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Abstract

Many complex decision making problems like scheduling in manufacturing systems,

portfolio management in finance, admission control in communication networks etc.,

with clear and precise objectives, can be formulated as stochastic dynamic program-

ming problems in which the objective of decision making is to maximize a single

"overall" reward. In these formulations, finding an optimal decision policy involves

computing a certain "value function" which assigns to each state the optimal reward

one would obtain if the system was started from that state. This function then nat-

urally prescribes the optimal policy, which is to take decisions that drive the system

to states with maximum value.
For many practical problems, the computation of the exact value function is in-

tractable, analytically and numerically, due to the enormous size of the state space.
Therefore one has to resort to one of the following approximation methods to find

a good sub-optimal policy : (1) Approximate the value function. (2) Restrict the
search for a good policy to a smaller family of policies.

In this thesis, we propose and study actor-critic algorithms which combine the

above two approaches with simulation to find the best policy among a parameterized
class of policies. Actor-critic algorithms have two learning units: an actor and a

critic. An actor is a decision maker with a tunable parameter. A critic is a function
approximator. The critic tries to approximate the value function of the policy used

by the actor, and the actor in turn tries to improve its policy based on the current
approximation provided by the critic. Furthermore, the critic evolves on a faster

time-scale than the actor.

We propose several variants of actor-critic algorithms. In all the variants, the

critic uses Temporal Difference (TD) learning with linear function approximation.
Some of the variants are inspired by a new geometric interpretation of the formula
for the gradient of the overall reward with respect to the actor parameters. This

interpretation suggests a natural set of basis functions for the critic, determined by
the family of policies parameterized by the actor's parameters. We concentrate on

the average expected reward criterion but we also show how the algorithms can be
modified for other objective criteria. We prove convergence of the algorithms for
problems with general (finite, countable, or continuous) state and decision spaces.

To compute the rate of convergence (ROC) of our algorithms, we develop a gen-

eral theory of the ROC of two-time-scale algorithms and we apply it to study our
algorithms. In the process, we study the ROC of TD learning and compare it with
related methods such as Least Squares TD (LSTD). We study the effect of the basis
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functions used for linear function approximation on the ROC of TD. We also show
that the ROC of actor-critic algorithms does not depend on the actual basis functions
used in the critic but depends only on the subspace spanned by them and study this
dependence.

Finally, we compare the performance of our algorithms with other algorithms
that optimize over a parameterized family of policies. We show that when only the
"natural" basis functions are used for the critic, the rate of convergence of the actor-
critic algorithms is the same as that of certain stochastic gradient descent algorithms.,
However, with appropriate additional basis functions for the critic, we show that our
algorithms outperform the existing ones in terms of ROC.

Thesis Supervisor: John N. Tsitsiklis
Title: Professor
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Chapter 1

Introduction

Actor-Critic algorithms (Barto et al., 1983) originated in the Artificial Intelligence
(AI) literature in the context of Reinforcement Learning (RL). In an RL task, an agent

learns to make "correct" decisions in an uncertain environment. Unlike supervised

learning in which the agent is given examples of "correct" behavior, an RL agent

has to work with much less feedback as it is given only rewards (or penalties) for its

decisions. Moreover, the decision making consists of several stages and the reward

may be obtained either at the end or at each stage of the decision making process.

The main difficulty with such problems is that of "temporal credit assignment" which
is to rank the decisions based on the overall reward when only the immediate rewards

at each stage are available.

Some of the methods of RL were in part inspired by studies of animal learning and

hence were heuristic and ad hoc. Nevertheless, some of them have been systematized

by establishing their connections with dynamic'programing and stochastic approxi-

mation. The original purpose of RL research was two-fold. On one hand, the goal

was to understand the learning behavior of animals and on the other, to apply this

understanding to solve large and complex decision making (or control) problems. In

this thesis, the focus is only on control or decision making in large systems and on

the development of learning methods with good mathematical foundations.

The outline of this chapter is as follows. In the next section, various issues that

arise in management and control of complex systems and a broad overview of the

approaches to tackle them are discussed. Then, a survey of the relevant literature
is presented. The third section of this chapter introduces actor-critic algorithms and

discusses various open problems. The final two sections of this chapter describe the
contributions and the outline of the thesis.

1.1 Control of Complex Systems

Although "complex systems" are difficult to characterize precisely, these systems are

typically uncertain, distributed, and asynchronous. Scheduling in manufacturing sys-

tems, admission control in communication networks, admission and power control

in wireless networks, inventory control in supply chains, etc., are some examples of
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control problems related to complex systems. The following are some salient features

of such control problems :

1. The total information about the state of the system (which is seldom available)

relevant to the decision making process, is high-dimensional. In control theoretic

terms, this translates to a large number of states (in the discrete case) or a large

dimension of the state space (in the continuous case). Therefore a realistic

control policy can only use a small number (compared to the dimension of the

state space) of features extracted from the state information. Furthermore, the

choice of these features (also called feature extraction) is a part of the control

design, unlike in the case of traditional partially observed control problems.

2. Models for such large and complex systems are difficult and costly to construct.

Even when such models are available, it is not easy to solve corresponding

the control problems as they are intractable. Therefore, one has to resort to

simulation to understand the dynamics and design a control policy.

3. Such problems cannot be solved by general purpose methods due to their in-

herent computational complexity and the size of underlying systems. Instead

one needs methods tuned to specific systems. This in turn requires engineering

insight, intuition, experimentation and analysis.

The types of problems we have mentioned above can often be formulated as optimal

control problems in which the objective is to maximize a single "overall" reward over

all policies. Many of the simplified versions of such problems have been very well

studied under the umbrella of Dynamic Programming (DP) (Bertsekas, 1995b), and
many impressive results on the existence and structure of the optimal policies have

been obtained.

The key concept in DP is that of a value function. The value function associated

with a particular policy assigns to each state the overall reward one would obtain if

the system was started from that state and the given policy was followed to make

the decisions. Finding an optimal decision policy using DP involves computing the

optimal value function (or simply the value function) which satisfies a nonlinear equa-

tion called the Bellman or the DP equation. This function then naturally prescribes

an optimal policy, which is to take decisions that drive the system to states with
maximum value. However, the classical DP computational tools are often inadequate

for the following reason.

The amount of computational resources (in particular, space) required for classi-

cal dynamic programming methods is at least proportional to (if not polynomial or

exponential in) the size of the state space. The number of states (or the dimension
of the state space in continuous case) in many practical problems is so high that it

prohibits the use of the classical methods. This has been a major drawback of com-

putational dynamic programming and has been named the "Curse of Dimensionality"

by Bellman.
Due to the inadequacy of DP tools, the approach to control of complex systems

has mainly been heuristic and ad hoc. In an attempt to bridge the gap between
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the existing theory of DP and the practice of control design for large systems a new

field of research has emerged. In addition to developing new methods based on DP

and simulation, this research laid foundations for many existing RL methods and

demarcated the science and the art in these methods. The thesis contributes to

this field by formalizing actor-critic algorithms and providing an analysis of their

convergence and rate of convergence.

There are at least three different approaches to handle the difficulties previously

mentioned .

Model approximation One approach is to approximate a complex system by a

simpler tractable model and apply an optimal policy, designed using DP, for the

simpler model to the complex system. Taking this one step further, one can start with

a class of simple tractable models and then determine, through some identification

procedure, the best approximation (among this class) for the complex system.

Value function approximation The second approach is to approximate the op-

timal value function for the control problem. Often, the "form" of this function can

be guessed to a certain extent in spite of the complexity of the system. For example,

one might guess that the solution is monotonic or concave or polynomial in the state

variables. Then, one can either hand code a value function or select the "best" ap-

proximation from a class of functions with these properties. Once an approximation

to the value function is obtained, it can then be used to generate controls as if this

were the exact value function.

Policy approximation Finally, instead of approximating the model or the value

function, a good policy can be directly selected from a set of candidate policies,

arrived at through various considerations like convenience of implementation and

prior insights into the structure of an optimal policy. A straightforward strategy to

selection of good policies, that is feasible only with finite and reasonably small set

of candidate policies, is to evaluate the performance, in terms of overall reward, of

each candidate policy. A more widely applicable approach is possible when the set of

policies can be parameterized by a vector of reasonably small dimension. In this case,

the selection of a good policy can be thought of as an optimization over the parameter

space, where the reward of a parameter vector is the overall reward obtained by using

the corresponding policy. Since the reward of a parameter can only be determined

by simulation, stochastic optimization methods are used to determine good policy

parameters. The candidate policies are often chosen to be randomized to incorporate

sufficient exploration of decisions and also to make the overall reward a differentiable

function of the policy parameters. In cases where the implementation of a randomized

policy is not appropriate, the randomized policy obtained by this approach can be

"rounded off" to its "nearest" deterministic policy.

While many permutations and combinations of the above three approaches are
possible, in this thesis, we are primarily concerned with methods called actor-critic

algorithms which combine policy approximation with value function approximation.
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The aim of this thesis is to show that these methods have significant advantages over

their counterparts which are based solely on policy approximation.

Though value function approximation methods are adequate for many applica-

tions, there are other important applications where the actor-critic or policy approx-

imation methods might be more desirable than value function methods:

" In problems with complicated decision spaces, given a value function, the com-

putation of the "optimal" decisions implied by the value function may be non-
trivial because it involves an optimization of the value function over the decision

space. In such problems, storing an explicit representation of a policy may be

advantageous compared to an implicit representation based on a value function.

" In some problems, the policy implied by a value function approximation may not

be implementable, e.g., due to the distributed nature of the state information.

In these cases, it is more appropriate to optimize over an "implementable"

family of policies than to approximate value function.

The general structure of actor-critic algorithms is illustrated by Figure 1-1. As the
name suggests, actor-critic algorithms have two learning units, an actor and a critic,

interacting with each other and with the system during the course of the algorithm.

The actor has a tunable parameter vector that parameterizes a set of policies and at

any given time instant, it generates a control using the policy associated with its cur-
rent parameter value. The actor updates its parameter vector at each time step using

its observations of the system and the information obtained from the critic. Similarly,

at each time step, the critic updates its approximation of the value function corre-
sponding to the current policy of the actor. Note the similarity between Actor-Critic
methods and policy iteration (Puterman, 1994) in dynamic programming. While the

value function approximation methods can be thought of as simulation-based coun-

terpart of value iteration, actor-critic methods can be thought of as counterparts of

policy iteration.

1.2 Previous Work

Adaptive control methods similar to actor-critic algorithms were first proposed in

(Witten, 1977). The actor-critic architecture as described by Figure 1-1 was intro-

duced and applied to the pole-balancing problem (Michie & Chambers, 1968) in the
seminal work of (Barto et al., 1983). Later, these methods were extensively stud-
ied in (Sutton, 1984; Anderson, 1986). A key step was taken by (Sutton, 1988) by
separating the critic and treating it as a general method for policy evaluation (ap-
proximating the value function corresponding to a particular policy). This policy

evaluation method was named temporal difference learning. Finally, (Watkins, 1989)
developed a method called Q-learning for approximating the optimal value function.

This separation of policy evaluation methods and the advent of Q-learning led to a

shift of focus of RL research from actor-critic schemes to those based on value func-
tion approximation. Another reason for this shift of focus was that the convergence

10
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of value function approximation methods was better understood than that of the

actor-critic schemes.

The convergence of Q-learning and temporal difference learning with lookup-table

representations and state aggregation was established in (Tsitsiklis, 1994; Jaakola

et al., 1994; Abounadi et al., 2001; Abounadi et al., 1998). Similarly, the convergence
of temporal difference learning with linear function approximation was established in

(Tsitsiklis & Van Roy, 1997; Tsitsiklis & Van Roy, 1999a). While the (optimal) value
function approximation methods led to some impressive empirical results, they lacked

satisfactory convergence guarantees except for some special function approximation

schemes (Tsitsiklis & Van Roy, 1996; Ormoneit & Sen, 2000; Ormoneit & Glynn,
2001) and optimal stopping problems (Tsitsiklis & Van Roy, 1999b). For a textbook
account of RL and its history see (Bertsekas & Tsitsiklis, 1996; Sutton & Barto,
1998).

Meanwhile, another approach based only on policy approximation was explored

by (Glynn, 1986; Glynn, 1987) and later independently rediscovered by (Williams,
1992). The convergence analysis of these methods was carried out in (Marbach, 1998;
Marbach & Tsitsiklis, 2001; Baxter & Barlett, 1999). In contrast to value function

approximation, policy approximation schemes have good convergence guarantees but

suffer from slow convergence.

Since their introduction in (Barto et al., 1983), actor-critic algorithms have eluded

satisfactory convergence analysis. Due to this lack of understanding and poor per-

formance of policy approximation methods, value function based methods received

much of the attention even though the actor-critic architecture predated value func-
tion approximation methods. In (Williams & Baird, 1990), an attempt was made to

understand these algorithms through the analysis of asynchronous versions of policy
iteration. A heuristic analysis of a special case of actor-critic algorithms was presented

in (Kimura & Kobayashi, 1998).
The two main reasons the actor-critic methods are difficult to analyze are the

following.

" First, for the critic to provide an accurate evaluation of the actor's policy, it

should observe, for an indefinite amount of time, the behavior of the system
under the influence of the actor's decisions. However, in actor-critic algorithms,

the actor's decision policy changes continuously.

" Second, there can be large approximation errors, due to function approximation,

in the critic's evaluation of the policy and it is not clear whether a policy can

be improved even with an erroneous approximation of a value function.

In (Konda, 1997; Konda & Borkar, 1999), the first issue was circumvented by using
different step-sizes for the actor and the critic: the critic uses infinitely large step-
sizes relative to the actor. Therefore, the actor looks stationary to the critic and the

critic behaves as if it can evaluate actor's policy instantly. However, the algorithms in
(Konda, 1997; Konda & Borkar, 1999) use look-up table representations and therefore

do not address the second issue.
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The following section discusses these issues in more detail and describes the con-

tribution of the thesis towards the understanding of actor-critic algorithms.

1.3 Problem Description

To make the discussion more concrete and to put the contributions of the thesis in

perspective, a semi-formal discussion of some preliminaries and actor-critic algorithms

is presented in this section. To keep the discussion simple, consider a finite state,

discrete-time stochastic system, with state space X, that evolves under the influence

of a decision making agent as follows:

* At each time instant k, the agent chooses a decision Uk, from a finite set of

choices U, based on the current state of the system Xk.

9 The agent receives a reward g(Xk, Uk) for his decision at time k.

9 The system moves to a new state Xk+1 according to transition probabilities

p(Xk+11Xk, Uk) where for each state x and decision u, p(jIX, u) is a probability
mass function on the state space X.

A policy is a mapping M that assigns to each state x, a probability mass function ,u(-IX)
on the decisions according to which the decisions are generated when the system is in

state x. A special class of policies is the class of deterministic policies which can be

thought of as functions p: X - U. For each policy p, the associated value function

V : X -+ R (corresponding to the total reward problem) is defined as

CO

V,(x) = EE[g(Xk, Uk)IXo = x],

k=O

where E, denotes the expectation with respect to the probability distribution of the

process {(Xk, Uk)} when the agent uses policy p to generate decisions. The optimal

value function is defined by

V(x) = maxV,(x).

For the value function to be finite for all policies, assume that there is an absorbing,

reward-free, terminal state t which is hit with probability one from all starting states.

A standard result in dynamic programming states that the optimal value function is
the unique solution of the DP equation (or the Bellman equation):

V(cc) = max [ (x, u) + ZP(y IXU) V(Y)1

Furthermore, deterministic policies p which take decisions that maximize the r.h.s in

the Bellman equation are optimal.

13



Note that both the value function V and the probabilities p(ylx, u) are needed to
compute the optimal policy. However, for some systems, the transition probabilities

may be unavailable. For this reason, the concept of a Q-value function (also called

state-decision value function) was introduced in (Watkins, 1989). The state-decision

value function Q, : X x U -* IR of a policy p is defined as

00

Qjx, u) = E ,[9(Xk, Uk) Xo x-, Uo =U].
k=O

It is now easy to see that the optimal state-decision value function

Q (X,u) = max Q,(x, u),

satisfies a modified Bellman equation

Q(x, ') = g(x, u) + 5p(yx, u) max Q(y, i)

and a policy which takes decisions that maximize Q(x, u) is optimal.

Some value function based methods learn an approximation Q of the optimal

state-decision value function using simulation. This learned approximation Q is used

to obtain an approximation to an optimal policy by setting

p(x) = arg maxQ(x, u).
U

There are two problems with this approach. There are counterexamples showing that

these methods may fail to converge. Furthermore, when they converge, there are no

guarantees on the quality of the policies obtained using these methods (Bertsekas,

1995a).
In contrast, methods called temporal difference (TD) learning which approximate

state or state-decision value function for a particular policy p are well understood.
These methods often use linear function approximation schemes. That is, they ap-

proximate the value function V by a linear combination of basis functions:

1(x) =E i ()

where the ri are tunable parameters and the q' are predetermined basis functions,

often called features. Such methods are guaranteed to converge and are widely ap-

plicable (Tsitsiklis & Van Roy, 1997). For example, TD methods can be used in
the policy evaluation step of policy iteration. Policy iteration is a classical DP algo-

rithm used to compute an optimal policy. It starts with a deterministic policy /o and

improves it iteratively as follows:

Policy Evaluation Compute the value function V,, of the current policy 1I.

14



Policy Improvement A new policy gk+1 is obtained by

PLk+(X) =argmax [9(x~u) ± p(yjx, u)V,&Y)j

It is well known, that if the policy evaluation is exact, the policy is strictly improved in

each iteration, unless the current policy is optimal. Therefore, this method converges

to an optimal policy after a finite number of iterations. When approximation methods

such as TD are used in the policy evaluation step, the policy need not improve in

each iteration. However, it can be shown that in the limit, the algorithm performs a

random walk on a set of policies whose distance from optimality is at most linear in

the approximation error during the policy evaluation phase (Bertsekas & Tsitsiklis,

1996).
The oscillatory behavior of approximate policy iteration is due to the fact that

in the policy improvement step, the algorithm takes a large step in policy space,

based only on an approximation. This, in turn, is due to the fact that the search

for an optimal policy during policy iteration is restricted to deterministic policies

and the fact that large steps (i.e., jumps) are needed to move from one deterministic

policy to another. The oscillatory behavior can be potentially reduced if the search

is performed over a set of randomized policies (which is continuous). However, the

set of randomized policies can be huge in real world problems.

Therefore, we are led to the problem of optimizing the expected total reward over

a family of policies {po; 0 E ]R } parameterized by a vector 0 of small dimension.

The choice of this family of policies may be due to prior intuition, analysis, exper-

imentation or simply a belief that it contains a good approximation to an optimal

policy. Whatever the reasons behind this choice, once it is made, the optimization

over the parameterized family of policies {po; 0 c ]R} is a well defined problem and is

central to our thesis. We assume that the system transition probabilities p(yIx, u) are

unknown but only a simulator of the system is available, and that we have an "actor"

with a tunable parameter 0 that generates decisions using the policy corresponding

to the value of its parameter.

This problem has already been well studied in (Glynn, 1986; Glynn, 1987; Mar-
bach, 1998; Baxter & Barlett, 1999). However, the algorithms proposed in these refer-
ences do not involve value function approximation and can be viewed as "actor-only"

algorithms. These "actor-only" methods suffer from large variance and therefore can

be unsuitable for certain problems.

The aim of this thesis is to explore the role of value function approximation in

optimizing over a parameterized family of policies and to understand actor-critic

algorithms. In particular, we seek answers to the following questions:

* How is value function approximation relevant to the optimization over a family

of policies?

* Value function approximation is crucial for policy improvement in policy itera-

tion. How crucial is value function approximation for actor-critic algorithms?
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9 What are the advantages of actor-critic schemes over actor-only schemes?

While attempting to answer the above questions in Chapters 5 and 8, the thesis makes
contributions on three fronts described separately in the following subsections.

1.3.1 Actor-Critic Algorithms

The thesis proposes in Chapter 5, two variants of actor-critic algorithms which use TD

learning with linear function approximation for the critic. Chapter 5 also discusses

various issues that arise in the design of the proposed algorithms. The critic part

of the actor-critic algorithms is described and analyzed in Chapter 4. The gradient

formulas on which the actor updates are based, are established in Chapter 2, for

various reward criteria, and for systems with general state and action spaces. Under

certain conditions presented in Chapters 2, 4 and 5 on

* the smoothness of dependence of the transition probabilities ,o on the policy

parameters

* the ergodicity of the system

* the bounds on the growth of feature vectors used by the actor and the critic

* the relation between the features used by the critic and the family of policies

used by the actor

* the relation between step-sizes used by the critic and the step-sizes used by the

actor

we prove that the proposed algorithms converge, in a certain sense, with probability

one. Chapter 2 considers some examples and verifies some of the assumptions.

1.3.2 Rate of Convergence (ROC)

ROC of episodic variants of a special case of the algorithms proposed in this thesis is
studied in Chapter 8. The ROC of these algorithms is compared with that of their
actor-only counterparts. We also study the rate of convergence of TD and related

algorithms in Chapter 6. In particular, this chapter studies the effect of the choice of

feature vectors and the eligibility traces on the ROC of TD algorithms

1.3.3 Stochastic Approximation

This thesis proves two new results on stochastic approximation that are applicable

to a wider context. Chapter 3 contains a result on the tracking ability of linear
iterations driven by Markov chains, which is useful in designing certain two-time-

scale algorithms. Chapter 7 contains the first results on the ROC of two-time-scale

algorithms.
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1.4 Contributions and Outline of the Thesis

The rest of the thesis is divided into eight chapters. The second chapter formulates the

central problem of the thesis, i. e., the optimization Markov decision processes over

a parameterized family of policies. The next three chapters are devoted to actor-

critic algorithms and their convergence analysis. In the remaining chapters we study

the rate of convergence of the algorithms proposed in the thesis. In the process, we

establish a result on the rate of convergence of two-time scale stochastic approximation

(Chapter 7) and also study the rate of convergence of temporal difference learning

algorithms (Chapter 6). In Chapter 8, we use the results of the previous two chapters

to understand the rate of convergence of actor-critic algorithms. The concluding

chapter summarizes the thesis and discusses future research directions. The detailed

contributions of each of the chapters are as follows.

Chapter 2

In Chapter 2, we start with a formal definition of Markov decision processes and

randomized stationary policies with state and decision spaces that are not necessarily

discrete. We formally describe the problem of optimization over a parametric family

of policies. We present conditions under which the average reward is a well-behaved

function of the policy parameters and we derive a formula for its gradient. We present

an example and verify these conditions for that particular example. Throughout the

chapter, we comment on the specialization of the assumptions and results to Markov

decision processes with finite state space. We also extend these results to other criteria

such as discounted and total rewards. Finally, we present the intuition behind the

formulas for the gradient of overall reward.

Chapter 3

In this chapter, we prove a general result that will be used in the next chapter. This

result concerns stochastic approximation driven by Markov noise whose transition

probabilities change "slowly" with time. The proof is quite technical as we consider

Markov chains with more general state spaces than usually encountered. It is the first

available result on the tracking ability of stochastic approximation with decreasing

step-sizes.

Chapter 4

This chapter describes several variants of TD algorithms used in the critic part of

our algorithms. We describe TD algorithms for different reward criteria. We analyze

the convergence of TD algorithms only for the case of average reward (the analysis

of the algorithms for other criteria is similar). In particular, the central result of this
chapter is the following:

In any variant, the difference between the critic's approximate value function and

the value function to which the critic would converge if the actor parameters were to
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be frozen at their current values, becomes arbitrarily small with time. This result is

the first available on "controlled TD" albeit with "slowly" varying control policy.

Chapter 5

This chapter describes several variants of actor-critic algorithms for optimization of
the average reward. We explain why these variants are expected to work, in view of

the gradient formulas and the results on controlled TD of the previous chapters. The

variants use either a TD(1) or a TD(A), A < 1, critic with linear function approxima-

tion. We also discuss the choice of basis functions for each of these critics. We prove

a convergence result for the algorithms in this chapter, which is the first available on

the convergence of actor-critic algorithms with function approximation. This result

clarifies various ingredients needed for the convergence of actor-critic algorithms.

Chapter 6

This chapter studies the rate of convergence of temporal difference and related meth-

ods. We propose a common figure of merit for TD and related policy evaluation

methods. We calculate this figure of merit for the case of TD and compare it with

that of a related method called Least Squares TD (LSTD). The results obtained in

this chapter are as follows.

1. We show that the sequence of value function approximations obtained by LSTD
is dependent only on the subspace spanned by the basis functions.

2. The rate of convergence of TD is worse than that of LSTD.

3. We derive a bound on the rate of convergence of LSTD that captures the de-

pendence on the factor A and the mixing time of the Markov chain.

These results are the first on the rate of convergence of TD with function approxima-

tion.

Chapter 7

In order to analyze the rate of convergence of actor-critic algorithms, we need a theory
on rate of convergence for two-time-scale stochastic approximation. In this chapter,

we start with two-time-scale linear iterations driven by i.i.d. noise and present results

on their rate of convergence. We then extrapolate these results to the more general

case of non-linear iterations with Markov noise. We derive, as a consequence of our

results, the well known result on optimality of Polyak's averaging. We also discuss

informally the effect of separation of time-scales on the rate of convergence. The

results of this chapter are the first on rate of convergence of two-time-scale algorithms.
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Chapter 8

In this chapter, we study the rate of convergence of a class of actor-critic algorithms
by combining various results from previous chapters. In particular, the following are
the contributions of this chapter:

1. We show that, as in the case of LSTD, the rate of convergence of actor-critic
algorithms depends only on the subspace spanned by the basis functions used
by the critic.

2. If the critic uses TD(1), we show that the rate of convergence of actor-critic
methods is same as that of certain actor-only methods.

3. We illustrate, with a numerical example, that the performance (both rate of con-
vergence and quality of solutions) of actor-critic methods can be substantially
better than that of corresponding actor-only methods.
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Chapter 2

Optimization over a Family of
Policies

In this chapter, Markov Decision Processes (MDPs) are defined formally and the

problem of optimizing them over a parameterized family of policies is formulated
precisely. The state and decision spaces of MDPs considered in this thesis are assumed

to be either discrete or real Euclidean spaces, or a combination thereof. When the

state and decision spaces are finite, most of the technical difficulties encountered in

this chapter vanish.

In the next section, MDPs, randomized stationary policies (RSPs), and various

objective criteria for optimizing MDPs are defined formally. Later, the formulas for

the gradients of various objective criteria with respect to the parameters of RSPs are

derived in separate sections.
The MDP framework is quite broad and includes a great many optimization mod-

els as special cases. For a comprehensive treatment of MDPs and their applications

see (Puterman, 1994). For recent advances, see (Feinberg & Schwartz, 2001).

2.1 Markov Decision Processes

Markov decision processes are models of discrete time systems which evolve randomly

under the influence of a decision maker or a controller. The influence of decisions on

the evolution of the system is often described by an equation of the form

Xk+1 = f (Xk, UkWk),

where {Wk} is an i.i.d. sequence of random variables that represents uncertainty in

the system, and Xk, Uk denote the system state and the decision at time k. The

decision maker obtains a reward for his decisions at each time step and the objective
is to find a decision policy that maximizes an "overall reward".

An MDP is formally defined as follows.

Definition 2.1. A Markov decision process (MDP) is a discrete-time stochastic dy-
namical system described by the following ingredients:
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1. State space X, the elements of which are called states;

2. Decision or control space U;

3. Transition kernel p, which is a stochastic kernel on the state space X given

X x U;

4. One-stage reward function g: X x U - IR.

The system evolves as follows. Let Xk denote the state of the system at time k. If

the decision maker takes decision Uk at time k, then:

1. The system moves to the next state Xk+1 according to the probability law

p(-|Xk,Uk);

2. The controller or decision maker receives a reward of g(Xk, Uk).

The state space X and the decision space U are assumed to be of the form Rd x E
where d is a nonnegative integer and E is a countable set.' The collections of Borel

subsets of X and U are denoted by B(X) and B(U) respectively.

Informally, the "rule" with which the decision maker computes his decision based

on his observations, is called the decision policy. A formal description of the space of

all decision policies is quite technical and tedious. However, for all practical purposes,
one can restrict attention to a special class of decision policies called Markov random-

ized polices. A Markov randomized policy (MRP) is one by which the decision maker
randomly chooses a decision based only on the current state and time. An MRP is

described by a sequence m = {Ik} of stochastic kernels on U given X. An MRP in

which all the stochastic kernels fk are the same is called a randomized stationary

policy (RSP). That is, the decision chosen using an RSP depends only on the current

state but not the current time.

Note that the transition kernel alone does not completely describe the evolution
of the system. The probability distribution of the initial state X0 and the decision

policy are also needed to describe completely the probability law of the state-decision

process {(Xk, Uk)}. Furthermore, the state-decision process {(Xk, Uk)} is a (time-
inhomogenous) Markov chain when the decision policy is an MRP. Let PA, denote
the probability law of the state-decision process when the starting state of the system

is x and the decision policy is the MRP yt = {k}. Let E,, denote expectation with

respect to P,2. The objective of optimizing an MDP is to maximize a "performance"

or an "overall reward" criterion which can be one of the following:

Average Reward The average reward associated with policy p and starting state

x is defined as

k-1

lim sup-S EA,,[g(Xe, U,)].
kkL=0

'However, the results of this thesis extend easily to problems in which the state and action spaces
are Polish spaces (complete separable metric spaces).
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Discounted Reward For this criterion, p is a fixed discount factor. The dis-
counted reward associated with a policy a and a starting state x is defined as

00

PkEIX[g(xk, Uk)].
k=O

Total Reward The total reward associated with a decision policy P and a starting

state x is defined as

00

E EA,x[g (X, U)].

k=O

The optimization of MDPs, in the classical sense, means finding an MRP that
yields maximum overall reward. Under reasonable conditions, an optimal policy that

is deterministic and stationary exists, and is optimal for all starting states. However,
finding an optimal policy in most real world problems is computationally unfeasible.

