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A Bayesian Nonparametric Approach to Modeling Battery Heath
Joshua Joseph and Finale Doshi-Velez and Nicholas Roy

Abstract— The batteries of many consumer products, includ-
ing robots, are often both a substantial portion of the prodict's
cost and commonly a first point of failure. Accurately prediding
remaining battery life can lower costs by reducing unnecessy
battery replacements. Unfortunately, battery dynamics ae
extremely complex, and we often lack the domain knowledge
required to construct a model by hand.

In this work, we take a data-driven approach and aim to
learn a model of battery time-to-death from training data. Using
a Dirichlet process prior over mixture weights, we learn an
infinite mixture model for battery health. The Bayesian aspet
of our model helps to avoid over-fitting while the nonparametic
nature of the model allows the data to control the size of the

model, preventing under-fitting. We demonstrate our models /f
effectiveness by making time-to-death predictions usingeal _ £
data from nickel-metal hydride battery packs. ) / /
I. INTRODUCTION 5N i £ /
Batteries are often both the first point of failure and Fig. 1. iRobot's Roomba and its charging stafion

a significant fraction of a product’s cost. Understanding

battery failure is particularly important in robotics: agdb, varying lifetimes. In this work, we focus on older-geneati

battery deqth at an .inopportune time will require signiftcanyipvH battery packs that are compatible with many robots,
personnel intervention to rescue the r_obot; at worst, tr“elcluding the iRobot Roomba (shown in figure 1 along with
robot may be lost. In robotic applications where batteryq charging station). Specifically, we used a custom-built
death poses a large safety or financial hazard, batteries igy 4ing station to cycle 13 batteries until battery death (
usually replaced long before expected failure. Howeves, thy,cess that involves months of data collection per battery
procedure introduces significant operational costs. Moderpa number of charge cycles in these batteries, all from
to accurately predict the cycles left in a battery can helge same manufacturer, varied from 269 to 697 cycles. At
alleviate these costs. . L the beginning of operations, all batteries behaved nearly
Unfortunately, modeling battery dynamics is far frornidentically and thus were difficult to differentiate. Hovezy

simple. Previous efforts have generally relied on a sigafic 55 o5 ch pattery neared death, no matter how long it had been

amount of domain knowledge [1], [2], [3]; these methods,, operation, i

our model can be ‘?‘Pp"ed to any type of battery as long as Finally, our nonparametric Bayesian approach allows us
we can collect empirical measurements fromarepreseetat% make predictions given relatively little data, which is

set of similar batteries. important since collecting data by cycling a fresh battery

_V\_/e ta_ke a data-driven, non-para_metnc approach {0 PIes death can take several months on a test stand. We can
dlc_tmg time to battery death. Specifically, we consider th iscover the number of cooling behaviors supported by the
trajectories of how voltage and temperature change as t Gta automatically, without having to specify how many

battery cools after charging. As seen in figure 2, batteries 3atterns may be present in advance. The remainder of this

different points in thgir Iifg-cycle; exhib_it different kage ._paper is organized as follows: we describe the battery data
and temperature trajectories while cooling. Our model fw% section Il and outline our predictive model in sections Il

clusters together similar trajectories intooling behaviors. 4" \v/ |n section V, we show how our model outpredicts

Next, we Iegrn a particular time-to-death for .eaCh.COO“ngeveraI baselines on a challenging dataset of old-genarati
behavior. Given voltage and temperature trajectories from o .po oo rico

a new battery, we first map those trajectories to a cooling

behavior learned from our training set of batteries thaiehav Il. BATTERY DATA

already been cycled to death. We predict the new battery’s

remaining life based on the life that remained in the trainin

batteries when they exhibited the same cooling behavior.
One of the key difficulties with predicting the time to bat- 15 jrobot  store. irobot. con product/i ndex. j sp?

tery death is that even “identical” batteries can have widelpr oduct I d=11305110

We used data from 4683 charge cycles collected from 13
NiMH battery packs. Each pack was attached to a test stand



