
MIT Open Access Articles

Diagnostic power of diffuse reflectance spectroscopy for 
targeted detection of breast lesions with microcalcifications

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Soares, J. S., I. Barman, N. C. Dingari, Z. Volynskaya, W. Liu, N. Klein, D. Plecha, R. R. 
Dasari, and M. Fitzmaurice. “Diagnostic power of diffuse reflectance spectroscopy for targeted 
detection of breast lesions with microcalcifications.” Proceedings of the National Academy of 
Sciences 110, no. 2 (January 8, 2013): 471-476.Copyright © 2012 National Academy of Sciences.

As Published: http://dx.doi.org/10.1073/pnas.1215473110

Publisher: National Academy of Sciences (U.S.)

Persistent URL: http://hdl.handle.net/1721.1/81206

Version: Final published version: final published article, as it appeared in a journal, conference 
proceedings, or other formally published context

Terms of Use: Article is made available in accordance with the publisher's policy and may be 
subject to US copyright law. Please refer to the publisher's site for terms of use.

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/81206


Diagnostic power of diffuse reflectance spectroscopy
for targeted detection of breast lesions
with microcalcifications
Jaqueline S. Soaresa,1, Ishan Barmana,1, Narahara Chari Dingaria,1, Zoya Volynskayaa,2, Wendy Liub,c, Nina Kleinb,c,
Donna Plechab,c, Ramachandra R. Dasaria, and Maryann Fitzmauriceb,3

aGeorge R. Harrison Spectroscopy Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139; bDepartments of Pathology and Radiology,
Case Western Reserve University, Cleveland, OH 44106; and cDepartments of Pathology and Radiology, University Hospitals Case Medical Center, Cleveland,
OH 44106

Edited* by Mildred S. Dresselhaus, Massachusetts Institute of Technology, Cambridge, MA, and approved November 14, 2012 (received for review September
5, 2012)

Microcalcifications geographically target the location of abnormal-
ities within the breast and are of critical importance in breast cancer
diagnosis. However, despite stereotactic guidance, core needle
biopsy fails to retrieve microcalcifications in up to 15% of patients.
Here, we introduce an approach based on diffuse reflectance spec-
troscopy for detection of microcalcifications that focuses on varia-
tions in optical absorption stemming from the calcified clusters and
the associated cross-linking molecules. In this study, diffuse reflec-
tance spectra are acquired ex vivo from 203 sites in fresh biopsy
tissue cores from 23 patients undergoing stereotactic breast needle
biopsies. By correlating the spectra with the corresponding radio-
graphic and histologic assessment, we have developed a support
vector machine-derived decision algorithm, which shows high diag-
nostic power (positive predictive value and negative predictive
value of 97% and 88%, respectively) for diagnosis of lesions with
microcalcifications. We further show that these results are robust
and not due to any spurious correlations. We attribute our findings
to the presence of proteins (such as elastin), and desmosine and
isodesmosine cross-linkers in the microcalcifications. It is important
to note that the performance of the diffuse reflectance decision
algorithm is comparable to one derived from the corresponding
Raman spectra, and the considerably higher intensity of the reflec-
tance signal enables the detection of the targeted lesions in a frac-
tion of the spectral acquisition time. Our findings create a unique
landscape for spectroscopic validation of breast core needle biopsy
for detection of microcalcifications that can substantially improve
the likelihood of an adequate, diagnostic biopsy in the first attempt.

histopathology | mammography | real-time guidance

According to the latest American Cancer Society statistics, an
estimated 226,870 and 63,300 new cases of invasive and in situ

breast cancer, respectively, are expected to occur among women in
theUnited States in 2012 (1). The general consensus in the clinical
community is that the morbidity and mortality of breast cancer
could be considerably reduced by early-stage detection via ap-
propriate screening examinations and procedures. Early detection
would also ease the corresponding financial burden associated
with late-stage breast cancer treatment, which was assessed to be
around $2 billion in 2007 (2).
X-ray mammography represents the current gold standard for

screening methodologies and is extensively used to detect breast
cancer at an early stage (prominently in women who are asymp-
tomatic), where treatment is more effective and a cure is more
probable (3, 4). One of the primary features of diagnostic signifi-
cance in mammograms is the presence of microcalcifications,
which are tiny mineral deposits within the breast tissue and appear
as small white spots on theX-ray film. Although there exists a close
relationship between the nature of microcalcifications and disease
type (5), mammograms do not provide sufficient information to
reliably predict the tissue pathology (including normal tissue and
benign and malignant lesions). Thus, as a follow-up procedure,

