s because they represent a chance to “leapfrog” past

other automotive technologies toward clean energy transportation (Gallagher, 2006).

China’s government includes fuel cell vehicles among new energy vehicles, and prioritized them

among NEVs during the 11th FYP (2006 - 2010) during which it invested 21% of the “863 program”

budget, or 23 million USD, into fuel cell vehicles (Gong et al., 2012). However, both vehicle produc-

tion costs and the cost of hydrogen refueling infrastructure remain prohibitively high, making imminent

adoption unlikely and long-term adoption uncertain (Yao et al., 2011). Refueling stations, for instance,

have been limited to fuel cell vehicle demonstrations during the 2008 Beijing Olympics and 2010 Shang-

hai World Expo, and among the 14 models certified for production, very few have been produced (Gong

et al., 2012). Because fuel cell vehicles in China have not yet entered a commercial phase, I exclude

them from analysis. Even if they could reach technological maturity within the next decade or two,

widespread adoption would still be many decades away.

Therefore, in this study, I equate new energy vehicles with vehicles using electrified powertrains.

This includes full hybrid electric vehicle (not mild start and stop hybrids), PHEVs and EVs. I address

alternative fuel vehicles in Chapter 7.

The first policy developments in clean energy vehicles appeared during the 9th Five Year Plan pe-

riod between 1995 and 2000, but the first five years of the new millennium during the 10th Five Year

Plan kicked off extensive R&D programs. The “863 program” firmly established electric vehicles as a

key research and development technology, and various levels of government devoted $290 million in

funding. The 11th Five Year Plan extended these ambitions. Finally, in 2010, the State Council selected

NEVs as one of China’s seven strategic emerging industries and the Ministry of Science and Technology

announced a target electric vehicle fleet of one million in 2015 (Gong et al., 2012).
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These are lofty ambitions. To achieve them, the national government partnered with several local

city governments in the Tens of Cities, Thousands of Vehicles Project, begun in 2009. The ten cities

of Beijing, Changchun, Chongqing, Dalian, Hangzhou, Hefei, Jinan, Shanghai, Shenzhen and Wuhan

formed the inaugural group (World Bank,2011). The total group of 25 jointly set up goals to roll out

over 50 000 NEVs into public fleets, with Shenzhen’s goal of 9 000 leading the pack (Gong et al., 2012).

The second stage of the program extended incentive policies to private citizens to purchase electric cars

in six cities. The central government pledged 60 000 RMB and 50 000 RMB to subsidize electric and

plug-in hybrid electric vehicle purchases. Many of the local cities pledged to completely or partially

match these subsidies (World Bank,2011). The goals for private vehicles were more ambitious, totaling

almost 130 000 cars across all demonstration cities (Gong et al., 2012).

Even though NEV production grew sharply from around 100 vehicles in 2005 to over 7000 vehicles in

2010, cities had met only 26% of the total target for public fleets by October 2011, sixteen months before

the end of the program. Moreover, even less progress had been made on private car goals: Shenzhen

had achieved 3.2% of the target, Hangzhou 0.8% (Gong et al., 2012).

Why have these goals proven so difficult to meet? Even if NEV technology is commercial, especially

for HEV technology, technology does not suffice. One, new energy vehicles remain more expensive than

their conventional vehicle counterparts. Consumers are unwilling to pay the difference because NEV do

not enhance vehicle functionality. Battery costs are declining and the World Bank estimates prices will

decline 60% by 2020 from 2010 to 1 300 to 2 000 RMB per kWh. This would reduce a new vehicle

battery to RMB 34 000 to RMB 50 000 (World Bank,2011). However, even in 2020, optimistic battery

cost estimates would still double the cost of one of China’s cheap but popular cars, assuming car prices

do not decline. Granted, luxury cars account for a large portion of the Chinese car fleet, and electric

batteries would account for a lower fraction of the vehicle cost.

Second, charging infrastructure remains scarce. This may not be an issue for fleet vehicles, but for

widespread adoption private vehicles must transition to electric powertrains. Gong et al. (2012) report

that Shenzhen is rapidly expanding electric vehicle charging stations and had installed 62 poles by Au-

gust 2011. In a ten million inhabitant city, 62 poles is still a small number. Dispersed and scarce charging

infrastructure will deter consumers from electric vehicle purchases. Especially in China, installing public

infrastructure is key because most Chinese live in apartment buildings and home charging in a private

garage is not an option.

Three, the electric vehicle industry is defragmented and held captive by special interests, hindering

effective innovation. Sun (2012) points out that if the central government continues to push research

funding into research institutions and SOEs, private enterprises and non-key enterprises will have no

access to policy funds, distorting the market environment. As I argued in Section 6.1, it is precisely the

non-key automotive enterprises that have been more innovative in developing and growing domestic

brands. This would suggest that they would be better equipped to effectively use research funds. In ad-

dition, NEV production is extremely defragmented. Gong et al. (2012) report that only 3 of the provinces

with NEV pilot demonstration programs do not have their own NEV vehicle makers and models. Two

other provinces have no demonstration programs, but do have NEV vehicle makers. However, only

45% of automotive manufacturers with certified electric car models and 55% of bus manufacturers with

certified models are actually producing these vehicles (Gong et al., 2012). Sun explains that local gov-

ernments consider their own automotive SOEs key to building this future growth industry (Sun, 2012).

This evidence suggests that local governments in provinces with designated NEV pilot cities direct the

central government funds to their local automotive manufacturers. Thus, the NEV industry has grown

but become severely defragmented. However, there is a very small demand in each province for NEV
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Scenario 2010 2030 2050

Reference 7.72 6.08 4.54
Low 6.41 5.10
High 5.06 3.40

Table 6-3: Future fleetwide label fuel consumption. Expressed in L / 100 km.

products, meaning many designed vehicles never enter production. The distortive effects of regulatory

capture are readily apparent: both the automotive manufacturer and the local government that owns the

automotive manufacturer benefit from the national government program. On a national scale, however,

this amounts to pork barrel spending and retards the development of a strong Chinese NEV industry.

The national Chinese government remains resolute. Even if only the cumulative NEV production

totaled just 22 000 by August 2011 (Gong et al., 2012), goals remain high. In July 2012, the State

Council published the “Development Plan for the Energy Saving and New Energy Vehicle Industry” which

confirmed cumulative production and sales goals of 500 000 PHEVs and EVs by 2015, a production

capacity target of 2 million PHEVs and EVs by 2020, and cumulative sales of 5 million vehicles by 2020

(State Council,2012).

6.5 Fleet model implementation

6.5.1 Fuel consumption

I calculate the average model year 2010 car label fuel consumption in China to 7.72 L / 100 km, light

truck label fuel consumption to 7.93 L / 100 km, and adjusted on-road car fuel consumption to 9.01 L /
100 km (see Appendix B, Future fuel consumption). For the eight years prior, fuel consumption had been

improving 0.77% per year. I therefore assume in a reference scenario fuel consumption improvements

for NA-SI engines will be slightly more modest across the course of the coming forty years than between

2002 and 2010 while I assume fuel consumption improvements in the high and low scenarios are a little

less than double and a little more than half the observed fuel consumption improvements between 2002

and 2010. As modeled, this corresponds with fuel consumption decreases of -0.57% per year, -1.27% per

year and -0.27% per year (See Figure 6-9). I use fixed relative fuel consumptions among powertrains

to calculate future fuel consumptions for other powertrains, and adopt a separate projection for electric

engine efficiency improvements (see Appendix B, Relative powertrain fuel consumption).

Two ways to examine how aggressive these factors are is to calculate average fuel consumption for

the entire fleet for distinct years in the future and compare this with the baseline (Table 6-3). This takes

the powertrain mix assumptions in the next section, 6.5.2, into account. I do not include the energy EVs

consume and count only the portion of PHEV fuel consumption gasoline powers. I can also judge aggres-

siveness by comparing fleetwide fuel consumption forecasts against how much they advance or postpone

achieving target fuel consumption under the third round of fuel consumption targets (See Table 6-4).

Neither the reference, high, nor low scenario projections achieve the government targets without delay.

Of course, this assumes only reference scenario values for alternative powertrain adoption. Quicker or

slower alternative powertrain adoption will also contribute to achieving government fuel consumption

targets with less or more delay.
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Figure 6-9: Future car fuel consumption in L / 100 km. The bars represent on-road fuel consumption,
the lines label fuel consumption.

Scenario 6.9 L / 100 km 5 L / 100 km

Reference 2022: 7 years 2044: 34 years
Low 2018: 3 years 2031: 11 years
High 2025: 10 years does not reach

Table 6-4: Years by which scenarios postpone government fuel consumption targets. Targets are 6.9 L /
100 km in 2015 and 5 L / 100 km in 2020. Read as: “year target is achieved: years by which
target is delayed”.
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Figure 6-10: Future turbocharged car marketshares.

6.5.2 Powertrain technologies

To implement alternative powertrains, the model requires initial marketshare breakdowns in 2010 for

cars, minitrucks and minibuses as well as growth curves until 2050 for these three categories. In base

year 2010, I assume 7% and 1% of passenger cars sold have turbocharged gasoline engines and diesel

engines, respectively. Electrified powertrains comprise ~0% of sales (I use 0.1% while true figures are

close to 0.04% (Gong et al., 2012)), leaving 92% of sales relying on conventional gasoline engines.

I assume 1% and ~0% of sales of light trucks are turbo charged and electrified, respectively. Diesel

engines comprise 23% of sales, leaving conventional gasoline engines 77% of sales. I assume 1% of

minibuses are diesel, 1% are turbocharged and ~0% are electric (see Appendix C, Powertrain mix).

Setting future sales marketshares for these various alternative powertrain technologies is one of the

most difficult aspects of proper fleet modeling. Unproven technologies are difficult to model in an input-

dependent bottom-up fleet model. The fleet model uses annual percentage point growth in sales to

model future marketshares of alternative powertrains, but I peg future sales growth to expected future

marketshare ratios among different powertrains (See Appendix B, Powertrain marketshare mix). As

with other inputs, these ratios exist in reference, high and low alternatives. In the reference scenario,

turbocharged powertrains take 50% of the ICE market in 2030 and 67% in 2050 (Figure 6-10). In the

high scenario, turbo powertrains achieve 67% of marketshare in 2030 and 90% marketshare in 2050.

Meanwhile, the low scenario sees 33% in 2030 and 50% in 2050. There are two electric powertrain sales

ratios. One, the combined marketshare of the three electrified powertrains: HEV, PHEV and EV. Two, the

portion of the electrified powertrain composed of HEVs. In the reference scenario, passenger car sales

achieve 15% and 30% percent electrification in 2030 and 2050, respectively (Figure 6-11). Hybridization

accounts for 67% and 50% of electrified sales in 2030 and 2050. For light trucks, electrification is 10%

and 20% in 2030 and 2050, respectively. Hybridization accounts for 70% and 65% of sales. In the low

scenario, electrification gains no traction, while in the high scenario electrification is more rapid and EV

dependent. In the high scenario, 30% and 60% of cars and 25% and 50% of light trucks are electrified
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Figure 6-11: Future electrified car marketshares.

in 2030 and 2050, respectively. Hybrid vehicles account for just 33% and 20% of car sales and 40% and

25% of light truck sales in 2030 and 2050, respectively.

6.6 Comparison across models

6.6.1 Fuel consumption

In their reference or baseline scenario assumptions, some modelers assume fuel economy improvement

while others do not. Yan and Crookes (2009) assume no fuel economy improvements in their base case

assumptions relative to their base year average fuel economy 2005. However, a better case future as-

sumes vehicles attain a 40% improvement in fuel economy from fuel economy regulations and a 20%

improvement from fuel taxes by 2030. This overall 52% improvement in fuel economy translates to an

average 2.1% annual improvement in fuel economy between 2005 and 2030. Hao et al. (2011a) also

assume no fuel economy improvement in the base case scenario relative to 2010. In a fuel consumption

reduction scenario, passenger cars reduce their fuel consumption 20% by 2015 and a further 15% by

2020, after which no further fuel consumption improvements occur. A 35% fuel consumption improve-

ment in 10 years translates to an annual 4.4% reduction in fuel consumption over these ten years, but a

1.1% improvement over the forty year period to 2050.

Ou et al. (2010b) do assume fuel consumption reductions in their base case scenario from 2008

until 2030, and static fuel consumption from 2030 to 2050. Gasoline and CNG passenger cars achieve

1.3% annual fuel consumption reductions, while diesel passenger cars achieve 1.5% annual reductions.

Spread over forty-two years and ignoring the effect of diesel vehicles that comprise a very small portion

of the passenger vehicle fleet, this translates to a 0.68% annual reduction in fuel consumption.

Huo et al. (2012b) assume fuel consumption improvements in the reference scenario: conventional

gasoline cars decrease fuel consumption from 8 L / 100 km in 2010 to 6.5 L / 100 km in 2030. This is

a 0.5% annual improvement on the 2010 - 2050 timeframe. An alternative scenario is more aggressive:
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conventional gasoline cars achieve an average fuel consumption of 3.5 L / 100 km in 2050, which is a

2.1% annual improvement for the 2010 to 2050 period.

My projected average annual fuel consumption improvements from 2010 to 2050 for the reference,

mitigated and unbound scenario of 0.55%, 1.20% and 0.25% for conventional gasoline vehicles are

thus within line with other studies. That said, including the effects of increased marketshares of turbo

vehicles in my scenarios would increase these average annual fuel consumption improvements.

6.6.2 Powertrain technologies

Most other fleet models do not assume alternative vehicle adoption in base scenarios. Ou et al. (2010b)

do assume vehicle electrification in the base scenario: 2.5%, 2.44%, 1.27% and 1.27% of vehicle sales

in 2030 and 10%, 9%, 4.5% and 4.5% of light duty truck, passenger car and minivan sales in 2050

are electric vehicles, mild hybrid vehicles, full hybrid vehicles and plug-in hybrid vehicles, respectively.

Diesel fuel shares will grow from 0% in 2008 to 20% in 2050, implying higher diesel engine vehicle car

sales in 2050. In the model’s electrified scenario, diesel fuel shares remain at base scenario assumptions,

but the fleet electrifies significantly: 10%, 11.25%, 5.6% and 5.6% of vehicle sales in 2030 and 40%,

30%, 15% and 15% of light duty truck, passenger car and minivan sales in 2050 are electric vehicles,

mild hybrid vehicles, full hybrid vehicles and plug-in hybrid vehicles, respectively.

Hao et al. (2011a) assume no electrification in the base scenario, but have a electrification scenario.

20% and 25% in 2030 70% and 80% in 2050 of private passenger vehicles and non-private passenger

vehicles are assumed electrified. Vehicles are 40% and 0% HEV, 36% and 40% PHEV and 24% and 60%

EV in 2030 and 2050, respectively. Because non-private vehicles are a minority of vehicles, one can

approximate these results to slightly more than 8%, 4.8% and 7.2% of sales in 2030 being HEV, PHEV

and EV, respectively, and 0%, 28% and 48% of sales in 2050 being HEV, PHEV and EV, respectively.

The base scenario in Yan and Crookes (2009) includes no alternative powertrains. Their overall

better case scenario does not include electrification but does include aggressive diesel passenger car

adoption. The authors expect diesel fuel to take up 40% of passenger vehicle fuel in 2030.

Huo et al. (2012b) include a diesel adoption, fuel diversification and electrification scenario, each of

which projects different sales marketshares for different alternative powertrain technologies and differ-

ent passenger car types (private, business and taxi). Reporting results only for private LDVs, 45% and

60% of powertrains are diesel driven in 2030 and 2050, respectively while in the electrification scenario,

43% and 58% percent of vehicles are electric in 2030 and 2050, respectively. Business LDVs adopt the

same marketshares in 2030 under different scenarios in 2030 and more aggressive alternative power-

train marketshares in 2050. Taxis remain a small portion of the total vehicle fleet. This study considers

all electrified powertrains to be EVs.

My reference scenario assumptions are not dissimilar from Ou et al. (2010b)’s but I assume higher

hybrid and plug-in hybrid marketshares (See Appendix B, Powertrain marketshare mix, for exact figures)

and gentler electrification adoption among minitrucks than passenger vehicles. However, my mitigated

scenario electrification assumptions are less aggressive than all three other studies that include electrifi-

cation scenarios. I also do not include any scenarios with passenger vehicle diesel adoption.
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Chapter 7

Vehicle fuels

Transportation relies on gasoline and diesel for power because they are both energy dense and the engine

technologies that use them are technologically mature. One top contender, electric vehicles, were exam-

ined in the previous chapter. Using electric power for transportation, however, has proven more difficult

as the technology is immature. On the other hand, many alternative fuels such as methanol or ethanol

are less energy dense than gasoline. Another key concern with alternative fuels is that merely displacing

conventional fuel does not necessarily correspond with reducing greenhouse gases. Burning compressed

natural gas (CNG) releases less CO2 than does gasoline or diesel, but releases much methane. All coal-

derived transportation fuels, however, release more CO2 per unit energy than does gasoline. Unlike

electric cars, however, which are more energy efficient than ICEs, cars that rely on methanol, dimethyl

ether or synthetic gasoline or synthetic diesel are about as energy efficient as gasoline vehicles. Priorities

diverge: is it more important to reduce conventional fuel demand or reduce CO2emissions?

7.1 Progress and policies to date

Research in China has endeavored to develop a wide portfolio of alternative fuels for transportation

including CNG, liquid natural gas (LNG), ethanol, methanol, biodiesel, dimethyl ether (DME), synthetic

fuels such as liquid petroleum gas (LPG) or coal to liquids (CTL), and hydrogen.

The national government created a natural gas transportation initiative in 1999 that funded research,

development and policy planning. The program expanded to 18 demonstration cities and two provinces

and methanol and set 127,000 CNG and 116,430 LPG vehicles on the road (Hu et al., 2010). The

authors caution, however, that China’s natural gas resources may not be large enough to support a full-

scale expansion into transportation. Additionally, because gasoline and diesel have fixed prices while

LPG does not, these fuels may become more expensive than gasoline. In this case, natural gas vehicles

would not be able to proliferate without government subsidies.

Methanol is the cheapest of all the coal-derived transportation fuels, which also include DME and

coal to liquids. Hu et al. (2010) explain that while policy interest at the national level and among auto

manufacturers in China is low, the coal mining Shanxi province is still forging ahead. The whole province

may mandate sales of M15. Ou et al. (2010a) also note that because methanol is miscible with gasoline,

it is often illegally blended into existing gasoline fuel. 15.8 million barrels have been added this way.

Methanol is not only the cheapest coal-derived fuel, but also the most carbon intensive. DME and

CTL technology provide alternatives. Hu et al. explain that dimethyl ether grew to supply 15% of
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methanol demand in 2007. CTL technology is least commercializable among the coal derived fuels, but

China has invested in research since the 1990s, seeing it as a way to use its abundant coal reserves.

Several demonstration plants are under construction.

China has also experimented with plant based fuels. Hu et al. (2010) explain that the national

government gradually encouraged ethanol fuel during the 2000s, refunding the value added tax and

subsidizing the consumption tax. However, though five provinces and 27 cities now supply E10, the

feedstocks are corn, wheat and cassava, which has raised concerns over loss of arable land and put a

stop to all project approvals from food based sources (Yao et al., 2011). Biodiesel in China has thus far

been made primarily from cooking oil, but government plans to expand production to 4.2 million tons

in 2020 (Yao et al., 2011)may fall short as Hu et al. (2010) explain that waste oil will only be able to

account for 1 million tons of fuel. The national government has therefore pushed for research into new

feedstocks. These will be necessary as Ou et al. (2012) conclude from their life cycle analysis that only

non-food feedstocks will reduce greenhouse gas emissions.

7.2 Fleet model implementation

7.2.1 Energy demand

The fleet model treats alternative fuels after calculating total fleet energy demand. The model then

assumes alternative fuels supply a portion of the conventional energy demand and recalculates volumes

of conventional and alternative fuels accordingly. CNG and methanol can replace gasoline. Two key

assumptions follow: 1) an alternative fuel powertrain is as efficient as its conventional fuel alternative on

a per joule energy basis and 2) contribution of alternative fuels is not relegated to a specific powertrain

but could be spread among all powertrains that use a conventional fuel (NA-SI, turbo, hybrid electric

and plug-in hybrid electric for gasoline).

