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A mapping is established between sequence alignment, one of the most commonly used tools of computa
tional biology, at a certain choice of scoring parameters and the asymmetric exclusion process, one of the few 
exactly solvable models of nonequilibrium physics. The statistical significance of sequence alignments is 
characterized through studying the total hopping current of the discrete time and space version of the asym
metric exclusion process. 
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I. INTRODUCTION 

Sequence alignment is one of the most commonly used 
computational tools of molecular biology. Its applications 
range from the identification of the function of newly se
quenced genes to the construction of phylogenic trees �1,2�. 
Beyond its practical importance, it is one of the simplest 
model systems for pattern matching. In computational biol
ogy, sequences are routinely compared via a transfer matrix 
algorithm to find the ‘‘optimal’’ alignment. Recently, it has 
been noted that this transfer matrix algorithm is the same as 
the one used to calculate the partition function or optimal 
energy of a directed polymer in a random medium �3�. This 
problem is known to belong to the universality class of sur
face growth as described by the Kardar-Parisi-Zhang �KPZ� 
equation �4�. From the assignment of sequence alignment to 
the KPZ universality class, various scaling laws characteriz
ing sequence alignment have been deduced. They have been 
used in order to answer questions of practical importance to 
sequence alignment, e.g., the optimal choice of alignment 
parameters �5–7�. But there are also nonuniversal features 
that are of great importance for practical applications. They 
cannot be extracted from the knowledge of the universality 
class alone, but have to be evaluated by a microscopic study 
taking into account all the details of the given sequence 
alignment algorithm. In this paper, we will perform such a 
study for a certain choice of parameters for which sequence 
alignment maps onto the asymmetric exclusion process �8,9�, 
which is the best studied nonequilibrium system of the KPZ 
universality class, equivalent also to the six vertex model 
�10,11�. The only approximation taken in this mapping is 
neglecting some subtle correlations in the hopping probabili
ties of the asymmetric exclusion process. We confirm nu
merically that neglecting these correlations introduces only 
minor deviations in the final results. 

We will apply this mapping to address the central question 
in the biological application of sequence alignment, namely, 
the assessment of alignment significance: The problem is that 
an ‘‘optimal’’ alignment, i.e., the best possible alignment of 
two given sequences according to some scoring function, 
does not necessarily reflect sequence homology. A sequence 
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alignment algorithm will produce an ‘‘optimal’’ alignment 
for any pair of sequences, including the randomly chosen 
ones. The important question is whether the alignment pro
duced reflects an underlying similarity of the two sequences 
compared. A common way to address this question is to 
evaluate the probability of getting a certain alignment score 
by chance. This requires the knowledge of the distribution of 
alignment scores for random sequences. This distribution 
turns out to obey a universal �Gumbel� form with two non-
universal parameters. In this paper, we will derive the Gum-
bel distribution and characterize some of its properties by 
relating them to the corresponding asymmetric exclusion 
process. In particular, we show how the tail of this distribu
tion can be obtained from the generating function for the 
total number of hopped particles. The latter is also the gen
erating function of the average surface height in the equiva
lent surface growth formulation of the asymmetric exclusion 
process. This important quantity has been calculated for the 
case of continuous time and continuous space using the rep
lica trick �12� a long time ago. More recently, it has been 
obtained for the case of continuous time and discrete space 
in the scaling regime �13�. Here, we will calculate this quan
tity in discrete time and discrete space as necessary for the 
mapping to sequence alignment, in the asymptotic large size 
limit that is beyond the scaling limit. Our calculation does 
not make use of the replica trick and leads to a very simple 
closed form expression. It explicitly contains the anomalous 
t1/3 scaling of the surface height fluctuations of KPZ surface 
growth in one dimension. We use this generating function to 
give an explicit expression for the significance of sequence 
alignments. 

The paper is organized as follows: First, we will give a 
self-contained introduction to sequence alignment in Sec. II. 
This familiarizes the reader with the sequence alignment al
gorithm and gives us a chance to develop the notations to be 
used later. In Sec. III, we will reduce the problem of assess
ing the statistical significance of the widely used local align
ment to a quantity defined in terms of the simpler global 
alignment. Readers more interested in the properties of the 
discrete asymmetric exclusion process can skip these two 
sections and go directly to Sec. IV, which describes the sim
plest version of the global alignment problem. Here, the 
mapping to the asymmetric exclusion process in discrete 
time and space with sublattice-parallel updating is described. 
Section V is devoted to the calculation of the generating 
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function of interest for the asymmetric exclusion process. In 
Sec. VI, we discuss the result obtained, apply it to the assess
ment of alignment significance, and verify the analytical pre
dictions numerically. In Sec. VII, we consider more general 
scoring systems and map them onto a generalized asymmet
ric exclusion processes. The final section gives a short sum
mary of the paper and points towards several future direc
tions. A number of technical details are given in the 
appendixes. 

II. REVIEW OF SEQUENCE ALIGNMENT 

A. Gapless alignment 

Sequence alignment algorithms come in different levels of 
sophistication. The simplest alignment algorithm is gapless 
alignment. It is not only extremely fast but also very well 
understood theoretically. Thus, it has been very widely used, 
e.g., in its implementation of the program BLAST �14�. 

Gapless alignment looks for similarities between two se-
� ��a1a2 •••aM�, and bquences a � ��b1b2 •••bN� of length M 

and N�M , respectively. The letters ai and b j are taken from 
an alphabet of size c. This may be the four-letter alphabet 
�A ,C ,G ,T� of DNA sequences or the 20-letter alphabet of 
protein sequences with the letters distributed according to the 
natural frequencies of the 20 amino acids. A local gapless 
alignment A of these two sequences consists of a substring 
ai�l �1 •••ai�1ai of length l of sequence a� and a substring 
b j�l �1 •••b j�1b j of sequence b� of the same length. Each 
such alignment is assigned a score 

l �1 

S�A��S� i , j ,l �� � sai�k ,b j�k
, �1� 

k�0 

where sa ,b is some given ‘‘scoring matrix’’ measuring the 
mutual degree of similarity of the different letters of the al
phabet. A simple example of such a scoring matrix is the 
match-mismatch matrix 

1 a�b 
sa ,b� �2�� 

” b ,�� a�

which is used for DNA sequence comparisons �15�. For pro
tein sequences, the more complicated 20�20 percent ac
cepted mutations �PAM� �16� or blocks substitution matrix 
�17� matrices �BLOSUM� are used to account for the vari
able degrees of similarity �e.g., hydrophobicity, size� among 
the 20 amino acids. The computational task is to find the i, j, 
and l that give the highest total score 

��max S�A� �3� 
A 

for a given scoring matrix sa ,b . 
The optimization task called for in gapless alignment can 

be easily accomplished by introducing an auxiliary quantity, 
Si , j , which is the optimal score of the above consecutive 
subsequences ending at (i , j) �optimized over l .� It can be 
conveniently calculated in O(N2) instead of the expected 
O(N3) steps using the transfer matrix algorithm 
03191
Si , j�max�Si�1,j�1�sai ,b
,0�, �4� 

j

with the initial condition S0,k�0�Sk ,0 . This recursion equa
tion reflects that for a given (i , j) the optimal l is either zero 
or larger than zero. If the optimal l is zero the corresponding 
score is zero as well. If the optimal l is at least one, the pair 
(ai ,b j) certainly belongs to the optimal alignment together 
with whatever has been chosen to be optimal up to the point 
(i�1,j�1). Equation �4� is basically a random walk with 
increments sa ,b which is cut off if it falls below zero. The 
global optimal score is obtained as 

�� max Si , j . �5� 
1�i�M , 1� j�N 

In order to characterize the statistical significance of the 
alignment, it is necessary to know the distribution of � for 
gapless alignments of two random sequences, whose ele
ments ak’s are generated independently from the same fre
quencies pa as the query sequences, and scored with the 
same matrix sa ,b . This distribution of � has been worked 
out rigorously �18,19�. For suitable scoring parameters, it is a 
Gumbel or extreme value distribution given by 

��S�.Pr���S��exp���e �6� 

This distribution is characterized by the two parameters � 
and � with � giving the tail of the distribution and ��1ln � 
describing the mode. For gapless alignment, these nonuni
versal parameters can be explicitly calculated �18,19� from 
the scoring matrix sa ,b and the letter frequencies pa . For 
example, � is the unique positive solution of the equation 

�exp��s ���� papb exp��sa ,b��1. �7� 
a ,b 

The other parameter � is given by ��KMN , where K is a 
more complicated function of the scoring matrix and the let
ter frequencies. Instead of reviewing the full derivation of the 
distribution �6� and its parameters, below we give some heu
ristic arguments that yield the known result. These can later 
be generalized to the more relevant case of alignment with 
gaps. 

For random sequences, one can take j�i in Eq. �4� with
out loss of generality. Equation �4� then becomes a discrete 
Langevin equation, with 

Si ,i�S� i ��max�S� i�1 ��s� i �,0�, �8� 

where the ‘‘noise’’ s(i)�sa ,b is uncorrelated and given by 
the distribution 

Pr�si�s�� � papb . �9� 
�a ,b�sa ,b�s� 

The dynamics of the evolution equation �8� can be in two 
distinct phases. The quantity that distinguishes these two 
phases is the expected local similarity score 
1-2 
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FIG. 1. Sketch of the total score as a function of sequence po
sition in gapless local alignment. 

�s��� papbsa ,b . �10� 
a ,b 

If it is positive, the score S(i) will increase on average. After 
a while, it becomes positive enough that the maximum in Eq. 
�8� will never be given by the zero option. This option could 
thus be omitted, which corresponds to global gapless align
ment. The dynamics is then a random walk S(i)�S(i�1) 
�s(i) with an average upward drift �s�. The maximal score 
will be close to the end of the sequences and will be given by 
��N�s�. Since it is linear in the length of the sequences, 
this is called the linear phase of local alignment. It is obvi
ously not suited to identify matches of subsequences, and the 
distribution of the maximal score � is not an extreme value 
distribution. �It is just a sum of many independent local 
scores s(i) and therefore obeys a Gaussian distribution ac
cording to the central limit theorem.� 

The situation is dramatically different if �s� is negative. In 
this case the dynamics is qualitatively as follows. The score 
S(i) starts at zero. If the next local score s(i�1) is 
negative—which is the more typical case in this regime— 
then S remains zero. But if the next local score is positive, 
then S will increase by that amount. Once it is positive, S(i) 
performs a random walk with independent increments s(i). 
Since �s� is negative, there is a negative drift that forces S(i) 
to eventually return to zero. After it is reset to zero, the 
whole process starts over again. The qualitative ‘‘temporal’’ 
behavior of the score S(i) is depicted in Fig. 1. 

