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I. Dissipative Dynamics


I.A Brownian Motion of a Particle 

Observations under a microscope indicate that a dust particle in a liquid drop under­

goes a random jittery motion. This is because of the random impacts of the much smaller 

fluid particles. The theory of such (Brownian) motion was developed by Einstein in 1905 

and starts with the equation of motion for the particle. The displacement λx(t), of a particle 

of mass m is governed by, 

λ̇¨ x γV 
+ λmλx = frandom(t). (I.1) 

x
− 

µ 
− 

γλ

The three forces acting on the particle are: 

(i) A friction force due to the viscosity of the fluid. For a spherical particle of radius R, 

the mobility in the low Reynolds number limit is given by µ = (6�σ̄R)−1, where σ̄ is 

the specific viscosity. 

(ii) The force due to the external potential V(λx), e.g. gravity. 

(iii) A random force of zero mean due to the impacts of fluid particles. 

The viscous term usually dominates the inertial one (i.e. the motion is overdamped), 

and we shall henceforth ignore the acceleration term. Eq.(I.1) now reduces to a Langevin 

equation, 

x = λ x) + λλ̇ v(λ σ(t), (I.2) 

v(λ x is the deterministic velocity. The stochastic velocity, λwhere λ x) = −µγV /γλ σ(t) = 

µfλrandom(t), has zero mean, 

σ(t) = 0. (I.3)�λ � 

It is usually assumed that the probability distribution for the noise in velocity is Gaussian, 

i.e. 
� � 

σ(φ)2 ⎣ 

σ(t)] √ exp − dφ . (I.4)P [λ
4D 

Note that different components of the noise, and at different times, are independent, and 

the covariance is 

σσ(t)σγ (t
�) = 2D�σ,γ �(t − t�). (I.5) 
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The parameter D is related to diffusion of particles in the fluid. In the absence of any 

potential, V(λx) = 0, the position of a particle at time t is given by 

� t 

x(t) = λ σ(φ).λ x(0) + dφλ
0 

Clearly the separation λ x(0) which is the sum of random Gaussian variables is itself x(t) − λ

Gaussian distributed with mean zero, and a varaince 

� 
2
� � t 

(λ x(0)) = dφ1dφ2 λ λ = 3 × 2Dt. x(t) − λ
0 

�σ(φ1) · σ(φ2)� 

x(t) = 0, i.e. with P (λ x), the For an ensemble of particles released at λ x, t = 0) = �3(λ

particles at time t are distributed according to 

� 
1 

�3/2 � 
2 ⎣ 

x
x, t) = exp ,P (λ �

4�Dt 
− 

4Dt 

which is the solution to the diffusion equation 

γP 
= D 2P. 

γt 
⇒ 

A simple example is provided by a particle connected to a Hookian spring, with 

x) = Kx2/2. The deterministic velocity is now λ x) = −µKλV(λ v(λ x, and the Langevin 

x = −µKλ σ(t), can be rearranged as equation, λ̇ x + λ

x(t)
� 

= eµKtλ
d � 

eµKtλ σ(t). (I.6)
dt 

Integrating the equation from 0 to t yields 

� t 
µKtλ x(0) = dφeµKρ λe x(t) − λ σ(φ), (I.7) 

0 

and 
� t 

λ x(0)e −µKt + dφe −µK(t−ρ )λx(t) = λ σ(φ). (I.8) 
0 

Averaging over the noise indicates that the mean position, 

x(t) = λx(0)e −µKt , (I.9)�λ � 
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decays with a characteristic relaxation time, φ = 1/(µK). Fluctuations around the mean 

behave as 
2D�(ρ1 −ρ2 )×3 

λ x(t)
��

x(t) − λ
⎧2

� 
= 

� t 

dφ1dφ2e −µK(2t−ρ1 −ρ2 ) �λ λ� � 
0 

σ(φ1) · σ(φ2)� 
� t 

=6D dφe −2µK(t−ρ ) (I.10) 

0 

t�� 3D3D �
1 − e −2µKt 

� 
= . 