Therefore a different optimization problem is studied in this thesis. This involves

finding a policy that is optimal over a family of RSPs parameterized by a finite
number of parameters. The premise is that a good family of policies is known a priori

and the optimization over this small family of policies is easier than optimization
over all policies. Indeed, the new optimization problem can be viewed as a non-

linear program on the parameter space of the family of policies. For this non-linear

program to be manageable, we require that the parametric family of policies be such

that the overall reward is differentiable with respect to the parameters of the policy.
The policies are chosen to be randomized instead of deterministic, because of the

following reasons:

1. In the case of discrete state and decision spaces, the set of all deterministic

policies is also discrete. Therefore a "smooth" parameterization of the set of

deterministic policies is not possible.

2. In the case of continuous decision spaces, even when a smooth parameterization

of deterministic policies is possible, the map from a deterministic policy to the
overall reward corresponding to that policy may not be differentiable. Therefore,
the map from the policy parameters to the overall reward associated with the

corresponding policy may be nonsmooth.

The new optimization problem is precisely formulated in the next section. The next

section also discusses various issues involved in the choice of the family of policies to

optimize over.

2.2 Problem Formulation

A parametric family of RSPs for MDPs with discrete decision spaces can be repre-
sented by a parameterized family of probability mass functions. Similarly, for an MDP
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with continuous decision spaces, a parametric family of RSPs can be represented by a

family of probability density functions. To describe a parametric family of RSPs for

more general decision spaces, we use a "reference" or a "base" measure. Let v be a

fixed measure on the decision space U. Then a parameterized family of RSPs can be

represented by a parametric family of probability density functions with respect to

the measure v. In particular, we consider a parametric family of RSPs parameterized

by 0 E Rn, and specified by a parametric family {po; 0 c R} of positive measurable

functions on X x U such that for each x C X, Po (-I x) is a probability density function

with respect to v, i.e.,

L pA(ux)v(du) = 1, V0, X.

The semantics of the family of functions po(ulx) depend on the base measure

v. For example, if v assigns positive mass to a decision a then, for a state x and

parameter 0, po(ux)v({u}) equals the probability that decision u is taken when the

policy used corresponds to 0 and the system state is x. For discrete decision spaces,

the most natural base measure is one that assigns unit mass to each decision. In this

case, go(ux) denotes the probability that decision a is taken given that the current

state is x, under the policy corresponding to 0. However, when the decision space is a

combination of discrete and continuous spaces, the base measure V and the semantics

of the functions po(uaj) might be more complicated. The following are some examples

of a parameterized family of RSPs.

Example 2.2. In many dynamic programming problems, one can either guess or

prove rigorously that the solution to the Bellman equation has certain structural

properties, e.g., the solution is a quadratic in x, u, when X, U are subsets of R. In

this case, one usually starts with an approximation architecture {Qo : e EIR'} for

Watkin's Q-value function (Watkins, 1989; Watkins & Dayan, 1992; Bertsekas &

Tsitsiklis, 1996; Sutton & Barto, 1998) with the required structural properties and

finds, through some learning algorithm, the best fit from this family for the true

Q-value function. The hope is that the performance of the greedy policy,

p(c) = arg max Q*(x, a),

with respect to the "best fit" Q*, will be close to that of the optimal policy.

The knowledge of the structure of the solution to the Bellman equation can be

used in a different way in the context of actor-critic algorithms. Assuming that the

decision space is discrete, we first approximate the set of greedy policies with respect

to the family {Qo 0 £ EIRh} by the set of RSP's {gu 0 c ER}, where

exp OXU

A0(aUcv) = ep(9oTu)) VXcv )CU

exp(Qo(xu)

We then apply our actor-critic algorithms to find the optimal RSP in this family of
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RSPs. Note that the above approximation of greedy policies by RSP's depends on

a parameter T which we call the temperature. As the temperature T goes to zero,
the above policy becomes more and more deterministic and greedy with respect to

the Q-function Qo. Therefore, if deterministic policies are more desirable than RSPs

for an application, the result of our algorithm (say the policy associated with 0*) can

be rounded off to its nearest deterministic policy by taking the greedy policy with
respect to the state-decision value function QO..

The following is a more concrete example of a finite state MDP and a family of

RSP's.

Example 2.3. Another concrete example of a family of RSP's is the class of threshold

policies for multiple service, multiple resource (MSMR) systems (Jordan & Varaiya,

1994). In these systems the state space is a subset of Z+i, where Z+ is the set of non-

negative integers. The i-th component of the state vector x = (Xi, ..-. ,cc.) represents

the number of customers of type i in the system who need resources (ai,... , aip),

and where j-th component aij denotes the amount of resources of type j. It is easy

to see that, for a resource constrained system the state space is of the form

X = {x E Z+ : Ax 4 ,

where the vector r denotes available resources, and where it is the matrix with ele-

ments ai 1 . The problem, in these systems, is to decide whether to admit or reject a

customer when he arrives. Note that, when we model the above decision problem as

an MDP the state consists of the vector x and the type i of the customer requesting

service. A natural class of control policies is that of threshold policies in which we

have a matrix B and thresholds b. Whenever a customer of type i arrives, Bx is

calculated with x being the current state. The i-th component of Bc is compared

with the i-th component of b and the customer is admitted only if the former is lesser

than the later. This class of policies can be approximated by the following class of
RSPs. If we denote the decision to admit by 1 and the decision to reject by 0 the

threshold RSP's can be described as

[B ,b(1 , i) = - 1 + tan h biT) ) '

2(T

where T is the temperature parameter.

Note that, in all of the above examples and in general, the family of RSPs chosen

to optimize over approximates a deterministic family of policies. The accuracy of

the approximation depends on the parameter T which we call the temperature of the

family of policies. As the temperature T goes to zero, the family of RSPs "freezes"
to a family of deterministic policies. While it is the optimal policy in the family of
deterministic policies that one is usually interested in, the optimization is performed
over the family of RSPs. Therefore, it is important to understand how randomization

affects the "quality" of the policies and how the optimal policy in the family of

deterministic policies is related to the optimal policy in the family of RSPs. The
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answers to these questions in general are problem specific, and the extent to which
our formulation is applicable for real world problems where the use of a randomized

policy does not make much sense (e.g., inventory control) depends on these answers.

However, there are some general comments that we can make about the appropriate

choice of the temperature parameter T. If the temperature is chosen to be too low,

the resulting non-linear program might involve optimizing a function that is almost
discontinuous whereas if the temperature is chosen to be too high, the optimal policy

in the family of RSPs might bear no relation to the optimal policy in the family of
deterministic policies. In the rest of the thesis, it is assumed that these issues have

been taken care of, and that the user has decided on a parameterized family of RSPs

to optimize over. We denote this family of RSPs by {po; 0 C R }.
As we have noted earlier, a policy that is optimal over all MRPs is optimal for all

starting states. However, the optimal policy in a parameterized family of RSPs might

depend on the starting state unless the overall reward depends only on the policy

but not the starting state. Therefore, a precise statement of our problem requires the
probability distribution of the initial state Xo also. We assume throughout the thesis

that the probability distribution of the initial state Xo of the system is . Let Po,,

denote the probability law for the Markov chain {(X,, Uk) } controlled by the RSP
associated with 0, when started from state x and let Eo, denote the corresponding

expectation. Similarly, for a probability distribution P on X let PO,"9 denote the law

of the Markov chain {(Xk, Uk) } whose starting state Xo has distribution P.

The central problem of this thesis is the simulation-based optimization of the

average reward over the family of policies {puo; 0 E R}. More precisely, consider an
MDP with transition kernel p. Suppose the following are given

" A simulator of the transition kernel p that takes a state-decision pair (, u) as

input and generates a state according to the probability distribution p(.-cX, u).

" A parametric family of RSPs {pe; 0 cR}.

Assume that the simulator of p is memoryless in the sense that its current output

is conditionally independent of its past inputs given the current input. For each

parameter value 0, let d(0) denote the average reward (assuming that the MDP is

ergodic under all policies within the given family of policies) associated with this

policy:

k-1

a(0) = lim- SEo, [g(Xk, Uk)].
k Ik

1=0

The problem is to find a parameter 0 that maximizes the function t(0) using simu-

lation.

The solution methodology adopted in the thesis is that of recursive gradient al-

gorithms. However, since the function G(0) is not directly accessible, simulation is

used to estimate the gradient of average reward and update parameters in this es-

timated gradient direction. To arrive at an estimate of the gradient, a formula for
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the gradient of t(6) is needed. In the following sections, several objective criteria for

optimization over the family of policies {po; E R} are studied. For each criterion,
assumptions on the family of RSPs which ensure that the overall reward is well be-

haved as a function of the policy parameter vector 0 are described. In particular, the
given conditions ensure that the overall reward is differentiable. Furthermore, the

parameterized family of functions 4' : X x U -+ R' defined by

Qo(x, u) = V ln go(ux), Vx, u, (2.1)

where V denotes the gradient with respect to 0, plays a central role in the formula
for the gradient of the overall reward.

2.3 The Gradient of the Average Reward

The average expected reward or simply the average reward of an RSP p is defined as:

1k-1

lim -E Et,,x [g (X , U)

1=0

The average reward is well defined for each policy in the family, under the following

assumptions on the parameterized family of RSP's:

Assumption 2.4. (Irreducibility and aperiodicity) For each 0 £ R , the process

{Xk} controlled by the RSP associated with 0 is irreducible and aperiodic.

The notion of irreducibility is well known for discrete state spaces (there are no
transient states and every state is accessible from every other state). For processes

with more general state spaces, the usual notion of irreducibility is not applicable.
More generally, a Markov chain can only be irreducible relative to a notion of "mass"

or "size" which can be formalized by a measure x on X. Formally, the Markov chain

{Xk} is said to be x-irreducible if for all S E B(X) the following holds:

x(S) > 0 -> ZPO,x(Xk E S) > 0 Vx CX.
k

In other words, the Markov chain {Xk} is irreducible if all sets that have positive
"mass") are reachable with positive probability from any starting state. Note that

for discrete state spaces (assume X to be the counting measure) X-irreducibility is

equivalent to the usual notion of irreducibility of countable state space Markov chains.

Meyn and Tweedie (Meyn & Tweedie, 1993) show that this notion of irreducibility
is essentially independent of the measure X relative to which it is defined. That is, if
{Xk} is x -irreducible for some measure x then there exists a maximal irreducibility

measure X such that the Markov chain {Xk} is x'-irreducible if and only if X' is
absolutely continuous with respect to y .

For finite MDPs, the above assumption would have been sufficient for the average
reward to be well defined. However, for infinite MDPs, more assumptions are needed.
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In particular, a certain part of the state space should be visited sufficiently often

by the MDP. Furthermore, the MDP should "regenerate" itself every time it hits

this part of the state space. The assumptions required to ensure that this happens

contain two parts. The first part assumes that probabilities of the transitions out of

the states in a certain set, are lower bounded by probabilities that are independent

of the policy and the starting state. The second part is a Foster's Lyapunov criterion

which guarantees that this set is reached fast enough from the states outside this set.

Assumption 2.5. (Uniform Geometric Ergodicity)

1. There exists a positive integer N, a set Xo c B(X), a constant 6 > 0 and a

probability measure V on X such that

POX(XN E S') > 'O(S') VO E R , x E X0 , S' E B(X). (2.2)

2. There exists a function L X -+ [1, oo) and constants 0 < p < 1, b > 0 such

that for each O E R,

Eo,[L(X1)] pL(x) + bIx0 (x), Vx e X, (2.3)

where 1 xO(-) is the indicator function of the set X0 . We call a function satisfying

the above inequality a stochastic Lyapunov function.

The above assumption is one of the most restrictive of all the assumptions we

make. The second part of this assumption can be stated equivalently as follows.

For a deterministic sequence {Ok} of policy parameters, consider the time varying

Markov chain obtained by using the MRP associated with the sequence {Ok}. For

s > 1, consider the function

i(x) = sup Efo x ['], (2.4)
{Ok}

where T = min{k > 0 :Xk E Xo} is the first time after time 0 that the Markov chain

{Xk} hits the set Xo. If L(-) is finite for some s > 1, it is a matter of simple algebraic

calculations to see that L(x) satisfies (2.3). Conversely, it is also easy to see that if

(2.3) is satisfied for some L(.), then for s sufficiently close to 1, the r.h.s. in Eq. (2.4)

is finite for all x. The following theorem gives sufficient conditions on the family of

RSPs {to;6 £ IR h} for finite MDPs to satisfy Assumption 2.5.

Theorem 2.6. If X, U are finite and if for any x E X and u £ U, either

inf go(uIX) > 0,
0

or

POk(uX) = 0, VO,

then Assumption 2.4 implies Assumption 2.5.
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Proof. Assuming that X and U are finite, for each 0, the policy probabilities

(O(ux); c ECX, u CU)

can be thought of as a vector of finite dimension. It is easy to see that all the vectors

in the closure P of the set {,ao, 0 E R h} correspond to probabilities of some RSP. For

a sequence of RSPs 3 = {Pk} in P, let Pf,x denote the probability law of the MDP
{(Xk, Uk)} started from state x and controlled by the MRP 4. Since po(ulx) is either

zero for all 0 or uniformly bounded below by a positive quantity, for two sequences

A1 and A2, the probability measures PAft 1 (XN c.) and P 4 2 X(XN e-) are absolutely

continuous with respect to each other. Therefore, if

Pp,(XN = y) > 0, Vx, y C X, (2.5)

for some sequence A and integer N > 0, then the above strict inequality holds for

all sequences A. Furthermore, since the set of N-tuples {(Pi, ..-. ,UAN); P c P} is
compact, and the map from this N-tuple to the distribution of XN under Pffx is

continuous, there exists c6> 0, such that

P,x(XN = y) > C, Vx, y CX,

which in turn implies Assumption 2.5 with Xo being any subset of X. Assumption
2.5(1) is satisfied as (2.5) holds for some N and a sequence I'k = yo for all k, for some

0. Assumption 2.5(2) is easily verified by checking that the function L defined by Eq.
(2.4) is finite.1H

Assumption 2.5 and the geometric ergodicity results of (Meyn & Tweedie, 1993)
imply that for each 0 E R', the Markov chains {Xk } and {(Xk, Uk) } have steady
state distributions which we denote by iro(dx) and

'jo(dx, du) = ro(dx)po(ux)v(du),

respectively. Moreover, the steady state is reached at a geometric rate. In other

words, if E0 denotes the expectation with respect to the stationary distribution of

the process {(Xk, Uk)}, we have

Eo[L(Xo)] <oo, V0,

and there exists C > 0 such that for any real valued measurable function f on X that

satisfies If L, we have

Eo,x[f(Xk)] - Eo[f (Xo)]I <PkCL(x) Vx E X, 0 E Rn. (2.6)

The previous assumptions ensure that the steady state distributions of {Xk} and

{(X,, Uk)} are well defined. However, this is not enough for the average reward
function d(0) to be well defined and differentiable. In particular, the steady state

expectation Eo[lg(Xo, Uo)1] must be finite for all 0. Furthermore, the steady state
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distributions ro and r7o must be "differentiable" with respect to the policy parameters.
The finiteness of the steady state expectations is automatically true for finite MDPs.
For infinite MDPs, the expectations are finite if the one-stage reward function g(x, u)

is upper bounded by another function already known to have finite expectation. If g
was just a function of the state then L could serve as the upper bounding function.

However, since g is a function of both state and decision, a new bounding function is
required. Let L : X x U -+ [1, oo) be a function that satisfies the following condition:

Assumption 2.7. For each d > 0 there is Kd> 0 such that

Eo,[L(x, UO)d] KdL(x) Vx C X, 0 E R. (2.7)

The function L will be used to bound various functions of state and decision

encountered in the thesis. Since

Eo[L(Xo)] < 0c, VO,

it is easy to see that

Eo[L(Xo, Uo)d] < 007, VO E R, d> 0.

Note that if a function is upper bounded by L, then all its steady state moments

are finite. This is a stronger conclusion than what is needed for such functions in
this thesis. The above assumption can be weakened by restricting the values of d.

However, this path is not pursued as we believe that the resulting conditions are quite

artificial and will only be artifacts of the proof techniques employed here.

The function L is used in the following assumption that ensures the steady state

distribution of the Markov chain under policy 0 is "smooth" in the policy parameter
6. Throughout, V denotes the gradient with respect to the policy parameter vector

0.

Assumption 2.8. (Differentiability)

1. pO(ulx) > 0, VxEX,uEU,0ER4.

2. For each x C X and u e U the map 0 -+ po(ulx) is continuously differentiable.

3. There exists K > 0, such that for each 0 c ]R7,

sup ; 1<+eKL(x,u) Vx,u,

sup <V;tk) KKL(x,u), Vx,u,

for some c > 0 possibly depending on 0.

The first part of the above assumption can be weakened to require only that for
any x, u, po(ulx) either be positive for all 0 or be zero for all 0. This makes our
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theory and algorithms applicable to a larger class of RSPs. A further expansion of
this class of policies is possible if the reference measure v is taken to be dependent on

the state. In other words, the RSP corresponding to 0 is po(ulx)v(du) where v(du)

is the reference measure corresponding to state x. While all these variations are

perfectly compatible with the theory and algorithms of this thesis, we do not present
our results in their full generality so that we do not obscure with technicalities the

simple intuition behind our algorithms.

Recall the function yo defined by

o = VlIn po(ulx).

An immediate consequence of the above differentiability assumption is that for each

O E R", d> 0, we have

Eo[o(Xo7 UO)Id] < 0).

When all the assumptions described until now are satisfied, the proofs in (Glynn
& L'Ecuyer, 1995) (which we will outline in the proof of the next theorem) can be
imitated to show that for any measurable function f : X x U -+ R, such that If I L,
the map 0 - Eo[f(Xo, Uo)] is bounded with bounded derivatives. We would like the
average reward function d(.) to be bounded with bounded derivatives, and for this
reason, we assume the following about the one-stage reward function g : X x U - IR.

Assumption 2.9. There exists K > 0 such that

g(x, u) I KL(x, u), VO c R h.

For each 0 £ -R', let £C be the set of all functions f of state and decision such

that

Eo[f (Xo, Uo)12] <0).

For two functions fi, f2 in 'C2, let

(fi, f2)o = Eo[fi(Xo, Uo)f2 (Xo, Uo)].

Similarly, for two matrix-valued functions A(-) and B(.) on X x U such that

Asj B £EC3, Vi, j,

let (A, B)0 denote

Eo[A(Xo, U)B(Xo, Uo)].

For each 0, (.,.)o defines an inner product on L. Let |11- I|o denote the corresponding
norm. Let 1 denote the function in L2 that assigns the value 1 to all state-decision

pairs. Since L c C0, Assumption 2.9 implies that g C L and therefore the average
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reward function can be written as

d(O) = Eo[g(Xo, Uo)] = (g, 1)o.

For each 0 E R', let P0 denote the operator on L' defined as

(Pof)(x, u) = Eo,[f (X 1, U1)JU0 = u].

for all (x,u) E X x U and f E L. We say that Q C L is a solution of the Poisson

equation with parameter 0 if Q satisfies

Q = c -i(<)i +-PoQ. (2.8)

It is well known (see Proposition 17.4.1 from (Meyn & Tweedie, 1993)) that a solution

to the Poisson equation with parameter 0 exists and is unique up to a constant. That
is, if Q1, Q2 are two solutions, then Q1 - Q2 and 1 are collinear. One family of
solutions to the Poisson equation is the following:

cc

Q9(x, u) = ZEo,x[(g(Xk, Uk) -ti(0))I U0 =u].
k=O

(The convergence of the above series is a consequence of (2.6).) There are other (e.g.,
regenerative) representations of solutions to the Poisson equation which are useful for

both purposes of analysis and derivation of algorithms.

The following theorem gives formula for the gradient of d(0) in terms of any

solution Qo : X x U -+ R of the Poisson equation with parameter 0.

Theorem 2.10. Under Assumptions 2.4, 2.5, 2.7, 2.8 and 2.9,

Vat(0) = (V)b, Q)0. (2.9)

Proof. (Outline) Fix some O c ]R. Assume that there is an e > 0 and a family

of functions {Qe : X x U - R,10 - 0oI < 4} such that Q0 is a solution of the
Poisson equation with parameter 0. Moreover, assume that the map 0 -± Qo(x, U)
is differentiable for each state decision pair (x,u), and for each x E X, the family of

functions

{ O0(0,) - Qo O ( , -) 12 :0- 1 < C (2.10)10 - 00|2 - :1

has bounded expectation with respect to po(ux)v(du). Then, one can differentiate

both sides of equation (2.8) with respect to 0 at 0, to obtain

Vi(00 )i + VQ00 = POO (0o0 o0 ) + Po0(VQ 00).
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The interchange of differentiation and integration is justified by uniform integrability
(2.10). Taking inner product with 1 on both sides of the above equation and using

the facts that IVQo c 2 and

(, P) 0 = (, f)o0, Vf c L,

we obtain Va(00 ) = (Qoo, 4'oo)oo = (QoI, 4'o)owhere the second equality follows from

the fact that Qo0 - Qo0 and 1 are necessarily collinear, and the easily verified fact

(1, o)o =0.
To complete the proof, we need to show the existence of the family of functions

Qo. This can be shown by imitating the proofs of Glynn and L'Ecuyer (Glynn &
L'Ecuyer, 1995) which we will only outline here. Using Assumptions 2.4 and 2.5, one
can construct (on a slightly enlarged probability space) a regeneration timef for the

sampled Markov chain {XkN} controlled by any policy Mo using the splitting technique

of Athreya, Ney (Athreya & Ney, 1978) and Nummelin (Nummelin, 1978) (see (Glynn
& L'Ecuyer, 1995) for details of this construction). This regeneration time can be

used to obtain the following representation for the average reward function &(-) and

solutions Qo to Poisson equations:

Eo,,[zk Og(Xk, Uk)]

Qo(x, u) = Eo, [ 1 (g(Xk, Uk) - t(O)) UO= .
.k~o

Furthermore, the positivity of po(ulx) implies that the restriction of measures Po,o

and Po,, to the o--algebra F, corresponding to stopping time ? are equivalent for
every 0 and 00. Therefore the above equations can be rewritten as

f-1d(0) -E 0 ,,, [zk-t g(Xk, Uk)l1(90,0 W)]
Eo0 4(o,v[1(0 0,W]

Qo(x, u) = Eo0,, [((Xk, Uk) - a())l(, 00, w)u = a],
..k=O

where the "likelihood ratio"

1(0, Oo w) = E o , o

0 0 [Poo,1zz]

is the Radon-Nikodym derivative of restriction of Poe(dw) to F with respect to that
of Po,o(dw). Assumptions 2.8(1-3) imply that the map 9 0-+ 1(0, 00, w) is differentiable
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at 00 and the family of functions

1l(0,0o, w)-11 : 10 -1091<1E{ 0-0 01

is P 0 ,o (dw)-uniformly integrable. This implies that the average reward function a(.)
and the solutions Qo of the Poisson equation are differentiable in 0, since differentia-

tion with respect to 0 and E0o,4[-] can be interchanged. H

Recall that the assumptions of the previous theorem are quite strong. The following
example illustrates how these can be verified in the context of an inventory control

problem. The purpose of the example is to show that they are not vacuous. The

verification of these assumptions for several other problems is of similar flavor.

Example 2.11. Consider a facility with Xk C R amount of stock at the beginning

of the k-th period, with negative stock representing the unsatisfied (or backlogged)

demand. Let Dk > 0 denote the random demand during the k-th period. The

problem is to decide the amount of stock to be ordered at the beginning of the k-th

period based on the current stock and the previous demands. If Uk > 0 represents the

amount of stock ordered at the beginning of the k-th period, then the cost incurred

is assumed to be

c(Xk, Uk) = h max(0, Xk) + b max(0, -Xk) --PUk,

where p is the price of the material per unit, b is the cost incurred per unit of back-

logged demand, and h is the holding cost per unit of stock in the inventory. Moreover,

the evolution of the stock Xk is given by

Xk+1-=Xk + Uk - Dk, k = 0, 1,...

If the demands Dk, k = 0, 1 ... are assumed to be nonnegative and i.i.d. with finite
mean, then it is well known (e.g. see (Bertsekas, 1995b)) that there is an optimal

policy p* of the form

p*(x) = max(S - x, 0)

for some S > 0 depending on the distribution of Dk. A good approximation for

policies having the above form is the family of randomized policies in which S is

chosen at random from the density

POs = 1 sech2 s - (6)
2T ( T

where 9(0) = e0 C/(1 + es). The constant C is picked based on our prior knowledge

of an upper bound on the parameter S in an optimal policy. To define the family of
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density functions {po} for the above family of policies, let z(du) be the sum of the
Dirac measure at 0 and the Lebesgue measure on [0, oo). Then, the density functions

are given by

pO(0 x) = 4 ( ± tanh ,(X &(O)
2 T

ILO(U I ) = 2T sech 2 T , )U > 0.

The dynamics of the stock in the inventory, when controlled by policy fo, are described

by

Xk+1 = max(Xk, Sk)-- Dk, k= 0,1. .. ,

where the {Sk} are i.i.d. with density po and independent of the demands Dk and

the stock Xk. The Markov chain {Xk} is easily seen to be x-irreducible with x being

the Lebesgue measure on R. To prove that the Markov chain is aperiodic it suffices

to show that (2.2) holds with N = 1. Indeed, for Xo = [-a, a], x C Xo, and a Borel
set B consider

POX(X 1 C B) = Pc,(max(x, So) - Do E B),

> Po,(So - DocE B, So > a),

j irnfpe(t + Y)) D(dy)dt,

where D(dy) is the probability distribution of Do.
To prove the Lyapunov condition (2.3), assume that Dk has exponentially decreas-

ing tails. In other words, assume that there exists -y > 0 such that

E[exp(yDo)] < oG.

Intuitively, the function L(x) = exp(y'xj), for some y with min(-y, 1) > -y > 0, should

be a good candidate Lyapunov function. To see this, note that the Lyapunov inequal-

ity says that the Lyapunov function should decrease by a common factor outside some

set Xo. Let us try the set Xo = [-a, a] for a sufficiently larger than C. If the inventory

starts with a stock larger than a, then no stock is ordered with very high probability

(since So is most likely less than C) and therefore the stock decreases by Do, decreas-

ing the Lyapunov function by a factor of E[exp(-'7Do)] < 1. If the inventory starts

with a large backlogged demand then most likely new stock will be ordered to satisfy

all the backlogged demand decreasing the Lyapunov function to almost 1. This can

be made precise as follows:

Eo,x[La(X1)]= Eo,,[exp(;t max(x, So) - Do )]

= exp(ix)Po,2(So < x)Eo1 [exp(---Do); Do < x]
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+ exp(-xy)Po,T(So x)Eo,2[exp(yDo); Do > x]

+Eo,x[exp(yISo - Do|); So > x].

Note that the third term is bounded uniformly in 0, x since?7 < min(4,y). The

first term is bounded 'when x is negative and the second term is bounded when x is

positive. Therefore the Lyapunov function decreases by a factor of E[exp(-jDo)] < 1
when x > a and decreases by a factor of P(SO < -a)E[exp(-7Do)] < 1 for a sufficiently

large. The rest of the assumptions are easy to verify with L(x, u) = xj + u.

2.4 The Gradient of the Discounted Reward

In this section, a formula for the gradient of the discounted reward is derived using
the results of the previous section. However, it is important to note that the same

formula can be derived using methods more direct than the one presented here.

Unlike average reward, the discounted reward depends on the probability distri-

bution of the initial state. Therefore, consider MDPs with a fixed initial distribution
$(dx). The discounted reward with discount factor 0 < p < 1 is given by

&(0) = pkEjg[(XxUk)].
k

For d(9) to be finite, we need g(x, u) to bounded in some sense. As in the previous

section, the function L : X x U -+ [1, oo) will be used to bound various functions of

state and decisions.

Assumption 2.12.

1. There exists a function i on X and a constant pi > p such that L> 1 and for

all 0, x we have

Eo,[L(Xo)] < 00

Eo,x[12(X1)] < -1 (X).
( P1

2. There exists a function L : X x U -± [1, oo) such that the following holds: for

every d > 0, there exists Kd > 0 such that

Eo,[L(x, UO)d] < KL(x), V0, x.

The boundedness assumption on g(x, u) is the same as for the average reward case
with L being the function described above. This assumption ensures that t(0) is finite

for each 0. If the differentiability Assumption 2.8 is also satisfied with the function L
satisfying Assumption 2.12 instead of Assumption 2.7, a formula for the gradient of
t(0) can be derived by showing that &(0) is the average reward of a certain artificial

MDP controlled by a parametric family of policies. Intuitively, the discounted reward
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is the expected total reward up to time r where T is a geometric random variable

with parameter (1 - p) independent of MDP {(Xk, Uk)}. If the time r is thought
of as a hitting time for a reward-free artificial state t from which the artificial MDP

jumps to any of the state in X according to the probability distribution , it is easy
to see that the average reward of such an MDP is (1 - p)t(). Formally, consider an

artificial MDP with transition kernel:

P(Sx, u) =pp(Sx, u) + (1- p)>(S), Vxu.

It is easy to see that part 1 of Assumption 2.5 is satisfied with Xo being any subset

of X, N = 1 and VP = . Part 2 of Assumption 2.5, can also be verified with Xo being

a subset of X of the form

Xo = {jL(X) < C}

for a suitable constant C. Furthermore, the steady state probability measure fr for

the artificial MDP controlled by RSP 6 is given by

-ro (S)= (1 -- p)ro(S),

where iro is the finite measure

S PkPo'(X C }
k

Similarly, the average reward & and a solution Qo to Poisson equation associated with
the artificial MDP are given by

d(O) = (1- p)(O),
Q19(t, U) = 0,1k/u,
Qo(X, U) = Qo(x, U) - (), Vx, u,

where for each 0, Qo is given by

Qo(x, u) = 5 p/cEOx [g(Xk, U)I UO = u].
k

Using these relations and the result on the gradient of average reward, we have the

following result.