From the figure, it is clear that the score landscape can be 
divided into a series of ‘‘islands’’ of positive scores, sepa
rated by ‘‘oceans’’ where S�0. Each such island originates 
from a single jump out of the zero-score state and terminates 
when the zero-score state is reached again. Since each of 
these islands depends on a different subset of independent 
random numbers s(i), the islands are statistically indepen
dent of each other. If we let the maximal score of the kth 
island be �k , then these �k are independent random vari
ables. Calculating the probability for the maximum score �k 
of an island of length L in a saddle point approximation and 
optimizing over the length L of the islands, we asymptoti
cally obtain an exponential distribution 

Pr��k����C*e��� �11� 

for the maximal island scores �k �see Appendix A�. The 
parameter � , which gives the typical scale of the maximal 
island score, is given by the drift-diffusion balance of the 
underlying Brownian process. If the local scores s(i) were 
Gaussian variables with average v�0 and variance D, this 
drift-diffusion balance would yield 
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�v� 
��2 . �12�

D 

For an arbitrary discrete or continuous distribution of the 
local scores s(i), it turns out to be given by the more general 
condition �7�, which reduces to Eq. �12� in the limit �s� 
�0� where the central limit theorem takes hold. 

Since the global optimal score � can be expressed by the 
maximal island scores as 

��max��k�, �13� 
k 

the distribution of � can be calculated from the distribution 
of the �k . The connection is covered by the theory of ex
tremal statistics as developed by Gumbel �20� �see, also, Ref. 
�21��. In the case of a large number K*�N of independent 
island peak scores each of which asymptotically obeys the 
exponential distribution Eq. �11�, the connection is especially 
simple and we get 

Pr���S��Pr�max��1 ,  . . . ,�K ��S� 
* 

�Pr��1�S�K
* 

��S �K
*��1�C*e

��exp��C*e��S ��K
* 

��S ��exp���e �14� 

with ��C*K* , i.e., the parameter � of the island peak 
score distribution Eq. �11� is the same as the parameter � in 
the Gumbel distribution Eq. �6� of the maximal alignment 
scores. 

B. Alignment with gaps 

In order to detect weak similarities between sequences 
separated by a large evolutionary distance, ‘‘gaps’’ have to be 
allowed within an alignment to compensate for insertions or 
deletions occurred during the course of evolution �22�. Here, 
we will specifically consider Smith-Waterman local align
ment �23�. In this case, a possible alignment A still consists 
of two substrings of the two original sequences a � . But � and b
now, these subsequences may have different lengths, since 
gaps may be inserted in the alignment. For example, the two 
subsequences GATGC and GCTC may be aligned as 
GATGC and GCT-C using one gap. Each such alignment A
is assigned a score according to 

S�A�� 
(a ,b)�A 

sa ,b��Ng , �15� 

where the sum is taken over all pairs of aligned letters, Ng is 
the total number of gaps in the alignment, and � is an addi
tional scoring parameter, the ‘‘gap cost.’’ In practice more 
complicated gap scores may be used, but we will concentrate 
on this version. 

The task of local alignment is again to find the alignment 
A with the highest score as in Eq. �3�, in this enlarged class 
1-3 
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FIG. 2. Local alignment of two sequences CGATGCT and 
TGCTCGA represented as a directed path on the alignment lattice: 
the diagonal bonds correspond to gaps in the alignment. The hori
zontal bonds represent aligned pairs. Alignments of identical letters 
�matches� are shown as solid lines; alignments of different letters 
�mismatches� are shown dashed. The highlighted alignment path 
r(t) corresponds to one possible alignment of two subsequences, 
GATGC to GCT-C . This path contains one gap. Also shown is 
how the coordinates r and t are used to identify the nodes of the 
lattice. 

of possible alignments. This can be very efficiently done by 
a transfer matrix method that becomes obvious in the align
ment path representation �15�. In this representation, the two 
sequences to be compared are written on the edges of a 
square lattice as the one shown in Fig. 2 where we chose for 
simplicity N� M . Each directed path on this lattice repre
sents one possible alignment. The score of this alignment is 
the sum over the local scores of the traversed bonds. Diago
nal bonds correspond to gaps and carry the score �� . Hori
zontal bonds are assigned the similarity scores 

s�r ,t ��sai ,b
, �16� 

j

where ai and b j are the letters of the two sequences belong
ing to the position (r ,t)�(i� j ,i� j�1) as shown in Fig. 2. 

If we were interested in finding the highest scoring global 

alignment of the two sequences a � , this corresponds to � and b
finding the best scoring path connecting the beginning (0,0) 
with the end (0,2N) of the lattice. To find this path effec
tively, we define the auxiliary quantity h(r ,t) to be the score 
of the best path ending in the lattice point (r ,t). This quan
tity can be calculated by the Needleman-Wunsch transfer 
matrix algorithm �15� 

h�r ,t�1 ��max�h�r ,t�1 ��s�r ,t �,h�r�1,t � 

�� ,h�r�1,t ����. �17� 

This is easily recognized �3� as the algorithm used to calcu
late the zero temperature configuration and energy of a di
rected polymer in a random potential given by the local 
scores s(r ,t). The scores h(r ,t) represent the �negative� en
ergy of the optimally chosen polymer configuration ending in 
the point (r ,t). Alternatively, the h(r ,t) can also be inter
03191
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preted as the spatial height profile of a growing surface 
through the well-known relation between the directed poly
mer and the KPZ equation. 

If we are interested in local alignments, we can use the 
same trick as in the gapless case �4�. Cutting off unfavorable 
scores by adding the choice of zero to the maximum of Eq. 
�17� leads to the Smith-Waterman algorithm �23� 

S�r ,t�1 ��s�r ,t � 

S�r�1,t ��� 
S�r ,t�1 ��max� . �18� 

S�r�1,t ��� 

0 

The score of the best local alignment is then given by 

��max S�r ,t �. �19� 
r ,t 

In the presence of gaps, we can still distinguish a linear and 
a logarithmic phase. If the global alignment score tends to 
grow, the zero option of the local alignment algorithm does 
not play any role. We effectively revert to global alignment 
and get a maximum score that is linear in the length of the 
sequences. Contrary to gapless alignment, it is not enough to 
have a negative expectation value of the local scores �s� in 
order to prevent this. This is due to the fact that the align
ment algorithm uses gaps to connect random stretches of 
good matches to optimize the score. The average score grows 
by a gap dependent amount u(�sa ,b�,�) faster compared to 
the expectation value �s� . The log-linear transition occurs 
now at u(�sa ,b�,�c)��s��0. For the simple scoring system 
Eq. �2� this corresponds to a line �c(�) in the two-
dimensional space of the parameters � and � shown in Fig. 
3. Even for this simple scoring system, the loci of the phase 
transition are only known approximately �24�; for more 
complicated scoring systems, only numerical results are 
available. 

If the parameters are chosen such that u��s��0, i.e., 
such that the expected global alignment score drifts down
wards on average, then the average maximum score ��� is 
proportional to the logarithm of the sequence length as in the 
logarithmic phase of gapless alignment. The reduced value 
of ��� in the logarithmic phase makes it the regime of choice 
for the purpose of homology detection. Again, the distribu
tion of � must be known for local alignments of random 
sequences in order to characterize the statistical significance 
of local alignment. There is no rigorous theory of this distri
bution in the presence of gaps. However, there is a lot of 
empirical evidence that the distribution is again of the Gum-
bel form �25–31�. The values of the parameters � and � are 
only known approximately for a few cases close to the gap-
less limit �32–34�. In practice, they are determined empiri
cally by time consuming simulations. Below we will present 
an explicit calculation of the parameter � for a simple scor
ing system. 
1-4 
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FIG. 3. Loci of the log-linear phase transition for alignment with 
the scoring system Eq. �2� for an alphabet of c�4 letters in terms of 
the mismatch cost � and the gap cost � . Useful alignments can only 
be obtained in the logarithmic phase above the phase transition line. 
The diamonds are the numerically estimated points on the phase 
transition line; the solid line is the approximate locus calculated in 
Ref. �24�. Below the dashed line the alignments do not depend on 
the mismatch cost � any more and the phase transition line is 
known to be strictly horizontal. 

III. SIGNIFICANCE ESTIMATION BY USING 
GLOBAL ALIGNMENT 

As a first step, we want to show that the parameter � , 
which describes the tail of the Gumbel distribution, can be 
derived solely from studying the much simpler global align
ment governed by the recursion Eq. �17�. Later, we will see 
that global alignment is in certain cases approximately 
equivalent to the asymmetric exclusion process. We will de
rive an explicit formula for � by studying the corresponding 
asymmetric exclusion process. 

A. An expression for � in terms of global alignment 

Let us define the generating function 

Z��;L ���exp��h�r�0,L ���, �20� 

where the brackets �•� denote the ensemble average over all 
possible realizations of the disorder, i.e., over all choices of 
random sequences a � and h(0,L) is the global align-� and b
ment score at the end of a lattice of length L as shown in Fig. 
4�a�. It can be obtained from the recursion relation �17� with 
the initial condition h(2k ,t�0)�h(2k�1,t�1)�0. We 
claim that the parameter � of the Gumbel distribution is 
obtained from 

lim Z��;L ��1. �21� 
L�� 

Note, that this reduces simply to Eq. �7� in the case of gap-
less alignment, since for infinite gap cost � , we have 
03191
FIG. 4. Global alignment lattice used for significance estima
tion. �a� shows the right half of the lattice from Fig. 2. It can 
represent all possible paths of length L, which end at the point 
(r ,t)�(0,L) and start at (r ,0) for an arbitrary r. �b� shows such a 
path schematically. It represents the ‘‘rim’’ of an island with its high 
score denoted by the filled dot at the tip of the triangle. The open 
dot at (r0 ,t0) represents the corresponding island initiation event. 

L/2 

�exp��h�0,L ���� � exp� �� s�0,2k�1 �� �
k�1 

��exp��s ��L/2. �22� 

While we are not able to rigorously prove the condition on � 
put forward in Eqs. �20� and �21�, we will in the following 
give some heuristic arguments for its validity. One possible 
derivation uses two assumptions and otherwise applies some 
rigorous mathematical results. The second derivation is more 
intuitive and gives some feeling where the score distribution 
of local alignment comes from. In addition to these heuristic 
arguments we will verify in Sec. VI C that the equation for 
the Gumbel parameter � that we will derive from Eqs. �20� 
and �21� indeed yields the correct statistics of local sequence 
alignment. 

