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8.592: Statistical Physics in Biology Assignment # 7 Due: 4/25/05


Drift, Diffusion, and Dynamic Instability


1. Treadmilling Actin: Actin filaments are long, asymmetric, polymers involved in a 

variety of cellular functions. In some cases the filaments are in a dynamic state in which 

monomers are removed from one end and added to the other. (The two ends are called 

minus and plus respectively, and this process is known as treadmilling.) 

(a) Assume that monomers are added to the plus-end at rate a, and removed from the minus 

end at rate b. Write down the equations governing the rate of change of the probabilities 

{p(ℓ, t)}, for finding a filament of length ℓ at time t. Note that ℓ = 1, 2, , 3, · · ·, and that 

the equation of p(1, t) is different from the rest. 

(b) It is possible to have a dynamic steady state with probabilities p ∗(ℓ) that do not change 

with time. Find the (properly normalized) distribution p ∗(ℓ) in such a case. 

(c) What is the condition for the existence of a time independent steady state, and the 

mean length of the filament in such a case? 

(d) In the case of a > b, what is the average length of a filament at time t, starting from 

individual monomers at time t = 0? Calculate the fluctuations (variance) in length, and 

write down an approximate probability distribution p(ℓ, t) with the correct first and second 

moment. 

******** 

2. Growing/shrinking microtubules: Consider a slightly generalized model of microtubule 

growth and shrinkage [M. Dogterom and S. Leibler, Phys. Rev. Lett. 70, 1347 (1993)], 

described by the equations 

∂tp+(x, t) = −f+−p+ + f−+p− − ∂z (v+p+) + d ∂z 
2 p+ 

. 
∂tp−(x, t) = +f+−p+ − f−+p− + ∂z (v−p−) + d ∂z 

2 p− 

(a) Such coupled linear equations are usually solved by first Fourier transforming to 

p̃(k, ω) = dxdtei(kx−ωt)p(x, t). Find the dispersion relations for allowed ω(k). 

(b) Expand the ‘slowly varying’ mode as ω(k) = vk− iDk2 +O(k3), and hence obtain the 

dependence of the drift velocity and diffusion coefficient of the microtubule length on the 

parameters describing the growing and shrinking states. 

(c) Typical values of parameters for microtubules growing in a tubulin solution of concen

tration c ≈ 10µM are v+ ≈ 2µm/min, v− ≈ 20µm/min, f+− ≈ 0.004s−1 , f−+ ≈ 0.05s−1 . 
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Use these parameters (along with d = 0) to estimate a time scale τ beyond which diffusion 

effects are less important than the average drift. (Hence microtubules that have survived 

to a time τ are unlikely to be completely eliminated by catastrophes.) 

******** 

3. Steady states with dynamic instability: In studying growth processes where partial 

deconstruction can occur at a rate r on any point along the interval [0, x > 0], we encounter 

equations of the form 

∂ ∂P ∂2P 
P (x, t) = −v(x) + D − rxP ,

∂t ∂x ∂x2 

where P (x, t) is the cumulative probability of values greater than x. We would like to 

investigate the general case of a position dependent drift velocity v(x). 

(a) For r = 0 and a diffusion coefficient D 6= 0, find a general expression for the steady 
∗state (time independent) solution pD(x) = −dP/dx, in terms of integrals involving v(x). 

(b) For r 6= 0 and D = 0, find a general expression for the steady state (time independent) 

solution Pr 
∗(x), in terms of integrals involving v(x). 

(c) Find and sketch steady state probability densities for the cases v = v0 (constant), 

v = −ax, and v = v0 − ax, and comment on their differences. 

******** 

4. Two state motor: A molecular motor moves along a linear track with discrete steps of 

length d. At each site the motor can be in one of two states, indicated by n or n ′ for the 
′ nth site. The forward transition rates are u1 (for internal state change from n to n ) and 

u2 (for hopping from n ′ to n+1), and the corresponding backward transition rates are w1 

and w2. 

(a) Write down the master equations governing the time evolution of the probabilities 

p(n, t) and p(n ′ , t). 

(b) Use Fourier transforms to obtain the dispersion relation ω(k) for the slowly varying 

mode. 

(c) Calculate the drift velocity v, the diffusion coefficient D, and the Einstein force fE , as 

a function of u1, u2, w1, and w2. 

(d) Assume that under an external load F , the forward hopping rate changes as u2 → 

u2 exp − fd , while all the other rates remain unchanged. Calculate v(f), and obtain 
kBT 

the stalling force fs. 
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(e) Direct observation of kinesin motors moving along microtubules (by Block’s group at 

Stanford using in vitro solution of [ATP]=2mM) indicate v ≈ 670nm/s, D ≈ 1400nm2/s, 

and fs ≈ 5pN. Data from chemical analysis suggest that forward state changes occur at 

rates of u1 ∼ 2 × 103s−1 and u2 ∼ 5 × 10s−1 . The backward rates are harder to measure-

assume values of w1 ∼ u1/100 and w2 ∼ u2/100. How consistent are these results with a 

two state model? 

******** 

5. Chemotaxis: The motion of E. Coli in a solution of nutrients consists of an alternating 

sequence of runs and tumbles. During a run the bacterium proceeds along a straight line for 

a time tr with a velocity v. It then tumbles for a time tt, after which it randomly chooses 

a new direction n̂ to run along. Let us assume that the times tr and tt are independently 

selected from probability distributions 

4tr 2tr 4tt 2tt 
pr (tr) = exp − , and pt (tt) = 

τ2 exp − . 
τr 

2 τr t τt 

(a) Assuming values of τr ≈ 2s, τt ≈ 0.2s, and v ≈ 30µms−1, calculate the diffusion 

coefficient D for the bacterium at long times. 

(b) In the presence of a chemical gradient the run times become orientation dependent, 

and are longer when moving in a favorable direction. For preferred motion up the z 

axis, let us assume that the average run time depends on its orientation n̂ according to 

n) = τ0 + gˆτr (ˆ n · ẑ. Calculate the average drift velocity at long times. 

******** 
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