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Abstract—We design and evaluate human-robot cross-training,
a strategy widely used and validated for effective human team
training. Cross-training is an interactive planning method in
which a human and a robot iteratively switch roles to learn
a shared plan for a collaborative task.

We first present a computational formulation of the robot’s
interrole knowledge and show that it is quantitatively comparable
to the human mental model. Based on this encoding, we formulate
human-robot cross-training and evaluate it in human subject
experiments (n = 36). We compare human-robot cross-training
to standard reinforcement learning techniques, and show that
cross-training provides statistically significant improvements in
quantitative team performance measures. Additionally, signif-
icant differences emerge in the perceived robot performance
and human trust. These results support the hypothesis that
effective and fluent human-robot teaming may be best achieved
by modeling effective practices for human teamwork.

I. INTRODUCTION

When humans work in teams, it is crucial for the members
to develop fluent team behavior. We believe that the same
holds for robot teammates, if they are to perform in a similarly
fluent manner as members of a human-robot team. New
industrial robotic systems that operate in the same physical
space as people highlight the emerging need for robots that
can integrate seamlessly into human group dynamics. Learning
from demonstration [4] is one technique for robot training that
has received significant attention. In this approach, the human
explicitly teaches the robot a skill or specific task [5], [1], [22],
[10], [2]. However, the focus is on one-way skill transfer from
a human to a robot, rather than a mutual adaptation process for
learning fluency in joint-action. In many other works, the hu-
man interacts with the robot by providing high-level feedback
or guidance [7], [14], [11], [29], but this kind of interaction
does not resemble the teamwork processes naturally observed
when human teams train together on interdependent tasks [19].

In this paper we propose a training framework that leverages
methods from human factors engineering, with the goal of
achieving convergent team behavior during training and team
fluency at task execution, as it is perceived by the human part-
ner and is assessed by quantitative team performance metrics.

We computationally encode a teaming model that captures
knowledge about the role of the robot and the human team
member. The encoded model is quantitatively comparable
to the human mental model, which represents the interrole
knowledge held by the human [19]. Additionally, we propose
quantitative measures to assess human-robot mental model
convergence, as it emerges through a training process, as well
as mental model similarity between the human and the robot.
We then introduce a human-robot interactive planning method
which emulates cross-training, a training strategy widely used
in human teams [19]. We compare human-robot cross-training
to standard reinforcement learning algorithms through a large-
scale experiment of 36 human subjects, and we show that
cross-training improves quantitative measures of human-robot
mental model convergence (p = 0.04) and mental model
similarity (p < 0.01). Additionally, a post-experimental survey
shows statistically significant differences in perceived robot
performance and trust in the robot (p < 0.01). Finally, we
observe a significant improvement in team fluency metrics,
including an increase of 71% in concurrent motion (p = 0.02)
and a decrease of 41% in human idle time (p = 0.04), during
the actual human-robot task execution phase that succeeds the
human-robot interactive planning process.

Section II presents our computational formulation of the
human-robot teaming model, as well as methods to assess
mental model convergence and similarity. Section III intro-
duces human-robot interactive planning using cross-training,
and Section IV describes the human subject experiments.
Section V presents and discusses the experiment results, which
show a significant improvement in team performance using
cross-training, as compared to standard reinforcement learning
techniques. We place our work in context of other related work
in Section VI and conclude with future research directions in
Section VII.

II. MENTAL MODEL FORMULATION

The literature presents various definitions for the concept
of shared mental models [18]. In the proposed framework we



use the definition in Marks et al. [19], that mental models
contain “the content and organization of interrole knowledge
held by team members within a performance setting . . . and
. . . contain procedural knowledge about how team members
should work together on a task within a given task domain,
including information about who should do what at particular
points in time.” We present a computational team model in
the form of a Markov Decision Process (MDP) that captures
the knowledge about the role of the robot and the human for
a specific task [25].