I only implement scenarios for natural gas and methanol, excluding the ethanol and biodiesel bio-

fuels. Coal is the most abundant primary energy source in China and pressure will remain to make it

an important feedstock for alternative fuels. I do not consider coal to liquid technologies that produce

synthetic diesel or gasoline. First, although China is developing numerous pilot plants, synthetic fuels

are likely to remain niche products until 2030. Methanol is cheaper to produce. Second, CTL plants most

commonly produce diesel, which primarily powers heavy duty vehicles in China. Third, all coal derived

transportation fuels are more carbon intensive than conventional fuels. As such, adopting methanol as a

alternative transportation fuel will show the same trends in reductions in conventional fuel demand and

increases in total emissions as any coal-derived fuel would.

CNG is already gaining acceptance as an alternative fuel in China. 4.1% of non-private cars run on

natural gas (see Appendix C, Fuel shares for the calculation) and the fuel is particularly popular among

taxi fleets.

Although China has shown interest in biofuels, I choose not to implement them for two reasons.

One, calculating life cycle emissions for biofuels is exceedingly complex. Second, China’s national gov-

ernment is already concerned over issues of food security, and would be loathe to convert large swaths

of agricultural land to produce fuel.

I thus create two separate sets of reference, high and low values for methanol and natural gas (see

Figure 7-1). Methanol will grow slowly, replacing 3% and 5% of gasoline equivalent energy in 2030

and 2050. Natural gas will replace large amounts of non-private car conventional fuel demand - 20%

and 30% in 2030 and 2050, respectively - and modest amounts of conventional fuel demand for other
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Figure 7-1: Future car alternative fuel volumes.

light duty vehicles - 2% and 4% in 2030 and 2050, respectively. Low values assume no alternative fuel

adoption save non-private vehicles, while high values assume double to triple rates of alternative fuel

adoption.

7.2.2 Emissions

Having developed a variety of fuels (gasoline, methanol, diesel, CNG and electricity) within the fleet

model, the model can calculate the resulting carbon dioxide emissions. To do so, I set life cycle “well

to wheels” emission values for the different fuels (See Appendix B, Fuel CO2 intensity, for details).

Gasoline, diesel and natural gas have fixed emission cycles over time. Coal to methanol conversion

processes improve and the power grid becomes cleaner, reducing the relative emissions disadvantage

of methanol and electric power to gasoline (see Figure 7-2). I use the 2012 World Energy Outlook’s

grid power predictions(IEA, 2012a), a transmission loss factor and charging loss factor for electricity

emissions. I also use life cycle analysis for methanol emissions from Ou et al. (2012).

7.3 Comparison across models

This study, as well as the Ou et al. (2010b) study, assume alternative fuel adoption in the reference

scenarios. In 2050, Ou et al. (2010b) assume 20% of passenger vehicles are diesel-powered. CNG and

LPG fractions will double by 2020 and thereafter stay constant; this equates to about 2% of passenger

vehicles sales. Finally, it assumes a contribution of other alternative fuels with 37 Mt bioethanol, 20 Mt

biodiesel, 22 Mt coal-derived methanol, and 5 Mt CTL in the base case scenario. I approximate this will

replace 37 Mt gasoline and 25 Mt diesel, using methanol and ethanol volumetric energy conversions.

In this study, CNG will supply 5% of future gasoline equivalent energy, which is more aggressive.

Methanol will supply 6% of energy, which is less aggressive because it is equivalent with 13.2 mtoe.
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Figure 7-2: CO2 emission intensities for different fuels in g CO2 per MJ .

84



Part III

Results and policy implications

85



86



Chapter 8

Results

This chapter presents and reviews results in two sections. First, I present the results of a reference

scenario and critically compare it against other fleet model results drawn from literature. Second, I

create three sensitivity analyses, one for each output, to show which drivers are most significant in

determining outcomes.

8.1 Reference case

Many different phrases are commonly used in scenario modeling to describe the initial case off which

all others are compared. These include “business as usual,” “reference,” “baseline,” “no change” or more

esoteric, alphabetical codes. In this study, I use “reference” to denote a scenario that is aggressive, yet

possible to achieve without an explicit environmental target in mind. Instead, it takes into account the

comparable evolution of international vehicle ownership and use, the government’s desire to develop

an international competitive automotive industry, and anxiety over reliance on foreign oil. Perhaps the

ability of policies to control automotive energy demand are overstated in the reference case; perhaps

mitigating global environmental pollution will be a more legitimate concern: the work contains other

scenarios as well. These predict both higher and lower future energy demand than does the reference

scenario.

This differentiates the reference case against those of other China fleet models. First, other models

tend to assume few implemented policy improvements. Second, other models pick reference cases as the

upper bound scenario in order to allow comparison against an unrestricted, maximum energy baseline.

This model sets the reference scenario as a median. By setting it as a median, this approach can judge

the relative importance of different drivers.

8.1.1 Future energy demand, fossil fuel demand and CO2 emissions

Key assumptions

The reference case builds up future energy demand with the reference values from all different variable

input drivers: sales, VDT, turbocharged vehicles, electrified vehicles, fuel consumption, methanol and

natural gas. The model implementation sections Part II discuss these assumptions in detail, and numer-

ical descriptions of each are also recorded, explained and justified in Appendix B and C. I endeavored

to be neither too pessimistic nor too optimistic as I set values for each input driver. To do so for the
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Figure 8-1: Reference scenario energy demand, fuel demand and CO2 emissions. Energy demand is in
mtoe, fuel volumes are in bil L gasoline equivalent terms, emissions are in mmt CO2. All
fuel combines all energy sources that power vehicles, including electricity.

reference scenario, I hedged future values against current numbers of other countries (for sales and

VDT inputs), assumed future progress more modest than aggressive government targets but more opti-

mistic than no progress (for fuel consumption and alternative powertrains), or assumed some but not

significant adoption (for alternative fuel volumes).

Reference results

China’s energy demand, total fuel demand and CO2 emissions grow sharply until about 2030, after

which growth levels off (Figure 8-1). Levels peak in 2041 at 369 mtoe consumed (equivalent to 7.4

million barrels of oil per day), 499 bil L of fuel consumed,1 and 1693 mmt CO2 emitted. They thereafter

begin to decline slowly. Conventional fuel demand of gasoline and diesel also increases rapidly to about

2030, after which it peaks in 2038 at 453 bil L of gasoline and begins to decline. The difference between

conventional fuels and new fuels surpasses 5% in 2024, but continuously increases to nearly 14% in

2050. Thus, the reference scenario assumes the combination of relatively small numbers of plug-in

hybrid vehicles and electric vehicles and some amount of natural gas and methanol will be able to supply

a modest amount of Chinese road transportation energy demand in the future. Even so, energy demand,

fuel demand and CO2 emissions in the Chinese light duty vehicle sector will increase more than fivefold

in the reference case over the coming forty years, while conventional fuel demand will increase nearly

fivefold. Moreover, because this scenario assumes certain efficiency gain, technology adoption and fuel

diversification, actual energy and emissions could be higher or lower. Transformations in Chinese travel

patterns will drive this and significantly impact China’s future oil imports, even as changes in the Chinese

automotive industry may mitigate some of the effects.

The results clearly show, however, that Chinese vehicle energy demand will not continue to increase

1In gasoline equivalent terms, including electricity
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at a frenetic pace. Rather, as the vehicle market matures and technologies advance, China will stabilize

at a high, but given its population not unreasonably high, vehicle energy demand.

These results can also be disaggregated by fuel or powertrain (Figure 8-2). Gasoline’s continued

dominance remains unchallenged although other fuels begin to contribute over a tenth of energy demand

and CO2 emissions in the 2030s. Meanwhile, the dominance of the traditional naturally aspirated ICE

vehicle begins declining before 2030 as turbocharged ICE vehicles proliferate. They eventually dominate,

even as new, alternative powertrains account for larger fractions of total energy demand, fuel demand

and CO2 emissions. Diesel is an uncommon fuel in 2010 and continues to be uncommon in the future.

Because diesel contributes more CO2 emissions on an energy basis that gasoline, the yellow band on the

bottom left is proportionally wider than that on the top left. Among the electrified powertrains, hybrids

contribute the most to energy demand, fuel demand and CO2 emissions. This is both because I predict

hybrid vehicles to be more numerous than their plug-in and wholly electric counterparts and because

they are less energy efficient than these counterparts. The proportionally wider PHEV and EV bands on

the bottom left than the top left stem from the fact that that the electricity grid in China is predicted to

remain more CO2 intensive than gasoline through 2050. Concerning fuels, the width of the band on the

top right and bottom right indicate electricity, methanol and natural gas are, respectively, more, more

and less CO2 intensive than gasoline. These alternative power sources for cars comprise replace over

10% of energy demand by 2050 and nearly 20% of emissions by 2050.

Because the model uses both alternative powertrains and alternative fuels, comparing all these

alternatives collectively based on a common metric clearly the differences in energy efficiency and

CO2 emissions among them more clearly (Figure 8-3). Cleaner fuel production drastically lowers methanol

emissions while a gradually cleaner electricity grid means plug in hybrid and electric vehicle emissions

improve faster than those of conventional gasoline vehicles. Thus, while emissions for natural gas and

all electrified options are quite similar now, plug-in hybrid and electric vehicles will provide clear CO2

emissions benefits over hybrids and natural gas vehicles in 2050. PHEVs in particular show the greatest

energy efficiency gains, aided not only by improvements in ICE technology, but also increasing electric

power utilization rates and electric motor energy efficiency. It was surprising to note, however, that elec-

trified powertrains are already cleaner than gasoline powertrains. The difference is due to an electric

engine efficiency advantage over gasoline engines.

8.1.2 Comparison across models

Figure 8-4 compares future reference scenario energy projections across a number of different studies.

Most studies cluster energy demand predictions after 2030 between 400 and 600 mtoe. In addition to

this study, Ou et al. (2010b) and Huo et al. (2012b) also predict energy demand growth will significantly

slow or flatten after 2030 while others studies predict continually rising energy demand. Projections

from Kishimoto et al. (2012), while in line with other projections until 2030, thereafter continue rising

to 900 mtoe as the clear upper outlier prediction. The IEA (2012a) and EIA (2011) model energy

demand for the entire transportation sector, but only until 2035. Because their projections also include

rail and aviation, their predictions are expectedly among the highest. This study predicts the lowest

future energy demand of 352 mtoe, 15% - 61% below the other four predictions clustered between

400 and 600 mtoe. Figure 8-5 compares future reference scenario CO2 emissions projections across a

similar set of studies. There is a wide range of future emissions projections throughout the time range

that narrows as 2050 approaches. Surprisingly, although this study projected the lowest future energy

demand, it does not project the lowest emissions. I explore the probable explanations and causes of
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Figure 8-2: Reference scenario disaggregated by powertrain (left) and fuel (right). A) and B): energy
demand in mtoe; C) and D): fuel demand in bil L, without energy content volume equiva-
lentcy conversions; E) and F): CO2 emissions in mmt CO2.
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Figure 8-3: CO2 emissions and energy per kilometer for cars for different powertrain technologies. Nat-
ural gas and methanol vehicles use NA-SI engines.

variation among the various studies in the following section.

Reference, BAU, Current Policies: Significant of Scenario Labels

Different studies label reference case scenarios differently (Table 8-1). Yan and Crookes (2009), Ou

et al. (2010b), Huo et al. (2012b), Kishimoto et al. (2012) use the phrase “business as usual” to what

Yan and Crookes call not a scenario, but “a reference vision for how energy demand and GHG emissions

in China’s road transport sector would evolve if the Chinese government does nothing to influence long-

term trends.” Hao et al. (2011a) and the EIA (2011) label their base case scenario “reference,” the IEA

(2012a) labels it “current policies,” and the ICCT (Cristiano Facanha et al., 2012)does not label their

base case scenario at all, even though all three also function as “business as usual” scenarios because

they assume no mechanisms will alter the current trajectory of energy demand in China’s automotive

sector. Thereafter, results compare the “business as usual” case with stringent policies in three different

ways. First, a subtractive wedge style (Yan and Crookes, 2009; Cristiano Facanha et al., 2012) can

show the maximum extent to which China’s future automotive energy demand could be mitigated and

the contribution of individual policies to this. Second, results can compare the effects of one policy to

another in altering the reference scenario (Huo et al., 2012b; Hao et al., 2011a). Third, the effect of a

combined suite of policies (Ou et al., 2010b; EIA, 2011; IEA, 2012a; Kishimoto et al., 2012) creates one

alternative to the baseline. As stated earlier, because the “reference” scenario in this study is a median

projection that includes some efficiency improvements and technology adoption, it is unsurprisingly

more optimistic in potential to curb Chinese automotive energy demand growth.

Alternative model methodologies

Most of the models use the same bottom-up fleet model methodology (Table 8-1) as this study does.

Certain exceptions include Kishimoto et al. (2012), IEA (2012a) and EIA (2011). Kishimoto et al.
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Figure 8-4: Energy demand comparison across models in mtoe.

Figure 8-5: CO2 emissions comparison across models in mmt CO2.
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Study Model type Base year Fraction of road transport

This work Fleet model 2010 Light duty vehicles
Huo et al. Fleet model 2010 All vehicles
Hao et al. Fleet model 2010 Passenger vehicles
Ou et al. Fleet model 2007 All vehicles

Yan and Crookes Fleet model 2005 All vehicles
Kishimoto et al. CGE model 2005 Cars

IEA Modified fleet model 2010 All vehicles
EIA Modified fleet model 2008 All vehicles

ICCT Fleet model 2005 All vehicles
Study Fraction of energy Label

This work All energy Reference
Huo et al. Liquid fuel BAU
Hao et al. Liquid fuel Reference
Ou et al. Liquid fuel BAU

Yan and Crookes All energy BAU
Kishimoto et al. All energy BAU

IEA All energy Current Policies
EIA All energy Reference

ICCT Emissions no label

Table 8-1: Characteristics comparisons across China road energy models.

(2012) use a recursive-dynamic general equilibrium model that simulates the world economy. With the

transport sector modeled in great detail, it can effectively model automotive energy demand within the

context of the larger economy. It shows that unrestricted economic growth without policy interventions

will not induce fuel efficient vehicles or alternative energy technologies. This leads to an outlier energy

demand projection. The IEA (2012a) and EIA (2011) models use modified fleet model approaches that

use passenger distance travel demand instead of counting vehicles and vehicle use.

Types of vehicles

Only three of the studies: this thesis, Hao et al. (2011a) and Kishimoto et al. (2012) model exclusively

model the light duty vehicle fleet. While passenger cars account for a large and growing portion of total

energy demand in China, heavy duty vehicles may be fewer in number but with their high annual VDT

and fuel consumption contribute to a significant portion of China’s energy demand. This should depress

these three studies’ reference case energy projections below that of the other studies. This is not the case

(see Figure 8-4) and model methodologies and other assumptions must play a larger role.

Built-in assumptions differ across studies

Comparing the assumptions that underlie the base case scenarios in different fleet models reveals inher-

ent differences in input assumptions. The “Comparison across models” sections from Chapters 4, 5, 6

and 7 discuss these in details, and Figure 8-6 summarizes the differences among this model and four

other bottom-up fleet models. Ou et al. (2010b) have the most aggressive assumptions. This study is

second. All input assumptions do not have equivalent effects on determining future energy demand,

but it is striking that this study’s reference scenario are not the most aggressive and yet results are the

lowest. However, Ou et al. (2010b) model the entire vehicle energy fleet and heavy duty vehicles could
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Figure 8-6: Comparison of key assumptions across models. The darker the violet, the more aggressive
the assumption, which would lead to lower energy demand. Note the table considers just
light duty vehicle assumptions although Huo et al. (2012b), Ou et al. (2010b) and Yan and
Crookes (2009) consider the entire vehicle fleet in their respective studies.

account for a large portion of energy demand.

Conclusions

This study’s reference scenario differs from the “business as usual” scenarios from other studies because

it is a median and not highest possible energy demand projection. Second, this study does not consider

heavy duty vehicles. Third, I do assume technology adoption and efficiency improvements will occur. As

a consequence, this reference scenario projects lower energy demand than other studies, especially in

the long term.

8.2 Sensitivity analysis

The sensitivity analysis answers the central technical question of the thesis: what are the key drivers that

determine future fuel demand? It does so by assigning each driver a more aggressive and less aggressive

future trajectory than in the reference case. In addition to each pair of scenarios, I create two bounding

extreme high and extreme low future alternatives by assuming all drivers evolve along their high (or

low) trajectories. These are bounding because it is extremely unlikely future energy demand would be
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higher or lower.

The goal of this sensitivity analysis is not to reveal how important one variable is to another in

comparable percentage points because it is unlikely equal percentage point variations in two different

variables would be equally likely to occur. Instead, the analysis groups drivers by small, modest or large

impact on future energy demand. The values that underlie the sensitivity analysis are all contained

and explained in Appendix B. A minority of key model assumptions are assumed static through all the

scenarios: this includes scrappage, mileage degradation, relative fuel consumption among powertrains,

and carbon intensity for different fuel sources over time (see Appendix B). The majority of drivers, eight

in all, do vary:

• Stock: automotive ownership is currently very low in China and will increase to unknown future

higher levels of ownership.

• VDT: the average annual distance traveled per vehicle in China is currently high compared with

most developed countries, but could stay relatively constant or drop dramatically.

• Turbocharged: turbocharged vehicles already make up a small fraction of Chinese vehicle sales,

but the technology may gain quick or slow acceptance.

• Electrification: will Chinese adopt hybrids, plug-in hybrids and electric vehicles?

• EV or HEV electrification: will electrification focus on hybrid electric vehicles or on true electric

vehicles?

• Fuel consumption: vehicle efficiency may improve quickly or slowly.

• Natural gas: will natural gas become a popular alternative fuel?

• Methanol: will methanol become a popular alternative fuel?

8.2.1 Energy demand sensitivity

Figure 8-7 shows sensitivity analysis results for all scenarios in mtoe. Natural gas and methanol drivers

are not represented here because implementing these scenarios would generate identical energy de-

mand. Because I assumed engine efficiency for CNG and methanol vehicles to be identical with their

gasoline powered alternatives, identical amounts of energy would be necessary to power the vehicle the

same distance. Stock (violet) is the most sensitive driver in both raising and reducing energy demand.

Greater or lesser presence of turbocharged vehicles (orange) has a small effect, as does the relative frac-

tion of hybrids to electric vehicles in the modest reference electrification scenario (pink). Fuel consump-

tion is a more significant driver in lowering energy demand than in raising it (green). This is logical:

future fuel consumption in 2050 is 60% of current fuel consumption in the low scenario, 80% in the

reference and 90% in the high scenario. Significant vehicle electrification proves itself to be a significant

driver especially after 2040 (blue). Surprisingly, significant electrification dominated by HEVs is a fairly

promising means to lower future energy demand (turquoise), indicating that it may be worthwhile to

focus on getting highly fuel efficient vehicles on the road instead of converting an infrastructure system

to wholly electric vehicles. Targeting VDT is also a fairly promising means to lower future automotive

energy demand. Nevertheless, an individual driver cannot shift future energy 100 mtoe as results cluster

tightly around the reference.
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In addition, the “high-all” and “low-all” scenarios show resulting energy demand if all inputs evolve

along their high or low predicted values. Future energy demand then varies between about 150 mtoe

to nearly 700 mtoe. These results can also be calculated by multiplying the effects of individual drivers.

Thus, this wide range underscores the need to focus attention on policy interventions that address

significant drivers and also focus on multiple drivers.