B. Derivation under the assumption of a Gumbel distribution 

In this first derivation we will start from the assumption 
that the distribution of the local alignment score �(L) for 
comparisons of two sequences of equal length L is of the 
Gumbel form Eq. �6� with ��KL2. This has been estab
lished by many numerical studies �25–31�. Under this as
sumption, a simple calculation shows that 

���L �� 2 
lim � . �23� 

L�� ln L � 

Thus, we only have to calculate the asymptotic expectation 
value on the left-hand side of Eq. �23� in order to determine 
the value of the Gumbel parameter � . 

The existence of this asymptotic expectation value has 
been rigorously established by Arratia and Waterman �35�. 
Its numerical value has been studied by Zhang �36� and we 
will reformulate Zhang’s result in our notation. To this end, 
1-5 
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we will consider the global alignment score ĥ (r ,t) calculated 
through the recursion Eq. �17� on the diamond-shaped lattice 
shown in Fig. 2, i.e., with the initial conditions ĥ (r�t ,t) 
� ĥ (r��t ,t)��t� . With this quantity we can define �̂L as 
the unique solution of �exp��̂Lĥ(r�0,2L) ���1. Then, our 
Eq. �23� together with Theorem 1 and Eqs. �2.15� and �2.16� 
of Ref. �36� imply that given ��0 and large enough L and n 
the inequality 

��Ln � 2 1 � 
���  �2 � �� � � 1� � �24�

ln n �̂L 
� r�0 �

holds where r(0) is a positive constant independent of � , n, 
and L. Thus, in the limit n�� we get almost surely 

2 2 1 � 
���  �2 � �� � � 1� � . �25� 

� �̂L 
� r�0 �

ˆThis implies that limL�� �L�� or, in other words, � is 
given by the condition 

lim Ẑ ��;L ��1 �26� 
L�� 

on the generating function 

Ẑ ��;L ���exp�� ĥ �r�0,L ���. �27� 

To connect this to the conditions �20� and �21� we have to 
assume that h(r�0,L)� ĥ (r�0,L) in the limit of large L. 
The difference between these two scores are the boundary 
conditions. While the optimal path corresponding to h(r 
�0,L) is allowed to start at any r0 as indicated in Fig. 4 the 
optimal path corresponding to ĥ (r�0,L) has to start at r0 
�0. However, the optimal path for h(r�0,L) is expected to 
start at a distance �r0� that is sublinear in L. Thus, it is at least 
plausible to use h(r�0,L) and ĥ (r�0,L) interchangeably at 
least as far as the growth behavior of a quantity like 

�exp��ĥ(r�0,L) �� for large L is concerned. This transforms 
Eqs. �26� and �27� into conditions �20� and �21�. 

C. Intuitive derivation 

The key observation that allows us to understand the re
sult equations �20� and �21� intuitively is the fact that similar 
to the case of gapless alignment discussed in the last section, 
the points on the alignment lattice can be grouped together as 
islands �31�. By the construction of the local alignment al
gorithm �18�, many points on the alignment lattice have a 
score of zero in the logarithmic alignment regime. As for 
gapless alignment, a positive score will be generated out of 
this ‘‘sea’’ of zeros, if a good match occurs by chance. This 
positive score can then imply further positive scores via the 
recursion relation �18�. For every point (r ,t) on the lattice 
that has a positive score, we can define a restricted optimal 
path r̂ * r ,t(�), which is the highest scoring path out of all paths 

r̂ (�) with an end fixed at r̂ (t)�r; see the example in Fig. 2. 
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FIG. 5. Sketch of some islands on the local alignment lattice. 
The lattice sites with a positive score are marked with dots. The 
bonds that have been chosen in the maximization process �18� are 
highlighted. Together they are the restricted optimal path associated 
with each point with a positive score. Each of these paths goes back 
to an island initiation event that is marked by an open dot. The large 
filled dots mark the positions of the highest scoring point on each 
island. As exemplified by the two islands close to the right tip of the 
lattice islands do not have to be separated by lattice points with zero 
scores. 

This highest scoring path is uniquely defined for each point 
(r ,t) if a convention of how to handle degeneracies in the 
maximization procedure �18� is chosen. While the specific 
choice of a convention should not matter,1 we can, e.g., de
clare that the first option that maximizes the right-hand side 
of Eq. �18� locally defines the highest scoring path. This 
uniquely defined path must start at some point (r0 ,t0) where 
a positive score is created from a zero score by a good 
match. An island is then defined to be the collection of points 
(r ,t) with positive score, i.e., S(r ,t)�0, and whose re
stricted optimal path r̂ * r ,t(�) originates at the same point 
(r0 ,t0). A sketch of these islands is shown in Fig. 5. By this 
definition, every lattice point with a positive score belongs to 
exactly one island. Each of these islands has a maximum 
score that we denote by �k as we did in the gapless case. 
Thus, the maximal score � on the total lattice is given by Eq. 
�13�. 

Although the positively scoring sites of the lattice are 
uniquely assigned to islands by this definition, islands do not 
necessarily have to be surrounded by zero scores. It is pos
sible for two neighboring lattice points to belong to two dif

1The value of the Gumbel paramter � should depend continuously 
on the scoring parameters sa ,b . Since a degeneracy in the maximi
zation procedure Eq. �18� usually can be resolved through slightly 
varying the scoring parameters sa ,b the choice of a procedure to 
handle these degeneracies cannot influence the final value of the 
Gumbel parameter � . 
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ferent islands, i.e., for two islands to ‘‘touch’’ each other �see 
Fig. 5�. However, the higher the peak score of an island the 
less probable the configuration of the s(r ,t) that leads to 
such a high scoring island. Thus, if we restrict our attention 
only to islands the peak score �k of which is larger than 
some threshold �0, these islands will occur in areas of the 
scoring lattice that are the further apart from each other �with 
lower scoring islands interspersed� the larger the threshold 
�0. Also, the probability of not being separated by zero 
scores becomes small with increasing separation. Thus, the 
island peak scores �k of those islands exceeding a threshold 
�0 are expected to become statistically independent random 
variables, i.e., changes in the configuration of the s(r ,t) that 
affect the peak score of one of these high scoring islands do 
not affect the peak score of another of these high scoring 
islands. While this is an assumption, it can be numerically 
verified. The independence can be quantified by the correla
tion coefficient 

���������2 

R� 
��2�����2

, �28� 

where � and �� are the peak scores of two neighboring 
islands on the alignment lattice exceeding a threshold score 
�0. In Ref. �31� this quantity has been studied by averaging 
over 300 pairs of random sequences with an alphabet size of 
20 and a gap cost ��2.9 using the PAM-250 �16� scoring 
matrix for sa ,b . At  �0�7.5 the correlation coefficient was 
estimated to be R��0.001 indicating the statistical indepen
dence of these large islands. It is not to be expected that this 
independence should break down for the simpler local scor
ing matix Eq. �2�. 

Thus, we will in the following assume that the islands 
peak scores �k of sufficiently high scoring islands are statis
tically independent random variables. The islands with 
smaller scores do not contribute to the maximum in Eq. �13� 
and the fact that their island peak scores are not really un-
correlated only rescales the effective number of islands. 
Thus, we again observe a Gumbel distribution of � via Eq. 
�14� for very long sequences. The crossover sequence length 
at which a Gumbel distribution is a good description of the 
distribution of � depends on the scoring system. According 
to the above considerations, it is only valid if sufficiently 
many of the large independent islands occur on the scoring 
lattice. If the typical size of a single island is comparable to 
the length of the sequence we will not expect any Gumbel
like distribution. This can easily happen as the log-linear 
phase transition is approached since the typical island sizes 
diverges at the transition. For a scoring system very close to 
the transition, the Gumbel distribution may be observed only 
for very long sequences. However, all practically useful scor
ing systems are far enough away from the phase transition to 
ensure a sufficient number of large islands on a scoring lat
tice for two sequences of realistic lengths, i.e., a few hundred 
letters each. 

Our task is thus to calculate the distribution of the island 
peak scores �k for very large islands in the presence of gaps. 
This distribution of maximal island scores can be derived 
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analogously to the gapless case �Appendix A�. While a single 
gapless island is described by a random walk of some opti
mized length L, an island with gaps corresponds to a global 
gapped alignment of some optimized length L as the one 
shown schematically in Fig. 4�b�. Using this replacement, the 
maximal island distribution again has an asymptotically ex
ponential form �11� with the decay constant � given by Eq. 
�21�. An approximate interpretation for the result �21� is the 
following: Due to the choice of scoring parameters in the 
logarithmic phase of local alignment, the average score 
�h(0,L)� of global alignment with the same choice of param
eters decreases linearly with the length L of the alignment. 
Thus, typical configurations of the disorder have a strongly 
negative score h(0,L) and hardly contribute to Z(�;L) 
��exp��h(0,L) ��. Only on very rare occasions, h(0,L) is  
positive for large L and contributes significantly to Z(�;L). 
The fact that there is a choice of � with Z(�;L)�1 for large 
L implies that these configurations with positive h(0,L) are 
exponentially rare. It is thus necessary to weight these con
figurations with the exponential factor exp��h(0,L) � , and 
choose � to match the decay constant of the probability of 
finding such rare events. 

D. Interpretation of Z 

As already noted in the analogy between the directed 
polymer and sequence alignment, the score h corresponds to 
the �negative of the� free energy. Thus the quantity Z(�;L) 
��exp��h(0,L) �� can be interpreted as the disorder-averaged 
�zero temperature� partition function2 of � ‘‘replicas’’ of a 
directed polymer of length L. Note that the replica number 
given by � need not be integer. In the surface growth inter
pretation, Z(�;L) is the generating function for the space 
averaged surface height. While many of the universal fea
tures of global and local sequence alignment �e.g., its scaling 
behavior in the logarithmic phase and upon approaching the 
phase transition line� can be understood merely from the 
knowledge that sequence alignment belongs to the KPZ uni
versality class �3,5–7� or from the limit Z(��0;L), a solu
tion of Eq. �21� for the nonuniversal quantity � requires the 
knowledge of the large L behavior of the entire function 
Z(�;L) and hence a more detailed microscopic calculation 
for the given model. This is what we will undertake in the 
following sections. 

IV. GLOBAL ALIGNMENT AS AN ASYMMETRIC 
EXCLUSION PROCESS 

A. A simple model of sequence alignment 

From now on we will focus on global alignment as de
scribed by Eq. �17�, and use Eq. �21� to infer the value of the 
parameter � characterizing local alignment. We restrict our
selves here to a very simple scoring system. In applications 
of sequence alignment this scoring system is not very useful 
since it allows more gaps than naturally related sequences 

2However, Z(�;L) should not be interpreted as the partition func
tion at temperature ��1. 
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would show and since it is much too restrictive as far as 
taking different degrees of similarity between different letters 
of the alphabet is concerned. However, as we will point out 
in Sec. VII, the mapping presented in this section between 
alignment with the simple scoring system and the asymmet
ric exclusion process can be generalized to a mapping be
tween alignment with more complicated scoring systems and 
generalizations of the asymmetric exclusion process. As far 
as this mapping is concerned, restricting ourselves to the 
simple scoring system is solely a matter of convenience since 
it avoids lengthy expressions that would make the spirit of 
the mapping less accessible. 

