
Intrusion Detection by Random Dispersion and

Voting on Redundant Web Server Operations
by

Dennis Ohsuk Kwon
Submitted to the Department of Electrical Engineering and Computer

Science
in partial fulfillment of the requirements for the degree of

Master of Engineering in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2002

© Dennis Ohsuk Kwon, MMII. All rights reserved.

The author hereby grants to MIT permission to reproduce and
distribute publicly paper and electronic copies of this thesis document RAr-zP

in whole or in part. MASSACHUSErTTS STIURE
OF TECHNOLOGY

JUL 3 1 2002

LIBRARIES
A u th o r ..

Department of Electrical Engineering and Computer Science
May 22, 2002

Certified by.....
William Weinstein

Senior Researcher, V jyes Stark Draper Laboratory
Thesis Supervisor

Certified by
Howard E. Shrobe

Principal Research Scientisf, MIT Artif6i>1l Intfjigence Laboratory
Tha'fs Superxvisor

Accepted by
Arthur C. Smith

Chairman, Department Committee on Graduate Students

Intrusion Detection by Random Dispersion and Voting on

Redundant Web Server Operations

by

Dennis Ohsuk Kwon

Submitted to the Department of Electrical Engineering and Computer Science
on May 22, 2002, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Computer Science and Engineering

Abstract

Until now, conventional approaches to the problem of computer security and intrusion
tolerance have either tried to block intrusions altogether, or have tried to detect an
intrusion in progress and stop it before the execution of malicious code could damage
the system or cause it to send corrupted data back to the client. The goal of this
thesis is to explore the question of whether voting, in conjunction with several key
concepts from the study of fault-tolerant computing - namely masking, redundancy,
and dispersion - can be effectively implemented and used to confront the issues of
detecting and handling such abnormalities within the system. Such a mechanism
would effectively provide a powerful tool for any high-security system where it could
be used to catch and eliminate the majority of all intrusions before they were able to
cause substantial damage to the system.

There are a number of subgoals that pertain to the issue of voting. The most
significant are those of syntactic equivalence and tagging. Respectively, these deal
with the issues of determining the true equivalence of two objects to be voted on, and
"marking" multiple redundant copies of a single transaction such that they can be
associated at a later time. Both of these subgoals must be thoroughly examined in
order to design the optimal voting system.

The results of this research were tested in a simulation environment. A series
of intrusions were then run on the voting system to measure its performance. The
outcome of these tests and any gains in intrusion tolerance were documented accord-
ingly.

Thesis Supervisor: William Weinstein
Title: Senior Researcher, Charles Stark Draper Laboratory

Thesis Supervisor: Howard E. Shrobe
Title: Principal Research Scientist, MIT Artificial Intelligence Laboratory

2

Acknowledgments

I would like to thank my parents, Young-Dae and Eun-Jae Kwon, for their constant

love and support throughout the past twenty-two years of my life. I would also like to

thank God for giving me the strength to succeed when I needed it most. Thanks also

to all of my friends and my sister, Jeannie, without whom I would have been unable to

make it through this year. Last, but not least, I would like to thank Bill Weinstein and

Dr. Howard Shrobe for their continued guidance and support as I prepared this thesis.

This thesis was prepared at the Charles Stark Draper Laboratory, Inc., under

Contract #N66001-00-C-8061, with DARPA/ISO.

Publication of this thesis does not constitute approval by Draper or DARPA/ISO

of the findings or conclusions contained herein. It is published for the exchange and

stimulation of ideas.

(Author's signature)

3

[This page intentionally left blank]

4

Contents

1 Introduction 10

1.1 P roblem . 10

1.2 O bjective . 11

2 Background 14

2.1 Computer Attacks and Anti-Intrusion 14

2.1.1 Common Attacks . 15

2.2 Anti-Intrusion Systems . 17

2.2.1 Intrusion Prevention . 19

2.2.2 Intrusion Preemption . 19

2.2.3 Intrusion Deterrence . 19

2.2.4 Intrusion Deflection. 21

2.2.5 Intrusion Detection . 21

2.3 Related W ork . 23

2.3.1 A Scalable Intrusion-Tolerant Architecture (SITAR) 24

2.3.2 A Decentralized Voting Algorithm for Increasing Dependability

in Distributed Systems (TB-DVA) 25

2.3.3 New Methods of Intrusion Detection using Control-Loop Mea-

surem ent . 27

2.3.4 Intrusion Tolerance by Unpredictable Adaptation (ITUA) . . 28

2.3.5 Building Adaptive and Agile Applications Using Intrusion De-

tection and Response . 29

5

3 Design Approach

3.1 KARMA System Overview

3.1.1 Assumptions

3.1.2 Phase One KARMA System

3.1.3 Phase Two KARMA System

3.1.4 Required Components ...

3.2 Architectural Analysis

3.2.1 Narrowing The Parameters .

3.3 Detailed Design Analysis

3.3.1 Non-Voting

3.3.2 Voting

3.3.3 Voting at M

3.3.4 Voting at M,t

3.3.5 Voting at G0 ,t

3.3.6 Redundant Databases . . .

3.3.7 Single Database

3.4 Design Conclusions

3.4.1 Final KARMA System . . .

4 Implementation

4.1 KARMA-i

4.1.1 Gateway

4.1.2 Configuration Manager . . .

4.2 KARMA-2

4.2.1 Libasync - An Asynchronous

4.2.2 Gateway

4.2.3 Transaction Mediator

5 Results

5.1 Attack Types .

5.2 False Alarms .

6

32

. 32

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Socket Library

32

33

34

36

39

40

42

42

44

44

56

57

61

62

63

63

65

65

66

67

67

68

69

76

83

83

84

5.3 Test Results . 84

5.4 Response Times . 86

6 Conclusions 89

7 Future Work 91

7.1 Performance Enhancements . 91

7.2 Security Enhancements . 92

7.3 General Enhancements . 93

A Source Code 94

A.1 Gateway . 94

A.1.1 webproxy.h . 94

A.1.2 webproxy.C . 99

A.2 Mediator . 110

A.2.1 mediator.h . 110

A.2.2 mediator.C . 113

A.3 Gout Voting Equivalence Algorithm 120

7

List of Figures

The Phase One KARMA

The Phase Two KARMA

Final KARMA System .

Gateway Block Diagram

Mediator One

Mediator Two

Mediator Block Diagram

System .

System .Syt..........................

Syt..........................

. .

. .

. .

8

3-1

3-2

3-3

4-1

4-2

4-3

4-4

34

35

63

74

77

77

80

List of Tables

3.1 Brief Architectural Analysis . 43

3.2 SQL Variable Types . 51

4.1 Phase One KARMA Configuration 66

4.2 Phase Two KARMA Configuration 68

5.1 Test R esults . 85

5.2 KARMA Response Times 87

9

Chapter 1

Introduction

1.1 Problem

With the recent rise of the Internet and the World Wide Web (WWW), the num-

ber of people using computers and Internet services has grown at an alarming rate.

According to an independent study performed by NPR in 1999, more than 8 in 10

Americans under the age of 60 had used a computer either at home or at work. In

addition, more than half (52%) of all Americans under the age of 60 had access to

e-mail or the Internet in their own homes. Since 1999, the number of computer users

has grown exponentially [16]. As quickly as the number of people using the Internet

has grown, so has the number of attacks made on Internet-based hosts.

Earlier this year, the Federal Bureau of Investigation reported that "nearly 90%

of United States businesses and government agencies suffered hacker attacks within

the past year." Furthermore, it was reported that the damage caused by Internet

attacks cost US companies nearly $455 million last year, up by $125 million from the

previous year [9]. With numbers like these, it goes without saying that the study of

Internet security and intrusion prevention is an exciting and rapidly growing area of

research.

Until now, conventional approaches to the problem of computer security and intru-

sion tolerance have either tried to block intrusions altogether, or have tried to detect

and intrusion in progress and stop it before the execution of malicious code could

10

damage the system or cause it to send corrupted data back to a user. The detection

of such an intrusion has required that systems effectively look for anomalous patterns

in behavior, incorrect or unexpected values for parameters, or attempts to perform

unauthorized actions. The biggest problem with these methods of detection is that

they are often limited to looking only for known patterns of attack. However, more

sophisticated attacks that do not employ blatantly abnormal behaviors, but instead

string together a series of seemingly benign transactions to collectively compromise a

system, could pass through the system undetected. As a result, attempts have been

made to come up with a more precise definition of what is considered to be abnormal

behavior in a secure system. To date, such techniques have led to a large number of

false alarms that have made it difficult to work with such intrusion tolerant systems.

This thesis will present a new approach to intrusion tolerance called KARMA (Ki-

netic Application of Redundancy to Mitigate Attacks). KARMA confronts the issue

of detecting abnormalities by adapting several key concepts from the study of fault-

tolerant computing - namely masking, redundancy and dispersion. Furthermore, it

can be shown that this new approach significantly improves the level of protection

the system provides against intrusion and compromise.

1.2 Objective

The KARMA system utilizes a number of redundant components to detect anomalous

behavior on the network. The system consists of a number of Internet servers residing

on a network behind a trusted gateway. Each of these servers acts as a mirror,

providing access to a variety of web content. In addition, the servers communicate

with a database through a trusted mediator by utilizing a set of carefully written web

scripts.

To an external user, the KARMA system looks like a single web server. The

trusted gateway acts as a firewall between the internal servers and the outside world.

Once a user has connected to the gateway, any request that is made is replicated

and then randomly dispersed to a number of the internal servers (>3 to allow for

11

majority voting). Each of these servers then processes the request and does one of

the following:

1. If the request was for a dynamic page requiring database access - the web server

forwards the database request to the trusted mediator which then compares its

incoming requests from the various web servers and executes the query if they

are found to match by some relative standard. The result is then returned to

the corresponding web servers, where step 2 is then performed.

2. If the request was for a static page, or a dynamic page not requiring database

access - a response is generated and sent back to the gateway. The gateway then

compares the various responses for its original replicated requests and returns

a response if they match. If the responses are found to differ by some relative

standard, an appropriate error response is returned.

The KARMA system provides intrusion tolerance for "service" sites that support

multiple external clients with web-based access to a large amount of information,

database, and application services. It relies on a small number of trusted components

to protect the functionality of a large number of untrusted components - untrusted

in the sense that they are not subject to testing and analysis for security beyond that

provided by the manufacturer, nor are any security-enhancements made to any of the

existing operating systems or server applications. The objective of this system is the

protect the confidentiality and integrity of the site's information in the presence of

stealthy attacks - unknown to us - seeking to take advantage of vulnerabilities in the

untrusted components of our system.

The goal of my research is to explore the questions of associating and voting on

redundant web server operations. Following this introduction, the second chapter

presents background information on the study of computer attacks and intrusion tol-

erance/detection. Chapter 3 gives an analysis of the various architectural/operational

alternatives for the KARMA system leading up to a final design motivation. The

fourth chapter then describes in greater detail the implementation of the KARMA

system. Chapter 5 discusses some of the tests that were performed on the system and

12

both the successes and failures of the KARMA system in handling them. Finally,

Chapter 6 gives some conclusions drawn from the performance of KARMA, followed

by a seventh chapter on future work to be done.

13

Chapter 2

Background

"A 'computer attack' may deny access to a system or compromise the confidentiality

or integrity of data on that system. In the most threatening kind of attack, an

intruder's privileges on a system are elevated beyond the norm." [11]

An intrusion detection system is one that attempts to detect attacks before they

occur, thus preventing any harm to the networks or hosts that it is protecting. There

are two types of intrusion detection systems: network-based and host-based. A

network-based IDS analyzes traffic flowing through a network and attempts to iden-

tify attacks. Similarly, a host-based IDS monitors and examines the configuration of

a system to effectively identify whether an attack has taken place. Each approach

has its own set of advantages and disadvantages. The KARMA system utilizes both

network and host-based components to reap the rewards of both approaches.

2.1 Computer Attacks and Anti-Intrusion

A computer attack is defined as "a sequence of related actions by a malicious adversary

whose goal is to violate some stated or implied policy regarding appropriate use of a

computer or network." (mcdonald 2001) The purpose of these attacks is varied and

can range from the benign to the serious. An example of a benign attack would be a

user attempting to explore a secure network to see what resources are available. An

example of a more serious attack might involve an individual attempting to access

14

privileged information, perform unauthorized operations on the system or bring down

the system altogether [17].

Of the people who are attempting to compromise a system, there are three primary

classes of attackers [17]:

" Masquerader - An individual who is not authorized to use the computer, and

who penetrates a system's access controls to exploit a legitimate user's account.

" Misfeasor - A legitimate user who accesses data, programs or resources for which

such access is not authorized, or who is authorized for such access but misuses

his or her privileges.

" Clandestine user - An individual who seizes supervisory control of the system

and uses this control to evade auditing and access controls or to suppress audit

collection altogether.

2.1.1 Common Attacks

In nearly all cases of computer attacks, an attacker must attain a level of control that

is beyond that which is specified by the system's security policy. The following are

some of the most commonly used techniques for compromising a system or gaining

illicit access to a system [11]:

e Password stealing - This is probably one of the most common methods used

to compromise a system. There are two methods of stealing passwords. The

more technical method is known as password sniffing. To sniff a password, an

intruder observes the traffic flowing across a network and attempts to catch

passwords being sent "in the clear" (without encryption) from a client to a

server on the network. The less technical method is simply to steal a password.

Some techniques an intruder might use to steal a password are looking through

the trash to check if a user wrote it down somewhere, calling up a legitimate

user and pretending to be a system administrator in need of their password, or

less subtly, threatening a user to give up their password.

15

* Exploiting software bugs/rm isconfigurations - Often there are a number of known

vulnerabilities in commonly used software that can be exploited granting a

knowledgeable intruder an easy way into a system. In most cases, these vul-

nerabilities will leave the intruder with "root" or "super-user" privileges. Once

inside, the intruder can then start a shell and begin executing custom programs

of his/her choosing. Similarly, misconfigurations in software can leave open

huge windows of opportunity for potential intruders. For example, if a windows

administrator were to forget to disable guest access, they might then allow an

intruder to easily gain access to their system and proceed to attack it from the

inside.

* Physical access - This is the case in which someone might actually have access

to the physical machine. If the machine were not networked this would pose less

of a threat, in that it would only provide access to a single machine. However,

if the machine were on an unprotected (trusted) network, it would be possible

for the intruder to compromise every single machine with no trouble at all. In

addition to compromising the network, a single physically accessible machine

could also be compromised in a number of ways. The machine could be re-

booted to bypass the password-entry mechanism. For example, in the default

Linux installation, it is possible to login in single-user mode by setting a single

startup flag, effectively providing the physical user with "super-user" privileges.

Alternatively, if the machine contained large amounts of highly classified data

the hard drives/storage media could be removed and read directly from another

machine.

* Session stealing - Session stealing is the process by which an intruder would

steal a connection from an already authenticated user. This could happen in

several different ways. The intruder might flood the user's machine with packets

(denial-of-service attack) thus taking their machine "offline," and then act as

an impostor by stealing the original user's IP address. Another more common

method of stealing sessions occurs in a system in which multiple users may

16

share a single machine (i.e. public libraries, campus clusters, etc.). In this case,

an intruder may be able to utilize cookie files that have been saved locally by

another user. Cookie files are often used by websites to retain login information

for authentication. Clearly, this would pose a serious threat if the website

contained highly personal or sensitive information.

Obviously, this list does not encompass the entire range of possible attacks that can

be used to compromise a system. Furthermore, as computers continue to get faster

and more powerful, intruders continue to think of more and more ingenious ways

to break into systems and bypass detection. Hence, an effective intrusion detection

system must be designed to detect some, if not all, of these known attacks and yet

also be flexible enough to catch those attacks that do not fall into these well-known

categories.

2.2 Anti-Intrusion Systems

Initial efforts to combat intrusion turned to a method of intrusion prevention that

essentially required system administrators to employ various techniques to design

and configure a system such that they could effectively block all possible intrusions.

However, it was quickly realized that this method would prove to be quite costly and

would inevitably fail due to the sheer number of attacks that was growing in number

every day. As a result, the idea of intrusion detection was born. Early intrusion

detection systems were based on the theory that intrusions could be effectively de-

tected by observing anomalous behavior on a network. An anomaly was defined as

any behavior that was atypical of a user's historical behavior (as was documented by

an audit log). It was thought that this audit mechanism would enable system admin-

istrators to catch not only intruders attempting to misuse the privileges of existing

users, but also legitimate users attempting to perform actions beyond the scope of

their access permissions.

Early experimentation showed that the auditing approach was indeed effective

for keeping track of users' behavior patterns. Thus, greater emphasis began to be

17

placed on new and interesting ways to apply techniques for audit trailing to the

improvement of computer security. Eventually, this led to the development of various

commercial intrusion detection systems "including SRI's IDES and NIDES, Haystack

Laboratory Inc.'s Haystack and Stalker, and the Air Force's Distributed Intrusion

Detection System (DIDS)."

Though much has been learned from the research of intrusion detection systems, it

is important to also present some of the less recognized alternatives that have played

a valuable role in the development of computer and Internet security as a whole [17].

There are a number of approaches that have been used to counter computer at-

tacks. Of these, some of the most common approaches are [11:

* Prevention - precludes or severely handicaps the likelihood of a particular in-

trusion's success.

" Preemption - strikes offensively against likely threat agents prior to an intrusion

attempt to lessen the likelihood of a particular intrusion occurring later.

* Deterrence - deters the initiation or continuation of an intrusion attempt by

increasing the necessary effort for an attack to succeed, increasing the risk

associated with the attack, and/or devaluing the perceived gain that would

come with success.

* Deflection - leads an intruder to believe that he has succeeded in an intrusion

attempt, whereas instead he has been attracted or shunted off to where harm

is minimized.

" Detection - discriminates intrusion attempts and intrusion preparation from

normal activity and alerts the authorities.

* Countermeasures - actively and autonomously counter an intrusion as it is being

attempted.

18

2.2.1 Intrusion Prevention

Intrusion prevention attempts to "preclude or severely handicap the likelihood of a

particular intrusion's success." Essentially, this requires the administrator of a system

to build and configure the system such that no security holes are left open and no

possible vulnerabilities exist to be exploited by a potential intruder. Clearly this is

an extremely high and virtually unattainable goal given the fallibility of the people

who design and build such software. However, if such a level of prevention could

be achieved, the security of the system would likely be unmatched in that no other

anti-intrusion mechanisms would be required since it would be perfectly protected

and there would exist no means by which to misuse the system [11].

2.2.2 Intrusion Preemption

Intrusion preemption techniques attempt to stop intrusion one step earlier than in-

trusion prevention. Some typical methods for doing so involve educating a system's

users so as to inform them of proper routines for securing their computers, pass-

words, etc. In addition, laws could be passed to prevent systems from being exposed

to compromising situations. Furthermore, if at any time, a regular user is observed

to be demonstrating anomalous behavior action might be taken against that user to

prevent them from performing potentially harmful actions from within the trusted

network. These are just a few examples of the intrusion preemption mechanisms that

are used today [11].