Theorem 2.13. Under Assumptions 2.12, 2.9 and 2.8,

Vt() = (Qo 'o)o

where for each 9, and any two functions f1(x, u) and f2 (x, u),

(fi, f2)o = >j:pkEo i[fl(Xk, Uk)f 2(X, Ukc)].
k
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2.5 The Gradient of the Total Reward

In this section, a formula for the gradient of the total reward is derived using the

results on average reward. As in the case of discounted reward, the formula for the

gradient of the total reward can also be derived using methods more direct than the

one presented here.

As in the case of discounted reward, the total reward also depends on the proba-

bility distribution of the initial state X 0. Therefore, the probability distribution of XO
is assumed to be a fixed . In this case, the total reward a(O) of the policy associated

with 0 is given by

SEo,j~g(Xk, Uk)].

k

Our assumptions for the total reward problem are quite restrictive because the prob-
lem is difficult to handle for more general cases. In particular, we assume that there

exists a reward free absorbing state t that is reachable from any state. As in the pre-

vious section, a function L : X x U -+ [1, oo) will be used to bound various functions

of state and decisions. Let L satisfy the following assumption.

Assumption 2.14.

1. There exists a function L, on X and a constant 0 < p < 1 such that

L (x) = 0 if X =t,

> 1 otherwise,

and

Eo,[L(Xo)] < oo,

Eo,,[L(X1)] < pLa(x), VO, x.

2. For each d > 0, there exists Kd > 0 such that

Eox[L(x, Uo)d] < K(x), V,X.

As in the previous section, assuming that Assumptions 2.9 and 2.8 are satisfied

with L defined above, the formula for the gradient of total reward can be derived

using the result for the gradient of the average reward.

Consider the artificial MDP in which every time the state t is hit, the next state
is chosen randomly with probability distribution independent of the control. That

is, consider an MDP with the following transition kernel:

(St, u) = $(S), ,Vx, u,

P(SIc, U) = p(SIX, u), VxZ At,u.
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Every time the artificial MDP hits t, it regenerates. Assuming, without loss of gener-
ality, that the support of $ is X (including t), it is easy to see that the artificial MDP
is irreducible and aperiodic. Therefore, the artificial MDP satisfies Assumption 2.4.

It also satisfies Assumption 2.5 with Xo =f{t} and with the Lyapunov function

L, 1(x) = 1, if x = t,

= L(x), otherwise.

Furthermore, if T represents the first time the (original or artificial) MDP hits the
terminal state t and -r(O) is its expectation:

r(O) = Eo,r],

then the steady state distribution of the artificial MDP under policy 0 is given by

1 1__
FO(-)= _ ro(-)+ I 1 (-),

T(0) ;r ()

where iro is the finite measure defined by

SPO,(Xk £ -,-r > k).
k

Therefore, the average reward d(6) corresponding to the artificial MDP under policy

O is given by

d(O)a(6) - __ .

In other words, the total reward associated with policy 0 is given by

a (0) d .(2.11)
(1/7r(o)),

Note that (1/t(O)) is the average reward for the artificial MDP under policy 0 when

the one-stage reward function is Ip} (x). Similarly, the solution Qo to the Poisson

equation corresponding to the policy 0 and one-stage reward function g is given by

Qo(X, U) =0 if X =t,

- Qo(x, u) -- d (0)To(x, u),

where for each 9, Qo and To are given by

Qo(x,u) = 5Eo,. [g(Xk, Uk) Uo = U],
k

To(x,u) = Eo,1 [-rJUo =u].

Similarly, the solution to the Poisson equation corresponding to the policy 0 and one-
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stage reward function Ip} (c) is -t(O)To(x, u). Using these solutions and Theorem

2.10 to calculate the gradients of 1/-T and &, and using Equation (2.11) we can obtain
the following formula for the gradient of total reward.

Theorem 2.15. Under Assumptions 2.14, 2.9 and 2.8, we have

Vd(0) = (Qo, @o)o,

where for any two functions fi and f2

(fi, f2) = EEo Z fl(Xk, Uk)f2(Xk, U)k)
k=O

2.6 Closing Remarks

We are not the first to derive formula for the gradient of the overall reward with respect
to policy parameters. The formula for the gradient of total reward over a deterministic
finite horizon was derived in (Williams, 1992). In (Glasserman, 1991; Cao & Chen,
1997), an approach to deriving gradient formulas for objective functions on generalized

semi-Markov processes was presented. The likelihood ratio approach to gradient
estimation was introduced in (Glynn, 1987; Glynn & L'Ecuyer, 1995). The gradient

of the average reward for finite MDPs was also derived in (Marbach & Tsitsiklis,
2001; Baxter & Barlett, 1999). These works also propose several algorithms based on

this formula. While the gradient formulas were derived previously by various authors,
their interpretation as an inner product is new. This interpretation was independently
arrived at in (Sutton et al., 2000). It implies that actor-critic algorithms are robust
to approximation errors (in value function) that are orthogonal to the functions /4's
which depend only on the policy parameterization.

The formula for the gradient of discounted reward was first derived in (Sutton
et al., 2000). However, our approach to deriving gradient formulas by reducing the
overall reward to an average reward is new. Furthermore, (Sutton et al., 2000) con-
siders finite MDPs whereas we deal with MDPs with more general state and decision
spaces. Also, the derivation of the gradient formula for average reward by differenti-

ating both sides of the Poisson equation is new, much more direct and simpler than
previous methods.

Technically, our assumptions bear a lot of resemblance with those of (Glynn &
L'Ecuyer, 1995). In fact, the proofs of differentiability of the reward function and
the solutions to the Poisson equation are inspired by this work. The difference in

assumptions is due to the fact that they consider Markov chains evolving according
to recursions of the form

X= f(Xk, Wk),

where Wk are Rd valued i.i.d. random variables whose distribution depends on the
parameter 6. The global assumptions concerning the behavior of the Markov chain
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{Xk} are the same in both cases. However, the local assumptions like differentiability
are stated in terms of the parametric family of densities of Wk, whereas our local

assumptions are stated in terms of the parametric family of RSPs. Fundamental to

both the works in particular, and the theory of Markov chains on general state spaces

in general, is the splitting technique of Nummelin (Nummelin, 1978), and Athreya

and Ney (Athreya & Ney, 1978) which allows us to extend results for the countable or

finite state case to results on Markov chains with general state spaces with appropriate

modifications.
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Chapter 3

Linear Stochastic Approximation
Driven by Slowly Varying Markov

Chains

In this chapter, we state and prove a new theorem regarding the tracking ability
of linear stochastic iterations driven by a slowly varying Markov chain. This result
will be used in the next chapter to prove the convergence of the critic part of our

actor-critic algorithms.

Convergence of stochastic approximation driven by stationary or asymptotically
stationary ergodic noise has been extensively studied in the stochastic approxima-

tion literature (Kushner, 1984; Benveniste et al., 1990; Duflo, 1997; Kushner & Yin,

1997). The gist of these results is that the iterate converges to a point that depends

on the update direction and the statistics of the driving noise. In some of the appli-
cations, the statistics of the driving noise may change with time. In such cases, the
point to which the algorithm would converge, if the noise was held stationary with
current statistics, also changes with time. The objective of stochastic approximation
is to track this changing point closely after an initial transient period. Such algo-
rithms were named adaptive algorithms as they adapt themselves to the changing

environment. For a textbook account of adaptive algorithms see (Benveniste et al.,

1990).
The tracking ability of adaptive algorithms has been analysed in several contexts

(Widrow et al., 1976; Eweda & Machi, 1984). The consensus is that the usual stochas-
tic approximation with constant step-sizes can adapt to changes in statistics of the

driving noise that are "slow" relative to the step-size of the algorithm. However, al-
gorithms with decreasing step-sizes have never been touched upon because one would

have to assume that the environment changes slowly relative to the step-sizes em-
ployed by the user. This assumption is too restrictive to be satisfied in applications.

However, if the statistics of the driving noise is deliberately changed by the user
at a rate slower than that of stochastic approximation, it would be meaningful to
study the tracking ability of stochastic approximation with decreasing step-sizes. It
is this scenario we are interested in and the following result is the first on "adaptive"

algorithms with decreasing step-sizes.
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Consider a stochastic process {Yk} taking values in a Polish (complete, separable,
metric) space Y with Borel a-field denoted by B(Y). Let {Po(y, dy); 0 E R7} be a
parameterized family of transition kernels on Y. Consider the following iteration to
update a vector r E Rm:

rk+1 = rk + N(hok(Yk) - Go,(Yk)rk) +7kG+1rk. .(31)

In the above iteration, {ho(-), Go(-) : 0 c Rn h} is a parameterized family of m-vector

valued and m x m-matrix valued measurable functions on Y. For any measurable
function f on Y, let Pof denote the measurable function y F-+ f Po(y, dg)f(9). Let Fk

be the a-field generated by Y1, r1 , 01, 1 <k. We make the following assumptions.

Assumption 3.1. 1. For a measurable set A C V,

P(Yk+i E A|J&) = P(Yk+i c A|Yk,0k) = Pok(Yk,A).

2. The step-size sequence {Yk} is deterministic, non-increasing, and satisfies

'Yk = 00, 72

k k

3. The (random) sequence of parameters {Ok} satisfies:

Ik+1 - 0k < /<OkHk,

for some nonnegative process {Hk} with bounded moments and deterministic

sequence {/3 k} such that

1: < 00

k kN

for some d > 0.

4. Gk is a x m-matrix valued Ek-martingale difference with bounded moments

i.e.,

E[$k+1LFk] = 0, sup E[$kId] <oo, Vd > 0.
k

5. (Existence of solutions to the Poisson Equation) For each 0, there exist h(O) c
RMI, G(0) E Rxm ho : Y -- IR1, and G : Y -± IRrnxm that satisfy the Poisson
equation. That is, for each y c Y,

ho(y) = ho(y) - h(0) + (Poho)(y),

Go(y) = Go(y) - G(0) + (PoGo)(y).
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6. (Boundedness) For some constant C and for all 9, we have

max(jh(9)I, G(9)I) C.

7. (Boundedness in expectation) For any d > 0, there exists Cd > 0 such that

sup E [|f 6 ,jkk|] Cd,
k

where fo(-) represents any of the functions ho(-), ho(-), Go(-), Go().

8. (Lipschitz continuity) For some constant C > 0, and for all 0, 0 E R ,

max(jh(0) - h(&)1,10(0) -- G(O)1) <CI0 - 61.

9. (Lipschitz continuity in expectation) There exists a positive measurable function

C(.) on Y such that for each d > 0,

sup E [C(Yk)d] <0
k

and

fo(y) - fj(y) C(y)0 -1,

where fo(-) is any of the functions ho(-), ho(-), d(), GC(-).

10. There exists a > 0 such that for all r E R'" and 0 R' h

r'G(9)r > alr2

Theorem 3.2. If Assumptions 3.1(1-10) are satisfied then

lim|G( 9rk - h(k)I| = 0.
k

The above theorem, when 9 k = 9* for all k, is a special case of Theorem 17 on page
239 of (Benveniste et al., 1990). However, since 0 k is changing, albeit slowly, we need
to use different techniques to prove the above result. Our proofs use a combination
of techniques used in (Benveniste et al., 1990; Borkar & Meyn, 2000; Borkar, 1996).
In the next subsection, we present an overview of the proof and the intuition behind

it.

3.1 Overview of the Proof

The techniques to prove convergence of stochastic approximation can be broadly
classified into two categories: martingale methods (probabilistic) and ODE meth-
ods (deterministic). In martingale methods, one constructs a super-martingale (or
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almost super-martingale) and uses martingale convergence theorems to infer the con-
vergence of the super-martingale, which in turn implies convergence of the stochastic

approximation. In ODE methods, one views the stochastic approximation update as
a random perturbation of a deterministic iteration and proves that the perturbation
noise is asymptotically negligible. This implies that the asymptotic behavior of the

deterministic iteration and the asymptotic behavior of stochastic approximation are
the same. Although one uses martingale convergence theorems to prove that the
perturbation noise is asymptotically negligible, the rest of the proof is essentially
deterministic.

It is the second (ODE) method that we use in our proofs. In particular, note that

the sequence k = G(Ok)rk - h(0k) satisfies the iteration:

k+1 = 1k - 7kG(Ok~f-)pk +±N (1) 1+ E(2)
7k+1 kk+1-

where

Assumption 3.1(5) implies that for the Markov chain Yk with transition kernel P, the

vector ho(Yk) and the matrix Go(Yk) have steady state expected values (O) and (0)

respectively. Therefore, we argue that the effect of noise CM should be "averaged

±G(Ok~i)$k~lrk

out" in the long term. Similarly, Since Ok is changing very slowly with respect to

the tep ize k, w expct tat 1 goes to zero. The proof is then completed by

showing that the noise components EW , i = 1, 2, can be taken out of the picture and

7kk

observing that the sequence k converges to zero if the perturbation noise is zero.
We formalize this intuition in the next two subsections. Note that the noise

components are affine in rk and therefore can be very large if rk is large. A major
part of this proof involves the proof of boundedness of the iterates rk which is pre-
sented separately in the next subsection. The claimed convergence is then proved in

the subsequent subsection. The approach and techniques used here are essentially

specialization of general techniques developed in (Benveniste et al., 1990; Borkar &

Meyn, 2000). The following are some facts useful in proving both boundedness and
convergence.

Lem oa 3.3. Let haI} be a non-negative sequence satisfying

ak+1 < Aak + 6k ,

for some 0 A < 1 and non-negative sequence { hk}

sp Ifsupkon < ge thenuesa< dop

2. Ifu 6 k 0 then an -+ 0.
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Lemma 3.4. If an m x m matrix G is such that

r'Gr ;> 6Jr12 , Vr E Rm

then for sufficiently small y > 0,

y(I - G)rI <(I - -y)Ir .
2

Proof. |(I -- yG)r12 K <rI 2 - 2y6yr12 + jY2r 2C 2  (1 - J) r12 , for sufficiently small
7 > 0. The result follows from the inequality V/(1 - x) (1 - ) for 0 < x < 1. E

3.2 Proof of Boundedness

Note that the difference between two successive iterates at time k is of the order Yk
which goes to zero as k goes to infinity. Therefore, to study the asymptotic behavior
of the sequence r we focus on a subsequence rk, where the sequence of nonnegative
integers {k} is defined by

k--1

ko = 0, k+l= min k > kaE7k>T},

1=k

for some T > 0. The sequence {k 1 } is chosen so that two successive elements in it are
sufficiently apart for the difference in rTk and rk,+1 to be non-trivial and informative.

To obtain a relationship between rk,+1 and rkj, for each j, define a sequence f? by

rf = rk/max(l, Irkj1), for k;> k.

Note that Pi is .Fk-adapted and satisfies the iteration

j+ = ( +k) j$6) !+7k+, k > k,=+1 k + lYk (max(, Irk,) c(ok)rk

where for k> k,

(hk(Yk)1-=h(O - (Go() - G(GO(Ok b -+ 1,
= (+ 1 max(1, Irk,1) / lrk

can be viewed as perturbation noise. Similarly, for each j, define a sequence r by
the iteration

kj k

= ri +k at k) - G(Ok)r) , k > k,
max(1, Irk, 1)
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which is the same as that of tj but without the perturbation noise. The relationship

between rk,+1 and rTk is obtained by showing that the perturbation noise is negligible

and that k tracks rj in the sense that

lim max fj - rj]=0, w.p.1.
j <k<kj+k k

To show this, we use the stopping times T7 (C) and j (6) defined as follows: for

each C> 0 and 6> 0, let

rj(C) = min{k;>k:kIf C},

T (J) = min{k> kyj'- r' 6}.

Since h(.), C(-) are bounded, using Assumption 3.1(10) and Lemma 3.4 it is easy to
see that

sup max Irj < C

Sk k

for some constant C. Therefore

C+ 6) > 2\), VJ, w.p.1.

That is, by the time f' gets out of the ball (around the origin) with radius C + 6, f3

must have deviated from rj by at least 6, since rk lies completely inside the ball with

radius C. Fix these constants and j, and, for convenience, drop these constants from

the notation in the following subsection.
The following subsection derives bounds on the "effect" of the perturbation noise

3.2.1 Bounds on the Perturbation Noise

By definition, we have

f,1I11 < r } < C, Vj, k.

The following lemma shows that all the moments of

fI{l <TQ }

are bounded uniformly in j and 1.

Lemma 3.5. For each d > 0, there exists Cd > 0 such that

E [|idI{l TQ}] < Cd, V1 > k.

Proof. It suffices to prove that E [Ifd"I{l = is bounded uniformly in ,]j. For
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each 1, f is affine in ui1 and if (4) = 1 then fiW11 < C. In view of Assumptions

3.1(4,7), this implies that fii{-r1) - l} has bounded moments. More precisely, we

have

W= T)} I{l = ri } t_1i +yviaj h 1,_1(Ysi)|

+-m1 ( Go1 1 (Y-i)j + 1Cd) I{l= r 1}[ft_11

C (1 + m-ACA + - 1  Y_ 1 ) ) + rn-1 h011 (Yi).

The rest follows from Assumptions 3.1(4,7) and Holder's inequality. H

We wish to show that if fk is bounded, then the noise -k+1 is negligible in the sense
that there exists a constant C > 0 such that

k 2- kj+1-1

E [ max< S +1 C2 5 (3.2)
kj:k< Akj1 iEk -(k 3

Since Jfkj < 1, Assumption 3.1(7) and Holder's inequality imply that

E[|7,2s1|2] < C17Y,

for some C, > 0. Since the l.h.s. of (3.2) is less than

2-
k

E max 5E m+1 + E[lYkEk+12
kj<k<-r() Akj+l1 =kj -

we can restrict the max operator to kg <k <T7 A k+ 1. Furthermore, since

2
k

>711+1 21ykjkj+ 2 ++2> ,2
I=kj 1=k3+i

we can concentrate only on deriving an upper bound for

- k 2-

E max 72+
k 1k< Akj+1 l k+

The next step is to decompose the noise ek into parts that are easy to handle. For

r c RT ', let

Fe(r;y) = aho(y)-Go(y)r,

Fo(r;y) = aho(y)-Go(y)r,

Po(r) = ah(6) - C(O)r.
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It follows from Assumption 3.1(5) that Fo(r; -) satisfies the Poisson equation

Fo(r; y) = Fo(r; y) - Fo(r) + (Poo) (r; y).

Therefore, for k > kj

6 k+1

we have

= $k+lrk + FOe(rk; Yk) - Fek(rk)

= $k+irk + (Fok(?k; Yk) - (Pok rk)(fk Y)

= k+1rk +± ( (FkQk;Yk+l) - (Pektek)(kYk))

+(Fek_1(rk_1;Yk) - Fok(k;Yk+l))

+(FOk(4;Yk) -Ok( k-1Y)

+(FOk("k_1;Y- ) - _FOk(k_1 Yk)).

Let

-(I)

(2)
Ek+1

4(4)6 k+1

-(5)
6 k+1

= k+lFk Fok (rk; k14±i) - (POkFok)(?k; k),

7k--1o k_1(k-r ; Yk) - 7kOk(rk; Yk+i)

_(7k - Yk -i1)^
- o k 1(rk-_1; Yk),

7k

= VFkf;Yk) - FOk-1);Yk),

= F(k-1;Yk) - FO_ 1 (k-1;Yk).

Then

(k 1 = 41) ^(2) (3) (4) (5)
Ek+1=k+i k+1 +k+1 ±k+1 + k+l

The following lemma derives several bounds that will be used later.

Lemma 3.6. For each d > 0, there exists a constant Cd such that for all 1 ;> k > k
the following inequalities hold.

1. E I[111 < }|(1) r, ) Cd

2. E I{l TM } I (dk, 
0 .

3. E [I{l <T 0 } FOkY1 <_ Cd

4. E [I{l < 0 } PF 0 ,(f1,Y) C]
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Proof. Consider the first inequality. Since aj 1, we have for d > 1,

IFo,( k , M|"= |aho,(Yi) + Go,(Ye)ik I'

1 ho,(Y)d + 2 d-1 |G(YI)|d k|.

The first inequality follows from Assumption 3.1(4,7), Lemma 3.5 and the fact that
k < 1. The proof of the second inequality is similar. To prove the third inequality,
note that Assumption 3.1(8) implies that for 1 > k,

t9 ,(fk;+Yl-l) F9 1 (?k;Yl+l) + Fot,,k(;Y) -- FO(?k; Y)

K FP1(ik;YI) +(1+|kD)C(YI)

< h4(Y1) + (1+\k) (|C(Yi)|I+|Go(Yi)|)

Therefore, the third inequality follows from the fact that

I{l < T}Tkj I{k <TQ}|fk|,

Holder's inequality, Lemma 3.5 and Assumption 3.1(4,7). To prove the fourth in-
equality, note that

o, o, ( 7,Yi) = Fo0 (r^,Y) - Fo, (fiYi) -- o .

The inequality follows from the first two inequalities and the fact that (cf. Assumption
3.1(6))

| o,(')t C2(1 +|ji|)

for some C2 > 0. F

In the following lemmas, the inequality (3.2) is established by showing that it holds
when ek+1 is replaced by any of the components k', i = 1,... , 5. For two integers
j, k, let j A k denote the minimum of j and k.

Lemma 3.7. There exists C > 0 such that for i = 1,... , 5,

k 2- k+1

E maxYei r4Z C1 5 .
I=kj+i k=k+i

Proof. The following are the proofs corresponding to each of the components e 6 1, i --
1,... , 5, presented separately.
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1. Note that

kArQl

l=kj+1

is a martingale. Therefore, Doob's inequalityl can be used to see that

kAF 2-

E+max
-kj+1^Ayggy 

2

S4E EM
I=k +1

kj+l -2~
= 4 ~ YiEI{l Tj;1)} (2].

l=kj+ 1 <--

The rest follows from Holder's inequality, Assumptions 3.1 (4) and Lemma 3.6
(1) (2) and (4).

2. By definition, we have

2

E max "2

kj<k<-r)Aki1 l=k3 +1

-k 2-

<E max _k 1F (k_1;Y) ; 1
kj<k< ryAkj+1=kj+1(Yk+1)2-v-YkE [tokt;Yk 1 )

< E max ~ inY+)+ -2E F rk ;Yk+)2
kj < k < 7jAkj + 1 - j L O

[J') Ak 5+1

E IZ
k k 3 +i

2 t^y l
r |o( ;k+12

k1+i

SS E [I{k K T}|(r; ;Yk+1)12] +Ct
k=k,+i

k 

k=k3

'Doob's inequality states that for any nonnegative submartingale {Sk} and p > 1,

E maxsij (< E [S2].
l <k Is p - 1n

Note that if {Xk} is a martingale, then jXkj is a nonnegative submartingale.
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The third of the above inequalities follows from the fact that

E [ Ft k('rkj;Yk+1) 21

is uniformly bounded in j (cf. Assumption 3.1 (7)). The fourth follows from

Lemma 3.6 (3).

3. Similarly, for i = 3, we have

k2-k

E max S iai

kgjk Akj+ 1 lI=k+1

k +1) 2-

e(3)
< E '11 +

rk61 +

(k k +1Lk +1^j 2
>jl- 1)(iim)Fe (e 1

( Ek -- Yk 1 E > (YI_ - me) Fe,_(_; Y)21
l=k,+1

< (Yk. -- 'Yk+ 1) 2 s E [F(O_1 -k;Y) 2 Ik }
k>k

C1 (Yk -'k+)2

where the inequalities follow from the fact that {mk} is non-increasing, the

Schwartz inequality and Lemma 3.6 (3).

4. By definition, we have for k > k,

k Ik < T 0} = I{k <TQ } ( - _k-1)GO,(Yk)

K I{k < T}7kI|fk_11 k -- Go_ 1 (Yk_1) Ok(Yk)

±I{ k k}l 1ho _kI(Yk Go(Yk)

< h-IC ( hek _1)(Y + ±GOk_1JYk_1) + Ikj bk(Yk) .

From Assumption 3.1 (4,7) and Holder's inequality, it follows that

E[I (42 |Ilk < -r ] < C17r2
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for some C > 0. Therefore, using Schwartz inequality, we have

k 2-k+1 2

E max 21 TE [71 t(?I{k _< Tf>}

k <k<r4)Aki i-k±j+lL+ Y=k+ 1  19]

ki

C2>77,
l=kj+1

for some C2 > 0.

5. For the case i = 5, note that Assumption 3.1(9) implies that

e(1 < 0k -Ok-1|(1+| ?k|)C(Yk).

Therefore, from Assumption 3.1(3) and Holder's inequality we have

E[le 2 Ilk < -} )}] <fC1l 2

From Assumption 3.1(3) we have 3 k yk for large enough k. The rest is similar

to the previous case.

3.2.2 Proof of Boundedness

The previous lemma says that as long as k is bounded, the perturbation noise remains

negligible. In the next lemma, we prove that the sequence {?'} closely approximates

Tk.

Lemma 3.8. lim maxk<k<k, 1 if - rj = 0, w.p.1.

Proof. Note that, since C(-) is bounded, for k > k,

k k

k1k+ - 1j C1:714i -- ril + E ie1+1
i=k, i=k,

Using the discrete Gronwall inequality2 , it is easy to see that

k

max Ifl+ i - +I : e CT max (1)

kg k~k+ 1Ar) k 1 kk±i+1) 1=k

2For a non-negative sequence {'Y/} and a constant B, let {bk} be a sequence satisfying:

k

bk+1 Z: bkYk + B, Vk.
1=0
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Therefore, the above lemma along with the Chebyshev inequality implies that

) , kj+1-1

P( max Kri+1- r+ 6 ; kE 7
k Ti =k

for some C > 0. In the above expression, the probability on the left hand side is

exactly P( 2
) < k+ A r(1)which is the same as P(j 2

) < k+ 1 ), since ()>2 .

Therefore

P(max HK+ + I > 6 <I1
\k1 ~ki k± - 62
(kj:5kkj-+j =k,

The rest follows from the summability of the series Ek "y and the Borel-Cantelli

Lemma. E

Lemma 3.9. sup4 rkl <cx0, w.p.1.

Proof Since h(.) is bounded, Assumption 3.1(10) and Lemma 3.4 imply the following:
for k kj and j sufficiently large,

r l+ 1 ( I- - Y k a ) r j C+ Y.
±2 k Ymax(1, Irk))

Using the inequality 1 - x <e- we have

k

|r!a+1j 1Y I +Crj e (2az1=YOrfl
k+ k- jmax(l1, Tk,I)

This, along with the previous Lemma 3.8, implies

rk+ 1 j -t1aT T k I +T C
max(1, Irk,1) -6 max(1, Irk,1) max(1jr )

where 6j - 0 w.p.1. Multiplying both sides by max(1, rk1) and using the fact that
this is less than (1 + rk5 1), we have

Trk,+j (e-2a + 6J)lrkj | + CT + 6.

Since e-T < 1 and 6j --+ 0 w.p.1., it follows from Lemma 3.3 that sup1 rI <00,

Then, for every k, we have

bk <Be==o .
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w.p. 1. The rest follows from the observation that

SUPk irk =sup, max(1, Tkr3 ) maxk, <kk,,I Vk

supj { (I + |rkI (maxkj kkj 1 +,rj -+ maxk k kjr -j)} ,

the boundedness of {rj }, and the previous lemma. E

3.3 Proof of Theorem 3.2

To prove Theorem 3.2, consider the sequence 1k = G(Ok)rk - h(Ok). This sequence
evolves according to the iteration:

k+ 1 k - k (Ok+1) k + E(1)1 + kE -(2)

?k+1 kk+1.

where

(1) = G(Ok+l)(hok) - h4Ok)) - G(Ok+l)(Go,(Yk) - G(Ok))rk

+G(Ok+1)+lrk,

2) =1A((G(Ok+l) -GQOk))rk - (h(Ok+l) - h(Ok))).

Lemma 3.10. YEk Tmek+1 converges w.p.1.

Proof. A part of this proof is similar to arguments of Section 3.2 and therefore this

part will only be outlined. Define a sequence of stopping times {rj}:

rj = min{k : |rk > ij}.

For each]j, the stopped process _76() can be decomposed, as in Section 3.2,
kAr (i)

into several components (say p_, Yz', > 2). Some of these components are
martingales with bounded second moments and therefore converge w.p.1. By cal-
culating the expectation of Z_^JI E(Ki- for the remaining components, one can

easily see that they are absolutely convergent w.p.1. Therefore, the stopped process

converges w.p.. st Zk Yk1) converges on the set of outcomes for
which Tr = oo. The boundedness of {rk} implies that w.p.1., -r= cc for some j, and

thus the result follows.

Lemma 3.11. limkE(2) = 0, w.p.1.

Proof. Assumptions 3.1(3,8) imply that

| 1(2) | : Ok6k+1Ik - 1 + r/j)Hk.

54



Since {Hk} has bounded moments, we have

E Hd < oo,E[Z(7k) H

for some d > 0. Therefore, (/k/yk)Hk converges to zero, w.p.1. The rest follows from
the boundedness of {rk}. E

Recall the notation k from the previous section. For eachJ, define p4, for k> >k by:

Pk+i = (I - 7k0 (Ok))Pk Pkj : k

Lemma 3.12. limJ maxk |kSk1 JPk - p Ai = 0, w.p.1.

Proof. For eachj, k > k,

k-1 k-1

PkPUCZIPIPf+1+i4 1 c+ 1 )
=k 1=k3

Using the discrete Gronwall inequality, it is easy to see that

maXkj k<kj+ 1  k - P;J < eCT maXk<k<k+ ' = k (E)+1 1+E)

_< eCT sup;> k-. S t7<1) + eCT T supk>kjC(1

The rest follows from the previous two lemmas.

