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We compute the contribution to the conductivity from holographic Fermi surfaces obtained from probe

fermions in an AdS charged black hole. This requires calculating a certain part of the one-loop correction

to a vector propagator on the charged black hole geometry. We find that the current dissipation is as

efficient as possible and the transport lifetime coincides with the single-particle lifetime. In particular, in

the case where the spectral density is that of a marginal Fermi liquid, the resistivity is linear in

temperature.
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I. INTRODUCTION

For over fifty years our understanding of the low-
temperature properties of metals has been based on
Laudau’s theory of Fermi liquids. In Fermi liquid theory,
the ground state of an interacting fermionic system is
characterized by a Fermi surface in momentum space,
and the low energy excitations are weakly interacting fer-
mionic quasiparticles near the Fermi surface. This picture
of well-defined quasiparticles close to the Fermi surface
provides a powerful tool for obtaining low temperature
properties of the system and has been very successful
in explaining most metallic states observed in nature,
from liquid 3He to heavy fermion behavior in rare earth
compounds.

Since the mid 1980s, however, there has been an accu-
mulation of metallic materials whose thermodynamic and
transport properties differ significantly from those pre-
dicted by Fermi liquid theory [1,2]. A prime example of
these so-called non-Fermi liquids is the strange metal
phase of the high Tc cuprates, a funnel-shaped region
in the phase diagram emanating from optimal doping
at T ¼ 0, the understanding of which is believed to be
essential for deciphering the mechanism for high Tc super-
conductivity. The anomalous behavior of the strange
metal—perhaps most prominently the simple and robust
linear temperature dependence of the resistivity—has
resisted a satisfactory theoretical explanation for more
than 20 years (see [3] for a recent attempt). While photo-
emission experiments in the strange metal phase do reveal
a sharp Fermi surface in momentum space, various anoma-
lous behaviors, including the ‘‘marginal Fermi liquid’’ [4]
form of the spectral function and the linear-T resistivity,
imply that quasiparticle description breaks down for the

low energy excitations near the Fermi surface [4–6]. Other
non-Fermi liquids include heavy fermion systems near a
quantum phase transition [7,8], where similar anomalous
behavior to the strange metal has also been observed.
The strange metal behavior of high Tc cuprates

and heavy fermion systems challenges us to formulate
a low energy theory of an interacting fermionic system
with a sharp Fermi surface but without quasiparticles
(see also [9,10]).
Recently, techniques from the AdS/CFT correspondence

[11] have been used to find a class of non-Fermi liquids
[12–17] (for a review see [18]). The low energy behavior of
these non-Fermi liquids was shown to be governed by a
nontrivial infrared (IR) fixed point which exhibits non-
analytic scaling behavior only in the time direction. In
particular, the nature of low energy excitations around
the Fermi surface is found to be governed by the scaling
dimension � of the fermionic operator in the IR fixed point.
For � > 1

2 one finds a Fermi surface with long-lived quasi-

particles while the scaling of the self-energy is in general
different from that of the Fermi liquid. For � � 1

2 one

instead finds a Fermi surface without quasiparticles. At
� ¼ 1

2 one recovers the ‘‘marginal Fermi liquid’’ (MFL)

which has been used to describe the strange metal phase
of cuprates.
In this paper we extend the analysis of [12–15] to

address the question of charge transport. We compute the
contribution to low temperature optical and DC conductiv-
ities from such a non-Fermi liquid. We find that the optical
and DC conductivities have a scaling form which is again
characterized by the scaling dimension � of the fermionic
operators in the IR. The behavior of optical conductivity
gives an independent confirmation of the absence of qua-
siparticles near the Fermi surface. In particular we find for
� ¼ 1

2 , which corresponds to MFL, the linear-T resistivity

is recovered. A summary of the qualitative scaling behav-
ior has been presented earlier in [16]. Here we provide a
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systematic exposition of the rather intricate calculation
behind them and also give the numerical prefactors.

There is one surprise in the numerical results for the
prefactors: for certain parameters of the bulk model
(co-dimension 1 in parameter space), the leading contribu-
tion to the DC and optical conductivities vanishes; i.e. the
actual conductivities are higher order in temperature than
that presented [16]. This happens because the effective
vertex determining the coupling between the fermionic
operator and the external DC gauge field vanishes at lead-
ing order. The calculation of the leading nonvanishing
order for that parameter subspace is complicated and will
not be attempted here.

While the underlying UV theories in which our models
are embedded most likely have no relation with the UV
description of the electronic system underlying the strange
metal behavior of cuprates or a heavy fermion system, it is
tantalizing that they share striking similarities in terms of
infrared phenomena associated with a Fermi surface with-
out quasiparticles. This points to a certain ‘‘universality’’
underlying the low energy behavior of these systems. The
emergence of an infrared fixed point and the associated
scaling phenomena, which dictate the electron scattering
rates and transport, could provide important hints in for-
mulating a low energy theory describing interacting fermi-
onic systems with a sharp surface but no quasiparticles.