2.2.3 Intrusion Deterrence

Intrusion Deterrence techniques seek to make it appear to a potential intruder that

breaking into a system is more trouble than it is worth. This could be done in a

number of ways. The most common techniques are camouflage, warnings, paranoia,

and obstacles [11].

* Camouflage - is the process whereby a system may appear from the outside to be

less important than it actually is. This can be done effectively by masking the

19

identity of the various components within a system. For example, if the system

consisted of multiple servers protected by an external gateway, the gateway

could fool an outside user into thinking that only one machine existed at the

given external IP address. Even something as simple as renaming could be used

to camouflage the true identity of a highly-valuable resource within a network

(i.e. naming a database cinfo may prove to be less attractive to a potential

hacker than one named CREDITCARDINFO). In this latter case though, one

could clearly see how the protocol might inconvenience some of the users of

the system in that the names would not be as descriptive or informative, thus

making the system much less intuitive to a new user.

Warnings - some systems may seek to dissuade a user from breaking in by issuing

multiple warnings to an attacker as they attempt to perform a compromising

series of actions on the system. However, this method may often prove to be

counterproductive as some attackers may be further egged on by the warnings

for the exact opposite reasons for camouflaging. Attackers may see the warnings

as a sign that something very important lies behind the "closed doors" to the

system.

* Paranoia - is an attempt to scare potential attackers away by creating the

impression that the system is very well guarded and monitored. This can be

either true or false, but it is up to the attacker to decide whether they are willing

to take the risk of getting caught.

9 Obstacles - are put in place to augment the amount of time and effort needed

to compromise the system. By creating dummy accounts, or by employing

multiple levels of security, a system administrator may effectively be able to

dissuade an attacker from expending the time needed to gain control of the

system. Like the camouflage technique, it can easily be seen how this method

might provide increased security at the expense of convenience for it's legitimate

users. This is because the added obstacles could potentially create additional

security protocols that would turn seemingly basic operations into annoying,

20

complicated routines.

These are just a few of the techniques that might be employed in a system where

the attacker is assumed to have a limit to their persistence or desire to attain access

to the system.

2.2.4 Intrusion Deflection

Another commonly used method of anti-intrusion is intrusion deflection. This tech-

nique essentially tricks an attacker into thinking that they have successfully broken

into a system only to find that they have been following a trail that leads nowhere.

A honeypot is one example of an intrusion deflection system that is widely used to-

day. The purpose of a honeypot is twofold. First, it acts as an alternate target to

deflect attacks on the primary system. Secondly, it serves as a means of tracking and

learning the actions of a potential attacker without putting any valuable information

in harm's way [11].

2.2.5 Intrusion Detection

In William Stalling's book entitled "Network and Internetwork Security," he states

that, "inevitably, the best intrusion prevention system will fail. A system's second

line of defense is intrusion detection, and this has been the focus of much research in

recent years."

The primary motivation for intrusion detection systems is that they enable a

system to detect an attack and expel the malicious user before any irreversible damage

can take place within the system. Even if an attacker does successfully manage to

get inside a system, by expediently detecting the anomalous behavior, the amount of

damage done can likely be mitigated.

As was stated earlier, intrusion detection is largely based on the assumption that

one can distinguish, on the basis of audit records and behavior patterns, between a

legitimate user and someone who has hacked into the system and is posing falsely as

a real user. There are a number of techniques that are widely used today to detect

21

such anomalies in behavior. The two primary categories of intrusion detection are

[111:

1. Statistical Anomaly Detection - As the name implies, this method refers to the

long term collection of statistical data regarding the typical behavior patterns

of a user. The system can then compare any given user's behavior with the

gathered data to determine to a relative degree of confidence whether the user

is an impostor. There are two main categories of statistical anomaly detection:

* Threshold Detection - requires the system to keep a count of specific user

actions performed within a given period of time. If a user's actions ever

exceed or drop below the typical number of occurrences for a particular

user, then an intrusion may be signaled.

" Profile-based - this is very similar to threshold detection. However, rather

than keeping count of a particular event and comparing all subsequent

action counts to the collected data, a profile-based system attempts to keep

track of multiple actions. Essentially, the system generates a long-term

portfolio of a user's actions. Each of the actions that comprise a portfolio

can then be ranked with a certain level of importance. This provides a

more accurate method for comparison in that the effect of a legitimate

user's occasional anomalous behavior could be diminished by other "more

normal" behavior. However, if the user was indeed an attacker, it is highly

likely that more than one of the actions in the profile would differ from the

typical behavior of the given user, resulting in an overwhelming difference

in behavior and this signaling an intrusion.

2. Rule-Based Detection - rather than detecting anomalous behavior by comparing

user statistics, rule-based detection might detect an intruder on the basis of a

set of rules that can be applied to the operations being performed on a system.

e Anomaly Detection - rule-based anomaly detection is quite similar to sta-

tistical anomaly detection. The primary difference is that the rule-based

22

approach compares a current user's actions against a set of rules for be-

havior (derived from audit records of a user's historical behavior). Each

successive action can be compared against the set of rules to determine

whether it falls into a previously defined pattern of behavior.

* Penetration Identification - This method is quite different from the anomaly

detection routines in that it does not rely so much on historical patterns of

behavior. Rather, it collects data on known attacks (by both technical and

non-technical means, i.e. interviews with system administrators, develop-

ers, etc.). With this data, a set of rules is then generated through which

any subsequent actions can be filtered to check for malicious patterns of

behavior.

The previous two categories describe techniques that have focused primarily on

host-based systems that need protection only for themselves. However a more inter-

esting area of research, is that of network-intrusion detection, which is responsible for

detecting attacks not only on a single host, but every host on the network.

Until recently, much of the work on intrusion detection was done solely for single

host systems. However, the rise of the Internet and the prevalence of local area

networks not only in businesses but also in homes, has provided motivation for a

distributed, multiple-host, network-based intrusion detection system. The primary

difficulty with network-based IDS is that since the IDS is not located on a single server,

the audit records must be handled differently. Furthermore, since the distributed IDS

might not have access to the low-level audit resources that a single-hosted detection

system might have, a distributed intrusion detection system will often consist of

multiple host-based components working together to form the entire anti-intrusion

system.

2.3 Related Work

There has been a great deal of research conducted on the study of intrusion detection

systems. In the following examples, a number of projects that are currently being

23

developed in the area of intrusion tolerance will be presented. In addition, the advan-

tages and disadvantages of each of the systems and the various differences between

them will be discussed in greater detail. Lastly, an attempt will be made to illustrate

some of the similarities between each of these projects and the proposed KARMA

system.

2.3.1 A Scalable Intrusion-Tolerant Architecture (SITAR)

The Scalable Intrusion-Tolerant Architecture (SITAR) Project is currently being re-

searched at Duke University and involves the development of "a scalable intrusion-

tolerant architecture for distributed services in a network environment." The SITAR

project attempts to succeed where many others have failed by preventing general in-

trusion attacks rather than by simply detecting an attack in progress. In the past,

there has been very limited success in dealing with such direct approaches to intrusion

tolerance. However, the SITAR project differs from its predecessors in that it does

not focus on the intrusion attacks themselves, but on the functions and services that

require protection - i.e. to be made intrusion tolerant. So rather than trying to de-

tect intrusions on the system as a whole, the SITAR project attempts to monitor and

detect intrusions on only those events that pose a threat to the services under exam-

ination. Hence, the system is able to effectively prevent intrusions to those services

that are most essential to the performance of the system. In addition to examining

only a generic set of attacks, the SITAR project improves upon current intrusion

prevention systems by applying many of the basic techniques of fault tolerance, e.g.

redundancy and diversity, to insure that the system stays dependable and predictable

[20].

The most significant disadvantage of the SITAR project lies in the fact that it

is an intrusion prevention system. Unlike many of its predecessors, the likelihood of

success in preventing intrusions is much higher since the scope of attacks that need

to be dealt with is much smaller. However, by virtue of the fact that it must be

able to successfully identify any possible attack (in the smaller subset) in order to

prevent a compromise, it is highly unlikely that such a system can be implemented

24

with complete assurance of success.

2.3.2 A Decentralized Voting Algorithm for Increasing De-

pendability in Distributed Systems (TB-DVA)

This project, being developed at the Air Force Research Laboratory, addresses the

problem of coordinating voting in a distributed system securely, so as to withstand

malicious attacks. Conventionally, most distributed systems have utilized the same

voting protocols to achieve fault-tolerance. One of the most common protocols, the

2-phase commit protocol requires the replicated voters to independently determine

the majority rather than relying on a central source to tally the results. Once the

final result has been calculated, one voter is chosen at random to commit their result

to be passed on to the user. This method is widely used in developing fault-tolerant

open distributed systems. However, the committal phase in this protocol opens the

doors to a number of security holes [6].

The most obvious flaw in the 2-phase commit protocol occurs when a malicious

attacker is able to compromise a committing voter. Then, the attacker can effectively

control what result the user sees regardless of what result the other voters return.

Though there have been a number of attempts made to modify the protocol such

that it can be secured, most of these have been without success. This new solution,

utilizes a timed-buffer distributed voting algorithm (TB-DVA), to effectively solve

this problem.

The timed-buffer distributed voting algorithm (TB-DVA), involves a number of

voters and an interface. Unlike the 2-phase commit protocol that requires each voter

to vote independently and then one voter to return the result, TB-DVA, allows all

voters to participate in a distributed manner in the final voting process. It does this

via the following algorithm: [6]

Each voter performs the following steps:

1. If no other voter has committed an answer to the interface module, the voter

25

does so with its vote. It then skips the remaining steps.

2. If another voter has already committed, the voter compares its result with the

committed result.

3. If the vote agrees, it does nothing. Otherwise, if the vote disagrees, it broadcasts

its dissenting vote to all users.

4. Once all voters have had a chance to compare their results to the committed

value, the voter analyzes all of the dissenting votes to see if a new majority

exists.

5. If no majority exists, then the voter does nothing.

6. If a new majority exists, the voter commits this new result and returns to Step

one.

The interface module performs the following steps:

1. Once a commit is received, the result is stored in a buffer and a timer is started.

The timer is set to allow all voters to check the committed value and also have

time to dissent if necessary.

2. If a new commit is received before the timer runs out, the new result is written

over the old one in the buffer and the timer is restarted.

3. If no commit occurs before the timer runs out, then the interface module simply

returns the value in its buffer to the user.

The TB-DVA improves greatly upon the 2-phase commit protocol by essentially

enabling the voters to return a result correctly even if a number of the voters have

already been compromised successfully. This works because it is neither a single

voter, nor the centralized voter (in this case the interface module) that is responsible

for coming up with the final result. Rather the result comes from a set of timed

periods of communication between the interface and the distributed voters. Only if a

26

majority of the voters has been compromised, would an intruder be able to dominate

the result [6].

One disadvantage of the TB-DVA system is that it could possibly slow the per-

formance and increase the complexity of the system. This is due to the fact that

multiple cycles of voting must be completed before a final result can be returned.

2.3.3 New Methods of Intrusion Detection using Control-

Loop Measurement

At the Fourth Technology for Information Security Conference in 1996, three re-

searchers from Houston, Texas presented a novel idea for intrusion detection using

control-loop measurement. The Control-Loop IDS attempts to apply concepts from

digital signal processing (DSP) and control theory in electrical engineering. "Within

this theory, a control system compares observations of a system's state with desired

states to generate corrections intended to steer the system being controlled toward

the desired state." [1]

Essentially, it can be shown that the traffic flowing through a network can be

modeled as a digital signal, which can then be processed using modern statistical

methods - "time-series data is collected, filtered, correlated, and analyzed for many

purposes including event detection. The recognition and characterization of computer

network protocols has been among the applications successfully handled by DSP."

This finding, in conjunction with the control theory in electrical engineering, would

allow researchers to quantify discrepancies in network behavior, thus providing them

with the ability to distinguish between legitimate users and intruders [1]

The advantage of this new system is that it builds upon a tried and tested the-

ory from electrical engineering (control theory) in addition to utilizing well-known

concepts from digital signal processing. Hence, if it can be shown that the control-

loop measurements can correctly distinguish between legitimate users and intruders

to a relative degree of certainty, then this new method would provide a very enticing

alternative to many of the newer intrusion detection systems that are in use today.

27

One disadvantage of this system is that it attempts to detect suspicious behavior

based solely on patterns revealed by the control-loop theory in electrical engineering.

It differs from typical intrusion detection systems in that it does not statistically

collect historical data on pattern behaviors of ordinary users. However, this is a

feature that could likely be integrated into the system with relative ease.

2.3.4 Intrusion Tolerance by Unpredictable Adaptation (ITUA)

"The purpose of the Intrusion Tolerance by Unpredictable Adaptation (ITUA) project

is to develop a middleware based intrusion tolerance solution that would help appli-

cations survive certain kinds of attacks." The ITUA project proposes to do this by

developing its own intrusion model of attacks that it will provide protection against.

Attacks that are protected are called "covered" attacks, and those that are not are

called "uncovered." The key concept that makes the ITUA project so interesting is

that, it doesn't necessarily have to stop the attacker from ever getting inside. Rather,

it may allow for an attacker to get inside the system, however, given that the system

has several layers of defense, it is assumed that in most cases, the system will be able

to catch the attack before it is able to reach any of the core services. Once the attack

has been detected, adaptation is crucial because the system must not only be able

to adapt to the attack so as to recover, but it must also do so in a manner that is

unpredictable. Otherwise, an attacker might be able to predict the action that would

be taken and simply prevent that action from ever taking place [23].

The advantage to this solution lies in its element of surprise. Rather than trying

to detect and prevent an attack as most IDSs would, the ITUA project attempts to

outsmart an intruder who is himself trying to outsmart the system. Hence, if the

system manages to be unpredictable enough to befuddle even the most adept hacker,

then it has a significant advantage in that it will be able to adapt and rebuild the

system while an intruder's unsuspecting attack is thwarted.

Unfortunately, there are a few major assumptions upon which the ITUA project

relies that could render the project unsuccessful. The most important of these as-

sumptions is that "only staged attacks are 'covered."' A staged attack is one in which

28

the intruder attacks certain outer security layers before attempting to break into the

core services. This could be for any number of reasons - i.e. to learn more about

the system's security configuration, or to try and compromise several less important

machines to later launch an organized attack on a more significant one. This assump-

tion is necessary because it gives the system time to respond and adapt to an attack.

The problem with this assumption is that if an intruder were to launch an arbitrary

attack on the system that did not adhere to this idea of "staged attacks," it might

have a good chance at compromising the system before it had time to react. This

would effectively render the ITUA system useless since, by the time an attack was

detected, it would almost certainly be too late to reverse the attack's ravaging effects

[23].

2.3.5 Building Adaptive and Agile Applications Using Intru-

sion Detection and Response

This project attempts to improve upon existing IDS technology by increasing the

amount of communication performed between the various IDS components protecting

a system and also between the IDS components and the applications which they seek

to protect. This is made possible by using a custom framework called the Quality

Objects framework, or QuO for short. The following are just a few of the advantages

of using the QuO framework for intrusion detection [22]:

0 "The development of intrusion-and-security aware applications" - QuO pro-

vides a framework upon which security aware applications can be built. As a

result, each application becomes a mini-IDS of sorts and can aid in the intrusion

detection process by reporting back suspicious activity to the actual IDS. Fur-

thermore, QuO includes support for inserting custom audit mechanisms that

would effectively allow applications to track not only the performance of secu-

rity, but also attacks as they occur. This information would then prove useful

in improving the system to prevent future attacks.

* "The development of survivable applications" - Since each application is "secu-

29

rity aware" it would be easier to integrate survivability into these applications.

Hence, if a service were compromised, actions could be taken to mitigate the

effects of the attack, to contain its effects, or eliminate them altogether by

adapting the system to the malicious changes.

0 "Integration and interfacing of multiple IDSs at the application level" - It is

clearly possible for intrusions to be detected at a certain level. Furthermore

there are a number of intrusion detection systems that are both commercially

and freely available. However, it is the tendency for each of these systems

to be strongest in detecting only certain kinds of attacks. Hence, if multiple

intrusion detection systems were able to work in conjunction with one another,

the number of intrusions that could be caught would increase significantly. The

QuO framework allows different IDSs to communicate with each other, thus

improving the range of "covered" attacks and resulting in a more secure system.

0 "Integration of IDSs and other resource managers" - By integrating the IDSs

and other resource managers it would be possibly to tighten the security within

a system. This is because each of the resource managers (i.e. security pol-

icy manager, dependability manager) operates at a lower system level whereas

the IDS might perform certain higher-level tasks. Thus, if an intrusion were

detected at the high-level of an IDS, it might be able to effectively warn the

lower-level resource manager allowing it to respond in such a way as to prevent

the attack from causing further damage.

The functionality provided by the QuO framework is this system's clearest advan-

tage. By tying each of the components in the system (IDS, applications) so closely

together, it creates a tighter-knit system overall and thus makes it more difficult for

compromises to be made since, in essence, every suspicious action is being watched

and communicated across the board [22].

The clearest disadvantage of this project is that it adds significantly to its complex-

ity in that all of the applications and IDSs must work in conjunction with one another.

Furthermore since all of the applications and IDSs are based on the QuO framework,

30

an improper design could lead to a set of very difficult upgrade and maintenance

procedures. Likewise, since every component works within the QuO framework and

is so tightly bound to the rest of the system, if an IDS or application were successfully

compromised, it might be much easier for this attack to wreak further havoc within

the system.

The above examples are just a few of the projects currently being conducted

in the field of anti-intrusion and intrusion tolerance. The next chapter on design,

will contain a detailed analysis of some of the similarities and differences between the

KARMA system and many of the IDSs that are either in use or in development today.

In addition, an argument will be made to describe why KARMA would be effective

as an intrusion detection system and illustrate some of its potential applications.

31

Chapter 3

Design Approach

3.1 KARMA System Overview

The KARMA system provides intrusion tolerance for "service" sites that support

multiple external clients with web-based access to a large amount of information, and

database/application services. It relies on a small number of trusted components to

protect the functionality of a large number of untrusted components. To be untrusted

simply means that these components should not be subject to any testing or analysis

for security beyond that which is specified by the manufacturer. Furthermore, no

security-enhancements are made to any of the existing operating systems or server

applications that these untrusted components will use. In other words, all of the

untrusted components will be using commercial-off-the-shelf, i.e. COTS, operating

systems and server applications. The objective of the KARMA system is to protect

the confidentiality and integrity of such a "service" site's information in the pres-

ence of stealthy attacks seeking to take advantage of vulnerabilities in the untrusted

components of our system.

