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A Bayesian Nonparametric Approach to Modeling Battery Health

Joshua Joseph and Finale Doshi-Velez and Nicholas Roy

Abstract— The batteries of many consumer products, includ-
ing robots, are often both a substantial portion of the product’s
cost and commonly a first point of failure. Accurately predicting
remaining battery life can lower costs by reducing unnecessary
battery replacements. Unfortunately, battery dynamics are
extremely complex, and we often lack the domain knowledge
required to construct a model by hand.

In this work, we take a data-driven approach and aim to
learn a model of battery time-to-death from training data. Using
a Dirichlet process prior over mixture weights, we learn an
infinite mixture model for battery health. The Bayesian aspect
of our model helps to avoid over-fitting while the nonparametric
nature of the model allows the data to control the size of the
model, preventing under-fitting. We demonstrate our model’s
effectiveness by making time-to-death predictions using real
data from nickel-metal hydride battery packs.

I. I NTRODUCTION

Batteries are often both the first point of failure and
a significant fraction of a product’s cost. Understanding
battery failure is particularly important in robotics: at best,
battery death at an inopportune time will require significant
personnel intervention to rescue the robot; at worst, the
robot may be lost. In robotic applications where battery
death poses a large safety or financial hazard, batteries are
usually replaced long before expected failure. However, this
procedure introduces significant operational costs. Models
to accurately predict the cycles left in a battery can help
alleviate these costs.

Unfortunately, modeling battery dynamics is far from
simple. Previous efforts have generally relied on a significant
amount of domain knowledge [1], [2], [3]; these methods
cannot be used without a detailed understanding of the inter-
nal battery structure and chemical composition. In contrast,
our model can be applied to any type of battery as long as
we can collect empirical measurements from a representative
set of similar batteries.

We take a data-driven, non-parametric approach to pre-
dicting time to battery death. Specifically, we consider the
trajectories of how voltage and temperature change as the
battery cools after charging. As seen in figure 2, batteries at
different points in their life-cycles exhibit different voltage
and temperature trajectories while cooling. Our model first
clusters together similar trajectories intocooling behaviors.
Next, we learn a particular time-to-death for each cooling
behavior. Given voltage and temperature trajectories from
a new battery, we first map those trajectories to a cooling
behavior learned from our training set of batteries that have
already been cycled to death. We predict the new battery’s
remaining life based on the life that remained in the training
batteries when they exhibited the same cooling behavior.

One of the key difficulties with predicting the time to bat-
tery death is that even “identical” batteries can have widely

Fig. 1. iRobot’s Roomba and its charging station1 .

varying lifetimes. In this work, we focus on older-generation
NiMH battery packs that are compatible with many robots,
including the iRobot Roomba (shown in figure 1 along with
its charging station). Specifically, we used a custom-built
charging station to cycle 13 batteries until battery death (a
process that involves months of data collection per battery).
The number of charge cycles in these batteries, all from
the same manufacturer, varied from 269 to 697 cycles. At
the beginning of operations, all batteries behaved nearly
identically and thus were difficult to differentiate. However,
as each battery neared death, no matter how long it had been
in operation, it tended to exhibit certain cooling behaviors
after charging. A data-driven approach allows us to learn the
patterns that are strongly indicative of nearing battery death.

Finally, our nonparametric Bayesian approach allows us
to make predictions given relatively little data, which is
important since collecting data by cycling a fresh battery
to death can take several months on a test stand. We can
discover the number of cooling behaviors supported by the
data automatically, without having to specify how many
patterns may be present in advance. The remainder of this
paper is organized as follows: we describe the battery data
in section II and outline our predictive model in sections III
and IV. In section V, we show how our model outpredicts
several baselines on a challenging dataset of old-generation
Roomba batteries.

II. BATTERY DATA

We used data from 4683 charge cycles collected from 13
NiMH battery packs. Each pack was attached to a test stand

1 c© iRobot store.irobot.com/product/index.jsp?
productId=11305110
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Fig. 2. Sample voltage and temperature trajectories from different parts of
a battery’s life-cycle showing different patterns of cooling.

which automatically cycled the battery through charging,
cooling, and discharging. (Batteries heat up during charging;
the charger automatically adds a cooling phase to prevent the
batteries from overheating during the constant cycling.) The
batteries started out new and were cycled until they could
no longer hold charge, which we defined as battery death.
Battery temperature and voltage were measured during each
phase of each cycle.

