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This paper analyzes the adjoint solution of the Navier-Stokes equation. We focus on
flow across a circular cylinder at three Reynolds numbers, ReD = 20, 100 and 500. The
quantity of interest in the adjoint formulation is the drag on the cylinder. We use classical
fluid mechanics approaches to analyze the adjoint solution, which is a vector field similar
to a flow field. Production and dissipation of kinetic energy of the adjoint field is discussed.
We also derive the evolution of circulation of the adjoint field along a closed material
contour. These analytical results are used to explain three numerical solutions of the
adjoint equations presented in this paper. The adjoint solution at ReD = 20, a viscous
steady state flow, exhibits a downstream suction and an upstream jet, the opposite of
the expected behavior of a flow field. The adjoint solution at ReD = 100, a periodic 2D
unsteady flow, exhibits periodic, bean-shaped circulation in the near-wake region. The
adjoint solution at ReD = 500, a turbulent 3D unsteady flow, has complex dynamics
created by the shear layer in the near wake. The magnitude of the adjoint solution
increases exponentially at the rate of the first Lyapunov exponent. These numerical
results correlate well with the theoretical analysis presented in this paper.

Key words:

1. Introduction

The adjoint method for sensitivity analysis has been a powerful tool in computational
fluid dynamics for over 20 years (Jameson 1988; Becker & Rannacher 2001; Pierce &
Giles 2000). This method enables efficient computation of sensitivity gradients in fluid
flow problems, and is widely used in aerodynamic shape optimization, inverse design
problems, adaptive mesh refinement and uncertainty quantification.

Traditionally, the adjoint field is regarded mainly as a mathematical quantity, repre-
senting the sensitivity derivative of a quantity of interest to residual of the Navier-Stokes
equation. Recently, Marquet et al. (2008) explored physical aspect of the adjoint velocity
field to study the stability of a cylinder wake at ReD = 46.8. This paper further explores
physical aspects of the adjoint field across three different Reynolds number regimes. We
focus on the quantity of interest in the adjoint formulation, which is the drag on an
object in flow. This quantity of interest defines a particular boundary condition for the
adjoint equation, under which the adjoint solution is called the drag-adjoint field. We
show that the drag-adjoint field is a non-dimensional physical quantity; it represents the
transfer function from small forces applied to the fluid flow to drag on the object in the
fluid flow.

The drag-adjoint field is analyzed for flow across a circular cylinder at three different
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Reynolds numbers, 20, 100 and 500, based on the freestream velocity and the cylinder
diameter. These Reynolds numbers fall into the laminar steady regime, laminar vor-
tex shedding regime, and the disordered three-dimensional regime, respectively. These
regimes are characterized by Williamson (1996) for the circular cylinder wake, and are
present in many bluff body wakes. At ReD = 20, the flow field is steady and stable. At
ReD ≈ 46, the vortex wake undergoes a supercritical Hopf bifurcation into a periodic
limit cycle oscillation (Jackson 1987; Noack & Eckelmann 1994; Provansal et al. 1987),
which further develops into von Karman vortex shedding. The drag-adjoint field of such
periodic vortex shedding is studied at ReD = 100 in this paper. As the Reynolds num-
ber further increases above ReD ≈ 189, streamwise vortices develop, and the wake goes
through a series of transitions to turbulence. Studies of this transition are summarized
by Williamson (1996). In this work, the drag-adjoint field of turbulent wake structure at
ReD = 500 is studied.

Flow across a circular cylinder at ReD = 20, 100 and 500 represents three distinct
types of dynamical system: At ReD = 20, the steady state flow is a fixed point attractor
in the state space. If the flow field is perturbed from the steady state, it will relax to the
steady state as time advances – in other words, all Lyapunov exponents of this dynamical
system are negative. At ReD = 100, the periodic van Karman vortex shedding represents
a limit cycle attractor in the state space. If the flow field is perturbed, it will relax to the
same periodic oscillation, with a potential phase difference. In other words, the maximal
Lyapunov exponent is zero. At ReD = 500, the fluid flow is chaotic. The aperiodic
oscillations in the turbulent wake represent a strange attractor in the state space. The
system is chaotic and has at least one positive Lyapunov exponent.

The rest of this paper is organized as follows: section 2 starts by using classic fluid
mechanical methods to perform theoretical analysis of the behavior of the adjoint field;
section 3 analyzes numerical solutions of the adjoint equation at three Reynolds numbers,
and correlates the results with theoretical analysis; and section 4 concludes this paper.

