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Abstract. We conduct a theoretical study of various solution methods for the
adaptive fractionation problem. The two messages of this paper are: (i) dynamic
programming (DP) is a useful framework for adaptive radiation therapy, particularly
adaptive fractionation, because it allows us to assess how close to optimal different
methods are, and (ii) heuristic methods proposed in this paper are near-optimal, and
therefore, can be used to evaluate the best possible benefit of using an adaptive fraction
size.

The essence of adaptive fractionation is to increase the fraction size when the
tumor and organ-at-risk (OAR) are far apart (a “favorable” anatomy) and to decrease
the fraction size when they are close together. Given that a fixed prescribed dose
must be delivered to the tumor over the course of the treatment, such an approach
results in a lower cumulative dose to the OAR when compared to that resulting from
standard fractionation. We first establish a benchmark by using the DP algorithm to
solve the problem exactly. In this case, we characterize the structure of an optimal
policy, which provides guidance for our choice of heuristics. We develop two intuitive,
numerically near-optimal heuristic policies, which could be used for more complex,
high-dimensional problems. Furthermore, one of the heuristics requires only a statistic
of the motion probability distribution, making it a reasonable method for use in a
realistic setting. Numerically, we find that the amount of decrease in dose to the OAR
can vary significantly (5 - 85%) depending on the amount of motion in the anatomy, the
number of fractions, and the range of fraction sizes allowed. In general, the decrease
in dose to the OAR is more pronounced when: (i) we have a high probability of large
tumor-OAR distances, (ii) we use many fractions (as in a hyper-fractionated setting),
and (iii) we allow large daily fraction size deviations.
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1. Introduction

In its broadest context, adaptive radiation therapy (ART) is a radiation treatment

process that uses feedback information to modify and improve treatment plans [22, 10].

Feedback information could include patient anatomy information such as positions of

tumor and organ-at-risk (OAR), and can be obtained from imaging modalities such as

cone-beam computed tomography (CBCT), ultrasound imaging, or portal imaging [14].

We can correct for inter-fractional variations in patient anatomy by adapting

a treatment plan either off-line or on-line. An off-line adaptation uses imaging

information available after the delivery of a fraction to modify the treatment plan for

the next fraction. On the other hand, an on-line adaptation uses information acquired

immediately before the delivery of a fraction for a quick modification of the treatment

plan for that fraction. The advantage of on-line ART is the availability of more data

(inclusion of patient anatomy for the current fraction). However, due to patient wait

time and treatment duration limitations, on-line ART requires (i) fast re-optimization

of the treatment plan, and (ii) re-planning across a small number of degrees of freedom.

Conversely, in off-line ART, a re-optimized treatment plan can be determined on a

slower time-scale.

Due to the immediate possibility of lower cumulative dose to healthy organs

through treatment plan re-optimization between fractions, off-line ART has received

much attention in the research community. One of the early approaches involved

using information about tumor variations (both systematic and random) during the

first few fractions to determine a customized treatment plan for the remaining fractions

[22, 23]. The customized treatment plan generally has a smaller planning target volume

(PTV) suited to the particular patient. Such adaptation is shown to improve treatment

efficacy and to allow for dose escalation to the tumor [21, 9]. Another approach focused

on using a smaller PTV initially and re-optimizing treatment plans between fractions

to compensate for the accumulated dose errors [15, 5, 6, 18, 19]. We do note that

the practical applicability of this method relies on the ability to accurately determine

the delivered dose at each voxel. However, determining the delivered dose accurately

requires reliable deformable registration algorithms, which is still a major research topic.

In on-line ART, the focus has been on making adjustments to the existing treatment

plan rather than on re-optimizing for an entirely new plan. This is primarily because

the time between the acquisition of patient anatomy information and the delivery of a

plan is on the order of minutes rather than hours. In this case, a full re-optimization

and complete quality assurance of the treatment plan may not be possible. Several on-

line ART approaches have been developed which make quick modifications to either the

fluence map or multi-leaf collimator (MLC) leaves to match the planned dose [12, 4, 20].

Whereas these methods involve spatially varying the dose distribution, other methods,

including the work in this paper, consider temporally varying the fraction size from day

to day [11, 3].

