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We present and analyze a new approach for the generation of atomic spin-squeezed states. Our method

involves the collective coupling of an atomic ensemble to a decaying mode of an open optical cavity. We

demonstrate the existence of a collective atomic dark state, decoupled from the radiation field. By

explicitly constructing this state we find that it can feature spin squeezing bounded only by the Heisenberg

limit. We show that such dark states can be deterministically prepared via dissipative means, thus turning

dissipation into a resource for entanglement. The scaling of the phase sensitivity taking realistic

imperfections into account is discussed.

DOI: 10.1103/PhysRevLett.110.120402 PACS numbers: 42.50.Dv, 03.65.Yz, 42.50.Pq

The realization of spin-squeezed states [1] of atomic
ensembles is an important subject in quantum science.
Such states play a central role in studies of many-body
entanglement [2–4]. In addition, they may lead to practical
improvements of state-of-the-art atomic clocks and fre-
quency standards [5–7]. In a spin-squeezed state the atoms
are entangled in such a way that the fluctuations of their
total spin are smaller than the sum of the fluctuations of the
individual atoms. As a rule, such entangled states are
extremely fragile and spin squeezing is destroyed due to
dissipation or decoherence.

In this Letter we propose a new approach for the realiz-
ation of spin squeezing using "quantum bath engineering"
[8–12] and show how to realize squeezing in the steady
state of a dissipative atom-cavity system. In our scheme,
the steady state is unique and is reached by the system
starting from any initial state, without the need to adiabati-
cally follow a particular path in parameter space. Because
the spin squeezing is achieved by optical pumping, our
approach can be considerably more robust against noise as
compared to existing preparation methods [13–21] that
produce short-lived spin-squeezed states, limited by deco-
herence processes. Moreover, using properly selected
atomic transitions allows us to continuously pump the
atoms into the desired states and consequently avoid
population losses due to scattering into states not partic-
ipating in the squeezing. A similar approach to continu-
ously entangle two remote atomic ensembles using free
space scattering has been experimentally demonstrated
in Ref. [22].

The central idea of our work can be understood by
considering an ensemble of N atoms interacting with a
single radiation mode of an open optical cavity [Fig. 1(a)]
and externally driven by a pair of coherent laser fields. The
cavity mode and laser fields are tuned to excite a pair of
two-photon Raman transitions, each involving one laser
field with Rabi frequency�� and a single cavity photon a
(ay) [Fig. 1(b)]. Assuming that the coupling of atoms to the

cavity mode is uniform, the unitary time evolution of
such a cavity-atom system is described by the effective
Hamiltonian

Hint ¼ g

�
ayð�þSþ þ��S�Þ þ H:c:; (1)

where Sþ (S�) is the spin raising (lowering) operator of the
collective spin, g is the single atom-field coupling strength,
and � is the single-photon detuning from the excited
states. The coupling g��=� is therefore an effective Rabi
frequency corresponding to off-resonant Raman scattering
(cf. Fig. 1). Direct examination of the Hamiltonian (1)
shows that it has a dark state jDi ¼ jc spinij0cavi, where
j0cavi is the cavity vacuum and jc spini satisfies

ð�þSþ þ��S�Þjc spini ¼ 0: (2)

The interesting features of this state are (i) that it is a pure
state not containing any photons and consequently is not
affected by the cavity decay, i.e., jc spini is a dark state of

(a) (b)

FIG. 1 (color online). (a) Schematic experimental setup of
atoms with a spontaneous emission rate � in a cavity with
linewidth � supporting a single cavity mode a. (b) Effective
linkage pattern consisting of two degenerate ground states (j�i)
encoding the effective atomic spin and two excited states je�i.
The system is driven via classical control fields �� with large
detuning � and a single global cavity mode a coupling homo-
geneously to all atoms. The orientation of the arrows does not
necessarily correspond to the actual polarization of the fields in a
specific physical realization. We give an example of such an
implementation in the Supplemental Material [29].
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the cavity decay, and (ii) it describes a highly correlated
atomic state containing a high degree of spin squeezing.
The latter can be seen by computing the ratio between the
spin fluctuations in the x and y direction: hS2xi=hS2yi ¼
hðSþ þS�Þ2i=hðSþ �S�Þ2i ¼ ð�� ��þÞ2=ð�� þ�þÞ2.
For any �þ�� > 0 this ratio is smaller than 1, indicating
that the dark state is spin squeezed.