To predict battery health, we focused on modelling the
cooling phase of each cycle for two reasons. First, as seen
in figure 2, batteries do exhibit a variety of distinct cooling
behaviors over their lifetimes—thus, these data do containin-
formation about battery health. Second, the cooling phase is
a part of the cycle that can be most consistently measured in
actual operation. Unlike on test stands, real-world discharge
trajectories strongly depend on the robot’s operations; charge
trajectories, while somewhat more consistent, depend on the
initial charge. Cooling trajectories are easily measured at the
charging station and largely depend on the battery’s final,
fully charged state.

III. C OOLING BEHAVIOR M IXTURE MODEL

To model cooling trajectories, such as those in figure 2,
we assume that each voltage and temperature trajectory
belongs to a particular cooling behavior. A cooling behavior
is defined by a distribution over voltage and temperature
trajectories. Letθj

v be the set of parameters that define the
characteristic voltage trajectory for cooling behaviorj, and
let θj

e be the set of parameters that define the characteristic
temperature trajectory for cooling behaviorj.2

Suppose we are given a pair of voltage and temperature
trajectoriesv0, v1, ..., vN ande0, e1, ..., eN measured at times
t0, t1, ..., tN . Our mixture model defines the probability of
these data as

p(v0:N , e0:N |t0:N )

=

M
∑

j=1

p(v0:N |t0:N , θj
v)p(e0:N |t0:N , θj

e)p(j) (1)

whereM is the total number of cooling behaviors. Factoring
the probabilities of a voltage trajectoryp(v0:N |t0:N , θj

v) and
temperature trajectoryp(e0:N |t0:N , θj

e) encodes our assump-
tion that the voltage and temperature trajectories are indepen-
dent given the mixture componentj (which represents the
battery’s health state). Using a Bayesian approach, that is,
placing a distribution over every parameter settingθj , helps
avoid overfitting–a serious issue when the amount of data is
limited.

Our goal is to learn the parametersθj for the characteristic
curves and the probabilitiesp(j) from the training data, and
then learn a model of time-to-death for each behavior. (Note
that only the temperature and voltage patterns for a cycle
are used as input for the initial clustering, since in testing,
we will not know the number of cycles remaining.) We can
then use this model to predict the time-to-death by inferring
the type of cooling behavior exhibited by a new battery. We
describe the model we use for the cooling behaviors below;
in section III-B, we describe the clustering process used to
define cooling behaviors out of measured trajectories.

A. Modeling Measurement Trajectories

We model a measurement trajectoryp(v0:N , e0:N |t0:N , θj)
as characteristic curves with additive Gaussian noise.

a) Voltage Trajectory Model: The physics of electrical
charge in batteries makes an exponential curve a natural
choice for the characteristic way in which we expect the
voltage to change during the cooling cycle (see figure 2 for
sample trajectories). We posit that the measured voltages in
the trajectory will vary around this characteristic exponential
curve with independent, Gaussian noise. Thus, the voltage
curve associated with particular cooling behavior is charac-
terized by the parameters of the exponential curve and the
amount of measurement noise.

2We also considered using the number of elapsed cycles as a feature,
but we found this feature actually reduced prediction accuracy by splitting
clusters with different numbers of elapsed cycles but similar remaining
battery life — an acute issue given the bimodal nature of battery life.



Formally, we define the probability of a voltage trajectory
p(v0:N |t0:N , θj

v) given a particular characteristic curve as

vi ∼ N
(

bj
0 + bj

1 exp(bj
2 + bj

3ti), (σ
j
v)2
)

(2)

and let θj
v = {bj

0, b
j
1, b

j
2, b

j
3, σ

j
v}. We place an independent

Gaussian prior over the values of each element ofθj
v (pos-

terior update equations in appendix A).
b) Temperature Trajectory Model: The temperature tra-

jectory exhibits a more complex pattern because the bat-
tery initially continues to get warmer after the charging
phase before cooling down. We evaluated first to fifth-
order polynomial fits on various sample trajectories using
a nested ANOVA, and a third-order polynomial was gen-
erally where the F-statistic reduced the most dramatically.
Thus, we defined the probability of a temperature trajectory
p(e0:N |t0:N , θj) given a particular characteristic mean curve
as

ei ∼ N
(

dj
0 + dj

1ti + dj
2t

2
i + dj

3t
3
i , (σ

j
e)

2

)

(3)

and letθj
e = {dj

0, d
j
1, d

j
2, d

j
3, σ

j
v}. We place an independent

Gaussian prior over the values of each element ofθj
e (pos-

terior update equations in appendix A).