We now briefly motivate the adaptive fractionation problem introduced in [11]. We
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Figure 1. Adaptive fractionation capitalizes on tumor-OAR variations. Nominal dose
corresponds to leaving the fraction size unchanged, while scaled dose corresponds to a
changed fraction size. When we have a favorable anatomy (i.e., the tumor and OAR
are far apart) as in the left panel, we can use a larger fraction size. Similarly, for an
unfavorable anatomy (i.e., the tumor and OAR are close together) as in the right panel,
we can use a smaller fraction size. Our model is more general than this 1-dimensional
example and can be used for 3-dimensional realistic settings as well.

focus on a model of the variations of the tumor and one primary OAR, which is usually

the limiting factor in escalating the dose to the tumor. Using an adaptive fraction

size can allow us to take advantage of a “favorable” patient anatomy by increasing the

fraction size. Similarly, we can decrease the fraction size for an “unfavorable” anatomy.

One simple way to think about this problem is to consider variations of the distance

between the tumor and the OAR from day to day (see Figure 1). If the distance is

large, we can escalate the dose to the tumor (since the OAR dose per unit tumor dose is

small) and vice versa, if the distance is small. Given that a fixed prescribed dose must

be delivered to the tumor, adaptive fractionation results in a lower cumulative dose to

the OAR over the course of the treatment. We emphasize that our model is more general

than this 1-dimensional distance setting and can be applied to 3-dimensional realistic

settings as well.

The purpose of this study is to develop and evaluate solution methods for the

adaptive fractionation problem. We use the dynamic programming (DP) algorithm to

solve the problem exactly and to assess how close to optimal various heuristic methods

are. The DP approach is useful for sequential decision making problems, especially when

there is a need for balancing the immediate and future costs associated with making a

decision in any particular stage [1]. For off-line ART, the DP approach can be used to

compensate for past accumulated errors in dose to the tumor [7, 6, 16]. For on-line ART,

an approach for adaptive fractionation based on biological models also makes use of DP

[3]. The results of our study indicate that heuristic methods, both the ones proposed in

this paper and in [11], are near-optimal under most conditions. The consequence is that

these methods can be used to evaluate the best possible benefit of using an adaptive

fraction size. Furthermore, simple heuristics as proposed in this paper provide a quick

way to measure the gain that results from adaptively varying the fraction size.

In Section 2, we formulate the adaptive fractionation problem and describe solution

methods in detail. Results from numerical simulations are evaluated in Section

3. Finally, Section 4 includes discussions about realistic implementations, model



A Dynamic Programming Approach to Adaptive Fractionation 4

assumptions, and future directions.

2. Materials and Methods

We now describe the details of the model and formulate the adaptive fractionation

problem. Let N be the number of fractions and P be the total prescribed dose

to the tumor. The patient anatomy in the kth day is represented by a variable

denoted by sk, which is sampled, independent of other days, from a known probability

distribution p(·) estimated from historical data. We assume that the patient anatomy sk
is observed just before the delivery of the kth fraction and can be obtained, for example,

from imaging modalities such as CBCT. We could also use this formulation for intra-

fractional variations, where sk would change during a fraction; in this case, it would be

more appropriate to assume that patient anatomy instances are correlated rather than

independent from one another. In general, the distribution p(·) can be either continuous

or discrete but for simplicity, we assume a continuous distribution and denote by S the

set of possible anatomy instances. We define rk to be the remaining prescribed dose left

to deliver to the tumor in the kth and future fractions. We must determine the fraction

size uk in the kth fraction based on the remaining dose rk and patient anatomy sk. Here,

rk and sk together represent the state of the system because they are the only relevant

pieces of information needed to determine the fraction size uk. It can be seen that the

dynamics of the system are described by the equations rk+1 = rk − uk, sk ∼ p(·), for

k = 1, 2, . . . , N , with r1 initialized to the prescribed dose P .

Given a patient anatomy sk, the dose delivered to the OAR in the kth fraction can

be written as ukh(sk), where h(sk) is the OAR dose per unit Gy dose delivered to the

tumor. For the 1-dimensional setting in Figure 1, the function h(sk) describes the dose

falloff, as a function of the location of the OAR. We could use other choices for h(sk);

what we need is a function that describes how favorable a particular patient anatomy sk
is. If the current technology available allows for a quick way to supply information about

the favorability of a patient anatomy before the delivery of a fraction, this information

would be captured in the h(sk) function. For notational convenience, we also define the

cumulative distribution function (CDF) for h(sk) as

F h(z) =

∫
{s :h(s)≤z}

p(s) ds. (1)

The optimization problem of interest is to minimize the expected total dose to the

OAR subject to constraints that ensure that: (i) the prescribed dose to the tumor is

met with certainty, and (ii) the fraction size for each day is within a lower bound, u,

and an upper bound, u. Although optimizing non-linear TCP/NTCP functions would

be better choice here, it is simpler to use total dose and is a reasonable surrogate for

most situations. For convenience in analysis, we also incorporate constraint (i) into

the objective cost function by adding a terminal cost g(rN+1), which assigns an infinite

penalty when the prescribed dose P is not met. Mathematically, we can formulate the
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adaptive fractionation problem as follows:

min
{µk}

E

[
g(rN+1) +

N∑
k=1

µk(rk, sk)h(sk)