A. Robot Mental Model formulated as MDP

We describe how the robot teaming model can be compu-
tationally encoded as a Markov Decision Process. A Markov
decision process is a tuple {S,A, T,R}, where:
• S is a finite set of states of the world; it models the set

of world environment configurations.
• A is a finite set of actions; this is the set of actions the

robot can execute.
• T : S × A −→ Π(S) is the state-transition function,

giving for each world state and action, a probability
distribution over world states; the state transition function
models the variability in human action. For a given robot
action a, the human’s next choice of action yields a
stochastic transition from state s to a state s′. We write
the probability of this transition as T (s, a, s′). In this
formulation, human behavior is the cause of randomness
in our model, although this can be extended to include
stochasticity from the environment or the robot actions,
as well.

• R : S × A −→ R is the reward function, giving the
expected immediate reward gained by taking each action
in each state. We write R(s, a) for the expected reward
for taking action a in state s.

The policy π of the robot is the assignment of an action π(s)
at every state s. The optimal policy π∗ can be calculated using
dynamic programming [25]. Under this formulation, the role
of the robot is represented by the optimal policy π∗, whereas
the robot’s knowledge of the role of the human co-worker is
represented by the transition probabilities T .

B. Evaluation of Mental Model Convergence

As the mental models of the human and robot converge,
we expect the human and robot to perform similar patterns
of actions. This means that the same states will be visited
frequently and the robot uncertainty about the human’s action
selection will decrease. Additionally, if the mental models of
the human and the robot converge, the patterns of actions
performed will match the human preference, as it is elicited
after the training.

To evaluate the convergence of the robot’s computational
teaming model and the human mental model, we assume a
uniform prior and compute the entropy rate [12] of the Markov
chain (Eq. 1). The Markov chain is induced by specifying a
policy π in the MDP framework. For the policy π we use the
robot actions that match human preference, as it is elicited by

the human after training with the robot. Additionally, we use
the states s ∈ S that match the preferred sequence of config-
urations to task completion. For a finite state Markov chain
X with initial state s0 and transition probability matrix T the
entropy rate is always well defined [12]. It is equal to the sum
of the entropies of the transition probabilities T (s, π(s), s′),
for all s ∈ S, weighted by the probability of occurrence of
each state according to the stationary distribution µ of the
chain (Equation 1).

H(X) = −
∑
s∈S

µ(s)
∑
s′∈S

T (s, π(s), s′)log [T (s, π(s), s′)]

(1)
Interestingly, the conditional entropy, given by Eq. 1, also

represents the robot’s uncertainty about the human’s action
selection, which we expect to decrease as human and robot
train together. We leave for future work the case where when
the human has multiple preferences or acts stochastically.

C. Human-Robot Mental Model Similarity

Given the robot mental model formulation, we propose a
similarity metric between the mental model of human and
robot, based on prior work [18] on shared mental model
elicitation for human teams. In a military simulation study
[20], each participant was asked to annotate a sequence of
actions to achieve mission completion, for himself, as well
as for his other team members. Then, the degree of mental
model similarity was calculated by assessing the overlap in
action sequences selected by each of the team members. We
generalize this approach on a human-robot team setting. In
our study, the participant annotates a sequence of actions that
he or she thinks that the human and the robot should do to
complete the assigned task. We then elicit the similarity of
the human and robot mental model by taking the ratio of the
annotated robot actions that match the actions assigned by
the optimal policy of the robot, to the total number of robot
actions required for task completion. This describes how well
the human preference for the robot actions matches the actual
optimal policy for the MDP.

III. HUMAN ROBOT INTERACTIVE PLANNING

Expert knowledge about the task execution is encoded in the
assignment of rewards R, and in the priors on the transition
probabilities T that encode the expected human behavior.
This knowledge can be derived from task specifications or
from observation of expert human teams. However, rewards
and transition probabilities finely tuned to one human worker
are not likely to generalize to another human worker, since
each worker develops his or her own highly individualized
method for performing manual tasks. In other words, a robot
that works with one person according to another person’s
preferences is not likely to be good teammate. In fact, it has
been shown in previous research that human teams whose
members have similar mental models perform better than
teams with more accurate but less similar mental models
[19]. Even if the mental model learned by observation of a



team of human experts is accurate, the robot needs to adapt
this model when asked to work with a new human partner.
The goal then becomes for the newly formed human-robot
team to develop a shared-mental model. One validated and
widely used mechanism for conveying shared mental models
in human teams is “cross-training [19].” We emulate the
cross-training process among human team-members by having
the human and robot train together at a virtual environment.
We use a virtual environment as, especially in high-intensity
applications, the cost of training with an actual robot in
the operational environment (e.g. on the assembly line or in
space) can be prohibitive. In the following sections we briefly
describe the cross-training process in human teams and then
describe how we emulate this process in human-robot teams.