stereotactic breast biopsy is undertaken to remove tissue cores
associated with the microcalcifications for examination by a pa-
thologist under a microscope. Nevertheless, it is reported that
microcalcifications are not successfully retrieved in almost 15% of
stereotactic core needle biopsy procedures (6). In such cases, the
absence of microcalcifications in the biopsied specimens leads to
nondiagnostic or false negative biopsies, which places the patient
at risk and potentially necessitates a repeat biopsy, often as a sur-
gical procedure. There is, therefore, an unmet clinical need to
develop a tool to detect microcalcifications in breast tissue that
can provide real-time feedback to radiologists during stereotactic
core needle biopsy procedures enabling more efficient retrieval
of microcalcifications.
Optical spectroscopy provides a promising tool to address this

unmet need and has been previously used by several research lab-
oratories for tissue diagnosis (7–9). Structural changes are present
in breast tissue that are used by pathologists to render traditional
histopathology diagnoses, and spectroscopic analysis reveals
changes in tissue composition that correlate with these changes in
histopathology. Optical and spectroscopic modalities are more
rigorous and objective than traditional pathologist interpretation as
they provide a quantitative rather than qualitative assessment. In
specific, diffuse reflectance, fluorescence, mid-infrared, andRaman
spectroscopy have been extensively studied for discrimination of
breast lesions (10–22) because of their ability to provide real-time
diagnosis without necessitating the addition of exogenous contrast
agents, which cannot be achieved with conventional histopatho-
logical examination. Furthermore, these modalities provide valu-
able biochemical information, which is lacking in mammographic
diagnosis.
However, relatively less attention has been focused on the

problem of microcalcification detection in such lesions. Given the
application under consideration, in which there is an a priori ex-
pectation of abnormal tissue, accurate distinction of lesions with
microcalcifications from those without microcalcifications is criti-
cal. Our group had originally distinguished between type I and II
breast microcalcifications and discriminated type II micro-
calcifications associated with benign and malignant breast lesions
in Raman microscopy studies of formalin-fixed, paraffin-
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embedded breast biopsies (23). We have recently extended this
work to demonstrate the ability of Raman spectroscopy to identify
microcalcifications in core needle breast biopsy specimens (24).
Despite these promising results, a major drawback of Raman
spectroscopy is its intrinsically weak signals (i.e., low sensitivity),
which considerably amplifies the complexity of instrumentation
(including optical fiber probes) and necessitates long acquisition
times. This may substantially increase the overall biopsy procedure
time, which is undesirable in terms of medical cost and
patient convenience.
As alluded to previously, diffuse reflectance spectroscopy has

been shown to provide comparable discrimination performance to
Raman spectroscopy for breast cancer diagnosis (18). The diffuse
reflectance measurements in the UV-visible region are typically
used to quantify hemoglobin saturation, total hemoglobin con-
centration, beta-carotene concentration, and the mean reduced
scattering coefficient, a combination of parameters that is sub-
sequently used for tissue diagnosis. However, we suspected that the
utility of reflectance information can also be extended to identify
microcalcifications in the breast due to their unique structural and
chemical features in relation to the neighboring tissue. Our hy-
pothesis of reflectance-based microcalcification detection is sup-
ported by prior observations of changes in refractive index in breast
tissue with microcalcifications (25) and laser-induced auto-
fluorescence of similar calcified structures in atherosclerotic pla-
ques (26). Because absorption and corresponding fluorescence
emission spectra reflect transitions between identical vibronic
states, we conjecture that, despite the relatively weak relationship
with the underlying biochemistry, one can measure and use the
latent information in diffuse reflectance spectra for accurate
identification of microcalcification status.
In this article, we investigate the feasibility of using diffuse re-

flectance spectroscopy for identification of microcalcifications in
freshly excised breast tissue. Our reflectance measurements reveal
that the presence ofmicrocalcifications in lesionsmanifests itself in
subtle but consistent changes in spectral features, and the resultant
decision algorithm shows excellent efficacy in classifying normal
tissue as well as lesions with and without microcalcifications. A
model of proteins (including elastin) and associated cross-linkers
in the calcified clusters is proposed to explain the differential ab-
sorption signatures of the lesions with microcalcifications. It is
surprising that the classification performance of the reflectance
decision algorithm is comparable to that of the corresponding
Raman algorithm. We envision that the substantive advantages of
diffuse reflectance spectroscopy in terms of acquisition time and
simpler instrumentation will enable its ready translation to clinical
practice, optimizing the diagnostic value of the initial biopsy and
thereby reducing the number of repeat biopsies currently required.