]

s.t. u ≤ µk(rk, sk) ≤ u, k = 1, 2, . . . , N, ∀rk,∀sk
r1 = P,

rk+1 = rk − µk(rk, sk), k = 1, 2, . . . , N,

sk ∼ p(·), k = 1, 2, . . . , N,

(2)

where

g(rN+1) =

{
0, if rN+1 = 0,

∞, otherwise,
(3)

and where the expectation E[ · ] is taken with respect to the probability distribution p(·).
In the above optimization problem, we are searching for an optimal policy µ∗k(rk, sk),

which for any given time k, is a function of the remaining dose rk and the patient

anatomy sk. Here, the solution is not simply a single value of the optimal fraction

size for any particular day but rather, a policy or a strategy that can possibly choose

different fraction sizes based on state information. This is characteristic of closed-loop

control, which uses state (feedback) information to make decisions. Furthermore, a

brute search over all possible sets of functions {µ(rk, sk)} to solve this problem is not

feasible. Notice that the first term in the objective function g(rN+1) simply ensures that

after N fractions, the prescribed dose to the tumor is met exactly. The second term is

the total dose to the OAR resulting from using the policy µk.

2.1. A Dynamic Programming (DP) Approach

We can solve the problem (2) exactly by using the DP algorithm (Bellman’s backward

recursion):

JN+1(rN+1, sN+1) = g(rN+1) =

{
0, if rN+1 = 0,

∞, otherwise,
(4)

Jk(rk, sk) = min
u≤uk≤u

(
ukh(sk) + E [Jk+1(rk − uk, sk+1)]

)
, (5)

for k = N,N − 1, . . . , 1, where the expectation is taken with respect to the distribution

p(·) of sk+1:

E [Jk+1(rk − uk, sk+1)] =

∫
S

p(s)Jk+1(rk − uk, s) ds. (6)

For numerical implementation, however, we need to discretize the variables rk and sk
and solve a corresponding discrete problem. All of our subsequent results refer to this

discrete problem.

It can be shown that the policy resulting from the above DP algorithm is optimal

for the problem (2). Hence, the cost-to-go function Jk(rk, sk) is the resulting cost from
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using an optimal policy starting with a given remaining dose rk and patient anatomy sk
in the kth fraction. The basic idea of the DP algorithm is to start from the last fraction

(when the optimal decision µ∗N must be exactly equal to the remaining dose rN for

any possible sN), determine the optimal decision µ∗N−1 given this new information, and

proceed backwards in determining the present optimal policy with information about

future optimal policies. We can see that Jk(rk, sk) is computed by minimizing the sum

of the present cost associated with delivering the fraction size uk in the kth fraction

(i.e., ukh(sk)) and the expected future cost resulting from delivering the fraction size uk
given that we use an optimal policy thereafter (i.e., E [Jk+1(rk − uk, s)]). Essentially, the

DP algorithm involves precomputing and storing the fraction size uk off-line for every

possible value of the state (rk, sk) and fraction k. Therefore, choosing the fraction size

on-line right before the delivery of the fraction simply involves a quick table lookup.

We now discuss interesting theoretical properties of an optimal policy resulting from

the qualitative structure of the cost-to-function. The piecewise linear structure of the

cost-to-go function (see Appendix) results in a special structure of an optimal policy.

Essentially, if it is possible to deliver the treatment with a sequence of smallest fraction

sizes u and largest ones u, an optimal policy does exactly that, i.e., the resulting optimal

policy has the threshold structure:

µ∗k(rk, sk) =

{
u, if h(sk) ≥ Tk(rk),

u, if h(sk) < Tk(rk),
(7)

for k = 1, 2, . . . , N , where the Tk(rk) are pre-computed thresholds (see Appendix for

details). The optimal policy (7) makes sense because unfavorable or large values of

h(sk) result in delivering a small fraction size u and vice versa. The policy is completely

characterized by the thresholds Tk(rk), k = 1, 2, . . . , N , which represent the point at

which it is optimal to deliver u when above it and u when below it. We note that

because the optimal policy has the structure (7), we can restrict the search for uk in (5)

to the set {u, u} rather than the entire range of values between them and still preserve

optimality. Furthermore, as we will see in the next section, this structure of an optimal

policy can serve as the basis for simpler heuristics that could perform very close to the

optimal. To get further intuition about the optimal policy, let us consider the case when

the sequence of patient anatomy instances or costs h(sk), k = 1, 2, . . . , N , are known

for the entire treatment. Then, it is clear that the solution would be to deliver u for

the fractions with the smaller costs and u otherwise. Now, we can view our original

problem, where the information about the patient anatomy is only available before the

delivery of the fraction, as one of deciding whether the anatomy of any particular day

will be one of the fractions with the smaller costs. The threshold Tk(rk) then helps us

make this determination.