IIl. COOLING BEHAVIOR MIXTURE MODEL

2500 a» : :
o e  Behavior 4 . . . . .
- o Behavior5 To model cooling trajectories, such as those in figure 2,
2000} °  Behavior 34 we assume that each voltage and temperature trajectory

belongs to a particular cooling behavior. A cooling behavio
is defined by a distribution over voltage and temperature
trajectories. Let’ be the set of parameters that define the
characteristic voltage trajectory for cooling behavjorand
let 0 be the set of parameters that define the characteristic
temperature trajectory for cooling behavipf

Suppose we are given a pair of voltage and temperature
trajectoriesyg, v1, ..., vy @andeg, e1, ..., ey measured at times
to,t1,...,tn. Our mixture model defines the probability of
these data as
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whereM is the total number of cooling behaviors. Factoring
the probabilities of a voltage trajectopyvo.y |to.n, 6%) and
temperature trajectory(eo.n|to.n, 62) encodes our assump-
tion that the voltage and temperature trajectories arepieie
dent given the mixture componept(which represents the
battery’s health state). Using a Bayesian approach, that is
placing a distribution over every parameter settitighelps
avoid overfitting—a serious issue when the amount of data is

Temperature
o
l‘~

Sl limited.
Our goal is to learn the paramet#¥sfor the characteristic
BT 20 1 o 19 20 = curves and the probabilitiggj) from the training data, and
Time then learn a model of time-to-death for each behavior. (Note

that only the temperature and voltage patterns for a cycle
Fig. 2. Sample voltage and temperature trajectories frdferdnt parts of are used as input for the initial clustering, since in tegtin
a battery's life-cycle showing different patterns of cogll we will not know the number of cycles remaining.) We can
then use this model to predict the time-to-death by inferrin
the type of cooling behavior exhibited by a new battery. We

. . . describe the model we use for the cooling behaviors below;
which automatically cycled the battery through charglngm section 11I-B, we describe the clustering process used to

cooling, and d|scharg|ng. (Batteries h_eat up during chmargi Hefine cooling behaviors out of measured trajectories.
the charger automatically adds a cooling phase to prevent t

batteries from overheating during the constant cyclingng T
batteries started out new and were cycled until they cou .
no longer hold charge, which we defined as battery death. We model a measurement traject@iyo. v, €o:n |to:n, 6”)
Battery temperature and voltage were measured during ea®h characteristic curves with additive Gaussian noise.
phase of each cycle. a) \oltage Trajectory Model: The physics of electrical
charge in batteries makes an exponential curve a natural
To predict battery health, we focused on modelling thehoice for the characteristic way in which we expect the
cooling phase of each cycle for two reasons. First, as segoltage to change during the cooling cycle (see figure 2 for
in figure 2, batteries do exhibit a variety of distinct coglin sample trajectories). We posit that the measured voltages i
behaviors over their lifetimes—thus, these data do coritain the trajectory will vary around this characteristic expotie
formation about battery health. Second, the cooling ph&isedurve with independent, Gaussian noise. Thus, the voltage
a part of the cycle that can be most consistently measureddarve associated with particular cooling behavior is ctara
actual operation. Unlike on test stands, real-world disgda terized by the parameters of the exponential curve and the
trajectories strongly depend on the robot’s operationargd amount of measurement noise.
trajectories, while somewhat more consistent, depend @n th

initial charge. Cooling trajectories are easily measutetti@ ~_ “We also considered using the number of elapsed cycles astadiea
ut we found this feature actually reduced prediction aacyuby splitting

charging station and Iargely depend on the battery’s ﬁna@lusters with different numbers of elapsed cycles but simiemaining
fully charged state. battery life — an acute issue given the bimodal nature ofebgatiife.

G. Modeling Measurement Trajectories



Formally, we define the probability of a voltage trajectoryWe draw samples from this distribution using importance

p(vo.n|to.n, 0%) given a particular characteristic curve as sampling [8].
: : : : , d) Model Learning: Computing the Dirichlet Process
i NN(bg + by exp(by + byti), (U%)Q) @) Poster?or: We now dgscribephom? to use the DP prior to

infer the number of cooling behaviors in a set of trajectory
data and the corresponding parameteos the characteristic
cooling curves in each behavior. Once the number and
characteristic curves for the cooling behaviors have been

jectory exhibits a more complex pattern because the bdfiferred, we can use the cooling beha_wiorg/ to predict the
tery initially continues to get warmer after the charging'™e remaining until battery death (section V). - _
phase before cooling down. We evaluated first to fifth- Exact inference over an infinite number of possible cooling
order polynomial fits on various sample trajectories usin?eh"‘“’Iors is intractable. Instead, we use an iterativegs®c

a nested ANOVA, and a third-order polynomial was gent© sample the relevant parameters. First, suppose that we

erally where the F-statistic reduced the most dramaticallff@d @ set of assignments....zy. Given the temperature
gnd voltage trajectories assigned to a particular cooling