Although this mapping can be generalized to more realis
tic scoring systems, we will see in Sec. V that calculating the 
parameter � involves solving explicitly for the largest eigen
value of a generalized transfer matrix of the asymmetric ex
clusion process. This second step is only readily possible for 
this simple scoring system. Thus, our explicit expression for 
� is only valid for this simple scoring system that is not 
practically used. However, being able to solve for � even for 
unrealistic scoring parameters is still very valuable as a test 
bed for numerical estimation methods for the value � . 

Specifically, we will study the scoring system in which 
the local similarity scores sa ,b can take on only two possible 
values, 

1 a�b� � 29�sa ,b� 
0 a� b , 

Moreover, we will choose the gap cost to be ��0. With this 
choice of the scoring parameters, the score h has the addi
tional interpretation of being the length of the longest com

mon subsequence of the two sequences a � . This longest � and b
common subsequence problem has a long history as a toy 
model for sequence comparisons � 38–40� . 

Additionally, we will neglect correlations between the lo
cal scores s(r ,t), which arise from the fact that all M �N 
local scores are generated by the M �N randomly drawn 
letters. Instead of taking these correlations into account, we 
will assume that s(r ,t)��(r ,t) with independent random 
variables �(r ,t) given by 

1 with probability p 
�� r ,t � � � 30�

0 with probability 1� p 

with 

Pr� �r ,t�� r ,t � ��r ,t� � � Pr��� r ,t � ��r ,t� . � 31� 
r ,t 

To model sequences randomly drawn with equal probability 
from an alphabet of size c, we take p�1/c . The approxima
tion � 31� is known to change characteristic quantities of se
quence alignment only slightly � 5� . We will confirm numeri
cally at the end of this paper, that this also holds for the 
values of � that we are mainly interested in here. For our 
choices of parameters, the global alignment algorithm � 17� 
reads 
03191
FIG. 6. Rectangular alignment lattice of width 2W with periodic 
boundary conditions in the spatial � vertical� direction. We use this 
lattice instead of the triangular lattice shown in Fig. 4� a� in order to 
simplify the handling of finite-size effects. As indicated by the thick 
gray lines, the score at a point with t� W as the one at the tip of the 
triangle is identical with the corresponding score calculated on a 
triangular lattice as the one shown in Fig. 4� a� . 

h� r ,t�1 � �max� h� r ,t�1 � ��� r ,t � ,h� r�1,t � ,h� r�1,t �� . 

� 32� 

B. Choice of the alignment lattice geometry 

In order to handle finite-size effects better, we will use a 
rectangular geometry � Fig. 6� for the alignment lattice, in
stead of the triangular geometry shown in Fig. 4� a� . We will 
further apply periodic boundary condition to the top and bot
tom edges of the lattice, i.e., h(0,t)�h(2W ,t) for a rectan
gular lattice of width 2W , and will start on the left edge with 
the initial conditions h(2k�1,t�0)�h(2k ,t�1)�0. Note 
that despite the different lattice geometries, the score h(r ,t) 
for all points with t� W on the rectangular lattice will be 
identical to the score at the same (r ,t) coordinate on the 
triangular lattice;3 see Fig. 6. 

C. The dynamics of sequence alignment as an asymmetric 
exclusion process 

In this section we will perform a change of variables on 
the sequence alignment algorithm � 32� for the rectangular 
lattice shown in Fig. 6. We will find that the resulting prob
lem is equivalent to an asymmetric exclusion process on a 
one-dimensional lattice of width 2W . As a guidance towards 
the choice of suitable variables, we take the knowledge from 
the � continuous� KPZ equation that the gradient of the sur
face height is an especially simple quantity. At a fixed time, 
the gradients at different positions become uncorrelated and 
Gaussian distributed � 4,41� . Thus, we will look at their dis
crete analogs in the alignment problem. They are the score 
differences between neighboring lattice points and thus lo
cated on the diagonal bonds of the lattice. We will param
etrize these score differences by the bond variables n(r ,t). 
They will later turn out to be the occupation numbers of the 

3Since directed polymers in a random medium are known to have 
a wandering exponent � �2/3 this actually still holds for t�W3/2. 
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FIG. 7. One building block of 
the alignment lattice. By our num
bering scheme of the lattice r and 
t are either both even or both odd. 
�a� shows the scores at the lattice 
points and the bond variables 
n(r ,t). �b� shows this building 
block as a ‘‘device,’’ that takes 
two incoming bond variables n�1
and n2� and transforms them with 
the help of the transfer matrix T1 

into the new bond variables n1 

and n2. 
�

sites of an asymmetric exclusion process. With the choice of 
coordinates as illustrated in Fig. 7�a�, we define them to be4 

h�r�1,t ��h�r ,t�1 ��1 for r�t even 
n�r ,t ��

h�r�1,t�1 ��h�r ,t � for r�t odd. 
�33� 

As explained in detail in Appendix B, rewriting the time 
evolution equation �32� in terms of the variables n(r ,t) leads 
to a time evolution equation of n(r ,t) alone, without any 
reference to the absolute scores h(r ,t). Moreover, this time 
evolution equation implies that the score differences 
take only the values n(r ,t)��0,1�. By the structure of 
the alignment lattice as a composition of elements as 
the one shown in Fig. 7�a�, the resulting time evolution for 
the n(r ,t) transforms a pair �n(r�1,t�1),n(r ,t�1) � 
���00�,�01� ,�10�,�11�� into the new pair �n(r 
�1,t),n(r ,t) ����00� ,�01�,�10�,�11�� independently from 
all the other n(r�,t�1). This transformation only depends 
on the single random variable �(r ,t) and can be expressed 
by the transfer matrix 

� 1 0 0 0 

0 1 1� p 0 �T1�0 �� �34�
0 0  p 0 

0 0 0 1 

in the basis �00�,�01� ,�10�,�11�. We can thus interpret the 
action of the lattice element shown in Fig. 7�a� as a ‘‘device’’ 
like the one shown in Fig. 7�b� that takes a pair of variables 
(n1� ,n2�) as its inputs, applies the transfer matrix T1(0), and 
generates a new pair of variables (n1 ,n2) as its outputs. 

We recognize the action of the transfer matrix T1(0) as 
the elementary time step of an asymmetric exclusion process, 
if we interpret the n(r ,t) as particle occupation numbers on 
a one-dimensional lattice of 2W sites with periodic boundary 

4Note, that the n(r ,t) are not literally score differences but suit
ably chosen parameterizations of these score differences. This com
plication is necessary in order to enable the interpretation as the 
particle occupation numbers in the asymmetric exclusion process. 
03191
conditions as the one shown in Fig. 8. Each of these sites can 
either be empty or occupied by a single particle. In each time 
step for each pair of neighboring sites, a particle hops to the 
right with some probability 1� p , if the site to its right is 
empty according to the nonvanishing entry �10���01� of the 
transfer matrix T1(0). If there is no particle or if the site on 
the right is already occupied, the configuration remains un
changed. 

In terms of the elementary devices shown in Fig. 7�b� the 
lattice structure of Fig. 6 can be depicted schematically as 
shown in Fig. 9. Thus, the process of hopping a particle to 
the right is attempted for each even numbered site at odd 
time steps and for each odd numbered site at even time steps. 
This hopping dynamics is exactly the asymmetric exclusion 
process with sublattice-parallel updating with periodic 
boundary conditions5 �10,42�. 

In reducing the dynamics from a dynamics of scores into 
a dynamics of the occupation numbers n(r ,t), one has to pay 
attention to the boundary conditions. Periodic boundary con
ditions for the n(r ,t) do not automatically lead to meaning
ful periodic boundary conditions for the scores h(r ,t). We 
thus have to impose the additional constraint that the total 

5If we had chosen the ‘‘hard wall’’ boundary conditions h(�1,t) 
�h(2W ,t)�� instead of the periodic boundary conditions 
h(2W ,t)�h(0,t) for the score, we would have arrived at the asym
metric exclusion process with sublattice-parallel updating and open 
boundary conditions at a feeding and extinction rate of ����1 
� p at the two ends of the lattice with 2W�1 sites, respectively. 

FIG. 8. Interpretation of the transfer matrix T1(0) as given in 
Eq. �34� as an asymmetric exclusion process. A configuration of the 
local score differences is represented by particles on a one-
dimensional lattice of width 2W . At an odd time step for each even 
site r�1 a particle hop is attempted with probability 1� p . In our  
example, the particle at site 0 cannot hop, since site 1 is already 
occupied. The particle on site 2 can hop to site 3 as indicated by the 
dashed square. 
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FIG. 9. Schematic representation of the alignment lattice of Fig. 
6 as an ‘‘electric circuit.’’ The boxes represent elements of the type 
shown in Fig. 7�b�. They take two particle occupation numbers as 
their ‘‘inputs’’ and generate two new particle occupation numbers as 
their ‘‘outputs.’’ Their interconnection into a layered structure as 
shown here with a shifted pairing scheme in every time step leads to 
the nontrivial behavior of sequence alignment. 

sum of the local score differences across the whole lattice 
vanishes. In terms of our bond variables n(r ,t) this translates 
into the condition 

1
2W�1 

1
� n�r ,t �� 

2
, �35�

2W r�0 

i.e., the system of hopping particles is at half filling. Since 
the number of particles is conserved under the dynamics de
scribed by the transfer matrix T1(0), the condition �35� is 
guaranteed to hold if we choose the initial conditions 

2W�1n(r ,t�0)/2W�1/2. Particle densities different from �r�0 
one half would correspond to a tilted ‘‘score profile’’ h(r ,t) 
at each fixed time t. 