Results
Diffuse Reflectance Spectroscopy. Fig. 1 shows representative diffuse
reflectance spectra acquired from normal human breast tissue (Fig.
1A), as well as those from tissue sites histopathologically designated

as lesions without microcalcifications (Fig. 1B) and lesions with
microcalcifications (Fig. 1C). Evidently, there are differences in the
spectral signatures between the tissue sites of different classes, in
particular between those acquired from normal sites and from sites
with lesions. This is consistent with our laboratory’s previous
observations (18), where the normal tissue spectra were markedly
different from those obtained from sites diagnosed as fibroade-
noma, fibrocystic change, or cancer. The differences in the normal
and lesion classes (such as the more pronounced absorption signal
in the 450–490-nm region resulting in lower reflectance measure-
ments in the normal tissue) can be primarily attributed to the
presence of substantially higher β-carotene content in normal
breast tissue. However, the differences between the lesion sites with
microcalcifications and those without microcalcifications (i.e., be-
tween class) are more subtle. Further, small within-class variations
in the spectral dataset impede the possibility of elucidating such
differences by single-feature analysis.
Nevertheless, such changes can be detected using multivariate

chemometric algorithms, as long as the between-class variations are
consistent and exceed within-class spectral differences. Here, we
have used principal component analysis (PCA) to reduce the di-
mensionality of the spectral dataset into key spectral components.
Fig. 2 shows the first three principal components (PCs) of the diffuse
reflectance spectral dataset in order of net variance explained by
each. It is clear that PC1 andPC2 both highlight the oxy-hemoglobin
absorption features, namely the Soret band at 414 nm and the Q
bands at ca. 547 and 580 nm, with a shallow absorption trough at 563
nm. Also, PC3 shows a wider trough in the 430–490-nm region,
which is well known to contain the β-carotene absorption features
(typically at 450 and 480 nm, ref. 27) and, as such, is the primary
determinant between normal tissue sites and those consisting of
lesions. The successive PCs, as is expected, have more noise con-
tributions. In this analysis, the selection of PCs in the support vector
machine (SVM)-derived decision algorithmwas governed by the net
variance threshold (99.9%), as well as by the minimization of error
in cross-validation. For our dataset, 10 PCs were found to be opti-
mal for use in SVM decision algorithm building.
Previously, several investigators have analyzed the diffuse re-

flectance information in a different manner by incorporating
mathematical models based on the diffusion approximation of
light propagation in tissue to determine the reduced scattering
coefficient μs′(λ) [and the A and B parameters, where μs′(λ) =
Aλ−B] and the concentration of the prevalent absorbers in the
UV (UV)-visible region (hemoglobin and β-carotene) (7, 18, 28,
29). However, because we do not expect the contributions of
these constituents to vary significantly among lesions with and
without microcalcifications, we have chosen to use PCA to
highlight the smaller variations that would be neglected by the
light transport model and its variants.
To obtain a measure of its classification ability, we used the PC-

based SVM decision algorithm in a leave-one-out cross-validation
(LOOCV) analysis. Table 1 provides the confusion matrix for the
SVM-derived model, where each column of the matrix represents

Fig. 1. Representative diffuse reflectance spectra acquired from breast tissue: (A) normal tissue site, (B) lesion without microcalcifications, and (C) lesion with
microcalcifications.
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the instances in a diffuse reflectance predicted class, and each row
represents the instances in the reference (combined histopatho-
logic and radiographic) class. In specific, for diagnosis of lesions
with microcalcifications (which is the target class for our study),
the decision algorithm provides a positive predictive value (PPV)
of 97%, negative predictive value (NPV) of 88%, sensitivity (SE)
of 67%, and specificity (SP) of 99%. The overall diagnostic accu-
racy (OA) for all classes was computed to be 77%. These results
indicate that diffuse reflectance spectra provide high diagnostic
power for detection of lesions with microcalcifications and can be
suitably used as an adjunct to stereotactic core needle biopsy,
particularly due to its excellent PPV.
In the clinical situation under consideration (i.e., the detection