B. Clustering Measurement Trajectories into Stages

From figure 2, we see that batteries exhibit a variety of
cooling behaviors—that is, a variety of characteristic voltage
and temperature curves during cooling—over the battery
lifetime. We use a Dirichlet process [4], [5], [6], [7] to
guide the process of clustering the voltage and temperature
trajectories that we measure into distinct cooling behaviors.
The Dirichlet process (DP) posits that an infinite number
of cooling behaviors may exist, but certain behaviors are
likely to be very common and others quite rare. Of course, if
only a finite number of voltage and temperature trajectories
are observed, they can only belong to a finite number of
cooling behaviors. We first provide background on the DP
and then describe how we use it to infer the number of
cooling behaviors in our battery model.

c) The Dirichlet Process Prior: Let n1...nM be the
number of trajectories assigned to behaviors1...M , respec-
tively, and letzi be the labeled behavior of trajectoryi (that
is, if zi = 5 then theith trajectory was generated according to
the5th behavior). Then, the probability that a newly observed
trajectoryN + 1 belongs to behaviorj, given the previous
N data points, is

p(zN+1 = j, j ∈ 1, ..., M |n1:M , α) =
nj

N + α
(4)

p(zN+1 = j, j /∈ 1, ..., M |n1:M , α) =
α

N + α
. (5)

whereα is a concentration parameter that governs how often
we expect to see a completely new type of cooling behavior.
Having a model that can suggest that an observed trajectory
is unlike any previous trajectory gives us the flexibility to
automatically infer the number of behaviors in a dataset.

We place a gamma prior onα ∼ G(aα, bα) which leads
us to the posterior distribution

p(α|n1, ..., nM , aα, bα) ∝ p(n1, .., nM |α)p(α|aα, bα). (6)

We draw samples from this distribution using importance
sampling [8].

d) Model Learning: Computing the Dirichlet Process
Posterior: We now describe how to use the DP prior to
infer the number of cooling behaviors in a set of trajectory
data and the corresponding parametersθ of the characteristic
cooling curves in each behavior. Once the number and
characteristic curves for the cooling behaviors have been
inferred, we can use the cooling behaviors to predict the
time remaining until battery death (section IV).3

Exact inference over an infinite number of possible cooling
behaviors is intractable. Instead, we use an iterative process
to sample the relevant parameters. First, suppose that we
had a set of assignmentsz1....zN . Given the temperature
and voltage trajectories assigned to a particular cooling
behavior j, we can then sample the parametersθj asso-
ciated with the characteristic trajectories of that behavior
using the equations in appendices A and A. We can also
sample the concentration parameterα using equation 6.
Finally, given the parametersθj , we can resample trajec-
tories into more probable assignmentsz1....zN . Repeating
this process, known as Gibbs sampling, is guaranteed to
converge to a set of samples that represent the posterior
p({zi}, {θj}, α|v0, v1, ..., vN , e0, e1, ..., eN).

Algorithm 1 summarizes our approach, which fol-
lows [10], [11]. The Gibbs sampling procedure begins by
resampling eachzi given the remaining parameters{θj}, α}.
The probability that voltage and temperature trajectoriesi
will be assigned to an instantiated cooling patternj is

p(zi = j|θj , α)

∝ p(v0:N |t0:N , θj
v)p(e0:N |t0:N , θj

e)

(

nj

N − 1 + α

)

(7)

where p(v0:N |t0:N , θj
v) and p(e0:N |t0:N , θj

e) are defined in
equations 2 and 3, respectively. The probability that the
trajectories belong to a new cooling behavior is given by

p(zi = M + 1|α)

∝

[
∫

p(v0:N |t0:N , θ)p(e0:N |t0:N , θ)dθ

](

α

N − 1 + α

)

,

(8)

and we use Monte Carlo integration [8] to approximate the
integral as suggested in [10].