A. Cross-Training in Human Teams
There are three types of cross-training [6]: (a) positional

clarification, (b) positional modeling, and (c) positional rota-
tion. Findings [19], [8] suggest that positional rotation, which
is defined as “learning interpositional information by switching
work roles,” is the most strongly correlated to improvement in
team performance, since it provides the individual with hands-
on knowledge about the roles and responsibilities of other
teammates, with the purpose of improving interrole knowledge
and team performance [19].

B. Cross-Training Emulation in Human-Robot Team
We emulate positional rotation in human teams by having

the human and robot iteratively switch roles. We name the
phase where the roles of the human and robot match the ones
of the actual task execution as the forward phase, and the
phase where human and robot roles are switched as rotation
phase. In order for the robot’s computational teaming model
to converge to the human mental model:

1) The robot needs to have an accurate estimate of the
human’s role in performing the task, and this needs to be
similar to the human’s awareness of his or her own role.
Based on the above, we use the human-robot forward
phase of the training process to update our estimation
of the transition probabilities that encode the expected
human behavior.

2) The robot’s actions need to match the expectations of the
human. We accomplish this by using the human inputs
in the rotation phase to update the reward assignments.

Algorithm : Human-Robot Cross-training 
1.  Initialize R(s, a) and T(s, a, s’) from prior knowledge 
2.  Calculate initial policy π  
3.  while(number of iterations < MAX) 
4.   Call Forward-phase(π) 
5.   Update T(s, a, s’) from observed sequence s1, a1, s2, …. , sΜ-1, aΜ-1, sΜ 
6.   Call Rotation-phase()  
7.   Update R(si, ai) for observed sequence s1, a1, s2, a2, …, sΝ, aΝ 
8.   Calculate new policy π 
9.  end while 

Fig. 1. Human-Robot Cross-Training Algorithm

1) Cross-Training for Human-Robot Team: The Human-
Robot Cross-training algorithm is summarized in Figure 1. In
Line 1, rewards R(s, a) and transition probabilities T (s, a, s′)
are initialized from prior knowledge about the task. In Line
2, an initial policy π is calculated for the robot. In our
implementation we used value iteration [25]. In Line 4, the
Forward-phase function is called, where the human and robot
train on the task. The robot chooses its actions depending
on the current policy π, and the observed state and action
sequence is recorded. In Line 5, T (s, a, s′) are updated based
on the observed state-action sequence. T (s, a, s′) describes the
probability that for a task configuration modeled by state s,
and robot action a, the human will perform an action such that
the next state is s′.

All transition probabilities as described above are given by
multinomial distributions and are estimated by the transition
frequencies, assuming a pre-observation count [11]. The pre-
observation count corresponds to the size of a real or imagi-
nary sample-set from which the transition probabilities of the
MDP are initialized by the model designer, before the training.
It is a measure of the confidence the model designer has on
how close the initial model is to the expected behavior of the
new human worker.

In the rotation phase (Line 6), the human and robot switch
task roles. In this phase, the observed actions a ∈ A are the
actions performed by the human worker, whereas the states
s ∈ S remain the same. In Line 7, the rewards R(s, a) are
updated for each observed state s and human action a. We then
use the new estimates for R(s, a) and T (s, a, s′) to update the
current policy (Line 8). The new optimal policy is computed
using standard dynamic programming techniques [25].