V. THE GENERATING FUNCTION 

A. Expressing the generating function in terms 
of the hopping process 

We now want to apply the mapping between sequence 
alignment and the asymmetric exclusion process to the prac
tical problem of assessing alignment significance. As noted 
in Sec. III, this amounts to calculating the generating func
tion 

Z0��;N ���exp��h�0,N ���0 , �36� 

where �•••�0 denoted the average over the ensemble of un-
correlated disorder defined by Eqs. �30� and �31�. Thus, we 
first need to express the total score h(0,N) in terms of the 
occupation numbers n(r ,t). As explained in more detail in 
Appendix B, h(0,t) is on average incremented by 1/2W ev
ery time the transfer matrix T1(0) is applied except for the 
transition �01���10�. Thus, Z0(�;N) can be expressed as 

Z0��;N ��exp��N/2��exp���J��0 �37� 

in terms of the total number of particle hops per lattice site 
031911
1 
N/2 W�1 

J� � � � j�2k�1,2l�1 �� j�2k ,2l �� , �38�
2W l�1 k�0 

where j (r ,t)��0,1� is the number of particle hops at lattice 
site (r ,t). We thus need to determine the generating function 

Q��;W ,N ���exp���J ��0 �39� 

for the asymmetric exclusion process. Note, that this is dif
ferent from the generating function of the local current 
j(r ,t): since J/N is the time and space averaged current, Q 
contains information on spatial and temporal correlations in 
the number of hopping particles that the generating function 
for the local current does not. 

B. The generating function as an eigenvalue problem 

Now we will reformulate the calculation of the generating 
function Q(�;W ,N) for the asymmetric exclusion process as 
an eigenvalue problem. As already mentioned, exp���J� is a 
product of factors exp���/2W� for every particle that hops. 
Since the dynamics of the hopping process is described by 
the transfer matrix T1(0) defined in Eq. �34�, we can calcu
late Q(�;W ,N) by associating a weight exp���/2W� to the 
element of the transfer matrix T1(0) that corresponds to a 
hop. This can be derived more formally from a dynamics 
path integral representation of Z0(�;N) as detailed in Appen
dix C. We get the modified local transfer matrix 

T1 � � 

W � �� 1 0 

0 1  

0 0  

0 

�1� p �e��/2W 

p 

0 

0 

0 � �40� 

0 0 0 1 

in the basis �00�,�01�,�10�,�11� of a pair of neighboring lat
tice sites. 

Next, we need to take into account the special lattice 
structure of Fig. 9. We note that at every even time step the 
lattice is decomposed into W of the building blocks described 
by T1. Thus, a single time step of the total system at even 
time is described by the matrix 

W � 
Teven�TW���� � T1 � W � . �41� 

k�1 

At odd times the dynamics is the same, but the pairing of 
neighboring sites is shifted. To generate the time evolution at 
odd time steps, we can thus shift all particles to the right, 
apply the dynamics of even time steps and then shift all 
particles back to the left. Let C be the translation operator 
such that 

C�n0n1 •••n2W�1���n1 •••n2W�1n0� , �42� 

which shifts all particles by one site to the left taking into 
account the periodic boundary conditions. With this defini
tion we can write Todd�CTW(�)C�1. 

The sublattice-parallel updating procedure �i.e., the struc
ture of the lattice as depicted by Fig. 9� finally leads to 
-10 



ASYMMETRIC EXCLUSION PROCESS AND EXTREMAL . . .  PHYSICAL REVIEW E 65 031911 
Q��;W ,N ����1��TevenTodd�
N/2��0� 

���1�„TW���CTW���C�1
…

N/2��0�, �43� 

where ��0� is a 4W-dimensional state vector representing the 
initial conditions, and ��1� is the 4W-dimensional vector 
whose entries are all 1, used here to denote a summation 
over all possible final configurations. In the limit of large 
N�W , this obviously becomes 

NQ��;W ,N ���W���, �44� 

where �W 
2 (�) is the eigenvalue of TW(�)CTW(�)C�1 with 

the largest real part. Since this matrix has no negative entries 
and is irreducible for nonpathological choices of the scoring 
matrix �while restricted to the physical sector of half filling�, 
the largest eigenvalue of this matrix is guaranteed by the 
Perron-Frobenius theorem to be nondegenerate and real, and 
its eigenvector can be chosen without negative entries. When 
��0, we have �(0)�1 and its eigenvector is the stationary 
distribution of the asymmetric exclusion process, which is a 
simple tensor product of independent occupation numbers. 
This is no longer the case for ��0. 

C. Calculating the largest eigenvalue 

For a finite W, it is in principle possible to solve for the 
largest eigenvalue of the 4W-dimensional matrix 
TW(�)CTW(�)C�1 by directly diagonalizing the matrix. It is 
convenient to reduce the size of this matrix by exploiting 
some symmetries. Since the lattice is translationally invariant 
with respect to shifts in r by 2, we expect the same symmetry 
of the largest eigenvalue of TW(�)CTW(�)C�1. Thus, for 
the purpose of computing the largest eigenvalue we can re
strict ourselves to the subspace C of translationally invariant 
vectors 

C������C2��������. �45� 

This corresponds to a discrete Fourier transform of the ma
trix TW(�)CTW(�)C�1 and choosing the k�0 component. 
On C, we have C�1�C by definition. Thus, it is enough to 
look for the largest eigenvalue �W(�) of the matrix TW(�)C 
restricted to C. A further restriction that helps reducing the 
size of the matrix is the mirror symmetry of the lattice that 
has to be respected by the eigenvector as well. Additionally, 
TW(�)C has to be restricted onto the physical subspace of 
half filling. 

After applying these simplifications, the largest eigen
value can be calculated for small widths W using computer 
algebra. Although the matrix TW(�)C explicitly contains the 
quantity exp���/2W � , it turns out that the characteristic 
polynomial depends only on exp���/2� . This is a conse-
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quence of the translational invariance of the lattice.6 In order 
to reveal the underlying structure of the largest eigenvalues 
for different W, it is very useful to expand the resulting larg
est eigenvalues �W(�) in powers of this quantity e��/2. We  
get 

��/2�W�1: �1�����p�O�e

��/2�O„�e��/2�2
…W�2: �2�����p��p�1 �e

��/2W�3: �3�����p��p�1 �e

� �/2
…

3
…��p�1 ��p�e��2 �2�O„„e

��/2W�4: �4�����p��p�1 �e

��/2�2��p�1 ���p�1 ��p�e

��/2�3�O„�e��/2�4
…,��p2�e

where the O„(e��/2)k
… terms denote terms of the given order 

with prefactors which are different for different W. We can 
��/2)W�1see that the coefficients up to order (e remain un

changed upon increasing W and they constitute the beginning 
of a simple geometric series. Assuming that this pattern 
holds for arbitrary orders, we can resum the series for any 
fixed ��0 and get 

��/2�p�e
����� lim �W����

��/2
. �46� 

W�� 1��pe

Combined with Eqs. �37�, �39�, and �44� this yields the gen
erating function 

Z0��;N ��exp��N/2��N��� 

��exp��/2������N 

� � N 

1��pexp� �2 � �� exp � �47� 
� 2 

1��pexp� � � � � 
2 

in the limit of large N. 
Equation �47� can be easily generalized to the match-

mismatch scoring system given in Eq. �2� with a gap cost 
���/2 for an arbitrary value of � . If we denote the score in 

¯6Instead of looking at the average score h(N) 
�(1/2W) �rh(r ,N) as we do in the derivation of Eq. �43� in Ap
pendix C, we could also have chosen a specific position, say r�0 

and r�1, and monitored the behavior of the score h̃(N) 
1� 2 �h(1,N)�h(0,N�1)� . Since the differences between scores at 

the same time are bounded, these two quantities must have the same 
generating function for large N. The transfer matrix that calculates 

Wthe generating function for h̃(N) is  ̃T(�)�T1(�) � � k�2T1(0) in
stead of TW(�). It has the technical disadvantage that it breaks the 
translational invariance, but it explicitly depends only on 
exp���/2� instead of exp���/2W � . 
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this scoring system by h�(r ,t), it is connected to the score 
h(r ,t) of the scoring system with ����0 by the simple 
global rescaling and shifting 

h��r ,t ���1���h�r ,t �� t . �48�
2 

Thus the corresponding generating function is given by 

�h�(0,N)��eZ�� ,�;N ���e ��N�exp���1���h�0,N ���. 
�49� 

If we again neglect correlations and use uncorrelated random 
variables 

1 with probability p 
��r ,t �� �50� 

�� with probability 1� p 

the same rescaling and shifting leads to 

�h�(0,N)�0Z0�� ,�;N ���e

� N 

1��pexp� �1���
2 � 

� exp � �
� 2� 

1��pexp� � �1��

� 
�� � � � . 

2 

�51� 

D. Connections to related work 

The distribution of the height of a surface governed by 
KPZ dynamics has been of quite some recent interest. On the 
one hand, a generating function very closely related to Eq. 
�51� has been calculated �13� in the context of an asymmetric 
exclusion process. While Derrida and co-workers are able to 
calculate the full dependence on the finite width W, they 
restrict themselves to the simpler case of continuous time 
that is not an option for our problem since we are given the 
discrete lattice. 

On the other hand, an explicit distribution of the height 
distribution in specific growth models has been derived �37� 
and shown to be connected to the eigenvalue distributions of 
random matrix ensembles. Prähofer and Spohn use a map
ping between the surface height of a growth model and the 
length of the longest increasing subsequence of a random 
permutation. The longest increasing subsequence problem 
can be interpreted as the alignment problem of a permutation 
of the numbers 1,2,3, . . . ,N to the sequence of the ordered 
numbers 1,2,3, . . . ,N . Thus, there are only N matches on a 
lattice of size N�N and no symbol of one sequence matches 
more than one symbol of the other sequence. Interpreting the 
N matches as nucleation events, a growing surface can be 
constructed the height of which is precisely the length of the 
longest increasing subsequence. Applied to disorder �(r ,t) 
that fulfills the constraints of the longest increasing subse
quence problem, i.e., exactly one match for every symbol in 
each of the sequences, the mapping presented in this paper 
essentially reduces to the mapping used by Prähofer and 
Spohn. In this case, the vanishing density of matches in the 
031911
limit N�� allows Prähofer and Spohn to use a continuum 
limit that again simplifies the calculations. However, the 
alignment problem deals with a finite alphabet and the order 
of possible matches is proportional to N2. Moreover, each 
letter in one sequence can �and will� match an extensive 
number of letters in the other sequence. In this case, the 
detailed mapping presented in this paper has to be used. 