8.2.2 Gasoline and diesel demand sensitivity

Figure 8-8 shows future conventional fuel demand for all scenarios. The two “high-all” trajectories, one

without any alternative fuel adoption and one with significant alternative fuel adoption shows potential

fuel demand savings could approach nearly 250 bil L of gasoline if all other drivers evolve per extreme

values. The actual impacts of adopting methanol (olive) or natural gas (brown) are likely more modest

and on the order of 50 bil L each. This differentiates this approach from the wedge approach other stud-

ies use: the absolute impacts of any one driver are smaller in a median reference scenario as compared

with an extreme reference scenario. They are subject to marginal diminishing returns as society employs

more methods to control automotive energy demand.

CNG (brown) has a large impact as a single driver early in the model, though its significance dimin-

ishes over time. Again, greater or lesser presence of turbocharged vehicles (orange) has a small effect,

as does the relative fraction of hybrids to electric vehicles in the modest reference electrification sce-

nario (pink). Methanol has a modest impact lowering energy demand, but a small one raising it (olive).

Significant electrification and HEV dominated significant electrification are even more sensitive for fuel

demand (blue and turquoise). Nevertheless, stock (violet) and vehicle fuel consumption (green) are

again also important drivers in reducing conventional fuel demand, while VDT has a fairly large impact

(red).

8.2.3 CO2 emissions sensitivity

Alternative fuel adoption (olive and brown), composition of reference scenario electrification (pink) and

turbocharged vehicle adoption (orange) have a very small impact on future CO2 emissions (Figure 8-9).

It is also noteworthy that increasing amounts of methanol, while it decreases conventional fuel demand,

increases emissions. This is because methanol is more CO2 intensive than gasoline. Vehicle stock is once

again the most significant driver in terms of both increasing or decreasing reference scenario emissions,

even if significantly decreasing fuel consumption has a similar effect to decreasing vehicle stock growth.

In contrast with energy demand and conventional fuel demand, reductions or increases in VDT is the next

most significant driver, ahead of electrification. However, because electrified vehicles are more efficient

than their internal combustion engine counterparts, even though China’s electric grid will remain more

CO2 intensive than gasoline, there is still a CO2 emissions benefit from significant electrification. The

same benefit of circa 100 mmt CO2 can be achieved, however, with mostly hybrid electric vehicles rather

than mostly plug-in hybrid and electric vehicles.

8.2.4 Discussion

Taking future energy demand, conventional fuel demand and CO2 emissions into account, vehicle stock

has the greatest impact in both increasing or decreasing demand or emissions. If significant gains can

be made in lowering fuel consumption, it too can be an important tool in limiting future energy demand

and CO2 emissions. Significant electrification holds great potential for lowering energy demand and
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displacing conventional fuel. Moreover, this electrified fleet need not be wholly electric - significant HEV

adoption can achieve the same benefits as EVs in reducing CO2 emissions, while achieving ~75% of

reductions in energy demand and conventional fuel demand. Although alternative fuels contribute to

modest increases or decreases in conventional fuel demand, they impact future CO2 emissions very little.

VDT is a fairly significant driver, but many strategies that target ownership can also influence VDT and

vice versa. Thus, managing vehicle demand remains the most important tool in determining future en-

ergy use, fuel demand and CO2 emissions in China, along with significantly reducing fuel consumption.

Pursuing significant hybrid electric vehicle adoption will deliver similar benefits to significant electric

vehicle adoption.
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Chapter 9

Implications

Chapter 8 that vehicle ownership, vehicle fuel consumption and hybrid electric and electric vehicles are

the most significant drivers to control light duty vehicle energy demand, light duty vehicle fuel demand,

and light duty vehicle CO2 emissions. This chapter analyzes how well current Chinese policy initiatives

address these four factors. It also evaluates the policy interventions discussed in Part II by how likely

institutional barriers from key stakeholders would prevent policy efficacy. Finally, it also discusses the

work’s implications for the international community and for research.

9.1 Research implications

The results from the Chapter 8 reveal that China’s future light duty vehicle energy demand, conventional

fuel demand and CO2 emissions are likely to level off in the 2030s and 2040s. It is possible for energy

demand to remain stable given lower fuel consumption, modest fleet electrification, and some alternative

fuel adoption, coupled with falling VDT and average OECD vehicle ownership. Even if one or a few of

the input variables are off, energy demand is still likely to remain roughly around the median. The next

area of inquiry, then, is to investigate what policy steps will achieve that future.

However, although China’s future light duty vehicle energy demand will level off, at what precise

amount it will do so is uncertain. The extreme scenarios reveal a large variation in possible future

energy demand, fuel demand and CO2 emissions. Acknowledging this, the solution I developed did set

a reference scenario, but use a modified sensitivity analysis to determine which drivers are the most

significant and establish how much China’s future light duty vehicle energy demand, fuel demand and

CO2 emissions might vary. The extreme scenarios do show that the possible variation in China’s future

energy demand is remarkably large - a possible fivefold spread in future energy demand, an eightfold

spread in future conventional fuel demand and over a fourfold spread in future emissions. Although the

extremes are unlikely, they bound the range of possible future outcomes.

Having identified how future Chinese energy demand, fuel demand and CO2 will evolve and which

drivers are significant in determining the precise future outcome, further work calls for understanding

these drivers in depth.
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9.2 Policy implications for China

Throughout Chapters 4 through 7, I reviewed and critically evaluated several policies that contribute to

controlling Chinese automotive energy demand, conventional fuel demand and CO2 emissions.

• Vehicle ownership and vehicle use: land use policy, transportation system policy, automobile

friendly policies

• Vehicle ownership: vehicle sales quotas

• Vehicle use: vehicle use bans, vehicle fuel taxes

• Vehicle efficiency and technology: fuel consumption targets, vehicle sales tax, electric vehicle

policies

• Vehicle fuels: alternative fuel research, development and subsidies

By combining the results of Chapter 8 with the policy analysis from Chapters 4 through 7, this section can

evaluate how well current Chinese policy aligns with the most significant drivers to reduce automotive

energy demand. Taking this, political feasibility and other barriers into consideration, I can recommend

which policies will be more effective in control future automotive energy demand growth.

Automotive ownership rises in step with increasing per capita income, and so China’s automotive

population will continue to rise. However, once a society becomes dependent on automobile travel,

force of habit makes it difficult to break that dependency. Especially because cities contain the major-

ity of light duty vehicles in China, exploring options now to reduce automotive reliance in urban areas

is imperative. I examined four strategies and policies: maintaining city density through land-use pol-

icy, building public transportation, adopting or eschewing automobile friendly policies, and vehicle sales

quotas. I found that the central government favors maintaining tight city borders and high city densities,

but local governments often extend the limits of their city masterplans. Political incentives, pressures

to generate revenue, inter-city competition, and increasingly affluent city residents all contribute to city

sprawl. Even as city development goals espouse sustainable development, implementing this develop-

ment is more difficult. Poorly integrated transportation planning and automotive friendly design policies

contribute. In response, some cities, faced with intolerable congestion and air pollution, have resorted

to vehicle sales quotas. These curtail vehicle sales in order to maintain vehicle population near current

levels.

Vehicle driving bans and vehicle fuel taxes are two methods of lowering automotive travel demand.

Vehicle driving bans restrict a portion of the vehicle population from driving at certain times of day

or days of the week, and a handful of cities across China have experimented with them. High vehicle

fuel taxes increase the cost of driving to make it more expensive and less desirable. Local governments

previously lobbied against such a policy, but fuel prices have risen in recent years to surpass US prices.

Through fuel consumption targets, vehicle sales taxes, and electric vehicle policies, the national

Chinese government has ambitious plans to improve and transform its automotive fleet. Electric vehicle

policies have poured money into research and development, provided pilot project purchase incentives

to private citizens and local governments to acquire electric vehicles, and set ambitious sales targets

in 2020. China has also adopted internationally rigorous fuel consumption policies, seeking to lower

average passenger car fuel consumption by 54% from 2010 to 2020. Finally, in a further bid to reduce

vehicle fuel consumption and promote small vehicles, China taxes vehicles by engine size. The electric

vehicle program has not come close to meeting targets, but the other two policies may yet succeed.
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Finally, research and development into alternative fuels has sought solutions to conventional fuel

demand imports. The government has funded research and subsidized various products including coal-

derived fuels, natural gas and biofuels.

Policies that best control energy demand The sensitivity analysis in Chapter 8 suggested that the

three most important drivers to control future automotive energy demand, conventional fuel demand

and CO2 emissions are automotive ownership, vehicle fuel consumption, and vehicle electrification.

HEVs can provide a majority of the electric vehicle benefits, and thus the composition of the electrified

fleet matters less. Mapping these results on to the aforementioned ten policy strategies suggests seven

levers that are more attractive from an impact view. Reducing vehicle ownership by 100 vehicles per

1000 capita off reference in 2050 may not be exactly equivalent to reducing fuel consumption from

reference by 33% in 2050, or raising electrified powertrains from 30% to 60% of sales in 2050. Moreover,

it is not clear how these seven policies should be formulated or which in each category will be the most

effective. However, these three drivers are collectively more significant than all the other examined

drivers, and thus these seven policy strategies are worth investigating further.

Policies that face fewer political barriers All ten policies face significant political barriers to imple-

mentation. As the analysis in Chapter 4 and 6 showed, Chinese government policy is not homogeneous.

Rather, the national government and local governments have different powers, interests and objectives.

The result means that sincere intentions to control automotive energy use or implement other policies

that could have this effect at the national level of government may not succeed. Frequently, the local

governments will ignore or delay implementing national government policy: they will change urban

land-use plans and extend development outward, or ignore calls for automotive industry consolidation

and build up their own automotive industries. Furthermore, national policy is often vaguely worded.

Additionally, when local governments receive national pilot project funds, they use this to support their

local industries. In the process, this may hinder national government policy success. For example, the

national policy initiative Tens of Cities, Thousands of Vehicles project gave money to local governments

who then purchased electric vehicles from their local manufacturers. Because each manufacturer made

few individual vehicles, few were able to benefit from the economies of scale and learning more concen-

trated manufacturing may have created.

A strict focus on raising short term revenues through means other than taxes and pressures to achieve

GDP growth targets has created a situation where many national government initiatives are unable to

succeed if the level of implementation is local. This imperils many of the aforementioned policies: land

use, transportation systems, and electric vehicle incentives are implemented at the local level. In addi-

tion, policies implemented at the national level may negatively impact certain localities, in which case

policy success is uncertain. For example, my analysis showed that domestic brand vehicle technology

lags JV vehicles technology. Reducing automotive fuel consumption, a central government target, will

drive up vehicle costs. Unfortunately, domestic brands already target and do well in the microcar market

segment. Downsizing vehicles to achieve better fuel consumption at a low vehicle cost may not be an

option, but neither is increasing vehicle cost and losing a customer base. Thus, this policy may be in-

compatible with a central government goals to raise the fraction of domestic brand sales marketshares.

Some domestic firms will fail. But, potential failure will meet strong resistance from local governments,

who own the companies and are heavily invested in their success.
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Other barriers to implementation Some policies may be more difficult to acheive for different rea-

sons. In general, policies can be broken down into regulations, expenditures, incentives and advocacy

efforts.

• Regulations: Either the central government or local government will mandate or prohibit certain

actions.

• Expenditures: Related to the provision of public services, the local governments carry these out.

• Incentives: Intended for citizens, companies or local governments these promise complete or par-

tial financial compensation in return for an action

• Advocacy: By informing citizens or companies, governments can encourage desired behaviors.

The ten policies enumerated in this chapter tend to be regulations, expenditures and incentives. In

comparison with expenditures and incentives, regulations are far less costly to a government and can

often bring revenues. Vehicle sales quotas are a regulation. They cost little to implement and can

even generate government revenue if set up as an auction. Developing public transportation is a large

expenditure that lacks direct monetary gains, although potential long term gains exist. Moreover, many

Chinese cities subsidize transit fares. Maintaining strict land-use is a regulation the central government

imposes on local governments. However, when land-use policy is coupled with foregone land rights sale

incomes, it acts more as a foregone incentive to local governments. Vehicle sales quotas are thus the

cheapest policy for local governments to implement, and unsurprisingly this is the policy a few local

governments have adopted.

Vehicle driving bans and fuel taxes are regulations; government revenue accompanies fuel taxes.

However, this may unduly impact commercial and industrial transportation, which is important to eco-

nomic development. Vehicle fuel consumption targets are also a regulation, but a target that does not

generate government revenue. The vehicle sales tax is an incentive. Plans for electrification necessi-

tate both government expenditures and government incentives. Unfortunately, policy success presumes

people will purchase electric vehicles. Unless the technology becomes cost effective, this is unlikely to

be the case. This strategy could yet succeed, but is far more risky and potentially more expensive than

other strategies. Similarly, alternative fuel research and development is also a large, risky government

expenditure.

Recommendation Considering this, vehicle fuel consumption targets emerge as the policy likeliest to

significantly reduce future automotive energy demand growth. It is a simple policy, relatively free from

political barriers, and costs little to implement. Vehicle sales quotas are also inexpensive and potentially

effective, but constrain the central government goal of growing an automotive industry. While an elec-

tric vehicle revolution remains elusive, hybrid electric vehicles could acheive a majority of the benefits

of electric vehicles. They hold promise, although they will require further government research and

development incentives.

9.3 Policy implications for the international community

Historically, China’s transportation energy demand as a fraction of world energy demand has been small

(Figure 9-1). Europe and the US have accounted for roughly a quarter each of all transportation en-

ergy in 2010, they accounted for nearly a third of all road transportation energy in 1970. Meanwhile,
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Figure 9-1: International road transport energy demand in million tons. The lines are stacked while the
shaded portion is separate.

China accounted for almost no share of international energy demand in the early 1970s, but is quickly

approaching 10% of international energy demand. As China’s conventional fuel demand continues to

grow, this will change the dynamics of the international oil trade market.

Surprisingly, the China reference scenario peak light duty vehicle fuel demand of ~500 bil L around

2040 closely matches US light duty vehicle fuel demand in 2008 of ~525 bil L (Figure 9-2). This

coincidence is striking considering that the US has fewer cars than China will have. Differences in VDT,

fuel consumption and energy technologies account for the difference. Before US fuel demand declines,

however, the two countries will together demand ~900 bil L of fuel in 2030. These comparisons are valid

because the fleet models for this study and Bastani et al. (2012) originate from the same precursor and

certain key assumptions (on future relative fuel consumption among powertrains, for example) remain

constant across both.
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Figure 9-2: Future China and USA road transportation energy demand in bil L. Source: this study and
Bastani et al. (2012).
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Chapter 10

Conclusions

This analysis built a light duty vehicle fleet model to project future vehicle stock, energy demand, fuel

demand and CO2 emissions. The reference scenario strove to present a moderately aggressive but fea-

sible future. Comparing these results with the reference results of other studies’ revealed this study

projects higher future automotive ownership but lower future automotive energy demand. While those

base cases are maximum energy demand scenarios, this study’s reference scenario presents a median

outcome. Thereafter, a sensitivity analysis constructed from the median scenario used the fleet model

tool to craft scenarios. The three sensitivity analyses identified three key drivers - vehicle ownership, ve-

hicle fuel consumption and vehicle electrification - that should be aligned with policy priorities in order

to achieve maximum effect in controlling automotive energy demand growth.

A concurrent policy analysis examined a plethora of Chinese policies that can reduce automotive

energy demand. These included land use policies, transportation system policies, urban design poli-

cies, vehicle sales quotas, vehicle use bans, vehicle fuel taxes, vehicle sales taxes graded by engine size,

fuel consumption targets, electric vehicle policies, and alternative fuel policies. Throughout the text it

became clear that all promulgated policies can face significant institutional barriers that stymie imple-

mentation. For example, if a policy is proposed at the national level, it might not be implemented as

intended or at all at the local level.

Vehicle ownership is the most significant driver, and it correlates with per capita income. As the

Chinese population grows more affluent, vehicle ownership will rise. During the past ten years, growth

in China’s light duty vehicle transportation sector has been concentrated to urban centers. Although

rural Chinese incomes may pass the threshold for automotive ownership and cars at some point in the

future, the urban centers will continue to account for the large majority of vehicles. Moreover, these

cities will grow. Keeping vehicle stock in check without sacrificing human development is difficult. A

handful of Chinese cities have already passed strict policies to limit vehicle sales. Reducing underlying

demand, however, is more complex. Many cities have decided to extend public transportation systems,

but this alone is insufficient. In order to reduce the sprawl that favors automobiles, research indicates

that land use policy must be rethought. Local government finances, incentives, and evaluations must be

rethought. This may slow urban de-densification. Cities must also rethink urban design. Unfortunately,

the institutional changes that will be necessary in order to implement policies that may retard vehicle

ownership and reduce VDT appear nearly insurmountable.

Vehicle fuel consumption was identified as another significant driver. China’s future passenger car

fuel consumption targets are aggressive. If the country succeeds in meeting them, it will significantly

reduced future potential automotive energy demand. Second, fuel consumption policy enforcement
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may crack from provincial pressure. Those local governments with weak automotive manufacturers

have strong incentives to see their companies survive. The national government, meanwhile, seeks

both to expand domestic brand marketshares and achieve dramatically lower fleet fuel consumption.

Based on my analysis comparing JV and domestic brand technology, JV technology still exceeds domestic

technology. The Chinese government may thus have to sacrifice one of its two goals.

Finally, electrified powertrains - hybrid electric, plug-in hybrid electric, and electric vehicles - are a

significant driver. China’s electric vehicle targets are among the most ambitious in the world. However,

many barriers lie in the way of success, and the existing electric vehicle strategy - leapfrogging past

hybrid vehicles to electric vehicles - has not worked. Instead, because China could receive a majority of

the fuel saving and CO2 emissions saving benefits from hybrid vehicles, shifting the strategy to hybrid

vehicle development may prove fruitful.

Future research must therefore further explore these significant drivers of automotive energy de-

mand growth. Regarding automotive ownership, researching the relationship between urban and rural

automotive ownership and their respective drivers may offer clues to how ownership in cities will evolve.

It may be possible to split the fleet model into two sections to do this. Better understanding how ur-

ban development and form relate to automotive energy demand growth may enable incorporating these

pressure into the model. On the vehicle technology side, the existing vehicle characteristics data can be

further analyzed to elucidate the differences between joint venture and domestic brand technology.

This work’s central findings:

• It is a plausible expectation that China can offset unrelenting rapid automotive energy de-

mand growth with reductions in fuel consumption and introduction of new vehicle technolo-

gies.

The developed world expects reductions in fuel consumption and adoption of new vehicle technologies

to pave a path towards reducing transportation sector energy demand. In China, future income growth

will inevitably raise current rates of vehicle ownership. However, similar reductions in fuel consumption

and adoption of new vehicle technologies can retard and eventually reverse future automotive demand

growth. If China can stabilize and eventually begin to reduce its automotive energy demand, it will do

so with a population four times that of the US. Moreover, its energy demand will peak at US peak energy

demand. In 2010, Chinese light duty vehicle energy demand was 94 bil L and in 2050 it will be 476

bil L gasoline equivalent fuel, but only 418 bil L gasoline equivalent conventional fuel. What can derail

China from acheiving these targets is not resolve, but follow through.

• The best policies to reduce both conventional fuel demand and CO2 emissions will focus

on maintaining moderate levels of vehicle stock, reducing vehicle fuel consumption, and

introducing hybrid electric or electric powertrains into the fleet.

As a whole, China’s policies are relatively well aligned with the model-identified priority strategies. Tar-

gets for reducing fuel consumption and raising electric vehicle sales exceed model expectations. How-

ever, the analysis also found reasons to doubt China’s ability to achieve these strategies. While urban

centers ostensibly embrace development that does not depend on motorized transportation, local gov-

ernment incentives are misaligned with implementing such development. The central government seeks

to lower automotive fuel consumption, raise domestic manufacturer sales marketshares for cars, and

promote the automotive industry. These goals may be difficult to acheive simultaneously. Electrification

is a laudable goal, but Chinese incomes and electric batteries expensive.

• Central government policies that could control automotive energy demand growth are not

implemented as intended at the local level.
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The list is long. Local governments frequently flout central government land use policy by acquiring

rural agricultural land and expanding their city borders. The central government has set standards for

low carbon cities and supported eco-city development together with select pilot cities, but several devel-

opments have failed. The central government has continually attempted to consolidate the automotive

industry, but the companies and local governments resist these plans. The central government decided a

list of automotive champions, but enterprising local governments founded their own car manufacturing

companies. The central government has created a pilot program across a few dozen cities for electric

vehicles, but ambitious targets were not met.