Theorem 3.13. limkI G(6)rk - h(6k)|= 0, w.p.1.

Proof. Using Lemma 3.4 and Assumption 3.1(10) we have

IPtk+l P/c

Therefore the above lemma implies

Pki+1I -TIcJ k 69j,

where Jj - 0 w.p.1. The rest follows from Lemma 3.3(2) and arguments similar to

the closing arguments of the proof of Lemma 3.9.

3.4 Closing Remarks

The general result presented in this chapter is new. Tracking results are not new
in stochastic approximation literature (Benveniste et al., 1990). However, they are

limited to the tracking ability of constant step-size algorithms and place restrictive
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assumptions on the dynamics of the changing parameter. Since the classical literature
on adaptive algorithms concerns adaptation to a changing environment, the tracking
ability of algorithms with decreasing step-sizes has not received much attention. Our
result is not intended to show that linear algorithms with decreasing step-sizes can be
used as adaptive algorithms. In fact, our assumption that the parameter 0 changes
slowly is quite strong and is not satisfied for most environments. However, the results
such as the one in this chapter are useful for designing algorithms as we will see in
the next two chapters. In the next chapter, we use this to prove that critic tracks the
actor's policy when the critic is updated faster than the actor. Later, we use these
results to design several variants of actor-critic algorithms.
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Chapter 4

The Critic

In this chapter, we study the critic part of actor-critic algorithms. The actor has

a tunable parameter and at each time instant, takes a state (say x) as input and

generates a decision using RSP corresponding to its parameter. The role of the critic

in these algorithms is to evaluate the policies of the actor, which means estimating the

information that the actor can use to improve its current policy. In particular, when

the actor parameter 0 is fixed, the critic acts as a function approximation scheme

to approximate a solution Qo of the Poisson equation introduced in Chapter 2 or a

corresponding function Vo defined as

Vo(x) = Eo,[Qo(x, Uo)].

The approximation of such a Qo or VO, in view of the gradient formulas of Chapter 2,

can be used to update the actor parameter in an approximate gradient direction of the

overall reward. A function Qo that satisfies the Poisson equation or the corresponding

Vo can be thought of as the evaluation of the policy 0. Therefore, such functions are

often called either the evaluation or the value functions. Since Qo depends on both the

state and decision, it is called a state-decision value function or a Q-value function

corresponding to the policy 0 whereas Vo is called either a state value function or

simply a value function of the policy 0.

The critic in our algorithms uses TD learning (Sutton, 1988; Bertsekas & Tsitsiklis,

1996; Sutton & Barto, 1998) with linear function approximation. We consider several
variants of TD learning for different criteria and study their convergence behavior.

The existing results on convergence of TD (Tsitsiklis & Van Roy, 1997) do not apply to

the way TD is used in the critic, as the policy under evaluation changes continuously.

An additional difference with the common usage of TD is that the critic in some

of the algorithms estimate the state-decision value functions rather than state value

functions, and therefore use functions of both state and decision as basis for linear

function approximation 1 . Furthermore, the basis functions depend on the policy

under evaluation.

1 TD algorithms that use functions of both state and decisions as basis are known as SARSA in
the Al literature (Sutton & Barto, 1998).
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A function depending only on the state can be extended trivially to be a function

of both state and decision. Therefore, we describe only the critics with basis functions
depending both on state and action because the critic with basis functions depending

only on state can be seen as a special case of the former. The critics for different

objective criteria are presented separately in the following sections. The assumptions

and the convergence results are also stated in these sections and proved later in the
section on convergence analysis. The main focus is on the average reward problem
and the convergence analysis is presented only for this problem. The convergence

analysis of the algorithms for other problems is very similar.
To describe our actor-critic algorithms, we use the following notation and conven-

tions throughout the thesis. The parameter vector of the critic is denoted by r and

the corresponding approximation to the state-decision value function under policy 0
is given by

M

r'Oo (x, u) =EZr 0,4(x, u),
j=1

where r = (r, ... , r) E Rm. The functions q$6, j 1,... , m, are the basis functions

of the critic. For each state-decision pair (X, u) and policy parameter 9, q0e(x, u) =
(# (X, U), . . . , qO'(X, it)) is called the feature vector of the state-decision pair (x, u)

corresponding to policy 0.

Recall that the input to our actor-critic algorithms is a simulator of the system.

The actor parameter is updated from time to time and its value at time k is denoted
by 0k. Similarly, the critic parameter is also updated from time to time and its value

at time k is denoted by rk. These parameters are updated in a direction depending

on the simulated state transitions and simulated decisions. Let kk, Uk denote the

simulated state and decision at time k. Suppose, at time k, Xk, Uk, rk, 0k are all

known. The general scheme of our actor-critic algorithms is as follows:

1. The next state Xk+1 is generated using the current state Xk and current decision

Uk.

2. The next decision Uk+1 is generated by using policy 0k on state Xk±1.

3. The critic parameter is updated to rk+1 based on the observed transition from

(Xk, Uk) to (Xk+1, Uk+1). The exact form of this update, which is the subject
of this chapter, depends on the objective criterion .

4. The actor parameter 0 k is also updated.

Step 2 is common to all our algorithms. The details of steps 1 and 3 vary from criterion
to criterion, and are discussed in the following sections. The following sections also
describe convergence results for the sequence of critic parameter values rk, and the

assumptions on the critic update, basis functions 0' 's and the sequence of actor
parameter values {Ok}.
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Finally note that the sequence of state-decision pairs {(, k)} generated during
the course of the algorithm are random variables. Since the updates of all the pa-

rameters are based on these states and decisions, these parameters are also random

variables. Let P denote the probability law of the stochastic process consisting of all

the random variables generated during the course of the algorithm. Let E denote the

corresponding expectation.

4.1 Average Reward

In this section, we describe the critic part of our actor-critic algorithms for the average
reward criterion. In Step 1 of the scheme described earlier, the state kk+l is the

output generated by the simulator of the transition of the given MDP, when the

state-decision pair (Z k, Uk) is given as input. The critic updates its parameter using

the following auxiliary parameters:

1. a scalar estimate a of the average cost,

2. an m-vector Z which represents Sutton's eligibility trace (Bertsekas & Tsitsiklis,

1996; Sutton & Barto, 1998).

Let ak and 7 k denote the estimate of average reward and eligibility traces at time

k. At each time step k, the critic carries out an update similar to the average cost

temporal-difference method of (Tsitsiklis & Van Roy, 1999a):

Ok+1 = Ok + '-k(9(k+1, Uk+l) - cfk), (4.1)
rk+1 = Tk+7kdk k,

where

dk = gQKk,Uk) -- c-k +-rq$o(k+1,UOk+) - 4'k(Xk, Uk) (4.2)

and Yk is the positive step-size parameter. The two variants of the critic for the

average reward criterion update their eligibility traces Zk in different ways:

TD(1) Critic

Sf Zk -1- 0qk (Xk+1, Uk+1), if kk+l1#4X, (4.3)

0ko(Xk+1, Uk+1), otherwise,

where x* is a fixed state.

TD(A) Critic, 0 < A < 1

Zk+1 =Ak + ok(Xk+1, Uk+1)-
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The following subsection describes the convergence results on the above variants

of the critic.

4.1.1 Convergence Results

Before presenting the convergence results, we state the assumptions on the feature

vectors q5, the step sizes 1k, and the actor parameters 0k. The assumptions common

to both the variants are described first.

The first assumption ensures that the feature vector 0= (', . .. , #b'n) as a func-

tion of the policy parameter 0 is "well behaved". This is assumed to hold for all

variants of algorithms and for all overall reward criteria. However, the bounding

functions L are different for different reward criteria and are as defined in Chapter 2.
This assumption is not the only one that we make on the basis functions of the critic.

Whenever needed, the choice of the basis functions q5% will be further restricted.

Assumption 4.1. 1. There exists K > 0 such that

q09(x, u) I <KL(x ,u), VO E R, x E X, u CU.

2. There exists K > 0 such that

q00(x,u) -q06(x, u) KO -OIL(x, u). VOEIR h xIEX,eIEU.

One of the crucial ingredients of our algorithms is that the parameter of the actor
"changes slowly" compared to that of the critic. In other words, the step-sizes Yk and

the sequence of actor parameters Ok are assumed to satisfy the following:

Assumption 4.2.

1. Yk is deterministic, non-increasing and satisfies

00) 2 7k< 00.

k k

2. The (random) sequence of parameters {0k} satisfies:

|0k+1 -- k <_OkHk,

for some nonnegative process {Hk} with bounded moments and deterministic

sequence {1k} such that

f sk

for some d > 0.
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Since the actor's policy in our algorithms changes continuously, the notion of

convergence of the critic in our setting needs to be clarified. Suppose the actor's

parameter vector is fixed at 9. It is well known that the critic's parameter in the

variants we present here converges to the solution of a linear equation:

h(O) = G(O)r,

where h(.) and G(-) depend on the particular variant. In our context, the convergence

of the critic means that the following holds:

limIrk -- f(0k) I = 0,
k

where

f(O) = 0(6)-1h(O).

Before we move on, we need a new concept to state our additional assumptions

on the features for each variant. For C(-) to be non-singular for each 9, we require

that the basis functions q5 , i = 1,... ,m, be "non-redundant". To describe the corre-

sponding property of basis functions in our context, we need the following definition.

Recall the notation for the inner product and the norm on the space L defined in the

Chapter 2. Note that Assumptions 4.1 and 2.7 imply that #C £ L for each 9 E R h

and i =-1,... ,m.

Definition 4.3. A parameterized family of basis functions {q4, i = 1,... ,m} is said
to be uniformly linearly independent if there exists a > 0 such that for all r E Rm ,

1r'b 12> ar12 .

The notion of uniform linear independence is stronger than linear independence for

each 9. To see this, note that the functions #i, i = 1, . .. ,rt, are linearly independent

for each 9 if and only the function a(O) defined by

a(0) = inf r'b 1,
1rj=1

is strictly positive for all 9 whereas these functions are uniformly linearly independent

if only if info a(9) is strictly positive. Such uniform linear independence assumptions

are required to ensure that the function f(-) and the sequence of critic parameter
values obtained during the course of the algorithm are bounded.

With these preliminaries, the additional assumptions and the convergence results

for the two variants can be stated separately as follows.

TD(1) Critic

For the TD(1) critic, the MDP and the given family of RSPs are assumed to satisfy

a stronger version of Assumption 2.5.
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Assumption 4.4. The set X0 of Assumption 2.5 consists of only the state x* ap-
pearing in (43).

Note that the requirement that there is a single state that is hit with positive prob-

ability is quite strong but is satisfied in many practical situations involving queueing

systems as well as for systems that have been made regenerative using the splitting

techniques of (Athreya & Ney, 1978) and (Nummelin, 1978).
Finally, the following assumption places further restrictions on the choice of the

basis functions for this variant.

Assumption 4.5. The basis functions #', i = 1,... , m, are such that

1. Eo,x*[#o (x*, Uo)] = 0, VO.

2. The functions 0$0, i = 1, ... , m, are uniformly linearly independent.

The assumption that the expected value of the features at x* is zero, is not that

restrictive as for any feature vectors qo, the new feature vectors given by

Oo - Eo,- [q$(x*, Uo)]

satisfy the assumption. In particular, if we put 0$6 = 4, where 4e is defined by Eq.
(2.1) in Section 2.2, then the assumption is satisfied.

Before we describe the convergence result for the TD(1) critic, we need the fol-

lowing notation. For each 0, consider the matrix G(O) and the vector h(0) defined
as

G(0) =(,o,

h(0) =( , Qoo,

where

Qo(x, u) = Eo, [ 9(X, Uk) - C()) UO = u]
-_k=O

Theorem 4.6. If Assumptions 2.4, 2.5, 2.7, 2.9, 4.1, 4.2, 4.4 and 4.5 hold, then for
each 0, the linear equation

G(0)r =I(),

has a unique solution f(0) and

lim [Irk - f(Ok)I ±I +c- -i(Ok)I] = 0, w.p.1.
k

TD(A) Critic, 0 < A < 1

When the policy parameter is fixed at 0, this variant of TD learning is known to

converge if the functions {1, i, ... , q5 } are linearly independent (see (Van Roy, 1998;
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Tsitsiklis & Van Roy, 1999a)) . Furthermore, the functions {i, q$,... , q3} are linearly
independent if and only if the modified basis functions

0,0 = 0,1 - (#,1, 1)01, i = 1, . .. , M,

are linearly independent. But when the policy parameters are changing, we need that

these functions be linearly independent "uniformly in 0".

Assumption 4.7. The modified basis functions 4 = i - (q%, 1)i, i = 1,... ,M,

are uniformly linearly independent.

The statement of the convergence result for this variant is similar to Theorem 4.6

with G(.) and h(-) redefined as

00

G(O) =(0,) b')o - (1 -A) A k q59, Pk~'4) 9 ,
k=O

00

h() = Ak (5 0 , Pt(g -($i)) 6 .
k=O

For intuition behind these expressions, we refer the reader to earlier works on TD

(Tsitsiklis & Van Roy, 1999a; Bertsekas & Tsitsiklis, 1996).

Theorem 4.8. If Assumptions 2.4, 2.5, 2.7, 2.9, 4.1, 4.2 and 4.7 hold, then for each
0, the linear equation

G(O)r = h(O),

has a unique solution F(O) and

lim [|rk -- t(-k)-I + -ak - &(Ok)|] = 0, w.p.1.
k

4.2 Discounted Reward

The relation between the discounted reward problem and the average reward problem

(cf. Section 2.4) can be used to obtain algorithms for this problem. In this section, we

consider a different kind of algorithms that involve additional coin tosses independent

of the MDP. The simulation for these algorithms involves a sequence of {0, 1}-valued

random variables (coin tosses) {Vk} which may contribute to additional variance

compared to other approaches (Tsitsiklis & Van Roy, 1997). However, the steady

state distribution of the other approaches may be different from what is needed to

calculate the gradient of the discounted cost using Theorem (2.13). When p is close

to 1, the difference in the steady state distributions as well as the variance in the two

approaches is small.

At each time instant k, the random variable Vk is generated independent of the

past X1, U1,1l < k,V,Il < k, with

P(k = 1) = i-p.
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The state transition at time k is dependent on the coin toss 1 k. If Vk is 1, the next

state is generated independently of the past and of the current decision, according to
the distribution . Otherwise, the next state is generated using the simulator of the

original MDP. More formally, the simulation can be described as

P( = 1|,,Ul <k,Vi,l<k) = 1 -p,

P(Xk+l c S|V=O,1,,,l k,V,l <k) = p(S)X,U)
P(Xk+1 C S|IV = 0, X17,U1, 1 < k, ,il< k) =P(Sjtk7, O).

Unlike the average reward case, the critic for the discounted reward problem stores

and updates only two parameters Tk and Zk. The update of rk takes place only when

the transitions correspond to the original MDP. The update is given by:

( rk -+-kdk ,if 14= 0,
rk+1{ rkotherwise,

where dk's are the temporal differences for discounted reward:

dk = 9(2, Uk) -± pqo(Xk+1, lk+i) - 00ko(Xk, Uk)-

The eligibility trace vector is updated as follows:

AZk # q0(Xk+l, k+1), if Vk = 0,
kk - k+qX 1, k+1), otherwise.

The basis functions 0', i = 1,... m, are assumed to satisfy the following:

Assumption 4.9. The basis functions 0bb, i = 1,.... m, are uniformly linearly inde-

pendent.

Define the functions G(-) and h(-) as

G(0) = (bOb#'s)o - p(I - A) E(p)k 0 Pk+1
k==O

(0) = ((p)k(ep g)o-
k=o

The convergence theorem for these algorithms is the following:

Theorem 4.10. If Assumptions 2.12, 2.9, 4.1, 4.2 and 4.7 hold, then for each 0, the
linear equation

G(0)r = h(O),

has a unique solution F(0) and

limIrk - f (0k)I|: 0, w.p.1.
k
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4.3 Total Reward

The algorithms for the case of total reward are similar to those for the case of dis-

counted reward. The artificial MDP for total reward problems has the transition

kernel:

P(x, u, S) =I t} (x) (S) + Ix\t}(X)P(SKX, u).

That is, the next state kk+1 is generated from the current state Xk and decision k

as follows:

" If Xk is the terminal state, the next state is generated according to the distri-

bution $.

* If Xk is a non terminal state, the next state is generated using the simulator of

the given MDP.

The critic updates rk and k as follows:

T k+1 5 Tk +7kdkZk, if kk t,

rk otherwise,

Zk+1 - f A k-+-qo ( k+1,LUk+1), if kk#t,
(k k+1, lk+1), otherwise.

where

y = g(X, Uk) + Tk 00k(Xk+l, Uk+i) - r k00k(Xk, Uk)-

In the total reward case, we assume the basis functions satisfy the following.

Assumption 4.11.

1. For all u EU,4 80(tu) = 0.

2. The basis functions 0#0, i =1,..., m,are uniformly linearly independent.

Define the functions h(.) and G(.) as

cc

h(O) =

k=O

G(O) = b(, q')o - (1- A) Ak(0), Pqk+ )
k=O

The convergence result for the critic for the total reward problem is the following:

Theorem 4.12. If Assumptions 2.14, 2.9, 4.1, 4.7, 4.11 and 4.2 hold, then for each
0, the linear equation

C(0)r =h(),
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has a unique solution t(O) and

liMrk-r(0k)| = 0, w.p.1.
k

Before we move on, let us describe how the expressions for C and I are obtained

in the above sections. Note that if the actor parameter were fixed at 0, the triplet

Y = -- (X, Uk, Z) would be a time-homogeneous Markov chain. Furthermore, the

update direction for the critic parameter is of the form (h(Yk) - G(Yl)rk) and, C
and h are steady state expectations of G(Yv) and h(Yk) respectively. These steady

state expectations are calculated either using a regenerative representation or using
the fact that the limit of finite-time expectation is the steady state expectation.

4.4 Convergence Analysis of the Critic

In this section, we analyze the convergence of the the critic for the average reward

criterion. The analysis of the other variants is similar and therefore will not be

described here. If the actor parameter was held constant at some value 0, it would
follow from the results of (Tsitsiklis & Van Roy, 1997; Tsitsiklis & Van Roy, 1999a)
that the critic parameters would converge to some f(0) depending on the variant. In

our case, 64 changes with k, but slowly, and this will allow us to show that rk - f(0k)

converges to zero. To establish this fact, we will cast the update of the critic as a

linear stochastic approximation driven by Markov noise, specifically in the form of

Equation (3.1) of the previous chapter. We will show that the critic updates satisfy
all the hypotheses of Theorem 3.2, and the desired results (Theorem 4.6, 4.8) will

follow. We start with some notation.

For each time k, let

Y = (X,0, 2k),

Rk = (Mak

for some deterministic constant M > 0, whose purpose will be clear later. Let Ek be
the o-field generated by Y1, R 1, 01, 1< k. For y = (x, u, z), define

( Mg(x, u)
zg(x, U)

1 0
Go (y) zM = Y= ZJM Go(y))'

where

Go(y) = z (0'4(x, u) - Eo, [4(X 1, Ui)I Uo = u).
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To understand the role of the scale factor M, consider the steady state expectation

G,(O) of the matrix Go(y). It is required that this matrix be positive definite, so that

certain linear equations have unique solutions. However, C 1 (0) need not be positive

definite even though it is almost block diagonal and the matrices on the diagonal of

C 1 (0) can be shown to be positive definite. The role of the scale factor M is to reduce

the non-diagonal terms and thus make the matrix G1(0) positive definite. The value

of M will be chosen sufficiently large, depending on the parameter A. The dependence

of M on A is stated in the proofs of Lemmas 4.18 and 4.22.

Let

0 0
&k+1(o )

0 k+1

where

k+1= k O(Xk+1, k+i) - E [ZkOk (Xk+1, Uk+)t)k]

is an m x m-matrix valued F-martingale difference. Then the update (4.1) for the

critic can be written as

Rk+1 = Rk + -Yk(h O(Yk) - ok(Yk)Rk) +ykGk+lRk.

To apply Theorem 3.2 to this update equation, we need to prove that it satisfies

Assumptions 3.1 (1)-(10). We will verify these assumptions for the two cases A = 1

and A < 1 separately. Some of the common lemmas will be proved here and the rest

will be presented in the following two subsections. Without loss of generality, assume

that E[L(Xo)] < oo, where L is the function in Assumption 2.5.

Lemma 4.13. supkE[L(Zk)] <oo.

Proof. Using Assumption 2.5, note that

E[L(Ak+l)] = E[E[L(Xk+l)jXk, Ok-1]]

- E[EOklk[L(X1)]]

< pE[L (Xk)] +bP(k V XO).

The result follows because p < 1. E

Assumptions 3.1(2) and (3) follow from our Assumption 4.2 on the step-size-sequence

{ Tk}. Therefore we will concentrate only on the remaining assumptions in the next
two sections.

4.4.1 TD(1) Critic

Define a process Zk in terms of the process {(Xk, Uk)} of Chapter 2 (in which the

policy is fixed) as follows:
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ZO = q0(Xo, UO), Zk+i = IX\{r*}(Xk+1)Zk ± +0(Xk+l, Uk+1),

where I is the indicator function. Note that the process {Zk} depends on the param-
eter 0. Whenever we use this process inside an expectation or a probability measure

we will assume that the parameter of this process is the same as the parameter of the

probability or expectation. It is easy to see that (Xk, Uk, Zk) is a Markov chain and

that

P((Xk+l, Uk+i, k+1) e S x A x B k)

(4.4)
= P((kk+l, Uk+1, k+1) E S x A x B[Xk, Uk, Zk, Ok),

for S c B(X), A E B(U) and Borel set B. Therefore the update satisfies Assumption

3.1(1).
Let r be the stopping time defined by

T = min{k > O\Xk = X}.

For each 0 C R", define To £E as

To(x, u) =-Eo, [IUo = U].

The fact that To E 2(y7) follows from the assumption that Xo = x* (Assumption
4.4), and the uniform ergodicity Assumption 2.5. For each 0 E R h, define

Qo(x, u) = Eo, [Zi(g(Xk, Uk) -(0)) Uo =u]

((h(o) + (0)2(0))'

G1 (0) = 0((0/M 00)

where

h(0) = (Qo,e)o,

2(o) = (TO,0),
G()) = e, ')o.

As we will show later, hI(0), G1(O) and Z(O) are steady state averages of ho(Yk),
GO(Yk) and Zk if the value of the actor parameter was fixed at 0. To prove that h1 (-)
and C1(.) are bounded (Assumption 3.1(6)) we need the following lemma.

Lemma 4.14. For any d > 0, there exists Kd > 0 such that

i. Eo,, [ IQ0 (X, UO) I ] ; KdL ).
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2. Eo,, [To(x, Uo)|d] KdL(x).

Proof Since it is sufficient to prove the above results for d > 1 (this is because

L(x) 1 for all x), fix some d > 1. Using Jensen's inequality and (2.3) we have

Eo,x[L2(X1)'I] < Eo,x[L (X1)I

< PL(x) + bI{x x*}.

Since, by Assumption 2.9 and Eq. (2.7)

Eo,x[g(x, Uo)]jd < Eo,x[lg(x, UO)d] < KdL(x),

it follows from Theorem 15.2.5 of (Meyn & Tweedie, 1993) that Eo,1[Qo(x, Uo)]d<
K7L(x) for some Kd > 0. Since

Qo(x, u) = g(x, u) - d(0) + E, [Qo(Xl, U1)Uo = U],

we have

IQo(x,u)ld a (g(x, u)Id + 1 + Eo, [IEo,x,[Qo(X1 , U1)]dtUO = u]

Cx (Ig(x,)±d + 1 + Eo, [L(x1 )UO = ul)

Taking expectations on both sides we have the required result. The proof of the

second part is similar. E

Lemma 4.15. G1(-) and hi(-) are bounded.

Proof. From Assumptions 4.1, Lemmas 4.14 and 4.13, it follows that jq#011o, ||To1e
and IIQo11o are all bounded and therefore their inner products are also bounded. E

Lemma 4.16. For each 0 E R',

1. Eo,,- [E O((g(Xk, Uk) - d(0))Zk - (Qo, q0)o)] = 0,

2. Eox. [E4(Z(O(XkI, Uk) -- #'(Xk+l, Uk+1)) - (0, '))] = 0.

Proof. We have

Eo,Z. [Ekt(g(Xk, Uk) - d(9))Zk]

= E, I~Ek9(Xk, Uk) - d()) Z 1 ,o(Xk, Uk)1

= E,. [Ek o(X 1, UI) Z I(g(Xk, Uk) - 5(6]

= Eo,* [Z J E b00(X, U1)QO(X 1 ,UT)]

= Eo,1.[-] (0, Qo)o.
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Similarly,

Eo,. [E Zk('(Xk, Uk) - q'(Xk+l, Uk±1)

= Eox [ETA q0e(X, U1) EI(5'(Xk, Uk) - q'$(Xk+l, Uk+l))J

= Eo, [Z04 0 (XI, Uj)('4(X, U1) - 0'(X,, Ur))]

= Eo,x*[-r](qe, q'4)o.

where the last equality follows from Assumption 4.5 and Equation (2.6). El

This lemma suggests the following regenerative representations. For y = (x, UZ),

define

ho(y) = Eo,1 [(ho(Yk) - h(0)) Uo = u, Zo = zl
_k=0

Go(y) = Eo, ['(Oo(Yk) -- (0)) Uo = u, Zo = zj
_k=0

Using the previous lemma, it is a little algebraic exercise to verify that h(-) and do(.)
satisfy Assumption 3.1(5). To prove that these functions satisfy Assumption 3.1(7)
and (9) we will need the following result.

Lemma 4.17. For each d > 1, supk E[lZkid] <o00

Proof. Let Y, denote the vector (k7, Uk, 7 k, rk, Ak, Ok). Since the step size sequences

{-yk} and {/3 k} are deterministic, {Yk} forms a time varying Markov chain. For each
k, let Pk,9 denote the conditional law of the process {,} given that k = Q. Define

a sequence of stopping times for the process {Yk} as follows:

-= minn > Ik : i =x

For 1 < t < , define

v(d)p) = Ek,p L t+-k(1 ± ,

.. =k

which can be verified to be finite, due to uniform geometric ergodicity and the bounds
on b0 (x, u). It is easy to see that V )>(1) 2k Id. Therefore it is sufficient to prove

that

sup E[V d)(Yk)] < 00.
k
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We will now show that Vjd) (Q) acts as a Lyapunov function for the algorithm. Indeed,

V)(p) > E, [zT1t-k(1 + |2|d)]

- Eky [zA-I t-kl1 +Zjd)I{kl x}

= t Ek, 9 [ k+I)Ifk 4 }]

= tEk [vfk(tk+1) - t Ek, v4tk1)I{ Xk+1 = x}J

Using (2.3), some algebraic manipulations and the bounds on q 0 (-, -), we can verify

that

Ek, [utk(+1)I{Xk+1 -= X

is bounded. Finally, since E[V4(jk+l)Yk = Ek,p[V{ 1 (Yk+l)], we have

E[V4 &E [jVl)(1k)] + C

for some constant C > 0. The rest follows as t > 1. E

Using the above result it is easy to verify Assumption 3.1(4). To verify Assumption
3.1(7), note that ho(-), Go(.), ho(-) and Go(-) are affine in z and therefore can be
expressed as

f(1) (X, U) + zf 7) (X, a)

for some functions f4) for which

Eo, [LfP (x, Uo)< KdL(x)

for some Kd > 0. Therefore, Holder's inequality and the previous results can be used
to see that Assumption 3.1(7) is indeed satisfied. As in the proof of Theorem 2.10,
likelihood ratio methods can be used to verify Assumptions 3.1 (8) and (9).

Before we move on, note that the verification of Assumptions 3.1(9) involves upper

bounding "derivatives" of fi (c, u) by functions independent of 0. The only function

of (x, u) we introduced till now that is independent of 0 is L(x, u). But the functions

fg(x;, u) cannot be expected to be upper bounded by L. However, another family of

functions that serves the purpose is the following:

Ld (X, u) = Eo,[L (X 1 )IUO = u]A, d> 0.
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First, it is easy to see that A is in fact independent of 0 as the expectation on the r.h.s.

of the above equation is actually the expectation with respect to the transition kernel
of the MDP. Furthermore, to see that this function is an appropriate one note that

a combination of L and L can be used to bound quantities of the form Eo,2[-IUo = u]

and that

Eo,x [td(x, Uo)d] = Eo9 [1(X 1)] < pL(x) + b.

For example, it follows from the proof of Lemma 4.14 that Qo is bounded above by
C(1 + L + Ld) for some constant C > 0.

Finally, the following lemma verifies Assumption 3.1(10).

Lemma 4.18. There exist M, 6 > 0 such that for all 0Oe R" and R cRm+1 ,

R'G(0)R > c|R|2.

Proof. Let

R =
r

for some r E R m. Then, using Assumption 4.1(3) for the first inequality,

R'G(0) R =11r'0o|2 + |A 2 + r'Z(O)A

> alr12 +A 2 _r'(0)A

2M

> mill(a, 1) 1R 12 _ IZ(O)I(r2+P1)

= (min(a, 1) - t2)R12.

Choose M > supo Z(0) / min(a, 1), which is possible since 4(0) is bounded (cf.
Lemma 4.15). D

4.4.2 TD(A) Critic, A < 1

To analyze the TD(A) critic with 0 < A < 1, redefine the process Zk as

Zk+1 = AZk ± qo(Xk+1, Uk+1).
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It is easy to see that, with this definition, Equation (4.4) holds for the TD(A) critic
also. This means that Assumption 3.1(1) is satisfied. For each 0 E R, let

h'O~ =MujO)

0h(O)+J()Z(O) 7
G1 (0) = (O/M G0()

where

cc cc

I(0) = EAk (q#,Pokc - a(0)i)o, (0) = EAk(0oPa' (' -- PO') 0,
k=O k=O

and Z(0) = (1 - A)-- 1(1,e)o. As in Assumption 4.7, let O = #5 - (#ei)oi. Then,

Poq5 - o = Po - #e and therefore, C1(0) can also be written as

00

G(0) =(so, 5 ' )0 - (1 - A) E Ak (4, Pkq$)o
k=O

It is easy to see, using the Cauchy-Schwartz inequality and the boundedness of qO50
(see the proof of Lemma 4.15), that G1(-) and h-) are bounded and therefore As-

sumption 3.1 (6) is satisfied. The following lemma is used to verify Assumption

3.1(5).