Thus, we defined the probability of a temperature trajecto e :
pleosn |to:n, 07) given a particular characteristic mean curvé®€haviorj, we can then sample the parametéfsasso-
as ciated with the characteristic trajectories of that bebavi
€ NN(df) +d{ti +d§t§ +d§t§,(o§)2) ©) using the equations in_appendices A ahd A. We_can also
sample the concentration parameterusing equation 6.
and let) = {d),d},d},d},o7}. We place an independent Finally, given the parameter®/, we can resample trajec-
Gaussian prior over the values of each elememt/ofpos- tories into more probable assignmenis...zy. Repeating
terior update equations in appendix A). this process, known as Gibbs sampling, is guaranteed to
B. Clustering M . t Trajectories into Stages convergejto a set of samples that represent the posterior
. X . . p({zz}a{e }5a|1]0;v17"'7UN7€05617"'7€N)‘

From figure 2, we see that batteries exhibit a variety of pjgorithm 1 summarizes our approach, which fol-
cooling behaviors—that is, a variety of characteristidagé |ows [10], [11]. The Gibbs sampling procedure begins by
and temperature curves during cooling—over the battepssampling each; given the remaining parametef&'}, a}.
lifetime. We use a Dirichlet process [4], [5], [6], [7] 10 The probability that voltage and temperature trajectofies

guide the process of clustering the voltage and temperatyfg| pe assigned to an instantiated cooling pattgris
trajectories that we measure into distinct cooling behavio

The Dirichlet process (DP) posits that an infinite number p(z; = j|¢”, )
of cooling behaviors may exist, but certain behaviors are j ; n;
likely to be very common and others quite rare. Of course, if p(vo:n [to:n, 07)p(eo:n [to: v, 07) <7N m a) (7)
only a finite number of voltage and temperature trajectories . , ) _
are observed, they can only belong to a finite number d¥N€rép(vo.n|to.n,67) and p(eo.n|to.n,62) are defined in
cooling behaviors. We first provide background on the DEduations 2 and 3, respectively. The probability that the
and then describe how we use it to infer the number dfaiectories belong to a new cooling behavior is given by
cooling behaviors in our battery model. p(zi = M + 1])

c) The Dirichlet Process Prior: Let ni..ny be the
number of trajectories assigned to behavibrsM, respec- |:/p(UO:N|ﬁO:N7G)p(eO:N|ﬁO:N79)d9:| (#) ,
tively, and letz; be the labeled behavior of trajectoiythat —lt+a
is, if z; = 5 then thei*” trajectory was generated according to )
the 5" behavior). Then, the probability that a newly observednd we use Monte Carlo integration [8] to approximate the
trajectory N + 1 belongs to behaviojf, given the previous integral as suggested in [10].
N data points, is Given a set of assignments, the trajectory parameters

and let¢] = {b},b],b}, b, 07}. We place an independent
Gaussian prior over the values of each element/ofpos-
terior update equations in appendix A).

b) Temperature Trajectory Model: The temperature tra-

( el ..M ) = nj @) 67 are resampled from their posterior distributions (see
PUEN+1=0,0 & 5oy MIMLM, Q) = 570 appendices A and A). In practice we found that simply
i _ @ choosing the maximuna posteriori ¢/ worked well due
z =7, 1., Mni.a, ) = . (5 ) : ; .
pleni1 =4 ¢ In1aar, @) N+« ®) to the peakiness of the posterior. Finally, the concemtnati

whereq is a concentration parameter that governs how ofteparameter is resampled according to equation 6 from the

we expect to see a completely new type of cooling behavigprevious section.