• Current domestic brand vehicles lag joint venture vehicles in technology and are ill-equipped

to meet future stringent fuel consumption standards without compromising low prices,

larger cars or marketshares.

Although domestic and JV brand vehicles weigh both conform to fuel consumption standards for their

weight class, the JV vehicles have more powerful and larger engines for a given weight class. This gap

in technology might be intentional as Chinese brand manufacturers target the low end market, but it

might be attributed to technological capability. Regardless, Chinese manufacturers may find it difficult

to achieve the new fuel consumption targets.

China’s motivations to control automotive energy demand, conventional fuel demand and CO2 emis-

sions are numerous. To effectively control growth, it can conserve energy demand by promoting policies

that lower travel demand and vehicle ownership demand. It can improve existing ICE technology to

lower fuel consumption. It can improve political structures and incentive systems to ensure more suc-

cessful policy implementation. Finally, it can potentially transform current technologies with alternative

powertrains. Focusing on any one portion of solutions is insufficient. Instead, controlling future ve-

hicle ownership, reducing future vehicle fuel consumption and introducing electrified powertrains will

involve conserving energy demand, improving current institutions and technologies, and transforming

the current automotive system. China is not yet locked into a physical and societal system dependent on

the automobile as is the developed world. It is changing fast. Regardless of the specific path it chooses,

China should act now and capitalize on this change.

109



110



Bibliography

World Motor Vehicle Data. Motor Vehicle Manufacturers Association, 1990.

China City Statistical Yearbook. China Statistics Press, National Bureau of Statistics, 1997-1999, 2001-

2005, 2007-2008.

China Energy Statistical Yearbook. China Statistics Press, Industrial and Transportation Statistics Depart-

ment of the National Bureau of Statistics, Energy Bureau of the National Development and Reform

Commission, 2000-2002, 2007, 2010.

Air Quality Guidelines for Particulate Matter, Ozone, Nitrogen Dioxide and Sulfur Dioxide, World Health

Organization. Technical report, 2005.

Passenger Car Fuel Consumption, First Batch (in Chinese), National Development and Reform Commis-

sion, 2006. URL www.sdpc.gov.cn/zcfb/zcfbgg/gg2006/t20061102_91437.htmS.

Passenger Car Fuel Consumption, Second Batch (in Chinese), National Development and Reform Com-

mission, 2007. URL www.sdpc.gov.cn/zcfb/zcfbgg/2007gonggao/t20070723_149373.
htmS.

Ward’s World Motor Vehicle Data. Ward’s Communications, Southfield, MI, 2009, 2011-2012.

Investigation of Chinese Motor Vehicle Annual Distance Traveled. Technical report, Vehicle Emissions

Control Center, 2010.

Beijing Statistical Yearbook. China Statistics Press, Beijing Bureau of Statistics, 2011.

China Statistical Yearbook. China Statistics Press, National Bureau of Statistics, 2011.

China Statistical Yearbook. China Statistics Press, National Bureau of Statistics, Beijing, 2011a.

China Automotive Industry Yearbook. China Automotive Technology and Research Center, China Associ-

ation of Automotive Manufacturers, 2011b.

International Energy Outlook. U.S. Energy Information Administration, Washington DC, 2011. ISBN

2025869592. URL http://www.stellio-engineers.nl/wp-content/uploads/2012/03/
2011STGRCV1-Annex-1.3A-IEO2010-July2010.pdf.

Fujian Statistical Yearbook. China Statistics Press, Fujian Bureau of Statistics, 2011.

Hainan Statistical Yearbook. China Statistics Press, Hainan Bureau of Statistics, 2011.

Henan Statistical Yearbook. China Statistics Press, Henan Bureau of Statistics, 2011.

Jiangsu Statistical Yearbook. China Statistics Press, Jiangsu Bureau of Statistics, 2011a.

Jiangxi Statistical Yearbook. China Statistics Press, Jiangxi Bureau of Statistics, 2011b.

Shandong Statistical Yearbook. China Statistics Press, Shandong Bureau of Statistics, 2011.

Tianjin Statistical Yearbook. China Statistics Press, Tianjin Bureau of Statistics, 2011.

111

www.sdpc.gov.cn/zcfb/zcfbgg/gg2006/t20061102_91437.htmS
www.sdpc.gov.cn/zcfb/zcfbgg/2007gonggao/t20070723_149373.htmS
www.sdpc.gov.cn/zcfb/zcfbgg/2007gonggao/t20070723_149373.htmS
http://www.stellio-engineers.nl/wp-content/uploads/2012/03/2011STGRCV1-Annex-1.3A-IEO2010-July2010.pdf
http://www.stellio-engineers.nl/wp-content/uploads/2012/03/2011STGRCV1-Annex-1.3A-IEO2010-July2010.pdf


Protection of Environment, US Code, Title 40, 2011.

Urban Outdoor Air Pollution Database, World Health Organization, 2011. URL apps.who.int/gho/
data/node.main.154?lang=en.

Challenges and Opportunities - The China New Energy Vehicles Program. Technical report, World Bank,

2011.

World Energy Outlook, 2012. International Energy Agency, 2012a. ISBN 9789264180840.

Euromonitor, 2013. URL www.portal.euromonitor.com.

Announcement of Fuel Consumption Rates of Light-Duty Vehicles in China, 2013. URL gzly.miit.
gov.cn:8090/datainfo/miit/babs2.jspS.

World Development Indicators, 2013. URL databank.worldbank.org/data.

Beijing unveils new steps to curb air pollution, January 2013. URL http://news.xinhuanet.com/
english/china/2013-01/22/c_132120364.htm.

GT Allison. Conceptual models and the Cuban missile crisis. The American Political Science Review, 63

(3):689–718, 1969. URL http://www.jstor.org/stable/10.2307/1954423.

Feng An, Deborah Gordon, and Hui He. Passenger Vehicle Greenhouse Gas and Fuel Economy Standards:

A Global Update. Technical report, International Council of Clean Transportation, 2007.

Feng An, Dong Ma, Liping Kang, and Robert Earley. China Passenger Vehicle Corporate Average Fuel

Consumption (CAFC) Trend Report (2006 - 2010). Technical report, Innovation Center for Energy

and Transportation, Beijing, China, 2011.

Philip Andrews-Speed. The Institutions of Energy Governance in China. Technical Report January,

Institut francais des relations internationales, 2010. URL http://www.ifri.org/downloads/
noteandrewsspeedenergychina_1.pdf.

Chun-Chung Au and J. Vernon Henderson. How migration restrictions limit agglomeration and produc-

tivity in China. Journal of Development Economics, 80(2):350–388, August 2006. ISSN 03043878.

doi:10.1016/j.jdeveco.2005.04.002. URL http://linkinghub.elsevier.com/retrieve/pii/
S030438780500074X.

Axel Baeumler, Mansha Chen, Kanako Iuchi, and Hiroaki Suzuki. Eco-Cities and Low-Carbon Cities:

The China Context and Global Perspectives. In Ede Ijjasz-Vasquez, Shomik Mehndiratta, and Axel

Baeumler, editors, Sustainable Low-Carbon City Development in China, chapter 2, pages 33–62. World

Bank Publications, Washington DC, 2012.

Chong-En Bai and Yingyi Qian. Infrastructure development in China: The cases of electric-

ity, highways, and railways. Journal of Comparative Economics, 38(1):34–51, March 2010.

ISSN 01475967. doi:10.1016/j.jce.2009.10.003. URL http://linkinghub.elsevier.com/
retrieve/pii/S014759670900081X.

Anup Bandivadekar, Kristian Bodek, and Lynette Cheah. On the road in 2035. Technical Report July,

Massachusetts Institute of Technology, 2008. URL http://scholar.google.com/scholar?hl=
en&btnG=Search&q=intitle:On+the+Road+in+2035#1.

112

apps.who.int/gho/data/node.main.154?lang=en
apps.who.int/gho/data/node.main.154?lang=en
www.portal.euromonitor.com
gzly.miit.gov. cn:8090/datainfo/miit/babs2.jspS
gzly.miit.gov. cn:8090/datainfo/miit/babs2.jspS
databank.worldbank.org/data
http://news.xinhuanet.com/english/china/2013-01/22/c_132120364.htm
http://news.xinhuanet.com/english/china/2013-01/22/c_132120364.htm
http://www.jstor.org/stable/10.2307/1954423
http://www.ifri.org/downloads/noteandrewsspeedenergychina_1.pdf
http://www.ifri.org/downloads/noteandrewsspeedenergychina_1.pdf
http://dx.doi.org/10.1016/j.jdeveco.2005.04.002
http://linkinghub.elsevier.com/retrieve/pii/S030438780500074X
http://linkinghub.elsevier.com/retrieve/pii/S030438780500074X
http://dx.doi.org/10.1016/j.jce.2009.10.003
http://linkinghub.elsevier.com/retrieve/pii/S014759670900081X
http://linkinghub.elsevier.com/retrieve/pii/S014759670900081X
http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:On+the+Road+in+2035#1
http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:On+the+Road+in+2035#1


Steve Bankes. Exploratory modeling for policy analysis. Operations Research, 41(3):435–449, 1993. URL

http://or.journal.informs.org/content/41/3/435.short.

Parisa Bastani, John B. Heywood, and Chris Hope. The effect of uncertainty on US transport-related GHG

emissions and fuel consumption out to 2050. Transportation Research Part A: Policy and Practice, 46(3):

517–548, March 2012. ISSN 09658564. doi:10.1016/j.tra.2011.11.011. URL http://linkinghub.
elsevier.com/retrieve/pii/S0965856411001807.

Richard Baum and Alexei Shevchenko. The "State of the State". In Roderick MacFarquhar and Merle

Goldman, editors, The Paradox of China’s Post-Mao Reforms, chapter 15. Harvard University Press,

Cambridge, MA, 1999.

Kristian Bodek and John B. Heywood. Europe’s Evolving Passenger Vehicle Fleet: Fuel Use and GHG

Emissions Scenarios through 2035. Technical report, Laboratory for the Energy and Environment,

Masschusetts Institute of Technology, 2008.

Maarten Bosker, Steven Brakman, Harry Garretsen, and Marc Schramm. Relaxing Hukou: Increased la-

bor mobility and China’s economic geography. Journal of Urban Economics, 72(2-3):252–266, Septem-

ber 2012. ISSN 00941190. doi:10.1016/j.jue.2012.06.002. URL http://linkinghub.elsevier.
com/retrieve/pii/S0094119012000411.

Robert Cervero and Jennifer Day. Suburbanization and transit-oriented development in China. Transport
Policy, 15(5):315–323, September 2008. ISSN 0967070X. doi:10.1016/j.tranpol.2008.12.011. URL

http://linkinghub.elsevier.com/retrieve/pii/S0967070X08000577.

Haiyan Chen, Beisi Jia, and S.S.Y. Lau. Sustainable urban form for Chinese compact cities: Chal-

lenges of a rapid urbanized economy. Habitat International, 32(1):28–40, March 2008. ISSN

01973975. doi:10.1016/j.habitatint.2007.06.005. URL http://linkinghub.elsevier.com/
retrieve/pii/S0197397507000367.

Xiaojie Chen and Jinhua Zhao. Bidding to drive: Car license auction policy in Shanghai and its public ac-

ceptance. Transport Policy, 27:39–52, May 2013. ISSN 0967070X. doi:10.1016/j.tranpol.2012.11.016.

URL http://linkinghub.elsevier.com/retrieve/pii/S0967070X12001916.

Peter T.Y. Cheung. Introduction: Provincial Leadership and Economic Reform in Post-Mao China. In

M. E. Sharpe, editor, Provincial Strategies of Economic Reform in Post-Mao China, pages 3–46. Armonk,

NY, 1998.

Gregory T. Chin. China’s Automotive Modernization: the Party-State and Multinational Corporations.
Palgrave Macmillan, New York, NY, 2010. ISBN 978-0-230-22060-7.

National Research Council. Transitions to Alternative Vehicles and Fuels. National Academies Press,

Washington DC, 2013. ISBN 9780309268523.

State Council. Automotive industry restructuring and revitalization plan, 2009. URL http://www.
gov.cn/zwgk/2009-03/20/content_1264324.htm.

State Council. Development Plan for the Energy-Saving and New Energy Vehicle Industry, 2012.

Randall Crane. The influence of urban form on travel: an interpretive review. Journal of Planning
Literature, 2000. URL http://jpl.sagepub.com/content/15/1/3.short.

113

http://or.journal.informs.org/content/41/3/435.short
http://dx.doi.org/10.1016/j.tra.2011.11.011
http://linkinghub.elsevier.com/retrieve/pii/S0965856411001807
http://linkinghub.elsevier.com/retrieve/pii/S0965856411001807
http://dx.doi.org/10.1016/j.jue.2012.06.002
http://linkinghub.elsevier.com/retrieve/pii/S0094119012000411
http://linkinghub.elsevier.com/retrieve/pii/S0094119012000411
http://dx.doi.org/10.1016/j.tranpol.2008.12.011
http://linkinghub.elsevier.com/retrieve/pii/S0967070X08000577
http://dx.doi.org/10.1016/j.habitatint.2007.06.005
http://linkinghub.elsevier.com/retrieve/pii/S0197397507000367
http://linkinghub.elsevier.com/retrieve/pii/S0197397507000367
http://dx.doi.org/10.1016/j.tranpol.2012.11.016
http://linkinghub.elsevier.com/retrieve/pii/S0967070X12001916
http://www.gov.cn/zwgk/2009-03/20/content_1264324.htm
http://www.gov.cn/zwgk/2009-03/20/content_1264324.htm
http://jpl.sagepub.com/content/15/1/3.short


Cristiano Facanha, Kate Blumberg, and Josh Miller. Global Transportation Energy and Climate Roadmap.

Technical report, International Council on Clean Transportation, Washington DC, 2012.

Joyce Dargay. Determinants of car ownership in rural and urban areas: a pseudo-panel analy-

sis. Transportation Research Part E: Logistics and Transportation Review, 38:351–366, 2002. URL

http://www.sciencedirect.com/science/article/pii/S1366554501000199.

Joyce Dargay, Dermot Gately, and Martin Sommer. Vehicle ownership and income growth, World-

wide: 1960-2030. Energy Journal, 28(4), 2007. URL http://www.xesc.cat/Et2050_Library/
attachments/Imp_Vehicles_per_capita_2030.pdf.

Stacy C. Davis, Susan W. Diegel, and Robert G. Boundy. Transportation Energy Data Book. Oak Ridge

National Laboratory, Oak Ridge, TN, 31 edition, 2012. ISBN 1800553684. URL http://adsabs.
harvard.edu/abs/1991STIN...9124681D.

Chengri Ding. Policy and praxis of land acquisition in China. Land Use Policy, 24(1):1–13, January 2007.

ISSN 02648377. doi:10.1016/j.landusepol.2005.09.002. URL http://linkinghub.elsevier.
com/retrieve/pii/S0264837705000530.

Michael Dunne. American Wheels Chinese Roads: the Story of General Motors in China. John Wiley &

Sons (Asia), Singapore, 2011.

Reid Ewing and Robert Cervero. Travel and the Built Environment. Journal of the American Planning
Association, 76(3):265–294, June 2010. ISSN 0194-4363. doi:10.1080/01944361003766766. URL

http://www.tandfonline.com/doi/abs/10.1080/01944361003766766.

J Fan, T Wong, and Tianyu Zhang. Politically connected CEOs, corporate governance, and Post-IPO

performance of China’s newly partially privatized firms. Journal of Financial Economics, 84(2):330–

357, May 2007. ISSN 0304405X. doi:10.1016/j.jfineco.2006.03.008. URL http://linkinghub.
elsevier.com/retrieve/pii/S0304405X06002133.

Suwei Feng and Zuqi Ma. Performance analysis on private vehicle plate auction in Shanghai. 6th Ad-
vanced Forum on Transportation of China (AFTC 2010), pages 6–12, 2010. doi:10.1049/cp.2010.1092.

URL http://link.aip.org/link/IEECPS/v2010/iCP573/p6/s1&Agg=doi.

Kelly Sims Gallagher. Limits to leapfrogging in energy technologies? Evidence from the Chi-

nese automobile industry. Energy Policy, 34(4):383–394, March 2006. ISSN 03014215.

doi:10.1016/j.enpol.2004.06.005. URL http://linkinghub.elsevier.com/retrieve/pii/
S0301421504001739.

Huiming Gong, Michael Wang, and Hewu Wang. New energy vehicles in China: policies, demonstra-

tion, and progress. Mitigation and Adaptation Strategies for Global Change, (19), March 2012. ISSN

1381-2386. doi:10.1007/s11027-012-9358-6. URL http://www.springerlink.com/index/10.
1007/s11027-012-9358-6.

Han Hao, Hewu Wang, and Minggao Ouyang. Fuel conservation and GHG (Greenhouse gas) emissions

mitigation scenarios for China’s passenger vehicle fleet. Energy, 36(11):6520–6528, November 2011a.

ISSN 03605442. doi:10.1016/j.energy.2011.09.014. URL http://linkinghub.elsevier.com/
retrieve/pii/S0360544211006116.

114

http://www.sciencedirect.com/science/article/pii/S1366554501000199
http://www.xesc.cat/Et2050_Library/attachments/Imp_Vehicles_per_capita_2030.pdf
http://www.xesc.cat/Et2050_Library/attachments/Imp_Vehicles_per_capita_2030.pdf
http://adsabs.harvard.edu/abs/1991STIN...9124681D
http://adsabs.harvard.edu/abs/1991STIN...9124681D
http://dx.doi.org/10.1016/j.landusepol.2005.09.002
http://linkinghub.elsevier.com/retrieve/pii/S0264837705000530
http://linkinghub.elsevier.com/retrieve/pii/S0264837705000530
http://dx.doi.org/10.1080/01944361003766766
http://www.tandfonline.com/doi/abs/10.1080/01944361003766766
http://dx.doi.org/10.1016/j.jfineco.2006.03.008
http://linkinghub.elsevier.com/retrieve/pii/S0304405X06002133
http://linkinghub.elsevier.com/retrieve/pii/S0304405X06002133
http://dx.doi.org/10.1049/cp.2010.1092
http://link.aip.org/link/IEECPS/v2010/iCP573/p6/s1&Agg=doi
http://dx.doi.org/10.1016/j.enpol.2004.06.005
http://linkinghub.elsevier.com/retrieve/pii/S0301421504001739
http://linkinghub.elsevier.com/retrieve/pii/S0301421504001739
http://dx.doi.org/10.1007/s11027-012-9358-6
http://www.springerlink.com/index/10.1007/s11027-012-9358-6
http://www.springerlink.com/index/10.1007/s11027-012-9358-6
http://dx.doi.org/10.1016/j.energy.2011.09.014
http://linkinghub.elsevier.com/retrieve/pii/S0360544211006116
http://linkinghub.elsevier.com/retrieve/pii/S0360544211006116


Han Hao, Hewu Wang, and Minggao Ouyang. Comparison of policies on vehicle ownership and use

between Beijing and Shanghai and their impacts on fuel consumption by passenger vehicles. Energy
Policy, 39(2):1016–1021, February 2011b. ISSN 03014215. doi:10.1016/j.enpol.2010.11.039. URL

http://linkinghub.elsevier.com/retrieve/pii/S0301421510008633.

Han Hao, HeWu Wang, MingGao Ouyang, and Fei Cheng. Vehicle survival patterns in China. Science
China Technological Sciences, 54(3):625–629, February 2011c. ISSN 1674-7321. doi:10.1007/s11431-

010-4256-1. URL http://www.springerlink.com/index/10.1007/s11431-010-4256-1.

Han Hao, Hewu Wang, and Ran Yi. Hybrid modeling of China’s vehicle ownership and

projection through 2050. Energy, 36(2):1351–1361, February 2011d. ISSN 03605442.

doi:10.1016/j.energy.2010.10.055. URL http://linkinghub.elsevier.com/retrieve/pii/
S0360544210006183.