of microcalcifications in core needle biopsy procedures), PPV
signifies the most important performance metric, because false
positives could potentially have serious adverse consequences for
the patient (30). This is representative of cases where the disease
to be diagnosed is serious, should not be overlooked, and is
treatable. Hence, it is imperative to confirm that biopsy tissue with
a positive spectroscopic diagnosis of microcalcifications actually
harbors microcalcifications as, in the case of a false positive, the
radiologist may only retrieve a single core and miss the targeted
lesion. As a further consequence, the patient may have to undergo
a follow-up stereotactic or even a surgical biopsy. On the flip side,
even if the spectroscopic algorithm indicates that the tissue to
be biopsied does not harbor microcalcifications when it does
(i.e., presents a false negative), the radiologist will remove (un-
necessary) additional tissue cores. Although this is undesirable, it
does not pose a major health risk to the patient.
In addition, to verify the robustness of our findings to potential

spurious correlations in the spectral dataset, we implemented
a negative control study (31). In particular, the three class labels
(normal, lesion without microcalcifications, and lesion with
microcalcifications) were assigned in a randomized order, irre-
spective of their true labels. Using the previously obtained PC
scores along with the control labels, we derived an SVM decision
algorithm, which gave PPV, NPV, andOA of 40%, 65%, and 44%,
respectively. Even aftermultiple iterations, the PPVandOAof the

controlmodels never exceeded 50%, highlighting the robustness of
the proposed approach to confounding variables and chance cor-
relations. This is notable because the reported experiments were
performed over several weeks; one would expect that the algorithm
(s) would not be subjected to systematic temporal correlations
(including system drift) that may otherwise be expected in a single
day or single sitting clinical study.
Fig. 3 exhibits the receiver operating characteristic (ROC) curve

for diffuse reflectance diagnosis of lesions with microcalcifications.
The ROC curve (in red) plots sensitivity versus (1-specificity) for
the SVM decision algorithm as the discrimination threshold is
varied. For comparison, the ROC curve of two indistinguishable
classes (represented by the solid black line) is also shown in the
figure. The area under the curve (AUC) is 0.88 in comparison with
an AUC for a perfect algorithm of 1.00. It is pertinent to note that
although a spectral algorithm to distinguish type I and II micro-
calcifications was not developed in the current study (because very
few type I microcalcifications were present in the dataset), the
proposed approach could potentially be extended to differentiate
the types of microcalcifications.

Raman Spectroscopy. For the sake of comparison and complete-
ness, the acquired Raman spectra from the tissue sites were
subjected to the same analysis (PCA followed by SVM classifi-
cation). The Raman spectra collected in this study were very
similar to those acquired using an identical protocol for the
Raman pilot study published in ref. 32. As was expected, the
Raman spectra display features indicative of the presence of fat,
collagen, calcium hydroxyapatite, and calcium oxalate. The latter
two suggest the incidence of microcalcifications, with type I
deposits consisting of calcium oxalate dehydrate and the type II
deposits composed primarily of calcium hydroxyapatite (23). Fig.
4 shows the first three Raman principal components in order of
net variance explained by each. Each of the PCs shows a number
of Raman features along with increasing noise contributions in
successive components. In particular, a number of the features
of PC1 are consistent with those of fat and collagen, e.g., 1655
cm−1 amide-I band and 1447 cm−1 CH2 deformation band. Here,

Fig. 2. Illustration of principal components for diffuse reflectance measurements. The first three principal components in order of net variance corre-
sponding to the diffuse reflectance spectra acquired from the freshly excised breast tissue cores. PC1 and PC2 both demonstrate oxy-hemoglobin absorption
features, namely the Soret band at 414 nm, and the Q bands at ca. 547 and 580 nm, with a shallow absorption trough at 563 nm. PC3 shows a wider trough in
the 430–490-nm region, which contains β-carotene absorption features (typically at 450 and 480 nm).