Having a model that can suggest that an observed trajectoryFigure 3 shows an example of the cooling behaviors in a

is unlike any previous trajectory gives us the flexibility tosingle battery that are discovered by the inference process

automatically infer the number of behaviors in a dataset. The fact that the blocks of color (denoting cooling cycles
We place a gamma prior on ~ G(a.,b,) Which leads that are inferred to be from the same behavior) are close

us to the posterior distribution
3The inference approach described here is taken from ouriouv

p(a|n17 cey UM Ay ba) X p(nlv ) nlbf|a)p(a|aa7 ba) (6) work [9].



Algorithm 1 Cooling Behavior Inference temperature trajectories during their initial cooling pes,

1: for sweep = 1 to # of sweepo but they will have very different numbers of cycles remagnin

2:  for each cooling behaviof do until death (that is, when the battery stops holding charge)

3: Draw the paramete¥ givenz; using the equations  We use an empirical distribution to model the number
in appendices A and A. of remaining cycled. This distribution places a probability

4: end for mass around each observed time-to-déatbr each cooling

5. Draw the DP hyperparameterusing equation 6 behaviorj in the training set.

6: for each trajectory do N

7 Draw z; using equations 7 and 8 g 12 .

8 end for p(l|.779 )O(;N(leao-l)l{zl_.j} (9)

9: end for

where 1{z; = j} is the indicator function which equals
one when trajectory is assigned to behaviof and zero

together in time suggests that clustering by trajectorye typ®therwise. o o
does indeed find groups of trajectories with similar times V& can now make predictions about the remaining cycles

to battery death. We also see that at the beginning of tigft In @ battery given voltage and temperature trajectorie

battery's lifetime (cycles 0 to 400), the distribution over! he distribution over the cycles-to-death is given by tgkin

cooling behaviors is quite spread and not strongly assextiatth® €xpectation over the cooling behavjor

with a particular time to death. As the battery progresses p(U[to:n, vov, eo:ns {67}, @)
through its life-cycle, each behavior marks a temporally- M1
clustered block preceding battery death. In section V, we wi _ Z p(117, 09)p(ilton s vouns eon, 9, a)  (10)

see that the relative indistinguishability of cooling &eljories

far from battery death means that predicting the lifetime of . .
a fresh battery is prone to large errors; however, the mokherep(l|j,6”) and p(jlto:n,vo.n, eo:n, 07, o) are defined
distinct characteristics of cooling trajectories clogedeath in sections IV and IIf! Throughout a test run, we maintain

allows for better predictions when the battery is nearing distribution over, and after we observe a cycle of data
death. we shift the distribution by -1 to simulate the amount of life

degradation that occurred during the previous cycle.

j=1

50 \ \ \ \ \ T ed e@e V. RESULTS
oo
45¢ é 3 i. o 1 We tested our battery health model on a set of 13 Roomba
40t ane ams 0w | batteries from iRobot. Of these, 6 had relatively shortdive
a5l o | (under 400 cycles), 5 had long lives (over 600 cycles), and
3 3 2 were in-between®The errors in the predicted cycles-to-
T 30t $° Bne d . . .
£ Seoes death were computed using leave-one-out cross-validation
’g 257 ? - where the trajectories for one entire battery’s run wera hel
£ 2o Ll ] out each time. We chose to hold out an entire battery—
o ° SR, rather than a random subset of cycles—because trajectories
15 e ° .g.'gt 7 - A
o » some coming from the same battery tend to be more similar to
Plamse gt 1 each other than trajectories coming from different baggri
S5mees 0L & -;,”’ 1 having trajectories from the same battery in both test and
2 T e me training sets would provide an unrealistic advantage to any
0 100 200 300 400 500 600 700 800 900

algorithm. We normalized the time, voltage, and tempeeatur
values of all the cycles by subtracting the mean to avoid
Fig. 3. Cooling behaviors (indexed both on the y-axis anddipry for a  numerical problems during inference. Additionally, we set

single battery as it progresses through its life-cycle.o{€y from the same o, = 25 from equation 9

behavior are plotted with the same color.) Initially, theoliog behaviors . .
occur at a variety of points (see the behaviors for cycles @a®), but We compared our approach to four simple baselines.

as the battery progresses through its life-cycle, eactestagre distinctly The naive approach estimated the remaining battery life