Eric Harwit. China’s Automobile Industry: Policies, Problems and Prospects. M.E. Sharpe Inc., Armonk,

NY, 1995.

Hui He and Jun Tu. The New Passenger Car Fleet in China, 2010: Technology Assessment and Interna-

tional Comparisons. Technical report, International Council on Clean Transportation, 2012.

Kebin He, Hong Huo, Qiang Zhang, Dongquan He, Feng An, Michael Wang, and Michael P.

Walsh. Oil consumption and CO2 emissions in China’s road transport: current status, future

trends, and policy implications. Energy Policy, 33(12):1499–1507, August 2005. ISSN 03014215.

doi:10.1016/j.enpol.2004.01.007. URL http://linkinghub.elsevier.com/retrieve/pii/
S0301421504000151.

Peter Hessler. Car Town. New Yorker, September 2005. URL http://www.newyorker.com/archive/
2005/09/26/050926fa_fact_hessler.

John Heywood. Internal Combustion Engine Fundamentals. McGraw-Hill, 1988.

Peter Ho. Who owns China’s land? Policies, property rights and deliberate institutional ambigu-

ity. The China Quarterly, 2001. URL http://journals.cambridge.org/production/action/
cjoGetFulltext?fulltextid=83554.

Xiaojun Hu, Shiyan Chang, Jingjie Li, and Yining Qin. Energy for sustainable road transportation in

China: Challenges, initiatives and policy implications. Energy, 35(11):4289–4301, 2010. ISSN 0360-

5442. doi:10.1016/j.energy.2009.05.024. URL http://dx.doi.org/10.1016/j.energy.2009.
05.024http://www.sciencedirect.com/science/article/pii/S0360544209002102.

Hong Huo and Michael Wang. Modeling future vehicle sales and stock in China. Energy Policy, 43:

17–29, April 2012. ISSN 03014215. doi:10.1016/j.enpol.2011.09.063. URL http://linkinghub.
elsevier.com/retrieve/pii/S0301421511007774.

Hong Huo, Michael Wang, Larry Johnson, and Dongquan He. Projection of Chinese Motor Ve-

hicle Growth, Oil Demand, and CO2 Emissions Through 2050. Transportation Research Record,
Journal of the Transportation Research Board, 2038:69–77, December 2007. ISSN 0361-1981.

doi:10.3141/2038-09. URL http://trb.metapress.com/openurl.asp?genre=article&id=
doi:10.3141/2038-09.

115

http://dx.doi.org/10.1016/j.enpol.2010.11.039
http://linkinghub.elsevier.com/retrieve/pii/S0301421510008633
http://dx.doi.org/10.1007/s11431-010-4256-1
http://dx.doi.org/10.1007/s11431-010-4256-1
http://www.springerlink.com/index/10.1007/s11431-010-4256-1
http://dx.doi.org/10.1016/j.energy.2010.10.055
http://linkinghub.elsevier.com/retrieve/pii/S0360544210006183
http://linkinghub.elsevier.com/retrieve/pii/S0360544210006183
http://dx.doi.org/10.1016/j.enpol.2004.01.007
http://linkinghub.elsevier.com/retrieve/pii/S0301421504000151
http://linkinghub.elsevier.com/retrieve/pii/S0301421504000151
http://www.newyorker.com/archive/2005/09/26/050926fa_fact_hessler
http://www.newyorker.com/archive/2005/09/26/050926fa_fact_hessler
http://journals.cambridge.org/production/action/cjoGetFulltext?fulltextid=83554
http://journals.cambridge.org/production/action/cjoGetFulltext?fulltextid=83554
http://dx.doi.org/10.1016/j.energy.2009.05.024
http://dx.doi.org/10.1016/j.energy.2009.05.024 http://www.sciencedirect.com/science/article/pii/S0360544209002102
http://dx.doi.org/10.1016/j.energy.2009.05.024 http://www.sciencedirect.com/science/article/pii/S0360544209002102
http://dx.doi.org/10.1016/j.enpol.2011.09.063
http://linkinghub.elsevier.com/retrieve/pii/S0301421511007774
http://linkinghub.elsevier.com/retrieve/pii/S0301421511007774
http://dx.doi.org/10.3141/2038-09
http://trb.metapress.com/openurl.asp?genre=article&id=doi:10.3141/2038-09
http://trb.metapress.com/openurl.asp?genre=article&id=doi:10.3141/2038-09


Hong Huo, Zhiliang Yao, Kebin He, and Xin Yu. Fuel consumption rates of passenger cars

in China: Labels versus real-world. Energy Policy, 39(11):7130–7135, 2011. ISSN 0301-

4215. doi:10.1016/j.enpol.2011.08.031. URL http://dx.doi.org/10.1016/j.enpol.2011.
08.031http://www.sciencedirect.com/science/article/pii/S0301421511006288.

Hong Huo, Kebin He, Michael Wang, and Zhiliang Yao. Vehicle technologies, fuel-economy policies, and

fuel-consumption rates of Chinese vehicles. Energy Policy, 43:30–36, April 2012a. ISSN 03014215.

doi:10.1016/j.enpol.2011.09.064. URL http://linkinghub.elsevier.com/retrieve/pii/
S0301421511007786.

Hong Huo, Michael Wang, Xiliang Zhang, Kebin He, Huiming Gong, Kejun Jiang, Yuefu Jin, Yaodong

Shi, and Xin Yu. Projection of energy use and greenhouse gas emissions by motor vehicles in

China: Policy options and impacts. Energy Policy, 43:37–48, April 2012b. ISSN 03014215.

doi:10.1016/j.enpol.2011.09.065. URL http://linkinghub.elsevier.com/retrieve/pii/
S0301421511007798.

Hong Huo, Qiang Zhang, Kebin He, Zhiliang Yao, and Michael Wang. Vehicle-use intensity in

China: Current status and future trend. Energy Policy, 43:6–16, April 2012c. ISSN 03014215.

doi:10.1016/j.enpol.2011.09.019. URL http://linkinghub.elsevier.com/retrieve/pii/
S0301421511007087.

IEA. World Energy Balances, 2012b. URL 10.1787/data-00512-en.

IEA. Oil demand by product for non-OECD countries, 2012c. URL 0.1787/data-00511-en.

Andrew Jacobs. For Many Chinese Men, No Deed Means No Dates, April 2011. URL http://www.
nytimes.com/2011/04/15/world/asia/15bachelors.html?pagewanted=all.

Jeffrey R. Kenworthy and Gang Hu. Transport and Urban Form in Chinese Cities. DiSP, 4(151), 2002.

Jeffrey R. Kenworthy and Felix B. Laube. Automobile dependence in cities: An international comparison

of urban transport and land use patterns with implications for sustainability. Environmental Impact As-
sessment Review, 16(4-6):279–308, July 1996. ISSN 01959255. doi:10.1016/S0195-9255(96)00023-

6. URL http://linkinghub.elsevier.com/retrieve/pii/S0195925596000236.

Jeffrey R. Kenworthy and Felix B. Laube. Patterns of automobile dependence in cities: an interna-

tional overview of key physical and economic dimensions with some implications for urban pol-

icy. Transportation Research Part A: Policy and Practice, 33(7-8):691–723, September 1999. ISSN

09658564. doi:10.1016/S0965-8564(99)00006-3. URL http://linkinghub.elsevier.com/
retrieve/pii/S0965856499000063.

PN Kishimoto, Sergey Paltsev, and VJ Karplus. The Future Energy and GHG Emissions Impact of Alter-

native Personal Transportation Pathways in China, MIT Joint Program on the Science and Policy of

Global Change. (231), 2012. URL http://dspace.mit.edu/handle/1721.1/73607.

Christopher R Knittel. Automobiles on Steroids : Product Attribute Trade-Offs and Technological

Progress in the Automobile Sector. American Economic Review, 101(December 2011):3368–3399,

2012.

Wolfram Knörr and Frank Dunnebeil. Transport in China : Energy Consumption and Emissions of Differ-

ent Transport Modes. Technical Report May 2008, Institute for Energy and Environmental Research

Heidelberg, 2008.

116

http://dx.doi.org/10.1016/j.enpol.2011.08.031
http://dx.doi.org/10.1016/j.enpol.2011.08.031 http://www.sciencedirect.com/science/article/pii/S0301421511006288
http://dx.doi.org/10.1016/j.enpol.2011.08.031 http://www.sciencedirect.com/science/article/pii/S0301421511006288
http://dx.doi.org/10.1016/j.enpol.2011.09.064
http://linkinghub.elsevier.com/retrieve/pii/S0301421511007786
http://linkinghub.elsevier.com/retrieve/pii/S0301421511007786
http://dx.doi.org/10.1016/j.enpol.2011.09.065
http://linkinghub.elsevier.com/retrieve/pii/S0301421511007798
http://linkinghub.elsevier.com/retrieve/pii/S0301421511007798
http://dx.doi.org/10.1016/j.enpol.2011.09.019
http://linkinghub.elsevier.com/retrieve/pii/S0301421511007087
http://linkinghub.elsevier.com/retrieve/pii/S0301421511007087
10.1787/data-00512-en
0.1787/data-00511-en
http://www.nytimes.com/2011/04/15/world/asia/15bachelors.html?pagewanted=all
http://www.nytimes.com/2011/04/15/world/asia/15bachelors.html?pagewanted=all
http://dx.doi.org/10.1016/S0195-9255(96)00023-6
http://dx.doi.org/10.1016/S0195-9255(96)00023-6
http://linkinghub.elsevier.com/retrieve/pii/S0195925596000236
http://dx.doi.org/10.1016/S0965-8564(99)00006-3
http://linkinghub.elsevier.com/retrieve/pii/S0965856499000063
http://linkinghub.elsevier.com/retrieve/pii/S0965856499000063
http://dspace.mit.edu/handle/1721.1/73607


Jun Li and Xin Wang. Energy and climate policy in China’s twelfth five-year plan: A paradigm shift.

Energy Policy, 41:519–528, February 2012. ISSN 03014215. doi:10.1016/j.enpol.2011.11.012. URL

http://linkinghub.elsevier.com/retrieve/pii/S0301421511008895.

Kai Li, Heng Yue, and Longkai Zhao. Ownership, institutions, and capital structure: Evidence from

China. Journal of Comparative Economics, 37(3):471–490, September 2009. ISSN 01475967.

doi:10.1016/j.jce.2009.07.001. URL http://linkinghub.elsevier.com/retrieve/pii/
S0147596709000523.

Erik Lichtenberg and Chengri Ding. Local officials as land developers: Urban spatial expan-

sion in China. Journal of Urban Economics, 66(1):57–64, July 2009. ISSN 00941190.

doi:10.1016/j.jue.2009.03.002. URL http://linkinghub.elsevier.com/retrieve/pii/
S0094119009000151.

Louisa Lim. For Chinese Women, Marriage Depends on Right ’Bride

Price’, April 2013. URL www.npr.org/2013/04/23/176326713/
for-chinese-women-marriage-depends-on-right-bride-price.

Yong Liu, Yu Song, and Hans Peter Arp. Examination of the relationship between urban form

and urban eco-efficiency in china. Habitat International, 36(1):171–177, January 2012. ISSN

01973975. doi:10.1016/j.habitatint.2011.08.001. URL http://linkinghub.elsevier.com/
retrieve/pii/S0197397511000609.

Zhi Liu and Andrew Salzberg. Developing Low-Carbon Cities in China: Local Governance, Municipal

Finance, and Land-Use Planning–Key Underlying Drivers. In Sustainable Low-Carbon City Development
in China, chapter 4, pages 97–127. World Bank Publications, Washington DC, 2012.

Pierre Xiao Lu. Elite China: luxury consumer behavior in China. John Wiley & Sons, Singapore, 2008.

K Lynch. Access. In Good City Form, chapter 10. The MIT Press, 1984. URL http:
//books.google.com/books?hl=en&lr=&id=flJdgBoKQHQC&oi=fnd&pg=PA1&dq=Good+
City+Form&ots=WEetjIY3YN&sig=HavYXtPO9EvBbPu8nwhH8-9XEFQ.

Zheng Ma. Chengdu to Introduce Car Ban, March 2012.

Don Mackenzie and John B. Heywood. Acceleration Performance Trends and the Evolving Relationship

Among Power, Weight, and Acceleration in U.S. Light-Duty Vehicles: A Linear Regression Analysis. In

92nd Transportation Research Board, Washington DC, 2012. ISBN 6172532243.

Shomik Mehndiratta, Zhe Liu, and Ke Fang. Motorized Vehicles: Demand Management and Technology.

In Axel Baeumler, Ede Ijjasz-vasquez, and Shomik Mehndiratta, editors, Sustainable Low-Carbon City
Development in China, pages 299–322. World Bank Publications, Washington DC, 2012.

Andrew Mertha. "Fragmented Authoritarianism 2.0": Political Pluralization in the Chinese

Policy Process. The China Quarterly, 200:995–1012, December 2009. ISSN 0305-7410.

doi:10.1017/S0305741009990592. URL http://www.journals.cambridge.org/abstract_
S0305741009990592.

Ina Meyer, M. Leimbach, and C.C. Jaeger. International passenger transport and climate change: A

sector analysis in car demand and associated emissions from 2000 to 2050. Energy Policy, 35(12):

6332–6345, December 2007. ISSN 03014215. doi:10.1016/j.enpol.2007.07.025. URL http://
linkinghub.elsevier.com/retrieve/pii/S0301421507003230.

117

http://dx.doi.org/10.1016/j.enpol.2011.11.012
http://linkinghub.elsevier.com/retrieve/pii/S0301421511008895
http://dx.doi.org/10.1016/j.jce.2009.07.001
http://linkinghub.elsevier.com/retrieve/pii/S0147596709000523
http://linkinghub.elsevier.com/retrieve/pii/S0147596709000523
http://dx.doi.org/10.1016/j.jue.2009.03.002
http://linkinghub.elsevier.com/retrieve/pii/S0094119009000151
http://linkinghub.elsevier.com/retrieve/pii/S0094119009000151
www.npr.org/2013/04/23/176326713/for-chinese-women-marriage-depends-on-right-bride-price
www.npr.org/2013/04/23/176326713/for-chinese-women-marriage-depends-on-right-bride-price
http://dx.doi.org/10.1016/j.habitatint.2011.08.001
http://linkinghub.elsevier.com/retrieve/pii/S0197397511000609
http://linkinghub.elsevier.com/retrieve/pii/S0197397511000609
http://books.google.com/books?hl=en&lr=&id=flJdgBoKQHQC&oi=fnd&pg=PA1&dq=Good+City+Form&ots=WEetjIY3YN&sig=HavYXtPO9EvBbPu8nwhH8-9XEFQ
http://books.google.com/books?hl=en&lr=&id=flJdgBoKQHQC&oi=fnd&pg=PA1&dq=Good+City+Form&ots=WEetjIY3YN&sig=HavYXtPO9EvBbPu8nwhH8-9XEFQ
http://books.google.com/books?hl=en&lr=&id=flJdgBoKQHQC&oi=fnd&pg=PA1&dq=Good+City+Form&ots=WEetjIY3YN&sig=HavYXtPO9EvBbPu8nwhH8-9XEFQ
http://dx.doi.org/10.1017/S0305741009990592
http://www.journals.cambridge.org/abstract_S0305741009990592
http://www.journals.cambridge.org/abstract_S0305741009990592
http://dx.doi.org/10.1016/j.enpol.2007.07.025
http://linkinghub.elsevier.com/retrieve/pii/S0301421507003230
http://linkinghub.elsevier.com/retrieve/pii/S0301421507003230


Edward Mountfield and CP Wong. Public expenditure on the frontline: Toward effective management by

subnational governments. In East Asia decentralizes: Making local government work, chapter 5, pages

85–106. World Bank Publications, 2005. URL gzly.miit.gov.%20cn:8090/datainfo/miit/
babs2.jspS.

Dale D. Murphy. The business dynamics of global regulatory competition. In David Vogel and Robert A.

Kagan, editors, Dynamics of Regulatory Change: How Globalization Affects National Regulatory Policies,
volume 1, chapter 2. University of California International and Area Studies, 2002.

PWG Newman and Jeffrey R. Kenworthy. Gasoline consumption and cities. Journal of the American
Planning Association, (December 2012):37–41, 1989. URL http://www.tandfonline.com/doi/
abs/10.1080/01944368908975398.

Eriko Nishimura. Assessing the Fuel Use and Greenhouse Gas Emissions of Future Light-Duty Vehicles in
Japan. PhD thesis, Massachusetts Institute of Technology, 2011.

Peter D. Norton. Fighting Traffic: The Dawn of the Motor Age in the American City. The MIT Press,

Cambridge, MA, 2011.

Hongyan H. Oliver, Kelly Sims Gallagher, Donglian Tian, and Jinhua Zhang. China’s fuel economy

standards for passenger vehicles: Rationale, policy process, and impacts. Energy Policy, 37(11):

4720–4729, November 2009. ISSN 03014215. doi:10.1016/j.enpol.2009.06.026. URL http:
//linkinghub.elsevier.com/retrieve/pii/S030142150900442X.

Xunmin Ou, Xiaoyu Yan, and Xiliang Zhang. Using coal for transportation in China: Life cycle GHG of

coal-based fuel and electric vehicle, and policy implications. International Journal of Greenhouse Gas
Control, 4(5):878–887, September 2010a. ISSN 17505836. doi:10.1016/j.ijggc.2010.04.018. URL

http://linkinghub.elsevier.com/retrieve/pii/S1750583610000745.

Xunmin Ou, Xiliang Zhang, and Shiyan Chang. Scenario analysis on alternative fuel/vehicle for China’s

future road transport: Life-cycle energy demand and GHG emissions. Energy Policy, 38(8):3943–3956,

August 2010b. ISSN 03014215. doi:10.1016/j.enpol.2010.03.018. URL http://linkinghub.
elsevier.com/retrieve/pii/S0301421510001813.

Xunmin Ou, Xiaoyu Yan, Xiliang Zhang, and Zhen Liu. Life-cycle analysis on energy consumption and

GHG emissions intensities of alternative vehicle fuels in China. Applied Energy, 2012. URL http:
//www.sciencedirect.com/science/article/pii/S0306261911002029.

Phetkeo Poumanyvong and Shinji Kaneko. Does urbanization lead to less energy use and lower

CO2 emissions? A cross-country analysis. Ecological Economics, 70(2):434–444, December 2010.

ISSN 09218009. doi:10.1016/j.ecolecon.2010.09.029. URL http://linkinghub.elsevier.
com/retrieve/pii/S0921800910003885.

Tony Saich. The Changing Role of Urban Government. In Shahid Yusuf and Anthony Saich, edi-

tors, China Urbanizes, chapter 8, pages 181–206. World Bank Publications, Washington DC, January

2008. ISBN 978-0-8213-7211-1. doi:10.1596/978-0-8213-7211-1. URL http://www.worldbank.
icebox.ingenta.com/content/wb/2502.

Daniel Sarewitz and Roger Pielke. Prediction in science and policy. Technology in Society, 21(2):121–133,

April 1999. ISSN 0160791X. doi:10.1016/S0160-791X(99)00002-0. URL http://linkinghub.
elsevier.com/retrieve/pii/S0160791X99000020.