To quantify the degree of useful spin squeezing, we use
the phase sensitivity introduced by Wineland et al. [23],

�� ¼
ffiffiffiffiffiffiffiffiffihS2xi

p
jhSzij : (3)

We first focus on symmetric states with the total spin
S ¼ N=2, i.e., an initially spin-polarized ensemble, and
expand the dark state into eigenstates of Sz as jc spini ¼P

mcmjS ¼ N=2; Sz ¼ �N=2þmi. Substituting this into
Eq. (2) results in a recursion relation between cm and cmþ2,
in close analogy with squeezed light [24],

cm¼2n ¼
�
�þ
��

�
n N=2

n

 !
N

2n

 !�1=2

c0: (4)

Here (:) are the binomial coefficients and c0 is determined
by the normalization condition

P
mjcmj2 ¼ 1. The

phase sensitivity �� of jc spini is shown by the blue solid

curve in Fig. 2 as a function of the ratio �þ=�� between
the control fields. For �þ=�� ¼ 0, the dark state is
fully polarized along the z axis, giving a phase sensitivity

of 1=
ffiffiffiffi
N

p
corresponding to the standard quantum limit

(SQL). In the opposite limit of �þ ! ��, the phase

sensitivity approaches the Heisenberg limit [16,25] �� ¼
1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NðN=2þ 1Þp

, indicating that the dark state corresponds
to an almost maximally squeezed atomic state. A related
method to generate spin squeezing in the weak coupling
regime, i.e., �þ=�� � 1, has been recently proposed
in Ref. [26].

We now turn to the preparation of the dark state (2) and
study the corresponding quantum dynamics, focusing first
on the effect of the cavity decay. To this end, consider an
ensemble of N four-state atoms, consisting of two (meta)
stable states jþi, j�i serving as our effective spin states
and two excited states je�i. The atoms are coupled to a

single mode of an open cavity (cf. Fig. 1) with resonance
frequency !a, volume V, and photon escape rate � driving
the transitions j�i ! je�i and strong control fields ��
with frequency !c driving the transitions j�i ! je�i,
respectively. The atom-cavity field coupling strength is

given by g ¼ }=@
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@!a=2"0V

p
, where } is the dipole

matrix element of the respective transition. We assume
the control fields and the cavity mode to be far detuned
from the resonant transition frequency !res ¼ !� �!e�
between ground state and excited state manifold. This
allows us to adiabatically eliminate the excited states,
and we obtain the effective Hamiltonian (1) with
Sþ ¼ P

N
j �þ

j ¼ P
N
j jþijjh�j, S� ¼ ðSþÞy, and j�j ¼

j!res �!a;cj. For simplicity of the calculation we assume

here that we can realize two independent � schemes
according to Fig. 1 and neglect any possible hyperfine
structure in the excited states. While this approximation
is only true if the detunings from the respective excited
state is smaller than the hyperfine splitting in the excited
state manifold, Hamiltonian (1) is valid for more general
conditions, when Raman processes mediated by multiple
virtual states can be added up [27,28]. A more detailed
derivation of the Hamiltonian, also including different
detunings, can be found in the Supplemental Material
[29]. Assuming � � j�j, we can neglect the occupation
of the cavity mode, and using standard techniques [30] we
obtain the master equation in Lindblad form after tracing
over the cavity modes:

@

@t
� ¼ ��cav½fIyI ; �gþ � 2I�Iy�: (5)

Here f�; �gþ denotes the anticommutator, �cav¼g2�2=�2�
with �2 ¼ �2þ þ�2�, I ¼ sin�Sþ þ cos�S� is the
Lindblad operator accompanying the emission of a cavity
photon, and we defined tan� ¼ ��=�þ.
To compute the phase sensitivity ��, we use (5) to

determine the time evolution of the expectation values of
the spin operators Sz and S2x:

dhSzi
dt

¼ ��cav½cos2ð�ÞhSþS�i � sin2ð�ÞhS�Sþi�; (6)

dhS2xi
dt

¼ ��cavð sinð�Þ � cosð�ÞÞ
� hð sinð�ÞS� þ cosð�ÞSþÞðSxSz þ SzSxÞ þ H:c:i:

(7)

Note that the dark state jc spini, defined by Eq. (2), is

indeed a steady state of Eqs. (6) and (7). Equations (6) and
(7) involve higher moments of the spin, whose time evo-
lution should be computed independently. To avoid this
complication and obtain an analytic solution, we linearize
the equations of motion around hSzi 	 �N=2. Defining
the small fluctuations as �Sz ¼ Sz þ N=2 and using the
approximation hS2x þ S2yi ¼ hS2i � hS2zi 	 Nh�Szi þN=2,

we find

0
1

4

1

2

3

4
1

0.25

0.5

0.75

1.