In our implementation we update the rewards (Line 7) as
follows:

R(s, a) = R(s, a) + r (2)

The value of the constant r needs to be large enough, com-
pared to the initial values of R(s, a), for the human actions to
affect the robot’s policy. Note that our goal is not to examine
the best way to update the rewards, something which has been
shown to be task-dependent [17]. Instead, we aim to provide
a general human-robot training framework and use the reward
update of Eq. 2 as an example. Knox and Stone [16] evaluate
eight methods for combining human inputs with MDP reward
in a reinforcement learning framework. Alternatively, inverse
reinforcement learning algorithms could be used to estimate
the MDP rewards from human input [1].

We iterate the forward and rotation phases for a fixed
number of MAX iterations, or until a convergence criterion
is met.

2) Forward Phase: The pseudocode of the forward phase is
given by Figure 2. In Line 1, the current state is initialized to
the start step of the task episode. The FINAL STATE in Line
2 is the terminal state of the task episode. In Line 3, the robot
executes an action a assigned to a state s, based on the current
policy π. The human action is observed (Line 4) and the
next state variable is set according to the current state, the



robot action a and the human action. In our implementation,
we use a look-up table that sets the next state for each state
and action combination. Alternatively, the next state could be
directly observed after the human and robot finish executing
their actions. The state, action, and next state of the current
time-step are recorded (Line 6).

Function: Forward-phase(policy π) 
1.  Set current_state = START_STATE 
2.  while(current_state != FINAL_STATE) 
3.   Execute robot action a according to current policy π 
4.   Observe human action 
5.   Set next_state to the state resulting from current_state, robot 

 and human action 
6.   Record current_state, a, next_state 
7.   current_state = next_state  
8.  end while 

Fig. 2. Forward Phase of the Cross-Training Algorithm

3) Rotation Phase: The pseudocode of the rotation phase
is given by Figure 3. In Line 3, the action a is the observed
human action. In Line 4, a robot action is sampled from the
transition probability distribution T (s, a, s′).

Just as the transition probability distributions of the MDP
are updated after the forward phase, the robot policy is updated
to match the human expectations after the rotation phase. This
process emulates how a human mental model would change by
working together with a partner. A key feature of the cross-
training approach is that it provides an opportunity for the
human to adapt to the robot, as well.

Function: Rotation-phase() 
1.  Set current_state = START_STATE 
2.  while (current_state != FINAL_STATE) 
3.   Set action a to observed human action 
4.   Sample robot action from  T(current_state, a, next_state) 
5.   Record current_state, a  
6.   current_state = next_state  
7.  end while 

Fig. 3. Rotation Phase of the Cross-Training Algorithm.

C. Reinforcement Learning with Human Reward Assignment
We compare the proposed formulation to the interactive

reinforcement learning approach where the reward signal of
an agent is determined by interaction with a human teacher
[30]. We chose as reinforcement learning algorithm Sarsa(λ)
with greedy policy [27], for its popularity and applicability
in a wide variety of tasks. In particular, Sarsa(λ) has been
used to benchmark TAMER framework [15], as well as to
test TAMER-RL [16], [17]. Furthermore, our implementation
of Sarsa(λ) is identical to the Q-Learning with Interactive
Rewards [29], if we remove eligibility traces on Sarsa (by
setting λ = 0) and set a greedy policy for both algorithms.
Variations of Sarsa have been used to teach a mobile robot to
deliver objects [24], for navigation of a humanoid robot [21],
as well as in an interactive learning framework, where the user
gives rewards to the robot through verbal commands [28].

After each robot action, the human is asked to assign
a good, neutral, or bad reward {+r, 0,−r}. In our current
implementation we set the value of r, which is the reward
signal assigned by the human, to be identical to the value of
the reward update in cross-training (Eq. 2 in Section III-B) for
comparison purposes.

IV. HUMAN-ROBOT TEAMING EXPERIMENTS

A. Experiment Hypotheses

We conduct a large-scale experiment (n = 36) to compare
human-robot cross-training to standard reinforcement learning
techniques. The experiment tests the following three hypothe-
ses about human-robot team performance.
• Hypothesis 1: Human-robot interactive planning with

cross-training will improve quantitative measures of
human-robot mental model convergence and mental
model similarity, compared to human-robot interactive
planning using reinforcement learning with human reward
assignment. We base this on prior work showing that
cross-training improves similarity of mental models of
human team members [19], [8].