118

gzly.miit.gov.%20cn:8090/datainfo/miit/babs2.jspS
gzly.miit.gov.%20cn:8090/datainfo/miit/babs2.jspS
http://www.tandfonline.com/doi/abs/10.1080/01944368908975398
http://www.tandfonline.com/doi/abs/10.1080/01944368908975398
http://dx.doi.org/10.1016/j.enpol.2009.06.026
http://linkinghub.elsevier.com/retrieve/pii/S030142150900442X
http://linkinghub.elsevier.com/retrieve/pii/S030142150900442X
http://dx.doi.org/10.1016/j.ijggc.2010.04.018
http://linkinghub.elsevier.com/retrieve/pii/S1750583610000745
http://dx.doi.org/10.1016/j.enpol.2010.03.018
http://linkinghub.elsevier.com/retrieve/pii/S0301421510001813
http://linkinghub.elsevier.com/retrieve/pii/S0301421510001813
http://www.sciencedirect.com/science/article/pii/S0306261911002029
http://www.sciencedirect.com/science/article/pii/S0306261911002029
http://dx.doi.org/10.1016/j.ecolecon.2010.09.029
http://linkinghub.elsevier.com/retrieve/pii/S0921800910003885
http://linkinghub.elsevier.com/retrieve/pii/S0921800910003885
http://dx.doi.org/10.1596/978-0-8213-7211-1
http://www.worldbank.icebox.ingenta.com/content/wb/2502
http://www.worldbank.icebox.ingenta.com/content/wb/2502
http://dx.doi.org/10.1016/S0160-791X(99)00002-0
http://linkinghub.elsevier.com/retrieve/pii/S0160791X99000020
http://linkinghub.elsevier.com/retrieve/pii/S0160791X99000020


Lee Schipper, Celine Marie-Lilliu, and Roger Gorham. Flexing the Link between Transport and Green-

house Gas Emissions: A Path for the World Bank. Technical report, International Energy Agency, Paris,

2000.

Clarissa Sebag-Montefiore. Romance With Chinese Characteristics, Au-

gust 2012. URL http://latitude.blogs.nytimes.com/2012/08/21/
romance-with-chinese-characteristics/.

Yingying Shi. Shanghai License Plate Cost Still High Despite New Policy, 2012.

Brian Spegele and Wayne Ma. China clean air bid faces resistance, January 2013. URL online.wsj.
com/article/SB10001424127887323301104578257484144272650.html.

Daniel Sperling, Zhenhong Lin, and Peter Hamilton. Rural vehicles in China: appropriate pol-

icy for appropriate technology. Transport Policy, 12(2):105–119, March 2005. ISSN 0967070X.

doi:10.1016/j.tranpol.2004.11.003. URL http://linkinghub.elsevier.com/retrieve/pii/
S0967070X04000563.

GJ Stigler. The theory of economic regulation. The Bell journal of economics and management science, 2

(1):3–21, 1971. URL http://www.jstor.org/stable/10.2307/3003160.

Lin Sun. Development and Policies of New Energy Vehicles in China. Asian Social Science, 8(2):86–

94, January 2012. ISSN 1911-2025. doi:10.5539/ass.v8n2p86. URL http://www.ccsenet.org/
journal/index.php/ass/article/view/14612.

Minghong Tan, Xiubin Li, Changhe Lu, Wei Luo, Xiangbin Kong, and Suhua Ma. Urban population den-

sities and their policy implications in China. Habitat International, 32(4):471–484, December 2008.

ISSN 01973975. doi:10.1016/j.habitatint.2008.01.003. URL http://linkinghub.elsevier.
com/retrieve/pii/S0197397508000052.

Eric Thun. Changing Lanes in China: Foreign direct investment, local government, and auto sector develop-
ment. Cambridge University Press, New York, NY, 2006. ISBN 0-521-84382-0.

Li Tian and Wenjun Ma. Government intervention in city development of China: A tool of land supply.

Land Use Policy, 26(3):599–609, July 2009. ISSN 02648377. doi:10.1016/j.landusepol.2008.08.012.

URL http://linkinghub.elsevier.com/retrieve/pii/S026483770800094X.

UNESCAP. 2012 Statistical Yearbook for Asia and the Pacific, 2012. URL http://www.unescap.org/
stat/data/statdb/DataExplorer.aspx.

GC Unruh. Understanding carbon lock-in. Energy Policy, 28, 2000. URL http://www.
sciencedirect.com/science/article/pii/S0301421500000707.

Martin Wachs. Transportation Policy, Poverty, and Sustainability. Transportation Research Record:
Journal of the Transportation Research Board, 2163:5–12, December 2010. ISSN 0361-1981.

doi:10.3141/2163-01. URL http://trb.metapress.com/openurl.asp?genre=article&id=
doi:10.3141/2163-01.

David Vance Wagner, Feng An, and Cheng Wang. Structure and impacts of fuel economy standards

for passenger cars in China. Energy Policy, 37(10):3803–3811, October 2009. ISSN 03014215.

doi:10.1016/j.enpol.2009.07.009. URL http://linkinghub.elsevier.com/retrieve/pii/
S0301421509005199.

119

http://latitude.blogs.nytimes.com/2012/08/21/romance-with-chinese-characteristics/
http://latitude.blogs.nytimes.com/2012/08/21/romance-with-chinese-characteristics/
online.wsj.com/article/SB10001424127887323301104578257484144272650.html
online.wsj.com/article/SB10001424127887323301104578257484144272650.html
http://dx.doi.org/10.1016/j.tranpol.2004.11.003
http://linkinghub.elsevier.com/retrieve/pii/S0967070X04000563
http://linkinghub.elsevier.com/retrieve/pii/S0967070X04000563
http://www.jstor.org/stable/10.2307/3003160
http://dx.doi.org/10.5539/ass.v8n2p86
http://www.ccsenet.org/journal/index.php/ass/article/view/14612
http://www.ccsenet.org/journal/index.php/ass/article/view/14612
http://dx.doi.org/10.1016/j.habitatint.2008.01.003
http://linkinghub.elsevier.com/retrieve/pii/S0197397508000052
http://linkinghub.elsevier.com/retrieve/pii/S0197397508000052
http://dx.doi.org/10.1016/j.landusepol.2008.08.012
http://linkinghub.elsevier.com/retrieve/pii/S026483770800094X
http://www.unescap.org/stat/data/statdb/DataExplorer.aspx
http://www.unescap.org/stat/data/statdb/DataExplorer.aspx
http://www.sciencedirect.com/science/article/pii/S0301421500000707
http://www.sciencedirect.com/science/article/pii/S0301421500000707
http://dx.doi.org/10.3141/2163-01
http://trb.metapress.com/openurl.asp?genre=article&id=doi:10.3141/2163-01
http://trb.metapress.com/openurl.asp?genre=article&id=doi:10.3141/2163-01
http://dx.doi.org/10.1016/j.enpol.2009.07.009
http://linkinghub.elsevier.com/retrieve/pii/S0301421509005199
http://linkinghub.elsevier.com/retrieve/pii/S0301421509005199


Can Wang, Wenjia Cai, Xuedu Lu, and Jining Chen. CO2 mitigation scenarios in

China’s road transport sector. Energy Conversion and Management, 48:2110–2118, 2007.

doi:10.1016/j.enconman.2006.12.022. URL http://www.sciencedirect.com/science/
article/pii/S0196890407000118.

Haikun Wang, Lixin Fu, and Jun Bi. CO2 and pollutant emissions from passenger cars in China.

Energy Policy, 39(5):3005–3011, 2011a. ISSN 0301-4215. doi:10.1016/j.enpol.2011.03.013. URL

http://dx.doi.org/10.1016/j.enpol.2011.03.013http://www.sciencedirect.com/
science/article/pii/S0301421511001935.

Michael Wang, Hong Huo, and Larry Johnson. Projection of Chinese Motor Vehicle Growth, Oil Demand,

and CO2 Emissions through 2050. Technical report, Argonne National Laboratory, 2006.

Qidong Wang, Hong Huo, Kebin He, Zhiliang Yao, and Qiang Zhang. Characterization of vehicle driving

patterns and development of driving cycles in Chinese cities. Transportation Research Part D: Transport
and Environment, 13(5):289–297, July 2008. ISSN 13619209. doi:10.1016/j.trd.2008.03.003. URL

http://linkinghub.elsevier.com/retrieve/pii/S1361920908000333.

Rui Wang. Shaping urban transport policies in China: Will copying foreign policies work? Transport
Policy, 17(3):147–152, May 2010. ISSN 0967070X. doi:10.1016/j.tranpol.2010.01.001. URL http:
//linkinghub.elsevier.com/retrieve/pii/S0967070X10000120.

Rui Wang. Environmental and resource sustainability of Chinese cities: A review of issues, policies,

practices and effects. Natural Resources Forum, 35:112–121, 2011. URL http://onlinelibrary.
wiley.com/doi/10.1111/j.1477-8947.2011.01378.x/full.

Shaoguang Wang. Changing Models of China’s Policy Agenda Setting. Modern China, 34(1):56–87,

January 2008. ISSN 0097-7004. doi:10.1177/0097700407308169. URL http://mcx.sagepub.
com/cgi/doi/10.1177/0097700407308169.

Yunshi Wang, Jacob Teter, and Daniel Sperling. China’s soaring vehicle population: Even

greater than forecasted? Energy Policy, 39(6):3296–3306, June 2011b. ISSN 03014215.

doi:10.1016/j.enpol.2011.03.020. URL http://linkinghub.elsevier.com/retrieve/pii/
S030142151100200X.

Zhao Wang, Yuefu Jin, Michael Wang, and Wu Wei. New fuel consumption standards for Chi-

nese passenger vehicles and their effects on reductions of oil use and CO2 emissions of the Chi-

nese passenger vehicle fleet. Energy Policy, 38(9):5242–5250, September 2010. ISSN 03014215.

doi:10.1016/j.enpol.2010.05.012. URL http://linkinghub.elsevier.com/retrieve/pii/
S0301421510003836.

Jonathan Weinert, Joan Ogden, Daniel Sperling, and Andrew Burke. The future of electric two-

wheelers and electric vehicles in China. Energy Policy, 36(7):2544–2555, July 2008. ISSN 03014215.

doi:10.1016/j.enpol.2008.03.008. URL http://linkinghub.elsevier.com/retrieve/pii/
S0301421508001298.

James Winebrake, Sandra Rothenberg, Jianxi Luo, and Erin Green. Automotive Transportation in China:

Technology, Policy, Market Dynamics, and Sustainability. International Journal of Sustainable Trans-
portation, 2(4):213–233, June 2008. ISSN 1556-8318. doi:10.1080/15568310701283835. URL

http://www.tandfonline.com/doi/abs/10.1080/15568310701283835.

120

http://dx.doi.org/10.1016/j.enconman.2006.12.022
http://www.sciencedirect.com/science/article/pii/S0196890407000118
http://www.sciencedirect.com/science/article/pii/S0196890407000118
http://dx.doi.org/10.1016/j.enpol.2011.03.013
http://dx.doi.org/10.1016/j.enpol.2011.03.013 http://www.sciencedirect.com/science/article/pii/S0301421511001935
http://dx.doi.org/10.1016/j.enpol.2011.03.013 http://www.sciencedirect.com/science/article/pii/S0301421511001935
http://dx.doi.org/10.1016/j.trd.2008.03.003
http://linkinghub.elsevier.com/retrieve/pii/S1361920908000333
http://dx.doi.org/10.1016/j.tranpol.2010.01.001
http://linkinghub.elsevier.com/retrieve/pii/S0967070X10000120
http://linkinghub.elsevier.com/retrieve/pii/S0967070X10000120
http://onlinelibrary.wiley.com/doi/10.1111/j.1477-8947.2011.01378.x/full
http://onlinelibrary.wiley.com/doi/10.1111/j.1477-8947.2011.01378.x/full
http://dx.doi.org/10.1177/0097700407308169
http://mcx.sagepub.com/cgi/doi/10.1177/0097700407308169
http://mcx.sagepub.com/cgi/doi/10.1177/0097700407308169
http://dx.doi.org/10.1016/j.enpol.2011.03.020
http://linkinghub.elsevier.com/retrieve/pii/S030142151100200X
http://linkinghub.elsevier.com/retrieve/pii/S030142151100200X
http://dx.doi.org/10.1016/j.enpol.2010.05.012
http://linkinghub.elsevier.com/retrieve/pii/S0301421510003836
http://linkinghub.elsevier.com/retrieve/pii/S0301421510003836
http://dx.doi.org/10.1016/j.enpol.2008.03.008
http://linkinghub.elsevier.com/retrieve/pii/S0301421508001298
http://linkinghub.elsevier.com/retrieve/pii/S0301421508001298
http://dx.doi.org/10.1080/15568310701283835
http://www.tandfonline.com/doi/abs/10.1080/15568310701283835


James Womack. The Development of the Chinese Motor Vehicle Industry: Strategic Alternatives and the Role
of Foreign Firms. 1987.

CPW Wong. Central-local Relations Revisited The 1994 tax-sharing reform and public expenditure

management in China. China Perspectives, (31), 2000. URL http://citeseerx.ist.psu.edu/
viewdoc/download?doi=10.1.1.201.8596&rep=rep1&type=pdf.

Edward Wong. China Lets Media Report on Air Pollution Costs, January 2013a.

Edward Wong. As Air Pollution Worsens, Solutions Succumb to Infighting,

March 2013b. URL http://www.nytimes.com/2013/03/22/world/asia/
as-chinas-environmental-woes-worsen-infighting-emerges-as-biggest-obstacle.
html.

G Wu, T Yamamoto, and R Kitamura. Vehicle Ownership Model That Incorporate the Causal Struc-

ture Underlying Attitudes Toward Vehicle Ownership. Transportation Research Record: Journal of the
Transportation Research Board, (1676):61–67, 1999.

Wencong Wu, Tan Yue, and Chunyan Zhang. Li pledges measures in fight for clean air, January 2013.

Zelai Xu and Nong Zhu. City Size Distribution in China: Are Large Cities Dominant? Urban Studies,
46(10):2159–2185, August 2009. ISSN 0042-0980. doi:10.1177/0042098009339432. URL http:
//usj.sagepub.com/cgi/doi/10.1177/0042098009339432.

Xiaoyu Yan and Roy J. Crookes. Reduction potentials of energy demand and GHG emissions in

China’s road transport sector. Energy Policy, 37(2):658–668, February 2009. ISSN 03014215.

doi:10.1016/j.enpol.2008.10.008. URL http://linkinghub.elsevier.com/retrieve/pii/
S0301421508005867.

Jiawen Yang, Changchun Feng, and Guangzhong Cao. Land and Transportation Development in China.

Transportation Research Record: Journal of the Transportation Research Board, 2038:78–83, 2007.

Mingfa Yao, Haifeng Liu, and Xuan Feng. The development of low-carbon vehicles in China. Energy
Policy, 39(9):5457–5464, September 2011. ISSN 03014215. doi:10.1016/j.enpol.2011.05.017. URL

http://linkinghub.elsevier.com/retrieve/pii/S0301421511003892.

CP Yew. Pseudo-Urbanization? Competitive government behavior and urban sprawl in China. Journal
of Contemporary China, 21(74):281–298, 2012. URL http://www.tandfonline.com/doi/abs/
10.1080/10670564.2012.635931.

Wenze Yue, Yong Liu, and Peilei Fan. Measuring urban sprawl and its drivers in large Chinese

cities: The case of Hangzhou. Land Use Policy, 31:358–370, October 2012. ISSN 02648377.

doi:10.1016/j.landusepol.2012.07.018. URL http://linkinghub.elsevier.com/retrieve/
pii/S0264837712001421.

Hao Zhang, Li-Guo Zhou, Ming-Nan Chen, and Wei-Chun Ma. Land use dynamics of

the fast-growing Shanghai Metropolis, China (1979-2008) and its implications for land use

and urban planning policy. Sensors (Basel, Switzerland), 11(2):1794–809, January 2011.

ISSN 1424-8220. doi:10.3390/s110201794. URL http://www.pubmedcentral.nih.gov/
articlerender.fcgi?artid=3273998&tool=pmcentrez&rendertype=abstract.

121

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.201.8596&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.201.8596&rep=rep1&type=pdf
http://www.nytimes.com/2013/03/22/world/asia/as-chinas-environmental-woes-worsen-infighting-emerges-as-biggest-obstacle.html
http://www.nytimes.com/2013/03/22/world/asia/as-chinas-environmental-woes-worsen-infighting-emerges-as-biggest-obstacle.html
http://www.nytimes.com/2013/03/22/world/asia/as-chinas-environmental-woes-worsen-infighting-emerges-as-biggest-obstacle.html
http://dx.doi.org/10.1177/0042098009339432
http://usj.sagepub.com/cgi/doi/10.1177/0042098009339432
http://usj.sagepub.com/cgi/doi/10.1177/0042098009339432
http://dx.doi.org/10.1016/j.enpol.2008.10.008
http://linkinghub.elsevier.com/retrieve/pii/S0301421508005867
http://linkinghub.elsevier.com/retrieve/pii/S0301421508005867
http://dx.doi.org/10.1016/j.enpol.2011.05.017
http://linkinghub.elsevier.com/retrieve/pii/S0301421511003892
http://www.tandfonline.com/doi/abs/10.1080/10670564.2012.635931
http://www.tandfonline.com/doi/abs/10.1080/10670564.2012.635931
http://dx.doi.org/10.1016/j.landusepol.2012.07.018
http://linkinghub.elsevier.com/retrieve/pii/S0264837712001421
http://linkinghub.elsevier.com/retrieve/pii/S0264837712001421
http://dx.doi.org/10.3390/s110201794
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3273998&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3273998&tool=pmcentrez&rendertype=abstract


Ming Zhang. The Chinese edition of transit-oriented development. Transportation Research Record, 2083:

120–127, 2007.

Tingwei Zhang. Land market forces and government’s role in sprawl. Cities, 17(2):123–135, April 2000.

ISSN 02642751. doi:10.1016/S0264-2751(00)00007-X. URL http://linkinghub.elsevier.
com/retrieve/pii/S026427510000007X.

Yuanting Zhang and Franklin W. Goza. Who Will Care for the Elderly in China? A Review of the Problems

Caused by China’s One Child Policy and their Potential Solutions, Working paper 05-07, Bowling State

Green University. 2005.

Jian Zhou, Jianyi Lin, Shenghui Cui, Quanyi Qiu, and Qianjun Zhao. Exploring the relationship

between urban transportation energy consumption and transition of settlement morphology: A

case study on Xiamen Island, China. Habitat International, January 2012. ISSN 01973975.

doi:10.1016/j.habitatint.2011.12.008. URL http://linkinghub.elsevier.com/retrieve/
pii/S0197397511001056.

Nan Zhou, David G Fridley, Michael Mcneil, and Nina Zheng. China’s Energy and Carbon Emissions

Outlook to 2050. Technical Report April, Lawrence Berkeley National Laboratory, 2011.

Yixing Zhou and Laurence Ma. China’s Urban Population Statistics: A Critical Evalua-

tion. Eurasian Geography and Economics, 46(4):272–289, June 2005. ISSN 1538-7216.

doi:10.2747/1538-7216.46.4.272. URL http://bellwether.metapress.com/openurl.asp?
genre=article&id=doi:10.2747/1538-7216.46.4.272.

Charles Zhu, Yiliang Zhu, Rongzhu Lu, Ren He, and Zhaolin Xia. Perceptions and aspira-

tions for car ownership among Chinese students attending two universities in the Yangtze

Delta, China. Journal of Transport Geography, 24:315–323, September 2012. ISSN 09666923.

doi:10.1016/j.jtrangeo.2012.03.011. URL http://linkinghub.elsevier.com/retrieve/
pii/S0966692312000749.

Stephen Zoepf, Don Mackenzie, David Keith, and William Chernicoff. Charging Choices and Fuel Dis-

placement in a Large-Scale Plug-In Hybrid Electric Vehicle Demonstration. Transportation Research
Board, 92, 2013. URL http://trid.trb.org/view.aspx?id=1240540.