3.1.1 Assumptions

The KARMA system offers protection for "service" site under the assumption that

attacks on the integrity or confidentiality of data require that an adversary gain a

32

certain level of control on the relevant system, not merely take it out of service (i.e.

the system is not designed to stop denial-of-service attacks). As a result, to execute

a particular exploit, the attacker needs to know the details of the operating system

and server software for the specific system that they are trying to divert. Currently,

there are a number of widely available tools in existence that could be used to probe

the platform over the network to determine what OS, architecture and web server

are being used on the target system. However, one of the strengths of the KARMA

system, that will later be discussed in greater detail, is its ability to mask the identities

of its untrusted components.

The second assumption is similar to the "staged" attack assumption proposed in

the ITUA project. In order to attack the integrity or confidentiality of data on the

"service" site, it is assumed that an intruder must not only gain a certain level of

control on the relevant system, but must also be able to maintain a connection with

that system once it has been compromised in order to pass along further instructions

to complete the attack. This is to say that an attack cannot be completed in a single

step, but rather a typical attack will consist of a set of sequential operations that

must occur in order on a single untrusted component. This assumption allows the

system to effectively divert, or at the very least delay an attack by not performing all

operations on a single untrusted component.

3.1.2 Phase One KARMA System

The KARMA development effort was conducted in two phases. The initial phase of

the system is shown in Figure-3-1.

In the phase one KARMA system (KARMA-1), a trusted gateway disperses in-

coming requests to multiple untrusted components, called origin servers, providing

web access to a large amount of information, and database/application services. In

this phase, using only dispersion, the system's primary mechanism for defense is to

"confuse" a potential attacker sufficiently by scattering all incoming transactions so

that he/she will be unable to predict the system's behavior and exploit a known vul-

nerability for one of the untrusted components. Essentially, this is an application of

33

Configuration Manager

Origin Server 1

S Gateway - rgnSre -- Database

O[rigin Se ryer 3--

Legend
? - random dis

selects a sir
Origin Server X >- one possibl

Figure 3-1: The Phase One KARMA System

persion. Gateway
ngle outbound path
e transaction path

the "staged attack" assumption. By effectively dispersing all incoming transactions

such that no two are consecutively sent to the same origin server, it is believed that

the system can thwart an attack by creating a discontinuity in the flow of commands

to a single machine. In the case that an attacker is able to successfully compromise an

origin server, the KARMA-1 system employs a second level of defense. This secondary

defense is a network-based intrusion detection component known as the configuration

manager. Although this component is itself network-based, it relies upon a number

of host-based modules, residing on each of the individual origin servers, to report

back to it with important host-level information. For example, a host-based module

might be responsible for monitoring the set of scripts that are provided by an origin

server. If any of these scripts is modified, it can then report this change back to the

configuration manager.

3.1.3 Phase Two KARMA System

The second phase KARMA system (KARMA-2) builds upon the KARMA-1 system

by inheriting a number of important concepts from the field of fault-tolerant comput-

ing - masking, redundancy and dispersion. These concepts are defined below:

9 Masking - "Fault masking is a structural redundancy technique that completely

masks faults within a set of redundant modules. A number of identical modules

execute the same functions, and their outputs are voted to remove errors created

34

)a Origin Server 1 --

Origin Server 2
Transaction DB

"?N Mediator
X 3_ Origin Server3 -)

Legend
? - random dispersion. Gateway

selects a single outbound path
Origin Server X - > - one possible transaction path

x3 - TMR. Gateway triplicates all
incoming transactions

Figure 3-2: The Phase Two KARMA System

by a faulty module. Triple module redundancy (TMR) is a commonly used form

of fault masking in which the circuitry is triplicated and voted." [14]

" Dispersion - refers to the distribution of tasks to enhance the performance of

a system. In the KARMA system, dispersion refers to the way that incoming

transactions are sent to the various origin servers to improve the system's ability

to detect and survive an attack.

" Redundancy - a technique in which multiple copies of information, data, and

application services are maintained. The advantage of using redundancy is that

it eliminates a single failure point for the system in regard to intrusion. In order

to gain control of the entire system, each redundant copy, or at least a majority,

must be compromised.

The KARMA-2 system explores the use of redundancy, masking and dispersion to

enhance its ability to detect intrusions in real-time. Like the phase one system, the

trusted gateway is responsible for taking incoming transactions and dispersing them

to multiple origin servers at a time. However, instead of dispersing the original trans-

action to just a single server, the KARMA-2 system triplicates each of its incoming

requests. Each copy of the original transactions is then dispersed to one of the origin

servers.

35

As each transaction is received by an origin server, it may encounter a script that

requires access to the database. If the action being performed is a database query,

this query will then be forwarded to a transaction mediator that is responsible for

handling the queries from all of the collective origin servers. Hence, a single incoming

transaction at the gateway would result in a set of triplicated web requests that, given

the nature of the requests, might in turn cause three separate database queries to be

sent to the trusted transaction mediator.

Upon receiving all three of the triplicated database queries, the transaction me-

diator can then initiate a round of voting on the queries to determine whether the

query should be passed on to the database or an error response should be sent back

to the origin servers. If voting passes and the query is forwarded to the database

server, once the database server has processed the query and returned its results,

the mediator can then opt to vote on the results as well. If both voting stages are

completed successfully, each of the three origin servers will then receive a copy of

result from the database, via the transaction mediator, and can return a response to

the trusted gateway.

Finally, the trusted gateway, can examine the associated responses to its origi-

nal, triplicated requests and following another possible round of voting on the web

responses, will return the appropriate response to the client.

3.1.4 Required Components

Up until now, a number of components in the KARMA system have been referenced

without being clearly defined. In the following section, a detailed description will be

given for the three trusted components of the KARMA system and their specific roles

in the detection of possible compromises to the system. These trusted components

are the gateway, the configuration manager, and the transaction mediator.

36

Gateway

The gateway is a trusted component that acts as the sole interface between the

KARMA system and the outside world. It is responsible for two functions that con-

tribute greatly to the overall security of the system. The first function of the gateway

is to conceal its own operating system (OS) fingerprint as well as the fingerprints

and real IP addresses of the servers behind it. This forces the attacker to take extra

measures to determine the character of the OS, or to mount a blind attack on the

system for a variety of OSs. In either case, this additional activity serves to reduce

the stealthiness of the attack.

The second function of the gateway, as was shown in the KARMA-1 system, is to

provide a trusted proxy that disperses transactions from each client across the set of

redundant origin servers. Because the attacker cannot predict what platform, OS, or

web server will be used to handle the transaction, he cannot maintain a controlled

dialog with any particular platform. In the best case, an adversary would have to

successfully land, over time, the proper sequence of transactions on one particular

server in order to exploit the system. Once again, this would most likely require

suspicious activity that would further reduce the probability of success for such an

attack.

Configuration Manager

The configuration manager is a trusted component that never interacts directly with

a transaction. Unlike the gateway and the Mediator, it cannot detect compromises in

real-time, but rather, detects them over a longer period of time, i.e. dormant attacks

set to be triggered at a later time. As was mentioned earlier, the configuration

manager plays its most significant role in the first phase of the system, without

redundant transactions. Its importance is somewhat diminished in the second phase

of development, due to the level of real-time error-checking, however, it is still used

and relied upon as a long-term means of detecting a compromise.

The configuration manager's primary responsibility is to periodically check the

37

configuration of the origin servers to detect any attack activity. As a result, an

attacker has a limited amount of time to complete an exploit and remove any resid-

ual traces of that exploit before the configuration manager detects it. When such

an anomaly is detected, the infected server must be taken offline and repaired to

a valid configuration state. The configuration assessment on each origin server is

performed via a configuration management agent, the host-based module, that pe-

riodically checks the configuration of its server at different cycles and reports any

discrepancies to the configuration manager. The agent is implemented such that it

can resist an attack long enough to report this anomaly to the configuration manager.

Transaction Mediator

The transaction mediator provides a trusted proxy for transactions between the ori-

gin servers - or more precisely, the set of web scripts running on those servers - and

the back-end database. In the KARMA-1 system, the transaction mediator is solely

responsible for logging the activity from each of the web servers to the databases. In

the case that the configuration manager detects a compromised origin server, these

logs can then be used to roll back the database to the last known, healthy state. Log-

ging, however, is not considered necessary when pursuing the KARMA-2 redundant

approach because in most cases, voting should preserve the integrity of the database.

The primary function of the Mediator in the KARMA-2 system is to provide

a reliable mechanism to vote on the triplicated, dispersed requests going from the

origin servers to the database. The most difficult challenge in this is to implement

such a voting system without requiring any significant changes to the web servers and

scripts. This is important because if the mediator requires the COTS components to

be modified significantly, then it would clearly make the KARMA system less portable

as it would lead to a complicated and unwieldy installation process.

38

3.2 Architectural Analysis

In designing the KARMA system, one of the primary motivations was to create an

intrusion detection system that would borrow the ideas of masking, redundancy and

dispersion from the study of fault-tolerant computing. Each of these factors played

an important part in the architectural design of the system and contributed to a final

specification upon which a simulation KARMA system was built. In addition to the

integration of these concepts from fault-tolerant computing, the design process also

involved analysis of the advantages and disadvantages of creating a host-based IDS,

network-based IDS or a combination of both.

Given the basic framework of the system, there were a number of different ar-

chitectural designs that could have been used for this system by varying the set of

parameters defined below:

e Voting - The KARMA system utilizes a democratic (i.e. "majority rules")

system of voting. As was mentioned earlier, each incoming transaction is first

triplicated and then sent to three different origin servers by the gateway. As

a result, there are three different places along the transactionary path where

voting could take place. These three locations will be referred to as follows:

1. Mj, - this refers to voting that is performed by the transaction mediator.

It takes place as the transactions (queries) are inbound, or, going from the

origin servers to the database.

2. Mst - this stage of voting is conducted by the Transaction Mediator as

transactions are headed outbound (i.e. results from a database query).

3. G0st - the final stage of voting is performed by the gateway as the collective

responses from the origin servers are being merged and delivered outbound

to the external client.

* Redundant Databases - There exist as many copies of the database as origin

servers to which a single transaction is delivered. For example in a triplicated

network, there would be three redundant databases.

39

" Dispersion - A sequence of transactions from a given client are sent to different

servers or different sets of servers.

" Operating System Variation - The use of different operating systems for each

origin server.

3.2.1 Narrowing The Parameters

By varying each of these parameters, it is possible to derive quite a number of pos-

sible configurations for the KARMA system. However, some of these can be easily

eliminated by making certain educated assumptions about the specific parameters.

For the remainder of the design analysis, prospective configurations will be analyzed

with respect to KARMA-2 since it is the more fully-featured of the two development

phases.

OS Variation

The first parameter that can be eliminated is OS variation. Consider the case of

a system in which all of the origin servers shared the exact same operating system

and server applications. Although the gateway is equipped with fingerprint masking

capabilities, given an intruder with enough time and persistence, there would be a

high probability that the intruder would eventually be able to collect a substantial

amount of information regarding the configuration of the system. Upon doing so, the

intruder could then launch a known-vulnerability attack on the system. Though an

intelligent algorithm for dispersing transactions might help to delay the compromise

of the system, with enough effort and stealth, an intruder could very possibly gain

control of one if not more of the origin servers. Furthermore, the intruder would be

able to do this by utilizing only a single attack. Hence, it seems clear that by varying

the OSs on the origin servers, the KARMA system would gain a significant advantage

in security.

The only scenario in which a system of uniform OSs might have an advantage over

a system with varied OSs is a case in which the configuration manager (CM) needed

40

to perform a side-by-side analysis of two origin servers' configurations to detect any

anomalous changes. If the system consisted of uniform OSs running identical software,

it would be easier to detect any anomalies since nearly everything on each system

would have to be exactly the same. However, given that it is possible to develop a

CM that could efficiently compare the configurations of two origin servers running

different operating systems, it can easily be seen that the uniform OS architecture

offers little to no advantage over one with varied OSs. As a result, it will be assumed

that the KARMA system always uses origin servers running on a variety of platforms

and operating systems.

Voting at G0 ,,

The second parameter that can safely be assumed as always true is the gateway voting

on outbound responses. It seems reasonable to assume that voting should always be

performed at this stage because the gateway is the last possible place where the ill-

effects of an intrusion can be caught. The only argument for not employing voting

at the gateway would be if it were to have a severely negative impact on the overall

performance of the system.

Dispersion

Lastly, an assumption can be made that dispersion will always be used. Based on

the "staged attack" assumption that was made earlier, if every transaction is always

forwarded to the same machine or set of machines, it would not be long before an

intruder, with some knowledge of the system and its parts, could execute a known-

vulnerability attack on the system and compromise its origin servers. It is interesting

to note though that, in conjunction with the assumption about OS variations, a re-

sulting system without dispersion should still fare relatively well. Given that voting

is implemented properly it would appear that even if one of the origin servers were

to be successfully compromised by a known attack, the attack would likely have little

effect on another origin server running a different OS and software. Therefore, if the

ultimate goal of the attack was to corrupt the data going into or out of the system,

41

a democratic voting policy would find the compromised server to yield anomalous

results and could thus prevent the attack from committing any further, more perma-

nent damage. Still, this example does not indicate any advantages to using a system

without dispersion so it is assumed that dispersion will always be implemented.

Having narrowed down the set of parameters to two possible voting stages and

the use of redundant databases, there are just a handful of design configurations left

to be examined. Table-3.1, below, illustrates just a few of the possible designs and

gives a brief overview of the pros and cons of using each of the respective systems:

3.3 Detailed Design Analysis

Building upon the analysis from Table 1, the following section will present a more

detailed analysis of the advantages and disadvantages for each of the remaining design

parameters. The section will also discuss the issues that arise as a result of imple-

menting solutions to each of the proposed designs. The remaining design parameters

and their subcategories are as follows:

* Voting vs. Non-Voting

- Min

- Mout

- Gout

* Redundant Databases vs. Single Database

3.3.1 Non-Voting

In the phase one KARMA system, it is not possible to employ voting since there are

no redundant transactions taking place. Hence, this system would fall into the class of

non-voting. The most noticeable advantage of a non-voting system is that it is simple

and does not require the processing time that a voting system would. Depending on

42

Table 3.1: Brief Architectural Analysis

Red. DB Mi. Mut Pros Cons
- no mediator needed - lack of voting makes it
- fast, no tagging or media- harder to detect compromise
tor voting required and corruption

- need an effective method to
- Mi, voting makes it easier correlate transactions from
to detect compromised ori- different sets (tagging)
gin servers - Mout voting can - redundant db adds com-

+ + + detect a corrupted database, plexity (requires fault toler-
and provides secondary de- ance, synchronization, con-
fense in addition to Gout vot- sistency checking) - slower,
ing. because of all of the interme-

diary voting stages
- faster than voting at all - without Mout can't tell

stages, but enough to detect whether the discrepancy
+ + - compromises that might not comes from a corrupted

be caught by Gout database or a compromised

- lack of Min voting al-
lows compromised server to
corrupt the database before
it gets detected. So even
though, it will eventually
get caught, it requires the
database to be taken offline

- like the above case, vot- and rolled back (potentially
+ + ± ing at MOut can detect those time-consuming)

attacks that might not be - also difficult to tell whether
caught by the gateway discrepancy is from cor-

rupted db or compromised
server
- potential for a very slow
voting algorithm due to the
sheer amount of data that
could be returned by the
database

without mediator voting,

+ - faster due to the lack of me- many bad things can happen
diator voting before they are detected.

This will take time to repair.

43

Red. DB Min Mst Pros Cons
- I voting will detect
attempts to corrupt the - if database becomes cor-
database rupted, requires a full roll-

+ - - faster, due to the lack of back with no backup db
voting at M , while not los- - need to implement tagging
ing any major functionality,
assuming correct Mi, voting

the speed of the voting algorithm and the number of voting stages, this advantage is

one that could turn out to be significant.

3.3.2 Voting

Voting introduces the ability to compare redundant transactions generated within

the system. Because multiple copies of every incoming transaction are randomly

dispersed to the origin servers, we can then compare the results of a transaction at

various stages along the redundant path (i.e. from the origin servers to the mediator,

from the database to the mediator, from the origin server to the gateway) using a

"democratic" voting system. The advantage to having a voting enabled system is

that it makes it much easier to detect compromised origin servers. Assuming that

an intruder's primary intent is to corrupt the database or cause the client to receive

corrupted data, it is clear that voting would help to detect and prevent these attacks

in almost all circumstances.

3.3.3 Voting at Min

With a single database, voting at the transaction mediator on inbound database

requests is required. However, with redundant databases, this vote is optional. The

reason for this is that in a single database system, because there is only one copy of

the database, if the data were to become corrupted, then a time-consuming rollback

process would have to be executed to recover the corrupted data. Furthermore, this

would require the entire system to be taken offline while the single database was

44

being restored. In a redundant database system, this would not be as big a problem

because each of the triplicated requests could simply be passed to one of the redundant

databases. Then, even if one of the databases were to become corrupted, an outbound

vote on the database results would most likely catch the error and would be able to

rollback the corrupted database. In addition, though this would also require one of

the databases to be taken offline, the transaction mediator could then be instructed

to divert traffic from the offline database to one of the live ones until it was again

made ready to receive further requests from the origin servers.

The most significant advantage to not having voting at M, is that it would greatly

simplify the amount of analysis required to secure the system. It would eliminate the

two most complex issues of voting at the Mediator, namely syntactic equivalence

and tagging. Also, by eliminating these two issues, rather than having to prevent

attacks, the KARMA system would be reduced to a system that could survive attacks.

However, this in itself is no trivial problem. As a result, in most cases, voting at the

Mediator on inbound transactions seems to be a reasonable assumption.

It was previously mentioned that syntactic equivalence and tagging are two of

the most complex issues of voting at the Mediator. These two issues are analyzed in

greater detail below.

Syntactic Equivalence

The syntactic equivalence problem refers to the issue of voting on requests that are

syntactically different but semantically equivalent (i.e. two different requests that

may not be word for word identical, but yield the same results). On the mediator,

the syntactic equivalence problem deals with voting on the database requests - Struc-

tured Query Language (SQL) commands - sent by the origin servers to the database.

Given that these queries could have been generated by different scripts running on a

number of different web servers on different operating systems, it is quite possible that

the queries will be syntactically different but semantically equivalent. For instance, if

the scripts were implemented in two different scripting languages by two separate indi-

viduals with just a functional specification of what the generated page should display,

45

there would be no guarantees as to the order or syntax of the queries contained in the

scripts, even if they were to return identical looking responses. Hence, to minimize

the number of false alarms incurred by the voting system, either a highly intelligent

voting algorithm must be designed, or additional constraints must be placed on how

scripts making database requests are written.