2. Theoretical Analysis of the Drag-Adjoint Field

2.1. Mathematical basis of the drag-adjoint

We consider a circular cylinder in a freestream u∞ = (1, 0, 0). The fluid flow field is gov-
erned by the incompressible Navier-Stokes equation with constant density ρ and viscosity
µ:

ρ
∂u

∂t
+ ρu · ∇u +∇p = µ∇ · ∇u , ∇ · u = 0 (2.1)

with boundary condition u = (0, 0, 0) at the cylinder surface S. The drag-adjoint field û
is a nondimensional vector field that satisfies the adjoint equation

ρ
∂û

∂t
+ ρu · ∇û− ρ∇u · û +∇ p̂ = −µ∇ · ∇û , ∇ · û = 0 (2.2)

with boundary condition û = (1, 0, 0) at the cylinder surface S, and û = (0, 0, 0) in
the far field. Note that the adjoint equation should be viewed as evolving backwards in
time; the negative viscosity in the right hand side is a dissipative term in this sense.
Equation (2.2) and its boundary conditions are crafted to be adjoint to the linearized
Navier-Stokes equation via integration by parts. In particular, the boundary conditions
arise from the bilinear concomitant after the integration by parts. More details are given
in the Appendix A.

Mathematically, the drag-adjoint field represents the L2 functional derivative of the
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time-averaged drag force to body forces in the fluid flow field. It can be derived by
analyzing the effect of a small perturbation to the drag

D =
{

S

(p nx − µn · ∇ux) ds . (2.3)

where the surface normal n points from the fluid domain into the cylinder. The pertur-
bation in D due to an infinitesimal body force δf in the interior of the fluid flow field
is

δD =
{

S

(δp nx − µn · ∇δux) ds . (2.4)

where δp and δu are infinitesimal perturbations of the fluid flow, governed by the tangent
linear Navier-Stokes equation, with the infinitesimal body force as an additional right
hand side:

ρ
∂δu

∂t
+ ρu · ∇δu + ρ δu · ∇u +∇δp = µ∇ · ∇δu + δf , ∇ · δu = 0 (2.5)

Multiply û onto the tangent linear momentum equation, and integrate over the fluid
domain (details in the Appendix A). By applying integration by parts and the drag-
adjoint equation, we obtain

ρ
d

dt

y
û · δu dV +

{

S

û · (δpn− µn · ∇δux) ds =
y

û · δf dV (2.6)

Because of the adjoint boundary condition, û = (1, 0, 0) on the cylinder surface S; there-
fore, the second term in (2.6) is δD in Equation (2.4). By integrating the equality over
time, we thus obtain

ρ
d

dt

y
û · δu dV

∣∣∣∣T
0

+

∫ T

0

δD dt =

∫ T

0

y
û · δf dV dt (2.7)

In particular, if δu = 0 at t = 0 and û = 0 at t = T , we have∫ T

0

δD dt =

∫ T

0

y
û · δf dV dt (2.8)

In other words, the small perturbation in the time-averaged drag is equal to the time-
averaged integral of the inner product between the adjoint vector and the perturbing
force.

2.2. The adjoint field as a nondimensional transfer function

Equation (2.8) reveals the physical meaning of the drag-adjoint field û. It is a non-
dimensional transfer function from forces applied in the fluid to drag force on the cylinder.
To clearly illustrate this concept, imagine δf to be a Dirac delta function at time t and
spatial point x inside the fluid domain of magnitude ε. This represents an infinitesimal
impulse applied to the fluid flow at time t, concentrated at the point x. The resulting
impact on the cylinder, according to (2.8), is∫ T

0

δD dt = û(x, t) · ε (2.9)

The value û at x reveals how a small impulse at x and t is transferred to the cylinder
as drag. In particular, if the impulse ε is along the direction of the drag-adjoint field û,
it increases the mean drag on the cylinder; if the impulse is against the direction of û, it
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decreases the drag on the cylinder; if the impulse is perpendicular to û, it has no (first
order) effect on the drag of the cylinder.

The magnitude of the drag-adjoint field û represents what fraction of a small impulse
ε in the fluid domain is transferred as drag on the cylinder surface. If the magnitude of
the drag-adjoint field û is smaller than 1, then a small impulse of ε Newton second along
the direction of û results in a less than ε Newton second increase in the time-integrated
cylinder drag; a larger than 1 magnitude means that a small impulse along the direction
of the drag-adjoint field is amplified through the dynamics of the flow, and applied as
drag on the cylinder.

This physical interpretation of the drag-adjoint field enables us to examine the drag-
adjoint field as a physical field, as well as a functional derivative in a mathematical
sense. We believe that by observing the behavior of the drag-adjoint field, one could gain
additional physical insight into the dynamics of the fluid flow that would be difficult to
learn from observing the fluid flow itself.