0
1

4

1

2

3

4
1

0.25

0.5

0.75

1.

FIG. 2 (color online). Phase sensitivity of the dark state
jc spini. Exact numerical solution (solid blue curve) and mean-

field approximation (dashed red curve) for N ¼ 10 (left) and
N ¼ 100 (right) atoms. The optimal squeezing is obtained for

�þ ! �� and approaches the Heisenberg limit �� ¼
1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NðN=2þ 1Þp 
 1=N.
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dh�Szi
dt

¼ ��cavN½cosð2�Þh�Szi � sin2ð�Þ�; (8)

dhS2xi
dt

¼ ��cavN

�
cosð2�ÞhS2xi þ ½1� sinð2�Þ� 1

4

�
: (9)

The solutions to these equations decay exponentially in
time with an effective rate �eff ¼ �cav cosð2�ÞN. From
Eqs. (8) and (9) we obtain the phase sensitivity in the
steady state as

��2 ¼ N½1� sinð2�Þ� cosð2�Þ
½N cosð2�Þ � 2sin2ð�Þ�2 : (10)

In Fig. 2 we compare this approximate expression (dashed
red curve) with the exact result obtained from Eq. (4) (solid
blue curve). The two curves significantly deviate only
for �þ=�� 	 1�Oð1=NÞ, or equivalently � 	 �=4�
Oð1=NÞ. In this regime the present linearized approxima-
tion fails because h�Szi ¼ sin2ð�Þ= cosð2�Þ 	 OðNÞ.
Note that, approaching the limit �þ ¼ ��, the steady-
state spin squeezing reaches its maximal Heisenberg-
limited value. But, at the same time, the effective
dark-state pumping rate �eff tends to zero, making the
spin squeezing process extremely slow. This renders
competing processes, such as e.g., spontaneous Raman
scattering of individual atoms, very important, as will be
discussed below.

Up to this point, we have restricted ourselves to the
manifold of total spin S ¼ N=2. This approach is valid if
the system is initially prepared in the maximally polarized
state jS ¼ N=2; Sz ¼ N=2i because Hamiltonian (1) com-
mutes with the total spin S2. Consequently, if the system is
initially prepared in a state with a different total spin, the
final steady state will be different and will in general
contain a smaller amount of spin squeezing. This is shown
in Fig. 3(a), where we compare the linearized solution with
the exact numerical solution of the Lindblad equation (5)
for N ¼ 10 spins with different initial conditions.

The linearization works well only when the spins are
initially polarized, as would be expected.
So far our analysis completely disregarded the effect of

spontaneous Raman scattering of the individual atoms into
free space. Being a single atom process, it breaks the
conservation of the total spin and thus competes with the
squeezing process. To investigate the effect of spontaneous
Raman scattering we introduce a spontaneous decay rate
� � j�j to the states je�i. The corresponding master
equation is easily obtained using standard techniques
and reads

@

@t
�¼��cav½fIyI ;�gþ�2I�Iy�

��spont

X
	¼��;�

XN
j¼1

½fLj;	
yLj;	;�gþ�2Lj;	�Lj;	

y�:

(11)

The first term on the right-hand side of Eq. (11) is equiva-
lent to (5), whereas the second term describes the sponta-
neous Raman scattering of atom j into free space with rates
�spont ¼ ��2=�2. The Lindblad operators are given by