Lemma 4.19. There exists C > 0 such that

1. |Eo, x([(g (Xk,Uk) - d(0)) Zk] - h,1(0)| < Ck max (A, p)kLX)

2. Eo,x [Zk(#'(Xk, Uk) - 0' (Xk+l, Uk+1))] -- 0(0) Ck max(A, p)kL (X)

Proof. We will only prove part 1 since the proof of the other part is similar. We have

Eo,x [(g(Xk, Uk) - e(0))Zk] -- 4)

< [z> A' Eo,x[(g(Xk, Uk) - d())so(Xk-,, Ukl)] - (POc -- (0)1, q 0)J

+C'Ak

kS C'Alpk-LL(x) +C'Ak

<>Io C' max(A, p)kL(x) + C'Ak.

where the second inequality follows from Assumptions 2.5 and 4.1. E
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From the previous lemma, it is clear that for 0 E R and y= (X7, U, z),

o Z(y) = Eo, [(ho(Yk) -- h()) Uo = u, ZO=z ,
k=0

00

Go(y) Z= Eo,x (&o(Yk) - 0(0)) Uo =ru, Z11=z],
k=O

are well defined and it is easy to check that these satisfy Assumption 3.1(5).
The verification of Assumptions 3.1(8) and (9) is tedious and therefore will only

be outlined here. The trick is to write ho(.), Go(-) in the form:

00

S:AkEo,x[fo(Yk)Uo = u, Zo = z]
k=O

and show that the map 0 -+ Eo[fo(Yk) U = u, Zo = z] is Lipschitz continuous with

Lipschitz constant at most polynomial in k. The "forgetting" factor Ak dominates

the polynomial in k and thus the sum will be Lipschitz continuous in 0.

To verify Assumption 3.1(7) we have the following counterpart of Lemma 4.17.

Lemma 4.20. For any d > 1, supk E |2k jd] <o0.

Proof. We have

IZk| = (_-A> (1 - A) S 0 Ak-1j (Xk,dU)

< (1-A)'(' -) 0QAk-I kk(Ufd

where the inequality follows from Jensen's inequality. The rest follows from the fact

that

supE[Ikk|( k)j] <cc.
k

Finally, we will verify Assumption 3.1(10). The following lemma helps us in verifying
this assumption. It will also be used to derive various bounds in the future chapters.

It says that under any policy, for certain functions f of state, not only does the

conditional mean of f(Xk) given Xo go to the steady state expectation of f(Xk) at
geometric rate, the steady state variance of the conditional mean of f(Xk) given Xo

goes to zero at a geometric rate. To make this precise, recall state-decision value
functions Qo and state value functions Vo defined as follows:
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Qo(x, u) =ZEo, [(g(Xk, Uk) --& (O))1Uo =U1 ,
k=O

Vo(x) = Eo,x [Qo(x, Uo)].

Lemma 4.21. For each 0 E R h, let || P ||o denote the norm of the operator Pk

restricted to the span of Qo, Vo q, b0, i = 1,... , m, where for each 0,

qo(x) = Eo, [4(x, UO)].

Then for some po < 1 and C > 0 we have

1Po' o0Cpk, VO, k.

Proof. Note that for any fe C £C,

Pffo = Eo,x[ fo (Xk, Uk)|Uo=u]

= Eo,x[Eo,[fo(Xk, Uk)jXk]]

= P419,

where

f(X, u) = Eo,1[f (x, UO)],

Furthermore, using Jensen's inequality it is easy to see that ||1fo li> fo 11o. There-

fore, it is enough to compute the norm of P further restricted to the span of VO,

, i = 1,..., n. Let N1 denote set of all functions f of state such that

lf(x)l
sup < 00,

x .t(x)

with the corresponding weighted norm denoted by 1 yp Since the functions that

span the subspace under consideration are finite in number and are in a bounded

(uniformly in 0) A -ball, the unit £ -balls in the subspace are all contained in a

gxLball. Furthermore, it is easy to see that IL satisfies Lyapunov condition with

p replaced by fp. Therefore, from Theorem 16.0.1 of (Meyn & Tweedie, 1993) it
follows that for some constant C > 0,

Pf fo <Ck/2 L

for all fo such that iro(fo) = 0, 11 fo ole= 1. The result follows as iro(L) is bounded
uniformly in 0. B
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Lemma 4.22. There exists L, ec> 0 such that for all 0 £ R' and R (ER'n+

R'01 (0)R > ER12.

Proof. Recall the projected feature vectors 4b, j =1,... , m. Due to the previous

lemma, we have for some constant C> 0,

H P(r'$) |o ; Cpo |H r'Oo Ho .

Therefore,

r'G(0)r = r'(o, 14)or - (1 - A) Ek= A r''

= | r'qg || -(1 - A) Z" 0 Ak(r'bo, Po 1

> |r'qo -(1 - A) { _-1 Ak H r'I o + Zkk12C 1 Akpk+lr }
H1r'o -(1 - Ako) r'q HO -C(Apo)ko0% -1('11) 1

> 2 ' _(I Ak 1_ pko 11- )k o 1-)1 )io 1

H 1r4 2 A ko(1 - O2P(I-A)

Take ko such that

Pko+1 < I pA)
0 2(1 - A)'

The rest is similar to proof of Lemma 4.18.

4.5 Closing Remarks

The TD algorithm for the discounted reward problem is new. Note that, unlike the

algorithm proposed in (Tsitsiklis & Van Roy, 1997), the convergence of this variant

does not require the Markov chain to be ergodic. Furthermore, the mechanism for

sampling of states in our variant is different from simulation of a single trajectory.

Our convergence result of the critic is central to our thesis and allows us to design

actor-critic algorithms by abstracting the critic as a black box that outputs an approx-
imation to the value function of the current policy of the actor with "asymptotically

negligible error". This approximation is the one to which it would have converged if

the actor parameters were frozen at the current values. Crucial to our result is the

fact that actor changes slowly with respect to the critic.
This is the first result on TD learning with changing policies. The proof techniques

used here also provide a unified approach to converge analysis of several variants of
TD. In particular, these methods can be used to prove convergence of "replace trace"

methods (Singh & Sutton, 1996). The proof techniques as complicated as the ones

used in this chapter are needed only for the analysis of the algorithms in which the
policy changes at each time step. We haven't considered here episodic variants of
TD in which the parameters of both the critic and the actor are updated only when
the system visits a certain state in average reward case or the terminal state in total
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reward case. For those times between the visits to the terminal state, the policy
used is the one to which the actor was updated after the last visit to the terminal
state. The analysis of these variants is much simpler than those considered here as the
noise in the estimate corresponds to martingale differences which are much easier to
handle. Furthermore, the uniform ergodicity assumption can be relaxed for episodic
variants. Due to their simplicity, only these variants will be taken up for study of
rate of convergence later in the thesis.
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Chapter 5

Actor-Critic Algorithms

In this chapter, we propose several variants of actor-critic algorithms which can be

viewed as stochastic gradient algorithms on the parameter space of the actor. They

differ from related algorithms like REINFORCE (Williams, 1992), likelihood ratio
methods (Glynn, 1987; Glynn & L'Ecuyer, 1995), direct gradient methods (Mar-
bach & Tsitsiklis, 2001; Baxter & Barlett, 1999) which are also stochastic gradient
methods. While the gradient estimate depends on the value function approximation

provided by the critic in actor-critic methods, the gradient is directly estimated from

simulation in other methods. Therefore, we refer to these other methods as actor-only
methods. The actor-only methods do not store any additional parameters other than

the policy parameter vector 0 (and average reward estimate in average reward prob-
lems). However, in actor-only methods, the variance in the estimate of the gradient

can be very large for systems with large state spaces. The principal reason for this is
that the estimate depends on the simulated path of the system starting from a par-

ticular state until the system's first return back to that state. For systems with large

state spaces and for systems which take too long to reach steady state, the variance
of the gradient estimate can be very large for the estimate to be useful. To alleviate

this situation, several variance reduction techniques have been proposed. All these

techniques amount to "throwing off" some part of the trajectory. For example one

technique (Marbach, 1998) is to discount exponentially the contribution of the states

visited in the distant past. Such variance reduction techniques introduce bias in the

estimate and therefore there is always a trade off between the bias and the variance in
the estimate. One of the main contributions of this thesis is to show that the addition
of a critic to actor only methods (which makes them actor-critic methods) potentially

improves the bias-variance trade off. In other words, depending on the capability of

the critic to approximate value functions, the actor-critic algorithms can have much
better bias for the same variance as their counterpart actor-only methods.

In the next two sections, we present our two different classes of actor-critic algo-

rithms. The intuition for the algorithms is described using the connection between

the gradient formulas of Chapter 2 and the convergence results on TD and the critic

(Chapter 4). The next section also states and proves the convergence result for these
algorithms.
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5.1 Actor without Eligibility Traces

The variants presented in this section are motivated by the observation that the

quantity

Qok(Xk, Uk)Ok (Xk, Uk) (5.1)

can be viewed as an estimate of Vd(0), as its steady state expectation under the policy
associated with 64 is the gradient (cf. Theorem 2.10). Here Qo is a state-decision

value function under policy 0 and O 0 = V In po (x, u). Since a critic can provide only

an approximation Qo of Qo, even if it converges instantly, the question is whether

(5.1) remains a viable estimate of the gradient if Q is replaced by an approximation

Qo. It is obvious that the answer is yes if the approximation error is small. A more

subtle point is that the estimate remains viable even when the approximation error
is large but "almost" orthogonal to the functions

aIn po(ulx)
( &lno U)u)(5.2)

in L' (the space L' was defined in Chapter 2). To see this, note that the bias

contributed by the error Qo - Qo in the approximation of Qo is given by

(QO -Q00)

which is zero if Qo - O is orthogonal to the "Ii = 1,... n. Therefore, we arrive

at the following important conclusion. As far as convergence of gradient methods

over a parametric family of policies is concerned, the objective of value function

approximation should be to approximate the projection of the value function on
the subspace To spanned by the basis functions ,bi = 1,... ,n, rather than to

approximate the value function itself.
The analysis in (Tsitsiklis & Van Roy, 1997; Tsitsiklis & Van Roy, 1999a) shows

that this is precisely what Temporal Difference (TD) learning algorithms try to ac-

complish, i.e., to compute the projection of an exact value function onto the subspace

spanned by the basis functions. This allows us to implement the critic by using a

TD algorithm. (Note, however, that other types of critics are possible, e.g., based on
batch solution of least squares problems, as long as they aim at computing the same
projection.) However, we present a family of algorithms which also includes methods

in which the critic tries to approximate the exact value function. The reason is that
the computation of the exact projection needs the use of TD(1) critic which suffers

from large variance. As we will show later, if we use TD(A) with A < 1 for the critic,

bias is introduced into the estimate which depends on the error in the approximation
of the exact value function rather than the projected value function. Therefore there
is a trade off between the variance and prior knowledge about the value function as
described by the critic's ability to approximate it. This trade off is discussed later in
more detail.

Since the approximation of the state-decision value function provided by the critic
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at time k is rkcok, the actor parameter in this variant is updated along the direction
of

rk0$,(Xk+1, Uk+1)Ok(Xk+(X I, Uk+1)

at time k. More precisely, the actor parameter update for this variant is given by

Ok+1 = Ok + OkF(rk)rkkk(Xk+l, Uk±1))Ok+(k, Uklk+1)

Note that the step-size for the actor, at time k, is F(rk)/k which depends on the

parameter vector of the critic. The relation between the step-size of the critic, 1k,

and that of the actor is described in the following assumption.

Assumption 5.1.

1. The step-sizes /k and 1k are deterministic, non-increasing and satisfy

>Ok = Ek = 00,

k k

k < oo, and E7<0o.
k k

2. For some d > 0, we have

(k)d

3. The function F(.) is assumed to satisfy the following inequalities for some pos-

itive constants C1 < C2:

IrKr(r) E [c1,C21 , Vr E R m ,

|r(r) --r( ) I< C2 Vrf eR n. (5.3)
- 1+H±H|f

The first part of the above assumption is standard for stochastic approximation

algorithms. The second assumption is one of the central assumptions of this thesis.

It implies that the critic is updated on a faster time-scale than the actor, where the
separation of time-scales is achieved by using different step sizes Yk and 3 k for the
critic and actor respectively. For finite MDP's the second part can be weakened to

/3 k/1k -4 0. The role of the factor ]?(rk) in the actor's step-size is to prevent the
actor from taking large steps in a "wrong" direction. It represents the user's intuition
about the "right size" of critic parameters when the critic has converged. A simple
example of the function F(.) satisfying the above assumption is the following: for
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r = (r1 ,... ,rm),

1 if E rt l < C,

1+ZrI)otherwise,

where r' is the i-th component of vector r.

The critic for the variants of this section is as described in the previous chapter,

with basis functions #b%, j = 1,... , m, chosen to satisfy the following assumption.

Assumption 5.2. For each 9 E R', the subspace (Do in L9 spanned by the basis

functions 0,2i = 1,... ,M, of the critic contains the subspace Te spanned by the

functions 4j,j = 1,... , n, i.e.,

(DoA->T 0 , VO E R h .

As we have argued earlier, ideally, the critic should compute the projection of

value function onto the subspace To for any given 0 e Rn. Therefore it is sufficient

for the critic to use 04, i = 1, ... n, as basis functions for the critic. Nevertheless, we

allow the possibility that m > n and that 4) properly contains Te, so that the critic
uses more features than are actually necessary. This added flexibility may turn out

to be useful in a number of ways:

1. It is possible that for certain values of 0, the feature vectors Qb are either close

to zero or are almost linearly dependent. For these values of 9, the matrix C(O)
defined in Theorem 4.8 becomes ill-conditioned which can have a negative effect

on the performance of the algorithms. This might be avoided by using a richer

set of features q$.

2. When the critic uses TD(A) with A < 1, it can only compute an approximate
- rather than exact - projection. The use of additional features can result in a

reduction of the approximation error.

To understand what the additional features should be, let us consider the bias, de-

noted by bo(A), in the estimate of the gradient of the average reward for policy 9.

Due to Theorem 4.8, we can assume that the actor updates its parameter along

f(0)'"k(Xk,7Uk)$ II0(Xk, Uk)

when the actor parameter is 9. Therefore, the bias bo(A) in the update direction is the

difference between the gradient at 0 and the steady state expectation of the update
direction. Using Theorem 2.10, the bias bo(A) can be seen to be

KQ0- f(9)'q O,'Q)O
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so is defined as

So= ko - (#o,I)o.

Consider the above with Q0 replaced by q%:

Q0- f(O)'qO, 4;O ) 0 K 0Q) ~$(0))0

= (O, Qo) - h(O) + (0(o) - K, ' % (0).

The second equality follows from the definition of t(0) = G(O)-Ih(O) of f(O). Using
the fact that

00
Q19= pk (g- (0) 1),

k=O

is state-decision value function, the definition of h, G from Theorem 4.8 and the
identity (1 - Ak) = (1 - A)(-+ + Ak-1) , the above expression for the bias can be

reduced to

"0

(1 - A) S Ak 0 )04'l(0

k=0

Since bo is orthogonal to the constant 1, Assumption 5.2 implies that each 0" can

be expressed as a linear combination of the q$'s. Furthermore, for a function f(,)
of state and decision we have

Pof = Pof,

where f(-) is the function defined by

f(x) = Eo,[f (x, U0)].

Therefore, the expression for the bias can be rewritten as

00

bo(A) = (1- A) 5 Ak P +(V0 -

k=O

where VO is the state value function corresponding to policy 9 and q is given by

9o(x) = Eo,[qo(x, Uo)].

For future reference, we will call the functions q0 as the value function component of

cb. The following lemma gives a bound on the bias in terms of A and the error in the

value function approximation.
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Lemma 5.3. There exists constants 0 < po < 1 and C> 0 such that for all

bo(A) 0(1-A VO - f(O)'NO1e, VQA.
(1 - poX)

Proof. It follows from Lemma 4.21 that there exists constants po < 1 and C > 0 such

that

Pok(Ve -i(O)'qo) Cp 1 V9 - r(O)'yo lie.

Therefore, we have

00

bo(A 1 (0- )0 P)+01 _,[g
k=O

(1 - A) 1> A' 11"a lio P(11 (Ve0
k=O

< C(1 - A)_v 6 -t(O)' 11i,
(1 - poX)

where the second inequality follows from Cauchy-Schwartz inequality. 0

The above bound captures the qualitative dependence of the bias on the critic param-

eter A, po which represents the mixing time of the Markov chain, and the ability of
the critic to approximate the state value functions. The bound shows that actor-critic

algorithms work well only when one of the following hold:

1. The critic can approximate value functions fairly well.

2. The critic parameter A is set close to 1.

3. The Markov chain reaches steady state fast.

The mixing time po of the Markov chain depends on the basis functions q$ for the

critic and value function Vo (cf. Lemma 4.21).
Let us now study the implications of the formula for the bias on the choice of basis

functions for our critic. When A < 1, the above discussion implies that for the bias
to be less, the value function component of the critic's approximate state-decision

value function should be close to the true value function. However, the value function

component of the functions i/j, j = 1,... , n, are all zero as

Eo,[t/o(x , Uo)] = 0, VP, x.

Therefore, the subspace tIo spanned by the set of basis functions 0', i = 1,... ,m

must be strictly larger than the subspace Pe spanned by the functions 4j, j 1,. . . n

(Assumption 5.2), and the number of features for the critic m must be strictly greater
than the number of actor parameters n. Suppose the first n basis functions for the
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critic are , i = 1,... , n, and the remaining basis functions are 0,Z i = 1,... , m -- n
which depend only on the state. For such a choice of the features, the update for the
critic and the actor can be modified without changing the asymptotic behavior of our
actor-critic algorithms. For convenience of notation, let r and f denote the coefficient
vectors for 4, and #5 respectively. Since P 0 4 is zero, the temporal differences d in

the critic (see Eq. 4.2) can be replaced by

g(k,Uk) + TkI ,(Xk+1) - Tkq,(k) -- TkjkUk)-

Similarly, the actor update can be modified so that it uses only rj'4, instead of

Tk7 5 ,. + rkq 9 , as the estimate of state-decision value function. Furthermore, since for

1 <; k,

E[00 k, Ukk)$OI (X1)I= EE 0,.x,. [0k o,. (27k, Uk]h 1 (Xe)]

= 0,

the term r'0,(flk, Uk) in dk can be removed from the update for the parameters
f. With these modifications, the critic update breaks down into two parts as shown

below.

Tk+1 rk + 7k(g(Ak, Uk) + fkOk$ojk+l) - 4k6,.(Xk) - rkk#oXk, Uk))Zk

Tk+1 = rk + 7k(9k(k, k k) + 49o,(Xk+l) - k / (Xk))Zk

where Zk and Zk represent the eligibility trace vectors for the feature vectors 4, and

q,9 respectively. Therefore, the update for f becomes the usual TD to approximate
the value function and the update for r can be thought of as "advantage" learning
with the basis functions 4, used for approximating the "advantage"

Qo(x, u) - Vo(x).

For A = 1, since the bias is zero no matter what the additional 0 features are, pure

advantage learning is sufficient for convergence of the algorithms whereas for A < 1,
the critic must learn both the advantages as well as the state values for the actor's
gradient estimate to be unbiased. Note that the functions 00, i = 1,... ,n, cannot
be used as basis functions when they do not satisfy the uniform linear independence

assumptions (Assumption 4.7). However, when they do satisfy the assumptions, the

actor update can be further modified as follows:

k+1= 0 k -Okl('rk)rk.

With this modification, the actor-critic algorithms become quasi-Newton (Bertsekas
& Tsitsiklis, 1996) methods which perform better than gradient methods in some

cases.
Before the convergence result of our first variant of actor-critic algorithm can be

presented, the following assumption on the vector valued function 4o is needed. Recall
the function L(x, u) defined in Chapter 2 for average reward problem. We assume
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that the function 4e is differentiable with derivatives bounded by L.

Assumption 5.4. There exists K > 0 such that for each (x, u) the map 6 -± 0(x, u),
is differentiable with

IV4o(x, u)I KL (x, u).

The converge result for our first variant of actor-critic algorithms is the following:

Theorem 5.5. (Convergence of Actor-Critic algorithms)

liminf [Vd(Ok)j - bo,(A) ] 0 w.p.l.

In other words, the sequence {0k} of actor parameter values obtained by an actor-
critic algorithm visits any neighborhood of the set

{O : |V&(O)j <l b(A)|}

infinitely often.

5.1.1 Convergence Analysis

In this subsection, we present a proof of Theorem 5.5. We start with the following
notation. For each 0 E R' and (x, u) E X x U, let

Ho(x, u) = o(x, u)0'(x, u), R(0) = (4'o,0')o.

The recursion for the actor parameter 0 can be written as

=k+1 0-k + P3 Ho,(Xk+l, Uk+l)(rkfhrk))

=0/k + 3kH(0k) (f(0k)F(t(0k)))

+k(H9k(Xk+1,0k+l) - f(0k))(rk1j(rk))

+/k/H( k0(rk(rk) -f(Ok r(0k)).

Let

f(0) = fI(0)f(0),

(1) = (H H(k+16,Uk+1) -- (krkhrk),

e2) = ft(0k (rk(r) - F(Okr ().

Using Taylor's series expansion, one can see that

a(0ck+ 1) (0k) +/3/c(t(0))Vd(Ok) . f(0k) + OkV(Ok) ek)

+3kVct(Ok) 2) - Ce-2 Ho((X)k+1, Uk+1)(rkF(rk)) 2, (5.4)

where C reflects a bound on the Hessian of a(0).
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The following lemma states that all terms except the one involving f(-) are neg-

ligible.

Lemma 5.6. (Convergence of the noise terms)

1. Zto kV (k) 4) - e converges w.p.1.

2. limkej =0wp.1.

3. Ek/kiHok(kk, )rkP(rk)|2

Proof. Since rk is bounded and F(.) satisfies the condition (5.3), it is easy to see that

rT(r) is bounded and IrF(r) - iT(f)I < Cjr -- fI for some constant C. Therefore the

proof of Part 1 is similar to the proof of Lemma 3.10. Similarly, the proof of Part 2

follows from identifying Hok (Xk+1, Uk+1)(rkf(rk)) with Hk in Assumption 4.2, the

fact that f(-) is bounded, and Theorems 4.6 and 4.8. Proof of Part 3 is similar to

the proof of Lemma 3.11 as

|Ho(Xk, UJk)rk(rk)I <_ CIkIHok(kk, Uk

for some C > 0. E

Proof of Theorem 5.5

Since the proof is standard, we will only outline it. For T > 0, define a sequence of

random variables kj by

k

ko = 0, kj+1=min kt Lk k ;>T} ,for j>0.

I I=k

Then, using Eq. (5.4) and the fact that f(0) = Vt(O) + bo(A) we have

kj+1-1

(Okj+ 1) > i(ij) + 1 3kJ((Ok)) (Vt(9k)|2 - bok(A)I jV(Ok)-) + 64,
k=k,

where 6J is defined as

kj+1-1 -
2

= k1 - ( + +(2)) - C, Ho(Xk, Uk)rkf(rk) 2

k=k, - -

Lemma 5.6 implies that Jg goes to zero. The result follows easily.

In the variant presented in this section, the factor A controls both the accuracy

of value function approximation as well as the robustness of the algorithms to errors

in value function approximation. In the next section, we present another variant in

which these two can be controlled by two separate parameters, one for the critic and
one for the actor.
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5.2 Actor with Eligibility Traces

In this variant, the critic uses basis functions which depend only on the state and the
actor uses eligibility traces. The actor is updated as follows:

k+1 = 0 k + 3 kF(rk)dk+1k+1

where dk+1 represents the temporal difference

dk+1 = g(Xk+l, Lk+1) - ek++1 + rk (Xk+2) - Tk$0k(Xk+1),

and Zk+i represents eligibility traces for the actor. As in the case of the critic, the

update of eligibility traces involves a parameter we denote by 0 A < 1. The update
of the eligibility vector Zk for A = 1 and A < 1 is different and requires different

assumptions. Therefore these two cases will be described separately in the following

subsections.

5.2.1 A = 1

For this variant, we need a state x* that is hit with positive probability. Therefore

we assume the following:

Assumption 5.7. The set Xo consists of a single state x*.

The eligibility traces are updated as follows:

__ Zk +4)O- k+1, lJk+1) if Xk+l $
k1 S 0k(Xk+1, Uk+1), otherwise.

Note that the actor with this update of eligibility traces is similar to the actor-only
method of (Marbach & Tsitsiklis, 2001) except for the additional term r90 0(Xk+l) -

r q$00 ()Ck). This term can be thought of as changing the cost function from g to

g + Po(t(O)'4) -rJ(O)'qo whose average cost is same as that of the former. Therefore,
the convergence result (Marbach & Tsitsiklis, 2001) of actor-only methods implies
that this variant of actor-critic methods converge no matter what the critic features

are.

5.2.2 A<1
In this case, the eligibility traces are updated as:

Zk+1 k -- + Aok(Xk+1, Uk+1).

Note that when there is no error in the critic's approximation and A = 0, the update

direction of the actor parameter is

(g(Xk+ 1 , Uk+1) - k+lp + rqkO6(Xk+2) - Tk 4 9Xk+1)9k,
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and its steady state expectation is given by (Qok - Vok, I0k)o. Since VO depends only
on state and

Eo,x[oo(xc, U0)] = 0, Vx, 0,

it is easy to see that the steady state expectation of the actor's update direction is
the gradient direction. The use of eligibility traces mitigates the bias in the update
direction contributed by the error in value function approximation. To see this,
consider the steady state update direction for the actor when 1 > A > 0:

A o o,y \k (P(, Phg -- (0)1+ P(Ofl 00) - f(o0 o
k=O

It is easy to see, through algebraic manipulations, that this is equal to

V: k(P0, Pk'(g -_td(0)i)), + (P0, ft(O)'100)0 -1 : A A~K a0 Pk+1Q()fq ))
k=O k=O

Therefore, the bias in the direction is given by

Z:(i _-kA) (Pa, Pk(g -_t()1)t ( A >k+(aP 1 (f()~oS

k=O k=O

which can be reduced to

(1E- A) 3 VK , Pk+1(Q 0 - 0)
k=O

Since for each 9, POQO POVO the expression for the bias can be rewritten as

(11-A) A VK0, Pk+(V 0

k=o

Note that the formula for the bias is the same as that of the previous variant except
that the bias now depends on the parameter A of the actor rather than A of the critic.

Therefore we use bo(A) to denote this bias. Furthermore, Theorem 5.5 applies to
these algorithms as well with A replaced by N. One advantage of this method over
the previous one is that the parameter N that controls robustness to approximation

errors in the value function is different from the A that controls the accuracy of critic's
approximation.

Before closing this section, let us delve into the implications of the formula for

the bias in the estimate of the gradient and the upper bound on it. Let e(x) denote
the the error in value function approximation of the critic for state x. Let r be a
geometric random variable independent of everything else with parameter 1-A. Then
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the bias bo (A) in the gradient estimate can be written as

bo(A) E9 [io(Xo, Uo)e(X 7)]

= Vpuo(x, u)Eo, [eo(X,)I Uo = u] v(du),

where E0 denotes the expectation with respect to the stationary distribution of the

MDP controlled by RSP 9. If A is chosen close to one, the random time T is large with
high probability and therefore Eo, [eo(X,)I Uo = u] is very small due to geometric
ergodicity. Therefore, the parameter A can be thought of as follows.

* 1 - A represents the confidence the user has on the ability of the critic to

approximate the value function. Because, if A is set close to one, the bias
contributed by the error in the critic's approximation of the value function is

negligible.

* 1/A denotes the user's estimate of the time for the Markov chain to reach steady
state. To see this, note that the bias is small if the Markov chain reaches steady

state with high probability in time T.

Since, both the mixing time and the error in critic's function approximation vary with

the policy, the parameter A can be changed from policy to policy. That is, we can

choose A to be a function of 6 and this can potentially improve both the transient

and the asymptotic behavior of the actor-critic algorithms. Finally, these variants can

also be analysed using the techniques presented in this thesis provided the function

A(-) is well behaved.

5.3 Closing Remarks

The convergence result of this chapter is quite weak. The best one can hope for in
gradient methods with errors is that the lim sup JVt(Ok)J is less than the given bound.

While such a result is provable (Bertsekas & Tsitsiklis, 2000) for methods without

any gradient errors, it requires certain special structure on the noise sequences which

is not present in our case in general. However, our results can be strengthened if
we assume a priori that the sequence 64 is suitably bounded and that a(.) is well

behaved on this bounded set. This, in turn, might be guaranteed if the iterates 0k

are projected back to a compact set whenever they exit this set.

We have only proved the convergence of actor-critic algorithms without eligibility
traces. To analyze actors with eligibility traces, we can write them as

9 k+1 = Ok ±f 3 kP(rk)Hk(Yk+l)Tk,

where Yk = (,, Uk, A) forms a Markov chain. The rest of the analysis is similar.