2.3. Energy balance of the adjoint field

The L2 energy of the adjoint field

Ê =
y 1

2
ρ û · û dV (2.10)

is an integral measure of sensitivity. It provides a tight upper bound of how sensitive
the drag is with respect to small perturbations applied to the flow field. Applying the
Cauchy-Schwarz inequality to Equation (2.8), one obtains∣∣∣∣∣

∫ T

0

δD dt

∣∣∣∣∣ 6
∫ T

0

(
2Ê
ρ

y
δf · δf dV

) 1
2

dt , (2.11)

where equality holds when δf ∝ û.
The evolution of Ê can be analyzed by multiplying the adjoint equation (2.2) with û.

Through integration by parts, we obtain

− d

dt
Ê =

y
−ρû · ∇u · û dV +

y
−µ‖∇û‖2 dV + P̂BC

=
y

P̂ Ê dV −
y

D̂Ê dV + P̂BC
(2.12)

where P̂BC represents the boundary terms resulting from integration by parts; ‖ · ‖ is
the Frobenius norm of the vector field gradient tensor. The negative sign on the left side
is because the adjoint field evolves backwards in time.

To simplify the boundary term P̂BC resulting from integration by parts, we use
both the fluid flow boundary condition and the adjoint boundary condition, i.e., u =
(0, 0, 0), û = (1, 0, 0) on the cylinder surface S and u = (1, 0, 0), û = (0, 0, 0) on the far
field F :

P̂BC =
{

S∪F

(
û · û

2
u + p̂ û + µ∇û · û

)
· n ds

=
{

S

(p̂+∇û)nx ds
(2.13)

Note that the boundary term P̂BC is proportional to the magnitude of the adjoint so-

lution û and p̂, while the other terms P̂ Ê and D̂Ê in Equation (2.12) are quadratic with
respect to the magnitude of the adjoint field.
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The second term in Equation (2.12), D̂Ê = µ‖∇û‖2, is clearly a dissipation term. It
is always negative, thus always takes energy away from the adjoint field as the adjoint
evolves backwards in time. The rate of energy dissipation is proportional to viscosity
and the gradient of the adjoint. The first term in Equation (2.12) is the “production” of
adjoint energy in the interior of the fluid domain. Here we take a more detailed look at

the pointwise contribution to the production of adjoint energy P̂ Ê = −ρ û · ∇u · û.
We first observe that the anti-symmetric part of the velocity gradient tensor ∇u does

not contribute to the energy generation. This is because an anti-symmetric tensor is
diagonalizable by an orthonormal transform and contains only zero and pure imaginary
eigenvalues. In other words, vorticity per se does not contribute to the production of the
adjoint. The only contribution to the production of the adjoint field is the symmetric

part of the velocity gradient tensor ∇u, i.e. the rate of shear strain S = 1
2 (∇u +∇uT ).

The production of adjoint energy can therefore be rewritten as

P̂ Ê = −ρ û · S · û. (2.14)

In addition, one can decompose the shear strain rate into its principal components

S = λ1 q1 ⊗ q1 + λ2 q2 ⊗ q2 + λ3 q3 ⊗ q3 (2.15)

For incompressible flow, the tensor has zero trace, therefore λ1+λ2+λ3 = 0. The principal
components corresponding to negative eigenvalues are the contracting directions, and
contribute to positive energy production in Equation (2.14); the principal components
corresponding to positive eigenvalues are the stretching directions, and contribute to
negative energy production. The sign of the combined production from all principal
components depends on the direction of the adjoint vector û. If it is aligned with the
principal components with negative eigenvalues (the contracting directions forwards in
time and stretching directions backwards in time), the production of adjoint energy is
positive. If û is aligned with the principal components with positive eigenvalues (the
stretching directions forwards in time and contracting directions backwards in time), the
production of adjoint energy is negative.

In the adjoint energy equation (2.12), the relative magnitude of the net contribution

from the production term P̂ Ê = −ρ û · S · û to the net dissipation from D̂Ê = µ‖∇û‖2

determines the energy balance of the adjoint field. When P̂ Ê is smaller than D̂Ê , the
main effect in the interior of the domain is damping; most of the energy of the adjoint
field comes from the boundary terms in the Equation (2.12). This is common for steady,

laminar flows. When P̂ Ê and D̂Ê have similar magnitudes, the adjoint field could produce
enough energy in the interior of domain to sustain itself. This is common for periodic,

laminar flows. When P̂ Ê is greater than D̂Ê , the adjoint field can self-produce net positive
energy from the interior of the domain, leading to exponential growth of the adjoint
solution. This is common for chaotic, turbulent flows. Adjoint fields for flow over a circular
cylinder at ReD = 20, 100 and 500 correspond to these three cases, respectively.