As far as results are concerned, the studies by Derrida and 
co-workers and by Prähofer and Spohn both come to the 
conclusion that the generating function or the distribution of 
surface heights respectively takes a universal form in the 
limit W�� that we are interested in. However, this form is 
much more complicated than our simple result Eq. �51�. This 
is due to a different order of taking limits. Derrida and co
workers take the limit W�� of the generating function 
while keeping �W1/2 constant in order to obtain their univer
sal distribution, i.e., they simultaneously take the limits W 
�� and ��0 in some controlled way. Prähofer and Spohn 
directly look at the distribution of the surface height that is 
defined by the properties of the generating function at � 
�0. However, the expansion of �W(�) in terms of e��/2 that 
we used is not valid any more in the limit ��0. Since our 
main interest is in solving Eq. �21� for � that results in a 
finite result of � , our expression �51� is appropriate. It is an 
expression for the generating function beyond the regime in 
which it was found to be universal by Derrida and co
workers. Similarly, the universal infinite W surface height 
distribution found by Prähofer and Spohn, corresponds to the 
same scaling limit as Derrida and co-workers result after 
exchanging the regularization through a finite width W by a 
regularization through a finite time t. It also contains all the 
terms that vanish in the limit W�� at fixed � but come into 
play if � vanishes simultaneously. There is no reason to as
sume the result Eq. �51� to be universal. This is supported by 
the explicit dependence of Eq. �51� on the parameter p. 
Equation �51� has to be calculated taking the discreteness of 
the lattice into full account as shown in this publication. 

VI. IMPLICATIONS ON DIRECTED POLYMERS 
AND SEQUENCE ALIGNMENT 

Now, we will study the consequences of our main result, 
Eq. �51�. First, we will discuss the general properties of the 
generating function and its implications on the physics of 
directed polymers in a random medium. Then, we will come 
back to our original question of the assessment of sequence 
alignment significance. We find, that Eq. �51� is an explicit 
expression for the significance assessment parameter � . It  
reproduces known limiting cases and we will demonstrate 
that our result agrees well with numerical simulations. 

A. Properties of the generating function 

The most notable property of the generating function of 
the connected moments of the average score �or average 
height� 

ln�exp��h��0,N ���0�ln Z0�� ,�;N � �52� 
-12 
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is that it is an odd function of � . The first two terms of its 
expansion are 

ln Z0�� ,�;N � 1 
�v����� b����3�O��5 �, �53�

N 6 

where 

d � �p 
v���� � �Z0�� ,�;N ��1/N��  ��1���

d� 2 1��p��0 

�54� 

and 

3
1�� �1��p ��p

b���� �0.� 
1��p 

� 4 

As already mentioned, we can regard the generating function 
Z0(� ,�;N) as the ensemble averaged partition function of � 
replicas of a directed polymer in a random medium. In this 
sense, Eq. �53� is the free energy per length of this � replica 
system. It has the same form �with a vanishing quadratic 
term� as the result of an earlier explicit replica calculation in 
continuous time and continuous space �12�. However, our 
analysis is directly of the discrete model and is not offected 
by the difficulty of taking the continuum limit in Ref. �12�. 

The vanishing of the second-order term in � will not even 
be affected by the universal contributions to our result for 
small � which have been found in Ref. �13� using the ex
plicit dependence on the width W, since its second order 
coefficient vanishes as W�1/2 in the limit of large width. The 
consequence of this vanishing second-order term in � is that 
the second connected moment of the average height, i.e., the 
height fluctuations, scales sublinear in N. Instead the third 
moment of the height fluctuations scales linearly with N. 
This is a signature of the presence of the anomalous N1/3 

fluctuations of the average surface height characteristic for 
the KPZ universality class. 

B. Statistical significance and the log-linear transition 

According to Eqs. �21� and �51� the parameter � that 
characterizes the statistical significance of local alignments 
with the match-mismatch scoring scheme �Eq. �2�� and gap 
cost ���/2 is given by the unique positive solution of the 
equation 

1��pexp� �1����2 � 
exp � � �1. �55�

� 2 
1��pexp� � �1����2 

In the limit of large � , the solution of Eq. �55� converges to 
���ln p. This is the value that we expect since this limit 
corresponds to the case of gapless alignment �recall that � 
��/2 here�, and ���ln p is the solution of the large � 
limit of Eq. �7�. If the gap cost is decreased, � is reduced, 
too. At some critical value of � there will not be any positive 
solution of Eq. �55� any more, i.e., islands of all sizes are 
031911
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equally probable. This indicates a phase transition between 
the logarithmic and the linear alignment phase. The approach 
of this phase transition is especially interesting. 

Close to the phase transition, we can use the expansion 
�53� and rewrite Eq. �55� as 

1 
v����� b����3�O��5 ��0. �56�

6 

From this expansion the origin of the phase transition is very 
clear: If v (�)�0, the right-hand side of Eq. �56� is a mo
notonously increasing function of � . Thus, ��0 is the only 
solution of Eq. �56�. This corresponds to a flat distribution of 
island sizes, i.e., the linear alignment phase. If v (��0), the 
shape of the right-hand side of Eq. �56� changes and there are 
three roots, one of which is the positive solution 

v��� 1/2 

�� �6 �57�� � .
b��� 

This indicates that we are in the logarithmic alignment 
phase. Thus, the phase transition occurs at the critical mis
match cost �c that is defined by the condition 

v��c ��0. �58� 

Using the explicit form �54� of v (�), we get the critical 
mismatch cost 

2�p
�c� 

1��p 
. �59� 

This reproduces the already known result �24� for the phase 
transition point of this model. As the mismatch cost � ap
proaches this critical value from above, � vanishes as 

6�1��p �3 1/2 

�� ����c �
1/2. �60�

�p�1��p � 

In the case of finite width W, the above expression is valid 
down to ��W�1. This confirms the characteristic universal 
power law ���� �1/2 proposed previously �7� by scaling ar
guments. 

c

C. Numerical verification 

In order to test the approximation of uncorrelated local 
disorder �31� and the heuristic elements of the derivation of 
Eq. �55�, we performed extensive numerical simulations to 
corroborate our result. We used the DNA alphabet of size c 
�4 with identical frequencies for all four letters, i.e., p 
�1/4. For different choices of the mismatch cost � with 
corresponding gap cost ���/2, we used the island method 
�31� to find the values of � as a function of � numerically. 
For each value of � several billion islands have been gener
ated using sequences of N�25 000 in order to achieve rela
tive errors of approximately 1%. We used completely uncor
related local scores chosen as 
-13 
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FIG. 10. Dependence of the significance parameter � on the 
scoring parameter � . The circles represent the numerically obtained 
values of � for uncorrelated local disorder �31� with match prob
ability p�1/4 for which Eq. �55� �the solid line� has been derived. 
They agree well with the analytical result. The diamonds corre
spond to local disorder generated by comparing two randomly cho
sen sequences over an alphabet of size c�4. The values of � ob
tained from the two ensembles differ from each other only very 
close to the phase transition point �c�2. 

1 with probability p 
s� r ,t �� �61� 

�� with probability 1� p 

with p�1/4. The resulting values of � are shown in Fig. 10. 
The solid line is the solution of Eq. �55� and the circles 
represent the values of � for uncorrelated local scores �31�. 
As shown in Fig. 10 the observed �’s follow the analytic 
solution very closely, thereby confirming Eq. �55�. We also 
included the values of � that result from correlated local 
scores generated from aligning randomly chosen sequences 
according to Eq. �2�. As one can see, they deviate only 
slightly from the analytical result for uncorrelated disorder. 
This deviation is strongest close to the log-linear phase tran
sition, which for uncorrelated disorder happens at �c�2. 
The difference of �2% in �c between the correlated and the 
uncorrelated case rapidly becomes much smaller for larger 
alphabet sizes c �40�. 

VII. MORE GENERAL SCORING SYSTEMS 

While the approximation of the ensemble of random se
quences by the ensemble of independent local scores appears 
to have negligible effects, our treatment is so far limited to 
the special scoring system Eq. �30�. While the computation 
of the generating function �exp���J��0 seems feasible only 
for this special scoring system, the mapping to an asymmet
ric exclusion process and the reformulation as an eigenvalue 
problem is still possible for more general scoring systems. 

We consider here scoring systems satisfying the following 
two conditions: First, the differences between the possible 
values sa ,b of the scoring matrix are multiples of some score 
unit � . Second, the gap costs � is such that 2��s0 is also an 
integer multiple of � , with 

s0�max�sa ,b� �62� 
a ,b 
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� �


� 

being the maximal entry of the scoring matrix sa ,b . These 
two conditions are easily satisfied �with ��1� by the most 
frequently used protein scoring systems �16,17� that use in
teger scores and gap costs for performance reasons. For the 
match-mismatch scoring system �2�, the first condition is sat
isfied with ��1�� , while the second condition applies 
only to a discrete set of �’s. However, it is possible in prin
ciple to interpolate to arbitrary gap costs �24�. 

Mapping to an asymmetric exclusion process is possible 
for scoring systems satisfying the above two conditions. It 
will be convenient to express the gap cost � in the following 
way: 

2��nmax��s0 with nmax�N. �63� 

As before, we shall ignore correlations between the local 
scores s(r ,t) and introduce uncorrelated random variables 
�(r ,t)��0,1, . . .  � such that 

s� r ,t ��s0��� r ,t �� , �64� 

i.e., 

Pr��r ,t �� r ,t ���r ,t�� � Pr��� r ,t ���r ,t� �65� 
r ,t 

with 

Pr��� r ,t ����� � papb�sa ,b ,s0��� . �66� 
a ,b 

Note, that these random variables �(r ,t) only take on a finite 
number of different positive integer values, since the scoring 
matrix sa ,b itself has only a finite number of entries. 

A derivation analogous to the one given above for the 
longest common subsequence problem again maps the dy
namics of the alignment algorithm onto the dynamics of par
ticles on a one-dimensional lattice. The state of the system is 
still given by the number of particles n(r ,t) at each lattice 
site, but now these occupation numbers are defined as 

1 
� h� r�1,t ��h� r ,t�1 ����s0 � r�t even 

n� r ,t ��

1 

� h� r�1,t�1 ��h� r ,t ���� r�t odd 

�67� 

and can take any integer value between 0 and nmax . The 
dynamics is given by the relations 

n� r�1,t ��n� r�1,t�1 �� j� r ,t � �68� 

and 

n� r ,t ��n� r ,t�1 �� j� r ,t � �69� 

for even r�t , where 

j� r ,t ��min��� r ,t �,nmax�n� r ,t�1 �,n� r�1,t�1 �� 
�70� 
-14 
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FIG. 11. Interpretation of Eqs. �68�–�70� as a generalized asym
metric exclusion process. A configuration of the local score differ
ences is represented by particles on a one-dimensional lattice of 
width 2W . Each lattice site can accommodate up to nmax particles 
�here nmax�4.� At an odd time step for each even site r�1, a 
number of particles is chosen to attempt hopping to the right. If 
there are enough particles at site r�1 and enough space on site r, 
the chosen number hops. In the example shown, the filled particles 
are the ones to hop and the dashed boxes show their positions after 
the time step. No particle that could hop is on site 6. The particle on 
site 0 cannot hop since its destination site is already fully occupied. 
For site 2, one particle has been chosen. On site 4, at least two 
particles tried to hop. If the number chosen was larger, it would 
have been cut down to two since there are only two particles on site 
4 and since there are only two spaces left at site 5. 

and the total number of particles is fixed to be 

1
2W�1 

� n�r ,t �� 
nmax

. �71�
2W r�0 2 

Equations �68�–�70� can be equally expressed as the follow
ing cellular automata: For each time step and for each pair of 
neighboring sites of the one-dimensional lattice the particles 
lie in, �1� choose an integer number ��0 of particles to hop 
from site r�1 to site r according to the distribution �66�; �2� 
if there are fewer particles than � on site r�1, then reduce � 
to the number of particles on site r�1; �3� if there are fewer 
free spaces than � on site r, then reduce � to the number of 
free spaces on site r; and �4� move � particles from site r 
�1 to site r. 