2.2. Heuristic Policies based on Optimal Policy Structure

Although it is possible to solve the problem exactly using the DP algorithm, we develop

two heuristics that make use of the structure of an optimal policy and approximate
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the threshold Tk(rk) in (7) by using: (i) the remaining dose rk, which summarizes past

information, and (ii) the distribution p(·), which summarizes information about the

expected patient anatomy in the future. We believe such heuristics can provide simpler

and intuitive solutions that can possibly be applied to more complex, high-dimensional

problems, where using the DP algorithm is no longer computationally feasible.

Without loss of generality we assume 0 ≤ h(sk) ≤ 1, for all sk. For simplicity we

assume that (u+ u)/2 = P/N , so that u and u need each to be applied half of the time

over the course of treatment. Our Heuristic 1 which uses the following threshold:

Tk(rk) =


0, if rk = (N − k + 1)u,

1, if rk = (N − k + 1)u,

M, otherwise,

(8)

where M is the median of h(sk) which by definition satisfies F h(M) = 1
2
. Such a policy

has a simple interpretation: If the remaining dose rk in the kth fraction is such that

we must deliver the smallest fraction size u for the remaining fractions (in which case

rk = (N − k + 1)u), we set the threshold to 0, ensuring that regardless of the anatomy

sk, we always deliver the smallest fraction size u. And, similarly, if the remaining dose

rk is (N − k+ 1)u, we set the threshold to 1 and as a result, deliver the largest fraction

size u for the remaining fractions. Otherwise, for the interesting case when rk is between

(N −k)u and (N −k)u, this policy simply delivers the smallest fraction size u when the

cost h(sk) is above its median M (on average, this will happen half of the time) and the

largest fraction size u when below it (on average, this will happen the other half of the

time). Ignoring the possibility that the threshold Tk(rk), for k = 1, 2, . . . , N , can take

extreme values (either 0 or 1), this policy is stationary, in the sense that the thresholds

do not change with the fraction k. This is a simplistic approximation to the true values

of Tk(rk). The nice feature of this policy is that we do not need all of the information

given in the probability distribution p(·); the only information required is the median

M of h(sk). This could be useful in a realistic setting in which we do not actually have

accurate information about the distribution p(·). Here, one could estimate the median

M (perhaps by using statistical information from many patient datasets) and use the

above heuristic policy.

An even better heuristic policy would likely use the entire distribution p(·) (as

opposed to just a statistic such as the median or mean) to determine the threshold

Tk(rk). Consider Heuristic 2, which uses a threshold Tk(rk) which satisfies the following

equation

F h(Tk(rk)) =
ik

N − k + 1
, (9)

where ik is the number of largest fraction sizes u left to deliver in the remaining (N−k+1)

fractions. Given that Tk(rk) is fixed for the remaining (N − k + 1) fractions, the left

hand side of (9) represents the percentage of the remaining fractions for which we expect

to deliver the largest fraction size u. And the right hand side represents the percentage

of the remaining (N−k+1) fractions for which we must deliver the largest fraction size
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u. In some sense, this threshold represents the best balance between what we expect to

deliver and what we must deliver. For the uniform distribution, i.e. h(sk) ∼ U [0, 1], the

threshold Tk(rk) for Heuristic 2 has a simple closed form expression:

Tk(rk) =
ik

N − k + 1
. (10)

Of course, it may not be possible to write Tk(rk) as a closed form expression for other

(even common) distributions. However, for many of these distributions, the threshold

that satisfies (9) can be evaluated by looking at tabulated values of the function F h(·)
(e.g., for the Gaussian distribution).‡

3. Results

We discuss the results from implementing the adaptive algorithms (both exact and

heuristic) in Matlab. For the problem parameters, we take the number of fractions N

to be 30, the prescribed dose P to be 60 Gy, the smallest fraction size u to be 1.6 Gy,

the largest fraction size u to be 2.4 Gy, the set of patient anatomy instances S to be

10 equally spaced values between 0 and 1 representing the distance between the tumor

and OAR (see Figure 1), the distribution p(·) to be a discrete uniform, and the function

h(sk) to be 1 − sk. Essentially, we are allowing for a 20% daily fraction size deviation

from the standard 2 Gy per fraction.