2.4. Circulation dynamics of the adjoint field

Being a solution of the adjoint equation (2.2), the drag-adjoint field û is divergence-free.
Thus it can be characterized by its vorticity field ∇×û. As will be shown in Section 3, the
drag-adjoint field of a circular cylinder wake is often dominated by eddy-like structures.
These observations motivate us to use classic fluid mechanics techniques to analyze the
behavior of circulation of the adjoint field, which by the Stokes theorem is an integral
measure of vorticity. Note that this analysis does not depend on the specific boundary
condition of the adjoint field, and is therefore applicable to adjoint fields of many other
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quantities of interest. To begin this analysis, we study the evolution of circulation of the
adjoint field around a fluid contour C

Γ̂C =

∮
C

û · dl (2.16)

Because the adjoint equation is viewed as evolving backwards in time, we analyze the
negative of the Lagrangian derivative of the adjoint circulation,

− D

Dt
Γ̂C = −

∮
C

Dû

Dt
· dl−

∮
C

û · Ddl

Dt
(2.17)

In this equation, the Lagrangian time derivative of û is determined by the adjoint equa-
tion (2.2). Also, the rate of stretching of an infinitesimal fluid line dl is equal to the
velocity difference between the two end points of the fluid line dl, i.e., Ddl

Dt = du. With
these substitutions, we obtain

− D

Dt
Γ̂C = −2

∮
C

û · du + µ

∮
C

∇ · ∇û · dl (2.18)

Evolving backwards in time, the second term in this equation is equivalent to the effect
of viscosity on fluid velocity circulation. However, the first term is unique for the adjoint
circulation. Here we analyze the physical meaning of this term, namely the production
of adjoint circulation

PΓ
C = −2

∮
C

û · du = −2

∮
C

û · Ddl

Dt
(2.19)

With Stokes theorem, it can also be written as

PΓ
C = −2

∮
C

û · ∇u · dl = −2
x

ΣC

(∇û1 ×∇u1 +∇û2 ×∇u2 +∇û3 ×∇u3) · ds (2.20)

where ΣC is a surface enclosed by the curve C, and dl points anticlockwise when the
surface normal ds points toward the viewer, following the right-hand rule. We make two
main observations on the production of adjoint circulation:
• The production of adjoint circulation is an inviscous effect. It has no dependence

on viscosity. Therefore, Kelvin’s theorem does not hold for the adjoint field, even in the
absence of viscosity.
• According to Equation (2.19), amplification of adjoint circulation happens when the

adjoint vector û is aligned against the rate of stretching of the fluid flow Ddl
Dt . In other

words, when two fluid particles along the direction of the adjoint vector are squeezed
against each other. Adjoint circulation is removed when the rate of stretching of the fluid
flow is in the same direction as the adjoint vector field, i.e. when two fluid particles along
the direction of the adjoint vector moves away from each other. Another point of view is
that an adjoint eddy is amplified when it is ”stretched” backwards in time by the fluid
flow; an adjoint eddy is damped when it is ”squeezed” backwards in time by the fluid
flow.

The second observation can explain some features of the adjoint fields we observe in
the cylinder wake. In particular, a commonly observed structure of the adjoint field is
elongated eddies, which often happens in shear flows. Figure 1a illustrates how such
eddies are preferentially amplified in shear flow. In this figure, the thin black solid lines
represent the fluid velocity, and the thick red dashed lines represent an elongated eddy
of the adjoint field. In this flow, fluid particles along the vertical direction are squeezed
against each other, while fluid particles along the horizontal direction are stretched. Now
consider the production of circulation along the elongated adjoint eddies, as defined in
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(a) Elongated adjoint ring in
shear flow

(b) Elongated rings in paral-
lel shear layer

(c) Bean shaped ring in a
wake

Figure 1: Amplification of elongated adjoint circulation

Equation (2.19). The long, vertical legs of the eddy experience squeezing forwards in time
(stretching backwards in time). Therefore, they contribute to amplification of circulation
according to (2.19). The short, horizontal legs of the elongated adjoint eddy experience
stretching forwards in time (squeezing backwards in time). They contribute to damping of
the adjoint circulation according to (2.19). Because the horizontal legs are shorter than
the vertical legs, the main effect is amplification of adjoint circulation of such adjoint
eddies, elongated along the convergent direction of the shear flow.

As an example of the analysis above, consider a parallel shear layer as illustrated in
Figure 1b. The flow velocity gradient in the parallel shear layer consists of clockwise
rotation (anti-symmetric part of the velocity strain tensor) and a symmetric shear in
the 45 degrees direction (symmetric part of the velocity strain tensor). As a result, the
adjoint circulation aligned 45 degrees to the shear layer is the most amplified, as shown
in Figure 1b. It is worth noting that this amplification effect is non-directional, i.e.,
it equally amplifies elongated adjoint rings with either positive or negative circulation.
Therefore, multiple counter-rotating, parallel elongated adjoint rings can be produced in
the same shear layer, as illustrated in Figure 1b.