Table 1. Confusion matrix for LOOCV of SVM-derived diffuse reflectance-based decision algorithm

SVM diffuse reflectance diagnosis

Reference diagnosis Normal Lesion without microcalcifications Lesion with microcalcifications

Normal 77 13 0
Lesion without microcalcifications 14 41 1
Lesion with microcalcifications 17 2 38

Each column of the matrix represents the instances in a spectroscopy predicted class, and each row represents the instances in the
reference class.
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too, the number of PCs retained in SVM decision algorithm
building was decided by the minimization of error in LOOCV-
based classification and was determined to be 10. Thus, for both
the diffuse reflectance and Raman decision algorithms, the
sample per feature ratio (SFR) is the same and in excess of 10,
thereby enabling the development of a robust algorithm (33).
Table 2 provides the corresponding confusion matrix for the

SVM-derived decision algorithm based on Raman measurements.
In particular, we observe that the Raman decision algorithm
provides a PPV of 98%, NPV of 95%, SE of 88%, and SP of 99%
for diagnosis of lesions with microcalcifications. The overall ac-
curacy for diagnosis of all classes was determined to be 81%. It is
evident that although the biochemical specificity of Raman spectra
(to the analytes of interest, such as calcium hydroxyapatite and
oxalate) provides enhanced values for NPV (95%) and SE (88%)
compared with those of the corresponding diffuse reflectance

decision algorithm (NPV = 88% and SE = 67%). It is also in-
structive to note that the SP and,more importantly, the PPVvalues
of the two modalities are fairly comparable. A summary of the
performance metrics for both the reflectance and Raman SVM
decision algorithms is provided in Tables 1 and 2, respectively. Fig.
5 displays the ROC curve for the Raman SVM decision algorithm,
which illustrates the ability of Raman spectroscopy to discriminate
lesions with microcalcifications from normal breast tissue and
lesions withoutmicrocalcifications. The area under theROC curve
(0.86) in Fig. 5 is found to be surprisingly comparable to the cor-
responding value for the reflectance decision algorithm (0.88).

Discussion
Our findings suggest that diffuse reflectance spectroscopy can be
an important clinical tool for detection of breast lesions with
microcalcifications. Therefore, it is important to consider the ori-
gin of the diffuse reflectance discriminatory capability. Diffuse
reflectance spectroscopy is well characterized to provide two pri-
mary sources of information: elastic scattering and absorption (the
interaction of which is often referred to as tissue turbidity in the
biophotonics literature). The elastic scattering information is
typically extracted in the form of a wavelength-dependent reduced
scattering coefficient (μs′(λ)), which itself is a function of the ef-
fective density of tissue scatterers (ρs) and effective reduced scat-
tering cross-section (σ′(λ,ds)), as noted in ref. 34. Although the
effective density of tissue scatterers may vary due to the presence
of microcalcification clusters, it is unlikely to have a significant
impact on the more meaningful parameter of scattering cross-
section σ′(λ,ds). This is because, although the individual micro-
calcifications have a median size of ∼200 μm (with a range of ca.
20–1000 μm) (32), the slope of the scattering spectrum does not
change significantly when the scatterer size is greater than 1.5
μm, as per Mie theory. Thus, we ascribe the source of the dis-
crimination ability to the absorption component of the diffuse
reflectance information.
The absorption component in the UV-visible region of interest

has been previously modeled as consisting of two primary absorb-
ers, namely hemoglobin (oxy and deoxy) and β-carotene. However,
this represents a simplified mathematical model that does not ac-
count for smaller contributions of tissue absorbers, e.g., melanin,
water, proteins, nucleic acids, and lipids (35). Indeed, we attribute
the ability to diagnose microcalcifications using diffuse reflectance
spectra to the presence of proteins (and related cross-linking
molecules) associated with these calcified deposits. Our conjecture
in this matter is supported by prior findings of laser-induced
autofluorescence identification of calcified deposits in atheroscle-
rotic human aorta (26, 36), which are similar in chemical compo-
sition to the microcalcifications found in breast tissue (23, 37). In
particular, Baraga et al. (38) have shown that the autofluorescence
spectra obtained from calcified deposits in human arterial walls
have a similar lineshape to that obtained from elastin fibers. [It is

Fig. 3. ROC curve for SVM-derived diffuse reflectance algorithm for the
diagnosis of breast lesions with microcalcifications. The ROC curve in red
plots sensitivity versus (1-specificity) for the SVM decision algorithm as the
discrimination threshold is varied. For comparison, the ROC curve of two
indistinguishable classes (represented by the solid black line) is also shown.
The area under the curve is 0.88 compared with an AUC of 1.00 for a perfect
algorithm (TP = true positive; FP = false positive).