A. Setup of the calculation

In the rest of this introduction, we describe the setup of
our calculation. Consider a d-dimensional conformal field
theory (CFT) with a globalUð1Þ symmetry that has an AdS
gravity dual (for reviews of applied holography see e.g.
[19–22]). Examples of such theories include the N ¼ 4
super-Yang-Mills theory in d ¼ 4, maximally supercon-
formal gauge theory in d ¼ 3 [23–25], and many others
with less supersymmetry. These theories essentially consist
of elementary bosons and fermions interacting with non-
Abelian gauge fields. The rank N of the gauge group is
mapped to the gravitational constantGN of the bulk gravity
such that 1

GN
/ N2. A typical theory may also contain

another coupling constant which is related to the ratio of
the curvature radius and the string scale. The classical
gravity approximation in the bulk corresponds to the
large-N and strong coupling limits in the boundary theory.
The spirit of the discussion of this paper will be similar to
that of [13,14]; we will not restrict to any specific theory.
Since Einstein gravity coupled to matter fields captures
universal features of a large class of field theories with a
gravity dual, we will simply work with this universal sector,
essentially scanning many possible CFTs. This analysis
does involve an important assumption about the spectrum
of charged operators in these CFTs, as we elaborate below.

One can put such a system at a finite density by turning
on a chemical potential � for the Uð1Þ global symmetry.
On the gravity side, such a finite density system is

described by a charged black hole in dþ 1-dimensional
anti-de Sitter spacetime (AdSdþ1) [26,27]. The conserved
current J� of the boundary globalUð1Þ is mapped to a bulk

Uð1Þ gauge field AM. The black hole is charged under this
gauge field, resulting in a nonzero classical background
for the electrostatic potential AtðrÞ. As we review further in
the next subsection, in the limit of zero temperature, the
near-horizon geometry of this black hole is of the form
AdS2 � Rd�1, exhibiting an emergent scaling symmetry
which acts on time but not on space.
The non-Fermi liquids discovered in [13,14] were found

by calculating the fermionic response functions in the finite
density state. This is done by solving Dirac equation for a
probe fermionic field in the black hole geometry (2.2). The
Fermi surface has a size of order OðN0Þ and various argu-
ments in [13,14] indicate that the fermionic charge density
associated with a Fermi surface should also be of order
OðN0Þ. In contrast, the charge density carried by the black
hole is given by the classical geometry, giving rise to a
boundary theory density of order �0 �OðG�1

N Þ �OðN2Þ.
Thus in the large-N limit, we will be studying a small part
of a large system, with the background OðN2Þ charge
density essentially providing a bath for the much smaller
OðN0Þ fermionic system we are interested in. This ensures
that we will obtain a well-defined conductivity despite
the translation symmetry. See Appendix A for further
elaboration on this point.
The optical conductivity of the system can be obtained

from the Kubo formula

�ð�Þ ¼ 1

i�
hJyð�ÞJyð��Þiretarded � 1

i�
Gyy

R (1.1)

where Jy is the current density for the global Uð1Þ in y

direction at zero spatial momentum. The DC conductivity
is given by1

�DC ¼ lim
�!0

�ð�Þ: (1.2)

The right-hand side of (1.1) can be computed on the gravity
side from the propagator of the gauge field Ay with end

points on the boundary, as in Fig. 1. In a 1=N2 expansion,
the leading contribution—of OðN2Þ—comes from the
background black hole geometry. This reflects the presence
of the charged bath, and not the fermionic subsystem in
which we are interested. Since these fermions have a
density of OðN0Þ, they will give a contribution to � of
order OðN0Þ. Thus to isolate their contribution we must
perform a one-loop calculation on the gravity side as
indicated in Fig. 1. Higher loop diagrams can be ignored
since they are suppressed by higher powers in 1=N2.
The one-loop contribution to (1.1) from gravity contains

many contributions and we are only interested in the part

1Note that we are considering a time-reversal invariant system
which satisfies �ð�Þ ¼ ��ð��Þ. Thus the definition below is
guaranteed to be real.
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coming from the Fermi surface, which can be unambigu-
ously extracted. This is possible because conductivity from
independent channels is additive, and, as we will see, the
contribution of the Fermi surface is nonanalytic in tem-
perature T as T ! 0. We emphasize that the behavior of
interest to us is not the conductivity that one could measure
most easily if one had an experimental instantiation of this
system and could hook up a battery to it. The bit of interest
is swamped by the contribution from the OðN2Þ charge
density, which however depends analytically on tempera-
ture. In the large-N limit which is well described by
classical gravity, these contributions appear at different
orders in N and can be clearly distinguished. In cases
where there are multiple Fermi surfaces, we will see that
the ‘‘primary’’ Fermi surface (this term was used in [14] to
denote the one with the largest kF) makes the dominant
contribution to the conductivity.