Note that the definition of temporal differences used in the update of critic and the

actor are different. This is just an artifact of the convention adopted in the thesis
that the decision at time k + 1 is generated using policy corresponding to 64. This
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convention is not at all essential for the working of the algorithms proposed in this
thesis. In fact the policy use at time k can correspond to the actor parameter in the
near past, that is, to 0 k_ where r is a random variable with certain finite moments.
Similarly, the approximation to the value function at time k can be taken to be
r'/_lkk-r2 where Ti, T2 are random variables with finite moments. This is because,
the change in the parameters of the actor and the critic are of the order of the step-
sizes employed and the total change in the values of parameters over a random time
of finite expectation is negligible.

In this chapter, we considered the actor updates only for the average reward
problem. The algorithms for the other criteria differ only in the simulation of Xk, Uk
and the definition of temporal differences dk or d4. The differences in the simulation
were already described in Chapter 4. The definition of temporal differences is standard
and can be found, for example, in (Bertsekas & Tsitsiklis, 1996).

Finally, algorithms similar to ours have been proposed for the discounted reward
criterion in (Kimura & Kobayashi, 1998). They also arrive at the conclusion that when
eligibility traces are used to their maximum extent, the actor's update direction is
the gradient of the discounted reward, no matter what the critic's approximation is.
However, the reasoning and the gradient formula they base their arguments on are
inaccurate.
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Chapter 6

Rate of Convergence of Temporal
Difference Learning

In this chapter, the rate of convergence of temporal difference (TD) and related algo-

rithms is studied. Only algorithms for finite state autonomous systems are considered

here. However, the results can be extended to Markov chains with general state spaces

under appropriate conditions. The aim of this chapter is to understand the rate of

convergence of TD in general and the issues relevant to actor-critic algorithms in

particular.

Consider an aperiodic and irreducible Markov chain {Xk} on a finite state space

X with transition probabilities P, and stationary distribution -r. Let 9: X -+ R be

a reward function. Let

a =Ei(x)g(x)

be the average expected reward and J : X - ]R be the differential reward function:

00

J(x) = Z E[g(Xk) - JXo = X].
k=O

TD algorithms approximate J by a linear combination

M

J(x; r) = r 0iKX)
i=1

of m linearly independent basis functions )z2, i = 1,... , m. Alternatively, the vector

O(x) = (q1(),... , q"'(x))

can be thought of as the feature vector corresponding to the state x. In all the variants

of TD algorithms, a sequence of approximations J(x; rk) to the differential reward

function are obtained, where the approximation at time k depends on the trajectory

of the Markov chain up to time k. For several variants of TD, there are results (Van
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Roy, 1998; Tsitsiklis & Van Roy, 1997; Tsitsiklis & Van Roy, 1999a; Tsitsiklis & Van
Roy, 1999b) showing that the sequence of parameters rk and therefore the sequence
of approximations J(x; rk) converge. A natural figure of merit for such algorithms is

the rate at which the the expected distance between the approximations and the limit
to which they converge tends to zero. In general, the best rate at which the expected

distance decreases is i/vk. Therefore, if f denotes the limit of the parameters rk,
the figure of merit of these methods is taken to be

limkE [| 4$-f'q< 23,
k

where - denotes the weighted norm of functions on X with the weights corre-

sponding to stationary probabilities -x. That is, 11 - 11 denotes the norm corresponding

to the inner product defined as follows: for two functions fi and f2 on X,

(fl, f2) = E7r(x)fl(X)f2(x).

In the next two sections, the figures of merit of two different TD variants; recursive

TD and least squares TD are studied. In particular, it is shown that the least squares
variants are always better than the recursive variants and that some small modifi-

cations to the recursive variants leads to algorithms that are as good as the least

squares variants. Therefore, we take the figure of merit of the least squares variants
to be intrinsic to TD methods. Bounds are derived on the intrinsic variance of TD

that capture qualitatively the effect of the parameter A on the rate of convergence of
TD. Similar analysis is possible for episodic variants and for other objective criteria,

which lead to the same qualitative conclusions.

6.1 Recursive TD

The recursive variants of TD store and update the following parameters:

* ak, the estimate of average reward,

* rk, the coefficients of the basis functions,

* Zk, the eligibility trace vector.

The parameters ak and rk are updated as

ak+1 ak +7k(g(Xk)-ak),

Tk+1 = rk+ 'k(g(Xk)-a, + rkq(Xk+1) - rgb(Xk))Zk.

where Zk is different in different variants of TD. In this chapter, we restrict ourselves
to the analysis of the variants in which the eligibility traces are given by

k

Zk= E Ak-i(Xi)
i=O
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where 0 < A < 1 parameterizes the family of recursive variants of TD. However, the
analysis can be extended to other variants as well.

The update for ak does not depend on the update for rk and is common for all
variants of TD. For all practical purposes, Ok can be taken to be

1k-1

ak = k g q(Xk)

1=0

in all methods. The different TD methods differ only in their update of rk. It is not

difficult to see that ak converges to d w.p.1. Therefore, to simplify the analysis, we

will only consider a modified iteration for rk in which ak is replaced by a:

rk+1 =rk +-yk(g(Xk) -- d+r'q$(Xk+l) -r74q(Xk))Zk.

However, note that the rate of convergence of rk in the original iterations depends on
the rate at which ak converges to d and therefore a careful analysis should include

this dependence. To avoid cumbersome notation, we study the modified instead of the
original iterations. The qualitative conclusions we arrive at hold also for the original

iterations.

The first step to analyze TD is to see that the triple Wk = (Xk, Xk+1, Z) is a

Markov chain. The modified iteration can be expressed in the form

rk+1 = rk + yk(h(Wk) - G(Wk)rk), (6.1)

where for w = (x, y, z)

h(w) z(g(x) -

G(w) = z(4(y)' -()').

It has been shown (Tsitsiklis & Van Roy, 1997; Tsitsiklis & Van Roy, 1999a) that rk
converges to t, the unique solution of a system of linear equations

where C and h are steady state expected values of G(Wk) and h(Wk), respectively.

To compute the figure of merit of TD, we need the following theorem. This
theorem can be viewed as an extension of Proposition 4.8 from (Bertsekas & Tsitsiklis,

1996) and as a special case of more general theorems (Benveniste et al., 1990) on

Gaussian approximations to recursive algorithms driven by Markov noise.

Theorem 6.1. Consider a recursive algorithm of the form (6.1). Assume

1. {Wk} is a Markov chain.

2. The step-sizes yk are deterministic, nonnegative, nonincreasing and satisfy

0k 0Z ,and lim(7k - 'WY,
k

k kI
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for some? - ;>0.

3. There exists a deterministic bound on the sequences {h(Wf)} and {G(Wk)}.

4. There exists a vector h, matrix 0, scalars C and p, with 0 < p < 1, such that

|E[G(Wk)|Wo=w3]- 0 JCpk
E[h(Wk)Wo=w]-h |< Cpk,

for all k,w.

5. 0- I is positive definite.

6. There exists a summable sequence of matrices {17j} such that for the above con-

stants C, p, we have

E [FkF|Wo =wJ - fl <Cpk

for all k, w, where

Fk = (h(Wk) - G(W)f),

r = W-ih.

Then the following hold:

1. rk converges to t w.p.1.

2. The sequence {(h(Wk )-G(Wk)t)} obeys a central limit theorem with covariance

matrix

00

+ +
1=1

That is, the sequence

k-1} (h(Wk) - G(Wk)f)k 1 0

converges in distribution to N(0, F).

3. '{ 1 /2 (rk -f) converges in distribution to N(0, E) where the matrix E satisfies

4. For S 0 = O-0F (C',) E - ?Eo is positive semi-definite.
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Proof The proof of first conclusion follows from Proposition 4.8 in (Bertsekas &

Tsitsiklis, 1996).
Part (3) follows from Theorem 13 on pg. 332 in (Benveniste et al., 1990). Most of

the assumptions for Theorem 13 are trivially satisfied as h(-) and G(-) are bounded

and C is positive definite. The solution to the Poisson equation can be easily con-

structed using assumptions (4) and (6). To verify (4.5.11) in (Benveniste et al., 1990),
note that

lim \7k - k+1 (7k -- 7k+1) X 7Wk+1

k 3/2 7k7k+ 3/2 -
7k+1 7k + I ?k V' 7k + _k±1)I

2

Similarly, Eq. (4.5.31) in (Benveniste et al., 1990) follows from the fact that

-1 -1

'Yk +- Yk Y

and the assumption (5). For the representation for r used in this theorem see Section

4.4 in (Benveniste et al., 1990).
The second part of the theorem follows from the third as the sequence

1 k-i

Sk = k4 (h(W) -- G(W)f),

1=0

satisfies

1
Sk+1 = Sk + ((h(Wk) - G(Wk)t) - sk)

k + 1

and

(h(Wk) - G(Wk)f) = (h(Wk) - h) - (G(Wk) - C)t.

To see this, note that when C is the identity matrix and, 7yk= 1/(k + 1) then j = 1

and therefore, E = F.

Finally, the last conclusion follows from Proposition 4 on pg. 112 in (Benveniste

et al., 1990). w

A part of the above theorem has been used to prove the convergence of TD algorithms

(Tsitsiklis & Van Roy, 1999a; Tsitsiklis & Van Roy, 1997). The proof proceeds by
verifying Assumptions 1-4 of the above theorem. Assumptions 5 and 6 are needed

only for conclusions 2-4. The verification of assumption (6) consists of guessing f,

(using some informal calculations) and proving that (6) indeed holds for that Fr using

aperiodicity and irreducibility of Markov chain {Xk}. An exact expression for P, and

bounds on F will be given in the next subsection.
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6.1.1 Bounds on the Variance of TD

In this section, we will derive bounds on the covariance matrix P which then deter-
mines the asymptotic covariance of TD (Theorem 6.1). In the context of TD, it is
easy to see that

h(Wk) - G(Wk)T = dkZk,

where

4k = g(Xk) -- +'q4(Xk.1) -- 'q5(Xk).

Consider the following expression for 17:

f = lim E [(Jkk+IZk Z+]

k k+1

- limE5AY i+ k+k(Xkl _i)X(Xk+1-9'
_i= j=0

k k+1

- lim 5 A+jE [X_
i=0 j=0

k k+

- lim 55 AiEr (Jkdk+1q(Xk_)#(Xk+i-)'J
i=0 j=0

k i+1

=lim ((A'+j E, (E [d__ _ )p X+12

i=0 j=0

k k+l

+lim5 5 A'+Er [JkJk+lq(Xk _)q(Xk+1-I)']
i=0 j=i+l+1

Do i+1

- 55 A+j'E7, [jdi+O( Xo)O(Xi+1-j )
i=0 j=0

+5 > A'+jEir [dj_ldyj#(Xm_i_1)>(Xo)'1,
i=0 j=i~l+1

where E, denotes expectation under the steady state distribution. The justification
for the fourth of the above equalities is that the approximation by steady state expec-
tation is close for large i and j, and the past is discounted by a factor of A. Therefore,
Assumption 6 can be verified using the above expression for f1.

We now derive a bound on f, that captures its dependence on A and the mixing
time of the Markov chain. Consider the following calculation for f.

k k+1

Jl = im A+j E 1 Ekk+4(Xki)#(Xk+-JY]
i=0 j=0

96



k k+l

= A4 XI+'E [Jkdk+1(Xki)$(Xk+i-9']
i=O j=i

k --1

±lim 55A'+E [Jkk+i#(Xki)(Xk+l-J)'J
i=O j=O

Since the Markov chain is aperiodic and irreducible, and Er[dk] = 0,
constants C, p < 1 such that

Vk, we have

E, [J-kk+(Xi)(X(Xj)'] I C p

for max(i, j) <k +1. Therefore, the first term in the above expression is bounded by

CA'p1
(1 - A)2-

A bound for the second term is given by:

k 1-1

lim 7 V A+jE [Jdkdk+lq(Xk-)#(Xk+i-j)']
i=O j=O

k

< lim AiE
i=o

k

< lim A E
i=O

JkO(Xk-i)4k+i A (Xk+-1)'j
.k EJ=0

dk$(Xki)E dk+i VO(Xk+i-j)' Xk

Since

S A3E,[dj(Xo)] = 0,

and

|E [J-k+q(Xk+l-j)' Xk] - E,[djq$(X)]| C p-

we have

E [k+i AO(Xk+i-j' Xk]
L j=0 _

1- 1Ooo

<of( Ap-- + ft A3E,[dj$(Xo)]
j=0 2=1

< cAl-<Pj(AP)j
-. A - p I- Ap_
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Therefore, we have the following bound on IF:

A' + A' -pl ± (Ap) 1[(1 -A) 2  (A -p)(1 -A) (1 -Ap)(1 -A)

Finally, putting together the bounds on 1, for different 1, we have the following bound:

11 1
Ir| < C 1+ I -- + I.- (1-- A)2(1_Ap) +(I-A) 2(l-p) +(lAp)2(1 ._A)]

Note that the above bound suggests that the variance |1 of the update direction in
TD methods increases with A and the mixing factor p of the Markov chain. We will
have more to say about these bounds later in this chapter.

6.2 Rate of convergence of LSTD

We have remarked earlier that the parameters in recursive TD converge to a solution

of linear equation whose coefficients and constants are steady state expectations of

some functions on the state space of the Markov chain. Another conceivable approach
to approximate the solution of such equations is to solve the approximate equation

Gk4 = hk,

where Gk and hk are approximations to steady state expectations. For TD methods,

these approximations are given by

k+1

hk k 1 (Y(Xk)--k)Zk),
=0

Gk k+1 ((Xk)k),
G +=1k1: Zk($(Xk+11- ) X'

1=0

k

k =k + I gxXI).

=0

It is easy to see that (d5, fk) converges to (5, F) since (Gk, h) converges to (G, h)
(Law of Large Numbers (LLN)) and C is invertible. This algorithm is the so called
Least squares TD (LSTD) (Boyan, 1999). In this section, we study and compare the

rate of convergence of LSTD with recursive TD. For a fair comparison with modified

TD given by (6.1) we only study a modified LSTD in which d5 is replaced by J.
Note that the sequence of matrices G and the sequence of vectors hk are the time

averages of the evaluation of a function on the sequence of states visited by a Markov
chain. It follows from Theorem 6.1 that the sequence {(G(Wk), h(Wk)} obeys the
law of large numbers and the central limit theorem. Given this, we wish to obtain

Gaussian approximations to v/%(f - t). To accomplish this, we recall the following
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result from (Duflo, 1997).

Theorem 6.2. Let Uk be a sequence of random variables in RP converging in prob-

ability to u. Let ak be a deterministic nonnegative sequence increasing to oo. Let

Va-k-(Uk -u) converge in distribution to N(O, 1). Let f : RP -±RY be a function twice

continuously differentiable in a neighborhood of u. Then, denoting the Jacobian of f
at u by Vf(u) we have

1. f (Uk) converges in probability to f(u),

2. a-k(f (Uk) - f (u)) converges in distribution to N(O, Vf(u)IFVf (u)').

The above theorem has the following intuitive interpretation. Suppose {Uk} is
a sequence of random variables converging to u, with vk(Uk - u) converging in

distribution to N(O, F). Then, the limiting distribution of v/fK(f(Uk) - f(u)) is the
same as that of its linear part: v/kVf (u)(Uk - ).

To apply the above result to obtain the limiting distribution of V"k(k - f) let

Uk = (Gk, hk),
U (Gh),

f (G, h) = G- 1h.

Note that f4 = f(Gk, hk) and f is infinitely differentiable around (C, h) as C is
invertible. To compute linearization of f around (C, h) let gi denote ijth entry of the

matrix G and hi denote ith component of the vector h. The linearization of f is

7 f (hi - hi) +O (i(g -yij). (6.2)
a (G,h) i (0, h)

It is easy to see that the first term is C 1(h - h). To compute the second term, note

that f satisfies the equation

Gf = h.

Differentiating with respect to gij on both sides of the above equation, we have

(9f
Ery f + G = j 0,

where EiJ is the matrix with ij' entry equal to one and all other entries equal to

zero. Using this it is easy to see that the second term in (6.2) is

- -'Ei f (C, A)(gig - 4ij) =C-1(G - C)f.
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Therefore, the linearization of f is

' [(h - h) - (C - C)j = G-(h - Gf) - 0-'(h - Of)

= C-'(h - GF).

Therefore, we have the following theorem on the asymptotic distribution of VW(fk -r).

Theorem 6.3. If the sequence (G(Wk)t - h(Wk)) obeys a central limit theorem with

covariance matrix F, i.e., if

kI EG(Wk)f - h(Wk))
1=0

converges in distribution to N(O, F), then the sequence Vk(Fk -r) in LSTD converges

in distribution to N (0,70-lF (0') .

Recall that we denoted this matrix C-T? (C') 1'in Theorem 6.1 by E0 . We will

use the same notation throughout this chapter.

Although, we stated the above theorem in the context of LSTD, it is easy to see

that it holds in a much more general context - in which one is trying to solve a linear

equation whose coefficients and constant on r.h.s. are steady state expectations of
a process. We now address some issues which are specific to LSTD. The first is the

effect of the choice of basis functions on the "rate of convergence of LSTD".

6.2.1 Effect of Features

We compare two instances of LSTD each using a different set of linearly independent

basis functions spanning the same subspace. Let {q#} and {44} be the set of basis

functions in the first and the second instances respectively. Similarly, let t(), Z1k kI
and (2), Z( 2) be the iterates in the first and second instances respectively. It is easy

to see that the estimates of average reward {ak} are the same in both instances.

Since the basis functions span the same subspace in the two instances, there exists

a non-singular matrix A such that #2 = A# 1 . Therefore, for each k, Z =AZ- )
Furthemore(1) -(2)

Furthermore, r I, kr? satisfy linear equations

G = C1-hf, =G(),(2) -h2)

where

G2) =AG 1A'

-=) Ah l.

It is then easy to see that f( = (A')>' 4) and that

f()02 = )'A-1 A01 = f 1 )$1.
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Therefore, the approximation to the differential reward function obtained by LSTD
does not depend on the exact basis functions but depends only on the subspace spanned
by them. An important consequence of this observation is that for LSTD, the limit

f=limr #
k

as well as the asymptotic variance defined as

lim kE[| fq$--f'1 12] (6.3)
k

of the sequence of approximations to differential reward function obtained by LSTD
depends only on the subspace spanned by the basis functions. Therefore the quantity
(6.3) is called the intrinsic variance of TD. Note that if the basis functions &'s

are orthonormal, the expression for intrinsic variance of TD reduces to

limkE[|| ?i5k- r'#||2] = limkE[ik -12]
k k

= tr(Eo).

We now compare the variance of recursive TD and LSTD. Consider the asymptotic
covariance matrix of V72(rk - F) which is

lim kE[(rk - f)(rk - t)'] Slim kyk.
k k

Assumption (2) of Theorem 6.1 implies that 7 1 ~ i which in turn implies that
lim(kiYk) = jA. Therefore, the asymptotic covariance of TD is 1-E and is worse
than (in the sense of positive semi-definiteness) asymptotic covariance of LSTD EO
(cf. Conclusion 4 of the Theorem 6.1). Since the rate of convergence of LSTD depends

only on the subspace spanned by basis functions, it is not possible to make the rate
of convergence of TD better than LSTD by choosing a different set of basis (spanning
the same subspace) functions for TD.

However, there is another small modification of recursive TD that can make it
as good as LSTD, at least in the limit. This is Polyak's averaging (Polyak, 1990)
applied to TD. In this method, the average reward estimate ak is updated using step
sizes {1/(k +I1)} and the coefficient vector rk of the basis functions is updated using

a step size Yk such that knk - cx. The actual estimate ik of the coefficient vector is
taken to be the average of the estimates rk. In other words, the estimates ctk, rk, Tk

are given by

k

Ok= k+ 1 E_
1=O

rk+1 = rk + 7k(g(Xk) -- 0 k + rq(Xk+1) - r'lXk))Zk,

k

=k + 1 S ri.
1=0
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The limiting covariance of the vector (k, Tk) is the same as that of LSTD. The reason
why Polyak's averaging is as good as LSTD is explained in the next chapter. Note that

any implementation of LSTD would involve inversion of matrices whereas Polyak's

averaging does not involve any matrix inversion. Since only a slight modification of

recursive TD yields a method with as good rate of convergence as LSTD, we will take

the intrinsic variance of TD to be the common figure of merit for both recursive and
least squares variants of TD.

6.2.2 Bounds on the Intrinsic Variance of TD

We will now comment on how the parameter A and the mixing factor p affect the
intrinsic variance of TD. Since the intrinsic variance of TD depends only on the

subspace spanned by the basis functions, it is no loss of generality to assume that the
basis functions are orthonormal. In this case, the intrinsic variance is tr(Eo) where

E0 = G-P (g')1. The bounds on P were already derived in Subsection 6.1.1. To

derive a bound on 0-, recall the expression for C from Chapter 4:

o0
a =(5 e' -(1 - A) Axk( pk+1 1)

k=O
CO

= (1-A)S Akq -pk+$(
k=O

Let p be the second largest eigenvalue of P. It is well-known that p < 1 as the Markov
chain {Xk} is irreducible and aperiodic. Therefore, it is easy to see that for some

C > 0 we have

r'Cr> C <'A)jr2 Vr.
-(1 -pA

Using this we have the following upper bound for the intrinsic variance of TD: for
some C1 > 0,

C1-+PA)V2( 1 1 1
C1K(1-) ) (1 - A)2(1-_Ap) (I _+ A2(l _ p) (1 _ Ap)2(l _ A)-

The following are some of the qualitative properties of TD suggested by this bound.
As expected, the eligibility traces become unstable as A becomes close to 1 and the

variance in this regime is of the order of (1- A)-2. Note that the above bounds indicate

that C decreases as A decreases and the variance r increases with A. This means that

both the noise and "signal" in the update direction increase with A. However, the
overall intrinsic variance also increases with A as

1 - pA > 1.
1-A -
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The rate at which the increase happens is monotonic in the mixing factor p of the
Markov chain. Therefore, for Markov chains with large p (i.e., p close to 1), using
TD(A) with A as close as possible to zero is advantageous in terms of the rate of
convergence of TD. However, the bounds on the quality of the limiting approximation
(Tsitsiklis & Van Roy, 1999a) show that if no linear combination of the basis functions
can represent the value function exactly, then the approximation error can be large
for small A (see (Bertsekas & Tsitsiklis, 1996)). Therefore, there is a trade off between
how fast TD converges to its limit and the quality of the limit.

6.3 Closing Remarks

In this chapter, we have studied the asymptotic variance of several variants of TD
methods. We have not attempted any study of the transient behavior. There were
earlier works (Singh & Dayan, 1998; Kearns & Singh, 2000) that attempted such
a study for TD with look-up table representations . While (Singh & Dayan, 1998)
considers the mean squared error curves calculated numerically for certain Markov
chains, (Kearns & Singh, 2000) studies several variants of TD by deriving inequalities
that the error satisfies with very high probability. Among other things, these works
argue that for any finite k, the graph of the mean square error (i.e., the "variance" of
rk) versus A is U-shaped with the minimum mean square error A decreasing to zero
as k goes to infinity. Note that we have not observed the U-dependence of variance
on A as we restricted ourselves to the asymptotics. However, our bounds suggest that
A = 0 corresponds to the least asymptotic variance.

Our analysis is the first step towards understanding TD with function approxi-
mation. The major drawback of our approach would be that it gives only asymptotic
variance of TD. However, we need a prior estimate of the length of the transient
period to determine which of analyses (asymptotic or transient) is relevant to a par-
ticular situation. Many other issues related to the rate of convergence of TD remain
open. For example, the tightness of bounds established in this chapter needs to be
studied with some examples. Moreover, there are many other observations made in
(Singh & Dayan, 1998) that lack analytical explanations.
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Chapter 7

Rate of Convergence of
two-time-scale stochastic
approximation

In this chapter, we consider two-time-scale stochastic approximation methods and
study their rate of convergence. We characterize the asymptotic variance of these
algorithms and compare it with that of single time-scale algorithms. These results

are to be used later to study the convergence rate of actor-critic methods. In addition,
these results are of independent interest, as they generalize the existing analysis of
averaging methods. They are also applicable to the analysis of the rate of convergence

of existing two-time-scale algorithms.

7.1 Introduction

Two-time-scale stochastic approximation methods (Borkar, 1996) are recursive algo-
rithms in which some of the components are updated using step-sizes that are very
small compared to those of the remaining components. Over the past few years, sev-
eral such algorithms have been proposed for various applications (Konda & Borkar,
1999; Bhatnagar et al., 1999; Konda & Tsitsiklis, 2000a; Konda & Tsitsiklis, 2000b;
Bhatnagar et al., 2000; Baras & Borkar, 1999).

The general setting for two-time-scale algorithms is as follows. Let f(0, r) and
g(9, r) be two unknown functions and let (9*, r*) be the unique solution to the equa-

tions

f (, r) = 0, g(O,r) = 0. (7.1)

The functions f(-,-) and g(., -) are accessible only by simulating or observing a
stochastic system which, given 9 and r as input, produces F(O, r, V) and G(O, r, W).
Here, V, W are random variables, representing noise, whose distribution satisfies

f (0, r) E[F(O,'r, V)], g(Ogr) = E[G(O, r, W], VO, r.
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Assume that the noise (V, W) in each simulation or observation of the stochastic
system is independent of the noise in all other simulations. In other words, assume
that we have access to an independent sequence of functions F(-, , Vk) and G(-, -, Wk).

Suppose that for any given 0, the stochastic iteration

rk+1L= rk + YkG(O, rk,Wk) (7.2)

is known to converge to some h(0). Furthermore, assume that the stochastic iteration

0k+1 = Ok + lkF(Ok, h(0k), Vk) (7.3)

is known to converge to 0*. Given this information, we wish to construct an algorithm

that solves the system of equations (7.1).
Note that the iteration (7.2) has only been assumed to converge when 0 is held

fixed. This assumption allows us to fix 0 at a current value 0 k, run the iteration (7.2)
for a long time, so that rk becomes approximately equal to h(0k), use the resulting rk
to update 0 k in the direction of F(0k, rk, Wk), and repeat this procedure. While this
is a sound approach, it requires an increasingly large time between successive updates

of 0 k. Two-time-scale stochastic approximation methods circumvent this difficulty by
using different step sizes {/#k} and {yk} and update 0 k and rk, according to

0k+1 Ok+IOkF(Ok,rk,V),

rk+1 = rk~+kG(Ok, Tk,Wk),

where /k is very small relative to Yk. This makes 0k "quasi-static" compared to rk
and has an effect similar to fixing 0 k and running the iteration (7.2) forever. In turn,

Ok sees rk as a close approximation of h(Ok) and therefore its update looks almost the
same as (7.3).

How small should the ratio /k/lk be for the above scheme to work? The answer
generally depends on the functions f(-, -) and g(-, -), which are typically unknown.

This leads us to consider a safe choice whereby fk/yk -±0. The subject of this chapter
is the convergence rate analysis of the two-time-scale algorithms that result from this
choice. We note here that the analysis is significantly different from the case where

limk fk/yk > 0, which can be handled using existing techniques.
Two-time-scale algorithms have been proved to converge in a variety of contexts

(Borkar, 1996; Konda & Borkar, 1999; Konda & Tsitsiklis, 2000b). However, except
for the special case of Polyak's averaging, there are no results on their rate of con-
vergence. The existing analyses (Polyak, 1990; Polyak & Juditsky, 1992; Kushner &
Yang, 1993) of Polyak's methods rely on special structure and are not applicable to
the more general two-time-scale iterations considered here.

The main result of this chapter is a rule of thumb for calculating the asymptotic

covariance of two-time-scale stochastic iterations. For example, consider the special
case of linear iterations:

0 k+1 Ok +/3k(b1 - Al0k - Al2 rk + Vk), (7.4)
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rk + yk(b2 - A21Ok - A 2 2 rk +Wk).

We show that the asymptotic covariance matrix of /3 1/ 20k is the same as that of

3 1/2Ok, where #k evolves according to the single-time-scale stochastic iteration:

0 k+1 = Jk + Ok(b1--All0k- A12f +Vk),

0 = b2 - A2 l6k - A 2 2 ftk+Wk.

Besides the calculation of the asymptotic covariance of /3-1/ 2 0k (Theorem 7.8), we

also establish that the distribution of /3 1/22(Ok - 0*) converges to a Gaussian with
mean zero and with the above asymptotic covariance (Theorem 7.10). We discuss

extensions of these results to more general non-linear iterations with Markov noise.

There are other possible extensions of these results (such as weak convergence of
paths to a diffusion process) which we do not consider here.

Our results also explain why Polyak's averaging is optimal. Again, for the sake of

simplicity, consider the linear case. Suppose that we are looking for the solution of
the linear system

Ar = b

in a setting where we only have access to noisy measurements of b- Ar. The standard

algorithm in this setting is

rk+1 = rk ± ?k(b - Ark + Wk), (7.6)

and is known to converge under suitable conditions. (Here, Wk represents zero-mean

noise at time k.) In order to improve the rate of convergence, Polyak (Polyak, 1990;
Polyak & Juditsky, 1992) suggests using the average

k-1

Ok = 1 r1  (7.7)
1=0

as an estimate of the solution, instead of rk. It was shown in (Polyak, 1990) that if

kyk - 0o, the asymptotic covariance of V/k~k is A 1 F (A')- 1 , where F is the covari-
ance of Wk. Furthermore, this asymptotic covariance matrix is known to be optimal

(Kushner & Yin, 1997).
The calculation of the asymptotic covariance in (Polyak, 1990) uses the special

averaging structure. We provide here an alternative calculation based on our results.

Note that 0k satisfies the recursion

0k+1= Ok - (rk --Ok), (7.8)
k +1I

and the iteration (7.6)-(7.8) for rk and 6k is a special case of the two-time-scale

iteration (7.4)-(7.5), with the correspondence b = 0, A 1 I, A1 2 = -I, Vi, = 0,
b2 = b, A21 = 0, A2 2 = 0. Furthermore, the assumption kyk -+ o corresponds to our
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general assumption /3 k/ yk - 0.