Cycles

marks a block of time preceding battery death. by simply subtracting the number of elapsed cycles from
the mean lifetime of the batteries in the training set. For
IV. CYCLES-TO-DEATH PREDICTION the three remaining baselines, we first fit a curve to each

Ny temperature and each voltage trajectory using the paremmetr
Once the parametef$’ })”, have been learned, we com- P g ] y 9 P

pute a diStfithiOW(llj, 9]) of the r_emaining ques to de?lh “We also considered a Gaussian distributiongf(iij, 67) but, due to the
for each cooling behavigi. Especially for cooling behaviors multimodal nature op(l|5,67), we found the empirical distribution a much

that occur early in a battery’s lifetime, these distribno Petter fit fo the data.
y y 5Note that iRobot Roombas ship with a longer-lasting battafyereas

can be high_ly mUItimOd"’}l: a fresh Iong-l_ife_ battery and gpe packs we tested were old-generation batteries provigeiiRobot for
fresh short-life battery might have very similar voltagedan research purposes.



curves described in section IlI-A. This fit gave us a featur 600 ‘ ‘

vector of trajectory parameters= [bd] for each cycle that Naive

we could use as input to predict the remaining lifeWe Ef‘?;g:ﬁf”

tested three baseline predictors: a linear regression ef t K-NN

form [ ~ Bz; k-nearest neighbor, which found thenearest Our Model

inputs z and returned their average time to degttand k-

means, which first formed clusters based on the inputs

and then returned the mearof the nearest cluster. For k-

means and k-nearest neighbors, we tested valukesasfging

from 1 to 300 (note that the entire dataset consisted of 46¢

cooling trajectories). Each run of k-means had 10 restarts

avoid local optima. 100r
€) Absolute Prediction Error: We first considered the

absolute prediction error as a measure of prediction gualit 0 1 e a0 a0 0 e oo swo

after all, an ideal model would provide the user of the devic Remaining Cycles

an accurate picture of how many cycles are remaining in the

battery’s life. Figures 4 and 5 show the predictions of all Fig. 5. Mean absolute prediction errors for a typical loifg-battery.

the approaches on a typical short life and a typical long life

battery, respectively. We chose the best-performing vafue _ o L

k for each plot, and the error bars show one standard erry 'éfatively small (roughly within the lifetime of a short-

of the mean for blocks of 50 trajectories. life battery). All approaches have difficulty with predimtis

Our approach generally outperforms the baselines Whé{Ypen the battery is farther away from failure (figure 7).

predicting the remaining life in the short life battery. Wi
we initially do poorly in predicting the remaining life in ¢h
long-life battery, we outperform the baselines as the lon¢
life battery gets closer to failure. Thus, for both types o
batteries, we predict the cycles to death well in regimes th.
matter most: when the battery is actually near death. Fro
manual inspection, we note that the cooling behaviors ne
battery death tend to be more distinctive; we also have mo
data in this regime because every battery—long life or sho
life—has trajectories that are within 300 cycles of deatt
Only the long-life batteries have trajectories that arerove
600 cycles out from death.
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Kemeans | Remaining Cycles
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= Our Model Fig. 6. Mean absolute prediction errors across all battedi@oking at
batteries close to death. o ) ]

f) Guiding Replacement Decisions. While knowing the

number of cycles left in a battery is a useful figure, remajnin
life is usually an intermediate quantity needed to make the
key decision of whether the battery should be replaced.
2007 1 When the lifetime predictions have error, the user of the
device risks either waiting too long to replace the battery—
100 1 and having it fail unexpectedly—or replacing the batteny to
early due to a false alarm. In this section, we analyze the
s 10 20 300 a0 sw o 7o 800 predictions to determine how our model and the various
Remaining Cycles baselines performed in this trade-off.
Figures 8 and 9 show how each of the models handle
Fig. 4. Mean absolute prediction errors for a typical shitetbattery. these trade-offs. Figure 8 plots how often the models pre-
We see this trend when we consider all of the batteriedicted that a battery had less than 50 cycles remaining
from our complete cross-validation test. As before, the began arbitrary threshold for replacement) against the &ctua
performing values fork are plotted for the k-means andremaining battery life; peaks far from 50 correspond todals
k-nearest neighbor. We see in figure 6 that our approaetarms where the battery might have been replaced even
outperforms the baselines when the actual remaining cycleden it had significant life left. Figure 9 plots how often the