122

http://dx.doi.org/10.1016/S0264-2751(00)00007-X
http://linkinghub.elsevier.com/retrieve/pii/S026427510000007X
http://linkinghub.elsevier.com/retrieve/pii/S026427510000007X
http://dx.doi.org/10.1016/j.habitatint.2011.12.008
http://linkinghub.elsevier.com/retrieve/pii/S0197397511001056
http://linkinghub.elsevier.com/retrieve/pii/S0197397511001056
http://dx.doi.org/10.2747/1538-7216.46.4.272
http://bellwether.metapress.com/openurl.asp?genre=article&id=doi:10.2747/1538-7216.46.4.272
http://bellwether.metapress.com/openurl.asp?genre=article&id=doi:10.2747/1538-7216.46.4.272
http://dx.doi.org/10.1016/j.jtrangeo.2012.03.011
http://linkinghub.elsevier.com/retrieve/pii/S0966692312000749
http://linkinghub.elsevier.com/retrieve/pii/S0966692312000749
http://trid.trb.org/view.aspx?id=1240540


Appendix A

Abbreviations

• BAIC: Beijing Automotive Industry Corporation

• CAAM: China Association of Automotive Manufacturers

• CAIY: China Automotive Industry Yearbook

• CATARC: China Automotive Technology and Research Center

• CNG: Compressed natural gas

• CTL: Coal-to-liquid technology

• DME: Dimethyl ether

• E10: Gasoline with 10% ethanol by volume

• EV: Electric vehicle

• FAW: First Automotive Works

• FC: Fuel consumption

• FCV: Fuel cell vehicle

• GAC: Guangzhou Automotive Company

• HEV: Hybrid electric vehicle

• ICET: Innovation Center for Energy and Transportation

• ICCT: International Council for Clean Transportation

• ICE: Internal combustion engine

• LDV: Light duty vehicle

• LDT: Light duty truck

• LNG: Liquid natural gas

• LPG: Liquid petroleum gas
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• JV: Joint venture, a jointly (often 50-50) owned domestic Chinese and foreign owned company

• M15: Gasoline with 15% methanol by volume

• MB: Minibus

• MIIT: Ministry of Industry and Information Technology

• MT: Minitruck

• NA-SI: Naturally aspirated stroke injector, the current default internal combustion engine

• NDRC: National Development and Reform Commission

• NEV: New energy vehicle, encompasses EV, FCV, HEV and PHEV vehicles

• NP-Car: Non-private car

• PHEV: Plug-in hybrid electric vehicle

• RMB: China’s currency, the renminbi. Also referred to as yuan.

• SAIC: Shanghai Automotive Industry Corporation, one of China’s largest automotive companies

• SOE: State-owned enterprise, a firm where the Chinese government holds a majority share

• TC: Turbocharged

• VDT: Vehicle distance traveled, the distance traveled per vehicle per year

• VKT: Vehicle kilometers traveled, the kilometers traveled per vehicle per year

• VMT: Vehicle miles traveled, the miles traveled per vehicle per year

• VW: Volkswagen
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Appendix B

Model assumptions

This appendix describes in detail all of the fleet model inputs for projecting demand, energy, fuel and

emissions. When pertinent, all the tables in this appendix will refer to the three variants for future values

as reference, high and low.

Vehicle sales

The model predicts vehicles sales using percent annual growth rates in sales (Table B-1). Sales growth

rates are the same across all four modeled vehicle types, though private car and non-private car sales

are predicted jointly. Increases in sales are generally more drastic between 2010 and 2020, after which

they decelerate.

To ensure predicted sales and stock numbers are reasonable, I check final vehicle ownership levels

against those of developed countries: vehicles owned per capita in China in 2050 are likely between

the lowest and highest current OECD ownership levels. Chapter 4, Vehicle ownership, discusses how the

model treats ownership extensively. As a reference for these discussions, Table B-2 lists the numbers that

underlie this analysis: future LDV sales, stock and ownership for key years.

Private and non-private cars

In order to separate private car and non-private car stock, I predict a ratio of private car sales to total car

sales (Table B-3). I verify these numbers by comparing the ratio with that of another country, the US. In

the US, taxi fleets and company fleets are owned by private, but do overlap reasonably well in function

Annual growth in sales (%) Reference Low High

2010-2014 10 9 11
2015-2019 7 6 8
2020-2029 4 3 4.5
2030-2039 1.5 1 2
2040-2050 0.5 0 1

Table B-1: Vehicles sales growth assumptions by scenario.
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Sales (million) and ownership (vehicles/1000 people) Reference Low High

LDV sales, 2030 39 32 45
LDV sales, 2050 47 35 59
LDV stock, 2030 396 346 441
LDV stock, 2050 578 449 708

Vehicle ownership, 2030 325 290 358
Vehicle ownership, 2050 498 398 598

LDV ownership, 2030 284 249 317
LDV ownership, 2050 446 347 546

Table B-2: Future vehicle sales, stock and ownership predictions.

Model year 2010 2011 2012 2013 2014 2015 2016 2017

% private cars sold of all cars 89.0 89.5 90.0 90.5 91.0 91.25 91.5 91.75
2018 2019 2020 2021 2022 2023 2024 2025 2026+

92.0 92.25 92.5 92.75 93.0 93.25 93.5 93.75 94.0

Table B-3: Ratio of private car sales to all cars.

with non-private cars in China. 4.26 million cars in the US belonged to fleets1 in 2010, out of 130.9

million automobiles (National Transportation Energy Databook, 2012). This 3.26% of all automobiles

can be company cars, taxi fleets, rental cars or government vehicles. China’s legacy of also giving state-

owned enterprise executives and government officials the perk of having an official vehicle likely means

China’s non-private vehicle to private vehicle ratios will be higher than the US but still within range. I

assume 94% of cars will be private by and after 2026.

Vehicle scrappage

This model calculates vehicle scrappage using a logistic regression expression:

exp−
�

x
T

�B

(B.1)

B expresses the rate at which vehicles disappear from the vehicle stock. T is the vehicle half-life, or

the age at which half of vehicles from model year remain in use. Parameters vary between vehicle types

because of regulations, intensity of use, and type of use. China has no official statistics available on

vehicle scrappage. Field studies or fitting an equation to historical stock and sales are possible methods

to set the two variables. For private cars and non-private cars, the model uses values from a Beijing field

study (Hao et al., 2011c) (Table B-4). While specific to one urban environment, because the majority

of vehicles in China are urban, the values are a reasonable approximation of reality. For minitrucks and

minibuses, I analyze the values Yan and Crookes (2009) deduced from historical data sales and stock

and thereafter fit appropriate values of T and B.

The model assumes rates of vehicle aging are constant both before base year 2010 and until 2050.

There are two reasons not to vary scrappage in the future. First, because there is no time series data

on scrappage in China, it is difficult to predict future trends. Second, the impact of varying scrappage

is modest. While in the short term changing scrappage rates will alter the number of vehicles on the

road, variable scrappage rates do not change underlying vehicle demand. Vehicle stock should remain

1A fleet vehicle is either one of 15 or more vehicles, or is purchased in annual groups of at least five vehicles
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Scrappage values B T (years)

Private car 4.7 14.46
Non-private car 5.33 13.11

Minitruck 5.58 7.8
Minibus 4.5 16.5

Table B-4: Vehicle scrappage assumptions.

constant over the long term. Nevertheless, recycling vehicles faster or slower could accelerate or retard

introduction of cleaner technologies into the fleet. I altered scrappage parameters while adjusting sales

to keep total number of vehicles on the road constant. However, varying both T and B under these

conditions produced very little difference in overall energy demand. Therefore, I fixed scrappage as an

input for the sensitivity analysis.

Vehicle distance traveled

Similar to vehicle sales, vehicle distanced traveled (VDT)2 values are set by percentage point annual

growth rates (Table B-5). The model treats VDT with an exponential decay function, and the growth

rates in VDT change how far a vehicle drives in the first year it rolls on the roads. Average annual VDT

for the whole fleet is sensitive to rapid change in vehicle stock. If sales remain rapid, the VDT of new

vehicles will comprise a very large portion of fleetwide average annual VDT. Conversely, as future sales

slow in China and older vehicles make up a larger fraction of the vehicles on the road, VDT will naturally

retard. Thus, all three scenarios see VDT decline for all four vehicle types. Indeed, the high scenario

keeps average annual VDT levels just constant, while the reference scenario and low scenario decline

average annual VDT by a little and a lot (Table B-6). In addition, I assume that for different scenarios,

the low scenario and high scenario average annual VDT values will vary more for private cars than non-

private cars and minitrucks. Non-private cars and minitrucks are not discretionary, and are thus more

robust against pressures to decrease VDT. I assume minibuses will tend closer to private car VDT.

As explained in Section 5.2, projecting minibus and minitruck VDT is straightforward. However, I

benchmark future private car and non-private car values against average car values. To separate private

and non-private, I first determine a saturation level for the fraction of non-private cars that are taxis.

I set this at 5%, following the analysis in Appendix C, Stock. Next, I assume taxi VDT will saturate at

110 000 km per year - although taxi VDT growth fit a linear relationship between 2000 and 2010, this

growth will not continue uncontrollably (see Appendix C, VDT). In other words, average annual taxi

VDT will add 5500 km to 95% of average annual non-taxi, non-private car VDT to give non-private car

VDT in 2050. I set values for all three scenarios for target private car VDT and non-private car VDT such

that the two sets of weighted averages - for taxis and non-taxi, non-private cars, as well as non-private

cars and private cars - accord with the three overall target car VDT values in 2050 of 10000, 13000 and

16000 km/vehicle/year. I also assume the majority of change in VDT occurs before 2030 as sales slow

more rapidly during this period and VDT will retard more (Figure B-1).

2VDT refers to annual distance traveled per vehicle, not the annual distance traveled for the whole fleet
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Annual Change in VDT (%) Reference Low High

Private car, 2010-2014 -0.1 -1.2 0.9
Private car, 2015-2019 -0.1 -1.15 0.8
Private car, 2020-2029 -0.1 -1 0.75
Private car, 2030-2050 -0.15 -0.7 0.15

Non-private car, 2010-2014 -0.4 -0.75 -0.1
Non-private car, 2015-2019 -0.35 -0.6 0
Non-private car, 2020-2029 -0.2 -0.5 0
Non-private car, 2030-2050 -0.2 -0.4 0

Minitruck 2010-2014 -0.5 -0.65 0
Minitruck, 2015-2019 -0.4 -0.65 0
Minitruck, 2020-2029 -0.3 -0.6 0
Minitruck, 2030-2050 -0.25 -0.55 0
Minibus 2010-2014 -0.75 -1.3 0
Minibus, 2015-2019 -0.75 -1.3 0
Minibus, 2020-2029 -0.7 -1.3 0
Minibus, 2030-2050 -0.6 -1.3 0.1

Table B-5: Annual change in VDT assumptions .

Average Annual VDT (km/vehicle) Reference Low High

Private Car, 2010 15852
Private Car, 2030 13165 11266 15148
Private Car, 2050 12414 9387 15523

Non-private Car, 2010 30310
Non-private Car, 2030 24136 23046 25200
Non-private Car, 2050 22997 21005 24986

Minitruck, 2010 24282
Minitruck, 2030 21741 20778 23325
Minitruck, 2050 20519 18472 23578
Minibus, 2010 19592
Minibus, 2030 15291 13981 16731
Minibus, 2050 13022 10441 16073

Table B-6: Future VDT predictions.
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Figure B-1: Future private car VDT over vehicle age by km/vehicle/year.

Mileage degradation rate

The model treats VDT with an exponential decay function, and the mileage degradation rate represents

the rate of decay. In other words, mileage degradation rate is the distance by which a vehicle is driven

less and less as it ages. The set value, 5%, indicates vehicle use declines 5% annually for all types

of vehicles. The model holds the degradation rate constant over time both before and after base year

2010. I assume this because very little information on the degradation rate in China is available and the

available sources conflict (Figure B-2). Converted into an average annual exponential decay, the vehicle

emissions control data indicates mileage decreases 28% per year while Chinese field studies indicate

more modest average annual declines of 4% and 8%, which are more in line with the US data of 8% per

year (Huo et al., 2012c).

Powertrain marketshare mix

Powertrain marketshare model inputs are expressed as annual percentage point increases in sales mar-

ketshares by powertrain. These inputs, however, are two levels removed from sales marketshare ratios

among powertrains and lack interpretability. I devise such powertrain sales marketshare ratios and then

stepwise translate them to model inputs. These three sales marketshare ratios among powertrains in-

clude the ratio of turbo engines to NA-SI engines, the size of the electrified portion of the fleet, and the

composition of the electrified portion of the fleet (Table B-7). While the reference, extreme high and

extreme low scenarios in the sensitivity analysis in 8.2 combine all assumptions, the sensitivity analysis

also breaks apart these assumptions and considers them separately.

I assume the same growth in turbocharged vehicles for all four vehicle types (Figure B-7). The

low scenario assumes turbo growth will eventually break through to comprise 50% of NA-SI and tur-

bocharged sales by 2050. However, a 50% sales ratio is achieved in 2030 in the reference scenario and

even earlier in the high scenario.
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Figure B-2: Car mileage degradation over vehicle age by fraction of surviving vehicles.

While turbo powertrain growth can be projected using existing trends, powertrain electrification is

more difficult to predict as there has been no fleet electrification to date. I consistently assume electri-

fication is adopted earlier in the car and minibus fleet than the minitruck fleet. The reference scenario

assumes a majority of EVs are HEVs. The high scenario is more radical: EVs dominate the electrified

fleet and electrified powertrains dominate sales in 2050. A low scenario assumes no electrification at all,

save the initial 2010 inputs. China’s cars have not depended on diesel and there is no reason to believe

they will. I assume they will remain at a 1% marketshare.

Diesel engines have a modest marketshare among minitrucks. When predicting future turbocharged

engine growth, I have ensured that the ratio of diesel engines is constant in relation to the NA-SI and

turbocharged vehicles.

I set annual percentage point increases in sales marketshares for different powertrains that meet the

ratios among powertrains explained above (Table B-8 and B-9). Note that powertrain sales mixes are the

same across both private cars and non-private cars. This may not be entirely correct: it is easy to imagine

that the government purchases electric vehicles to stimulate private vehicle sales growth. However, it is

a useful simplification.

These percentage point increases in sales also correspond with actual sales mixes that reveal inter-

esting trends (Table B-10). First, the high electrification scenario assumes EVs dominate electrification

among cars, but PHEVs dominate electrification among minitrucks. In addition, I reiterate here that

the 0.1% of sales in 2010 that are hybrid electric, plug-in hybrid electric and electric vehicles are not

based in data. Rather, 0.1% of sales effects miniscule differences in total energy demand predictions but

creates a starting point from which to grow sales marketshares.
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Powertrain Marketshares (%) Reference High Low

Ratio of TC / (TC + NA-SI): all, 2030 50 67 33
Ratio of TC / (TC + NA-SI): all, 2050 67 90 50

% electrified: car & MB, 2030 15 30 ~0
% electrified: car & MB, 2050 30 60 ~0

% electrified: MT, 2030 10 25 ~0
% electrified: MT, 2050 20 50 ~0

HEV % of electrification: car & MB, 2030 67 33 n/a
HEV % of electrification: car & MB, 2050 50 20 n/a

HEV % of electrification: MT, 2030 70 40 n/a
HEV % of electrification: MT, 2050 65 25 n/a

% Diesel: Car, 2030 1 1 1
% Diesel: Car, 2050 1 1 1
% diesel: MB, 2030 0 0 0
% diesel: MB, 2050 0 0 0

Table B-7: Powertrain sales marketshare target ratios. Note that “electrified” refers to the sum of HEV,
PHEV and EV. n/a refers to “not applicable” as there is no electrification.

Relative powertrain fuel consumption

Alternative powertrains are more energy efficient than the dominant NA-SI powertrain (Bandivadekar

et al., 2008). Even in the future, as engine technology improves, alternative powertrains will remain

more efficient than their NA-SI counterpart. Although the model varies future fuel consumption values,

it keeps the relative fuel consumption among powertrains fixed (Table B-11). Note that the “1” for NA-SI

is a placeholder: fuel consumption is expected to vary, but this is treated in the next section.

Future fuel consumption

The model interprets improved fuel consumption by the ratio for which future fuel consumption is lower

than base year on-road fuel consumption (Table B-12). Base year NA-SI fuel consumption is 9.01 L /
100 km (on-road). As the reference scenario assumes fuel consumption will improve 10% by 2030 and

20% by 2050, relative to 2010, future fuel consumption will be 8.11 L / 100 km and 7.21 L / 100 km in

2030 and 2050, respectively. I also contextualize these results in annual percentage point reductions in

fuel consumption.

My analysis shows fuel consumption decreased .77% per year between 2002 and 2010 (see Appendix

C, Fuel consumption), and my reference scenario assumption is slightly more modest, while low and high

scenarios are more and less aggressive, respectively. The derivation of 9.01 L / 100 km as a base-year

on-road fuel consumption and 15.5% as an appropriate label to on-road adjustment factor are discussed

in Chapter 6. I assume the 15.5% adjustment factor to be constant over time before and after base year

2010.

Table B-12 also shows that I assume private vehicles, non-private vehicles and minibuses have iden-

tical fuel consumption rates. This is likely incorrect. However, rather than using an arbitrary assumption

(because I have no specific data), the model collapses together these vehicle categories. The model also

assumes that vehicle fuel consumption stays constant as a given vehicle ages: hardware degradation

does not increase fuel consumption.

These future fuel consumption scenarios concern cars and light duty buses. For minitrucks, I de-
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Car Minitruck Minibus
Reference Low High Reference Low High Reference Low High

NA-SI, 2020 68.6 67.4 78.2 66.8 65.7 70.2 86.9 85.3 92.4
NA-SI, 2030 41.8 22.7 66.0 35.4 18.7 41.6 42.2 23.2 66.8
NA-SI, 2050 22.9 3.8 49.8 21.7 3.8 38.3 23.2 4.0 49.6
Turbo, 2020 25.8 26.1 20.5 8.5 8.6 6.5 8.5 9.1 7.3
Turbo, 2030 42 46.3 43.2 35.6 38.8 35.1 42.6 46.8 32.9
Turbo, 2050 46.4 35.5 48.9 43.5 34.3 38.4 47.1 36.2 50.1
Diesel, 2020 1 1 1 20.8 20.2 23 0 0 0
Diesel, 2030 1 1 1 18.8 17.3 23 0 0 0
Diesel, 2050 1 1 1 15.4 11.9 23 0 0 0
HEV, 2020 2.80 2.8 0.1 2.70 2.8 0.1 2.80 2.8 0.1
HEV, 2030 10.14 9.94 0.1 7.19 9.97 0.1 10.14 9.94 0.1
HEV, 2050 14.76 12.13 0.1 12.72 12.44 0.1 14.76 12.13 0.1

PHEV, 2020 0.98 1.24 0.1 0.67 1.23 0.1 0.98 1.24 0.1
PHEV, 2030 2.90 7.85 0.1 1.83 7.30 0.1 2.90 7.85 0.1
PHEV, 2050 8.20 18.35 0.1 4.05 24.81 0.1 8.20 18.35 0.1

EV, 2020 0.79 1.54 0.1 0.54 1.48 0.1 0.79 1.54 0.1
EV, 2030 2.18 12.17 0.1 1.23 7.87 0.1 2.18 12.17 0.1
EV, 2050 6.71 29.24 0.1 2.73 12.76 0.1 6.71 29.24 0.1

Table B-10: Powertrain sales predictions.

FC relative to NA-SI 2010 2030 2050

NA-SI 1 1 1
Turbo 0.9 0.88 0.86
Diesel 0.84 0.84 0.84
HEV 0.7 0.7 0.7

PHEV 0.7 0.7 0.7

Table B-11: Relative future powertrain fuel consumption values, Bandivadekar et al. (2008).
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Key NA-SI fuel consumption statistics Reference High Low

Car & MB, 2030/2010 FC ratio .9 .75 .95
Car & MB, 2050/2010 FC ratio .8 .6 .9

MT, 2030/2010 FC ratio .9 .75 .95
MT, 2050/2010 FC ratio .8 .6 .9

Car & MB, annual change in FC (%), 2010-2029 -0.53 -1.43 -0.26
Car & MB, annual change in FC (%), 2030-2050 -0.59 -1.11 -0.27

MT, annual Cchange in FC (%), 2010-2029 -0.53 -1.43 -0.26
MT, annual change in FC (%), 2030-2030 -0.59 -1.11 -0.27
Car & MB, on road FC (L/100 km), 2030 8.11 6.76 8.56
Car & MB, on road FC (L/100 km), 2050 7.21 5.41 8.11

MT, on road FC (L/100 km), 2030 10.18 8.49 10.75
MT, on road FC (L/100 km), 2050 9.05 6.79 10.18

Table B-12: Future NA-SI fuel consumption assumptions.