In designing the voting algorithm for the mediator, there are four "special cases"

to consider. These are:

" Out of order arguments - two queries that call the same SQL command, but

differ only in the order of their arguments

" Out of order queries - a set of queries that produce the same results after being

processed by their respective scripts, but are not called in the same order (i.e.

Script A - executes queries q1, q2, q3. Script B - executes queries q2, qi, q3.

The resulting pages are identical.).

* Variable query counts - One script uses 3 queries to generate a page while an-

other script requires only 2. This can be a result of nested SQL statements (i.e.

insert into ratings select user-id, title, movie-id from movies where title='E.T.')

vs. $id = select movie-id from movies where name='E.T.' + insert into ratings

values ('1', 'E.T.', '$id')).

" Functionally equivalent query sequences - two scripts might have a set of com-

plete different queries that produce the same results. For example a join on

tables A and B followed by a join on table C, might have the same effect as a

join on tables A and C followed by a join on table B.

Out of Order Arguments Given the number of possible SQL commands that

would need to be voted on and the specific number of arguments that each command

could take, it is helpful to first examine the full set of SQL commands and determine

if there exists a smaller subset that would provide a more reasonable field for analysis.

The first assumption that can be made to narrow down the number of SQL com-

mands is that queries that structurally alter the database or grant permissions to

46

do so must be word for word identical. Included among such queries are those that

attempt to create new tables, alter existing tables, or drop them altogether. There

are two reasons for applying this constraint to the system. The first is that such

commands are "high risk" in that they could very easily be used to corrupt or even

destroy all of the information stored in the database. Hence, the likelihood of encoun-

tering many of these "high risk" commands for voting is not very high to begin with.

Given that any person employing the KARMA system would invariably have security

at the top of their list of priorities, there would be a fairly low probability that they

would allow web (origin server) administration of their database. It is more likely

that the structural administration of the database would be limited to a select few

individuals with very high access privileges who would only administer the database

from a secure location (i.e. inside the firewall, or from the physical machine itself).

However, to maintain the flexibility of the system, rather than forbidding the use of

such "high risk" commands altogether, the system could employ the strictest level of

voting possible, namely, pure syntactical equivalence. The second reason for applying

this constraint to the system is simply that most of the commands that structurally

alter the database are highly complex and can take an almost unbounded number

of arguments. As a result, an algorithm to compare these queries would most likely

be very computationally intensive and would thus degrade the overall performance of

the system.

Having assumed that all structurally altering or privileged SQL commands must

be syntactically equivalent, the number of SQL commands is greatly reduced to four.

The functional description of each of these commands is given below (In the following

notation, [] denotes an optional argument, while I denotes a choice, equivalent to OR)

[5]:

* SELECT [ALL I DISTINCT [ON (expression [, ...])]]

* I expression [AS output-name] [, ...]

[FROM from-item [, ...]]

[WHERE condition]

[GROUP BY expression [, ...]]

47

HAVING condition [, ...]

{ UNION I INTERSECT I EXCEPT } [ALL] select]

ORDER BY expression [ASC I DESC I USING operator]

FOR UPDATE [OF table-name [, ...]]]

LIMIT { count I ALL }]

OFFSET start]

* INSERT INTO table [(column [. ..])]

{ DEFAULT VALUES I VALUES ({ expression

...]) I SELECT query }

I DEFAULT } [,

* DELETE FROM [ONLY] table [WHERE condition]

* UPDATE [ONLY I table SET col = expression [, ...]

[WHERE condition]

From the definitions above, it is obvious that SELECT is the most complicated

query of the four remaining SQL commands. It is interesting to note, however, that

the SELECT statement makes no changes to the database, but rather can be used

only to read from it. As a result, it is possible that for the SELECT statement the

system could remain uncompromised even without voting at the mediator since its

potential to corrupt the system is low to non-existent. This can be further justified

by the following set of arguments. First, it must be noted that in most cases only a

single database query would be sent to the database from the initial three. This is

because the system would not want to execute an insertion into the database three

times as a result of the redundant origin server requests. However, the SELECT

statement introduces a unique alternative to all other SQL commands based on the

initial observation that it makes no changes to the database. Namely, all three of the

redundant queries can be sent to the database without causing any significant threat

to the performance of the system. Using this new information, given two SELECT

statements that are syntactically different, one of two possible scenarios could occur

48

without voting at the mediator. Either the statements were crafted by two different

individuals (on different origin servers) but yield the same response pages - should

pass voting at the gateway with no problems - or one of the statements was altered

by an intruder resulting in a corrupted response page that could easily be detected by

voting at the gateway. Clearly, neither of the scenarios appear to be very harmful, as

neither one would result in any permanent damage to the system nor return falsified

information to the user.

Still, it would be helpful to investigate what an equivalence algorithm for the

SELECT command might entail. The first thing to notice is that a number of the

lowercase expressions (variables) are repeated several times throughout the entire

SELECT command. So the algorithm would benefit greatly, if functions could be

written for each distinct variable type. These functions could then be reused for every

expected occurrence of a specific variable. In other words, an equivalence function

for the variable type expression might be defined as follows (pseudocode):

bool expression::compare (expression expr) {

each expression object (THIS, expr) would be in the form: a, b, c\ldots

parse THIS -- the current expression object -- and expr into an

array of strings by pulling out the comma-delimited values

verify that the size of the arrays for THIS and expr are identical

and that each of the array's values is unique

for each string in the array for THIS

if the array for expr contains that string

loop

otherwise, return false

end for

return true

}

By defining such a function, comparing equivalence for a SELECT statement

would be simplified to looking for the keywords, ALL, DISTINCT, FROM,...,FOR

49

UPDATE OF, and storing each of the values following these keywords into their own

variable type. The equivalence method for this SQL object would then consist of

an iterative execution of its member variables' equivalence functions. For example,

given the equivalence function for the variable type expression above, the equivalence

algorithm for SELECT might appear as follows:

bool select-obj::compare(select-obj sel) {

from the definition of SELECT, we know that the "main statement,"

GROUP BY and ORDER BY will all be of the variable type, expression.

mainexpr->compare(sel->mainexpr);

group-by _expr->compare (sel->group-by _expr);

order.by-expr->compare(sel->order-by-expr);

}

What this essentially points to is a very modular structure for each SQL command.

From this conclusion, the next step in designing an equivalence algorithm would be to

model the SQL command as an object containing members of various SQL variable

types. If this could be done effectively (i.e. modeling a SQL command and its sub-

expressions as classes in C++), then testing equivalence for a SQL command would

be as simple as parsing it into the object and then comparing the values of its member

variables.

To further investigate the possibility of creating these SQL objects, it might be

beneficial to analyze each variable and its possible values to determine whether map-

ping it to standard C types would prove to be a feasible task. An analysis of each

variable type, its possible values and their "mappability" is described in Table-3.2.

Given this mappable representation, designing a SQL object would then be straight-

forward and an equivalence test could be programmed with very little difficulty. This

50

Table 3.2: SQL Variable Types

Variable Type

expression

output-name

Possible Values
A table's column name
or expression

Specified another name
for an output column

Mappability

Easily mapped as a char *.

However, since most expressions
would appear in a list, this

might be better represented as

an array of strings, or char **.

This could be mapped as a

string (char *) but it would
most likely be stored along with
its associated expression, i.e.
"movie-title as title" could be
stored as a single expression.

from-item A table, sub-SELECT, Each table name, sub-SELECT
or JOIN statement statement, JOIN statement

could be stored as a string,
resulting in an array of strings
(char **).

condition A boolean expression in Mappable as an array of strings,
the form of "expr cond consisting of expressions and
expr," or "log-op expr." conditionals, however, to deter-

mine the equivalence of two con-
ditional clauses might prove to
be quite difficult later on, in
that a great deal of calculation
and knowledge of logical equiva-
lence would be required (i.e. not
(p and q) = not p or not q).
Hence, a constraint might need
to be set that where clauses
need to be strictly equivalent
and they could then be stored
as a single string (char *).

select Another select statement This could be easily mapped
given that a valid representation
for a select object had been de-
fined

operator An ordering operator This could be mapped as a
(i.e. <, >) string (char *).

table-name The name of an existing
table or view

Mappable as a string (char *).

51

Variable Type Possible Values Mappability
count Maximum number of Can be mapped as an integer

rows to return (int).
start Number of rows to skip Mappable as an integer (int).

before returning values

can best be illustrated by the following example. Since the SELECT statement is

quite complex, the simpler DELETE statement will be used. The DELETE com-

mand could be modeled as an object in the following manner (C++ pseudo code):

struct deleteobj {

bool only;

char *tablename;

char *where;

};

A corresponding equivalence test would then be implemented as follows:

bool test-equivalence(delete-obj *dol, delete-obj *do2) {

if (dol->only != do2->only) {

return false;

} else if (strcmp(dol->tablename, do2->tablename) != 0) {

return false;

} else if (strcmp(dol->where, do2->where) != 0) {

return false;

}

return true;

}

Not every equivalence test would be this straightforward, nor would every SQL

command be best represented using the mappings given in Table-3.2. For example, the

expressions and values in an INSERT command would probably be better represented

as a set of (key, value) pairs in a hash table, rather than as arrays of strings. This

52

would enable the equivalence algorithm to then simply look up keys and verify their

values rather than trying to determine a one-to-one mapping between the array indices

- since the keys themselves might appear out of order in the two original queries.

Recognizing though, that there might be differences in the representation of individual

objects, it is relatively clear that, by successfully modeling a SQL query as an object,

the problem of out of order objects could be solved with relative ease.

Out of Order Queries Out of order queries deals with the case in which one

developer might call a set of queries in the order A-B-C, while another developer

might call them in the order B-A-C. One algorithm that might work to effectively

solve this voting problem would be to cache the database requests until the two

scripts had sent all of their queries to the mediator. Then, once all of the queries had

been submitted, the mediator could perform a matching between two origin servers'

requests to determine if they had called the same set of queries, but in a different

order. There are a number of problems with this solution though. First of all, there

would be no means for the mediator to determine when a script was finished sending

all of its queries to the database. Secondly, it might be the case that a script, making

a set of database queries, would need to use the data retrieved for one query before

it could go on to making the next request. As a result, if the system were to wait to

cache up all of the requests for a particular script before voting, it would effectively go

into a deadlock situation because each of the scripts would wind up waiting for its first

query to execute, while the mediator would be waiting for the script to move on to its

next query. Hence, with the exception of the mediator actually looking up the script's

source on the origin servers, or maintaining a list of exception pages, it would not be

possible for voting to occur over a range of queries rather than just on a one-to-one

basis. Without a hefty set of constraints, for example, requiring that all scripts make

all database requests at the beginning of a script, with no cross-dependencies, there

is no clear solution to the problem of implementing an equivalence algorithm for out

of order queries. Rather, it would seem the system would need to be constrained in

so far as requiring queries to be performed in the same order across all origin servers.

53

Variable Query Counts For the same reasons as out of order queries, there is no

feasible solution to comparing a set of queries across two different origin servers in

real-time, especially given that the number of queries differs.

Functionally Equivalent Query Sequences Finally, the problem of functionally

equivalent query sequences also falls into the category of voting across origin servers

on a range of database requests. In real-time, there would be no means of acquiring

all of the requests before initiating a voting sequence without either stalling an entire

set of scripts, or forcing the queries to be independent of one another and then to be

called in sequence. Even if such a constraint were placed on the system, by virtue

of the sequential nature of most scripting languages, the script would not be able to

proceed to the next query without receiving a response back from the database (in

our case, the mediator). Hence, such a constraint would most likely require further

modification of the scripting language's source code. It seems that a better solution

would be to simply outline the set of SQL calls that would need to be made for a

particular script and to make them uniform in order and in purpose across all of the

origin servers.

Fully Constrained SQL Queries Up until now, consideration has only been given

to scripts containing unconstrained or partially constrained SQL queries. However,

one might wonder if implementing such an equivalence algorithm for voting on SQL

queries wouldn't just add more complexity to the system. It would seem that using a

fully constrained set of queries might provide the same security benefits without the

extra performance cost of creating SQL objects and determining their equivalence in

that manner. Thus far, the most important reason why emphasis has been placed

on limiting the number of constraints in the system is that diversity often enhances

security. This is evidenced by the use of dispersion, varied OSs, and varied web

server software. However, the security gained in diversity with respect to queries

would mostly likely come from changes to the scripting language used, or to the

scripts themselves. The wording of individual SQL queries within a script would

54

have no real detrimental effect on the level of security, but the constraint might

simply come as a nuisance to an independent developer writing the scripts for one

of the origin servers. However, to another developer, the same constraint might be

seen as a blessing in that, SQL queries can often grow to be quite complex, as was

illustrated by the description of the SELECT statement above. Hence, it seems that

developing a system with fully constrained SQL queries might also be a viable choice

as a solution to the syntactic equivalence problem.

In summary, the syntactic equivalence problem is very difficult to solve completely.

However, there are a number of possible solutions and steps that can be taken to allow

voting to occur with a minimal number of false alarms, while not requiring all scripts

to be fully identical.

Tagging

Tagging is a function that is mandatory if voting is to be used at the mediator on

inbound database requests. Upon receiving an incoming transaction, the gateway

triplicates each request and then sends it to three different origin servers. Each of

these origin servers could then call up a script that might make a number of requests

to the database. The question that arises is how to correlate those requests at the

mediator when hundreds of requests might be coming in per second from any number

of different origin servers. This calls for a method of transparently labeling each

database request such that the mediator will be able to identify it as belonging to a

unique set of requests. The database could then wait for its triplicated counterparts

to arrive before voting and, if successful, forward the final request to the database.

A proposed solution to this problem, utilizes the fact that the CGI interface, by

definition, takes all HTTP header lines from the client and then places them into

the environment with the prefix HTTP_ [3]. Hence, by adding a custom tag into the

list of header lines at the gateway, it would be possible to get a tag through to the

scripts without having to modify any of the software involved. Furthermore, given

that the scripts could spawn off a database query without starting up a new process,

a custom-made database driver manager installed on each origin server would then

55

be able to pull the tag from the environment without the script ever knowing. Once

the tag had been pulled fron the environment the driver manager could then send

this tag along with the original query to the transaction mediator, which would then

use the tag to uniquely identify this request along with its triplicated counterparts.

Having been presented with the arguments both for and against voting at the

mediator, it seems reasonable to say that voting on inbound transactions at the

mediator would provide greater security, while also not being so complex as to slow

down the entire system. In addition, though it was previously stated that voting would

be optional for a system with redundant databases, the increased gain in security

would most likely provide a better option than freely allowing the database to become

corrupted, requiring a timely and costly rollback procedure to be implemented as well.

3.3.4 Voting at M0,,

Voting at the mediator outbound is probably the most flexible of all the stages of

voting in that it has the least impact on the actual security of the system. Further-

more, it is only required if a redundant database is used. Assuming that voting at

the gateway outbound and the mediator inbound are in working order, it is clear that

incorrect transactions will never be sent out to the client or written to the database

- except for the case in which an intruder manages to plant three dormant attackers

on three separate origin servers that are programmed to fire up only when they are

simultaneously selected, allowing them to falsely pass all voting stages undetected.

As a result, voting at the mediator outbound proves to be solely a matter of con-

venience. It provides an advantage in that it makes it easier to determine, during a

failed vote, whether the corruption was a result of the database, or the origin servers.

Furthermore, if a single script requires multiple transactions with the database, or

makes various calls to other scripts, it may help to determine which portion of the

script, or script files was corrupted. In conclusion, voting at the mediator on re-

sponses being sent back to the origin servers seems to be unnecessary. Furthermore,

it is a luxury that would most likely turn out to be more costly than it is worth as

the size of the responses being sent back to the origin server can vary greatly, limited

56

only by the size of the database. If a simple bit-for-bit comparison was performed

on two different database responses to determine equivalence, it is not difficult to

imagine the negative effects that this outbound voting could potentially have on the

performance of the entire system.

3.3.5 Voting at Gout

Earlier an assumption was made that voting would always be used at the gateway on

outbound transactions. If voting at the gateway were not always used, it would be

possible for an intruder to compromise a server in such a way that only transactions

going out to the client would become corrupted. Then, the compromise would not

be detected by the mediator going inbound or outbound, and without voting at the

gateway, would be free to send out corrupted data completely undetected.

Like voting at the mediator on inbound transactions, voting on outbound trans-

actions also gives rise to a number of issues. The most significant of these issues is

again, syntactic equivalence.

Syntactic Equivalence

The syntactic equivalence problem for outbound transactions at the gateway (es-

sentially HTTP responses) is very similar to the syntactic equivalence problem for

database requests in that an algorithm must be determined to effectively vote on the

responses from three different origin servers that may vary slightly as a result of ar-

chitectural, web server, database, or programmer differences. Listed below, are some

of the most common discrepancies that might arise as a result of these differences:

1. Whitespace/Carriage Return - it is common for different architectures to use

different characters to denote a new line. Windows machines may use just a

'\n' character while it is more common for UNIX systems to use '\r\n'. In

addition, the whitespace problem refers to the fact that different script writers

might choose to space their documents differently, this could be the result of

tabbing, extra spaces, or even extra carriage returns.

57

2. Character Set - "Fundamentally, computers just deal with numbers. They store

letters and other characters by assigning a number for each one." Over time,

hundreds of different encoding systems to map numbers to characters. In ad-

dition, no single encoding has been large enough to capture the entire range of

possible characters. As a result, single languages alone have often required mul-

tiple encoding systems. Unfortunately, the sheer number of encoding systems

in use today has inevitably led to conflicts between the different encodings -

using the same number for two different characters, or vice versa. Furthermore,

this has created the need for servers to support many different encodings, and

oftentimes being able to map characters from one encoding to another. Today,

there is a new standard being developed called Unicode. "Unicode provides

a unique number for every character, no matter what the platform, no mat-

ter what the program, no matter what the language. The Unicode Standard

has been adopted by such industry leaders as Apple, HP, IBM, JustSystem,

Microsoft, Oracle, SAP, Sun, Sybase, Unisys and many others." [18]

3. Numerical Rounding - It is possible that two different scripting languages, or

in the case of redundant database, two different database servers might treat

numbers differently. For example, an MySQL database might store the value

of ".999..." as "1.0," whereas an Oracle database might store it as the actual

number ".999..."

4. Case-Sensitivity - This would occur simply if two different programmers had

written a set of scripts using different case formatting for their generated HTML

pages. One developer might have used all upper-case tags, while another might

have preferred to use lower-case ones.

Whitespace/Carriage Return An equivalence algorithm could be designed to

solve this problem simply by ignoring repeated whitespaces and carriage returns.

Instead, a set of connected whitespaces and carriage returns could be defined as a

chunk, thus yielding, characters in a document separated by chunks rather than in-

58

dividual whitespaces and carriage returns. So "The Draper Laboratory KARMA

System(carriage return)," would be treated as "The(chunk)Draper(chunk)Labo-

ratory(chunk)KARMA(chunk)Systern.(chunk)" However, it is important to note

that some of these whitespaces might occur inside string values, i.e. (""), where they

should not be ignored. For example, a page with a submit button with a value of

"Push Here" should not be equivalent to a page with a submit button labeled "PushH

ere." By utilizing this fairly simple algorithm, most cases of the whitespace/carriage

return problem would be effectively handled by the KARMA system.