By applying our rule of thumb to the iteration (7.6)-(7.8), we see that the asymp-
totic covariance of ( /k + 1) 0 k is same as that of (v/k + 1) 0 k where #k satisfies

Ok+1= Ok + 1 #k + A-(b+WeB,k + 1

or

k-1

#k = ( A-b + A-'WI).

1=0

It then follows that the covariance of v/kk is AF-i (A')<, and we recover the result

of (Polyak, 1990; Polyak & Juditsky, 1992).
Finally, we would like to point out the differences between the two-time-scale

iterations we study here and those that arise in the study of the tracking ability

of adaptive algorithms (see (Benveniste et al., 1990)). There, the slow component

represents the movement of underlying system parameters and the fast component

represents the user's algorithm. The fast component, i.e., the user's algorithm, does

not affect the slow component. In contrast, we consider iterations in which the fast

componerit affects the slow one and vice-versa. Furthermore the relevant figures of

merit are different. For example, in (Benveniste et a., 1990) one is mostly interested

in the behavior of the fast component, whereas we focus on the asymptotic covariance
of the slow component.

The outline of the chapter is as follows. In the next section, we consider linear

iterations driven by i.i.d. noise and obtain expressions for the asymptotic covariance

of the iterates. In Section 7.3, we provide a brief discussion of transient behavior. In

Section 7.4, we compare the convergence rate of two-time-scale and their single-time-

scale counterparts. In Section 7.5, we establish asymptotic normality of the iterates
and, in Section 7.6, we discuss extensions to the case of nonlinear iterations driven

by more general noise sequences.

Before proceeding, we introduce some notation. Throughout the chapter,

represents the Euclidean norm of vectors or the induced operator norm of matrices.

Furthermore, I and 0 represent identity and null matrices, respectively. We use the

abbreviation w.p. 1. for "with probability one". We use c, c1 , c2 ,... to represent some

constants whose values are not important.

7.2 Linear Iterations

In this section, we consider iterations of the form

0k+1 = 0 k +/k(bl -A110k - A12rk + Vk), (7.9)

rk+1 = rk +ryk(b2 - A210k - A22 rk + Wk), (7.10)
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where 01, is in R', rk is in R', and b1, b2, All, A12 , A21 , A2 2 are vectors and matrices

of appropriate dimensions.

Before we present our results, we motivate various assumptions that we will need.

The first two assumptions are standard.

Assumption 7.1. The random variables (V/, Wk), k = 0,1,..., are independent of
ro, 00, and of each other. They have zero mean and common covariance

E[VcV] = r 11,

E[VkWk'] = r12= r21,

E[WkW-] = P 22 .

Assumption 7.2. The step-size sequences {/Yc} and {/N} are deterministic, positive,
nonincreasing, and satisfy the following:

1. Zklk =Zk Ok =oo.

2. Ok,y/c-+0.

The key assumption that the step sizes /3 and Yk are of different orders of mag-

nitude is subsumed by the following.

Assumption 7.3. There exists some e> 0, such that

/3k

7k

For the iterations (7.9)-(7.10) to be consistent with the general scheme of two-

time-scale stochastic approximation described in the introduction, we need some as-

sumptions on the matrices Ai. In particular, we need iteration (7.10) to converge to
A9 (b2 - A21 0), when 64 is held constant at 0. Furthermore, the sequence 64 generated

by the iteration

0k+1 = 0k + /3/(b1 - A12A-Jb2 - (All - A 2 A-lA 2 i)0 + Vk),

which is obtained by substituting A9 (b2 - A2 10/) for rk in iteration (7.9), should also
converge. Our next assumption is needed for the above convergence to take place.

Let A be the matrix defined by

A = All - A12 A&1A 21. (7.11)

Recall that a square matrix A is said to be Hurwitz if the real part of each eigenvalue

of A is strictly negative.

Assumption 7.4. The matrices -A 2 2 , -A are Hurwitz.

It is not difficult to show that, under the above assumptions, (0/, rk) converges in

mean square to (0*, r*). The objective of this chapter is to capture the rate at which
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this convergence takes place. Obviously, this rate depends on the step-sizes Oki, Yk,

and this dependence can be quite complicated in general. The following assumption
ensures that the rate of mean square convergence of (Ok, rk) to (0*, r*) bears a simple

relationship (asymptotically linear) with the step-sizes 3k, Yk.

Assumption 7.5.

1. There exists a constant 3 ;> 0 such that

lim(/34 1 - O3i) =
k

2. Ifc=O then

lim(Y44 1 1-y-1) = 0.
k k

3. The matrix - - I) is Hurwitz.

Note that when e > 0, the iterations (7.9)-(7.10) are essentially single-time-scale

algorithms and therefore can be analyzed using existing techniques (Nevel'son &
Has'minskii, 1973; Kushner & Clark, 1978; Benveniste et al., 1990; Duflo, 1997;
Kushner & Yin, 1997). We include this in our analysis as we would like to study the

behavior of the rate of convergence as e 0. The following is an example of sequences

satisfying the above assumption with e = 0, / = 1/ (no):

Yk = , 0Ok= 0 O<CeC1.
(I1+ k/ro) (I1+ k/r)

Let Q* E R'" and r* E R" be the unique solution to the system of linear equations

AnuO+A 2 r = b1,

A 2 1 0 + A 2 2 r = b2 .

For each k, let

Ok Ok -0*, ?k = Tk - A-'(b 2 - A2l0k), (7.12)

and

Er krs'E[ h],

= (Ej'= /37E[Oki'j,

zk = 4 Z22

Our main result is the following.

109



Theorem 7.6. Under Assumptions 7.1-7.5, and when the constant E of Assump-

tion 7.3 is sufficiently small, the limit matrices

F = liMrEnj, E) = liME 2 , E =limE 2  (7.13)
11 k 1) 2 k 1; 2 k 22( .3

exist. Furthermore, the matrix

(0) E (0)
(0) . 11 12

(0) E (0)
L 21 22

is the unique solution to the following system of equations

11 + E(O A' -- O) + A12EO + E= F, (7.14)

2 1+ 4A 2  = 112, (7.15)

A22E (2+ 2 %E A'2  F22 . (7.16)

Finally,

lim EF (O= E0) ,lim E (0= El , lim E±)= F .(7.17)
40 11 11' 12-2 EO22=

Proof. Let us first consider the case e = 0. The idea of the proof is to study the
iteration in terms of transformed variables:

= L=Ok, fk(7.18)
fk = Lk 6k + k,

for some sequence of n x m matrices {Lk} which we will choose so that the faster
time-scale iteration does not involve the slower time-scale variables. To see what

the sequence {Lk} should be, we rewrite the iterations (7.9)-(7.10) in terms of the

transformed variables as shown below (see Subsection 7.7.1 for the algebra leading to
these equations):

Ok+I1 = Ok-lk (B1k+A12fk) +kVk,

Tk+1 = k -k (B21k+B 22k +YkWk+/ 3 k(Lk+1+ AnlA21)Vk,

where

B11 A -A12Lk,

Lk - Lk+1 +1k (L+ + 21)Bk - A 2 2 Lk,

+2- (+l+ t'A 1 B
7k 7k

= O(Lk+L + Ay2
1A 21)A 12 + A22 -

7k

We wish to choose {Lk} so that B2k is eventually zero. To accomplish this, we define
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the sequence of matrices {Lk} by

Lk= 0, 0 < k < kok,
Lk+1 = (k - 7kA22Lk ± 3kA-- A 2 1B 11 ) (I - 3kB 1 ), Vk > ko, (7.20)

so that B k = 0 for all k > ko. For the above recursion to be meaningful, we need

(I - /kB k) to be non-singular for all k > ko. This is handled by Lemma 7.11 in the
Appendix, which shows that if ko is sufficiently large, then the sequence of matrices
{Lk} is well defined and also converges to zero.

For every k ko, we define

: k = tilE[kiz],

Using the transformation (7.18), it is easy to see that

$2= E 2+ (mLkz$ + ZM1I4 -Lk- L 3 x).

Since Lk - 0, we obtain

lim Et1 = lim 5k1
k k

limEX2 = lim 5k2
k k 12'

lim42 lim ifk

k 1 k 12'

k k

provided that the limits exist.
To compute limk Z2 2 , we use Eq. (7.19), the fact that B k = 0 for large enough

k, the fact that B 2 converges to A2 2 , and some algebra, to arrive at the following
recursion for k2

k+1 = 22 + 'k(F 2 2 - A 225 2 - S 2A'22 + 6k2(z2)), (7.21)

where j2(-) is some matrix-valued affine function (on the space of matrices) such that

lim6 2 (F 2 2 ) = 0, for all E22.
k

Since -A 2 2 is Hurwitz, it follows (see Lemma 7.12 in the Appendix) that the limit

lim2 = lim 2 = 02
k k
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exists, and E satisfies Eq. (7.16).
Similarly, EV2 satisfies

+1 = jk2 + Nk (12 - A12 E - 2A2+ 1 2 (52) (7.22)

where, as before, 6j2(-) is an affine function that goes to zero. (The coefficients of this
affine function depend, in general, on Zk2 , but the important property is that they
tend to zero as k -+ oc.) Since -A 22 is Hurwitz, the limit

lim12 = lim4F2 - 12
k k

exists and satisfies Eq. (7.15). Finally, Zk 1 satisfies

21jc 12 12 11A11
jk±+1 = 1 + uc \11 - A1 2 ?- y 0 A12 - k$ -k

i+ 6i1 )), (7.23)

where c{ (.) is some affine function that goes to zero. (Once more, the coefficients
of this affine function depend, in general, on Z02 and E 2 , but they tend to zero as

k -+ oo.) Since - (A -- I) is Hurwitz, the limit

lim Eki= lim Et 1 =-E(

exists and satisfies Eq. (7.14).
The above arguments show that for c = 0, the limit matrices in (7.13) exist and

satisfy Eqs. (7.14)-(7.16). To complete the proof, we need to show that these limit
matrices exist for sufficiently small c > 0 and that the limiting relations (7.17) hold.

As this part of the proof uses standard techniques, we will only outline the analysis.
Define for each k,

Zk<7)k
k

The linear iterations (7.9)-(7.10) can be rewritten in terms of Zk as

Zk +1= Z -/3-3kBkcZk+3-kUk.

where Uk is a sequence of independent random vectors and {Bk} is a sequence of
deterministic matrices. Using the assumption that k/yk converges to c, it can be
shown that the sequence of matrices Bk converges to some matrix B(E) and, similarly,
that

limE[Uk Ul] = F"
k
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for some matrix pIc. Furthermore, when c6> 0 is sufficiently small, it can be shown

that - (B(E) - hI) is Hurwitz. It then follows from standard theorems (see for e.g.

(Polyak, 1976)) on the asymptotic covariance of stochastic approximation methods,

that the limit

limI-'E [ZkZ]
k

exists and satisfies a linear equation whose coefficients depend smoothly on c (the

coefficients are infinitely differentiable w.r.t. c). Since the components of the above

limit matrix are E4), E( and E() modulo some scaling, the latter matrices also satisfy

a linear equation which depends on e. The explicit form of this equation is tedious
to write down and does not provide any additional insight for our purposes. We note
however, that when we set e to zero, this system of equations becomes the same as
Eqs. (7.14)-(7.16) . Since Eqs. (7.14)-(7.16) have a unique solution, the system of
equations for E(), E( and E' also has unique solution for all sufficiently small e.
Furthermore, the dependence of the solution on e is smooth because the coefficients
are smooth in e. H

Remark 7.7. The transformations used in the above proof are inspired by those used
to study singularly perturbed ordinary differential equations (Kokotovic, 1984). How-

ever, most of these transformations were time-invariant because the perturbation pa-
rameter was constant. In such cases, the matrix L satisfies a static Riccati equation
instead of the recursion (7.20). In contrast, our transformations are time-varying

because our "perturbation" parameter /k/Yk is time-varying.

In most applications, the iterate rk corresponds to some auxiliary parameters and one
is mostly interested in the asymptotic covariance E) of 6k. Note that according to

Theorem 7.6, the covariance of the auxiliary parameters is of the order of -Yk, whereas
the covariance of 0 k is of the order of #k. With two time scales, one can potentially
improve the rate of convergence of Ok (compared to a single time-scale algorithm)

by sacrificing the rate of convergence of the auxiliary parameters. To make such
comparisons possible, we need an alternative interpretation of E(), that does not

explicitly refer to the system (7.14)-(7.16). This is accomplished by our next result,
which provides a useful tool for the design and analysis of two-time-scale stochastic

approximation methods.

Theorem 7.8. The asymptotic covariance matrix E(j) of /'1 2 Ok is the same as the

asymptotic covariance of 3-1/2Ok, where 6k is generated by

0k+1 = Ok +/k(b - AllOk - A12fk +Vk),

0 = b2 - A 2 1k - A 22fk +Wk.

In other words,

=(' -=limn/3-'E[O(OJ.
11 k k k1
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Proof. We start with Eqs. (7.14)-(7.16) and perform some algebraic manipulations to

eliminate E(0) and Z(). This leads to a single equation for Ei, of the form

±11+ - - - A 2AjJ 2 1 - F'12 (A'2 7 1 A'

+A12 A 1 P2 2 (A'2 1 A'.

Note that the r.h.s. of the above equation is exactly the covariance of Vk - Al2 AjJWk.
Therefore, the asymptotic covariance of 0 k is same as the asymptotic covariance of

the following stochastic approximation:

0 k+1 = Ok + /3 k(-AOk + Vk - AL2 AY 1Wk).

Remark. The single-time-scale stochastic approximation procedure in Theorem 7.8
is not implementable when the matrices Aj are unknown. The theorem establishes
that two-time-scale stochastic approximation performs as well as if these matrices are

known.

7.3 Separation of Time-scales

The results of the previous section show that the asymptotic covariance matrix of

k1/2Ok is independent of the step-size schedule {'Yk} for the fast iteration if

-- 40.
Nk

In this section, we want to understand, at least qualitatively, the effect of the step-

sizes 'yk on the transient behavior. To do this, recall the recursions (7.21)-(7.23)
satisfied by the covariance matrices >k

11=E 1 ± /3 k(Fl - A 12 ~- E()A
jk11(21 12 12

1- +-613Z10±

12 = S2 + 7k(F12 - A 2 tE - 2 A'22 + 2 12(12)),

2 = Z2 2 + 'yk(F22 - A2 2 Z 2 - 2 A 2 ± 22(Z 2 2 )),

where the fJ.(.) are affine functions that tend to zero as k tends to infinity. Using
explicit calculations, it is easy to verify that the error terms 6 are of the form

6k = A(tkj -EMf) + (tk2 - Eif ))A' + (#)=1 A12 (Z2 1  21 )± 12 1  240 )1 2 ±Q0 3k),

22= (%7.
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To clarify the meaning of the above relations, the first one states that the affine
function 6ki(Eu) is the sum of the constant term A 1 2 (Zk 1 - z?)+(ZM2 -) )A
and another affine function of E H whose coefficients are proportional to fk.

The above relations show that the rate at which Zff1 converges to E) depends on

the rate at which >32 converges to Ej), through the term 6k%. The rate of convergence
of >32, in turn, depends on that of Ek2 , through the term 6. Since the step-size in

the recursions for Ek2 and >32 is 1k, and the error terms in these recursions are pro-
portional to O/k/k, the transients depend on both sequences {Yk} and {Ik/yk}. But
each sequence has a different effect. When Yk is large, instability or large oscillations

of rk are possible. On the other hand, when /k/Yk is large, the error terms 6k can be
large and can prolong the transient period. Therefore, one would like to have 3 k/Y

decrease to zero quickly, while at the same time avoiding large 1k. Apart from these
loose guidelines, it appears difficult to obtain a characterization of desirable step-size

schedules.

7.4 Single Time-scale vs. Two Time-scales

In this section, we compare the optimal asymptotic covariance of /T1/2 k that can

be obtained by a realizable single-time-scale stochastic iteration, with the optimal

asymptotic covariance that can be obtained by a realizable two-time-scale stochastic
iteration. The optimization is to be carried out over a set of suitable gain matrices
that can be used to modify the algorithm, and the optimality criterion to be used is
one whereby a matrix covariance matrix E is preferable to another covariance matrix

E if E - E is nonzero and nonnegative definite.

Recall that Theorem 7.8 established that the asymptotic covariance of a two-time-

scale iteration is the same as in a related single-time-scale iteration. However, the
related single-time-scale iteration was unrealizable, unless the matrix A is known. In
contrast, in this section we compare realizable iterations, that do not require explicit
knowledge of A (although knowledge of A would be required in order to select the

best possible realizable iteration).
We now specify the classes of stochastic iterations that we will be comparing.

1. We consider two-time-scale iterations of the form

k+ 1= 0 k O3kGl(bl - All0k - Al2 rk + Vk),

rk+1 = r k -17k(b2 - A21Ok - A 2 2 rk + Wk).

Here, G is a gain matrix, which we are allowed to choose in a manner that
minimizes the asymptotic covariance of 3j-1/2 0k.

2. We consider single-time scale iterations, in which we have Yk = /3k, but in
which we are allowed to use an arbitrary gain matrix G, in order to minimize
the asymptotic covariance of /T1/2Ok. Concretely, we consider iterations of the
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form

Ok+1 F 1fOk] 3kG[ b1 - AllOk- A12 rk± -Vk
rk+1 J - rk . b2 - A21Ok - A22 rk +Wk

We then have the following result.

Theorem 7.9. Under Assumptions 7.1-7.5, and with c = 0, the minimal possible
asymptotic covariance of /3T11 2Ok, when the gain matrices G 1 and G can be chosen
freely, is the same for the two classes of stochastic iterations described above.

Proof. The single-time-scale iteration is of the form

Zk+1 = Zk + kG(b - AZ+Uk),

where

and

b= b A=All A 1 2

b2  ' A 2 1  A 2 2

As is well known (Kushner & Yin, 1997), the optimal (in the sense of positive definite-

ness) asymptotic covariance of /3k 1/
2 Zk over all possible choices of G is the covariance

of A-'Uk. We note that the top block of A- 1Uk is equal to A-'(Vk - A 1 2A2JWk). It
then follows that the optimal asymptotic covariance matrix of /T1-

2 
Ok is the covari-

ance of A- 1 (Vk - A12A-'Wk).
For the two-time-scale iteration, Theorem 7.8 shows that for any choice of G1, the

asymptotic covariance is the same as for the single-time-scale iteration:

0k+1 = 0 k + kGl(bl - AOk + k - A12A- 1Wk).

From this, it follows that the optimal asymptotic covariance of Q1/2 8k is the covari-
ance of A- 1 (Vk - A12 Aj Wk), which is the same as for single-time-scale iterations. L

7.5 Asymptotic Normality

In Section 7.2, we showed that /3j 1E[0k'] converges to EO). The proof techniques

used in that section do not extend easily (without stronger assumptions) to the non-
linear case. For this reason, we develop here a different result, namely, the asymptotic
normality of 0 k, which is easier to extend to the nonlinear case. In particular, we show
that the distribution of /31 2Ok converges to a zero-mean normal distribution with

covariance matrix Ej). The proof is similar to the one presented in (Polyak, 1990)
for stochastic approximation with averaging.
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Theorem 7.10. If Assumptions 7.1-7.5 hold with E= 0, then Ok- 1 1 26k converges in

distribution to N(0,ZF jQ).

Proof. Recall the iterations (7.19) in terms of transformed variables 0 and f. Assum-
ing that k is large enough so that B2k = 0, these iterations can be written as

0 k+1 (I-OkA)Ok - /kA12rk +OkVk +/k ,

k+1 (I - YkA22)Tk + YkWk +,fk65(2) + Ok(Lk+1 + A-'A 2 1)Vk,

where P) and 62f are given by

k = A12LkOk,

62) = -(Lk+ + Ay 2 A 21 )A 1 2 4.

Using Theorem 7.6, E[5kO12 ]/3k and E[Ifk12 ]/? are bounded, which implies that

E[| 6(l |2 ] <; cpk|Ik 127

E[|6()2] cL(7.24)

for some constant c > 0. Without loss of generality assume k= 0 in (7.19). For each
i, define the sequence of matrices 0 and R, j ;> i as

j+41=E z-/tjAe), Vj > i,

i I

Rj+1 = R;'- 7jA 22R;, VJ i.

Using the above matrices, k and 6 k can be rewritten as

k-i k-i k-i

= -- o0 - Z/3e 12 fi + Z i4V + Z/3E e t), (7.25)
i=O i=O i=O

and

k-i k-i k-1

k = R o + Z-tR'Wi + ZW7,R6 2) + Z pi R'(Li+1 + t'A 2 1 ) . (7.26)
i=O i=O i=O

Substituting the r.h.s. of Eq. (7.26) for k in Eq. (7.25), and dividing by Q1/ 2, we have

k-1 k-1

%-Ak60- 12 (fl-+/2Ro ) + z/j( /2 )

i=O i=O

+S +S() + S
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k-1

+ V > 3 E(V + A 12A-JWt), (7.27)
i=o

where

~% - Vki
r .)=i6',Vk 

> i,

k-1 i-I

S = % A 1 2 (- 1 / 2  ftR6 2))

i=O j=0

k-1 ( i-i

S (2 = ZEO6A12 (0T 1 2  3jRj(Lj+1 + A-A 2 Jj),
i=O j=02/

k-1 i-1 k-1

- S Q®bi2fYJ3RW - /jkA 12A2W9.
i=0 j=0 j=0

We wish to prove that the various terms in Eq. (7.27), with the exception of the last
one, converge in probability to zero. Note that the last term is a martingale and
therefore, can be handled by appealing to a central limit theorem for martingales.

Some of the issues we encounter in the remainder of the proof are quite standard,
and in such cases we will only provide an outline.

To better handle each the various terms in Eq. (7.27), we need approximations of

0' and Ri. To do this, consider the nonlinear map A H-± exp(A) from square matrices
to square matrices. A simple application of the inverse function theorem shows that
this map is a diffeomorphism (differentiable, one-to-one with differentiable inverse) in
a neighborhood of the origin. Let us denote the inverse of exp(-) by ln(-). Since ln(-)
is differentiable around I = exp(O), the function c ln(I - EA) can be expanded into
Taylor's series for sufficiently small e as follows:

ln(I - eA) = -c(A -- E(6)),

where commutes with A and lim, 0 E(6) = 0. Assuming, without loss of generality,
that -yo and 8o are small enough for the above approximation to hold, we have for
k > 0,

k-1

S= exp(-Z/1(A - E5) ,
j=i

k-1

Rk =exp -yY(A 22 -E- )), (7.28)

for some sequence of matrices {E7}, i = 1, 2, converging to zero. To obtain a similar
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representation for O', note that Assumption 7.5(1) implies

k -(1 Ok(Ek+0))2(7.29)

Ok+1

for some Ek -±0. Therefore, using the fact that 1 + x = exp(x(1 - o(x))) and Eq.
(7.28), we have

k-1

= exp (- ((A - 1i) -1E) , (7.30)

for some sequences of matrices E(3) converging to zero. Furthermore, it is not difficult

to see that the matrices E(, i = 1, 2, 3, commute with the matrices A, A 22 and
A - (3/2)1 respectively. Since -A, - (A - (/3/2)1) and -A 2 2 are Hurwitz, using
standard Lyapunov techniques we have for some constants ci, c2 > 0,

k-1

max(1eJj1) ci exp(-C2 i/ ,

k-1

RI < ci exp -C2 Z7i . (7.31)

Therefore it is easy to see that the first term in Eq. (7.27) goes to zero w.p.1. To
prove that the second term goes to zero w.p.1., note that In 0 ~ /3 -_Q /3O (cf. Eq.
(7.29)) and therefore for some Ci, C2 > 0

3711 2Ro 0  ci exp (-c 2  ( --<3le x = 0 /

which goes to zero as i -> oo (Assumption 7.3). Therefore, it follows from Lemma
7.13 that the second term also converges to zero w.p.1. Using (7.24) and Lemma 7.13
it is easy to see that the third term in Eq. (7.27) converges in the mean (i.e., in L 1)
to zero. Next, consider E[IS,7) ]. Using (7.24) we have for some positive constants

c1 , c2 and C3,

E ) w1/2  jR]6J( 2 )

_ j=0 .

Ci : exp (- (c271 - C031) .
j=0

Since 3/l/y -+ 0, Lemma 7.13 implies that Sl converges in the mean to zero. To
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study , consider

2

F [f1/2fQjR(L±+1+ A A21)V 2
=0

Since the Vk are zero mean i.i.d., the above term is bounded above by

i-1 i-i

Ci 7jexP (-S (C271 -- C3)
j=0 l=j ) 7

for some constants Ci, c2 and C3. Lemma 7.13 implies that S2)Converges in the mean

to zero. Finally, consider S(7). By interchanging the order of summation, it can be
rewritten as

k-1 k-1

k3J0{ [#13i(ev A1 2 R - A12 1 A vW. (7.32)
j=02

Since -A 22 is Hurwitz, we have

A-= exp(-A 2 2 t)dt,

and we can rewrite the term inside the brackets in Eq. (7.32) as

k-1

E _, 2LA(E-) I 12Rj

k-1 -

+A12 R -j exp(-A 2 2 t)dt
i=j

k-1

-A12A-1exp (-5 :yiA 2 2 )

We consider each of these terms separately. To analyze the first term, we wish to
obtain an "exponential" representation for -yp 3j/Oj-yj. It is not difficult to see from
Assumptions 7.5(1),(2) that

Ok+1 _ Ok(1--kk)

7k+1 7k

exp(-Ek7k + O(E7k)).
7k

where Ek - 0. Therefore, using Eqs. (7.28), (7.30), and the mean value theorem, we
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have

(Y 8 - I _ c1 sup(Ej + 12i/mi) 73exp c2 (Ei +011 7(e -y1 
->j(zz '' 9 ex

which in turn implies, along with Lemma 7.14 (with p = 1) and Assumption 7.3, that
the first term is bounded in norm by c sup> (E/+i3/0) for some constant c > 0. The
second term is the difference between an integral and its Riemannian approximation
and therefore is bounded in norm by c sup>j1 y for some constant c > 0. Finally,

since -A 22 is Hurwitz, the norm of the third term is bounded above by

k-1

ci exp -C2 7i
i=j

for some constants c1 , c2 > 0. An explicit computation of E SM 21, using the fact

that (Vk, Wk) is zero-mean i.i.d., and an application of Lemma 7.13 shows that S(1)

converges to zero in the mean square. Therefore the distribution of 31/2Ok converges

to asymptotic distribution of the martingale comprising of the remaining terms. To
complete the proof, we use the standard central limit theorem for martingales (see

(Duflo, 1997)). The key assumption of this theorem is Lindberg's condition which, in
our case, boils down to the following: for each Ec> 0,

k-1

lim ZE [Xfk) 2Ix($k) ;>E} = 0,
i=O

where I is the indicator function and for each i < k,

X k) = i 0'(Vi + A 1 2 A2'W ).

The verification of this assumption is quite standard.

7.6 Nonlinear Iterations

In previous sections, we studied linear iterations driven by zero-mean i.i.d. noise. In
this section, we discuss the extension of the asymptotic normality result to nonlinear
iterations driven by Markov noise. We will only present an informal sketch of the

extension because the details are quite tedious and technical. Although, we will not
attempt to extend the result to the most general case, the iterations we consider here
are more general than those considered in earlier sections.

We consider the iterations

9 k+1 = Ok +/3kF(Ok,rk, Xk),

Tk+1 =7Tk +kG(Ok,rk,Xk),
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which we assume to converge to (0*, r*), where /k
3
i, 1k are nonnegative step-sizes with

the same properties as before, and where {Xk} is a stochastic-process evolving on some
state space X. For each k, the next state Xk+i is generated from Xk, Ok, rk using a

transition probability kernel Pq,,, from a given family {Po,,}. For each fixed 0, r,, we
assume that the Markov chain with transition probability kernel Po,, is ergodic, with
steady state expectation denoted by Eo,.

Since Ok --> Q* and /3k -± 0, and using the same notation 6k = 6k - Q*, the
limiting distribution of 0 1/2 4 depends only on the "local" behavior of the algorithm
around (0*, r*). To study this local behavior, consider the steady state expectations

of update-directions in the above iterations:

f (0, r) = Eo,,[F(0, r,Xk)],

g(0, r) = Eo,,[G(0, r,Xk)].

Suppose f(-,-) and g(.,-) are continuously differentiable around (0*, r*) with

All = (O (0* )
00

A1 2 = q(*
Or

A 2 1 = (O*g *

A2 2 = (0*,r*),
Or

satisfying Assumption 7.4 of Section 2. Linearizing the iterations around (0*, r*) we
have

0k+1 = 0k - ik(Ank + A1 2fk - VkE

Tk+i = k -'D'k(A2 k + A2 2 fk -W k - 42)

Here, Vk, Wk represent the difference between the samples of F, G and their steady

state expected values:

V -- f (Ok, rk) - F(Ok, rk, Xk),

W = g(k,rk)-G(Ok,rk,Xk),

and e), 4% represent the errors due to linearization:

4 1)=
k =f (Ok,'rk) + Ajk + A12f k,

E(2)
k = g(k,rk) + A216k-+ A 22fk-

Note that the above iterations are similar to (7.9) and (7.10) except that Vk and Wk are

no more zero-mean i.i.d., and we also have the additional error terms E1 E). Since

(0,, r) converges to (0*, r*) and the linear approximation errors are bounded above
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by c(10k 2 + Ii k 2) for (Ok, rk) sufficiently close to (9*, r*), it is intuitive that these

errors will not contribute to the asymptotic distribution of O3T1 / 2 9k. Furthermore,
although the sequence {(Vk, Wk)} is not i.i.d., it can be decomposed into a martingale
difference term and some other terms whose contribution to the asymptotic behavior

of 9k and rk is, again, negligible (see (Benveniste et al., 1990),(Kushner & Yin, 1997)).
Finally, note that the proof of asymptotic normality of Section 3 works even if (Vk, Wk)

are martingale differences under apyropriate, conditions. Therefore, one can expect

that even in the nonlinear case /3 2(9k - 0*) converges in distribution to N(O, E(")

where the asymptotic covariance matrices E(0),, I = 1, 2, satisfy Eqs. (7.14), (7.15)
and (7.16). To figure out what r should be, note that, in the linear case, it is the

covariance matrix in the central limit theorem (CLT) for the sequence (Vk, Wk). For
the case of Markov noise, it is the covariance matrix in the CLT for the sequence

H*(Xk,) = (F*(Xk), G*(Xk)) where

F* (-) = F (0*, r*-)

G*(-) = G(O*,r*,.