The elongated adjoint circulation in shear flows, as illustrated in Figure 1, is observed
in the adjoint field of cylinder wakes. These adjoint flow patterns can be related to Kelvin-
Helmholtz modes in shear flows, because they represent external force patterns to the
fluid that have most influence on the flow field, and ultimately the drag on the cylinder.
While Kelvin-Helmholtz is a 2D phenomenon, more types of instabilities could occur in
three dimensions, potentially causing more patterns to appear in the adjoint field.

It is worth noting that amplification of a pattern in the adjoint field may indicate either
modal or non-modal (i.e., transient) growth of perturbations in the flow field (Schmid
(2007)). In fact, the adjoint field has been a very effective tool for studying non-modal
stability of unsteady flows. The combination of modal and non-modal modes makes the
adjoint field very complex, especially in 3D flows.

3. Computational results

The results presented in this section are obtained by discretizing both the Navier-Stokes
equation (2.1) and the continuous form of the adjoint equation (2.2) with a second order
finite volume scheme (Ham et al. 2007; Wang 2009). The cylinder diameter is 1; the
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Figure 2: The adjoint velocity field, ReD = 20. The color indicates the magnitude of
the adjoint field û. The black lines are contours of streamwise flow velocity at 0 and 0.8
freestream velocity.

freestream velocity is (1, 0, 0); the Reynolds number is set by the viscosity ν = 1/ReD.
A 2D mesh of about 23, 500 control volumes is used for the ReD = 20 and ReD = 100
cases. The ReD = 500 case is solved with a spanwise extent of 4 cylinder diameters. A
total number of 2.06 million control volumes are used for the 3D simulation.

For each case, the Navier-Stokes equation is first solved for sufficiently long time to
reach a steady or quasi-steady state at T0. The Navier-Stokes equation is then further
integrated forwards in time to T1; the fluid flow field u between T0 and T1 is stored in a
dynamic checkpointing scheme (Wang et al. 2009). The adjoint field is initialized at T1 to
û(x, T1) = (0, 0, 0), and integrated backwards in time to T0. During the backwards time
integration, the fluid flow field u required by the adjoint integrator is retrieved from the
checkpointing scheme. The time length of the adjoint solution T1 − T0 is 50 for all three
cases.

3.1. Adjoint flow field of steady wake at ReD = 20

At Reynolds number ReD = 20, the fluid flow is steady and stable. Any small pertur-
bation to the fluid flow field asymptotically decays (Noack & Eckelmann 1994). In other
words, the dynamical system has negative Lyapunov exponents. In the state space, the
steady fluid flow solution is a (zero-dimensional) fixed point attractor. For this flow field,
the adjoint solution also quickly settles down to a steady state when integrated backwards
in time.

As shown in Figure 2, the main feature of the adjoint field is a jet of adjoint velocity,
generated by the boundary condition û = (1, 0, 0) at the cylinder surface. The jet propa-
gates upstream while being diffused rapidly by the high viscosity. The adjoint boundary
condition of (1, 0, 0) also applies to the downstream side of the cylinder; the main effect
on the downstream is similar to suction. The apparently odd features of the upstream
jet and downstream suction is due to the fact that the adjoint evolves backwards in
time; thus the directionality of advection is reversed. The jet and suction on the cylinder
surface also produce two large eddies on the upper and lower sides of the cylinder.

In this adjoint field, the net adjoint energy production is calculated as
t

P̂ Ê dV =

0.71, and the net energy dissipation
t

D̂Ê dV = 1.07. Because the adjoint field is steady
state, the left hand side of the energy balance equation (2.12) is 0. Therefore, the net
loss of energy in the interior of the domain can only be compensated by flux through
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(a) near field, t = 0 (b) far field, t = 0

(c) near field, t = 1 (d) far field, t = 1

(e) near field, t = 2 (f) far field, t = 2

Figure 3: The adjoint velocity field for about half of a period, ReD = 100. The color indi-
cates the magnitude of the adjoint field û. The black lines are contours of the streamwise
flow velocity at 0 and 0.8 freestream velocity.

the boundary. This energy could come from the jet emanating from the front side of the
cylinder. We also observe that the magnitude of the adjoint velocity û is almost always
less than 1, which is determined by the boundary condition. This may be explained by
the dominance of the dissipation term over the production term in the energy balance.