Calculations of one-loop Lorentzian processes in a black
hole geometry are notoriously subtle. Should one integrate
the interaction vertices over the full black hole geometry or
only the region outside the black hole? How should one
treat the horizon? How should one treat diagrams (such as
that in Fig. 2) in which a loop is cut in half by the horizon?

One standard strategy is to compute the corresponding
correlation function in Euclidean signature, where these
issues do not arise, and then obtain the Lorentzian expres-
sion using analytic continuation (for �l > 0)

Gyy
R ð�Þ ¼ Gyy

E ði�l ¼ �þ i�Þ: (1.3)

This, however, requires precise knowledge of the
Euclidean correlation function which is not available,
given the complexity of the problem. We will adopt a

hybrid approach. We first write down an integral expres-
sion for the two-point current correlation function
Gyy

E ði�lÞ in Euclidean signature. We then perform analytic

continuation (1.3) to Lorentzian signature inside the
integral. This gives an intrinsic Lorentzian expression
for the conductivity. The procedure can be considered as
the generalization of the procedure discussed in [28] for
tree-level amplitudes to one-loop. After analytic continu-
ation, the kind of diagrams indicated in Fig. 2 are included
unambiguously. In fact they are the dominant contribution
to the dissipative part of the current correlation function,
which gives resistivity.
Typical one-loop processes in gravity also contain UV

divergences, which in Fig. 1 happen when the two bulk
vertices come together. We are, however, interested in the
leading contributions to the conductivity from excitations
around the Fermi surface, which are insensitive to short
distance physics in the bulk.2 Thus we are computing a
UV-safe quantity, and short distance issues will not be
relevant. This aspect is similar to other one-loop applied
holography calculations [29,30].
The plan of the paper is follows. In Sec. II, we first

briefly review the physics of the finite density state and
discuss the leading OðN2Þ conductivity which represents a
foreground to our quantity of interest. Section III outlines
the structure of the one-loop calculation. Section IV
derives a general formula for the DC and optical conduc-
tivity respectively in terms of the boundary fermionic
spectral function and an effective vertex which can
in turn be obtained from an integral over bulk on-shell
quantities. Section V discusses in detail the leading low
temperature behavior of the effective vertices for the DC
and optical conductivities. In Sec. VI we first derive the
scaling behavior of DC and optical conductivities and then
present numerical results for the prefactors. Section VII
concludes with some further discussion of the main results.

FIG. 2 (color online). The imaginary part of the current-
current correlator (1.1) receives its dominant contribution from
diagrams in which the fermion loop goes into the horizon. This
also gives an intuitive picture that the dissipation of current is
controlled by the decay of the particles running in the loop,
which in the bulk occurs by falling into the black hole.

FIG. 1 (color online). Conductivity from gravity. The horizon-
tal solid line denotes the boundary spacetime, and the vertical
axis denotes the radial direction of the black hole, which is the
direction extra to the boundary spacetime. The dashed line
denotes the black hole horizon. The black hole spacetime
asymptotes to that of AdS4 near the boundary and factorizes
into AdS2 � R2 near the horizon. The current-current correlator
in (1.1) can be obtained from the propagator of the gauge field Ay

with end points on the boundary. Wavy lines correspond to gauge
field propagators and the dark line denotes the bulk propagator
for the probe fermionic field. The left diagram is the tree-level
propagator for Ay, while the right diagram includes the contri-

bution from a loop of fermionic quanta. The contribution from
the Fermi surface associated with corresponding boundary fer-
mionic operator can be extracted from the diagram on the right.

2For such a contribution the two vertices are always far apart
along boundary directions.
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A number of appendices contain additional background
material and fine details.

II. BLACK HOLE GEOMETRYAND
OðN2Þ CONDUCTIVITY

In this section we first give a quick review of the AdS
charged black hole geometry and then consider the leading
OðN2Þ contribution to the conductivity.3 Our motivation is
twofold. Firstly, this represents a ‘‘background’’ from
which we need to extract the Fermi surface contribution;
we will show that this contribution to the conductivity
is analytic in T, unlike the Fermi surface contribution.
Secondly, the bulk-to-boundary propagators which deter-
mine this answer are building blocks of the one-loop
calculation required for the Fermi surface contribution.

A. Geometry of a charged black hole

We consider a finite density state for CFTd by turning on
a chemical potential � for a Uð1Þ global symmetry. On the
gravity side, in the absence of other bulk matter fields to
take up the charge density, such a finite density system is
described by a charged black hole in dþ 1-dimensional
anti-de Sitter spacetime (AdSdþ1) [26,27].

