Protein Folding

1. Designed Random Energy Model (REM): Consider a protein model in which for a given sequence and structure, the energy is randomly taken from the Gaussian probability density

$$p(E) = \frac{1}{\sqrt{2\pi\Sigma^2}} \exp\left(-\frac{E^2}{2\Sigma^2}\right).$$

The total number of structures is Ω_{str} , while the number of sequences is $\Omega_{seq} \gg \Omega_{str}$.

(a) A particular sequence has a (unique) native structure of energy E_N . Calculate and plot the energy E(T) of this sequence as a function of temperature T.

(b) For a particular *structure*, we attempt to design a good sequence by Monte Carlo sampling of representative sequences at a 'temperature' τ . Calculate and plot the designed native energies $E_N(\tau)$ as a function of the design temperature τ .

2. Folding time: [Adapted from Gutin et al., J. Chem. Phys. **108**, 6466 (1998).] Assume that to change from one compact structure to any other, the protein has to unfold to an intermediate flexible state of (higher) energy E^* . If the starting configuration is at an energy E, the typical (activation) time to overcome this energy barrier behaves as

$$t_0(E) = \tau \exp\left(\frac{E^* - E}{k_B T}\right),$$

where T is the temperature, and τ is an elementary time step. The folding time is then related to the number of accessible states (hence entropy) to be explored, by

$$t_F(E) = t_0(E)n(E) = t_0(E) \exp\left(\frac{S(E)}{k_B}\right).$$

(a) Use a random energy model to calculate E and S as a function of temperature T.

(b) Calculate the folding time $t_F(T)$, and plot $\ln t_F(T)$ as a function of 1/T.

3. Amino-acid interactions: What can we learn by combining the Random Energy Model with commonly used interaction potentials between amino acids?

(a) Find a 20 × 20 matrix of interactions U(a, a') amongst amino acids, and calculate the mean $\langle U \rangle$ and variance $\langle U^2 \rangle_c$ of its elements. The commonly used Miyazawa–Jernigan

(MJ) interaction matrix can be found in S. Miyazawa and R.L. Jernigen, J. Mol. Biol. **256**, 623 (1996). (Table 3 of this publication is available in the assignments section.)

(b) Model the possible configurations of a protein by the ensemble of compact self-avoiding walks on a cubic lattice. (All lattice sites are visited by compact walks.) Calculate the number n of non-polymeric nearest neighbor interactions for such configurations on an $N = L \times L \times L$ lattice, and deduce the ratio n/N for large N.

(c) The number of compact walks on a cubic lattice asymptotically grows as g^N , with $g \approx 1.85$. Use this in conjunction with the results from parts (a) and (b) to estimate the folding temperature T_c of a random sequence of amino-acids, and the corresponding energy E_c .

(Optional) (d) Select a protein, find its amino-acid sequence and construct a contact matrix corresponding to its structure. Use the interaction matrix from part (a) to estimate the energy of the native structure, and calculate the ratio E_N/E_c .

4. Analysis of protein structures: Calculate ϕ and ψ torsion angles in Rasmol for a given protein (see the commands below). Make (ϕ, ψ) "Ramachandran" diagrams by plotting ϕ along the x and and ψ along the y axis; one (ϕ, ψ) point for each amino acid.

(a) Do amino acids that are part of different secondary structure elements (helices, sheets) land in the same or different islands on the (ϕ, ψ) diagram? You can find secondary structure elements in fields HELIX and SHEET of the protein structure file (aka PDB file). Explain your observations.

(b) Find amino acids that have unusual (ϕ, ψ) angles (i.e. deviate from the many clouds of points). What types of amino acids tend to have "unusial" (ϕ, ψ) conformation? Discuss. (c) Visualize protein structure in **Rasmol**, following the sequence of commands below, and select those with "unusual" (ϕ, ψ) conformation. Do they tend to be close to the ligand?

Some sample proteins to explore (PDB files provided on the Assignment page): Hemoglobin (alpha chain) 4HHB_A.PDB Immunoglobulin domain 1TEN.PDB

You can use the following sequence of Rasmol commands to generate a good view of a protein, and the fipsi.dat file of (ϕ, ψ) angles

```
set background white
wireframe off
ribbons
```

color structure select ligand cpk color green select protein write RDF fipsi.dat To select a particular set of amino acids, (e.g. 128 and 156) you can do the following select 128,156 cpk color red