We find that both Heuristic 1 and 2 do well in approximating the optimal threshold,

and as a result, perform numerically close to optimal. In Figure 2, for one treatment

simulation (i.e., one realization of the sequence {s1, s2, . . . , sN}), we show the thresholds

of the optimal and heuristic policies. When the tumor-OAR distance sk is large and

above the threshold, which indicates a favorable anatomy, the policy delivers the largest

fraction size u, and vice versa. We do note that, for this 1-dimensional setting, the

threshold in Figure 2 is equal to 1 − Tk(rk) because we are plotting the tumor-OAR

distance sk on the y-axis rather than h(sk). While Heuristic 2 closely approximates

the optimal threshold, Heuristic 1 makes a crude approximation since it only uses the

median M of h(sk). Since the realized tumor-OAR distances sk (as shown by the ‘x’

markers) are uniformly spread out and rarely take values near the thresholds, we see

that the heuristic algorithms perform well.

In Table 1, we see that when using a uniformly distributed motion model, the

adaptive policies result in about a 10% decrease in dose to the OAR compared to

that resulting from standard fractionation. Note that the DP approach represents the

optimal policy, and hence, provides a baseline for comparison to the other heuristics.

The difference in the dose to the OAR resulting from Heuristic 1 and the DP approach

is very little, which means that using a statistic such as the median M of h(sk) is

‡ For the case of a discrete probability distribution with a few possible patient anatomy instances, a
naive implementation of Heuristic 2 can result in the threshold taking a value of 0 even though it is not
necessary to deliver the smallest fraction size u for the remaining fractions. In such cases, we forced the
heuristic to deliver the largest fraction size u when h(sk) = 0, and this resulted in better performance.
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Figure 2. Thresholds of optimal and heuristic policies resulting from one treatment
simulation run (i.e., one realization of the patient anatomy sequence {s1, s2, . . . , sN}).
For this 1-dimensional example, the threshold lines plotted represent the point at which
a policy delivers the smallest fraction size u when sk is below it and the largest fraction
size u when above it. These lines plotted are actually 1−Tk(rk) because we are plotting
sk instead of h(sk) = 1 − sk. The ‘x’ markers correspond to the actual realization of
the tumor-OAR distance sk. Heuristic 1 (Heu1) makes a crude approximation to the
optimal threshold while Heuristic 2 (Heu2) follows it closely. Since the ‘x’ markers
are uniformly spread out and rarely take values near the thresholds, the heuristic
algorithms perform well compared to the optimal DP approach.

enough for achieving significant decrease in dose to the OAR. Such a policy could be

advantageous in a realistic setting when it is not possible to have accurate information

about the distribution p(·). As expected, Heuristic 2 performs even better than Heuristic

1 since it uses the entire distribution p(·) in the threshold computation. We can see that

the numerical difference between the OAR dose resulting from Heuristic 2 and the DP

approach is not even visible when using two decimal places. Finally, we also simulate

the algorithm in [11] for comparison and notice that it is close to optimal as well, like

the other heuristics.

In Figure 3, we vary both the number of fractions N and the daily fraction size

deviations, and simulate the decrease in the OAR dose when using the optimal DP

approach. We use 20%, 50%, and 100% daily fraction size deviations, and 5, 30, and

60 fractions for N . This allows us to understand the benefit of adaptive fractionation

in hypo-, standard, and hyper-fractionation regimes. However, this may not be entirely

accurate because we simply normalize the dose per fraction so that the same prescribed
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Table 1. Using a uniformly distributed motion model and a 20% daily fraction size
deviation, we find about a 10% decrease in dose to the OAR when using adaptive
policies. The dose to the OAR is averaged over 10,000 treatment runs in order to
report results to two decimal places.

Average Dose to OAR

Standard Fractionation 30.00

DP (Optimal) 27.00

Heuristic 1 27.13

Heuristic 2 27.00

Algorithm in [11] 27.07

dose P is met at the end of treatment, and we do not take into account the biological

effect of varying N . The error bars in Figure 3 correspond to one standard deviation, as

estimated from the simulation of 500 treatment runs. A larger number of fractions and

daily fraction size deviation result in more chances to capitalize on favorable anatomy,

and therefore, result in more gain. We see bigger error bars when using larger daily

fraction size deviations due to the increased variation in the ability to capitalize on

favorable anatomy. On the other hand, we see smaller error bars when increasing the

number of fractions, which means the treatment outcome is more predictable; this is

because with a large number of fractions, laws of large numbers (from probability theory)

take effect. In summary, Figure 3 shows that the percentage decrease in the dose to the

OAR varies significantly (anywhere from 5 - 55%). But in general, we find more gain

when using a larger number of fractions and daily fraction size deviations.