4 The conserved
current J� of the boundary globalUð1Þ is mapped to a bulk

Uð1Þ gauge field AM. The black hole is charged under this
gauge field, resulting in a nonzero classical background for
the electrostatic potential AtðrÞ. For definiteness we take
the charge of the black hole to be positive. The action for a
vector field AM coupled to AdSdþ1 gravity can be written

S ¼ 1

2�2

Z
ddþ1x

ffiffiffiffiffiffiffi�g
p �

Rþ dðd� 1Þ
R2

� R2

g2F
F��F

��

�
(2.1)

with the black hole geometry given by [26,27]

ds2 � �gttdt
2 þ grrdr

2 þ giid ~x
2

¼ r2

R2
ð�hdt2 þ d~x2Þ þ R2

r2
dr2

h
(2.2)

with

h ¼ 1þ Q2

r2d�2
�M

rd
; At ¼ �

�
1� rd�2

0

rd�2

�
: (2.3)

Note that here we define gtt (and gtt) with a positive sign.
r0 is the horizon radius determined by the largest positive
root of the redshift factor

hðr0Þ ¼ 0; ! M ¼ rd0 þ
Q2

rd�2
0

(2.4)

and

� � gFQ

cdR
2rd�2

0

; cd �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðd� 2Þ
d� 1

s
: (2.5)

It is useful to parametrize the charge of the black hole by a
length scale r�, defined by

Q �
ffiffiffiffiffiffiffiffiffiffiffiffi
d

d� 2

s
rd�1� : (2.6)

In terms of r�, the density, chemical potential and tem-
perature of the boundary theory are

� ¼ 1

�2

�
r�
R

�
d�1 1

ed
; (2.7)

� ¼ dðd� 1Þ
d� 2

r�
R2

�
r�
r0

�
d�2

ed; (2.8)

T ¼ dr0
4�R2

�
1� r2d�2�

r2d�2
0

�
(2.9)

where we have introduced

ed � gFffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2dðd� 1Þp : (2.10)

In the extremal limit T ¼ 0, r0 ¼ r� and the geometry
near the horizon (i.e. for r�r�

r�
� 1) is AdS2 � Rd�1:

ds2 ¼ R2
2

�2
ð�dt2 þ d�2Þ þ r2�

R2
d~x2 (2.11)

where R2 is the curvature of AdS2, and

R2¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dðd�1Þp R; �¼ R2

2

r�r�
; At¼ed

�
: (2.12)

In the extremal limit the chemical potential and energy
density are given by

�¼dðd�1Þ
d�2

r�
R2

ed; �¼Rd�1

�2

ðd�1Þ2
d�2

�
R2

r�

�
d

(2.13)

with charge density still given by (2.7).
At a finite temperature T � �, r0�r�

r�
� 1 and the

near-horizon metric becomes that of a black hole in
AdS2 times Rd�1

ds2 ¼ R2
2

�2

0
@�

 
1� �2

�20

!
dt2 þ d�2

1� �2

�2
0

1
Aþ r2�

R2
d~x2 (2.14)

with

At ¼ ed
�

�
1� �

�0

�
; �0 � R2

2

r0 � r�
(2.15)

and the temperature

3This was also considered in [31–33].
4For other finite density states (with various bulk matter

contents, corresponding to various operator contents of the
dual QFT), see e.g. [34–49] for an overview.
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T ¼ 1

2��0
: (2.16)

In this paper we will be interested in extracting the
leading temperature dependence in the limit T ! 0 (but
with T � 0) of various physical quantities. For this purpose
it will be convenient to introduce dimensionless variables

	�T�¼ TR2
2

r�r�
; 	0�T�0¼ 1

2�
; 
�Tt (2.17)

after which (2.14) becomes

ds2 ¼ R2
2

	2

0
@�

 
1� 	2

	2
0

!
d
2 þ d	2

1� 	2

	2
0

1
Aþ r2�

R2
d~x2 (2.18)

with

A
 ¼ ed
	

�
1� 	

	0

�
: (2.19)

Equation (2.18) can also be directly obtained from (2.2) via
a formal decoupling limit with

	; 
 ¼ finite; T ! 0: (2.20)

Note that in this limit the system is still at a nonzero
temperature as 	0 ¼ 1

2� remains finite. An advantage of

(2.18) and (2.19) is that in terms of these dimensionless
variables, T completely drops out of the metric.

