
Protein-DNA interaction energetics 

Exact (ab-initio) calculation of a protein-DNA complex energy is generally a very difficult 

problem. The energy constituents are, to name a few: the direct electrostatic interaction 

between charged elements of the protein and the DNA (e.g. phosphate backbone), hydrogen 

bonds between binding domain aminoacids and DNA bases, effective hydrophobic interac­

tions, water-mediated interactions etc. Though much effort is invested presently in this 

direction, coherent picture is still missing. 

However, a heuristic approach to this seemingly intractable problem originating in the 

seminal papers by von Hippel and Berg proved to be very successful. The complete theory 

is described in details elsewhere [1, 2]; here, we only provide the necessary background. 

Suppose there are ns specific sites of length L for a given regulatory protein. In thermal 

equilibrium with protein solution, the probability of a certain site i to be occupied (or a 

site binding constant) is proportional to a Boltzmann factor e−βEi . Then, by measuring site 

affinities, it is possible to determine site binding energy. Futhermore, if we assume that each 

base contributes independently to the binding energy, it is possible to measure individual 

contributions of the bases by mutating the binding sequence. [7] 

The argument of Berg and von Hippel is based on the analogy they draw between thermo­

dynamic picture and evolutionary selection process. This analogy appears reasonable if we 

assume that during the evolution process only sequences with binding energies in a certain 

interval Es ±Δ/2 are selected. Suppose that the binding domain of the regulatory protein is 

conserved throughout the evolution process and that there exists some strongest (consensus) 

binding sequence. Then every base-pair mismatch in the sequence will weaken the binding 

by a certain discrimination energy, the value of which depends both on the position and the 

mutated base-pair. If all positions are equally important and any mutation contributes the 

same discrimination energy, then specifiyng the required (for selection) sequence energy is 

equivalent to specifying the number of base-pair mismatches. For a sequence of length L 

with m mismatches, each contributing the discrimination energy of ǫ, 

E(m, L) = Ec + mǫ, (1) 

L! 
Ω(m, L) = · 3m . (2) 

m!(L − m)! 



The total number of sequences is 4L . In a genome of a size N , any sequence should be at 

least 

Lmin = log4(2N) (3) 

long so that it won’t appear randomly. For E. coli, N = 4.64 × 106 base pairs, so that 

Lmin ≃ 13. 

Fig. 1shows the results of numerical simulation for 20-bp sequence binding energy for a 

random “genome” of size 107 . The logarithm of the density of states Ω(E) can be quite 

adequately fitted by a parabola, which is merely a consequence of the Central Limit Theorem 

(CLT) applied to a sum of 20 random variables. Thus, the genome binding energy spectrum 

can be described by the Random Energy Model (REM)[3, 4], so that we can define the 

evolutionary temperature T ∗ as 
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where Σ2 is the variance and 〈E〉 is the average binding energy. This equation defines the 
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FIG. 1: Energy spectrum of 20 bp sequence with unit discrimination energy. The squares are the 

results of computer simulation; the solid line is a quadratic fit. 
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transition to the canonical description, which is more appropriate in the general case, when 

different positions and mutations contribute nonequally. Then, if the entire genome is at 

∗“thermal equilibrium” at temperature T , the partition function for a set of all possible 

sequences of length L is 
L 4 

Z∗ = e −λǫi,α , (5) 
i=1 α=1 

where α counts the possible mutations and ǫi,α is the corresponding discrimination energy. 

Under these conditions, the probability of α-th base to be observed in the selected sequence 

at the i-th position is 
−λǫi,α e

pα(i) = �
4 e−λǫi,γ 

. (6) 
γ=1 

Thus, if a collection of binding sites for a certain protein is known, it is possible to estimate 

the binding energies (up to a certain constant factor[8]) by observing the base frequencies at 

various positions in the sites and taking a logarithm, thus constructing the weight matrix [5] 

pi(α)
− λǫi,α = ln , (7) 

p0(α) 

where p0(α) is the frequency of the occurence of the base α inside the genome. The weight 

matrix is a characteristic of the binding domain of the protein; applying it to any arbitrary 

DNA sequence produces this sequence binding energy (see Fig. 2). The average binding 

energy for a set of sites is 

� pi(α)
− λ〈E〉 = pi(α) ln = I, (8) 

p0(α)i,α 

where I is the information content of the set of sites. 

The entire specific binding spectrum is never observed. About 15 − 18 kBT above the 

consensus site, which corresponds to 4-5 significant point mutations, a protein switches its 

binding mode and binds to the DNA non-specifically. Non-specific binding has a relatively 

weak dependence on the underlying sequence, hence its name. It turns out that it is very 

important in the kinetics of the target site location. 
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FIG. 2: Energy spectrum and energy profile for E. coli purine repressor (purR). The weight matrix 

was built by analyzing 35 known binding sites for purR. 
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