Character Set Due to the sheer magnitude of character encoding systems that are

currently in use, it seems unlikely that an algorithm could be designed to handle vari-

ations in character sets produced by the web servers. However, for the purposes of the

KARMA system, we will consider a single encoding, namely the ISO-8859-1 (Western

European) character set. As of now, ISO-8859-1 has been the most commonly used

encoding system for the purposes of the web [19]. The reason for this is that, it is

supported directly by, or is at least fully compatible with, nearly all flavors of UNIX

and Windows. In addition, it is mostly compatible with the Macintosh, though a few

incompatibilities (fourteen known problematic characters) have been discovered over

time [2]. Due to the fact that the incompatibilities with Macintosh (Mac) are well-

known and identifiable, one possible solution to handle the equivalence of different

native character sets would be to ignore those characters that are known to be incom-

patible with the ISO-8859-1 standard. Alternatively, a mapping of characters could

be defined between the Mac's native storage code and the ISO-8859-1 standard. This

could then be used in the equivalence algorithm to compare the mapped values for

Mac's native characters to the ISO-8859-1 standard ones. The final possible solution

would be simply to apply a constraint that the set of conflicting characters (fourteen

known), would not be handled by the KARMA voting system.

It may seem like a huge shortcoming to only have considered the single ISO-8859-1

encoding, but with the recent adoption of the Unicode standard on many different

platforms, it seems likely that the character set problem will eventually become a

59

moot issue.

Numerical Rounding The numerical rounding equivalence problem is not as dif-

ficult as it would seem. An efficient algorithm could be designed to simply regard two

different numbers as equivalent, if they were close enough to one another, where close-

ness would be determined by a predefined value. Such an algorithm will be further

described in the implementation chapter to follow.

Case-Sensitivity Finally, the case-sensitivity problem can be dealt with by simply

allowing the equivalence algorithm to compare all alphabetic characters with both

cases. For example, "abCd" would be equivalent to "AbcD." From an implementation

standpoint, this could be done simply by setting every alphabetic character to its lower

case counterpart prior to performing the equivalence test.

Clearly, the above examples are just a few of the issues that might arise in the

voting on outbound HTML responses at the gateway. However, it seems that an

equivalence algorithm could be effectively designed (described in Chapter 4) to catch

most of the differences that might ordinarily arise, thus minimizing the number of

false alarms while also providing the KARMA system with a secure and effective

voting mechanism.

Voting Hashes

A final issue to be considered in the case of outbound voting at the gateway, is a

possible improvement in performance that could be gained by voting on hashes of the

pages rather than the actual pages themselves. Clearly, this mechanism would only

be useful for voting on static pages, since dynamic pages would be subject to change

upon every subsequent request.

The HTTP 1.1 specification describes an entity-header field of Content-MD5 that

is included in the HTTP response headers, depending on how the web server is con-

figured, and contains the value of an MD5 hash of the generated page. If we were to

cache the values of the MD5 hashes for all static pages (generated upon installation

60

and updated as changes are made), then upon receiving a request at the gateway for

one of those static pages, rather than triplicating the request, it would be possible

to make just a single request. Then, when a valid response was returned by the ori-

gin server, the gateway could simply extract the MD5 hash value from the response

header, and then compare this with the cached hash values.

The gain in performance would come mostly from not having to triplicate the web

requests, and also from being able to run the equivalence check on a single 128-bit

string, rather than having to do a character-by-character comparison on a response

page of uncapacitated length.

Clearly, it seems as though voting at the gateway would greatly enhance the

security of the KARMA system and its ability to detect intrusions. In addition,

the solutions to many of the issues with gateway voting seem to be solvable within a

reasonable amount of time. Hence, the final KARMA system should definitely include

a voting stage on outbound transactions at the gateway.

3.3.6 Redundant Databases

Assuming that voting at the mediator inbound is present and working properly, it

seems there is no need for a redundant database since the transactions going into

all three databases should have identical results. However, it might still be worth

it to use redundant databases for the gains in fault tolerance in case of a database

failure. Additionally, in the event that one of the database servers does fail, having

the redundant databases would provide an alternate means of re-routing the database

requests without having to take down the entire system.

In the case that voting at the mediator inbound is not present, the redundant

database proves to be very useful in conjunction with the outbound voting at either

the gateway or the mediator. While the lack of an inbound voter allows the database

to become corrupted, the redundant database/outbound voter combination effectively

allows the system to detect and repair this corruption (via an expensive rollback

procedure) before it becomes visible to the client.

For the above stated reasons, it would appear that a redundant database would

61

always be the more desirable choice. However, this is not necessarily true. There

is one significant downside to having redundant databases: consistency. In order to

maintain three separate databases, the system must effectively be able to ensure that

the three databases are consistent at all times. For example if a triplicated set of

requests were to be sent to the transaction mediator, a vote might take place, and

then the queries would be sent on to the database servers. If the queries consisted

of an INSERT statement, then clearly, they should leave the database having added

a row to one of the existing tables. However, if one of the queries was to fail, it

would send a response back to the mediator which would then pass it on (no voting

at Mout) to its respective origin server. Similarly, the other two origin servers would

receive their correct responses. Upon voting at the gateway, one of two things might

happen: 1. The database call in the script would have returned an error message,

in which case the page would be voted differently and an intrusion error would be

thrown. 2. No error will have been thrown, and the page will pass voting successfully

(INSERT does not return any visible data). In the first case, the KARMA system

would then need to determine where the error occurred (within the script, or within

the database) in order to restore the consistency of the database corresponding to

the failed request. In the second case, the system would most likely detect the error

at some later point, at which time it would need to perform the expensive rollback

procedure to restore all of the databases to a consistent state.

The above example, is just one case in which the consistency of the three database

servers could be damaged. There are many other ways in which problems could occur

in maintaining the three redundant databases. As a result, in spite of the gained

fault-tolerant capabilities, the system would also grow in its complexity and would

also lose some performance in the long run (since the system is not doing any workload

distribution amongst the redundant databases there is no real performance gain).

3.3.7 Single Database

Given that voting at the mediator will always be used on inbound database requests,

it seems that a single database system would provide a very workable and secure

62

solution. While not providing the conveniences of on-the-fly re-routing or backup

capabilities, as a redundant database would, the single database system still allows

for a relatively reliable and much simpler implementation, without the complexities

of maintaining the consistency and integrity of a redundant system.

3.4 Design Conclusions

The final implementation of the KARMA system is shown in Figure-3-3.

3.4.1 Final KARMA System

Configuration Manager

-E__ iginerverf--

Origin Server 2 -

-rgnerver3--)--

Origin Server X

Figure 3-3: Final KARMA System

As shown in Figure-3-3, the final KARMA system consists of a gateway, dispersing

transactions using the triplicated module redundancy algorithm to a set of origin

servers. These origin servers are monitored by a configuration manager with the help

of agents running locally on each machine. The origin servers also have the ability

to send requests to a single database via the transaction mediator. Voting occurs at

the gateway on outbound transactions and also at the mediator on inbound database

requests.

As a proof-of-concept, both the KARMA-1 and KARMA-2 systems were partially

developed. The first phase was developed by a group working at the Charles Stark

63

Transaction -Min- DB
Mediator H

Legend
?- random dispersion. Gateway

selects a single outbound path
>- one possible transaction path
x3 - TMR. Gateway triplicates all

incoming transactions
G, - Gateway outbound voting
Min - Mediator inbound voting

Gateway

--- x- (G-

Draper Laboratory. In addition to implementing a near full version of the KARMA-1

system, a simulation of the KARMA-2 system was also developed for the purposes

of testing and to show that such a system was indeed realizable and implementable.

The details of each implementation will be described in the following chapter.

64

Chapter 4

Implementation

The implementation was conducted in two phases. The purpose of the phases was

not so much to serve as a progression, but to test out different pieces of the system,

and to demonstrate a proof-of-concept for the KARMA system.

4.1 KARMA-I

The initial phase of the KARMA system was implemented without using redundancy

or voting. The system did use dispersion, however, to enhance its overall security. In

addition, a network-based configuration manager was implemented along with a host-

based agent that was installed on each of the origin servers. The KARMA-1 system

consisted of a single gateway, followed by four origin servers - all being monitored by

the configuration manager - followed by a single database machine.

The specifications for each of the machines used were as follows:

The primary objective of the KARMA-1 system was to test the advantages of

dispersion and OS variation on the origin servers. In addition, the configuration

manager was tested for its performance abilities.

65

Table 4.1: Phase One KARMA Configuration

Component [Architecture OS Server Software
Gateway Intel Pentium III OpenBSD N/A
Configuration Intel Pentium III OpenBSD N/A
Manager
Origin Server 1 Intel Pentium III Redhat Linux 7.2 Apache v1.3.24,

PHP v4.1.2
Origin Server 2 Intel Pentium III Windows 2000 Microsoft IIS5,

PHP v4.1.2
Origin Server 3 Sun Ultra 1 Solaris 8.0 Apache v1.3.24,

PHP v4.1.2
Origin Server 4 Intel Pentium III Windows NT Microsoft IIS4,

Server PHP v4.1.2
Database Intel Pentium III Redhat Linux 7.2 IBM DB2

4.1.1 Gateway

Dispersion was implemented at the gateway such that all of the headers from an

incoming web request would be scrubbed out before the request was dispersed ran-

domly to an origin server. The scrubbing mechanism would effectively eliminate all

headers except for those necessary to make the request. The scrubbing of headers

played two functional roles in the system. For incoming transactions it was required

so that extra information could not be put into the headers that might either trigger

an attack, or contribute to one. On outgoing transactions, the scrubbing of headers

enabled the system to remain fully anonymous (fingerprint-masking) by replacing all

of the specific identification headers with generic non-descriptive values.

In addition to the elimination of potentially hazardous headers, the dispersion

mechanism was also responsible for distributing transactions such that the risk of

a "staged attack" might be minimized. This was done by using a pseudo-random

dispersion algorithm. Essentially this meant that transactions would be distributed

randomly to the origin servers, but, the system would further ensure that no two

consecutive transactions, from a given client, could ever be sent to the same origin

server.

66

4.1.2 Configuration Manager

The final step in the implementation of the KARMA-1 system was to develop a

configuration manager that could effectively monitor the activity on each origin server

and trigger a "reset" if any anomalous behavior was detected. Rather than monitoring

every type of action performed on a machine, the responsibility of the CM agents was

limited to polling the web server data and scripts to detect any modifications to those

files. Assuming that those pages and scripts were originally designed to generate

identical web responses, it was observed that by periodically verifying their integrity

it might be possible to prevent any significant corruption to outbound responses or

inbound database requests.

4.2 KARMA-2

The KARMA-2 system differed from the KARMA-1 system in that it integrated re-

dundancy into the system. In addition to dispersing packets pseudo-randomly to

the origin servers, the KARMA-2 gateway also employed TMR (triple modular re-

dundancy) and would triplicate each incoming transaction before dispersing it to the

origin servers. Each of the recipient servers would then independently process the

requests and, if database access was required, would send another request to the me-

diator or simply return a response to the client through the same redundant path.

The advantage to using a redundant system was that voting could now be employed.

As was mentioned earlier, the KARMA-2 system was not designed to serve as a

fully-fledged version of KARMA-1, but rather was implemented to test the advantages

of using redundancy, independent of any other factors (OS variation, configuration

manager). Therefore, the entire KARMA-2 system was implemented running on a

single machine running a gateway, three origin servers, a transaction mediator and a

database. The specifications of each of the components used were as follows:

67

Table 4.2: Phase Two KARMA Configuration

Component Architecture OS Server Software

Gateway Intel Pentium III Redhat Linux 7.2 N/A
Origin Server 1 Intel Pentium III Redhat Linux 7.2 AOLServer

v1.3.2 4 , PHP
v4.1.2

Origin Server 2 Intel Pentium III Redhat Linux 7.2 Apache v1.3.24,
PHP v4.1.2

Origin Server 3 Intel Pentium III Redhat Linux 7.2 Apache v1.3.24,
PHP v4.1.2

Transaction Me- Intel Pentium III Redhat Linux 7.2 N/A
diator
Database Intel Pentium III Redhat Linux 7.2 MySQL

4.2.1 Libasync - An Asynchronous Socket Library

Libasync is a library included in the self-certifying file system (SFS), a DARPA spon-

sored project that implements a secure, global network file system with completely

decentralized control. The primary focus of the libasync package is to simplify the

use of asynchronous sockets over a network using TCP. It also takes advantage of

non-blocking input/output in order to improve the performance of reads and writes

over sockets [10].

The libasync package was chosen to implement the gateway and the transaction

mediator because of its functionality and ease of use. By using the libasync package,

the writing of an asynchronous gateway and mediator was greatly simplified, as the

asynchronous socket library provided utilities for "creating sockets and connections

and also for buffering data under conditions where the write system call [could] not

write the full amount requested." Additionally, one of the most useful features of

the libasync package was its ability to easily register callbacks that could be used

to trigger events on a socket in association with a specified condition of readability

or writability. The callback features and non-blocking I/O made it much easier to

implement a gateway that could simultaneously read multiple requests from a client

while also writing a set of triplicated requests to the various origin servers. In the case

68

of the mediator, it also simplified the task of reading in multiple database requests

while writing back responses at the same time.

4.2.2 Gateway

The gateway was implemented using the libasync package. The flow of events is

best described by an outline of the code that was used. First, a description of the

objects that were defined and used will be given. There were three primary classes

that needed to be defined to implement the gateway. These were the vote-entry,

connection, and gateway classes:

e vote-entry - This class was a linked-list structure used to maintain a cache for

the votes (responses) that had been received for a given ID thus far. There

was a single voting cache used for the entire gateway system consisting of a

linked-list of vote-entry objects. The member variables and functions for the

vote-entry class were as follows:

- fileid - the ID associated with the current vote-entry

- respcount - the number of responses that had been received thus far

- next - a pointer to the next vote-entry

- prev - a pointer to the previous vote-entry

- insertO - a method to insert new entries into the voting cache

- remove() - a method to remove an existing entry from the voting cache

- find() - a method to find an existing entry based on a given ID

* connection - The connection object was responsible for maintaining all of the

information relevant to a single triplicated request. For example, an incoming

transaction received by the gateway would in turn create three different con-

nection objects. The member variables and functions for the connection class

were as follows:

- host - used to store the host for the current connection

69

- port - used to store the port for the current connection (80 on most nor-

mal webservers, set to 8000, 8001, and 8002 on the simulation KARMA-2

system for the 1st, 2nd and 3rd origin servers respectively)

- request-id - the ID/TAG associated with the current connection

- vote-id - an id taking the value of 1, 2, or 3. This value was simply used

to distinguish this connection with respect to the other two connections in

the triplicated set.

- htreq - a copy of the HTTP request object

- htresp - a copy of the HTTP response object

- deof - a boolean flag to signal whether an end of file has been read from

the origin server

- delay-req - a timeout for reading from the gateway

- delay-rresp - a timeout for reading from the origin server

- dsock - the socket handle for reading and writing to the origin server

- fcreated - a boolean flag to signal if the temporary response file has been

created

- gotresp - boolean set to true if the headers had been successfully parsed

out of the HTTP response from the origin server

- resp-buf - a temporary storage buffer used to store the response while it

was being partially written to the file system

- connection() - method to create a new connection object

- connectionO - method to destroy the current connection and all of its

registered callbacks/timers

- get-filename() - method that returned the filename to which the temporary

HTTP response for this connection was written

e webproxy - The final object was the webproxy (gateway) object. Upon receiving

an incoming transaction, the gateway would create a new webproxy object. The

70

webproxy was then responsible for managing a set of connection objects that

were created once a valid request had been received. This request would then

be triplicated and sent to each of the connection objects. The member variables

and functions of the webproxy object were as follows:

- connections - an array used to store the three connections

- htreq - a local copy of the HTTP request

- htresp - a copy of the HTTP response to be sent back to the client

- gotreq - boolean set to true if a valid request header was received

- gotresp - boolean set to true if a valid response header was received

- conn-id - long integer used to store the TAG associated with this transac-

tion. This value was used to support the implementation of tagging.

- delay-vote - a timeout used to ensure that action would be taken if all

three response were not received in a reasonable amount of time

- delay-wresp - a timeout for writing back to the client

- osock - the socket handle for reading and writing to the client

- reqbuf, resp-buf - temporary buffers used to store the request and re-

sponse while they were being written to the origin servers and gateway,

respectively.

- oeof, veof - boolean variables used to signal that an end of file had been

read from the gateway, or that voting had been completed.

- webproxy() - used to create a new webproxy object

- webproxy(- method to destroy the existing webproxy object along with

all of its registered callbacks and timers

- timeout-vote - the timeout method for voting

- timeout-wresp() - the timeout method for writing a response to the client

- timeout-req() - the timeout method for reading a request from the gateway

71

- timeoutrresp() - the timeout method for reading the response from the

gateway

- err-handle() - a method for handling errors and returning an error web

response if necessary, or destroying the object along with its registered

callbacks/timers

- connectedO - a callback method that was called once the gateway had

successfully established a connection with the origin server

- duplicate request() - a method that was used to clone the HTTP request

object and then send it to the respective connection objects

- make-requests() - a method that was used to create connections to the three

origin servers and then send out a copy of the original HTTP request to

each one.

- read-resp() - a callback method that was triggered if there was information

waiting to be read from one of the origin servers. The webproxy was then

responsible for reading the response into a temporary buffer.

- read-req() - a callback method that was notified if there was information

waiting to be read from the client. The webproxy would then read an

HTTP request from the client.

- write-resp() - a callback method that was triggered if socket to the tempo-

rary file was writable. The webproxy would then write all of its buffered

response data to a temporary file.

- write-req() - a callback method that was started if the socket to a given

origin server was writable. The data in the request buffer would then be

written to the origin server.

- write-error() - a method that was used to generate a fake HTTP response

page useful for displaying an error message to the user

- write-final-resp() - a callback method that was notified if the socket to

the client became writable. It would then write an appropriate HTTP

72

response to the client socket.

- write-error-resp() - a callback method that was triggered if the socket to the

client became writable. It would then write the generated error message

to the client socket.

- voteO - a method that was called once all three connections had returned

a valid response and written it to their temporary files. The voting algo-

rithm would then be run on the three saved responses to determine their

equivalence.

Given this description of the primary objects and their methods, the gateway can

best be modeled by using a block diagram. This diagram is shown in Figure-4-1.