Given a set of assignments, the trajectory parameters
θj are resampled from their posterior distributions (see
appendices A and A). In practice we found that simply
choosing the maximuma posteriori θj worked well due
to the peakiness of the posterior. Finally, the concentration
parameterα is resampled according to equation 6 from the
previous section.

Figure 3 shows an example of the cooling behaviors in a
single battery that are discovered by the inference process.
The fact that the blocks of color (denoting cooling cycles
that are inferred to be from the same behavior) are close

3The inference approach described here is taken from our previous
work [9].



Algorithm 1 Cooling Behavior Inference
1: for sweep = 1 to # of sweepsdo
2: for each cooling behaviorj do
3: Draw the parametersθj givenzi using the equations

in appendices A and A.
4: end for
5: Draw the DP hyperparameterα using equation 6
6: for each trajectoryi do
7: Draw zi using equations 7 and 8
8: end for
9: end for

together in time suggests that clustering by trajectory type
does indeed find groups of trajectories with similar times
to battery death. We also see that at the beginning of the
battery’s lifetime (cycles 0 to 400), the distribution over
cooling behaviors is quite spread and not strongly associated
with a particular time to death. As the battery progresses
through its life-cycle, each behavior marks a temporally-
clustered block preceding battery death. In section V, we will
see that the relative indistinguishability of cooling trajectories
far from battery death means that predicting the lifetime of
a fresh battery is prone to large errors; however, the more
distinct characteristics of cooling trajectories closer to death
allows for better predictions when the battery is nearing
death.
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Fig. 3. Cooling behaviors (indexed both on the y-axis and by color) for a
single battery as it progresses through its life-cycle. (Cycles from the same
behavior are plotted with the same color.) Initially, the cooling behaviors
occur at a variety of points (see the behaviors for cycles 0 to400), but
as the battery progresses through its life-cycle, each stage more distinctly
marks a block of time preceding battery death.

IV. CYCLES-TO-DEATH PREDICTION

Once the parameters{θj}M
j=1 have been learned, we com-

pute a distributionp(l|j, θj) of the remaining cycles to deathl
for each cooling behaviorj. Especially for cooling behaviors
that occur early in a battery’s lifetime, these distributions
can be highly multimodal: a fresh long-life battery and a
fresh short-life battery might have very similar voltage and

temperature trajectories during their initial cooling phases,
but they will have very different numbers of cycles remaining
until death (that is, when the battery stops holding charge).

We use an empirical distribution to model the number
of remaining cyclesl. This distribution places a probability
mass around each observed time-to-deathli for each cooling
behaviorj in the training set.

p(l|j, θj) ∝
N
∑

i=1

N
(

l; li, σ
2
l

)

1{zi = j} (9)

where 1{zi = j} is the indicator function which equals
one when trajectoryi is assigned to behaviorj and zero
otherwise.

We can now make predictions about the remaining cycles
left in a battery given voltage and temperature trajectories.
The distribution over the cycles-to-death is given by taking
the expectation over the cooling behaviorj

p(l|t0:N , v0:N , e0:N , {θj}, α)

=

M+1
∑

j=1

p(l|j, θj)p(j|t0:N , v0:N , e0:N , θj , α) (10)

wherep(l|j, θj) and p(j|t0:N , v0:N , e0:N , θj , α) are defined
in sections IV and III.4 Throughout a test run, we maintain
a distribution overl, and after we observe a cycle of data
we shift the distribution by -1 to simulate the amount of life
degradation that occurred during the previous cycle.

V. RESULTS

We tested our battery health model on a set of 13 Roomba
batteries from iRobot. Of these, 6 had relatively short lives
(under 400 cycles), 5 had long lives (over 600 cycles), and
2 were in-between.5The errors in the predicted cycles-to-
death were computed using leave-one-out cross-validation,
where the trajectories for one entire battery’s run were held
out each time. We chose to hold out an entire battery—
rather than a random subset of cycles—because trajectories
coming from the same battery tend to be more similar to
each other than trajectories coming from different batteries;
having trajectories from the same battery in both test and
training sets would provide an unrealistic advantage to any
algorithm. We normalized the time, voltage, and temperature
values of all the cycles by subtracting the mean to avoid
numerical problems during inference. Additionally, we set
σl = 25 from equation 9.