3.2. Adjoint flow field of periodic wake at ReD = 100

At Reynolds number ReD = 100, the fluid flow exhibits periodic von Karman vortex
shedding. Through Floquet analysis (Noack & Eckelmann 1994; Barkley & Henderson
1996), it can be shown that any small perturbation to the periodic fluid flow will asymp-
totically decay to the periodic state; however, there can be a non-decaying phase differ-
ence between the vortex shedding of the unperturbed fluid flow and the perturbed fluid
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Figure 4: The energy balance of the adjoint field at ReD = 100. The blue, filled circles

represent the net energy production
t

P̂ Ê dV ; the black, open squares represent the net

energy dissipation
t

D̂Ê dV ; the red, dashed line is the lift coefficient of the cylinder,
which serves to identify the phase of the vortex shedding.

flow, even after the transient disturbance settles down. In other words, the system has
a Lyapunov exponent that is exactly equal to 0, and all other Lyapunov exponents are
negative. This is a common feature in dynamical systems with a limit cycle attractors.
In the state space, the attractor is a one dimensional closed curve. The points on the
curve represent time snapshots of the fluid flow. The adjoint field of the periodic flow
also settles down to a periodic state in about 2 to 3 shedding periods.

Figure 3 illustrates the evolution of the adjoint field via the stream trace of the adjoint
velocity, colored by the adjoint velocity magnitude. The streamwise fluid velocity contours
(black) indicate the phase of the vortex shedding and the location of the shear layers.
Because the vortex shedding is symmetric, we show three time snapshots covering about
half of a period, and the other half of the period is symmetric to the half-period shown.
The adjoint field evolves backwards in time, therefore, a good way of examining the
dynamics over an entire period is looking at Figures 3e, then 3c and 3a, and then the
upside-down versions of Figure 3e, 3c, 3a, in that order. The right column in Figure (3)
shows the zoomed-out views of the same adjoint fields.

In Figure 3, the most significant feature in the adjoint field is the bean-shaped eddies
behind the cylinder. When viewed backwards in time, these bean-shaped patterns first
form at about 2 diameters downstream of the cylinder (Figure 3e), and grow larger and
stronger as they propagate upstream in the wake (Figures 3c and 3a). The mechanism
responsible for generation and amplification of these bean-shaped eddy structures is
described in Section 2.4, and qualitatively depicted in Figure 1c.

The bean-shaped adjoint eddy breaks up into two elongated eddies at about 1 diameter
downstream of the cylinder (Figure 3e). Both eddies are aligned in oblique directions to
the shear layer. As both eddies approach the cylinder surface, they experience strong
dissipation (Figure 3c). One of the two eddies (the lower one in Figure 3c) is trapped
in the wake and disappears. The other eddy (the upper one in Figure 3c) propagates
upstream of the cylinder in a relatively uniform fluid flow (the upper left eddy in Figure
3a). As these eddies propagate further upstream, they spread out and become more
circular by the force of viscosity (Figures 3f, 3d and 3b).

The jet of adjoint velocity in front of the cylinder is still apparent in the adjoint
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(a) t = 2 (b) t = 22

(c) t = 42 (d) t = 62

Figure 5: The “butterfly effect” of flow at ReD = 500. The plots show the difference
in spanwise velocity between a perturbed flow field and the unperturbed flow field, at
different time snapshots.

field. It has a magnitude smaller than the adjoint circulation in the wake, and meanders
unsteadily between the vortices propagating upstream.

The energy balance of the periodic adjoint field is shown in Figure 4. The net produc-
tion and dissipation in the interior of the domain have similar magnitudes, and overtake
each other twice per period. Averaged over time, the dissipation is slightly more than
the self-production of adjoint energy in the interior. This net loss of energy could be
compensated by the jet emanating from the cylinder surface.

3.3. Adjoint flow field of turbulent wake at ReD = 500

At Reynolds number ReD ≈ 189, a series of complex transitions to turbulence starts. Ac-
curately capturing the unsteady flow field during the transition may require a very large
spanwise domain (Barkley & Henderson 1996). However, at Reynolds number ReD = 500,
Karniadakis & Triantafyllou (1992) showed that the wake exhibits fully turbulent behav-
ior even with a modest spanwise extent of π diameters. In this paper, a spanwise extent
of 4 diameters is used.

In the chaotic, turbulent wake structure, an infinitesimal perturbation could grow ex-
ponentially until saturated by nonlinearity. This phenomenon is known as the “butterfly
effect”. Figure 5 demonstrates this butterfly effect in the ReD = 500 case. The four plots
show the difference between the spanwise velocity of a perturbed flow field and that of an
unperturbed flow field. The unperturbed flow field has been time-integrated to statistical
equilibrium at t = 0; the perturbed flow field is a copy of the unperturbed flow field at
t = 0, plus a perturbation of magnitude 10−5 at one diameter downstream of the cylin-
der. Starting from their slightly different initial conditions at t = 0, the perturbed and
unperturbed flow fields are then time-integrated forwards independently, with exactly
the same boundary conditions. Figure 5 shows that the difference between the two flow
fields, which starts at 10−5 at t = 0, grows larger as time progresses. At t = 62, the
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Figure 6: The upper plot shows the lift and drag coefficients as functions of time at
ReD = 500. The lower plot shows the L2 norm of the adjoint solution (solid black line),
compared to an estimate based on the Lyapunov exponent (dashed line). The ratio of net

adjoint energy production and dissipation
t

P̂ Ê dV/
t

D̂Ê dV is plotted as red dots.

difference becomes order 1, as large as the freestream velocity. At that point, the two
flow fields are significantly different.