B. Vector boundary to bulk propagator

We now calculate the conductivity of the finite density
state described by (2.2) using the Kubo formula (1.1), to
leading order in T in the limit

T ! 0; s � �

T
¼ fixed: (2.21)

To calculate the two-point function of the boundary
current Jy, we need to consider small fluctuations of the

gauge field �Ay � ay which is dual to Jy with a nonzero

frequency � and k ¼ 0. In the background of a charged
black hole, such fluctuations of ay mix with the vector

fluctuations hty of the metric, as we discuss in detail in

Appendix B. This mixing has a simple boundary interpre-
tation; acting on a system with net charges with an electric
field causes momentum flows in addition to charge flows.

After eliminating hty from the equations for ay, we find

that (see Appendix B for details)

@rð ffiffiffiffiffiffiffi�g
p

grrgyy@rayÞ � ffiffiffiffiffiffiffi�g
p

gyyðm2
eff � gtt�2Þay ¼ 0

(2.22)

where ay acquires an r-dependent mass given by

m2
effR

2
2 ¼ 2

�
r�
r

�
2d�2

: (2.23)

The small frequency and small temperature limit of the
solution to Eq. (2.22) can be obtained by the matching
technique of [14]; the calculation parallels closely that of
[14], and was also performed in [31]. The idea is to divide
the geometry into two regions in each of which the equa-
tion can be solved approximately; at small frequency, these
regions overlap and the approximate solutions can be
matched. For this purpose, we introduce a crossover radius
rc, which satisfies

rc � r�
r�

� 1; 	c � TR2
2

rc � r�
� 1; (2.24)

and will refer to the region r > rc as the outer (or UV)
region and the region r0 < r < rc as the inner (or IR)
region. In particular, in the T ! 0 limit (2.20), rc should
satisfy

rc � r� ! 0; 	c ! 0: (2.25)

To leading order in T in the limit of (2.21), the inner
region is simply described by the near-horizon metric
(2.18) with s as the frequency conjugate to 
. In (2.22),
gyy becomes a constant, and the r-dependent effective mass

term in (2.23) goes to a constant value

m2
effR

2
2 ¼ 2; r ! r�: (2.26)

As a result the IR region differential equation becomes the
same as that of a neutral scalar field inAdS2 with this mass.
Thus at k ¼ 0, the CFT mode Jy to which the gauge field

couples flows to a scalar operator in the IR. It then follows
that the IR scaling dimension of Jy is given by [see (56)

of [14]] �IR ¼ 1
2 þ � ¼ 2 as

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
þm2

effR
2
2ðr�Þ

s
¼ 3

2
: (2.27)

Using current conservation this translates into that
�IRðJtÞ ¼ 1; i.e. Jt is a marginal operator in the IR, which
is expected as we are considering a compressible system.5

Near the boundary of the inner region (i.e. 	 ! 0), the

solutions of (2.22) behave as ay � 	
1
2�� � 	

1
2�3

2. We will

choose a basis of solutions which are specified as (which
also fixes their normalization)

��
I ð	; sÞ !

�
r� r�
TR2

2

��1
2�3

2 ¼ 	
1
2	3

2; 	 ! 0: (2.28)

Note that since the metric (2.18) has no explicit T depen-
dence, as a function of s (2.21), ��

I ðs; 	Þ also have no

5Note that here the IR marginality of Jt only applies to zero
momentum. That Jt must be marginal in the IR for any com-
pressible system leads to general statements of the two-point
function of Jy in the low frequency limit [50]. For example for a
system whose IR limit is characterized by a dynamical exponent
z, then Jy must have IR dimension 2þ d�2

z . For d ¼ 3 this
further implies for any z the two-point function of Jy must scale
like �3 at zero momentum.
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explicit T dependence. This will be important for our
discussion in Sec. V.

The retarded solution (i.e. ay is infalling at the horizon)

for the inner region can be written as [14]

aðretÞy ð	; sÞ ¼ �þ
I þ GyðsÞ��

I ; (2.29)

whereGy is the retarded function for ay in theAdS2 region,

which can be obtained by setting � ¼ 3
2 and q ¼ 0 in

Eq. (D27) of Appendix D of [14]6

GyðsÞ ¼ is

3
ðs2 þ ð2�Þ2Þ: (2.31)

In the outer region we can expand the solutions to (2.22)
in terms of analytic series in � and T. In particular,
the zeroth order equation is obtained by setting in (2.22)
� ¼ 0 and T ¼ 0 (i.e. the background metric becomes
that of the extremal black hole). Examining the behavior
of the resulting equation near r ¼ r�, one finds that

ay � ðr� r�Þ�1
2�3

2, which matches with those of the inner

region in the crossover region (2.25). It is convenient to use

the basis of the zeroth order solutions �ð0Þ
� ðrÞ which are

specified by the boundary condition

�ð0Þ
� ðrÞ !