µK 
−� 

µK 

However, once the dust particle reaches equilibrium with the fluid at a temperature T , its 

probability distribution must satisfy the normalized Boltzmann weight 

� 
K 

�3/2 � 
Kx2 ⎣ 

P eq.(λx) = exp , (I.11)
2�kB T 

− 
2kB T 

yielding x2
� 

= 3kB T/K. Since the dynamics is expected to bring the particle to equilib­

rium with the fluid at temperature T , eq.(I.10) implies the condition 

D = kB T µ . (I.12) 

This is the Einstein relation connecting the fluctuations of noise to the dissipation in the 

medium. 

Clearly the Langevin equation at long times reproduces the correct mean and variance 

for a particle in equilibrium at a temperature T in the potential V (λx) = Kx2/2, provided 

that eq.(I.12) is satisfied. Can we show that the whole probability distribution evolves to 

the Boltzmann weight for any potential? Let P(λx, t) ≥ λ 0 denote the probability �x|P (t)| � 
density of finding the particle at λx at time t, given that it was at 0 at t = 0. This probability 

can be constructed recursively by noting that a particle found at λx at time t + β must have 

arrived from some other point λ � at t. Adding up all such probabilities yields x 

P(λ x P(λ � x Tβ λx, t + β) = d3λ x , t) �λ | x � , (I.13) 

where λ x x�x|Tβ λ � λ λ � is the transition probability. For β ≡ 1,| � ≥ �x|P(β)| � 

x = λ � + λv (λ σβ , (I.14)λ x x �)β + λ

� t+β
where λ σ(φ). Clearly, λσβ = 

t dφλ �σβ = 0, and 
�
σ2

� 
= 2Dβ × 3, and following eq.(I.4), β 

� �3/2 
σ2 ⎣ 

p(λσβ ) =
1 

exp 

� 
β . (I.15)

4�Dβ 
− 

4Dβ 
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The transition rate is simply the probability of finding a noise of the right magnitude 

according to eq.(I.14), and 

�3/2 
v(λ� − βλ x �))21 (λ xx − λ

λ x�x |T (β) λ � = p(σβ ) = −
exp
4�Dβ 4Dβ 

⎩
 �2 (I.16)
λ̇x − λ x)v(λ1 

�3/2 
⎦
⎪


�
⎨
−β
= exp
 . 

4�Dβ 4D 

By subdividing the time interval t, into infinitesimal segments of size β, repeated 

application of the above evolution operator yields 

x, t) = λxP(λ 0

⎩ 

T (β)t/β

�2 
λ̇x − λ (I.17)x)v(λx,t)� (α t x(φ)Dλ

exp
⎦⎪

�
⎨
− 

0 
dφ= . 

4D(0,0) N 

The integral is over all paths connecting the initial and final points; each path’s weight 

is related to its deviation from the classical trajectory, λ̇ v(λx = λ x). The recursion relation 

(eq.(I.13)), 

�3/2 
v(λ� − βλ x �))21 (λ xx − λ

d3λxx, t) = P(λ xP(λ , t − β), (I.18)exp −
4�Dβ 4Dβ 

can be simplified by the change of variables, 

y =λ � x x =λ x + βλv(λ �) − λ → 
(I.19) 

y =d3λ v(λ � x v(λd3λ x (1 + β λ x )) = d3λ � 
�
1 + β⇒ · λ x) + O(β2)⇒ ·

⎧

. 