This covariance matrix has the following explicit representation in terms of the steady
state expectation E*[.- = Eo*,r[ (see (Meyn & Tweedie, 1993)):

-U = E*[H*(Xo)H*(Xo)l + >E*[H*(Xo)H*(Xk)'] + >E*[H*(Xk)H*(XO)'].
k=1 k=1

An alternative representation for E(t, in the spirit of Theorem 7.8, is as the asymp-
totic covariance of #k satisfying the linear iteration:

k+=1 = 0 k + 3k(AOk + F*(Xk) - A12A-jG*(Xk)),

where {Xk} is the Markov chain corresponding to (9*, r*) and A is given by (7.11).

7.7 Auxiliary Results

This section contains proofs of some auxiliary results used earlier in this chapter.

7.7.1 Verification of Eq. (7.19)

Without loss of generality, assume that b1 = =b2= 0. Then, 9* = 0 and

Ok = 0k = 6k,

and, using the definition of f [cf. Eqs. (7.12) and (7.18)], we have

Tk = LkOk + fk

= Lk + rk+ A2A219k (733)
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= rk+MkOk,

where

Mk = Lk + A2'A21 .

To verify the equation for 0 k+1 = 0k+1, we use the recursion for 0 k+1, to obtain

0 k+I = k - Ok ( An0k + A12 r/k - Vk/)

= 0k - /k(AlOk + A12 ?k - A1 2 (Lk + A-JA 2 1)0k - Vk)
= 0k - 13k (AuG0 - A1 2 A-jA 21 0k - A12 L0/k + A12 ik - Vk)

- Ok - Ok(A0k - A12L0k + A12ik) + OkV

- k - 3k(B 11 0k + A1 2f k) + 3kVk,

where the last step made use of the definition B = A - A12 Lk.

To verify the equation for k+1, we first use the definition (7.33) of k+1, and then

the update formulas for 0k+1 and rk+, to obtain

rk+l = Tk+l + (AJ A21 + Lk+l)Ok+l

= rk -yk(A 2 10k + A2 2 rk -Wk) + (A2 A21 + Lk+ 1)Ok+l

rk - 7A(A21Ok + A2 2 (f/ - (Lk + A2A 2 1)0 -- Wk

+(A; 1 A 21 + Lk+)Ok+ 1

= rk - Yk(A 2 2 rk - A2 2Lc0k - W/) + Mk+10k+1

= rk + Mk+10k - y/(A 22Tk - A22 Lc0k - Wk)

/3/Mk+1(B10k + A12 fk - V/c)
Lk - Lk k ki

= rk + Mk0c--YkI k + -A 22 Lk+ 7k+1B11 k/+ ± 1-kWk

-/ (A 22 ± 2 kMk+lA12 )k + cMk+1Vk

= rk - Yk (B2& ±k+ B22fk) + 7/YkWk ± /Mk+Vk,

which is the desired formula.

7.7.2 Convergence of the Recursion (7.20)

Lemma 7.11. For ko sufficiently large, the (deterministic) sequence of matrices {L/}
defined by Eq. (7.20) is well defined and converges to zero.

Proof. The recursion (7.20) can be rewritten, for k > ko, as

Lk+1 = (I - 'YkA 2 2 )L |+ /3k(A 22 A21 B 11 ± (I - 9'/A 2 2 )L/kB11)(I -- /c 1 1)-, (7.34)
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which is of the form

Lk+1 - (I -- 7kA22)Lk + IkDk (Lk),

for a matrix-valued function Dk (Ik) defined in the obvious manner. This function has
the following properties. When ko is chosen large enough and k ;> ko, the step-size
is small enough. As long as jLk 1, we have IBfIl =JA - A12 Lk < c, for some
absolute constant c. With /k small enough, the matrix I - #k BXk is invertible, and
satisfies (I -- kB<)--1 <2. With 1Bf1l bounded by c, we have

|A-'A 21B 1 + (I - ' A2 2 )LB d(1+|L,

for some absolute constant d. To summarize, when ko is chosen small enough, and as
long as ILj I 1, we have IDk (Lk) 2d.

Recall now that the sequence Lk is initialized with Lk. = 0. The unperturbed
iteration Lk+ 1 = (1 -- yA 2 2 )Lk is stable, because -A 2 2 is assumed to be Hurwitz.
Using a quadratic Lyapunov function for this unperturbed iteration, and invoking
the assumption O//yk -+ 0, a standard induction on k shows that the sequence jL,,

generated by the perturbed iteration Lk+1 = (I -7 yA22)L4 +/kD_(Lk) is bounded by
1, and that the quadratic Lyapunov function converges to zero, which then implies
that Lk converges to zero. E

7.7.3 Linear Matrix Iterations

Consider a linear matrix iteration of the form

Ek+1,= Ek +#/,(T - AEk - ZkB + Jk~(Y))

for some square matrices A, B, step-size sequence Ok, and sequence of matrix-valued

affine functions 6k(.). Assume

1. The real parts of the eigenvalues of A are positive and the real parts of the

eigenvalues of B are nonnegative. (The roles of A and B can also be inter-
changed.)

2. 3, is positive and

3k -> 0, >1k = -- ).

k

3. lim, 6,(-) = 0.

We then have the following standard result whose proof can be found, for example,
in (Polyak, 1976).

Lemma 7.12. For any Zo, lim, ,E, =E* exists and is the unique solution to the

equation

AYE+ EB = r.
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7.7.4 Convergence of Some Series

We provide here some lemmas that are used in the proof of asymptotic normality.
Throughout this subsection, {lk} is a positive sequence such that

1. Yk -> 0, and

2. Ek7k = o.

Furthermore, {tk} is the sequence defined by

k-1

t 0  0, tk= k,

j=O

k >0.

Lemma 7.13. For any nonnegative sequence {6 k} that converges to zero and any
p > 0, we have

k

lim j=
j=0

exp
k-1

i6j
0. (7.35)

Proof Let 6(-) be a nonnegative function on [0, oo) defined by

S(t) = Jk, tk t<tk+1-

Then it is easy to see that for any ko0 > 0,

-Pe-tkm)J(s)ds + k,
tk

(tk
iko

k- k-e

exp - 7

for some constant c > 0. Therefore for k0 sufficiently large, we have

k

lim 5

j=ko

k-1 p

Skexp
i=j)

To calculate the above limit, note that

lim (t - s)Pe-(t-s)6(s)ds =lim spe-S6(t -

<lim sup 16(s)1)
t s;>t-T )

s)ds

jTspe-ds
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ko

Yj
j=ko

where

k

e ko <c1 7
j=ko

)6

k-1

i=j

K
lim 4 6(S (t -s)Pe (t-s)ds

1- CSUPk>ko 7k

k-1 p k-1

,-yiz eXp --- j
i=i i=j



+sup 6(s) If sPe-ds

= sup IJ(s)I spe-ds.

Since T is arbitrary, the above limit is zero. Finally, note that the limit in Eq. (7.35)
does not depend on the starting limit of the summation. E

Lemma 7.14. For each p > 0, there exists Kp > 0 such that for any k j ;> 0

k - P i-1

Lu f j) expQ -1y 1 ) <Kp.
i=j 1=j 1=j

Proof For all j sufficiently large, we have

k i-l\P /i-1 t 1-) wi e _

7,KA9) exlyLpx) A

for some c > 0.FH

7.8 Closing Remarks

There are many ways of studying the rate of convergence of stochastic approximation:

1. One approach is based on the central limit theorem for martingales (Kushner

& Clark, 1978; Duflo, 1997).

2. Another approach is to compare the asymptotic behavior of the algorithm with
that of a diffusion (Nevel'son & Has'minskii, 1973; Kushner & Huang, 1979;
Benveniste et al., 1990).

3. Finally, rates of convergence can be obtained by using large deviation techniques
(Kushner, 1984; Dupuis & Kushner, 1985; Dupuis & Kushner, 1987; Dupuis,
1988; Dupuis & Kushner, 1989).

Ours is the first attempt at the study of the rate of convergence of two-time-scale
stochastic approximation using any of the above mentioned approaches. Although
Polyak's averaging methods (Polyak, 1990; Polyak & Juditsky, 1992) are also two-
time-scale iterations, the existing analysis is not extendable to general two-time scale
iterations. Similarly, although two-time-iterations arise in the study of the tracking
ability (Benveniste et al., 1990) of adaptive algorithms, the iterations encountered in
that context have a special structure that may not be present in the general iterations

we studied in this chapter.
Finally, our results are contrary to the common belief that the introduction of

two-time-scale slows down the convergence of 0k. This discrepancy is due to the fact
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that the two-time-scales are introduced by increasing the speed of evolution of rk
rather than slowing down the evolution of 0 k. This process might slow down the
convergence of r but does not hamper the possibility of achieving an optimal rate of
convergence for 6k4.
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Chapter 8

Rate of convergence of
Actor-Critic Algorithms

In this chapter, the results of the previous chapter are used to study the rate of
convergence of the actor-critic algorithms proposed in this thesis. To simplify the
presentation and the analysis, only episodic variants of algorithms for total reward

problems are studied in this chapter. However, it is known that the asymptotic

behavior of episodic versions is not too different from that of non-episodic versions
(Marbach & Tsitsiklis, 2001; Marbach, 1998) and the qualitative conclusions of this
chapter hold for other objective criteria as well.

In episodic versions, the parameters are updated only when the system visits
the terminal state. Therefore, the policy used by the actor during the course of

a single trajectory (or episode) is constant. Furthermore, the increment by which
the parameters are updated is equal to the sum of all individual increments, each

corresponding to a transition in the trajectory.

The rate of convergence of our algorithms will be compared with that of known

actor-only methods (Williams, 1992; Marbach & Tsitsiklis, 2001; Baxter & Barlett,
1999; Glynn, 1987) which we discuss in the next section. Later, it is shown that
the rate of convergence of actor-only and actor-critic algorithms with a TD(1) critic
are the same. Therefore, it is argued that, for the rate of convergence of actor-critic
algorithms to be better than that of actor-only methods, it is essential that the critic
use TD(A) with A < 1 and basis functions to approximate the true value function.

8.1 Actor-only Methods

Like actor-critic methods, actor-only methods also optimize over a parametric family

of policies. They too use the same formulas as in Chapter 2 to estimate the gradient
of overall reward. However, they do not rely on a critic to estimate state-decision
or state value functions. Instead, for each gradient estimate, they obtain estimates
of state-decision values from simulation and use these in place of the actual state-
decision values in the gradient formulas. Therefore, unlike actor-critic algorithms in
which the estimates of state-decision values are stored and updated, these methods
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generate a new independent estimate for each update of the policy parameters. For
this reason, one suspects that, actor-critic algorithms make better use of simulation

information and therefore should converge faster than the corresponding actor-only

methods. We will show in the next section that this is not always true.

We consider the following actor-only method for the total reward problem from

(Williams, 1992) which is essentially the same as the algorithms in (Marbach &
Tsitsiklis, 2001), with appropriate modifications. This actor-only method will be
compared to actor-critic algorithms. We consider the optimization of expected total

reward over a parametric family of RSPs {po; 0 E R} of the MDP described in

Section 2.5.
During the course of the algorithm several trajectories ending in the terminal state

t of the MDP are simulated sequentially. After each termination, the starting state
of the next trajectory is chosen according to a fixed distribution $. Let -rk denote the

time step in which the terminal state t is visited for the kth time. For each k, the kth
trajectory, from time Tk to time Tk+1, is simulated using the policy corresponding to
0 k. At time Tk+1, the parameters of the algorithm are updated as follows:

Tk+1 -1

Ok+1=lOk+/ 3 k SE g(X,,UZ0
=Tk+1

where for 'Tk 1 Tk+1,

Zi = S IA-to (Xk, Uk), (8.1)
j=Tk+l

where A is an algorithm parameter. This algorithm was proposed in (Marbach &

Tsitsiklis, 2001) with A = 1. However, this reference also suggests the use of A less

than but close to one to improve the rate of convergence of these algorithms at the

cost of introducing a small bias into the estimate of the gradient.

It is not difficult to see that for A = 1, the increment in the above algorithm is
an estimate of the gradient of the total reward corresponding to policy 0k In other

words, expectation of the update increment given that the policy is 0 is exactly the

gradient of the total reward V&(0). The rate of convergence of this algorithm, with

A = 1, is now studied using some informal calculations. However, these can be easily

formalized using the results of (Benveniste et al., 1990).
It is proved in (Marbach & Tsitsiklis, 2001) that the sequence {Vt(Ok)} converges

to zero. We will also assume that the sequence {Ok} converges to 0*. To analyse the

algorithm, rewrite it in a form amenable to analysis. Note that the algorithm is of

the form

Ok+1 = 0 k + lOkVQ(Ok) + OkMk,

where Mk denotes the noise in the estimate of V&(Ok) (cf. Section 2.5). Since 0 k

converges to 0*, we must have Vi(0*) = 0, and therefore the noise term Mk can be

130



approximated by the noise in the update increment when the current policy is 0*,
and VJ(Ok) can be approximated by its linear term -A(Ok - 0*) where -A is the
Hessian of d(.) at 9*. In other words, Mk can be approximated by a sequence of
i.i.d. estimates of the gradient Vd(0*) (which is equal to zero). Suppose that 0* is
an isolated local maximum and A is a positive definite matrix. Then, the asymptotic
variance of 6k in the above algorithm should be the same as that of the following
iteration:

0k+1--Ok - /3 kA(Ok - 9*) + Mk, (8.2)

where the Mk's are i.i.d. estimates of the gradient of the total reward corresponding to
the policy 0*. It is sufficient for our purposes to characterize the asymptotic variance
of actor-only algorithms in such a context.

8.2 Actor-Critic Methods

In this section, we wish to obtain a linear iteration of the form (8.2) which character-
izes the rate of convergence of episodic variants of actor-critic methods for the total
reward problem described in the previous section. We assume that in the algorithms
the policy parameter 9 converges to 0*. Although our convergence analysis does not
imply such convergence in general, we make this assumption to simplify the analysis.
Furthermore, a fair comparison of actor-only and actor-critic methods is possible only
when both converge.

As the episodic variants of the actor-critic methods for total reward problems have
not been considered so far, a brief description is given below. The simulation of the
MDP for these variants is the same as for actor-only methods. The critic parameters
and the actor parameters are updated only after the termination of a trajectory. The
critic update is given by:

rk+1-1

rk+1=krk+-7k >E d1 Z1

1=rk+1

where for Tk <1I <Trk+1, d, represents the temporal difference at time 1:

d+= g(Xi, O) + r Oe(kl+1, 10+1) - r/k ( , (f),

and the Z represent eligibility traces:

j=-k+ I
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The actor update is given by:

Trk -1

Ok+1 = 0/+ ± /3rc(r/c) 1S V/c 019(l, (JLWok kXl, C),
=Tk+l

where the step-size of the actor 3, the function r and the basis functions #o are as
described in Section 4.3. To study the rate of convergence of actor-critic methods we
use the informal results of Section 7.6.

Note that the actor-critic algorithms can be expressed as

rk+ 1 = rk + k(hk(0k) -G(Ok)rk),

0k+1 = k +3Or(rT)H(0)Trk,

where for each k,

E[hk(0k)0,,ri,l <k] = h(0k),

E[G(0k) 0,,ri, l<k] = 0(0c),

E[H/H(0k) 0,ri, l <k] = 17(0),

for some functions h(0), G(0) and 1(0). To simplify analysis, we assume 1(r) = 1
in a neighborhood of f(0*). To simplify the notation we suppress the dependence of
various quantities on 0* in the following discussion.

Using the informal results of Section 7.6, the asymptotic variance of the above
iterations can be seen to be the same as for the single time-scale iteration:

Ok+1 = /k - Ok A(0k - 0*) + 3k Hk + 3/cH G-(hk -- Gt)

where -A is the Jacobian of the steady state update direction I(0)t(0) at 0* and all
the quantities that depend on 0/ are evaluated at 0*.

The first property of the asymptotic variance of 0k is that it depends only on the
subspace spanned by the basis functions of the critic, as we now explain. Notice that

the first two terms depend only on the limiting approximation of the state-decision
value function obtained by the critic which depends only on the subspace spanned by
the basis functions. The term remaining is

lO-'(h - G/t).

Consider the transformation of features from q to A# for some invertible matrix A.
Then the matrices Hk, H, C, hk, Gk and t are transformed to H/A', [A', AGA',
Ah/, AG/A' and (A')- 1 f. It is now easy to see that the above term is invariant under

such transformations.

We will now use this property of actor-critic algorithms to study their rate of
convergence when the critic uses TD(1) with features satisfying Assumption 5.2. As-

sume, without loss of generality, that the first n basis vectors are 4's and the basis
functions &,+1, -.-.- , 0m are orthogonal to O's. Then the matrix G = (, #0') has the
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following block diagonal structure:

-C~jjo 0]~
G0 =

0 011

where Go = (4, '). Similarly, the matrix H (0, q') is of the form

H=[G0  01.

Therefore, we have

Ho-1 = [I 0],

which in turn implies that the above iteration can be rewritten as

0k+1 = k- OkA(Ok - 0*) + /k(Hk -- Ck) + - 3khk,

where hk and Ok are the first n rows of hk and Gk. Since the first n components

of the feature vectors q form the vector 4, it is easy to see that hk is the same as
actor-only methods. Using simple algebraic manipulations and the fact that all the
features of the terminal state are zeroes (Assumption 4.11), it is also easy to see that
Hk = Gk. Therefore it follows that the rate of convergence of actor-critic algorithms
with TD(1) critic is the same as actor-only methods. Although these results are
applicable only to episodic variants, we do not expect the rate of convergence of non-
episodic variants to be much different. Therefore, in order to improve the rate of
convergence of actor-only methods we have to use TD(A) with A < 1. In the next
section, we will illustrate, through a numerical example, that the rate of convergence
of actor-critic methods can be substantially better than that of actor-only methods
if proper features are used for the critic.

8.3 Numerical Example

In this section, we use a well-known academic example from (Bertsekas & Tsitsiklis,
1996) to numerically study the rate of convergence of actor-critic methods. Our
objective is to illustrate various issues involved in the design of actor-critic methods.

A driver is looking for inexpensive parking on the way to his destination. The
parking area contains N spaces. The driver starts at space N and traverses the
parking spaces sequentially, that is, from space x he goes next to space x - 1, etc.
The destination corresponds to parking space 0. Each parking space is free with
probability p independently of whether other parking spaces are free or not. The
driver can observe whether a parking space is free only when he reaches it, and then,
if it is free, he makes a decision to park in that space or not. If he parks in space
X, he incurs a cost c(x) > 0. If he reaches the destination he must park in a garage,
which is expensive and costs C > 0. The problem is to computationally approximate
the optimal policy.
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It is easy to prove that the optimal policy for this problem is a threshold policy.
That is, there exists an integer a* such that it is optimal to park at x if and only
if x < x*. For computational purposes, we formulate the problem as a total reward

problem. The state space consists of integers 0, ... , N and a termination state t
where the state x corresponds to the driver being at space x and the space x being
free. The decision to park is denoted by uO and the decision not to park is denoted

by a1 . The reward function for this problem is given by

-c(x) if 1 < < N,
g(X, nO) = -C if X = 0,

0 otherwise

and g(x, u) = 0, Vc. An approximation to a threshold policy with threshold 0 is
provided by the following randomized stationary policy:

[L9(UO I X) = - -tanh X,0pO(UijX) =1-PO(UO lz),
2 ((T

where the parameter T controls the accuracy of approximation. To compute an
approximation to the optimal policy, we can optimize the total reward over the above
family of parameterized policies. In order for the problem to be completely defined,
we need a probability distribution for the starting state. If we were to capture fully
the dynamics of the original problem, we would take the starting state to be N -- r
where r is a geometric random variable with parameter p. However, for the sake of
simplicity we take the starting state to be N.

To illustrate the advantages of actor-critic methods, we consider the case where

p= 0.05, N = 200, c(x) = x, 1 < x < N, C = 100, T=i15.

For the problem with these parameter values, Figure 8-1 shows a plot for the total
reward as a function of 0 using exact computations. The maximum of the total re-

ward occurs at the threshold value of 35.7. It is known from (Bertsekas & Tsitsiklis,
1996) that the optimal policy is a threshold policy with threshold value 35. Note that
if the randomized threshold policy with threshold 35.7 is rounded off to a determin-
istic threshold policy, the resulting policy would be optimal for the original problem.
In this case, we were lucky that the optimal solution to the approximate problem
is also an optimal solution to the original problem of finding an optimal determin-
istic threshold policy. The following subsections describe computational results for

different algorithms applied to this problem.

8.3.1 Actor-only Methods

The actor-only method described in the Section 8.1 was applied to this problem. The
algorithm was tried with two different values for the parameter A. In the first case, A
was set to 1 and therefore, the algorithm updates the policy parameter in a direction
that is an unbiased estimate of the gradient of the total reward. The step sizes /k
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Figure 8-1: Total reward as a function of the threshold parameter.

used were of the form

Ok 0 = 0 ,(8.3)
+ k

where

Oo = 0.04,

ka = 40.

The threshold parameter 6 was initialized to 100 and the algorithm was run for 10000
trajectories. Figure 8-2 shows the sequence of thresholds obtained during the course

of the algorithm. The figure shows that the threshold parameter "settled" down in
a region between 30 and 40 after 2000 iterations and kept moving slowly (due to
small-step sizes) until it started to converge around 8000 iterations. Although, it is

difficult to say whether the convergence of the algorithm after 8000 trajectories is due
to small step-sizes, the key point is that the parameter has not converged till 8000
iterations. The threshold to which the algorithm appears to have converged is 35.92
which is 0.22 away from the optimal threshold.

In the second case, A was set to 0.7 and the rest of the parameters were left
unchanged. In (Marbach, 1998; Marbach & Tsitsiklis, 2001), choosing a value less
than 1 for A was suggested to reduce the variance in the actor-only algorithm. The
plot (Figure 8-3) shows that setting A to 0.7 has indeed led to faster convergence of
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Figure 8-3: Actor-only method with A 0.7.
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the algorithm. However, the value to which the algorithm converged is 26.75 which is
far from the optimal threshold. This is due to the large bias introduced by the choice
of A less than 1. But, note that the reduction in the variance is quite remarkable.
In the next subsection, we describe an actor-critic algorithm with comparable rate of

convergence but converging to a much better threshold.

8.3.2 Actor-Critic Method

The actor-critic method without an eligibility trace for the actor presented in Section
5.1, was tried on this example. The parameter A of the critic was taken to be 0.7.

As we have argued in Section 5.1, two sets of basis functions are needed for the
critic in these algorithms: one set, called the basis functions for advantages, with the

same span as the functions 44 defined as

Olnpo(ukr)

and an other set, called the basis functions for state-values, to approximate the state-
value function. Since there is only one actor parameter in this problem, the natural
choice for the first set is a properly scaled version of the function 4O defined in this

case by

4(x,uo) = sech (X,
2Ttpe (uo I ) (2T

O(X = - 2 TU 0(=l!sechX.
2T/pO(U1|z) (2T

Thus, the first basis function we use is q$0 = 10T4o. Figure 8-4 shows this basis
function for 0 = 60.

The second set also consists of a single basis function that approximates the state-
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value functions. To understand the shape or the form of the exact state-value function
in this example, consider a deterministic threshold policy with threshold 0. Since the
driver employing this policy will park immediately if he finds empty a parking space
numbered below 0, the values of the states x < 0 should be r(x). When a parking
space numbered x > 0 is found empty, the driver using the threshold policy simply
passes it and therefore the value of this space should be the same as that of the next
parking space. Therefore for x > 0, the value of x is taken to be r(0). Thus, the
state value basis functions are taken to be piecewise linear and appropriately scaled
as shown in Figure 8-5. The step-size used for the critic is of the form

707k- kT

where

yo= 0.0005,

ke = 1000,
a: = 0.75.

Using these basis functions, the above step-sizes for the critic and A = 0.7, the
episodic variant of the actor-critic algorithms presented in the previous section was
run for 5000 trajectories using the same step-sizes as (8.3). Figures 8-7 and 8-6
show the evolution of the parameters of the actor and critic during the course of this
algorithm. The following are some observations.

* Note that the actor parameter has converged in spite of the critic parameters
not converging due to the slowly decreasing step-sizes used. This is contrary
to what the proofs of convergence would make one believe, namely that the
actor converges because the critic converges. The reason for this discrepancy is
the following. Since the actor uses a smaller step-size than that of the critic,
only the long run average behavior of the critic is visible to the actor. In other
word, if the critic keeps oscillating around a point r*, due to the averaging in
the actor's update, the actor moves in a direction that corresponds to the critic
parameter r*. Therefore, the critic is only needed to "settle down" around
the "right values". This is a salient feature of actor-critic algorithms and two-
time-scale stochastic approximation in general. Compare these algorithms with
optimistic policy iteration (Bertsekas & Tsitsiklis, 1996), in which the conver-
gence of the policy evaluation to the right value function is most critical for

policy improvement.

* Another important feature is that the rate of convergence of the actor-critic
algorithms is comparable to that of actor-only methods with variance reduction.
However, the quality of the solution obtained is much better than that of the
actor-only methods. For example, note that the limiting threshold obtained by
the actor-critic algorithms is 36.3, which is 0.7 away from the optimal threshold.
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In contrast, the actor-only method with A = 0.7 converged to 26.75 which is far
from optimal.

8.4 Closing Remarks

In this chapter, we have considered episodic variants of actor-critic algorithms (with-
out eligibility traces for the actor) for the total reward problem and compared them
with their actor-only counterparts. When the actor-critic algorithms use a TD(1)
critic, we have shown that their asymptotic variance is the same as that of actor-only
methods (without variance reduction). However, we do not know if there is sub-
stantial difference in the transient behaviors or which of the algorithms have better
transient behavior.

To compare the actor-only algorithms with actor-critic algorithms in which the
critic tries to approximate the value function to some extent, we tried both algorithms
on a numerical example of small size. Even for such a small problem, the actor-critic
algorithms performed better than the actor-only counterpart. More empirical and
analytical results are needed to compare the performance of these algorithms. It will
be interesting to see how actor-critic algorithms perform when applied to a large real
world problem.

Finally, we have made an analytical comparison of rate of convergence of actor-
critic algorithm with that of actor-only algorithms only when the former uses a critic
with A = 1. This comparison needs to be extended to the case when A < 1.
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Chapter 9

Summary and Future Work

In this thesis, a methodology for optimization of Markov decision processes over a
parametric family of randomized stationary policies was presented. Unlike existing
methods for solving such problems, the methods of this thesis use value function
approximation which facilitates incorporation of user's prior knowledge about the
problem (in the form of basis functions) into the solution method. Our belief is that
this feature is essential for any methodology to be useful in solving large-scale real
world problems. The methodology of this thesis is applicable to Markov decision
processes with general state and decision spaces and for optimizing various objective

criteria.

Several analytical tools were also developed and used for the analysis of the con-
vergence and of the rate of convergence of some proposed as well as pre-existing

algorithms. In particular, a new result on the tracking ability of linear stochastic
approximation was proved. This thesis also studied the rate of convergence of two-
time-scale linear iterations and provided the first results on this subject. These two
results on linear stochastic approximation are applicable in a more general context
than that of this thesis.

A major constraint of our methodology is that it is only applicable to optimization

over a family of randomized policies. While the restriction to a family of random-
ized policies is justified to some extent, there are important applications in which
randomized policies are either undesirable or unnatural. Therefore we need a similar
methodology that is applicable to optimization over deterministic policies.

More precisely, consider MDP's with real Euclidean state and decision spaces with

system dynamics of the form

Xk+1 - f(Xk, Uk,Wk)

where the Wk are i.i.d. and f (x, u, w) is a smooth function of x and u. Let c(x, u) be a
smooth one-stage reward function. Let {go;6 E R} denote a smooth parameterized
family of deterministic stationary policies. That is, for each 0 E R, Ipo(-) is a function
mapping each state to a control where po(x) is assumed to be smooth in x and 9.
Let 5(O) be the overall cost when policy uo is used. The following are some of the
questions that need to be answered in this context:
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" Is there a formula for the gradient of the overall cost Va in terms of the value
function?

" What actor-critic algorithms are possible in this setting?

" How do these algorithms perform in comparison with existing methods such as
IPA (Glasserman, 1991)?

Another important direction to explore is actor-critic algorithms for partially observed
Markov decision process. Such techniques would consist of a combination of policy
approximation, value function approximation and approximate filtering methods. It
will be an interesting exercise to study the interplay of these different techniques.

Our results on the rate of convergence of TD and the comparison of the rate of
convergence of actor-critic methods with that of actor-only methods are inconclusive.
In particular, we have derived only bounds on the rate of convergence of TD. A
more detailed study of TD is needed to test the tightness of these bounds and the
qualitative properties inferred from them. Similarly, we have made an analytical
comparison of rate of convergence of only a special case of actor-critic algorithm with
that of actor-only algorithms. This comparison needs to be extended to other variants
of actor-critic algorithms using at least some concrete examples.

Finally, the actor-critic algorithms need to be tested on large-scale real world
problems. Further research is needed to come up with guidelines to fine tune these
methods to specific applications. For example, guidelines are needed to apply these
algorithms to hierarchical and distributed systems such as manufacturing systems,
sensor/actuator networks, etc.
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