�
r� r�
R2
2

��1
2�3

2
; r ! r�: (2.32)

Note that in this normalization in the overlapping region
we have the matching

�ð0Þ
þ $ T�þ

I ; �ð0Þ� $ T�2��
I : (2.33)

Near the AdSdþ1 boundary, �
ð0Þ
� can be expanded as

�ð0Þ
� 
r!1

að0Þ� þ bð0Þ� r2�d (2.34)

with að0Þ� , bð0Þ� some functions of k (and does not depend�,
T). We can now construct the bulk-to-boundary (retarded)
propagator to leading order in the limit (2.21), which
we will denote as KAðr;�Þ with boundary condition
KAðr;�Þ ! 1 at the AdSdþ1 boundary (r ! 1). From
(2.29), the matching (2.33) and (2.34), we thus find the
full bulk-to-boundary propagator is then

KAðr;�Þ¼

8>><
>>:

�ð0Þ
þ ðrÞþGyðsÞT3�ð0Þ� ðrÞ
a
ð0Þ
þ þGyðsÞT3a

ð0Þ�
outer region

T
�þ
I þGyðsÞ��

I

a
ð0Þ
þ þGyðsÞT3a

ð0Þ�
inner region

: (2.35)

Note that in the above expression all the T dependence is
made manifest.

The leading order solutions �ð0Þ
� in the outer region can

be determined analytically [31]; with

�ð0Þ
þ ðrÞ ¼ r�

ðd� 2ÞR2
2

�
1�

�
r�
r

�
d�2

�
(2.36)

and thus

að0Þþ ¼ r�
ðd� 2ÞR2

2

;
b
ð0Þ
þ

að0Þþ
¼ �rd�2� : (2.37)

Useful relations among að0Þ� , bð0Þ� can be obtained from
the constancy in r of the Wronskian

W½a1; a2� � a1
ffiffiffi
g

p
gyygrr@ra2 � a2

ffiffiffi
g

p
gyygrr@ra1 (2.38)

where a1;2 are solutions to (2.22). In particular, equating

W½�ð0Þ
þ ; �ð0Þ� � at boundary and horizon gives

bð0Þ� a
ð0Þ
þ �að0Þ� b

ð0Þ
þ ¼ 2�

d�2
rd�3� R2¼ 3

d�2
rd�3� R2: (2.39)

Note that this equation assumes the normalization of the
gauge field specified in (2.32).

C. Tree-level conductivity

We now proceed to study the low frequency and low
temperature conductivity at tree level in the charged black
hole, using the boundary to bulk propagator just discussed.
The OðN2Þ conductivity is given by the boundary value

of the canonical momentum conjugate to ay (in terms of r

foliation) evaluated at the solution (2.35)

�ð�Þ ¼ �lim
r!1

2R2

g2F�
2

ffiffiffiffiffiffiffi�g
p

gyygrr@rKA

i�
(2.40)

which gives

�ð�Þ ¼ ðd� 2Þ 2R
3�d

g2F�
2

1

i�

bð0Þþ þGyT
3bð0Þ�

að0Þþ þGyT
3að0Þ�

: (2.41)

We thus find

�ð�Þ¼ ðd�2Þ2R
3�d

g2F�
2

1

i�

�
 
b
ð0Þ
þ

að0Þþ
þGyT

3b
ð0Þ� a

ð0Þ
þ �að0Þ� b

ð0Þ
þ

ðað0Þþ Þ2 þ���
!

(2.42)

¼ Kðd� 2Þ
�
r�
R2

�
d�2 i

�

þK
�

d� 2

dðd� 1Þ
�
d�3

�
�

ed

�
d�5ð�2 þ ð2�TÞ2Þ þ � � �

(2.43)

where we have used (2.37) and (2.39) as well as (2.13)

and introduced K � 2Rd�1

g2F�
2 . K, which also appears in the

6We copy it here for convenience:

GRðsÞ ¼ ð4�Þ2� �ð�2�Þ�ð12 þ �� is
2� þ iqedÞ�ð12 þ �� iqedÞ

�ð2�Þ�ð12 � �� is
2� þ iqedÞ�ð12 � �� iqedÞ

:

(2.30)

Note that the above equation differs from that of Appendix D of
[14] by a factor of T2� due to normalization difference in (2.28).
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vacuum two-point function, specifies the normalization of
the boundary current and scales as OðN2Þ.

Using (2.13) and (2.7), the first term in (2.43) can also be
written as

�ð�Þ ¼ �2

�þ P

i

�
þ � � � (2.44)

where P ¼ �
d�1 is the pressure. When supplied with the

standard i� prescription, this term gives rise to a contribu-
tion proportional to �ð�Þ in the real part of �ð�Þ. This
delta function follows entirely from kinematics and repre-
sents a ballistic contribution to the conductivity for a clean
charged system with translational and boost invariance, as
we review in Appendix A. It is also interesting to note that
from the bulk perspective the delta function in the con-
ductivity is a direct result of the fact that the fluctuations of
the bulk field ay are massive, as is clear from the perturba-

tion equation (2.22). This is not a breakdown of gauge
invariance; rather the gauge field acquired a mass through
its mixing with the graviton. In the absence of such a mass
term the radial equation of motion is trivial in the hydro-
dynamic limit (as was shown in [51]) and there is no such
delta function.