Keeping only terms at order of β, we obtain 

21 
�3/2 

y 

d3λy −P(λ v(λx, t) = [1 − β λ x)]⇒ · 4D� x + λ v(λP(λ y − βλ x), t − β)e 
4�Dβ 

21 
�3/2 

y 

d3λy − v(λ[1 − β λ x)]⇒ · 4D� = e ×
4�Dβ 

⎣


x)) · ⇒P + 
yiyj − 2βyivj + β2 vivj

x, t) + (λP(λ y − βλv(λ i
γP 

+ O(β2)
2 

⇒ ⇒j P − β 
γt 

2 γP 
+ O(β2P − β 

γt 

⎣


)
 .
= v(λ[1 − β λ x)] v + βD⇒ · P − βλ · ⇒ ⇒ 

(I.20) 
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Equating terms at order of β leads to the Fokker-Planck equation, 

γP 
+ Jλ = 0, with Jλ = λ . (I.21)

γt 
⇒ · v P − D⇒P 

The Fokker-Planck equation is simply the statement of conservation of probability. The 

probability current has a deterministic component λv P , and a stochastic part −D⇒P . A 

stationary distribution, γP/γt = 0, is obtained if the net current vanishes. It is now 

x) √ exp[−V(λeasy to check that the Boltzmann weight, P eq.(λ x)/kB T ], with ⇒P eq. = 

λv P eq./(µkB T ), leads to a stationary state as long as the fluctuation–dissipation condition 

in eq.(I.12) is satisfied. 

I.B Equilibrium Dynamics of a Field 

The next step is to generalize the above formalism to a collection of degrees of freedom, 

most conveniently described by a continuous field. The procedure will be described in terms 

of the dynamics of a surface, although it is in fact quite general. Small fluctuations of the 

surface can be described by a height h(x, t). Specific examples are the distortions of a soap 

film or the fluctuations on the surface of water in a container. In both cases the minimum 

energy configuration is a flat surface (ignoring the small effects of gravity on the soap film). 

The energy cost of small fluctuations for a soap film comes from the increased area and 

surface tension, δ. Expanding the area in powers of the slope results in 

� �⎢ ⎣ 
δ 

� 
2 2 Hπ = δ dD x 1 + (⇒h) − 1 dd x (⇒h) . (I.22)∝ 

2 

For the surface of water there is an additional gravitational potential energy, obtained by 

adding the contributions from all columns of water as 

� � h(x) 

Hg = dd x dh� �gh� = 
�g 

� 
dd xh(x)2 . (I.23)

20 

The total (potential) energy of small fluctuations is thus given by 

� δ 2 H = 
� 

dd x (⇒h) + 
�g

h2
� 
, (I.24)

2 2 

with the second term absent for the soap film. 
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To construct a Langevin equation governing the dynamics of height fluctuations, first 

calculate the force on each surface element from the variations of the potential energy. The 

functional derivative of eq.(I.24) yields 

F (x) = − 
�H[h]

= −�gh + δ 2h. (I.25)
�h(x) 

⇒ 

The straightforward analog of eq.(I.2) is 

γh(x, t) 
= µF (x) + σ(x, t), (I.26)

γt 

with a random velocity, σ, such that 

σ(x, t) = 0, and σ(x, t)σ(x �, t ) = 2D�(x − x �)�(t − t ). (I.27) 

The Langevin equation,


γh(x, t)

= −µ�gh + µδ⇒ 2h + σ(x, t), (I.28)

γt 

is most easily solved by examining the Fourier components, 

h(q, t) = dd x e iq·xh(x, t), (I.29) 

which evolve according to 

γh(q, t) 
= −µ(�g + δq 2) h(q, t) + σ(q, t). (I.30)

γt 

The Fourier transformed noise, 

σ(q, t) = dd x e iq·xσ(x, t), (I.31) 

has zero mean, σ(q, t) = 0, and correlations 

2D�d (x−x ) �(t−t ) 
� � �� � 

�σ(q, t)σ(q �, t ) = dd xdd x � e iq·x+iq � ·x σ(x, t)σ(x �, t )