Electric Motor Efficiency (kWh/km) Reference Low High

Car and minibus, 2010 0.150
Car and minibus, 2030 0.113 0.095 0.120
Car and minibus, 2050 0.089 0.067 0.099

Minitruck, 2010 0.203
Minitruck, 2030 0.162 0.135 0.171
Minitruck, 2050 0.128 0.096 0.135

Table B-13: Electric motor engine efficiency.

rive an 8.02% difference in fuel consumption rates in Appendix C, Fuel consumption, apply it to all

powertrains, and assume this value constant before and after base year 2010.

Electric motor efficiency and use

Electric powertrains have different fuel consumption and efficiency metrics than their combustion engine

alternatives. I assume that relative efficiency across scenarios varies in proportion to ICE efficiency.

However, I set 2010 electric motor efficiency and expected efficiency increases for the reference scenario

independently of other fuel consumption improvements (Table B-13). I derive these values from a

recent National Academies of Science report (2013). The high and low electric motor scenarios are

equally stringent or lax as different NA-SI fuel consumption scenarios are to each other - .095 kWh/km

is .75/.9 of .113, for instance.

For electric engine utilization rates, I fix rates for plug-in hybrids across scenarios, but assume uti-

lization rates improve over time. Today, electricity powers plug-in hybrids at most 30% of the time, and

often less (Zoepf et al., 2013). I assume 30% as a starting value but assume technology improves and

utilization rates rise to 50% in 2030 and 60% in 2050. The model linearly extrapolates the values for

the years in between.
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Fleetwide FC, car & MB
Model year 2010 Model year 2030 Model year 2050

On-road fuel consumption (L / 100 km)

Reference 8.92 6.14 4.69
Low 4.25 2.10
High 7.06 6.51

High turbo 6.02 4.55
Low turbo 6.26 4.79

High electrification 5.37 3.22
No electrification 6.58 5.64

Electrification, only HEV 6.23 5.28
Electrification, most EV + PHEV 5.96 4.37
High electrification, most HEV 5.66 3.61

Large change in FC 5.11 3.52
Small change in FC 6.48 5.28

Table B-14: Fleetwide fuel consumption for sensitivity analysis.

Fleetwide fuel consumption

Measuring fleetwide fuel consumption is another way to compare the inputs of the different alternative

scenarios in the sensitivity analysis (Table B-14). This measures the average fuel consumption of all ve-

hicles sold in a given year, thus combining the effects of technology improvements in fuel consumption

for different powertrains with changes in the sales mix towards powertrains with lower fuel consump-

tion. Base year 2010 fleetwide fuel consumption is 7.72 L / 100 km (label) and 8.92 L / 100km. Note

that fuel consumption is not listed for all pathways: individual scenarios that affect neither powertrain

sales marketshares nor the rate of fuel consumption change share the reference case’s fleetwide fuel

consumption projections.

Fuels

I implement two alternative fuels in the fleet model: methanol and natural gas. The model input quanti-

fies how many vehicles compatible with an alternative fuel do run on an alternative fuel (Table B-15). A

value of 10% indicates that 10% (in any combination) of NA-SI, Turbo, HEV and PHEV powertrains rely

on alternative fuel and thus alternative fuels replace 10% of gasoline equivalent energy demand. Total

fleet wide energy demand remains constant because I assume equivalent energy efficiency for engines

powered on gasoline, methanol or natural gas. I derive base year fuel share values for different pow-

ertrains in Appendix C, Fuel shares. Finally, this model does not implement Diesel-HEV or Diesel-PHEV

vehicles: all electric powertrains use electricity or gasoline as fuel.

I also set energy density values for the various fuels used in the study (Table B-16). I calculated

values for gasoline, methanol and diesel with specific gravity and lower heating values from (Heywood,

1988, pg 914). This means the energy content 1 L of gasoline is equivalent to 1.43 L of ethanol and 1.86

L of methanol.

Fuel CO2 intensity

Although fuel carbon intensity values can vary significantly from one means of extraction to another, I

assume a fixed carbon intensity value for a given fuel and calendar year (Table B-17). Lifecycle CO2
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Contribution: gasoline equivalent fuel demand (%) Reference High Low

Methanol, 2010 0
Methanol, 2030 3 5 0
Methanol, 2050 5 15 0

CNG, private car, 2010 0
CNG, private car, 2030 2 10 0
CNG, private car, 2050 4 10 0

CNG, non-private car, 2010 4.1
CNG, non-private car, 2030 20 40 5
CNG, non-private car, 2050 30 50 6

CNG, minitruck and minibus, 2010 0
CNG, minitruck and minibus, 2030 2 10 0
CNG, minitruck and minibus, 2050 4 10 0

Table B-15: Alternative fuel assumptions.

Fuel Gasoline Methanol CNG Diesel Electric power

Energy content 33.4 MJ/L 18 MJ/L 38 MJ/m3 35 MJ/L 3.6 MJ / kWh

Table B-16: Fuel energy content values.

g CO2/ MJ 2010 2030 2050

Gasoline 98.6 98.6 98.6
Diesel 102.4 102.4 102.4

Methanol 304.4 191.1 119.9
Natural Gas 72.7 72.7 72.7
Electricity 264.9 179.3 121.9

Table B-17: Fuel CO2 intensity predictions.
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Figure B-3: Electric grid CO2intensity. Source: author analysis base on IEA, 2012a.

emission intensity for gasoline, diesel and natural gas values are constant over time. However, coal to

methanol conversion will improve over the coming decades. I derive a predicted annual decrease in

coal-derived methanol lifecycle CO2 emissions intensity from the historical 2008 and predicted 2020

values in Ou et al. (2012). I extrapolate this improvement factor to 2050 to generate yearly methanol

lifecycle CO2intensity values. For electricity, I use the IEA’s World Energy Outlook predictions to project

CO2 intensity values for China’s electric power generation (See Figure B-3, IEA (2012a)). I converted

the statistics from tons CO2/ MWh to g CO2/ MJ and fitted a power regression to the “new policy”

scenario with base year 2009 and projections to 2030.3 Extending the projection to 2050, applying a

7% transmission loss (Yan and Crookes, 2009), and a 10% charging loss (Bandivadekar et al., 2008)

generated yearly CO2 emissions intensity projections for electric powertrains.

3fitted relationship is CO2 intensi t y = (4E + 132) x−39.41
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Appendix C

Historical model inputs

Model inputs include both long term historical values and single base year values. Sources include both

direct historical statistics, field studies in literature, and values extrapolated from one or a few years of

data.

Sales

I source historical sales data from the 2011 CAIY from car, minitruck and minibus columns (Table C-1).

Stock

I use historical stock data from the 2011 China Statistical Yearbook to calculate the historical percentage

of car stock private (C-2). The China Statistical Yearbook and CAIY statistics on sales do not accord for

minitruck and minibus categories. Because of these differences, I do not calibrate model predicted stock

with China Statistical Yearbook stock.

For VDT and fuel share inputs, I need to take taxi stock into account. The 2008 China City Statistical

Yearbook reports taxi stock for all prefecture level cities (Table C-3), and I calculate taxi stock as a

fraction of the model’s historical non-private vehicle stock. Fitting an exponential curve to taxi stock as a

fraction of non-private vehicle stock allows for near term forecasts, relevant for VDT calculations (Figure

C-1).

Private and non-private cars

Having derived private car and non-private car stock in Table C-2, I set historical ratios for private and

non-private car sales in the model to generate appropriate ratios for non-private and private car stock

(Table C-4 and C-5). Because small and mini passenger vehicles from the China Statistical Yearbook

correspond roughly with the passenger car category from the CAIY, this comparison is valid.1 The stock

ratios track within 1 percentage point of each other (Figure C-2).

1Although minibuses are included among small and mini passenger vehicles and a higher fraction are likely private than among
cars because cars includes government sedans and taxis, because I have no specific information, I exclude them. Therefore, the %
of car sales that are private used in the model may be somewhat lower than in reality.
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Year Car Minitruck Minibus

1996 .386 0.142 0.169
1997 .480 0.150 0.210
1998 .507 0.146 0.257
1999 .570 0.137 0.293
2000 .613 0.132 0.410
2001 .721 0.140 0.489
2002 1.13 0.147 0.631
2003 1.97 0.137 0.696
2004 2.33 0.171 0.742
2005 2.79 0.233 0.831
2006 3.83 0.291 0.918
2007 4.73 0.315 0.988
2008 5.05 0.361 1.06
2009 7.47 0.505 1.95
2010 9.49 0.612 2.49

Table C-1: Historical light duty vehicle sales. Source: China Automotive Industry Yearbook (2011b).

Year Small & mini Private small & mini % private vehicles

2002 10.22 5.78 56.6
2003 12.87 7.96 61.8
2004 15.33 10.15 66.2
2005 19.19 13.25 69.1
2006 23.95 17.56 73.3
2007 29.62 22.53 76.1
2008 35.95 28.13 78.3
2009 45.61 37.40 81.5
2010 58.62 49.19 83.9

Table C-2: Historical vehicle stock. Source: author analysis and China Statistical Yearbook (2011a).

Year Non-private vehicle Taxi

1997 1.070 .614
1998 1.310 .502
1999 1.546 .654
2000 1.762
2001 1.972 .712
2002 2.252 .757
2003 2.668 .779
2004 3.148 .792
2005 3.635 .783
2006 4.171
2007 4.701 .804
2008 5.253 .819

Table C-3: Taxi and non-private vehicle stock. Source: China City Statistical Yearbook (1997-1999,
2001-2005, 2007-2008).
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Figure C-1: Taxis as fraction of non-private vehicles.

% Private cars of cars 2002 2003 2004 2005 2006 2007 2008 2009 2010

Model 57.4 62.6 66.1 69.3 72.9 76.3 78.5 81.4 83.5
Data 56.6 61.8 66.2 69.1 73.3 76.1 78.3 81.5 83.9

Table C-4: Ratio of private cars to cars in vehicle stock.

Year 1995 - 1996 1997 1998 1999 2000 2001 2002 2003

% private of all cars 45 50 50 50 55 60 65 70 75
2004 2005 2006 2007 2008 2009

75 78 82 85 85 89

Table C-5: Ratio of private cars to cars in sales.
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Figure C-2: Ratio of private cars to cars in stock.

Private car Non-private car Minitruck Minibus

2000 new car VDT 20250 45000 29000 25000
1991-1999 (%) -2.3% -2.3% -1.8% -2.3%
2000-2004 (%) -1.75% -3.5% -1.2% -1.0%
2005-2009 (%) -1.5% -3% -0.65% -1.0%

Table C-6: Historical VDT input values.

VDT

Field studies conducted since 2000 give clues to annual vehicle distance traveled per vehicle type over

the past ten years. Both Huo et al. (2012c) and Hao et al. (2011a) provide their estimates for annual

VDT for both private light duty vehicles and business light duty vehicles based upon several field studies,

many of which the authors conducted themselves. Huo et al. (2012c) also report taxi VDT values over

time. Although taxis accounted for just 16% of the non-private car population in 2008 (see Table C-3),

because their average annual VDT per vehicle was nearly 100 000 km, the non-private car category VDT

is sensitive to taxi VDT.

Available data on small truck VDT is scarce. Two studies assume 30 km/year/vehicle and 20

km/year/vehicle, respectively (Huo et al., 2012c; Ou et al., 2010b). Minibus VDT is not available.

The model inputs include base year new vehicle VDT, mileage degradation rate and percent annual

change in VDT (Table C-6). These were set to generate annual average VDT values per vehicle from 2000

to 2010 that corresponded with available sources (Figure C-4). For private cars, I assumed VDT was in

between the values of two available sources (Huo et al., 2012c; Hao et al., 2011a). For non-private cars,

I used a weighted average of taxi VDT and business car VDT. I derived business VDT by taking a rough

average of two available sources (Huo et al., 2012c; Hao et al., 2011a). For taxi VDT, I took a linear

trendline fit of the available source that incorporated changes over time (Huo et al. (2012c)). I then

used values from the exponential relationship used to describe taxi stock as a fraction of the non-private

142



Figure C-3: Taxi VDT in thousand km per vehicle per year.

Year Private car Non-private car Minitruck Minibus

2000 18683 41037 26396 22370
2001 18236 39702 25392 21999
2002 17948 38501 25530 21705
2003 17808 37451 25149 21350
2004 17519 36387 24887 21004
2005 17205 35302 24802 20667
2006 16939 34244 24761 20333
2007 16654 33179 24632 19994
2008 16302 32132 24469 19657
2009 16053 31111 24395 19626
2010 15896 30326 24282 19604

Table C-7: Historical model VDT.

vehicle stock (Figure C-1) to derive a weighted average of the business cars and taxis. This became the

model’s non-private car category VDT.

I assume minitruck VDT shows the same declining trend over time, and also assume it is in between

the two available datapoints from other sources. Without available data on minibus VDT, I assume it

was similar to business car VDT. See Table C-7 and Figure 5-1 for an overview of all model vehicle types.

For all vehicle types, I assumed average historical VDT values had been declining through the 1990s.

Regardless, the fraction of 1990s model year vehicles remaining in 2010 have low annual VDT values

compared with new vehicles and are also few in number. They have essentially no impact on model

energy demand results, irrespective of VDT.
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Figure C-4: VDT comparison across models in thousand km per vehicle per year.

Vehicle type NA-SI Turbo Diesel HEV PHEV EV

Private car 91.7 7 1 0.1 0.1 0.1
Non-private car 91.7 7 1 0.1 0.1 0.1

Minitruck 75.7 1 23 0.1 0.1 0.1
Minibus 98.7 1 0 0.1 0.1 0.1

Table C-8: Base year powertrain sales marketshares.

Powertrain mix

He and Tu (2012) report 7% of Chinese passenger cars are turbocharged in 2010, Ou et al. (2010b) and

Huo et al. (2012b) explain 1% of passenger cars in 2006, 2007 and 2008 and private passenger cars in

2010 use diesel engines, respectively. I use this to generate base year powertrain sales mixes for cars

(Table C-8). I approximate HEV, PHEV and EV as 0%, but allocate 0.1% each to provide a base value

off which to grow sales. Huo et al. (2012a) provides information on gasoline and diesel engine shares

for trucks under 1800 kg (see Table 6-2), and Ou et al. (2010b) report all minibuses use gasoline. I

assume turbocharged vehicles are less common among these vehicle types because JV manufacturers,

who employ more advanced technology, do not hold high marketshares among these categories. The

model only incorporates NA-SI and diesel powertrains prior to base year 2010, and I allocate historical

powertrain sales marketshares accordingly (Table C-9).

Fuel consumption

Using available literature data on Chinese average passenger car fleet fuel consumption, I regress a linear

fit of the datapoints that span the years 2002 to 2010:

Fuel consumption=−0.0766× year + 161.79 (C.1)

144



Vehicle type NA-SI Turbo Diesel HEV PHEV EV

Private car 99 0 1 0 0 0
Non-private car 99 0 1 0 0 0

Minitruck 77 0 23 0 0 0
Minibus 100 0 0 0 0 0

Table C-9: Historical powertrain marketshares before 2010.

Car and minibus FC Fuel consumption (L/100km)

Fleetwide (label) 7.72
Fleetwide (on-road) 8.92

NA-SI 9.01
Turbo 8.11
Diesel 7.57
HEV 6.31

PHEV 6.31

Table C-10: Base year car fuel consumption.

This generates the base value 7.72 L / 100 km (TableC-10). This is label fuel consumption and I use

a 15.5% adjustment factor (Huo et al., 2011) to derive on-road fuel consumption of 8.92 L / 100 km for

model year 2010 vehicles. Using 2010 sales marketshares and predetermined relative fuel consumption

values among powertrains, I thereafter calculate fuel consumption for each powertrain to generate base

year model inputs. I assume identical fuel consumption for private cars, non-private cars and minibuses.

Gasoline and diesel powered minitruck label fuel consumption was 7.96 L / 100 km and 7.84 L /
100 km in 2009, respectively (Huo et al. (2012a)). This is an average sales-weighted fuel consumption

of 7.93 L / 100 km. I recalculated the average efficiency for each of the two powertrains based upon my

0.84 relative fuel consumption ratio of diesel engines to gasoline engines. This gives 8.24 L / 100 km and

7.08 L / 100 km for gasoline and diesel engines, respectively. This recalculation ensures minitruck diesel

and gasoline engines are equally distributed across all minitruck weights. I calculate an adjustment

factor of 8.02% between diesel cars and minitrucks using diesel label fuel consumption values (7.08 L /
100 km and 6.56 L / 100 km)2. I use this adjustment factor to generate on-road base year minitruck fuel

consumption values for all powertrains from corresponding car on-road fuel consumption values (Table

C-11)

The model only includes gasoline and diesel powertrains prior to 2010. I assume fuel consumption

2I calculate label diesel car fuel consumption by assuming on-road car diesel fuel consumption of 7.57 L / 100 km is 15.5%
higher than label fuel consumption. 6.56 L / 100 km is from Table C-10

Minitruck Fuel consumption (L/100km)

Gasoline (label) 8.24
Diesel (label) 7.08

NA-SI (on-road) 9.73
Turbo (on-road) 8.76
Diesel (on-road) 8.18
HEV (on-road) 6.82
PHEV (on-road 6.82

Table C-11: Minitruck base year fuel consumption.
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Fuel Private car Non-private car Minitruck Minibus

Gasoline 100% 95.9% 100% 100%
CNG 0% 4.1% 0% 0%

Methanol 0% 0% 0% 0%

Table C-12: Base year fuel shares.

increases linearly prior to 2010 according to the regressed linear equation I use the regressed linear

equation (EquationC.1) relating fuel consumption and year to calculate label fuel consumption for gaso-

line vehicles prior to 2010. I use the derived scaling factors of 15.5%, 8.02% and 0.84 to convert to

on-road fuel demand, minitrucks and diesel engines, respectively.

Fuel shares

Huo et al. (2012b) reports that CNG vehicles powers 26% of taxis in China, but no private light duty

vehicles or business light duty vehicles. The 820 000 taxis in China in 2008 (China City Statistical

Yearbook, 1997-1999, 2001-2005, 2007-2008) accounted for 15.6% of the non-private car fleet. I thus

assume that among the NA-SI, turbo, HEV, and PHEV fleet, gasoline powered 100% of private cars,

minitrucks and minibuses in 2010, but only 95.9% of non-private cars (Table C-12).
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Appendix D

China Daily articles

Links to the articles collected to create Figure 4-6 are listed below together with the forecast source, if

available.

• From VW: www.chinadaily.com.cn/en/doc/2002-04/24/content_117012.htm

• From Autopolis: www.chinadaily.com.cn/en/doc/2002-10/15/content_139540.htm

• No source for forecast: www.chinadaily.com.cn/en/doc/2003-07/07/content_243364.htm

• From government: www.chinadaily.com.cn/en/doc/2004-01/02/content_295146.htm

• From Machine Industry Federation: www.chinadaily.com.cn/english/doc/2004-06/08/content_337404.htm

• No source for forecast: www.chinadaily.com.cn/english/doc/2004-09/09/content_372882.htm

• No source for forecast: www.chinadaily.com.cn/english/doc/2004-11/10/content_389993.htm

• From Toyota: www.chinadaily.com.cn/english/doc/2004-11/26/content_394945.htm

• No source for forecast: www.chinadaily.com.cn/english/doc/2005-10/21/content_486648.htm

• From government: www.chinadaily.com.cn/english/doc/2005-11/16/content_494969.htm

• From government: www.chinadaily.com.cn/english/doc/2005-12/28/content_507183.htm

• No source for forecast: www.chinadaily.com.cn/cndy/2006-08/24/content_672639.htm

• From CSM Worldwide: www.chinadaily.com.cn/cndy/2007-07/18/content_5438181.htm

• From General Motors: www.chinadaily.com.cn/cndy/2009-10/30/content_8870908.htm

• From JD Power: www.chinadaily.com.cn/cndy/2009-11/25/content_9041441.htm
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