Lj;�� ¼ ðcos��þ
j þ sin���Þ�� and Lj;� ¼ cos��þ

j þ
sin���. The numerical solution of Eq. (11) is shown in
Fig. 3(b) for different initial conditions and N ¼ 10 spins.
The spontaneous Raman scattering couples different total
spin-S manifolds and, as expected, lifts the degeneracy
between them. Consequently, it leads to a mixed but
nevertheless unique steady state, characterized by a unique
density matrix, independent of the initial state, and hence
presents a feature rather than a detrimental problem.
Still, Raman scattering leads to a reduction of the achiev-

able phase sensitivity. To quantify this effect we obtain the
contribution of the single-spin decay to the time evolution
of the collective variables, by using the second row of
Eq. (11), leading to

dh�Szi
dt

¼ ��spont½h�Szi � sin2ð�ÞN�; (12)

dhS2xi
dt

¼ �2�spont

�
1� 1

2
sinð2�Þ

��
hS2xi � 1

4

�
: (13)

Adding Eqs. (12) and (13) to the contribution of the
collective coupling to the cavity, Eqs. (8) and (9), we find
that in the steady state the competition between the two
processes leads to

h�Szi1 ¼ sin2ð�ÞðNg2

� þ N�Þ
Ng2

� cosð2�Þ þ �
; (14)

hS2xi1 ¼ 1

4

Ng2

� ½1� sinð2�Þ� þ 2�½1� 1
2 sinð2�Þ�

Ng2

� cosð2�Þ þ 2�½1� 1
2 sinð2�Þ�

: (15)
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FIG. 3 (color online). Time evolution of the phase sensitivity
for N ¼ 10 spins and ��=�þ ¼ 0:2. Numerical solution of the
master equation, with fully polarized (solid curves) or randomly
generated (dash-dotted curves) initial state, and mean-field
approximation (dashed curves). (a) The atoms are coupled
only to the cavity, i.e., � ¼ 0. (b) Finite scattering rate � � 0
with single-atom cooperativity 
 ¼ 1. Observe that the steady
state does not depend on the initial state.
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For a given single-atom cooperativity 
¼ �cav=�spont ¼
g2=��, the optimal value of the phase sensitivity �� can
be obtained by numerically minimizing the corresponding
expression with respect to the mixing angle � while
keeping 
 fixed. The resulting curve is shown in Fig. 4
for N ¼ 106. To gain insight into this result, we will now
separately investigate the limits of small and large single-
atom cooperativity.

If the single-atom cooperativity is small, but 
N 
 1,
the optimal spin-squeezing is obtained for � � �=4.
Expanding Eqs. (14) and (15) around � 	 0 we obtain a
phase sensitivity ��2 	 1

N ð1� N
�þ 4�2Þ with the opti-
mum value obtained for � ¼ N
=8:

��opt ¼ 1ffiffiffiffi
N

p
�
1� 
2N2

32

�
: (16)

It should be noted that, due to the collective enhancement
by a factor of N, one gains a quadratic improvement in the
phase sensitivity even for small cooperativities.

If the cooperativity is larger, i.e., 
N � 1, the optimal
squeezing is obtained for �þ 	 �� and one may naively
expect the linearization to fail. However, to render the
problem tractable we nevertheless perform the large-N
expansion and explicitly check the validity of the obtained
results below. To obtain the scaling of the phase sensitivity,
we expand Eqs. (14) and (15) around � ¼ �=4� �. For

small �
 1=
ffiffiffiffi
N

p � 1 and neglecting terms of order 1=N,

we find ��2 ¼ 1
N

1þ2N
�2

2N
� , which has a minimum at � ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=2N


p
. This leads to the optimal sensitivity

�� ¼
�

2


N3

�
1=4

: (17)

Note that, for the optimal value of �, the ensemble is still
mostly polarized, as can be checked by explicitly comput-

ing h�Szi 	 
þ1
4
� 


ffiffiffiffi
N

p
. This observation provides a self-

consistency check for our linearization procedure in the

limit of a large ensemble, where
ffiffiffiffi
N

p � N. Equation (17)

shows that the achievable phase sensitivity scales as

��
 N�3=4 and thus offers a significant improvement
over the SQL. With respect to other proposals with a
similar scaling [16,19,31], our approach deterministically
generates spin squeezing in a steady state by optical pump-
ing and can thus potentially be more robust against external
perturbations.
A possible experimental realization could be set up

in 87Rb using the clock states jF ¼ 1; mF ¼ 0i and
jF ¼ 2; mF ¼ 0i in the 5S1=2 ground-state manifold.