� (I.32) 
ix·(q+q �)=2D�(t − t�) dd x e 

=2D�(t − t )(2�)d�d(q + q ). 
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Each Fourier mode in eq.(I.30) now behaves as an independent particle connected to 

a spring as in eq.(I.6). Introducing a decay rate 

1 
ρ(q) ≥ = µ(�g + δq 2), (I.33)

φ (q) 

the evolution of each mode is similar to eq.(I.8), and follows 

� t 

h(q, t) = h(q, 0)e −δ(q)t + dφ e −δ(q)(t−ρ ) σ(q, φ ). (I.34) 
0 

Fluctuations in each mode decay with a different relaxation time φ (q); h(q, t) = 

h(q, 0) exp[− t/φ (q)]. The competition between surface tension and gravity introduces 

a capillary length, τc δ/�g. For most liquids τc is of the order of a few millime-∝ 

ters. (It is τc that sets the characteristic size of rain drops or ripples on the surface of a 

pond.) On length scales larger than τc (or q ≡ 1/τc), the relaxation time saturates to 

φmax = 1/(µ�g). On the other hand, for the soap film where gravity is not important, the 

characteristic time scale grows with wavelength as φ (q) ∝ (µδq2)−1 . The divergence of the 

time scale is usually described by a dynamic exponent z, as φ √ τz . The value of z = 2 for 

the soap film is characteristic of diffusion processes. 

The connected height-height correlation functions are obtained from 

2D�(ρ1−ρ2 )(2�)d�d (q+q ) 
� t � �� � 

� h(q, t)h(q �, t)� = 
0 

dφ1dφ2e −δ(q)(t−ρ1 )−δ(q � )(t−ρ2 ) σ(q, φ1)σ(q �, φ2)c 

� t 

=(2�)d�d(q + q ) 2D dφ e −2δ(q)(t−ρ ) 

0 (I.35) 

� −2δ(q)t=(2�)d�d(q + q ) 
D � 

1 − e 
ρ(q) 

t�� �−� (2�)d�d(q + q ) 
D

. 
µ(�g + δq2) 

However, direct diagonalization of the Hamiltonian in eq.(I.24) gives 

� 
ddq (�g + δq2) H = 

(2�)d 2 
| h(q)| 2 , (I.36) 

leading to correlation functions 

� h(q)h(q � ) = (2�)d�d(q + q ) 
kB T

. (I.37)� 
�g + δq2 
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Comparing equations (I.35) and (I.37) indicates that the long-time dynamics reproduce 

the correct equilibrium behavior if the fluctuation–dissipation condition, D = kB Tµ, is 

satisfied. In fact it is possible to obtain the correct equilibrium weight with q dependent 

mobility and noise, as long as the generalized fluctuation–dissipation condition, 

D(q) = kB Tµ(q), (I.38) 

holds. Physically, correlations in noise at different locations are generated if the impact of 

particles from the surrounding fluid exerts a force over many surface elements. 

Starting with a flat interface, h(x, t = 0) = h(q, t = 0) = 0, the profile at time t is 

� � tddq −iq·xh(x, t) = 
(2�)d 

e dφe −µ(�g+πq 2)(t−ρ ) σ(q, t). (I.39) 
0 

¯The average height of the surface, H = 
� 

dd x h(x, t)� /Ld is zero, while its overall width 

is defined by 
1 

� 
ddq2w (t, L) ≥ 

Ld 
dd x 

�
h(x, t)2

� 
= 

L

1 
d 

� 

(2�)d 
|h(q, t)|2 , (I.40) 

where L is the linear size of the surface. Using eq.(I.35), we find that the width grows as 

� 
ddq D � �

2w (t, L) = . (I.41)
(2�)d ρ(q)

1 − e −2δ(q)t 

There are a range of time scales in the problem, related to characteristic length scales 

through eq.(I.33). The shortest time scale, tmin √ a2/(µδ), is set by an atomic size a. The 

longest time scale is set by either the capillary length (τc) or the system size (L). For 

simplicity we shall focus on the soap film where the effects of gravity are negligible and 

tmax √ L2/(µδ). We can now identify three different ranges of behavior in eq.(I.41): 