Fig. 4. Illustration of principal components for Raman measurements. The first three principal components corresponding to the Raman spectra from the
freshly excised breast tissue cores. In particular, a number of the features of PC1 are consistent with those of fat and collagen, e.g., 1,655 cm−1 amide-I band
and 1,447 cm−1 CH2 deformation band.
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well known that the mineral component of calcified deposits does
not fluoresce in the wavelength region under consideration (26).]
This interpretation is further bolstered by the supporting evidence
of Movat-stained sections of calcified plaque, in which regions of
the calcified deposit had the staining characteristics of elastin.
Moreover, because the electronic transition (in absorption and

fluorescence emission) does not greatly alter the nuclear geom-
etry in the molecule, the fluorescence emission spectrum exhibits
a one-to-one correspondence with the absorption spectrum of
the ground–to–first-excited-state transition. This constitutes the
mirror image rule and implies that the vibration structures seen
in absorption and emission spectra are similar (39). Although
there are some exceptions to the strict interpretation of this rule,
there is always a direct correlation between the absorption process
and the subsequent emission for any fluorophore. Based on this
understanding, as well as the aforementioned fluorescence mi-
croscopy studies of calcified deposits, one can reasonably infer that
the proteins (such as elastin) linked with the microcalcifications
have a contribution to the absorption component of the diffuse
reflectance spectra. Also, based on the fluorescence observations,
we may estimate that the absorption contribution of such features
in our reflectance spectra is present in the UV and lower wave-
length ranges of the visible region. The proposed model is also
consistent with prior reports of elastin, and associated cross-linkers

such as desmosine and isodesmosine, displaying a broad range of
absorption spectra from below 300 nm to above 400 nm (40).

Conclusions
In the present study, we have proposed and demonstrated the
potential of diffuse reflectance spectroscopy for detection of
microcalcifications in freshly excised tissue from patients un-
dergoing breast core needle biopsies. It is observed that the re-
flectance information shows high efficacy in tissue pathology
classification and, importantly, provides a positive predictive value
of 97% for the diagnosis of lesions with microcalcifications, which
form the target class of any core needle biopsy procedure. We also
note that the decision algorithm is robust to the incidence of
spurious correlations and that the underlying characterization
capability of the algorithm can be attributed to the presence of
elastin and desmosine and isodesmosine cross-links in the micro-
calcifications. The performance metrics of the reflectance mo-
dality are surprisingly similar to that of Raman spectroscopy, albeit
with a significantly shorter acquisition time. Given our findings and
the inherent attributes of diffuse reflectance spectroscopy, this
approach would appear to be particularly appropriate as a real-
time clinical adjunct to stereotactic core needle biopsy. The pro-
posed approach lends itself to facile assembly of a side-viewing
probe that could be inserted into the central channel of the biopsy
needle for intermittent acquisition of the reflectance spectra,
which would, in turn, reveal whether or not the tissue to be biop-
sied contains the targeted microcalcifications. A dedicated diffuse
reflectance probe would be simpler in design and could be smaller
in outer diameter than a dedicated Raman probe or the unitary
multimodality probe used in this study, enabling diffuse reflectance
measurements during a wider range of breast biopsy procedures,
such as ultrasound-guided needle biopsy, that use narrower gauge
biopsy needles than those typically used for stereotactic breast
biopsy. In the near future, this could considerably improve the
accuracy of the diagnostic efforts, thereby reducing the necessity
for repeat biopsies, without requiring development and assembly
of complex and costly optical systems. In addition, although the
cross-validation studies performed here provide the foundation for
diagnosis of breast lesions with microcalcifications using diffuse
reflectance spectroscopy, further clinical investigations will be
pursued to validate the proposed approach prospectively using
completely independent samples. The performance of the SVM-
derived algorithm may decrease (slightly) when tested in large-
scale studies in more diverse patient populations. Depending on
the variety of breast lesions and the complexity of tissue bio-
chemical composition encountered in these studies, implementa-
tion of alternate chemometric classification methods may also
be explored.

Materials and Methods
Patient Population and Tissue Preparation. Theex vivo clinical studywas carried
out at University Hospitals-Case Medical Center (UH-CMC) Breast Center,
Cleveland, OH. The study was approved by the UH-CMC Institutional Review
Board and theMassachusetts Institute of Technology Committee on theUse of
Humans as Experimental Subjects. Informed consent for the reported experi-
ments was obtained from all subjects before their biopsy procedures.