The divergence of a small perturbation is a signature of chaotic dynamics. It implies
that almost any quantity that depends on the flow field at a later time, e.g. t = 62,
is very sensitive to almost any small perturbation made at an earlier time, e.g. t = 0.
This has significant implications for the adjoint field, which contains information about
sensitivities: the adjoint field at time t indicates sensitivity of an overall quantity of
interest to potential perturbations made at t. This sensitivity can be very large if the
quantity of interest depends on the flow solution at a time much later than t, as implied
by the butterfly effect of chaos. In our calculation, the quantity of interest embedded in
the adjoint equation is an integral over a fixed range of time [0, T ]; therefore, we expect
the adjoint field at time t to be very much larger for t� T .

It is indeed observed that the adjoint field has a larger magnitude at smaller t. As
shown in the lower plot of Figure 6, the magnitude of the adjoint equation increases
exponentially as t decreases. This indicates that the quantity of interest is exponentially
more sensitive to perturbations at earlier times. This agrees with our observation in Fig-
ure 5 that the flow fields at later times are exponentially more sensitive to a perturbation
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Figure 7: The spanwise component of the adjoint vorticity ∇× û at ReD = 500. The four
plots show the spanwise vorticity at different spanwise sections at time t = T1 − 38. The
black lines are contours of streamwise flow velocity at 0, 0.4 and 0.8 freestream velocity.

at t = 0. In addition, the rate at which the adjoint field increases agrees with the Lya-
punov exponent, as indicated by the dashed line in Figure 6; the Lyapunov exponent is
estimated from the rate at which the perturbed and unperturbed fields diverge (as shown
in Figure 5).

The energy balance of the chaotic adjoint field is also shown in Figure 6. The net
production in the interior of the domain almost always exceeds the net dissipation, as
indicated by the production dissipation ratio. The adjoint energy production in the inte-
rior is the main contributor of the exponential growth of the adjoint solution as time goes

backwards. This is because the interior energy production term P̂ Ê in Equation (2.12) is
proportional to the squared magnitude of the adjoint solution û, while the contribution
of energy from the boundary is only proportional to the magnitude of û. As the adjoint
solution grows larger, the boundary condition becomes less important compared to the
interior dynamics.

Figure 7 visualizes the diverging adjoint field by plotting the spanwise adjoint vorticity
∇× û at four different spanwise sections at t = T1−38, i.e., after 38 time units of adjoint
time integration. The field concentrates almost entirely in the near-wake region. The
adjoint eddies appear in mostly parallel streaks that are oblique to the shear layers in
the wake. These structures are consistent with our analysis in Section 2.4, as sketched in
Figure 1.

The jet of adjoint velocity in front of the cylinder, a significant feature in the lower
Reynolds number cases, is no longer visible. This can be explained by comparing the

adjoint energy production in the interior P̂ Ê (Equation (2.12)) and adjoint energy pro-
duction on the boundary P̂BC (Equation (2.13)). As the magnitude of the adjoint field
becomes larger, the contribution of energy from the boundary condition increases linearly,

while the contribution of energy from the interior production term P̂ Ê increases quadrat-
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ically. Because the energy of the jet comes from the boundary condition, its magnitude
is relatively small when the adjoint field becomes very large.

4. Conclusions

The solution of the adjoint equation with drag being the quantity of interest can be
viewed as a nondimensional transfer function of small momentum perturbations. We
analyze the solution of the adjoint equation with conventional fluid mechanical methods,
including studying the kinetic energy of the adjoint field and the evolution of circulation
along a closed material contour. The result of our analysis shows that the adjoint kinetic
energy is not conserved; in particular, the adjoint field can exponentially amplify along
certain eigen-directions of the flow shear rate tensor 1

2 (∇u+∇uT ). Analysis of circulation
dynamics reveals that the dynamics of the adjoint equation should preferentially amplify
elongated eddies that are aligned with converging directions of a shear flow. In a parallel
shear flow, the amplified eddies should be elongated along a 45 degrees angle direction
relative to the shear layer.