500 -

400

300

Absolute Error
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Fig. 7. Mean absolute prediction errors across all battefiote that the

Fig. 9. Risk of late replacement: we plot how often the bwtteas actually
within 50 cycles of failure for various predicted lifetimg#n ideal predictor
would be 0 if the predicted cycles were greater than 50, lraike.)

model had many fewer training points in regimes more than@lDcycles
to failure, since many of the batteries were short-life doas.

battery actually had less than 50 cycles remaining againghy |ess thanw cycles left. The ideal predictor would have
the predicted battery life; peaks far from 50 correspond t8ints close to the top-left comner, corresponding to higk t
situations when a battery might have failed despite a longitive and low false positive rates; our approach aclsieve
predicted remaining life. Our model has peaks near 50 Iy|aiively high true positive rates without high false pivsi
both plots; our main source of error is confusing a shortreg for a variety of thresholds. However, we also see
life battery for a long-life battery or vica-versa (as SeBn iy at our model is somewhat conservative: if avoiding false
humps arpund 350-400)._The other models seem to find Ieﬁﬁsitives (replacing too early) is more important than firgi
structure in the da}ta; their errors are more spread oute(Noy e positives (replacing before death), then the baseline
that k-nearest neighbor never predicts less than 50 Cyc'ﬁﬁght offer better options. Operationally, false negative

remaining.) predicting battery death are typically dangerous for rebot
but the desired performance is usually domain dependent.
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Fig. 8. Risk of early replacement: we plot how often the msgekdicted
that the battery had less than 50 cycles remaining for varamiual number
of cycles remaining. (An ideal predictor would be 0 if the uadtcycles
were greater than 50, 1 otherwise.)

Fig. 10. False positive rate (how often the battery was oeglaoo early)
vs. True positive rate (how often the battery was replaceufria) for various
decision thresholds.

In the previous plots we created an arbitrary threshold of
50 cycles as when a battery ought to be replaced. We vary VI. CONCLUSION
the thresholdw to illustrate the trade-off more generally. We developed a Bayesian nonparametric model for battery
Figure 10 plots false positive rates—how often did we priedidealth using data from 4683 cooling cycles collected from
that battery had more than cycles when it had less tham 13 NiMH batteries. The small size of the dataset reflects the
cycles—against true positive rates—how often did we ptediexpense required to collect the data: cycling a battery arde
that the battery had less than cycles when it actually can take months, and different types of batteries will have



different cooling patterns. Using a Bayesian nonparametri APPENDIX
approach was valuable in this data-limited setting becé@use
allowed us to learn a model from relatively few examples
(of course, new data would be needed to train a model f%(
a different type of battery). Specifically, by automatigall "~
clustering cycles based on their voltage and temperature
trajectories during cooling, we discovered cooling bebesi  \We define the prior over the voltage trajectory model
that were predictive of remaining battery life, especially parameters to be
the important regime where the battery within a few hundred
cycles of death.

The results also showed that while we outperformed slay, by ~ G (ay,by)
several baseline models, especially in this regime of @ster
predicting battery life is, overall, a challenging problem
Interesting directions for future work include using other
(less consistent) parts of the battery cycle, such as wltag
and temperature trajectories during charging as additiona
features, as well as building stronger temporal correfatio wheres, = 1/02 is the precision of the voltage trajectory
into the model. In some applications, knowing when a battemnodel andk = 0, 1,2, 3. Based on the likelihood function
is starting to degrade (around cycle 300 for the battery idefined in equation 2 the posterior distributions of paramset
figure 3), is also a quantity of interest. We found that this, andb, have closed form posteriors
change is much harder to predict using our trajectory-based
clusters because trajectories tend to look similar in namin
operation; predicting battery degradation is an intengsti
question for future work.

\oltage Parameter Posterior Distribution

bi“’m,k; Sv,k ™ N(,uv,kvsv,k)

j J
S%|'UO:N7 to:N, bo;ga Ay, by ~

N +1 1
glav+ 9 1N 742 J J\2 1
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that are normally distributed.