Essentially, the gateway, upon receiving a request would generate a custom tag

(in this implementation, simply a counter). The gateway would then create a new

webproxy object and insert an entry into the voting cache using the custom tag

value. Once the entire HTTP request had been read, the gateway would then attempt

to establish a connection to the three origin servers. If all three connections were

successfully established, the gateway would then duplicate the original HTTP request

and would pass it on to the three origin servers. Upon getting back the first response

from the triplicated set of requests, the gateway, rather than writing it back to the

client immediately, would write the entire response to a temporary file. It would then

look up the tag value for the received response and would increment its counter in

the voting cache. The system would then wait for the remaining responses. After

getting the third and last response, the counter would be incremented again yielding

a final count value of three. This would signal to the gateway that all of the responses

had been received and it would then proceed to vote. The voting algorithm basically

consisted of reading through a set of temporary response files and comparing them

character-for-character while also accounting for a subset of the issues described in

the previous chapter, namely whitespace/carriage return, number-rounding and case-

sensitivity issues.

73

74

write-error

waitig for _-nwmdao

Aread-req

timeou-wreq new connection

write-req

timeout-rresp
waiting for
response

timeout-vote

read resp

count < 3 vote cache,con 3count < 3 incrementcon=3
resp. count

write final-resp

vote passe failed

timeout-wresp

Figure 4-1: Gateway Block Diagram

Syntactic Equivalence

The implementation of the KARMA-2 system dealt with the problem of syntactic

equivalence at the gateway much as it was described in the design process. In its sim-

ulation state, the equivalence algorithm was able to effectively handle the numerical

rounding issue, the case-sensitivity issue, and the whitespace/carriage return issues.

Whitespace/Carriage Return The whitespace/carriage return issue was handled

exactly as it was described in the design section. As the two response files were

compared character-for-character, the system would raise a flag upon encountering

a whitespace or carriage return (included characters were '\t,' '\r,' '\n,' ' '). All

successive whitespaces or carriage returns would then be ignored until a legitimate

character was retrieved. Voting would then be resumed as usual. In addition, if a

quote character (single or double) was encountered, then the system would not raise

the flag to ignore whitespaces. Only after the second quote character (closing quote)

was encountered, would the whitespace ignoring functionality be re-enabled.

Numerical Rounding The numerical rounding problem was handled as follows:

1. While looping through character-by-character between the two temporary re-

sponse files

2. If a numerical character is encountered in both files (i.e. '-', '0-9', '.', '+'), then

pause voting, but continue to loop while adding the set of numerical characters

to two temporary buffers (one for each file).

3. Continue to loop until both files have come to a non-numerical character. Con-

vert the values in the two temporary buffers to real numbers and then compare

them based on a predetermined "closeness" factor.

4. If the numbers match up, then resume the normal voting procedure.

5. Otherwise, exit the loop and return false.

75

Case-Sensitivity The case-sensitivity problem was handled simply by converting

all 'a-z' or 'A-Z' characters that were encountered to their lowercase form before

voting. This effectively provided a common standard for being able to compare the

two temporary response files.

After integrating the algorithms to handle these special cases, various syntactic

equivalence tests were performed on the system. The results of these tests and the

system's successes and failures will be described in the following chapter.

Tagging

Tagging was also implemented in a manner similar to that described in the design

phase. However, it was soon discovered that the PHP scripting language, while using

the CGI interface, differed from CGI in that it did not automatically convert headers

into environment variables, but rather stored them in a separate array of server vari-

ables. Hence, getting them into the environment required an intelligent, non-intrusive

solution. The solution that was implemented basically involved a minor change to the

PHP configuration. The default configuration was modified so as to always include a

custom-made PHP script that would lookup the server variable corresponding to the

custom tag header. This value was then forced into the environment by making a call

to the PHP method "putenv(." By making this change, the framework for tagging

was established and the only question that remained to be answered was whether this

tag would then be able to be parsed out by a driver manager running in the same

environment as the PHP process.

4.2.3 Transaction Mediator

There were two attempts made at developing an effective transaction mediator. The

first one provided a more elegant solution, however, it proved to be quite complex

to develop and also wasn't able to perform all of the actions that it was required

to. As a result, a faster, less elegant solution was developed. Both implementations

will be presented in the sections to follow. Figures-4-2 and 4-3 illustrate some of the

76

structural differences between the two different implementations of the transaction

mediator and show where they fit into the entire KARMA system.

)>-Origin Server 1

F -Ga t _e---- Origin Server 2

XF3M

Origin Server X

Figure 4-2: Mediator 0

)Origin Server 1 :

Gateway
-- - Origin Server 2

FOrigin Server X

Transaction
Mediator

DB

nie

Transaction
Mediator

DB

.Legend
? - random dispersion. Gateway

selects a single outbound path
> - one possible transaction path
x3 - TMR. Gateway triplicates all

incoming transactions

Figure 4-3: Mediator Two

Mediator One - Initial Investigation

The first mediator consisted of two main parts: 1. a custom driver manager installed

on each origin server, and 2. the transaction mediator itself. The custom driver

manager was designed to act as a fully-functional replacement for the standard ODBC

77

Legend
? - random dispersion. Gateway

selects a single outbound path
> - one possible transaction path
x3 - TMR. Gateway triplicates all

incoming transactions
- Custom driver manager

replacement, client component
to the transaction mediator

driver manager that was compiled in with PHP at installation. By installing a custom

driver manager on each origin server, the transaction mediator could vote on the

requests being made to the database, without a script ever being aware of its presence.

As Figure-4-2 shows, the custom driver manager located on each origin server would

be compiled in with PHP at installation. Then, for every subsequent script that

made a request to the database, the custom driver manager would be called and it

was then responsible for extracting a tag from the environment, and also for sending

both the tag, and the original database request to the transaction mediator. The

transaction mediator, upon receiving the first request would add this instance of the

tag to its voting cache and then await the remaining requests. Upon receiving all

three database requests, the mediator would then increment the request count, and

as a result of the completed count, would proceed to vote upon the queries it had

received.

Problems Encountered The problems with the initial mediator were more devel-

opmental than inherent in the design itself. However, it was revealing of the com-

plexity of developing such a system. Because it required a custom driver manager

to be compiled in with the PHP at installation, steps needed to be taken to mimic

the functionality of a "true" driver manager. In actuality though, the custom driver

manager was only mimicking a real driver manager, because it required the use of a

transaction mediator to complete an entire transaction. Hence, the functionality of a

"true" driver manager could only be achieved by merging the custom driver manager

and the transaction mediator. Implementing a driver manager alone was no simple

task. Implementing one that was sufficient to look like one and also portable enough

to run on any of the variable OSs proposed by the KARMA system was even more

difficult. Initially, there were a number of problems with byte-ordering across the dif-

ferent architectures. The list of bugs then went on to include problems with handling

multiple connections, large data fields, and more. In the results section it will also

be shown that the phase one transaction mediator suffered a tremendous decrease

in performance. For these reasons, it seemed that a more lightweight solution might

78

present a better solution for the simulation KARMA-2 system.

Mediator Two - A Simplified, Functional Version

Like the gateway, the second transaction mediator was implemented using the asyn-

chronous socket package provided with SFS. The reason why this implementation of

the transaction mediator was "less elegant" is because it required an additional mod-

ification to the COTS PHP configuration. In addition, it required a minor change to

be made to every script that included a database request. The second phase trans-

action mediator involved adding to the custom PHP script that was loaded up by

default to handle tagging. To the existing script file, a method was added that would

essentially send a database request to the transaction mediator for approval. Then

upon a successful vote, the mediator would send back the appropriate response to the

method, which would then either make the actual database call, or would allow the

call to be made by another one of the origin servers in its triplicated set. Making the

actual database call was denied for some servers, even upon a successful vote, because

if the request was an INSERT statement, for example, the request should only be ex-

ecuted once so as not to create multiple copies of a single entry within the database.

A more detailed diagram of the mediator's operation is shown in Figure-4-4.

From Figure-4-4, it can be seen that the functionality of the mediator was much

like a scaled down version of the gateway. Unlike the gateway, which acted as both a

client and a server, the mediator was only responsible for acting as a server, and thus,

the implementation was greatly simplified. Like the phase one mediator, the phase

two system required the use of two components to complete the entire voting function

of the mediator. The first component, as described earlier, was resident in a custom

PHP script that was forced to load with every dynamic page. It was mentioned earlier

that this PHP script would send a database request to the mediator for approval,

however, additional details were not given as to the actual protocol for sending this

data across. The actual format for sending this request for approval was as follows:

* Sending - The protocol for sending a request for approval followed very closely,

the model for HTTP request headers. Each mediator request consisted of a set

79

write__error

waiting for ------ on ad new mediator H ieu e

timeout vote read-req

vote e count = 3count < 3increment

resp. count

write-final-resp

vote passed (oevote failed

timeout-wresp

Figure 4-4: Mediator Block Diagram

of custom KARMA headers that could easily be parsed out by the mediator.

The custom KARMA headers that were used are further defined below:

- Query-Id - This was the tag value used to uniquely identify a given query

- Query - This field would hold the actual database request

- Query-Type - This field would let the mediator know if the request was

not a database altering statement (i.e. select), in which case the mediator

could return true to all servers, allowing each to execute the database

request. Otherwise, the mediator would return true to only one appointed

server.

* Receiving - The response returned by a mediator was simply True or False. If

the response was true, then the database query would be executed using the

standard database calls, otherwise, the method would complete and the script

would resume its normal execution.

As was stated earlier, the mediator component functioned much like a scaled

80

down version of the gateway. In its idle state, it would simply await an incoming

transaction. Upon receiving an initial request, it would then parse out the Query-

Id, Query and Query-Type from the headers. The Query-Id value would then be

placed in a voting cache along with a response count of one. After receiving the other

two corresponding queries, the response count would reach the final state of three and

would initiate the voting process. In the simulation stage, the voting process consisted

solely of a string matching, requiring that all queries be exactly the same. Once voting

had been completed successfully, the system would then check the Query-Type, and

if the Query was a database altering request, the mediator would then send back the

responses of True, False, False in no particular order. Likewise, if the Query was not

a database altering request, i.e. SELECT, it would return True to all of the origin

servers. Finally, if voting failed, the mediator would simply return False to all of the

origin servers.

Tagging In the phase two system, the proposed tagging solution was unnecessary

since the calls to the mediator were made from within PHP. Rather than requiring

a clever manipulation of environment variables, the script was able to directly pass

a tag, or Query-Id, to the mediator by simply reading the value of the appropriate

server variable and setting it in the mediator request headers. One thing that was ob-

served in implementing this solution was that, using the proposed solution for tagging,

the environment variable method would inherently fail given a script with multiple

database calls. This is because the mediator would then be unable to distinguish

between the various database calls, since all would share the same environment/tag

value, and might try to vote on the first request from one origin server against the

second request from another.

Syntactic Equivalence In the simulation version of the KARMA-2 system, the

problem of syntactic equivalence was implemented using a fully constrained query

solution. However, if query flexibility was found to be truly vital to the security of the

system, for all requests except for the SELECT statement, an enhanced equivalence

81

algorithm could be implemented by using SQL objects, as were previously defined in

Chapter 3: Design.

Problems Encountered

The second mediator implementation, while providing a more lightweight solution,

also paid a significant price in regard to security. The most obvious shortcoming is in

the fact that an intruder who successfully gained root privileges could simply modify

a script such that it would call the standard database execute methods rather than

the modified method that was used to initiate voting. Furthermore, even if additional

security measures were taken to try and ensure that the standard database methods

could not be called, these prevention methods would be PHP based, and could easily

be bypassed by an intelligent intruder. Still, this vulnerability is not as bad as it

sounds, in that the problem is non-existent in the real KARMA-2 system. Rather,

this weakness only arises in the simulation system as a result of all the services being

run on a single host. Due to the lack of distinction between the origin server and

mediator machines, there is no ability for the database to be configured to only allow

access from a single host (the mediator). Clearly, in a real world situation where only

a trusted mediator would be configured with permissions to connect to the database

it would be impossible to run such a simple bypass attack to disable voting at the

mediator altogether. Hence, though this is a problem that exists in the simulation

system, it will not be tested for attack since it can easily be prevented in the real

KARMA system.

82

Chapter 5

Results

5.1 Attack Types

The KARMA-2 system was implemented to test the advantages of a system em-

ploying redundancy and using voting to detect intrusions and anomalies within the

system. Furthermore, in order to perform the type of actions required to create such

anomalies in the system, i.e. generating bad web pages, modifying database queries,

it was assumed that an intruder would have to have gained the highest level of ac-

cess privileges to the system, namely "superuser" status. As a result, the KARMA-2

system was designed to detect an attack on the system after an intruder had already

compromised one of the origin servers. To simulate such an attack, one of the servers

was modified in a variety of ways to generate a set of attacks for testing the robustness

of the simulation KARMA-2 system.

The attack types again which the KARMA-2 system was tested were:

" Modified scripts - an attacker might modify a script so that it would return

falsified HTML.

" Substituted webpages - an attacker might substitute a static page with one of

their own. Similar to the above case.

" Modified database queries - an attacker would modify a script so that a malicious

database command could be executed.

83

5.2 False Alarms

In addition to testing for possible attacks, a number of tests were performed to test

the system's ability to bypass the common false alarm issues that were mentioned for

voting at the gateway on outbound responses. These included the following:

" Numerical Rounding - two numbers representing the same value might vary in

their precision, i.e. .099999 and .1.

" Whitespace/Carriage Return - any number of whitespace/carriage returns could

appear between words.

" Case-Sensitivity - Words could be written in either upper or lower case.

5.3 Test Results

The tests were run by using a set of custom scripts and modifying them on a single

origin server to exploit one of the above conditions (attack, false alarm). The results

are shown in Table-5.1 (note that in all cases, a correct response page is still returned

since voting should only fail with one server):

From the results, it is evident that voting is in fact possible and does work effec-

tively on most of the cases that were presented in the design of the KARMA system.

One problem with the simulation system that was quickly discovered was an incom-

patibility between the web servers used. It was found that AOLServer, which was

used for the first origin server, returned a "text/html" response for PHP scripts, while

the Apache servers returned responses in a chunked format. This caused some prob-

lems with the testing of voting results in that one server would always fail the vote

for dynamic pages. This was also the reason for the "Y/N" response to the "modified

script" test in Table-5.1. For that test, the voting was successful in detecting the one

intrinsic error in addition to the character mismatch from the modified text, however,

the system was unable to return an appropriate response since two rounds of voting

failed. However, for static pages, the responses were returned from both servers in a

84

on Expected Error I Success

Case-
Sensitivity

Modified the line "<TITLE>Campus News
at Technology Square</TITLE>" in the page
campusnews.htm to "<title>Campus News at
Technology Square</tItLe>"

No errors Y

Table 5.1: Test Results

85

ITest Type |
Modified Modified the line "echo <table width=600 Character mis- Y/N
PHP cellpadding=2>;" from display-movies.php to match error

read "echo <table width=600>;"

Modifed Modified the line "<TITLE>Amenities In and Character mis- Y
Static Around Technology Square</TITLE>" from match error
Page amenities.htm to read "<TITLE>Amenities

Around Technology Square</TITLE>"
Substituted Replaced file location.htm with ownership.htm Character mis- Y
Static match error
Page
Modified Changed the line "$sql="select * from users Database er- Y
Database order by username";" from view-users.php to ror, Character
Query "$sql="select * from users order by user-id";" mismatch on
(Select) modified server's

response

Modified Changed the line "$sql "update Database Error, Y
Database genres set genre='$newgenre' where MyHackerGenre
Query genreid=$id";" to "$sql = "update gen- ignored and genre
(Update) res set genre='MyHackerGenre' where updated correctly

I genre-id=$id"; _

Numerical Created a new set of pages on the three origin .9999999 dis- Y
Rounding servers containing a single line. osi's test.html played to user,

contained 1.000, while os2 and os3's test.html no errors
contained .9999999"

Whitespace Added a set of gratuitous whitespaces and car- No errors Y
riage returns throughout the static page build-
ings.htm

Whitespace Changed the string "Technology Square Character mis- Y
in String Home" in the file restaurants.htm to "Tech- match error

nology Sq are Home"
Whitespace Changed the string "<TABLE BORDER=0 Whitespace/CR Y
in HTML CELLSPACING=0" in the file leasing.htm error

to "<TABLE BO RDER=0 CELL SPAC-
ING=0"

Descripti

text/html format. As a result, the intrinsic error was non-existent in these cases and

as such, most of the tests were conducted using static pages.

5.4 Response Times

In addition to testing the feasibility of voting, one of the primary goals of the KARMA

system was to design an intrusion detection system that would be efficient enough

to perform its duties without affecting (significantly) the overall performance of the

system.

The response times were tested using the following classes of pages:

" Static pages

" Scripts with minimal database access

" Scripts with a large number of database accesses

The algorithm used to calculate response times was implemented in the following

manner. The UNIX time command was used to time a series of 50 connections to the

KARMA system to retrieve a desired webpage. The total time for the 50 connections

was then averaged to yield a final response time. The response times were measured

for connecting directly to each of the individual origin servers and also for connecting

via the KARMA system. A simple script was written to simplify the execution of the

50 consecutive connections. The script that was used is shown below:

#include <stdlib.h>

#include <stdio.h>

int main(int argc, char **argv) {
int port;
char *page;

char command[50];

if (argc > 2) {
port = (int)atoi(argv[1]);

86

page = argv[2];

sprintf (command, "wget http: //localhost :%d/0 s", port, page);

for (int i = 0; i < 50; i++)

system(command);

// port is the port number of the desired server

// 8000 for osi
// 8001 for os2

// 8002 for os3
// 80 for the KARMA gateway

// page is the desired webpage

}
}

The above program was compiled and used to generate the executable, testpage.

This binary was then used as follows to perform the final testing of response times:

bash% testpages <port> <page>

Each server was given three chances to yield its best total response time for 50

connections. The resulting best response times were tabulated and are shown below

in Table-5.2:

Table 5.2: KARMA Response Times

Requested Page I OS1 OS2 OS3 I KARMA

Static Page - amenities.htm 1.132s 1.603s 1.587s 1.819s

Script (min DB) - view-ratings.php 1.058s 2.890s 2.968s 17.442s
Script (max DB) - show-all -movies.php 1.017s 4.016s 3.953s 23.303s

It was surprising to see that the response time for the KARMA system was nearly

six times slower than the original system. However, without further testing, it was

difficult to tell which component in the KARMA system was most directly affecting

this. Hence, to narrow down the source of the performance hit, one additional set of

tests was performed while disabling voting at the mediator. The results of that test

were as follows:

. Static Page - Irrelevant as no mediator voting would ever take place.

87

* Script (min DB) - 8.396s

* Script (max DB) - 12.925s

Once again, it was surprising to see that voting at the mediator contributed to

a majority of the loss in response time even though the voting algorithm in the

KARMA-2 system consisted solely of a string comparison. One possibility is that

the times taken to connect and read data back and forth from the mediator were so

inefficient as to degrade the overall performance of the voting at Mi2 .