We compared our approach to four simple baselines.
The naive approach estimated the remaining battery life
by simply subtracting the number of elapsed cycles from
the mean lifetime of the batteries in the training set. For
the three remaining baselines, we first fit a curve to each
temperature and each voltage trajectory using the parametric

4We also considered a Gaussian distribution forp(l|j, θj) but, due to the
multimodal nature ofp(l|j, θj), we found the empirical distribution a much
better fit to the data.

5Note that iRobot Roombas ship with a longer-lasting battery, whereas
the packs we tested were old-generation batteries providedby iRobot for
research purposes.



curves described in section III-A. This fit gave us a feature
vector of trajectory parametersx = [~b~d] for each cycle that
we could use as input to predict the remaining lifel. We
tested three baseline predictors: a linear regression of the
form l ∼ βx; k-nearest neighbor, which found thek nearest
inputsx and returned their average time to deathl; and k-
means, which first formedk clusters based on the inputsx
and then returned the meanl of the nearest cluster. For k-
means and k-nearest neighbors, we tested values ofk ranging
from 1 to 300 (note that the entire dataset consisted of 4683
cooling trajectories). Each run of k-means had 10 restarts to
avoid local optima.

e) Absolute Prediction Error: We first considered the
absolute prediction error as a measure of prediction quality—
after all, an ideal model would provide the user of the device
an accurate picture of how many cycles are remaining in the
battery’s life. Figures 4 and 5 show the predictions of all
the approaches on a typical short life and a typical long life
battery, respectively. We chose the best-performing valueof
k for each plot, and the error bars show one standard error
of the mean for blocks of 50 trajectories.

Our approach generally outperforms the baselines when
predicting the remaining life in the short life battery. While
we initially do poorly in predicting the remaining life in the
long-life battery, we outperform the baselines as the long-
life battery gets closer to failure. Thus, for both types of
batteries, we predict the cycles to death well in regimes that
matter most: when the battery is actually near death. From
manual inspection, we note that the cooling behaviors near
battery death tend to be more distinctive; we also have more
data in this regime because every battery—long life or short
life—has trajectories that are within 300 cycles of death.
Only the long-life batteries have trajectories that are over
600 cycles out from death.
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Fig. 4. Mean absolute prediction errors for a typical short-life battery.

We see this trend when we consider all of the batteries
from our complete cross-validation test. As before, the best
performing values fork are plotted for the k-means and
k-nearest neighbor. We see in figure 6 that our approach
outperforms the baselines when the actual remaining cycles
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Fig. 5. Mean absolute prediction errors for a typical long-life battery.

is relatively small (roughly within the lifetime of a short-
life battery). All approaches have difficulty with predictions
when the battery is farther away from failure (figure 7).
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Fig. 6. Mean absolute prediction errors across all batteries, looking at
batteries close to death.

f) Guiding Replacement Decisions: While knowing the
number of cycles left in a battery is a useful figure, remaining
life is usually an intermediate quantity needed to make the
key decision of whether the battery should be replaced.
When the lifetime predictions have error, the user of the
device risks either waiting too long to replace the battery—
and having it fail unexpectedly—or replacing the battery too
early due to a false alarm. In this section, we analyze the
predictions to determine how our model and the various
baselines performed in this trade-off.

Figures 8 and 9 show how each of the models handle
these trade-offs. Figure 8 plots how often the models pre-
dicted that a battery had less than 50 cycles remaining
(an arbitrary threshold for replacement) against the actual
remaining battery life; peaks far from 50 correspond to false
alarms where the battery might have been replaced even
when it had significant life left. Figure 9 plots how often the
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Fig. 7. Mean absolute prediction errors across all batteries. Note that the
model had many fewer training points in regimes more than 500-600 cycles
to failure, since many of the batteries were short-life batteries.

battery actually had less than 50 cycles remaining against
the predicted battery life; peaks far from 50 correspond to
situations when a battery might have failed despite a long
predicted remaining life. Our model has peaks near 50 in
both plots; our main source of error is confusing a short-
life battery for a long-life battery or vica-versa (as seen in
humps around 350-400). The other models seem to find less
structure in the data; their errors are more spread out. (Note
that k-nearest neighbor never predicts less than 50 cycles
remaining.)

