
8.592: Statistical Physics in Biology Assignment # 8 Due: 5/4/05


Protein–DNA Interactions


1. Weight matrices: You are given a set of binding sites for the E. Coli purine repressor, 

PurR (see file purR sites.txt on the assignment page). 

(a) Build a weight matrix for wi(b) for base b at position i for PurR. Calculate the 

information content of the set. 

(b) Write a program that feeds random DNA sequences into the weight matrix, and con­

struct a histogram for the resulting weights. Use this histogram to compute the probability 

distribution of specific binding energies, assuming an effective evolutionary “temperature” 
∗equal to the ambient temperature T = 1/(kBλ) = T . 

(c) (Optional) Assume a binding threshold slightly above the average binding energy 

of the given set of sites. Find all the sequences in the E. coli genome (included on the 

Assignment page) having binding energy below this threshold. Have you located all the 

input sequences? Try to move the threshold. How many false-positives do you find? You 

can consult the provided gene table of E. coli (gene table.txt) to find out if the detected 

sequences have any regulatory function. 

******** 

2. Target site location: Complex transcription machinery in cells is regulated by a set of 

protein molecules–transcription factors (TFs) whose functions can be described as: 

• Receiving a control signal- This can be the binding or unbinding of a ligand, resulting 

in initiation or shutting down of the transcription machinery. 

• Finding a specific site on the DNA and binding to it. 

TF 

Fig. 1- Schematics of the target location mechanism. 

Dashed lines represent 3D diffusion trajectories, 

thick black lines are the 1D sliding footprints. 
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(a) Suppose the protein has to locate a unique binding site on a genome of length M . It 

may do so by alternately diffusing in solution, and sliding along the DNA, as depicted 

in Fig. 1. Given a typical TF diameter of 10nm and cytoplasm dynamic viscosity of 

approximately 0.1 g s−1cm−1, estimate D3d for a TF in cytoplasm. (For 1D sliding, one 

can assume D1d ≈ 0.1 ∗ D3d.) 

(b) We postulate that the target site is located when the protein traverses the site during 

one of the 1D sliding events. Assuming that each time the protein slides along the DNA it 

covers n base-pairs in completely uncorrelated regions of DNA, calculate the mean number 

N of sliding segments needed to locate the target. Assuming that N is large enough, that 

the motion along the DNA is diffusive, and that the average 3D diffusion time is τ3d, write 

the expression for the mean target location time tloc(n). 

(c) Given the 1D diffusion coefficient D1d, obtain the optimal target location time tloc. 

The dissociation rate of the proteins from DNA is controlled by the nonspecific binding 

energy Ens. Estimate Ens for the optimal target location time. Assume D1d = 1µm2/sec, 

τ3d = 10−3sec. Find the location time for M = 106 base-pairs. 

******** 

3. Force–extension curve for DNA. I. Protein-DNA interaction: In the worm-like chain 

(WLC) model, the energy cost of deformed piece of DNA of length L is 

1 L κ 
H = 

2 0 

ds 
R2(s)

, 

where κ is the bending modulus and R(s) is the local curvature radius. Proteins specifically 

bound to DNA introduce local “kinks” in the DNA structure. Consider the experimental 

setup in Fig. 2. 

(s)θ 
protein 

DNA 

X 

F


Fig. 2- Force-extension curve measurement setup.
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(a) Express the local curvature radius through the local inclination angle θ(s). Modify the 

above Hamiltonian to include the applied force F and write it down as H[θ(s)]. 

(b) By minimizing H, find the equation for θ(s). Assuming θ is small, solve the equation 

and calculate the extension X of the DNA as a function of F . Invert the relation and plot 

the function F (X). 

(c) Calculate the energy cost of the DNA deformation. Given that near the protein, θ = 0.5 

and that the energy of specific binding is 20 kBT , estimate the force at which the protein 

will “pop” from the DNA. Plot the modified force–extension curve. 

******** 

4. Force–extension curve for DNA. II. Entropic elasticity: Now assume that the DNA is 

“naked”, i.e. there are no proteins attached to it. However, there is still a force applied to 

its end, and it is not fully extended. 

(a) Assume θ(s) is small. Rewrite the WLC Hamiltonian as a sum over harmonic modes 

of the DNA “string” θq. 

(b) Equipartition requires that each mode will have the average energy of kBT associated 

with it. Write the expression for 〈|θq|
2〉 and calculate 〈θ2(s)〉. 

(c) Calculate the extension X of the DNA as a function of force F . Invert the relation and 

plot the function F (X). Use kBT and persistence length lp in your answer. 

******** 
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