88

Chapter 6

Conclusions

The KARMA-2 system was designed to efficiently detect intrusions and examine the

possibilities of doing so by using random dispersion and voting. The results with

respect to voting proved to be quite a success. By voting at the gateway on outbound

responses and the mediator on inbound database requests, the system was able to

effectively catch most of the proposed attacks on the KARMA system. Furthermore,

the system was able to operate without triggering any significant number of false

alarms. Much of this was due to the equivalence testing that was performed on the

outbound responses and a number of constraints that were placed on the SQL calls

being made to the database.

Unfortunately, the success of the KARMA system came at a slight cost in perfor-

mance. The time taken to retrieve a set of common web pages was slowed down by

almost a factor of six. Though the difference in time was only a matter of seconds,

it is very probable that this factor would only get worse as the number of users and

complexity of scripts continued to grow. It was indeed surprising to discover that the

performance hit was as large as it was.

Despite this shortcoming, the KARMA system was successful in doing what it was

designed to do. The simulation provided valuable verification that such a system could

be built and further optimized to enhance performance with respect to response times.

Though the KARMA system might not be guaranteed to catch every possible attack,

it does provide an interesting alternative to many of the intrusion detection systems

89

that are in use today. Furthermore, it provides a solution that is narrow enough in

scope that it does not try and do "too much," but rather provides effective security

for a limited set of Internet services - in this case, the worldwide web. What was most

encouraging about the KARMA-2 simulation system was that its greatest weakness

seemed to be in speed rather than security. Since speed could invariably be improved

with more efficient algorithms and a more robustly programmed gateway/mediator,

it is hopeful that the KARMA system might someday be implemented and used in

the real world.

90

Chapter 7

Future Work

In spite of its success at detecting the attacks against which it was tested, there were

a number of improvements that could have been made to the KARMA system. These

improvements ranged from performance enhancing to security enhancing. Further-

more, a great deal of additional testing could have been done to verify the robustness

and scalability of the system.

7.1 Performance Enhancements

As was shown in the results section the voting stages at the gateway and mediator

caused a significant variation in the amount of time taken to receive a response from

the origin servers. This could potentially be improved in a number of ways. One

way would be to enhance the voting algorithms used. For example, it was mentioned

earlier that MD5 hashes of static webpages could be cached to improve the speed of

voting at Goa. This would improve the speed of voting by allowing the gateway to

compute the hash of a single page and then vote on a set of short string rather than

the length of an entire webpage.

The speed of the system could also be improved by utilizing faster disks, or by

finding a better temporary storage location for the responses returned from the origin

servers. As was mentioned in Chapter 5, the simulation system would write each re-

sponse to disk while waiting for the remaining origin servers to return their respective

91

responses. As a result, the costly read and write times for IDE storage could have

contributed to the system's slower response times.

Lastly, the system's performance would probably have been improved if a more

complete mediator was developed. As was mentioned earlier, the KARMA-2 simula-

tion system was developed using a mediator that simply handled voting. Therefore,

the mediator, rather than making requests directly to the database, would simply

acknowledge a successful vote to each origin server which would then perform the

database request on its own. As a result, every transaction would require approxi-

mately six connections, three to the mediator and then another three to the database.

However, in a "more complete" KARMA system, the mediator would effectively be

integrated into an emulator for the driver manager. Hence, only a single connection

would need to be made to the database in addition to the three from the origin servers

to the mediator. By requiring only four connections, the KARMA-2 system would

most likely reduce the overhead required in establishing redundant connections to

the database and also of transmitting large amounts of redundant data across the

network.

7.2 Security Enhancements

In addition to these performance enhancements, there were a number of steps that

could be taken to improve the security of the system. For the simulation system, only

a small set of the most obvious attacks were performed against the system. However,

given a malicious hacker with a great deal of time and knowledge, it would be almost

impossible to predict the types of attacks that might be launched against the system.

Hence, the system would most likely be improved by exposing it to either a real

world attacker, or a dedicated team of attackers to thoroughly examine all of the

vulnerabilities within the system.

92

7.3 General Enhancements

Finally, the system was slightly limited in that a compromise between complexity and

flexibility was often necessary. The clearest example of this was seen in the case of

SQL query voting. In order to make the system as simple as possible (for simulation)

the query voting consisted of a single string comparison. However, if the system were

to provide the greatest amount of flexibility for the developers and script writers,

it would probably be better if the system could support out of order arguments, at

the very least. This would require significant changes to the code though, and would

also require the development of SQL objects that could then be used to determine the

equivalence of two syntactically different but semantically equivalent SQL statements.

Clearly, this is not a comprehensive list of all the possible enhancements that

could be made to the system. However, from the above examples, it is evident that

there is still a great deal of work to be done. In spite of this, given the well-designed

framework for the KARMA system and its success in detecting a preliminary set of

attacks, the hopes for developing a new and effective intrusion detection system look

very promising and not too far in the future.

93

Appendix A

Source Code

A.1 Gateway

A.1.1 webproxy.h

#include "http.h"

#include <stdio.h>

static const str VOTEFILEPREFIX = "/tmp/resp_";

struct voteentry *votecache;

struct voteentry *vctail;

struct voteentry {
long fileid;
int respcount;

voteentry *next;

vote-entry *prev;

vote-entry (long fid, int rc) {
fileid = fid;
respcount = rc;
next = NULL;

prev = NULL;

}

void insert (voteentry *ve) {
ve->next = NULL;

if (vctail) {

94

vctail->next = ve;
ve->prev = vctail;
vctail = ve;

} else {
ve->prev = NULL;
vctail = ve;

votecache = ve;

}
}

void remove (vote-entry *ve) {
if (vctail == votecache) {
vctail = NULL;

votecache = NULL;
} else if (ve == votecache) {
votecache = ve->next;
votecache->prev = NULL;

} else if (ve == vctail) {
vctail = ve->prev;
vctail->next = NULL;

} else {
ve->prev->next = ve->next;
ve->next->prev = ve->prev;

}
}

vote-entry *find (nt fid) {
voteentry *tmp = vctail;

while (tmp) {
if (tmp->fileid == fid) {
return tmp;

} else {
tmp = tmp->prev;

}
}
return NULL;

}

struct connection {
str host;

int port;

int requestid;

95

int vote-id;

connection()
port(-1), requestid(-1), vote id(-1), deof(false),

delay-req(NULL), delay-rresp(NULL), dsock(-1),
fcreated(false), gotresp(false) {

host = "localhost";

htresp = New httprespo;

htreq = New httpreqO;

}

connection(str h, int p, long rid, int vid)
deof(false), delay-req(EULL), delay-rresp(NULL),

dsock(-1), fcreated(false), gotresp(false) {
host = h;
port = p;
requestid = rid;
vote id = vid;

htresp = New httprespO;

htreq = New httpreqO;

htresp->request-id = rid;

htreq->requestid = rid;

}

connection() {
if (delay-req) {
timecbremove(delay-req);

delay-req = NULL;
}

if (delay.rresp) {
timecbremove(delay-rresp);

delay-rresp = NULL;

}

// delete the associated file
remove(get-filename());

if (dsock >= 0) {
fdcb (dsock, selread, NULL);
fdcb (dsock, selwrite, NULL);
close (dsock);

}
}

96

str getjfilename() {
strbuf filebuf;

filebuf << VOTEFILEPREFIX << request-id << " << voteid;

str fname = filebuf;

return fname;

}

httpreq *htreq;

httpresp *htresp;

bool deof;

timecbt *delay-req;

timecbt *delay-rresp;

int dsock;

bool fcreated;

bool gotresp;

strbuf resp-buf;

};

struct webproxy {
connection* connections[3];

httpreq *htreq;

httpresp *htresp;

bool gotreq;

bool gotresp;

webproxy();

~webproxyo;

int connid;

void timeoutvote(long rid);

void timeoutwrespo;

void timeout-req(connection *cn);

void timeout-rresp(connection *cn);

void errhandle(int type, connection *cn, int fd);

void connected(connection *cn, int sfd);

void duplicate-requesto;

void make-requestso;

void read-resp(connection *cn);

void read-reqo;

void write-resp(connection *cn);

void write-req(connection *cn);

void writeerror(str errmsg);

void writefinal-resp(int rfd);

void write-error-resp();

97

void vote(long rid);

timecb-t *delay-vote;

timecb-t *delay-wresp;

int osock;

strbuf req-buf, respbuf;
bool oeof, veof;

98

A.1.2 webproxy.C

#include "async.h"

#include "webproxy.h"

#include <fcntl.h>

#include <string.h>

#include <fstream.h>

#include <stdlib.h>

#include <iostream.h>

#include <math.h>

static const unsigned int BUFMAX = 2048;

int listensock;

int listenport;

enum { EXITERR, EOFERR };

// function prototypes

void newconnection();

int requestjid; /* unique id for each http-request

if Connection: close does what we think

then it is possible that requestid will

be the same as curid */

int main(int argc, char **argv) {

if (argc == 2) {
listenport = (int)atoi(argv[1]);

} else if (argc > 2) {
printf("Usage: ./webproxy <port>\nport = \tPort to

listen on.\n\tDefaults to 80 if none specified.\n");

exit(1);

} else {
listenport = 80;

}

votecache = NULL;
vctail = NULL;

request id = 0;
setprogname(argv[0]);

listensock = inetsocket(SOCK-STREAM, listenport);

if (listensock < 0) {
fatal << "Error creating listener socket.\n";

99

exit (1)
}

make-async(listensock);
listen(listensock, 5);
fdcb(listensock, selread, wrap(&new-connection));
amaino;

return 0;

}

void new-connection() {
request-id++;

vNew webproxyo;

}

webproxy::webproxy()

gotreq(false), gotresp(false), delay-vote(NULL),
delay-wresp(NULL), osock(-1), oeof(false),
veof(false) {

htreq = New httpreqO;

htresp = New httprespO;

htreq->requestid = requestid;
connid = request-id;
sockaddr-in sin;

bzero(&sin, sizeof(sin));
socklent sinlen = sizeof(sin);

osock = accept(listensock,
reinterpretcast<sockaddr *>(&sin), &sinlen);

if (osock < 0) {
delete this;

return;

}

fdcb(osock, selread, wrap(this, &webproxy::read-req));

}

void webproxy::duplicate.request() {
connections[0]->htreq = htreq->cloneo;
connections[1]->htreq = htreq->cloneo;
connections[2]->htreq = htreq->cloneo;

}

100

void webproxy::make-requests() {
str hname = "127.0.0.1";

connection *connone = New connection(hname, 8000,
requestid, 1);

connection *conntwo = New connection(hname, 8001,
requestid, 2);

connection *connthree = New connection(hname, 8002,

request-id, 3);

connections[0] = connone;

connections[l] = conntwo;

connections[2] = connthree;

duplicate-requesto;

delay-vote = delaycb(30, 0,
&webproxy::timeoutvote,

wrap(this,

request-id));

tcpconnect("127.0.0.1", 8000, wrap(this,

&webproxy::connected, connone));

tcpconnect("127.0.0.1", 8001, wrap(this,

&webproxy::connected, conntwo));

tcpconnect("127.0.0.1", 8002, wrap(this,

&webproxy::connected, connthree));

}

void webproxy::connected(connection *cn, int sfd) {
if (sfd < 0) {
writeerror("Failed to connect to server.");

return;

}

cn->dsock = sfd;

cn->delay-req = delaycb(10, 0, wrap(this,

&webproxy::timeout-req, cn));

fdcb(cn->dsock, selwrite, wrap(this,

&webproxy::write-req, cn));

}

void webproxy::read-req() {
switch(req-buf.tosuioo->input(osock)) {
case -1:

if (errno != EAGAIN) {
fdcb(osock, selread, NULL);

101

delete this;

}
break;

case 0:
fdcb(osock, selread, NULL);

err-handle(EOFERR, NULL, osock);

break;

default:

if (!gotreq) {
int pval = htreq->parse(req-buf.tosuioo);

if (pval == 1) {
gotreq = true;

htreq->headers << "\r\n";

htreq->headers.tosuioo->take(req-buf.tosuio());

makerequestso;

}
} else {
htreq->headers.tosuioo->take(req-buf.tosuioo);

duplicate-request 0;
}

}
}

void webproxy::write-req(connection *cn) {
if (cn->delay-req) {
timecb-remove(cn->delayreq);

cn->delay-req = NULL;

}

switch(cn->htreq->headers.tosuio(->output(cn->dsock)) {
case 1:

if (cn->htreq->headers.tosuio(->resid() <= 0) {
fdcb (cn->dsock, selwrite, NULL);

cn->delay-rresp = delaycb(10, 0, wrap(this,
&webproxy::timeout-rresp, cn));

fdcb(cn->dsock, selread, wrap(this,

&webproxy::read-resp, cn));

}
break;

case -1:

delete this;

break;

default:

102

break;

}
}

void webproxy::read-resp(connection *cn) {
vote_entry *ve;

if (cn->delay-rresp) {
timecb-remove(cn->delay-rresp);

cn->delay-rresp = NULL;

}

if (cn->resp-buf.tosuioo->resid() > BUFMAX) {
fdcb(cn->dsock, selread, NULL);

}

switch(cn->resp-buf.tosuio()->input(cn->dsock)) {
case -1:

if (errno != EAGAIN) {
fdcb(cn->dsock, selread, NULL);

delete this;

}
break;

case 0:

fdcb(cn->dsock, selread, NULL);

errhandle(EOFERR, cn, cn->dsock);

ve = votecache->find(cn->requestjid);

if (ve) {
ve->fileid = cn->request-id;
ve->respcount = ve->respcount+1;

} else {
ve = New vote.entry(cn->requestid, 1);
votecache->insert(ve);

}

if (ve->respcount == 3) {
if (delay-vote) {
timecb-remove(delay-vote);
delay-vote = NULL;

}
votecache->remove(ve);

vote(cn->request-id);

103

}

break;

default:

if (!cn->gotresp) {
int pval = cn->htresp->parse(cn->resp-buf.tosuio());

if (pval 1) {
cn->gotresp = true;

cn->htresp->headers << "\r\n";

}
}

if (cn->gotresp) {
cn->htresp->headers.tosuio()->take(

cn->resp-buf.tosuio());

writeresp(cn);

}
break;

}
}

void webproxy::write-resp(connection *cn) {
int rfd; //response file descriptor

str fname = cn->get-filename);

if (!cn->fcreated) {
remove(f name);

rfd = open(fname, 0_CREAT+0_WRONLY+0_APPEND, 0666);
} else {

rfd = open(fname, 0_WRONLY+-0_APPEND);

}

if (rfd == -1) { //if other error.

perror(fname);

return;

} else {
cn->fcreated = true;

}

switch(cn->htresp->headers.tosuio(->output(rfd)) {
case 1:

if (cn->htresp->headers.tosuio(->resid() <= 0) {
fdcb (cn->dsock, selwrite, NULL);

104

cn->delay-rresp = delaycb(10, 0, wrap(this,

&webproxy::timeoutrresp, cn));

fdcb (cn->dsock, selread, wrap(this,
&webproxy::read-resp, cn));

}
break;

case -1:

delete this;

break;

default:

break;

}

close(rfd);

}

void webproxy::vote(long rid) {
strbuf fileone, filetwo, filethree;

file-one << VOTEFILEPREFIX << rid << ".1";

filetwo << VOTEFILEPREFIX << rid << ".2";

filethree << VOTEFILEPREFIX << rid << ".3";

str fone = fileone;
str ftwo = filetwo;
str fthree = filethree;

int rfd;

// if any two match.
if (compare-files(fone, ftwo)) {
rfd = open(fone, ORDONLY);

if (rfd >= 0) {
delay-wresp = delaycb (10, 0, wrap (this,

&webproxy::timeout-wresp));

fdcb(osock, selread, NULL);

fdcb(osock, selwrite, wrap(this,

&webproxy::write-finalresp, rfd));

return;

}
}

if (compare-files(ftwo, fthree)) {
rfd = open(ftwo, URDONLY);

105

if (rfd >= 0) {
delay-wresp = delaycb (10, 0, wrap (this,

&webproxy::timeout-wresp));

fdcb(osock, selread, NULL);

fdcb(osock, selwrite, wrap(this,

&webproxy::write-final-resp, rfd));

return;

}
}

if (compare-files(fone, fthree)) {
rfd = open(fone, ORDONLY);

if (rfd >= 0) {
delay-wresp = delaycb (10, 0, wrap (this,

&webproxy::timeoutwresp));

fdcb(osock, selread, NULL);

fdcb(osock, selwrite, wrap(this,

&webproxy::writefinal-resp, rfd));

return;

}
}

write-error("Voting failed for all servers.");

}

void webproxy::write-finalresp(int rfd) {

if (delay-wresp) {
timecbremove(delay-wresp);

delay-wresp = NULL;
}

switch(resp-buf.tosuioo->input(rfd)) {
case -1:

if (errno != EAGAIN) {
close(rfd);

writeerror("Invalid response received from server.");

}
break;

case 0:
close(rfd);

veof = true;

106

shutdown(osock, SHUTWR);

delete this;

break;

default:

if (!gotresp) {
int pval = htresp->parse(resp-buf.tosuio());

if (pval == 1) {
gotresp = true;

htresp->headers << "\r\n";

}
}

if (gotresp) {
htresp->headers.tosuioo->take(resp-buf.tosuioo);

switch(htresp->headers.tosuioo->output(osock)) {
case 1:

break;

case -1:
delete this;

break;

default:

break;

}
}
break;

}
}

void webproxy::writeerror-resp() {
switch(htresp->headers.tosuio()->output(osock)) {
case 1:

delete this;

break;

case -1:

delete this;

break;
default:

break;

}
}

void webproxy::writeerror(str errmsg) {
suio bufresp;

107

oeof = true;
for (int i=0; i<3; i++) {
connection *conn = connections[i];
shutdown(conn->dsock, SHUT_WR);

}
} else {

cn->deof = true;

}
}

if (veof && oeof && connections[0]->deof

&& connections [1]->deof

&& connections[2]->deof) {
delete this;

}
}

webproxy::~webproxy() {
if (delay-vote) {
timecb-remove(delay-vote);

delay-vote = NULL;

}

if (delay-wresp) {
timecb-remove(delay-wresp);

delay-wresp = NULL;

}

if (osock >= 0) {
fdcb (osock, selread, NULL);

fdcb (osock, selwrite, NULL);
close (osock);

}

delete connections[0];

delete connections[1];
delete connections[2];

}

109

suio-print(&buf-resp, httperror(503, errmsg, htreq->url,
errmsg));

htresp->headers.tosuio()->take(&buf-resp);

fdcb(osock, selread, NULL);

fdcb(osock, selwrite, wrap(this,

&webproxy::writeerror-resp));