(a) For t ≡ tmin, none of the modes has relaxed since ρ(q)t ≡ 1 for all q. Each mode 

grows diffusively, and 

� 
ddq D 2Dt 2w (t, L) = 

(2�)d ρ(q)
2ρ(q)t = . (I.42)

da

(b) For t ≈ tmax, all modes have relaxed to their equilibrium values since ρ(q)t ≈ 1 for 

all q. The height fluctuations now saturate to a maximum value given by 

� 
ddq D2w (t, L) = . (I.43)

(2�)d µδq2 
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The saturated value depends on the dimensionality of the surface, and in a general 

dimension d behaves as 
⎡

� 

⎤


a2−d for d > 2, (∂ = 0) 
D2 ln(L/a) for d = 2, (∂ = 0+)(t, L) √ ,
 (I.44)
w 
µδ 

L2−d for d < 2, (∂ = 2−d )2 

where we have defined a roughness exponent ∂ that governs the divergence of the 

width with system size via limt�� w(t, L) √ Lτ . (The symbol 0+ is used to indicate 

a logarithmic divergence.) The exponent of ∂ = 1/2 in d = 1 indicates that the one 

dimensional interface fluctuates like a random walk. 

(c) For tmin ≡ t ≡ tmax only a fraction of the shorter length scale modes are saturated. 

The integrand in eq.(I.41) (for g = 0) is made dimensionless by setting y = µδq2t, 

and 
D −2µπq 2t2 dq q d−3(t, L) √ 1 − ew 
µδ 

� d−2 (I.45)� t/tmin2 

1 − e 

�
1
D d−4 −2y 

⎧
dy y 2√ . 

µδ µδt t/tmax 

The final integral is convergent for d < 2, and dominated by its upper limit for d � 2. 

The initial growth of the width is usually described by an exponent η defined through 

limt�0 w(t, L) √ tγ , and 

w
2(t, L) √


⎡ 
⎥� 

⎥⎤


D a2−d for d > 2, (η = 0) µπ 
D 
µπ ln (t/tmin) (η = 0+)for d = 2, . (I.46) 

D t(2−d)/2 for d < 2, (η = (2 − d)/4)
(µπ)d/2 

The dependencies on space and time in the height–height correlation function can be 

summarized by the dynamic scaling form 

t − t�

x − x�

2
� | |


|

2τ, t )][h(x, t) − h(x .
 (I.47)
= x − x| | g 

z|

Since equilibrium equal time correlations only depend on x − x � , limy�0 g(y) should be | |
a constant. On the other hand correlations at the same point can only depend on time, 

requiring that limy�� g(y) √ y2τ/z , and leading to the exponent identity η = ∂/z. 

The single particle Fokker-Planck equation (I.21) can be generalized to describe the 

evolution of the whole probability functional, P([h(x)], t), as 

γP([h(x)], t)

γt


= − dd x 

� 
γh(x, t) 

�h(x) γt


⎣

�PP − D .
 (I.48)

�h(x)


9 



� 

� � � � � � �

For the equilibrium Boltzmann weight 

� � 
δ 

� ⎣ 

Peq.[h(x)] √ exp −H[h(x)] 
⎣ 

√ exp dd x(⇒h)2 , (I.49)
kB T 

−
2kB T 

the functional derivative results in 

δ�Peq. 
= 

�Peq. 
= (⇒ 2h) Peq.. (I.50)

�h(x) 
−⇒ · 

�(⇒h) kB T 

The total probability current, 

J [h(x)] = µδ⇒ 2h − 
Dδ 

⎣ 

kB T 
⇒ 2h Peq., (I.51) 

vanishes if the fluctuation–dissipation condition, D = µkB T , is satisfied. Once again, the 

Einstein equation ensures that the equilibrium weight indeed describes a steady state. 