• Hypothesis 2: Participants that cross-trained with the
robot will agree more strongly that the robot acted
according to their preferences, compared to participants
that trained with the robot by assigning rewards. Further-
more, we hypothesize that they will agree more strongly
that the robot is trustworthy. We base this upon prior
work [26] that shows that humans find the robot more
trustworthy when it emulates the effective coordination
behaviors observed in human teams.

• Hypothesis 3: Human-robot interactive planning with
cross-training will improve team-fluency metrics on
task-execution, compared to human-robot interactive
planning using reinforcement learning with human reward
assignment. We base this on the wide usage of cross-
training to improve performance of human teams [19].

B. Experiment Setting

We apply the proposed framework to train a team of one
human and one robot to perform a simple place-and-drill task,
as a proof of concept. The human’s role is to place screws
in one of three available positions. The robot’s role is to drill
each screw. Although this task is simple, we found it adequate
for testing of our framework, since there is a sufficient variety
on how to accomplish the task among different persons. For
example, some participants preferred to place all screws in a
sequence from right-to-left and then have them drilled in the
same sequence. Others preferred to place and drill each screw
before moving on to the next. The participants consisted of 36
subjects recruited from MIT. Videos of the experiment can be
found at: http://tinyurl.com/9prt3hb

C. Human-Robot Interactive Training

Before starting the training, all participants were asked to
describe both verbally and in written form their preferred way
of executing the task. We then initialized the robot policy from



a set of prespecified policies so that it was clearly different
from the participant’s preference. For example, if the user
preferred to “have the robot drill all screws as soon as they
are placed, starting from left to right,” we initialized the MDP
framework so that the starting robot policy was to wait till
all screws were placed before drilling. We did this to avoid
the trivial case where the initial policy of the robot matches
the preferred policy of the user, and to evaluate mental model
convergence starting from different human and robot mental
models.

The participants were randomly assigned to two groups,
Group A and Group B. Each participant then did a training
session in the ABB RobotStudio virtual environment with an
industrial robot which we call “Abbie” (Figure 4). Depending
on the assigned group, the participant participated in the
following training session:

1) Cross-training session (Group A): The participant itera-
tively switches positions with the virtual robot, placing
the screws at the forward phase and drilling at the
rotation phase.

2) Reinforcement learning with human reward assignment
session (Group B): This is the standard reinforcement
learning approach, where the participant places screws
and the robot drills at all iterations, with the participant
assigning a positive, zero, or negative reward after each
robot action [11].

Fig. 4. Human-Robot Interactive Planning Using ABB RobotStudio Virtual
Environment. The human controls the white anthropomorphic “Frida” robot
on the left, to work with the orange industrial robot, “Abbie,” on the right.

For the cross-training session, the policy update (Line 8 of
Figure 1, Section III-B) was performed using value iteration
with a discount factor of 0.9. The Sarsa(λ) parameters in the
standard notation of Sarsa [27] were empirically tuned (λ =
0.9, γ = 0.9, α = 0.3) for best performance on this task.

After the training session, the mental model of all partici-
pants was assessed with the method described in Section II-C.
For each workbench configuration through task completion,
participants were asked to choose a human placing action and
their preference for an accompanying robot drilling action,
based on the training they had together (Figure 5).

Fig. 5. Human-Robot Mental Model Elicitation Tool

D. Human-Robot Task Execution

We then asked all participants to perform the place-and-
drill task with the actual robot, Abbie. To recognize the
actions of the human we used a Phasespace motion capture
system of eight cameras [23], which tracked the motion of a
Phasespace glove worn by the participant (Figure 6). Abbie
executed the policy learned from the training sessions. The
task execution was videotaped and later analyzed for team
fluency metrics. Finally, all participants were asked to answer
a post-experiment survey.

Fig. 6. Human-Robot Task Execution

V. RESULTS AND DISCUSSION

Results of the human subject experiments show that the
proposed cross-training method outperforms standard rein-
forcement learning in a variety of quantitative and qualitative
measures. This is the first evidence that human-robot team-
work is improved when a human and robot train together by
switching roles, in a manner similar to effective human team
training practices. Unless stated otherwise, all the p-values in
this section are computed for two-tailed unpaired t-tests with
unequal variance.