In (2.43), the important dynamical part is the second
term, which gives the dissipative part of the conductivity.
This part, being proportional to �2 þ ð2�TÞ2, is analytic
in both T and � and the DC conductivity goes to zero in
the T ! 0 limit. This has a simple physical interpretation;
the dissipation of the current arises from the neutral com-
ponent of the system, whose density goes to zero in the
T ! 0 limit, leaving us with only the ballistic part (2.44)
for a clean charged system. We also note that for a clean
system such as this, there is no nontrivial heat conductivity
or thermoelectric coefficient at k ¼ 0, independent of the
charge conduction. This is because momentum conserva-
tion is exact, and just as in the discussion of Appendix A,
there can therefore be no dissipative part of these transport
coefficients.

III. OUTLINE OF COMPUTATION OF
Oð1Þ CONDUCTIVITY

As explained in the introduction, in order to obtain the
contribution of a Fermi surface to the conductivity, we
need to extend the tree-level gravity calculation of the
previous section to the one-loop level with the correspond-
ing bulk spinor field running in the loop. This one-loop
calculation is rather complicated and is spelled out in detail
in the next section. In this section we outline the main
ingredients of the computation suppressing the technical
details.

A. Cartoon description

In this subsection we will describe a toy version of the
one-loop conductivity. We will assume that the boundary

theory retarded Green’s function of a fermionic operator
has a Fermi surface-like pole at ! ¼ 0 and k ¼ kF of
the kind described in [13,14]. We will neglect many
‘‘complications,’’ including spinor indices, matrix struc-
tures, gauge-graviton mixing, and a host of other important
details, which turn out to be inessential in understanding
the structure of the calculation.
The important bulk Feynman diagram is depicted in

Fig. 3. Note that it is structurally very similar to the
particle-hole bubble which contributes to the Fermi liquid
conductivity (see e.g. [52,53]): an external current source
creates a fermion-antifermion pair, which then recombines.
The calculation differs from the standard Fermi liquid
calculation in two important ways. The first, obvious dif-
ference is that the gravity amplitude involves integrals over
the extra radial dimension of the bulk geometry. It turns
out, however, that these integrals can be packaged into
factors in the amplitude (called � below) that play the
role of an effective vertex. The second main difference
is that actual vertex correction diagrams in the bulk are
suppressed by further powers of N�2 and are therefore
negligible, at least in the large-N limit in which we work.
We now proceed to outline the computation. While it is

more convenient to perform the tree-level calculation of
the last section in the Lorentzian signature, for the one-
loop calculation it is far simpler to work in Euclidean
signature, where one avoids thorny conceptual issues
regarding the choice of vacuum and whether interaction
vertices should be integrated through the horizon or not.
Our strategy is to first write down an integral expression
for the Euclidean two-point function7 Gyy

E ði�lÞ and then
analytically continue to Lorentzian signature inside the
integral (for �l > 0)

Gyy
R ð�Þ ¼ Gyy

E ði�l ¼ �þ i�Þ (3.1)

which will then give us the conductivity via the Kubo
formula (1.1) and (1.2).

FIG. 3 (color online). The bulk Feynman diagram by which
the spinor contributes to the conductivity.

7We put the i in the argument of all Euclidean correlation
functions to eventually make the analytic continuation to
Lorentzian signature more natural.
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We now turn to the evaluation of the diagram in Fig. 3,
which works out to have the structure

Gyy
E ði�lÞ � T

X
i!n

Z
d ~kdr2dr2DEðr1; r2; i�l þ i!n; ~kÞ

� KAðr1; i�lÞDEðr2; r1; i!n; ~kÞKAðr2;�i�lÞ:
(3.2)

The ingredients here require further explanation.
DEðr1; r2; i!n; kÞ is the spinor propagator in Euclidean
space. KAðr; i�lÞ is the boundary-to-bulk propagator for
the gauge field [i.e. Euclidean analytic continuation of
(2.35)]; it takes a gauge field source localized at the bound-
ary and propagates it inward, computing its strength at a
bulk radius r. The vertices have a great deal of matrix
structure that we have suppressed, and the actual derivation
of this expression from the fundamental formulas of
AdS/CFT requires a little bit of manipulation that is dis-
cussed in the next section, but its structure should appear
plausible. The radial integrals dr should be understood as
including the relevant metric factors to make the expres-

sion covariant, and d ~k denotes integration over spatial
momentum along boundary directions.