Numerical solutions of the adjoint equation are performed for a circular cylinder at
Reynolds numbers ReD = 20, 100 and 500. At ReD = 20, both the flow solution and the
adjoint solution are steady. Downstream of the cylinder, the adjoint field has streamlines
similar to that of fluid being sucked into the downstream part of the cylinder; upstream of
the cylinder, the adjoint field has streamlines similar to that of fluid being ejected towards
upstream of the cylinder, forming a jet-like structure. These features in the adjoint field
are consistent with the physical interpretation of the adjoint field. At ReD = 100, both
the flow field and the adjoint field are 2D and periodic. We observe bean-shaped eddies
in the adjoint field forming in the near-wake region of the cylinder. These eddies form
because they are preferentially amplified by the dynamics of the adjoint equation in
shear flow. At ReD = 500, the flow in the wake is turbulent; the entire adjoint field is
amplified exponentially as time evolves backwards. This amplification is caused by the
production of adjoint energy in the interior dominating viscous dissipation. The rate of
exponential amplification is consistent with the Lyapunov exponent of the turbulent flow.
The dominant structure in the adjoint field is thin, elongated eddies in the near-wake
region, created by preferential amplification of these eddies in the shear layers of the near
wake.
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PSAAP to MIT, AFOSR support under STTR contract FA9550-12-C-0065 under Dr.
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Appendix A. Derivation of the adjoint equation

The derivation starts with the linearized Navier-Stokes equation (2.5) that describes
the small change in the flow field δu caused by an infinitesimal body force δf in the
interior of the flow field. By taking the inner product of the adjoint field û(x, t) with the
linearized momentum equation in Equation (2.5), and multiplying the adjoint pressure
p̂ with the divergence-free condition in Equation (2.5), we obtain

ρ
∂δu

∂t
· û︸ ︷︷ ︸

(L1)

+ ρu · ∇δu · û︸ ︷︷ ︸
(L2)

+ ρ δu · ∇u · û︸ ︷︷ ︸
(L3)

+∇δp · û︸ ︷︷ ︸
(L4)

−µ∇ · ∇δu · û︸ ︷︷ ︸
(L5)

= δf · û

p̂ ∇ · δu︸ ︷︷ ︸
(L6)

= 0

(A 1)

The adjoint equation (2.2) is designed to be “symmetric” to the linearized Navier-
Stokes equation. By taking the inner product of the velocity field perturbation δu(x, t)
with the adjoint momentum equation in Equation (2.2), and multiplying the pressure
field perturbation δp with the divergence-free condition in Equation (2.2), we obtain

ρ
∂û

∂t
· δu︸ ︷︷ ︸

(A1)

+ ρu · ∇û · δu︸ ︷︷ ︸
(A2)

− ρ δu · ∇u · û︸ ︷︷ ︸
(A3)≡(L3)

+∇p̂ · δu︸ ︷︷ ︸
(A6)

+µ∇ · ∇û · δu︸ ︷︷ ︸
(A5)

= 0

δp ∇ · û︸ ︷︷ ︸
(A4)

= 0

(A 2)

By adding corresponding terms together and integrating over either space or time, we
obtain ∫ T

0

(L1) + (A1) dt = ρ δu · û
∣∣∣∣T
0

= 0 (A 3)
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because δu = 0 at t = 0 and û = 0 at t = T :
y

((L2) + (A2)) dV =
y

ρu · ∇(δu · û) dV =
{

ρ (u · n)(δu · û) ds
y

((L4) + (A4)) dV =
y
∇ · (δp û) dV =

{
δp (û · n) ds

y
((L6) + (A6)) dV =

y
∇ · (p̂ δu) dV =

{
p̂ (δu · n) ds

y
((L5) + (A5)) dV =

{
µ(n · ∇û · δu− n · ∇δu · û) ds

(A 4)

Therefore, by adding equations (A 1) and (A 2), we obtain∫ T

0

y
δf · û dV dt

=

∫ T

0

{ (
ρ (u · n)(δu · û) + û · (δpn− µn · ∇δu) + δu · (p̂n + µn · ∇û)

)
ds dt

(A 5)

For external flow problems, we let the linearized and adjoint Navier-Stokes equations
satisfy the boundary conditions

δu = (0, 0, 0) , û = (1, 0, 0) , at the walls

δu = (0, 0, 0) , û = (0, 0, 0) , at the far field
(A 6)

For internal flow problems, we enforce a different set of boundary conditions

δu = (0, 0, 0) , û = (1, 0, 0) , at the walls

ρ (u · n)δu + δpn− µn · ∇δu = 0 , µn · ∇û + p̂n = 0 , at the inlets

ρ (u · n)û + p̂n + µn · ∇û = 0 , µn · ∇δu− δpn = 0 , at the outlets

(A 7)

Either set of boundary conditions can be combined with Equation (A 5) to obtain∫ T

0

y
δf · û dV dt =

∫ T

0

∫
S

û · (δpn− µn · ∇δu) ds dt =

∫ T

0

δD dt (A 8)

where S denotes the walls over which the drag is calculated.
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