A. Quantitative Measures

1) Mental Model Similarity: As described in Section II-C,
we compute the mental model similarity metric as the ratio
of the human drilling actions that match the actions assigned



by the robot policy, to the total number of drilling actions
required for task completion. Participants of Group A had an
average ratio of 0.96, compared to an average ratio of 0.75 for
Group B (p < 0.01). This shows that participants that cross-
trained with the robot developed mental models that were more
similar to the robot teaming model, compared to participants
that trained with the robot by assigning rewards.

2) Mental Model Convergence: Mental model similarity
was also reflected by similar patterns of actions during the
training process, and by decreased robot uncertainty about
the human’s action selection, as computed by the entropy rate
of the Markov Decision Process (Section II-B). We compute
the entropy rate at each training round using the preferred
robot policy, as elicited by the human with the mental model
elicitation tool (Figure 5 of Section IV-C). Since the initial
value of the entropy rate varies for different robot policies, we
use the percent decrease, averaged over all participants of each
group, as a metric to compare cross-training to reinforcement
learning with human reward assignment. To calculate the
entropy rate in the human reward assignment session, we
update the transition probability matrix T from the observed
state and action sequences, in a manner identical to how we
calculate the entropy-rate for the cross-training session. We do
this for comparison purposes, since Sarsa(λ) is a model-free
algorithm and does not use T in the robot action selection [27].

Figure 7 shows the entropy rate after each training round for
participants of both groups. We consider only the participants
that did not change their preference (28 out of 36 participants).
The difference for the two groups after the last training round
is statistically significant (p = 0.04). This shows that the
robot’s uncertainty in the human participant’s actions after
the training is significantly lower for the group that cross-
trained with the robot, than for participants who trained using
reinforcement learning with human reward assignment.
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Fig. 7. Human-Robot Mental Model Convergence. The graph shows the
percent decrease of entropy rate over training rounds.

Interestingly, for participants of Group A, there is a sta-
tistically significant difference in the entropy value after the
last training round between those that kept their preference
throughout the training and those that switched preferences
(p < 0.01). This shows that the entropy rate could be a valid
metric to detect changes in the human behavior or mistakes
by the operator, and warrants further investigation.

We noticed that the cross-training session lasted slightly
longer than the reinforcement learning with human reward

assignment session, since switching roles on average took
more time than assigning a reward after each robot action.
Since participants often interrupted the training to interact with
the experimenters, we were unable to reliably measure the
training time for the two groups.

The above results support our first hypothesis that cross-
training improves quantitative measures of human-robot men-
tal model convergence.

B. Qualitative Measures

After each training round, the participant was asked to
rate his or her agreement with the statement “In this round,
Abbie performed her role exactly according to my preference,
drilling the screws at the right time and in the right sequence”
on a five-point Likert scale. Furthermore, after the end of
the experiment, participants were asked to fill in a post-
experimental survey. On a five-point Likert scale, subjects that
cross-trained and then executed the task with Abbie, Group
A, selected a significantly higher mark than those that trained
with Abbie using the standard reinforcement learning method,
Group B, when asked whether:
• “In this round, Abbie performed her role exactly accord-

ing to my preference, drilling the screws at the right time
and in the right sequence.”:
(For the final training round) Group A: 4.52 [SD=0.96];
Group B: 2.71 [SD=1.21]; p < 0.01

• “In the actual task execution, Abbie performed her role
exactly according to my preference, drilling the screws
at the right time and in the right sequence.”:
Group A: 4.74 [SD=0.45]; Group B: 3.12 [SD=1.45]; p <
0.01

• “I trusted Abbie to do the right thing at the right time.”:
Group A: 3.84 [SD=0.83]; Group B: 2.82 [SD=1.01]; p <
0.01

• “Abbie is trustworthy.”:
Group A: 4.05 [SD=0.71]; Group B: 3.00 [SD=0.93]; p <
0.01