I.C Dynamics of a Conserved Height 

The prescription for dynamics that leads to the Langevin equations (I.25)–(I.27), does 

not conserve the net height, 
� 

dd xh(x, t). Although this quantity is on average zero, it 

undergoes stochastic fluctuations in time. In dealing with a volume of liquid, if particle 

exchange with the surrounding gas via evaporation and condensation is negligible, the total 

height of the liquid must be conserved, i.e. 

d 
� 

dd x h(x, t) = 
� 

dd x 
γh(x, t) 

= 0. (I.52)
dt γt 

How can we construct a dynamical equation that satisfies eq.(I.52)? The integral clearly 

vanishes if the integrand is a total divergence, i.e. 

γh(x, t) 
= j + σ(x, t). (I.53)

γt 
−⇒ · λ

The noise itself must be a total divergence, σ = δ, and hence in Fourier space, −⇒ · λ

σ(q, t) = 0, and σ(q, t)σ(q �, t ) = 2Dq 2�(t − t )(2�)d�d (q + q ). (I.54) 

We can now take advantage of the generalized Einstein relation in eq.(I.38) to ensure the 

correct equilibrium distribution by setting, 

λj = µ⇒ 

� 
�H 

� 

. (I.55)−
�h(x) 
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A similar question arises in dealing with the dynamics of a binary mixture undergoing 

phase separation. The order parameter π(x), the difference between the densities of the 

two species, may now be conserved. The standard procedure and terminology for such 

situations is provided by Hohenberg and Halperin. Given a Hamiltonian H[π], the Langevin 

dynamics of the field π(x, t) is constructed from 
� 

�H 
�

γπ(x, t) 
= µ + σ(x, t), (I.56)

γt 
−ˆ

�π(x) 

with 

� D 
�
�d (x − x )�(t − t ) . (I.57)�σ(x, t)� = 0, and �σ(x, t)σ(x �, t ) = 2 ˆ � �

⎧ 

µ = µ and D = D are constants. In model A dynamics the field π is not conserved, and ˆ ˆ

In model B dynamics the field π is conserved, and ˆ 2 ˆµ = −µ⇒ and D = −D 2 .⇒ 

Let us now go back to the example of a conserved volume of fluid whose surface 

fluctuations are subject to the Hamiltonian (I.24). The equation of motion constructed 

from model B dynamics is† 

γh(x, t) 
= µ�g⇒ 2h − µδ⇒ 4h + σ(x, t). (I.58)

γt 

The evolution of each Fourier mode is given by 

γh(q, t) 2= −µq (�g + δq 2)h(q, t) + σ(q, t) ≥ − 
h(q, t)

+ σ(q, t). (I.59)
γt φ(q) 

Because of the constraints imposed by the conservation law, the relaxation of the surface 

is more difficult, and slower. The relaxation times diverge even in the presence of gravity, 

and depending on wavelength we can define dynamic exponents z, via 
� 

−2 for q ≡ τ−1 (z = 2) c . (I.60)φ(q) = 
µq2(�g 

1

+ δq2) 
∝ 

q
q
−4 for q ≈ τ−1 (z = 4) c 

The equilibrium behavior is unchanged, and 

� D 
lim h(q, t) 2

� 
= 

Dq2 

= 
µ(�g + δq2) 

, (I.61) 
t�� 

| |
µq2(�g + δq2) 

as before. Thus the same static behavior can be achieved by different dynamics. The 

static exponents (e.g. ∂) are determined by the equilibrium (stationary) state and are 

unchanged, while the dynamic exponents may be different. As a result, dynamical critical 

phenomena involve many more universality classes than the corresponding static ones. 

† While model A dynamics provides a reasonably accurate description of the relaxation 

of a soap film, model B dynamics is not particularly useful for describing surface waves. 

As conservation of momentum in the fluid is an important constraint not included here, 

the following results are merely intended as an illustration. 
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