}

void webproxy::timeout-vote(long rid) {

vote-entry *ve = votecache->find(rid);

veof = true;

delay-vote = NULL;
if (ve->respcount < 3) {
votecache->remove(ve);

writeerror("Server timed out while voting.");

}
}

void webproxy::timeoutwresp 0 {
fdcb(osock, selwrite, NULL);

delay-wresp = NULL;
errhandle(EXITERR, NULL, osock);

I

void webproxy::timeout-req (connection *cn) {

fdcb(cn->dsock, selwrite, NULL);

cn->delay-req = NULL;

errhandle(EXITERR, cn, cn->dsock);

}

void webproxy::timeoutrresp (connection *cn) {

fdcb(cn->dsock, selread, NULL);

cn->delay-rresp = NULL;

errhandle(EXITERR, cn, cn->dsock);

}

void webproxy::errhandle(int type,

connection *cn, int fd) {

if (type == EXITERR) {

delete this;

} else {
if (fd == osock) {

108

A,2 Mediator

A.2.1 mediator.h

#include "http.h"

#include <stdio.h>

struct vote-entry *votecache;

struct vote-entry *vctail;

struct mediator {
httpreq *htreq;

bool gotreq;

mediator();

~mediator(;

int connid;

void timeout-vote();

void timeout-wresp(;

void errhandle(int type, int fd);
void readreqo;

void writeerror(str errmsg);

void write errorresp(str errmsg);

timecbt *delay-vote;

timecbt *delay-wresp;

int osock;

bool oeof, veof;
strbuf req-buf;

struct voteentry {
long queryid;
int respcount;

struct mediator *connections[3];

vote-entry *next;

vote-entry *prev;

vote-entry (long qid, int rc, mediator *m) {
queryid = qid;
respcount = rc;
connections[0] = m;

110

connections[l] = NULL;

connections[21 = NULL;

next = NULL;

prev = NULL;
}

void insert (vote-entry *ve) {
ve->next = NULL;

if (vctail) {
vctail->next = ve;
ve->prev = vctail;

vctail = ve;
} else {
ve->prev = NULL;
vctail = ve;

votecache = ve;

}
}

void remove (vote-entry *ve) {
if (vctail == votecache) {
vctail = NULL;

votecache = NULL;

} else if (ve == votecache) {
votecache = ve->next;
votecache->prev = NULL;

} else if (ve == vctail) {
vctail = ve->prev;
vctail->next = NULL;

} else {
ve->prev->next = ve->next;

ve->next->prev = ve->prev;

}
}

vote-entry *find (int qid) {
vote-entry *tmp = vctail;

while (tmp) {
if (tmp->queryid == qid) {
return tmp;

} else {
tmp = tmp->prev;

}

111

}
return NULL;

}

112

A.2.2 mediator.C

#include "async.h"

#include "mediator.h"

#include <string.h>

#include <stdlib.h>

static const unsigned int BUFMAX = 2048;
int listensock;

int listenport;

enum { EXIT_ERR, EOFERR };

int requestid;

bool compare-files(str qone, str qtwo) {
if (qone) {

if (qtwo) {
if (qone == qtwo)

return true;

else

return false;

}
return false;

}
return false;

}

// function prototypes

void newconnectionO;

void vote(int qid);

void write-duplicate-errors(int qid, int prefid);

int main(int argc, char **argv) {
if (argc == 2) {
listenport = (int)atoi(argv[1]);

} else if (argc > 2) {
printf("Usage: ./mediator <port>\nport = \tPort to

listen on.\n\tDefaults to 5555 if none specified.\n");

exit (1);

} else {
listenport = 5555;

}

votecache = NULL;

113

vctail = NULL;

request-id = 0;

setprogname(argv[0]);

listensock = inetsocket(SOCKSTREAM, listenport);

if (listensock < 0) {
fatal << "Error creating listener socket.\n";

exit(1);

}

makeasync(listensock);
listen(listensock, 5);

fdcb(listensock, selread, wrap(&new-connection));

amaino;

return 0;

}

void newconnection() {
request-id++;

vNew mediatorO;

}

mediator::mediator()

gotreq(false), delay-vote(NULL), delay-wresp(NULL),

osock(-1), oeof(false), veof(false) {

htreq = New httpreqO;
connid = request-id;

sockaddrin sin;

bzero(&sin, sizeof(sin));
socklent sinlen = sizeof(sin);

osock = accept(listensock,
reinterpretcast<sockaddr *>(&sin), &sinlen);

if (osock < 0) {
delete this;

return;

}

fdcb(osock, selread, wrap(this, &mediator::readreq));

}

114

void mediator::read-req() {
switch(reqbuf.tosuioo->input(osock)) {
case -1:

if (errno != EAGAIN) {
fdcb(osock, selread, NULL);

delete this;

}
break;

case 0:

fdcb(osock, selread, NULL);

errhandle(EOFERR, osock);

break;

default:

if (!gotreq) {
int pval = htreq->parse(req-buf.tosuioo);

if (pval == 1) {
gotreq = true;

htreq->headers << "\r\n";

htreq->headers.tosuioo->take(reqbuf.tosuio());

fdcb(osock, selread, NULL);

vote-entry *ve;

ve = votecache->find(htreq->queryid);

if (ve && (ve->respcount != 0)) {
ve->queryid = htreq->queryid;
ve->respcount = ve->respcount+1;

ve->connections[ve->respcount-1] = this;
} else {
delay-vote = delaycb(10, 0, wrap(this,

&mediator::timeoutvote));

ve = New voteentry(htreq->queryid, 1, this);
votecache->insert(ve);

}

if (ve->respcount == 3) {
if (delay-vote) {
timecb-remove(delay-vote);

delayvote = NULL;

}
vote (htreq->queryid);

}
}

115

}
}

}

void write-duplicateerrors(int qid, int prefid) {
vote-entry *ve;

ve = votecache->find(qid);
mediator *ml = ve->connections[O];

mediator *m2 = ve->connections[1];
mediator *m3 = ve->connections[2];

str falsemsg;

if (ml->htreq->querytype) {
if (strncmp(ml->htreq->querytype, "select", 6) == 0) {
falsemsg = "True";

} else {
falsemsg = "False";

}
} else {
falsemsg = "False";

}

switch (prefid) {
case -1:
ml->writeerror("False");

m2->writeerror("False");

m3->writeerror("False");

break;

case 1:
ml->writeerror("True");

m2->write-error(falsemsg);

m3->write-error(falsemsg);

break;

case 2:

ml->write-error(falsemsg);

m2->writeerror("True");

m3->write-error(falsemsg);

break;

case 3:

ml->write-error(falsemsg);

m2->write-error(falsemsg);

m3->write-error("True");

break;

default:

116

ml->writeerror("False");

m2->write error("False");

m3->writeerror("False");

break;

}
votecache->remove(ve);

}

void vote(int qid) {
vote-entry *ve;

ve = votecache->find(qid);
mediator *ml = ve->connections[O];
mediator *m2 = ve->connections[1];

mediator *m3 = ve->connections[2];

// if any two match.

if (compare-files(ml->htreq->query, m2->htreq->query)) {
writeduplicate errors(qid, 1);

return;

}

if (compare-files(m2->htreq->query, m3->htreq->query)) {
writeduplicate-errors(qid, 2);

return;

}

if (compare files(ml->htreq->query, m3->htreq->query)) {
writeduplicate-errors(qid, 3);

return;

}

writeduplicate-errors(qid, -1);

}

void mediator::writeerror-resp(str errmsg) {
strbuf resp-buf;

resp-buf << errmsg << "\r\n\r\n";
switch(resp-buf.tosuioo->output(osock)) {
case 1:

delete this;

break;

case -1:

delete this;

117

break;

default:
break;

}
}

void mediator::write-error(str errmsg) {
delay-wresp = delaycb (10, 0, wrap (this,

&mediator::timeout-wresp));

fdcb(osock, selwrite, wrap(this,

&mediator::writeerrorresp, errmsg));

}

void mediator::timeout-vote() {
voteentry *ve = votecache->find(htreq->queryid);
veof = true;
delayvote = NULL;

mediator *tmp;

for (int i=0; i<3; i++) {
tmp = ve->connections[i];
if (tmp) {
tmp->writeerror("False");

}
}
votecache->remove(ve);

}

void mediator::timeout-wresp () {
fdcb(osock, selwrite, NULL);

delay-wresp = NULL;
errhandle(EXITERR, osock);

}

void mediator::errhandle(int type, int fd) {
if (type == EXITERR) {
delete this;

} else {
if (fd == osock) {

shutdown(osock, SHUTWR);

oeof = true;

}

}

if (veof && oeof) {

118

delete this;
}

}

mediator::~mediator() {
if (delay-vote) {
timecb-remove(delay-vote);

delay-vote = NULL;

}

if (delay-wresp) {
timecbremove(delay-wresp);

delay-wresp = NULL;

}

if (osock >= 0) {
fdcb (osock, selread, NULL);

fdcb (osock, selwrite, NULL);

close (osock);

}
}

119

A.3 Gou Voting Equivalence Algorithm

bool isNumber(char inch) {
if ((inch == '1') 11 (inch == '2') 11 (inch == '3')

II (inch == '4') || (inch ='5') (inch == '6')
II (inch == '7') I (inch == '8') I (inch == '9')

II (inch == '0'))
return true;

else

return false;

}

bool compare-files(str fileone, str filetwo) {
ifstream infile(fileone);

ifstream difffile(filetwo);

filebuf *inbuf = infile.rdbuf();

filebuf *diffbuf = difffile.rdbuf();

char inch;

char diffch;

bool idquotes = false;
bool isquotes = false;

bool ddquotes = false;

bool dsquotes = false;

double inum;

double dnum;

bool ibypass;

bool dbypass;
bool numcomp;

bool ichunk;

bool dchunk;

int precision = 10;

int decimal, sign;

bool igotdec, dgotdec;
int idecpos, ddecpos;

bool ijustnew = false;

bool djustnew = false;

// get past headers first

do {
inch = inbuf->snextc();

if (inch == '\n')

120

if (ijustnew)
break;

else
ijustnew = true;

else
if (inch != '\r')

ijustnew = false;
} while ((inbuf->sgetc() ! EOF));

do {
diffch = diffbuf->snextco;
if (diffch == I\n')

if (djustnew)
break;

else
djustnew true;

else
if (diffch != '\r')

djustnew = false;

} while ((diffbuf->sgetc() != EOF));

do {
inch = inbuf->sgetco;

diffch = diffbuf->sgetc();

inum = 0;

dnum = 0;
ibypass = false;
dbypass = false;
numcomp = false;
ichunk = false;
dchunk = false;
igotdec = false;

dgotdec = false;

idecpos = 0;

ddecpos = 0;

// whitespace, LFCR check

while (!idquotes && !isquotes && (inch != EOF) &&

((inch == ' ') 11 (inch == '\r') 11

(inch == '\n') 11 (inch == '\t'))) {
inch = inbuf->snextco;

ichunk = true;

}

121

while (!ddquotes && !dsquotes && (diffch != EOF) &&

((diffch == ' ') 11 (diffch == '\r') II
(diffch == '\n') 11 (diffch == '\t'))) {

diffch = diffbuf->snextco;
dchunk = true;

}

if ((ichunk && !dchunk) 11 (!ichunk && dchunk)) {
warn << "Whitespace/CR mismatch.\n";

return false;

}

// check for num

if (inch == '.') {
igotdec = true;

inch = inbuf->snextco;
if (!isNumber(inch)) {
inbuf->sungetco;

ibypass = true;

}
}

if (diffch == '.) {
dgotdec = true;

diffch = diffbuf->snextcO;
if (!isNumber(diffch)) {
diffbuf->sungetc();

dbypass = true;

}
}

while (!ibypass && (inch != EOF) &&

(isNumber(inch) 11 (inch == '.'))) {
if (inch == '.') {

if (igotdec) {
inbuf->sungetc(;

break;

} else {
igotdec = true;

}
} else {

if (igotdec)

idecpos++;

122

inum = (inum*10)+(atoi(&inch));

}

inch = inbuf->snextc();

numcomp = true;

I

while (!dbypass && (diffch != EOF) &&

(isNumber(diffch) II (diffch == '.'))) {
if (diffch == '.') {

if (dgotdec) {
diffbuf->sungetc();

break;

} else {
dgotdec = true;

}
} else {

if (dgotdec)

ddecpos++;

dnum = (dnum*10)+(atoi(&diffch));

}

diffch = diffbuf->snextc(;
numcomp = true;

}

// quote check

if ((inch == '\'') && (!idquotes)) {
isquotes = !isquotes;

I else if ((inch == '\"') && (!isquotes)) {
idquotes = !idquotes;

I

if ((diffch == '\'') && (!ddquotes)) {
dsquotes = !dsquotes;

} else if ((diffch == '\"') && (!dsquotes)) {
ddquotes = !ddquotes;

}

// output

if (numcomp) {
inum = inum*pow(inum, 0-idecpos);

dnum = dnum*pow(dnum, 0-ddecpos);

123

double diff;

if (inum > dnum)
diff = inum - dnum;

else

diff = dnum - inum;

if (diff > .000001) {
str dstr = fcvt(dnum, precision, &decimal,

&sign);

str istr = fcvt(inum, precision, &decimal,
&sign);

warn << "Numerical value mismatch.\n";
return false;

}

inbuf->sungetco;

diffbuf->sungetc();

} else {
if (inch != diffch) {

// case-sensitivity check

if ((inch >= 65) && (inch <= 90)) {
if ((inch+32) != diffch) {
warn << "Character mismatch.\n";

return false;

}
} else if ((diffch >= 65) && (diffch <= 90)) {

if ((diffch+32) != inch) {
warn << "Character mismatch.\n";
return false;

}
} else {

warn << "Character mismatch.\n";
return false;

}
}

}

inbuf->snextc(;

diffbuf->snextc(;

} while ((inbuf->sgetc(!=EOF) &&

(diffbuf->sgetc()!=EOF))

if (inbuf->sgetc() != diffbuf->sgetc() {

124

return false;

} else {
return true;

}
}

125

Bibliography

[1] Dr. Myron L. Cramer, James Cannady, and Jay Harrell. New Methods of Intru-

sion Detection using Control-Loop Measurement. http: //www. inf owar . com/

survey/ids newm.html, May 1996.

[2] A.J. Flavell. ISO-8859-1 and the Mac Platform. http: //ppewww . ph. gla. ac.

uk/~flavell/iso8859/iso8859-mac.html, 2002.

[3] National Center for Supercomputing Applications. CGI Environment Variables.

http://hoohoo.ncsa.uiuc.edu/cgi/env.html, 2002.

[4] Robert Graham. FAQ Network Intrusion Detection Systems. http: //www. ticm.

com/kb/faq/idsf aq.html, March 2000.

[5] The PostgreSQL Global Development Group. PostgreSQL 7.3devel Reference

Manual. http://developer.postgresql.org/docs/postgres/reference.

html, 2001.

[6] B. Hardekopf, K. Kwiat, and S. Upadhyaya. A Decentralized Voting Algorithm

for Increasing Dependability in Distributed Systems. http: //www. cs . buffalo.

edu/~shambhu/resume/sci200l.pdf, 2001.

[7] Fred Kerby, Steven Moore, and Tim Aldrich. Intrusion Detection FAQ. http:

//www. sans .org/newlook/resources/IDFAQ/IDFAQ.htm, 2002.

[8] Jonathan Korba. Windows NT Attacks for the Evaluation of Intrusion Detection

Systems. Master's thesis, Massachusetts Institute of Technology, Cambridge,

MA, June 2000.

126

[9] Brian Krebs. Businesses Loath To Report Hack Attacks To Feds - FBI. http:

//www.newsbytes . com/news/02/175718.html, April 2002.

[10] D. Mazieres. SFS 0.5 Manual. http: //www. f s. net/sf s/new-york. lcs .mit.

edu: 85xq6pznt4mgfvj4mb23x6b8adak%55ue/pub/sfswww/sf s. ps. gz, 1999.

[11] Kevin E. McDonald. A Lightweight Real-time Host-based Intrusion Detection

System. Master's thesis, Massachusetts Institute of Technology, Cambridge, MA,

June 2001.

[12] Rolf Oppliger. Security Technologies for the World Wide Web. Computer Secu-

rity. Artech House, Inc., Norwood, MA, 2000.

[13] Charles P. Pfleeger. Security In Computing. Prentice-Hall, Inc., Upper Saddle

River, NJ, second edition, 1997.

[14] David A. Rennels. Fault-Tolerant Computing. http: //www. cs .ucla. edu/

~rennels/article98.pdf, 1998.

[15] Tom Robinson. The ISO 8859-1 Character Set. http: //ppewww. ph. gla. ac.uk/

~flavel/iso8859/iso8859-mac.html.

[16] Marcus D. Rosenbaum, Drew Altman, and Robert J. Blendon. Survey Shows

Widespread Enthusiasm for High Technology. http: //www.npr. org/programs!

specials/poll/technology/, December 1999.

[17] William Stallings. Network and Internetwork Security: Principles and Practice,

chapter 6, pages 207-237. Prentice-Hall, Inc., Englewood Cliffs, NJ, 1995.

[18] Inc. Unicode. What Is Unicode? http://www.unicode.org/unicode/

standard/WhatIsUnicode.html, 2002.

[19] W3C. The HTML 4.01 Specification. http://www.w3.org/TR/REC-html4O/

charset .html, December 1999.

127

[20] R. Wang, F. Wang, and G.T. Byrd. SITAR: A Scalable Intrusion-Tolerant Archi-

tecture for Distributed Server. http://www.anr.mcnc.org/projects/SITAR/

papers/smc01sitar.ps.gz, 2001.

[21] Team Web. Special Characters in HTML. http: //www. utexas . edu/learn/

html/spchar.html, April 2001.

[22] F. Webber, J. Loyall, P. Pal, and R. Schantz. Building Adaptive and Agile Appli-

cations Using Intrusion Detection and Response. http: //www. dist- systems.

bbn. com/papers/2000/NDSS/ndss00 .ps, February 2000.

[23] F. Webber, H.V. Ramasamy, J. Gossett, J. Loyall, J. Lyons, M. Atighetchi,

M. Cukier, P. Pal, P. Pandey, R. Schantz, R. Watro, and W.H. Sanders. In-

trusion Tolerance Approaches in ITUA. http: //www. crhc. uiuc. edu/PERFORM/

Papers/USAN-papers/01CUKO1.pdf, July 2001.

[24] Seth E. Webster. The Development and Analysis of Intrusion Detection Algo-

rithms. Master's thesis, Massachusetts Institute of Technology, Cambridge, MA,

June 1998.

[253 Simson L. Garfinkel with Gene Spafford. Web Security and Commerce. O'Reilly

and Associates, Inc., Cambridge, MA, first edition, June 1997.

128