As we see in Figure 4, the decrease in dose to the OAR is more pronounced when

we have a high probability of large tumor-OAR distances. We use three distributions,

each corresponding to parameters of the beta distribution (p(s) = c · s1−α(1 − s)1−β,

where c is a normalization constant), and plot them in the right panel. As before, we use

10 uniformly discretized values between 0 and 1 for the possible tumor-OAR distances.

In the left panel, for the Unfavorable distribution, the percentage decrease in the OAR

dose is minimal. On the other hand, there is a significant decrease in the OAR dose

for the Uniform and Favorable distributions. We conclude that when the OAR tends

to stay far away from the tumor, we see a larger decrease in dose to the OAR. In such

cases, favorable anatomies are frequent enough so that the DP approach is able to make

up for the small fraction sizes used for unfavorable anatomies. When allowing a 100%

daily fraction size deviations and using the Favorable distribution, there is at least a

10% decrease in the OAR dose when comparing the optimal DP approach with the

algorithm in [11]. Here, the algorithm in [11] “believes” favorable anatomies will be

frequent enough over the course of treatment so that no matter what fraction size is

delivered in the initial fractions, it will be able to make up for the much more infrequent

unfavorable anatomies.
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Figure 3. Comparing adaptive fractionation in hypo-, standard, and hyper-
fractionated settings. We simulate the performance of just the optimal DP approach
through 500 treatment runs. The fraction size is adjusted when varying the number
of fractions N so that the same prescribed dose P is met at the end of treatment. The
error bars correspond to one standard deviation, as estimated from the results of the
500 runs. We find a larger decrease in dose to the OAR when using more fractions and
larger daily fraction size deviations.

4. Discussion and Conclusions

Realistic implementation of the approaches described in this paper require the following:

(a) The motion probability distribution p(·) must be known. One could in principle

collect and analyze population data, and assign probabilities corresponding to a

few anatomy scenarios. However, this may not be an accurate representation of the

patient-specific probability distribution. Updating the probability distribution as

the sequence of patient anatomy instances are observed could be a topic of future

research.

(b) Immediately before the delivery of a fraction, imaging information about the patient

anatomy must be available as well as reliable automatic contouring and/or contour

registration algorithms to process this information. This would be needed in order

to determine the favorability of the patient anatomy in any particular day. We can

be optimistic that such technology will be available in the near future.

(c) The OAR dose per unit dose to the tumor, h(sk), must be computable before the

delivery of each fraction. In order to speed up the computation, one may use the
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Figure 4. Results from varying the motion probability distribution. In the right
panel, we show the three probability distributions used, each resulting from varying
parameters of the beta distribution. In the left panel, we show the average percentage
decrease (from 500 treatment runs) in dose to the OAR for each of these probability
distributions. For probability distributions in which the OAR tends to stay far away
from the tumor, there is a larger decrease in dose to the OAR, and the optimal DP
approach is at least 10% better than the other heuristics.

same dose decomposition matrix from the initial CT scan as an approximation and

determine the dose projected on the OAR in the new CT. We emphasize that this

model does not depend on using the OAR dose per unit tumor dose for h(sk); we

simply need a function h(sk) which tells us how favorable a particular anatomy sk
is.

Other assumptions of our model include the following:

(a) One primary OAR is the basis for making decisions about the fraction size. Multiple

OARs can be used, for example, by using for h(sk) a weighted combination of the

dose to each OAR per unit dose to the tumor. However, this does not capture the

true tradeoff between the various OARs because there is also generally an upper

limit to the dose of each OAR. The model would better represent the radiation

therapy problem if, for example, the non-linear NTCP curves were incorporated

into the cost function. There is a potential for further research work here.

(b) The prescribed dose to the tumor must be met exactly and is penalized with

an infinite cost. One may also consider using a penalty (e.g., quadratic) on the

deviation from the prescribed dose, which would possibly result in a “smoother”

optimal policy that does not pick the extreme fraction sizes.

(c) Variations in the patient anatomy are dose-independent and random. In order

to incorporate systematic time varying trends (e.g., tumor shrinkage), we can re-

optimize the treatment plan (the dose profile) midway through treatment. Then,

we can use one of the adaptive fractionation methods in this paper for the

first half of treatment assuming no systematic changes. For the latter half of
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treatment, we would re-optimize the treatment plan, update the motion probability

distribution and/or escalate the prescribed dose if necessary, and restart the

adaptive fractionation method. For other systematic offsets (e.g, patient setup

errors), we assume daily imaging modalities are accurate enough for correction.

