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8.592: Statistical Physics in Biology Assignment # 6 Due: 4/11/05


Force-Extension Relations for Polymers


1. Linear polymers: Using optical tweezers, it is now possible to pull on the two ends of a 

single molecule. (Actually the tweezers pull on latex balls that are attached to the ends of 

the polymer; a complication that we shall ignore.) In the presence of the force ~F pulling 

on the ends of the polymer, there is an additional energy term 

δE = −~ R, F ~· 

where ~R = ~rN − ~r1 is the end–to–end distance (between the first and N th monomers) of 

the chain. 

(a) For an ideal polymer, the number of configurations with an end–to–end distance of ~R 

is given by the usual Gaussian formula 

� � gN 3R2 

ΩN R = 
3/2 

exp . 
(2πNa2/3)

−
2Na2 

By integrating the Boltzmann weight over all ~R, calculate the (Gibbs) partition func­

tion Z(N, F, T ) at a temperature T . Using this result, obtain the mean extension 

RF = kBT∂ ln Z/∂F along the direction of the force ~F . 

(b) For other cases in which ΩN does not have a simple form (such as for self-avoiding 

polymers), it is still possible to obtain the linear response of the polymer to small force. 

To this end, expand the Boltzmann weight exp F R/kBT to second order in ~~ ~ F , and · 
hence show that 

RF =
1 � 

R2
� 

F + O(F 3),
03kBT 

where R2

0 
is the mean end–to–end squared distance of the polymer in the absence of 

the force. 

(c) Dimensional analysis suggests that quite generally the extension–force curve for poly­

mers should have the form 

RF F 〈R2〉
0 

� = Φ . 
〈R2〉

0 
kBT 

The left hand side is a dimensionless extension; on the right hand side a dimensionless 

combination involving the force appears as the argument of an unknown function Φ. At 

large forces F , the polymer becomes stretched such that Rf N . For self-avoiding 
� 

∝ 
polymers 〈R2 aNν with ν ≈ 0.59. Use these facts to deduce a non-linear behavior 〉

0 
≈

RF ∝ Fλ for the extension at large force, and give the value of the exponent λ. 
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2. Slip-linked polymer: Consider a polymer with a slip-link that can slide along it, but that 

cannot fall off its ends, as depicted in the figure. The slip-link constrains two monomers 

to be at the same location in space (e.g. monomers m and m + n at ~R′ , as in the figure). 

N 

R 

R ’ 

m, m+ n 

1 

(a) Assume that the polymer is an ideal random walk, such that the number of configu­

rations of each segment is given by a formula similar to part (a) in problem 1 above. As 

before, assume that the ends of the polymer are pulled apart by a force ~F . Integrate over 

R and ~the position vectors ~ R′ , to get the partition function, and hence obtain 

2a
RF = n〉F ) F, 

3kBT 
(N − 〈

where 〈 F is the mean size of the loop. Note that the force is carried by a ‘backbone’ n〉
that excludes the loop. (Quite generally, the manner in which the force is transmitted 

through a Gaussian polymer network is quite similar to the way that current goes through 

a resistor network.) 

(b) Show that for small force, 〈n〉F ∝
√

N , while for large F , it is reduced to zero (or a 

small size determined by microscopic considerations). Is the force–extension curve linear 

in the presence of a slip-link? 

******** 

3. Denaturing RNA by force: By pulling on the ends of RNA, the hydrogen bonds can 

be broken to yield a stretched polymer. Let us model the partially denatured state as 

a sequence of linear segments with no hydrogen bonds and ‘blobs’ which are hydrogen 

bonded (opposite to the case of DNA). Assume that the force carrying backbone of the 

molecule is made up of the linear segments, and that the RNA blobs carry no force (similar 
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to the loop in problem 2). After integrating over the position vectors, the (Gibbs) partition 

function of an RNA of length N can be written as 

Z(N, F ) = P (ℓ1)R(ℓ2)P (ℓ3) · · · , with ℓ1 + ℓ2 + ℓ3 + = N. · · · 
ℓ1,ℓ2,ℓ3,··· 

The contributions of linear and blob segments are respectively 

F 2a2ℓ 
P (ℓ) = g ℓ exp , and R(ℓ) = f ℓ 

ℓ3

A 
/2 

. 
6k2 T 2 

B

(a) Exploit the mathematical similarity to the Poland–Scheraga model to evaluate the 

grand partition function of the model. 

(b) Identify the force Fc at which denaturation starts. 

(c) Sketch the fraction of denatured sites as a function of force, clearly indicating the 

nature of the singularity at Fc. 

******** 

4. Pulling RNA: The server on http://bioinfo.ucsd.edu/rna/ (or its mirror at http:// 

bioserv.mps.ohio-state.edu/rna/) gives force extension curves for RNA based on secondary 

structure calculations. Use this server to examine force extension curves for: (a) a uniform 

sequence; (b) an alternating sequence of G and C; (c) an alternating sequence of A and U; 

(d) an actual RNA sequence. (Choose sequences of roughly the same length.) Comment 

on the general characteristics of these curves. Does any of them resemble the theoretical 

result from the previous problem? 

******** 

(Optional) 5. Denaturing DNA by force: Obtain the phase diagram of DNA pulled by a 

force ~F by generalizing the Poland–Scheraga model, as follows: 

(a) By integrating over the position vectors, show that the (Gibbs) partition function of 

DNA of length N can be decomposed into products of contributions from double-stranded 

rods and single stranded bubbles, as 

Z(N, F ) = R(ℓ1)B(ℓ2)R(ℓ3) · · · , with ℓ1 + ℓ2 + ℓ3 + = N. · · · 
ℓ1,ℓ2,ℓ3,··· 
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(b) Treat the double stranded segments as rigid rods of fixed length aℓ. By integrating 

over all orientations in three dimensions show that 

sinh(βFaℓ)
R(ℓ) = w ℓ	 ,× 

βFaℓ 

where w = e−βε , and ε is the energy gain of forming the double strand. 

(c) Treat the double stranded loop as two random walks of length ℓ connected at the two 

end points. Integrating over all separations of the two end points show that 

� � 
β2F 2a2 

��ℓ 
s 

B(ℓ) = 
ℓ3/2 

g 2 exp	 . 
12 

(d) Examine the problem in a (grand canonical) ensemble with variable DNA lengths N , 

additionally weighted by a factor of zN . Give the expressions for the (Laplace) transformed 

˜ R(z) in this ensemble in terms of the (Bose) sums f+B(z) and ˜	
m(x) = 

�

∞ 

xℓ/ℓm .ℓ=1 

R = ˜ =(e) Show that the strands become fully separated at a critical point satisfying ˜ B−1 

�	 �

−1 
sζ3/2 , where ζ3/2 ≡ f

3

+ 

/2
(1) ≈ 2.612. 

(f) For s = 1, plot the phase diagram of the model in the coordinates (w/g) and (βFa). 

******** 
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