• “Abbie does not understand how I am trying to execute
the task.”:
Group A: 1.89 [SD=0.88]; Group B: 3.24 [SD=0.97]; p <
0.01

• “Abbie perceives accurately what my preferences are.”:
Group A: 4.16 [SD=0.76]; Group B: 2.76 [SD=1.03]; p <
0.01

The p-values above are computed for a two-tailed Mann-
Whitney-Wilcoxon test. The results show that participants of
Group A agreed more strongly that Abbie learned their pref-
erences, compared to participants of Group B. Furthermore,
cross-training had a positive impact on their trust in Abbie, in
accordance with prior work [26]. This supports Hypothesis 2
of Section IV-A. The two groups did not differ significantly
when subjects were asked whether they themselves were
“responsible for most of the things that the team did well
on this task,” whether they were “comfortable working in
close proximity with Abbie,” or whether themselves and Abbie
“were working towards mutually agreed upon goals.”



C. Fluency Metrics on Task Execution
We elicit the fluency of the teamwork by measuring the

concurrent motion of the human and robot and the human
idle time during task execution phase, as proposed in [13].
The measurements of the above metrics were evaluated by
an independent analyst who did not know the purposes of
the experiment, nor the group of the participant. Additionally,
we automatically compute the robot idle time and the human-
robot distance. Since these metrics are affected by the human’s
preferred way of doing the task, we use only the subset of
participants that self-reported their preferred strategy as the
strategy of “while Abbie is drilling a screw, I will place the
next one.” The subset consists of 20 participants, and this is the
largest subset of participants that reported the same preference
on task execution.

We leave for future work the evaluation of task perfor-
mance metrics such as task completion time, since for this
experiment these measures largely depend on the preferred
human strategy, and our current goal is to measure fluency in
shared-location joint-action, rather than optimize task-specific
metrics.

1) Concurrent Motion: We measured the time duration in
which both human and robot were concurrently in motion dur-
ing the task execution phase. Analysis shows that participants
of Group A that preferred to “finish the task as fast as possible,
placing a screw while Abbie was drilling the previous one”
had a 71% increase in the time of concurrent motion with
the robot, compared to participants of Group B that reported
the same preference (A: 5.44 sec [SD = 1.13 sec]; B: 3.18
sec [SD = 2.15 sec]; p = 0.02). One possible explanation
for these differences is that cross-training engendered more
trust in the robot (supported by subjective results presented in
Section V-B), and thereby participants of Group A had more
confidence to act while the robot was moving.

2) Human Idle Time: We measured the amount of time the
human spent waiting for the robot. Participants of Group A
spent 41% less time idling, on average, than those of Group
B, a statistically significant difference (A: 7.19 sec [SD =
1.71 sec]; B: 10.17 sec [SD = 3.32 sec]; p = 0.04). In
some cases, the increase in idle time was caused because the
participant was not sure on what the robot would do next,
and therefore waited to see. In other cases, the robot had
not learned correctly the human preference and did not act
accordingly, with the result of forcing the human to wait, or
confusing the human team-member.

3) Robot Idle Time: The time that the robot remained idle
waiting for the human to make an action, such as place a screw,
was calculated automatically by our task-execution software.
We found the difference between Group A and Group B to be
statistically significant (A: 4.61 sec [SD = 1.97 sec]; B: 9.22
sec [SD = 5.07 sec]; p = 0.04).

4) Human-Robot Distance: Statistically significant results
across Group A and Group B were found for the distance of
the human hand to the robot base, averaged over the time the
robot was moving, and normalized to the baseline distance
of the participant (p = 0.03). The difference resulted since

some participants of Group B “stood back” while the robot
was moving. Previous work has shown using physiological
measures that mental strain of the operators is strongly cor-
related with the distance of a human worker to an industrial
manipulator moving at high-speed [3]. We therefore suggest
that cross-training with the robot may have a positive impact
on emotional aspects such as fear, surprise and high-tension,
but we leave further investigation for future work.

The above results confirm our third hypothesis that human-
robot interactive planning with cross-training improves team
fluency metrics on task execution, compared to human-robot
interactive planning using reinforcement learning with human
reward assignment.