This updating rule is to be applied sublattice-parallel as 
for the simpler scoring system. The process is illustrated in 
Fig. 11. 

The more complicated hopping process is reflected in a 
different matrix T1(�/W) without changing anything else in 
the calculations. Thus, the significance assessment constant 
� is still given by the generating function of the space and 
time averaged current as 

1/Nexp��s0/2��exp����J ��0 �1 �72� 

but the calculation of this generating function for an arbitrary 
distribution �66� becomes much more difficult for the gener
alized asymmetric exclusion process than for the case nmax 
�1 of the original asymmetric exclusion process. 

However, already the knowledge of the dependence of the 
average current on the scoring parameters would be very 
helpful to biologists, since this determines the position of the 
log-linear phase transition. As discussed in the case of the 
simpler scoring system, the phase transition occurs, if the 
first moment of the score distribution vanishes, i.e., for 
031911
� d �J�0
0� exp��s0/2��exp����J ��0 

1/N�s0/2� �
d� N

��0 

�s0/2�� j�0� . �73� 

The average current is much easier to calculate, since in 
contrast to the generating function, it is independent of tem
poral correlations. Thus, it can be calculated from the knowl
edge of the stationary state alone. For the original asymmet
ric exclusion process, the occupation numbers of the 
stationary state become independent random variables. For 
the generalized asymmetric exclusion process presented 
here, this is not the case any more. If the number of particles 
that hop in one move is at most one �as for the scoring 
system �2� with arbitrary gap costs� approximating the sta
tionary state as a product state still yields reasonable values 
of � j�0 and hence the phase transition point (�c ,�c) �24� 
�see Fig. 3.� Nevertheless, exact results or at least systematic 
improvements taking into account the spatial correlations of 
the occupation numbers would be desirable. For the more 
general case allowing for an arbitrary number of particles to 
hop at a given time, no analytical result is known. 

VIII. CONCLUDING REMARKS 

In this paper, we have shown how a question of great 
practical importance to molecular biologists, like the signifi
cance assessment of local sequence alignment results, can be 
answered by studying the asymmetric exclusion process, an 
exactly solvable model of the KPZ universality class. Con
versely, in trying to answer this question for biologists, we 
derived an important physical quantity like the generating 
function Z for the corresponding physical system in discrete 
time and discrete space. This complements the existing solu
tions in continuous time and space �12� and in continuous 
time and discrete space �13�. Our result is the first successful 
analytical approach to assessing the statistical significance of 
sequence alignment with gaps. 

Future work of practical importance includes solving the 
generalizations of the asymmetric exclusion process de
scribed in Sec. VII and studying the effect of the widely used 
‘‘affine gap cost,’’ where a contiguous gap of length l is 
assigned some gap cost ��(l �1)� instead of simply �l . A  
general expression that gives � as a function of an arbitrary 
scoring system should finally give rise to a deeper under
standing of the role of the gap cost and lead to better choices 
of scoring systems for alignments of biological sequences. 
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APPENDIX A: ISLAND HIGH SCORE DISTRIBUTION 

In this appendix we derive heuristically the exponential 
distribution of maximal island scores. We first treat the gap-
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less case �43� and then generalize the derivation to alignment 
with gaps. In the gapless case, the distribution of large is
lands of length L measured from their beginning to their 
peak point at height � is given by 

L 

p���� � �� �� � s� i �� � . �A1� 
i�1 

Using the Fourier representation of the � function and the 
statistical independence of the s(i) this yields 

1 
p���� � exp��ik���exp� iks ��Ldk . �A2�

2�

If we assume that the peak score of the island is proportional 
to its length, i.e., that an island has on average a linear slope 
� , we get  

1 
p���� � exp��ik�L ��exp� iks ��Ldk , �A3�

2�

which can be evaluated in a saddle point approximation as 

p����exp����� �A4� 

with 

��ik*�ln��exp� ik*s ���/� . �A5� 

The saddle point k* is given by the saddle point equation 

�s exp� ik*s �� 
�1. �A6� 

�exp� ik*s ��� 

This k* is itself a function of the so far unknown slope � . To  
find the correct value of � , we minimize Eq. �A5� with re
spect to � and get together with Eq. �A6�, 

�exp� ik*s ���1. �A7� 

Inserting this into Eq. �A5� yields condition �7�. Additionally 
we get from Eq. �A6� the typical slope � of an island as 

���s exp��s ��. �A8� 
031911
For alignment with gaps, the high score of an island of 
length L from its beginning to its peak point is not just the 
sum of local scores any more. Instead, it is given by the final 
score h(0,L) of a global alignment of two sequences of 
length L taking into account all possible insertions of gaps. 
We can still use the Fourier transformation to get 

1 
p������„��h�0,L �…�� � exp��ik��

2�

��exp� ikh�0,L ���dk . �A9� 

In Sec. V B we will see, that �exp��h(0,L) �� is for large L 
the Lth power of the eigenvalue of some matrix. We thus 
define �(�) by  

�exp��h�0,L �����L��� �A10� 

and again assume a linear slope � of the islands that we 
conveniently define by ���L/2 in order to take into account 
the fact that the lattice of length L actually only contains L/2 
matches or mismatches in a row. We then get 

1 
p���� � exp���ik�/2�ln �� ik ��L�dk . �A11�

2�

Applying the above saddle point approximation and maximi
zation with respect to the slope of the island � yields Eq. 
�21�. Moreover, it gives the typical slope of an island as 

����� 2 
��2 � �h�0,L �exp��h�0,L ���. �A12�

���� L 

APPENDIX B: EXPRESSION OF THE SCORE DYNAMICS 
IN TERMS OF PARTICLE OCCUPATION NUMBERS 

In this appendix we describe the mapping from the evo
lution equation �32� of the sequence alignment scores onto 
the asymmetric exclusion process with n(r ,t) as the particle 
occupation numbers in detail. To this end we apply Eq. �32� 
to the definition Eq. �33� of n(r ,t), where we assume by 
convention that r�t is even as in Fig. 7�a�. We get 
n�r�1,t ��h�r ,t�1 ��h�r�1,t � 

�max�h�r ,t�1 ����r ,t �,h�r�1,t �,h�r�1,t ���h�r�1,t �� 

�h�r ,t�1 ��h�r�1,t ��1�max���r ,t ��1,h�r�1,t ��h�r ,t�1 ��1,h�r�1,t ��h�r ,t�1 ��1� 

�n�r�1,t�1 ��max���r ,t ��1,�n�r�1,t�1 �,n�r ,t�1 ��1� 

�n�r�1,t�1 ��min�1���r ,t �,n�r�1,t�1 �,1�n�r ,t�1 �� 

and analogously 

n�r ,t ��h�r�1,t ��h�r ,t�1 ��1 

�h�r�1,t ��max�h�r ,t�1 ����r ,t �,h�r�1,t �,h�r�1,t ���1 
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�h�r�1,t ��h�r ,t�1 ��max���r ,t ��1,h�r�1,t ��h�r ,t�1 ��1,h�r�1,t ��h�r ,t�1 ��1� 

�n�r ,t�1 ��max���r ,t ��1,�n�r�1,t�1 �,n�r ,t�1 ��1� 

�n�r ,t�1 ��min�1���r ,t �,n�r�1,t�1 �,1�n�r ,t�1 ��. 
This can be summarized in the form 

n�r�1,t ��n�r�1,t�1 �� j�r ,t � �B1� 

and 

n�r ,t ��n�r ,t�1 �� j�r ,t �, �B2� 

where 

j�r ,t ��min�1���r ,t �,1�n�r ,t�1 �,n�r�1,t�1 ��. 
�B3� 

As we can see, there is no reference to the actual align
ment scores h(r ,t) in these equations. As a first consequence 
of these equations we note that they imply that the variables 
n(r ,t) can only take on the values zero and one. This is 
obvious by induction, if it is fulfilled at t�0 as it is the case 
for our choice of initial conditions.7 Thus, it is reasonable to 
interpret the n(r ,t) as particle occupation numbers. 

Moreover, we note that a pair of neighboring occupation 
numbers �n(r�1,t),n(r ,t)� at time t depends only on the 
corresponding pair �n(r�1,t�1),n(r ,t�1) � at time t�1 
and the random variable �(r ,t). Thus, the elements as the 
one shown in Fig. 7 perform these transformations of a pair 
of neighboring occupation numbers into a new pair of neigh
boring occupation numbers completely independently of 
each other. 

Looking at Eqs. �B1�–�B3� more closely, we see that 
j(r ,t)�0 whenever �n(r�1,t�1),n(r ,t�1) � 
���00�,�01� ,�11��. Thus, �n(r�1,t),n(r ,t)���n(r�1,t 
�1),n(r ,t�1) � in these cases. Only if site r�1 is occupied 
and site r is empty, the number j (r ,t) of transferred particles 
can be one with probability Pr��(r ,t)�0��1� p . This 
leads to the interpretation of the dynamics given by Eqs. 
�B1�–�B3� as an asymmetric exclusion process described by 
the transfer matrix T1(0) defined in Eq. �34� of the main 
text. 

So far we transformed the dynamics of the sequence 
alignment algorithm as given by Eq. �32� into an asymmetric 
exclusion process. We still have to express Z0(�;N) in terms 
of this asymmetric exclusion process. To achieve this, we 
first define for any ‘‘time’’ t the average score �or space-
averaged surface height� 

7Even if the initial values of the n(r ,t�0) are not zero or one 
they will under the dynamics of Eqs. �B1�–�B3� eventually try to 
take on values less than zero or larger than 1. The minimum in Eq. 
�B3� then resets them to zero or 1. Thus, after some startup phase, 
the n(r ,t) will be integer even if their initial values are chosen to be 
noninteger. 
031911
� � 

1 
W�1 

� �h�2k ,t�1 ��h�2k�1,t �� t even 
2W k�0 

h̄� t �� � 1 
W�1 

� �h�2k ,t ��h�2k�1,t�1 �� t odd. 
2W k�0 

�B4� 

Because of the translational invariance of the system in the 
spatial �r� direction, we get 

Z0��;N ���exp��h�0,N ���0��exp�� h̄�N ���0 . �B5� 

Thus, we can restrict ourselves to calculating the large N 
behavior of the latter quantity. 