(d) When the daily fraction size deviations are not too large, the biological impact of

a varied fractionation scheme is negligible. It is likely that deviating 20% from

standard fractionation does not result in a major difference between physical dose

and biological dose [2]. Dose deviations of 50% and 100%, however, need further

study. Using large deviations and varied fractionation may require additional

considerations such as changes in the onset of early and late reactions. A biologically

based adaptive fractionation approach is given in [3].

Under our framework, it is possible to derive the algorithm in [11] and see that it is a

variant of the approximate DP approach known as the open-loop feedback control (refer

to [1] for a description of such an approach). From the numerical results, we conclude

that the algorithm in [11] performs very close to optimal for almost all cases. However,

we do see that the DP approach performs about 10% better when allowing 100% daily

fraction size deviations and using a probability distribution that favors large tumor-

OAR distances. One difference in the way these algorithms would be used in practice is

that the DP approach involves using a table lookup on-line, while the algorithm in [11]

requires solving a linear programming (LP) problem right before the delivery of every

fraction. Though a table lookup is quicker, solving a LP for this problem, where we are

simply searching for a scalar variable uk, is also very fast and can be done before each

fraction without much time overhead.

Based on the linear-quadratic model of radiation effects, varying the fraction size

during the course of treatment while ensuring a fixed total prescribed dose leads to a

higher TCP [2]. One might argue that this benefit is neutralized by an increase in the

NTCP for the OAR. However, assuming that the OAR has an underlying motion, even

standard fractionation results in a different dose to the OAR from fraction to fraction.

Adaptive fractionation will lead to a more uniform dose to the OAR because a small

fraction size is delivered when the OAR-to-tumor dose ratio h(sk) is large (i.e., when

the tumor and OAR are close together), and vice versa. Further research work can be

done to evaluate the biological benefit of varying the fraction size.

We have posed the adaptive fractionation problem in a theoretical framework and

have provided several solution methods. First, we used the DP algorithm to establish a

benchmark and to solve the problem exactly. This allowed us to show that the simple

heuristics proposed in this paper were numerically near-optimal. One of these heuristics

only uses a statistic, such as the median or mean, rather than the entire probability

distribution. Such a policy can provide a quick way to estimate the best possible benefit

of using an adaptive fraction size in a realistic setting. We have demonstrated through

numerical simulations that we can expect a significant decrease in dose to the OAR

when: (i) we have a high probability of large tumor-OAR distances, (ii) we use many
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fractions (as in a hyper-fractionated setting), and (iii) we allow large daily fraction

size deviations. We expect adaptive fractionation to be beneficial for disease sites in

which the OAR exhibits significant motion from day to day. Some examples include

pelvic cases such as rectal [13], prostate [17], and cervical [8] cancers. Future work

will include determining which disease sites will benefit from adaptive fractionation and

demonstrating the gain for these sites.
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Appendix. Theoretical Results and Proofs

We provide some additional details about the theoretical results in this appendix. We

note that although we assumed sk to be independent and identically distributed, we can

generalize the results to the case of correlated motion using the same arguments below.§
To facilitate the discussion, we define

Bk(rk) = max(u, rk − (N − k)u) (A.1)

and

Bk(rk) = min(u, rk − (N − k)u)), (A.2)

which are the minimum and maximum allowable fraction sizes, respectively, in the kth

fraction. We can verify this by noting that because the prescribed dose to the tumor

must be met exactly, the remaining dose rk must be between the smallest and the

largest possible fraction size deliverable to the tumor for the remaining fractions (i.e.,

(N − k + 1)u and (N − k + 1)u). Now we can rewrite the DP equation as

Jk(rk, sk) = min
Bk(rk)≤uk≤Bk(rk)

(
ukh(sk) + E [Jk+1(rk − uk, sk+1)]

)
, (A.3)

with the same terminal condition as before. We describe the qualitative structure of the

cost-to-go function in the following theorem.

Theorem. The cost-to-go function Jk(rk, sk), for k = 1, 2, . . . , N , is piecewise

linear, continuous, non-decreasing, and convex in rk for feasible rk, with breakpoints

at (N − k + 1− i)u+ iu, for i = 0, 1, . . . , N − k + 1.