VI. RELATED WORK

In this study we benchmark our cross-training methodology
against the Sarsa(λ) reinforcement learning approach where
the reward signal is interactively assigned by the human.
Both these techniques may be categorized as learning where
the human and machine engage in high-level evaluation
and feedback. In other approaches in this category, a human
trainer assigns signals of positive reinforcement [7], [14], a
method also known as “clicker training,” or of both positive
and negative reinforcement. Other methods, such as TAMER-
RL [17], support the use of human input to guide an agent in
maximizing an environmental reward. Prior investigations into
TAMER-RL and Sarsa(λ) assume an objective performance
metric is known and do not consider other metrics, such as
trainer satisfaction. Q-Learning with Interactive Rewards [29]
is identical to our version of Sarsa(λ), if we remove eligibility
traces on Sarsa and set a greedy policy for both algorithms. A
modified version [29] incorporating human guidance has been
empirically shown to significantly improve several dimensions
of learning. Human rewards have also been used as additional
input to verbal commands, to simultaneously teach a system
and learn a model of the user [11]. Additionally, active learning
systems [9] have been used to improve objective measures
of agent performance in a simulated driving domain from a
few informative examples. In multi-agent settings, state-of-the-
art behavior modeling based on the game-theoretic notion of
regret and the principle of maximum entropy has been shown
to accurately predict future behavior in newly encountered
domains [31]. Our contribution is a human-team inspired
approach to achieve fluency in action-meshing.

The other category for learning is where the human pro-
vides demonstrations to the machine. Our rotation-phase of
the cross-training algorithm resembles this type of learning,
since the reward function is inferred from the inputs of the
human. Other work in learning from demonstration includes
systems that learn a general policy for the task by passively
observing a human expert executing the task; Atkeson and
Schaal [5] address the challenge of teaching a robot arm to
mimic the human expert’s trajectory. Apprenticeship Learning
[1] has enabled agents to perform as well as human experts
in dynamic applications such as highway driving. In a number
of recent works, the robot refines learned task representations



using human demonstrations enriched with verbal instructions
[22], multiple robots are taught to coordinate their actions
using a GUI interface [10], the robot is physically guided by
the human using trajectory and keyframe demonstrations [2],
or the reinforcement learning agent receives guidance using
a video-game environment [29]. While producing impressive
results, the focus of these approaches is on one-way skill or
behavior transfer to an agent, rather than the two-way mutual
adaptation process that cross-training supports.

VII. CONCLUSION

We designed and evaluated human-robot cross-training, a
strategy widely used and validated for effective human team
training. Cross-training is an interactive planning method in
which a human and a robot iteratively switch roles to learn
a shared plan for a collaborative task. We first presented a
computational formulation of the robot’s teaming model and
show that it is quantitatively comparable to the human mental
model. Based on this encoding, we formulated human-robot
cross-training and evaluated it in a large-scale experiment of
36 subjects. We show that cross-training improves quantitative
measures of human-robot mental model convergence (p =
0.04) and mental model similarity (p < 0.01). Additionally,
a post-experimental survey shows statistically significant dif-
ferences in perceived robot performance and trust in the robot
(p < 0.01). Finally, we observed a significant improvement
in team fluency metrics, including an increase of 71% in
concurrent motion (p = 0.02) and a decrease of 41% in human
idle time (p = 0.04), during the human-robot task execution
phase. These results provide the first evidence that human-
robot teamwork is improved when a human and robot train
together by switching roles, in a manner similar to effective
human team training practices.

In this experiment we focused on a simple place-and-drill
task, as a proof of concept. We are currently planning on
using the robot uncertainty about the human’s next action
to influence the motion planning parameters for a robot
working alongside a person. Future work includes extending
the computational formulation of the robot’s teaming model
to a POMDP framework that incorporates information-seeking
behavior, and testing the framework on more complex tasks.
Additionally, we plan to investigate the proposed metric of
mental model convergence as a method to automatically detect
changes in the operator’s behavior or human mistakes. Finally,
it would be interesting to assess the impact of cross-training
on emotional states of the operator, such as fear, surprise and
discomfort.
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