0 100 200 300 400 500 600 700 800
0

0.1

0.2

0.3

0.4

0.5

0.6

%
 F

ai
le

d 
W

ith
in

 5
0 

C
yc

le
s 

of
 P

re
di

ct
ed

 F
ai

lu
re

Actual Remaining Cycles

 

 
Naive
Regression
K−means
K−NN
Our Model
Ideal

Fig. 8. Risk of early replacement: we plot how often the models predicted
that the battery had less than 50 cycles remaining for various actual number
of cycles remaining. (An ideal predictor would be 0 if the actual cycles
were greater than 50, 1 otherwise.)

In the previous plots we created an arbitrary threshold of
50 cycles as when a battery ought to be replaced. We vary
the thresholdw to illustrate the trade-off more generally.
Figure 10 plots false positive rates—how often did we predict
that battery had more thanw cycles when it had less thanw
cycles—against true positive rates—how often did we predict
that the battery had less thanw cycles when it actually
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Fig. 9. Risk of late replacement: we plot how often the battery was actually
within 50 cycles of failure for various predicted lifetimes. (An ideal predictor
would be 0 if the predicted cycles were greater than 50, 1 otherwise.)

had less thanw cycles left. The ideal predictor would have
points close to the top-left corner, corresponding to high true
positive and low false positive rates; our approach achieves
relatively high true positive rates without high false positive
rates for a variety of thresholdsw. However, we also see
that our model is somewhat conservative: if avoiding false
positives (replacing too early) is more important than finding
true positives (replacing before death), then the baselines
might offer better options. Operationally, false negatives in
predicting battery death are typically dangerous for robots
but the desired performance is usually domain dependent.
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Fig. 10. False positive rate (how often the battery was replaced too early)
vs. True positive rate (how often the battery was replaced intime) for various
decision thresholdsw.

VI. CONCLUSION

We developed a Bayesian nonparametric model for battery
health using data from 4683 cooling cycles collected from
13 NiMH batteries. The small size of the dataset reflects the
expense required to collect the data: cycling a battery to death
can take months, and different types of batteries will have



different cooling patterns. Using a Bayesian nonparametric
approach was valuable in this data-limited setting becauseit
allowed us to learn a model from relatively few examples
(of course, new data would be needed to train a model for
a different type of battery). Specifically, by automatically
clustering cycles based on their voltage and temperature
trajectories during cooling, we discovered cooling behaviors
that were predictive of remaining battery life, especiallyin
the important regime where the battery within a few hundred
cycles of death.

The results also showed that while we outperformed
several baseline models, especially in this regime of interest,
predicting battery life is, overall, a challenging problem.
Interesting directions for future work include using other
(less consistent) parts of the battery cycle, such as voltage
and temperature trajectories during charging as additional
features, as well as building stronger temporal correlations
into the model. In some applications, knowing when a battery
is starting to degrade (around cycle 300 for the battery in
figure 3), is also a quantity of interest. We found that this
change is much harder to predict using our trajectory-based
clusters because trajectories tend to look similar in nominal
operation; predicting battery degradation is an interesting
question for future work.
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APPENDIX

A. Voltage Parameter Posterior Distribution

We define the prior over the voltage trajectory model
parameters to be

sj
v|av, bv ∼ G (av, bv)

bj
k|µv,k, sv,k ∼ N (µv,k, sv,k)

wheresv = 1/σ2
v is the precision of the voltage trajectory

model andk = 0, 1, 2, 3. Based on the likelihood function
defined in equation 2 the posterior distributions of parameters
sv andb0 have closed form posteriors

sj
v|v0:N , t0:N , bj

0:3, av, bv ∼

G
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N + 1

2
,

1
1
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j
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2
i − b1ti

(N + 1)sv + sv,0

,
1

(N + 1)sv + sv,0

)

that are normally distributed. Unfortunately, the posterior
distributions for parametersb1:3 do not have a closed form
and therefore we used importance sampling [8] to sample
from them.

Temperature Parameter Posterior Distribution

We define the prior over the temperature trajectory model
parameters to be

sj
e|ae, be ∼ G (ae, be)

bj
k|µe,k, se,k ∼ N (µe,k, se,k)

where se = 1/σ2
e is the precision of the temperature

trajectory model andk = 0, 1, 2, 3. Based on the likelihood
function defined in equation 3 the posterior distributions of



the parameters have closed form posteriors
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that are normally distributed.