Proof Sketch. Here, we give only a proof sketch of the piecewise linearity of the cost-

to-go function, which is the key property that gives rise to the special structure of an

optimal policy. We proceed by induction. For the base case, let k = N . It is clear

that the optimal decision in this last fraction, µ∗N(rN , sN), is equal to the remaining

§ To be precise, our methods apply to the case where the sequence of patient anatomy instances satisfy
the Markov property. That is, the patient anatomy sk+1 is only dependent on sk and not on previous
anatomies before the kth day. In this case, the dependencies would be summarized in a new probability
distribution pk(sk+1|sk) and the same analysis goes through.
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dose rN . (Otherwise, we would incur an infinite penalty for not meeting the prescribed

dose exactly.) In this case, JN(rN , sN) has the desired piecewise linear form (in fact,

it is simply equal to the linear function rNh(sN)) over the range of feasible rN . Now,

assume Jk+1(rk+1, sk+1) has the desired piecewise linear form given in the statement

of the theorem. Then, in (A.3), we are minimizing a piecewise linear function with

breakpoints separated by (u − u) over an interval
[
Bk(rk), Bk(rk)

]
, which is of length

at most (u− u). It follows that one of three possibilities attains the minimum: Bk(rk),

rk− ((N −k+ 1− i∗)u+ i∗u), or Bk(rk), where i∗ is an integer between 0 and N −k+ 1.

We can substitute each of these possibilities in (A.3), and after some algebra, show that

Jk(rk, sk) has the desired piecewise linear form. This completes the induction. �

The consequence of the above theorem is that when it is possible to deliver the

treatment with a sequence of smallest and largest fraction sizes (i.e., when rk is a

nonnegative integer combination of u and u), an optimal policy does exactly that. This

is stated mathematically in the following corollary.

Corollary. If there exists an integer i between 0 and N such that the initial remaining

dose (or the prescribed dose) can be written as r1 = (N−i)u+iu, then an optimal policy

has a threshold form:

µ∗k(rk, sk) =

{
u, if h(sk) ≥ Tk(rk),

u, if h(sk) < Tk(rk),
(A.4)

for k = 1, 2, . . . , N .

Proof. We proceed by induction. Let k = 1 and assume, for the base case, that

there exists an integer i1 between 0 and N such that the initial remaining dose (or the

prescribed dose) can be written as r1 = (N − i1)u+ i1u. We consider three cases:

(a) When i1 = 0, i.e. r1 = Nu, the only possible solution is u1 = u2 = . . . = uN = u,

in which case we are done.

(b) Similarly, when i1 = N , u1 = u2 = . . . = uN = u is the only solution.

(c) We consider the more interesting case when i1 is an integer between 1 and N − 1.

First, we notice that for any choice of u1 between u and u, r2 = r1 − u1 remains

feasible, and hence, the cost-to-go function J2(r1 − u1, s) is finite for all anatomy

instances s. Second, since r1 = (N − i1)u + i1u, from the above theorem, we have

that J2(r1− u1, s) is linear in u1 for all values in between u and u. Since taking an

expectation preserves linearity, the function E [J2(r1 − u1, s2)] is also linear in u1.

Now, in the DP equation

J1(r1, s1) = min
u≤u1≤u

(
u1h(s1) + E [J2(r1 − u1, s2)]

)
, (A.5)

we are minimizing a linear function because adding a linear function u1h(s1)

preserves linearity. So, for any feasible r1, we can write

E [J2(r1 − u1, s2)] = a(r1)u1 + b(r1), (A.6)
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where a(r1) and b(r1) represent the slope and intercept, respectively. Let T1(r1) =

−a(r1). Then, since we are minimizing a linear function over an interval in (A.5),

µ∗1(r1, s1) has the desired threshold form:

µ∗1(r1, s1) =

{
u, if h(s1) ≥ T1(r1),

u, if h(s1) < T1(r1).
(A.7)

Now, it is clear that from the above form for µ∗1(r1, s1), there exists an integer i2
between 0 and N − 1 such that the remaining dose in the next fraction can be

written as r2 = (N − 1 − i2)u + i2u. We can complete the induction by assuming

the appropriate form for rk in the induction hypothesis and following the same line

of argument as above. �

The assumption that the initial remaining dose can be written as r1 = (N− i)u+ iu

simply requires that it be possible to deliver the treatment with a sequence of smallest

fraction sizes u and largest ones u. Otherwise, it would not be possible for the cumulative

sum of the fraction sizes to be equal to the prescribed dose when restricting to only

the smallest or the largest fraction size. In that respect, the assumption here is

reasonable. Though there are generalizations to the structure of an optimal policy

when this assumption is not satisfied, it is not necessary to discuss them further since

this assumption is generally satisfied in a realistic setting or at least satisfiable with a

slight modification of the lower bound u and upper bound u.
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