Measurements were acquired from female patients (age range of 39–78 y)
undergoing stereotactic breast needle biopsies for microcalcifications detec-
ted at screeningmammography. Data were collected ex vivo from fresh breast
needle biopsy tissue coreswithin 30min of excision.Overall, 203 sites onbiopsy
tissue cores removed from 23 patients were analyzed. The tissue cores were

Table 2. Confusion matrix for LOOCV of SVM-derived Raman spectroscopy-based decision algorithm

SVM Raman diagnosis

Reference diagnosis Normal Lesion without microcalcifications Lesion with microcalcifications

Normal 73 16 1
Lesion without microcalcifications 15 41 0
Lesion with microcalcifications 7 0 50

Fig. 5. ROC curve for support vector machine-derived Raman algorithm for
the diagnosis of breast lesions with microcalcifications. The ROC curve in red
plots sensitivity versus (1-specificity) for the SVM decision algorithm as the
discrimination threshold is varied. The ROC curve of two indistinguishable
classes is represented by the solid black line. The area under the curve is 0.86,
which is lower than that for the diffuse reflectance algorithm (0.88) (TP =
true positive; FP = false positive).
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∼2.0 cm in length and ranged from 1.0 to 2.8 mm in maximum diameter, de-
termined by the geometry of the 9-gauge biopsy needle.

After acquisition of diffuse reflectance and Raman spectra (as detailed in
the following paragraphs), the specimen sites weremarkedwith colloidal inks,
fixed in 10% (vol/vol) neutral buffered formalin and paraffin embedded.
Tissue sections were subsequently obtained and hematoxylin/eosin stained
for microscopic examination by a breast pathologist, who was blinded to the
spectroscopic evaluation. The radiographic assessments based on the speci-
men radiograph and the histopathology diagnoses were used in conjunction
to provide the final gold standard for comparison with spectroscopic results.

The combined radiography and histopathology assessment was used to
classify the 203 breast tissue sites into three classes: 90 normal sites, 56 lesions
without microcalcifications, and 57 lesions with microcalcifications. The
histopathology diagnoses for the 203 breast tissue sites were as follows: 91
normal tissues, 98 fibrocystic change, 2 fibroadenoma, 4 ductal carcinoma in
situ, and 8 invasive ductal carcinoma. One of the normal sites revealed
microcalcification clusters on radiographic assessment and was therefore
reassigned to the lesion with microcalcifications category.

Instrumentation. Diffuse reflectance and Raman spectroscopic measurements
were performed using a portable, compact clinical system (instrument and
optical fiber probe), described in detail in ref. 41. In brief, this instrument
contains: a xenon flash lamp (370–740 nm) to obtain diffuse reflectance
spectra, and a diode laser (830 nm) for Raman excitation. The instrument
employs a unitary optical fiber probe that allows sequential collection of
reflectance and Raman spectra from the same tissue site. The probe contains
a single excitation fiber and a concentric ring of 15 collection fibers, 10 of
which are used to collect Raman spectra, and the remaining 5 collect diffuse
reflectance spectra. The average laser excitation power delivered to the
tissue was ∼100 mW over a 1 mm2 spot, while the Xe lamp provided a 2.9-μs

full width at half maximum (FWHM) white light pulse, 1 J/pulse maximum.
The acquisition time for the two modalities combined was 5.6 s for 10 frames
(Raman acquisition time per frame was 500 ms; diffuse reflectance acquisi-
tion time per frame was 60 ms). The fluences used in the experiments are
safe for clinical investigations and no tissue damage was observed on
histological examination.

For spectral acquisition, the probe was gently brought into contact with
the tissue specimen and the spectra were collected with room lights off as the
Raman signal is weak in relation to the ambient background light. Spectra
were recorded from multiple tissue sites of interest from each tissue core as
well as from several cores in each biopsy, and thus the number of collected
spectra varied from patient to patient. The collected spectra were dispersed
via two spectrographs and recorded using two CCD detectors, one optimized
for near-infrared detection (Raman) and the other for UV-visible wavelengths
(diffuse reflectance).

Spectral Data Analysis. The reflectance spectra were wavelength calibrated
using a mercury spectrum and were subjected to dark noise and flat field
correction before further analysis. Similarly, the Raman shift axis was calibrated
using a 4-acetaminophen spectrum and the acquired spectra were further
corrected for the probe background and the spectrograph-detector response
(24). Following the preprocessing steps, the reflectance and Raman spectra
were subjected to PCA for dimensional reduction and subsequently to SVM
analysis for classifier model development. Further details of the data analysis
are provided in the SI Text.
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