The change in the average score h̄(t) can be expressed in 
terms of the occupation numbers n(r ,t) via Eqs. �32� and 
�33�. It is given by 

h̄� t�1 �� h̄� t � 

1 
W�1 

� �h�2k ,t�1 ��h�2k ,t�1 �� t even 
2W k�0 

1 
W�1 

� �h�2k�1,t�1 ��h�2k�1,t�1 �� t odd. 
2W k�0 

�B6� 

The local score differences in this equation can for even r 
�t be expressed as 

h�r ,t�1 ��h�r ,t�1 � 

�max�h�r ,t�1 ����r ,t �,h�r�1,t �,h�r�1,t �� 

�h�r ,t�1 � 

�1�max���r ,t ��1,n�r ,t�1 ��1�n�r�1,t�1 �� 

�1�min�1���r ,t �,1�n�r ,t�1 �,n�r�1,t�1 �� 

�1� j�r ,t �. 

Inserting this into Eq. �B6� yields 

W�1 

� j�2k ,t � t even 
1 1 k�0 

h̄� t�1 �� h̄� t �� � �2 2W W�1 

� j�2k�1,t � t odd. 
k�0 

�B7� 

Combining Eqs. �B5� and �B7� finally yields 
-17 



R. BUNDSCHUH	 PHYSICAL REVIEW E 65 031911 
� 

Z0��;N ���exp�� h̄�N ���0

N�1 

¯ ¯� � exp�� � �h� t�1 ��h� t ��� �	
t�0 

0 

N/2 W�1 

�exp��N�� exp�� � � � j�2k�1,2l�1 � 
2W l�1 k�0 

� �	� j�2k ,2l ��
0 

�exp��N��exp���J��0 , 

�B8� 

where	

N/2 W�1 

J� 
1 

� � � j�2k�1,2l�1 �� j�2k ,2l �� �B9� 
2W l�1 k�0 

is the total number of particles hopped divided by the num
ber of sites. This is Eq. �39� of the main text. 

APPENDIX C: DYNAMIC PATH INTEGRAL

REPRESENTATION


In this appendix we want to show that the generating 
function Q(�;W ,N) can be expressed as a product of some 
031911
� 

4W-dimensional matrices as stated in Eq. �43� in the main 
text. This rewriting is crucial in transforming the calculation 
of the generating function into an eigenvalue problem. We 
start from the definition 

Q��;W ,N ���exp���J��0


N/2 W�1


� � � � exp�� j�2k�1,2l�1 �� 
l�1 k�0 2W 

�exp � j�2k ,2l � �C1�� � � � . 
2W 

0 

Since, the number of particles in each bin must be either 0 or 
1 at any time, we do not change the expectation value, if we 
introduce ones of the form 

2W�1 

1� 
�nr ,t��

�
�0,1�2W 

� �n(r ,t),nr ,t 
�C2� 

r�0 

at each fixed time t. This corresponds to a path integral for-
mulation of the quantity Q(�;W ,N) and yields 
� 

� 

� 

� 

� �	 �
� 

2W�1 N/2 2W�1	 W�1 

j�2k�1,2l�1 ��exp���J��0� � . . .  � � � �n(r ,0),nr ,0� � � �n(r ,2l�1),nr ,2l�1 � �  � exp�� 
� � � 

�nr ,0� �nr ,N� r�0 l�1 r�0 k�0 2W 

2W�1 W�1 

� � � �n(r ,2l),nr ,2l� �  � exp�� j�2k ,2l �� � � .	 �C3� 
r�0 k�0 2W 

0 

Once a configuration of the particles at each time step is fixed, the expectation value can be factorized into the parts that 
contain only a single random variable �(r ,t) 

2W�1 N/2 2W�1 W�1	 2W�1� � �n(r ,0),nr ,0� � � �n(r ,2l�1),nr ,2z�1 � �  � exp�� j�2k�1,2l�1 �� � �  � �n(r ,2l),nr ,2l �r�0 l�1 r�0 k�0 2W r�0 

W�1 

� � � exp�� j�2k ,2l �� � �
l�0 2W 

0


2W�1 N/2 W�1


n(2k ,2l�2),n2k ,2l�2 
�n(2k�1,2l�2),n2k�1,2l�2 

exp � j�2k�1,2l�1 �� � �n(r ,0),nr ,0 
� � � � �	 � � 

r�0 l�1 k�0 2W 

W�1 

��n(2k ,2l�1),n�2k ,2l�1�n(2k ,2l�1),n2k�1,2l�1 � � � �n(2k�1,2l�1),n2k�1,2l�1 
�n(2k ,2l�1),n2k ,2l�1 

0 k�0 

�exp � j�2k ,2l � �n(2k�1,2l),n2k�1,2l 
�

2W n(2k ,2l),n2k�1,2z 
�1. 

0 
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Inserting this into Eq. �C3�, we can interpret the summation over the possible configurations of the particles at each time 
step as the summation over inner indices in a matrix multiplication. In this language the first term � 2W�1�n(r ,0),nr ,0 

is a vector r�0 

on the 4W-dimensional vector space indexed by all possible particle configurations. This vector has exactly one nonvanishing 
entry at the configuration that is chosen as the initial configuration at t�0. This nonvanishing entry is one and we call this 
vector ��0�. The factor of 1 that we added for the sake of clarity also plays the role of a vector the entries of which are all one. 
We call this vector ��1�. All the other factors represent matrices. There is one matrix for every time step and each of these 
matrices is a tensor product of W identical matrices describing an elementary hopping process. Their matrix elements are 

� � � exp � j� r ,t � � � �C4�� T1 � W � � � n(r�1,t�1),n��n(r ,t�1),n � � n(r�1,t),n1 n(r ,t),n2 � . 
1 2 2W

(n1 ,n2),(n� ,n�) 0
1 2

The disorder average here is over one single random variable �(r ,t). Performing this disorder average yields the matrix 
T1(�/W) as defined in Eq. �40�. The matrices for even time steps and the matrices for odd time steps are shifted against each 
other by one lattice unit that finally leads to the expression of Eq. �43�. 
�1� M.S. Waterman, Introduction to Computational Biology 
�Chapman & Hall, London, UK, 1994�. 

�2� D.F. Feng and R.F. Doolittle, Methods Enzymology 266, 368 
�1996�. 
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�7� D. Drasdo, T. Hwa, and M. Lässig, in Proceedings of the Sixth 
International Conference on Intelligent Systems for Molecular 
Biology, edited by J. Glasgow et al. �AAAI Press, Menlo Park, 
CA, 1998�, pp. 52–58. 

�8� J. Krug, Phys. Rev. Lett. 67, 1882 �1991�. 
�9� B. Derrida, Phys. Rep. 301, 65  �1998�, and references therein. 

�10� D. Kandel, E. Domany, and B. Nienhuis, J. Phys. A 23, L755 
�1990�. 

�11� L.H. Gwa and H. Spohn, Phys. Rev. Lett. 68, 725 �1992�; 
Phys. Rev. A 46, 844 �1992�. 

�12� M. Kardar, Phys. Rev. Lett. 55, 2235 �1985�; Nucl. Phys. B 
290, 582 �1987�. 

�13� B. Derrida and J.L. Lebowitz, Phys. Rev. Lett. 80, 209 �1998�; 
B. Derrida and C. Appert, J. Stat. Phys. 94, 1  �1999�. 

�14� S.F. Altschul et al., J. Mol. Biol. 215, 403 �1990�. 
�15� S.B. Needleman and C.D. Wunsch, J. Mol. Biol. 48, 443 

�1970�. 
�16� M.O. Dayhoff, R.M. Schwartz, and B.C. Orcutt, Atlas Protein 

Seq. Struct. Suppl. 5, 345 �1978�. 
�17� S. Henikoff and J.G. Henikoff, Proc. Natl. Acad. Sci. U.S.A. 

89, 10 915  �1992�. 
�18� S. Karlin and A. Dembo, Adv. Appl. Probab. 24, 113  �1992�. 
�19� S. Karlin and S.F. Altschul, Proc. Natl. Acad. Sci. U.S.A. 90, 

5873 �1993�. 
�20� E.J. Gumbel, Statistics of Extremes �Columbia University 

Press, New York, 1958�. 
031911
�21� J. Galambos, The Asymptotic Theory of Extreme Order Statis
tics �Wiley, New York, 1978�. 

�22� W.R. Pearson, Genomics 11, 635 �1991�. 
�23� T.F. Smith and M.S. Waterman, Adv. Appl. Math. 2, 482 

�1981�. 
�24� R. Bundschuh and T. Hwa, Discrete Appl. Math. 104, 113  

�2000�. 
�25� T.F. Smith, M.S. Waterman, and C. Burks, Nucleic Acids Res. 

13, 645 �1985�. 
�26� J.F. Collins, A.F.W. Coulson, and A. Lyall, CABIOS, Comput. 

Appl. Biosci. 4, 67  �1988�. 
�27� R. Mott, Bull. Math. Biol. 54, 59  �1992�. 
�28� M.S. Waterman and M. Vingron, Stat. Sci. 9, 367 �1994�. 
�29� M.S. Waterman and M. Vingron, Proc. Natl. Acad. Sci. U.S.A. 

91, 4625 �1994�. 
�30� S.F. Altschul and W. Gish, Methods Enzymol. 266, 460 �1996�. 
�31� R. Olsen, R. Bundschuh, and T. Hwa, in Proceedings of the 

Seventh International Conference on Intelligent Systems for 
Molecular Biology, edited by T. Lengauer et al. �AAAI Press, 
Menlo Park, CA, 1999�, pp. 211–222. 

�32� R. Mott and R. Tribe, J. Comput. Biol. 6, 91  �1999�. 
�33� R. Mott, J. Mol. Biol. 300, 649 �2000�. 
�34� D. Siegmund and B. Yakir, Ann. Stat. 28, 657 �2000�. 
�35� R. Arratia and M.S. Waterman, Ann. Appl. Probab. 4, 200 

�1994�. 
�36� Y. Zhang, Ann. Appl. Probab. 5, 1236 �1995�. 
�37� M. Prähofer and H. Spohn, Physica A 279, 342 �2000�; Phys. 

Rev. Lett. 84, 4882 �2000�. 
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