Circularly �þ-polarized cavity and control fields couple
these states to the states jF¼1;mF¼þ1i and jF ¼ 2;
mF ¼ þ1i of the 5P1=2 manifold. In this case the inclusion

of the hyperfine structure leads to an effectively larger
Raman rate, as the scattering pathways via the two hyper-
fine states interfere constructively for suitably chosen
detunings (see the Supplemental Material [29]). For cur-
rent experiments [18], we have N 	 106 and 
 	 0:1,
predicting a phase sensitivity ��=��SQL 	 0:07, i.e., an

improvement of more than 1 order of magnitude with
respect to the SQL.
We now discuss two additional effects related to the

experimental realization of the proposed model. First, in
a multilevel atom (such as the suggested 87Rb), the sponta-
neous Raman scattering can lead to states outside of the
effective four-state system. Because, as shown above, the
squeezed steady state is (mixed but) unique and is achieved
from any initial state, we can use additional optical pump-
ing fields to repump the atoms into the correct configura-
tion. In the case of 87Rb this can be achieved through
linearly polarized fields resonantly driving the F ¼ 1 !
F0 ¼ 1, F ¼ 2 ! F0 ¼ 2, and �mF ¼ 0 transition. These
fields do not couple directly to the clock states jF ¼
1; mF ¼ 0i and jF ¼ 2; mF ¼ 0i and therefore act as a
repumping field for the proposed four-state scheme.
The repump processes can be easily incorporated in our
formalism in the form of additional single-atom scattering
channels [29]. These processes effectively increase the
single-atom scattering rate and reduce the cooperativity 
.
In addition, the use of a large detuning �makes it possible
to obtain repumping rates that are much larger than the
decay rate into the external states and to minimize the loss
of atoms into these states. We conclude that our results, and
in particular Eq. (17), are valid even in the presence of
additional repumped decay channels, provided that the
cooperativity rate 
 is computed with respect to the total
linewidth of the excited states.
Second, in the ideal model (1), we assumed a spatially

homogeneous coupling of the atoms to the cavity mode,
which can be approximately achieved only in a ring cavity.
In a standing-wave cavity the off-resonant Raman coupling
g��=� depends on the position of the atoms and can be
either positive or negative, leading to a cancellation of spin
squeezing. A solution is to localize the atoms in space and
choose an appropriate geometry for the control fields and

FIG. 4 (color online). Optimal phase sensitivity in the steady
state, in the presence of single spin decay for N ¼ 106. The solid
curve is given by the numerical minimization of Eqs. (14) and
(15). The dash-dotted and dashed curves are Eqs. (16) and (17),
respectively.
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the cavity mode. This ensures that all coupling constants
have the same sign, as experimentally shown in Ref. [18].
In this case, the symmetry of the collective state is pre-
served, leading only to a small reduction of the effective
spin cooperativity.

To summarize, we presented a method for the determi-
nistic generation of spin-squeezed states in a driven
ensemble of effective two-state atoms in a strongly dis-
sipative cavity. The generating process can be understood
as optical pumping into a nonequilibrium steady state of
the atom that at the same time is a dark state with respect to
the cavity decay. Introducing spontaneous Raman scatter-
ing we showed that the squeezed steady state is unique and
does not depend on the initial state of the system. We
discussed the effect of the single atom spontaneous
Raman scattering on the achievable phase sensitivity and
found that it scales favorably with the single-atom coop-
erativity, indicating that the present method can be of direct
importance for, e.g., optical atomic clocks.

We thank S. Bennett, M. Fleischhauer, M. Hafezi, N.
Yao, and P. Zoller for useful discussions and NSF, CUA,
DARPA, ARO MURI, and Packard for financial support.
J. O. acknowledges support by the Harvard Quantum
Optics Center. The numerical solution of the master equa-
tions was performed on the Odyssey cluster supported by
the FAS Science Division Research Computing Group at
Harvard University. Emanuele G. Dalla Torre and Johannes
Otterbach contributed equally to this work.

*Corresponding author.
emanuele@physics.harvard.edu
†Corresponding author.
jotterbach@physics.harvard.edu

[1] M. Kitagawa and M. Ueda, Phys. Rev. A 47, 5138 (1993).
[2] J. K. Korbicz, J. I. Cirac, and M. Lewenstein, Phys. Rev.

Lett. 95, 120502 (2005).
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