We would now like to perform the Euclidean frequency
sum. This is conveniently done using the spectral repre-
sentation of the Euclidean Green’s function for the spinor,

DEðr1; r2; i!m; ~kÞ ¼
Z d!

ð2�Þ
�ðr1; r2;!; ~kÞ
i!m �!

; (3.3)

where �ðr1; r2;!; ~kÞ is the bulk-to-bulk spectral density.

As we discuss in detail in Appendix C, �ðr1; r2;!; ~kÞ can
be further written in terms of boundary theory spectral
density �Bð!; kÞ as (again schematically, suppressing all
indices)

�ðr; r0;!; ~kÞ ¼ c ðr;!; ~kÞ�Bð!; kÞ �c ðr0;!; ~kÞ (3.4)

where c ðrÞ is the normalizable spinor wave function8 to
the Dirac equation in the Lorentzian black hole geometry.
Equation (3.4) can be somewhat surprising to some readers
and we now pause to discuss it. The bulk-to-bulk spectral
density factorizes in the radial direction; thus in some sense
the density of states is largely determined by the analytic

structure of the boundary theory spectral density �Bð!; ~kÞ.
We will see that this means that despite the presence of the
extra radial direction in the bulk, the essential form of one-
loop calculations in this framework will be determined by
the boundary theory excitation spectrum, with all radial
integrals simply determining the structure of interaction
vertices that appear very similar to those in field theory.

We now turn to the evaluation of the expression (3.2).

B. Performing radial integrals

Inserting (3.3) into (3.2) we can now use standard
manipulations from finite-temperature field theory to
rewrite the Matsubara sum in (3.2) in terms of an integral
over Lorentzian spectral densities. The key identity is
(see Appendix G for a discussion)

T
X
!m

1

ið!m þ�lÞ �!1

1

i!m �!2

¼ � fð!1Þ � fð!2Þ
!1 � i�l �!2

(3.5)

with

fð!Þ ¼ 1

e
! � 1
(3.6)

where the upper (lower) sign is for fermion (boson). Using
the above identity (3.2) can now be written as

Gyy
E ði�lÞ �

Z
d!1d!2d ~kdr1dr2

fð!1Þ � fð!2Þ
!1 �!2 � i�l

� �ðr1; r2;!; ~kÞKAðr1; i�lÞ�ðr2; r1; i�l; ~kÞ
� KAðr2;�i�lÞ: (3.7)

We then analytically continue the above expression to the
Lorentzian signature by setting i�l ¼ �þ i�. We now
realize the true power of the spectral decomposition (3.3)
and (3.4); the bulk-to-bulk propagator factorizes into a
product of spinor wave functions, allowing us to do each
radial integral independently. In this way all of the radial
integrals can be repackaged into an effective vertex

�ð!1; !2;�; ~kÞ ¼
Z

dr �c ðr;!1; ~kÞKAðr;�Þc ðr;!2; ~kÞ;
(3.8)

where the propagator KAðr;�Þ has now become a
Lorentzian object that propagates infalling waves, and we
are left with the formula

Gyy
R ð�Þ �

Z
d!1d!2d ~k

fð!1Þ � fð!2Þ
!1 �!2 ��� i�

�Bð!1; ~kÞ

��ð!1; !2;�; ~kÞ�Bð!2; ~kÞ�ð!2; !1;�; ~kÞ:
(3.9)

This formula involves only integrals over the boundary
theory spectral densities; the radial integral over spinor and
gauge field wave functions simply provides an exact
derivation of the effective vertex � that determines how
strongly these fluctuations couple to the external field
theory current, as shown in Fig. 4.
Computing the effective vertex requires a complete

solution to the bulk wave equations; however, we will
show that in the low temperature and low frequency limit,
the conductivity (3.9) is dominated by the contribution near
the Fermi surface, where we can simply replace � by a

8As discussed in Appendix C, up to normalization, there is a
unique normalizable solution with given !, ~k.
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constant. Thus if one is interested in extracting low
temperature DC and optical conductivities in the low fre-
quency regime, the evaluation of (3.9) reduces to a familiar
one as that in a Fermi liquid (without vertex corrections).

IV. CONDUCTIVITY FROM A SPINOR FIELD

In this section we describe in detail the calculation
leading to (3.9), paying attention to all subtleties. For
readers who want to skip the detailed derivation, the final
results for the optical and DC conductivities are given
by (4.49) and (4.50), with the relevant vertices given by
(for d ¼ 3) (4.53)–(4.56).

Before going into details, it is worth mentioning some
important complications which we ignored in the last
section:

(1) As already discussed in Sec. II B, the gauge field
perturbations on the black hole geometry mix with
the graviton perturbations; a boundary source for the
bulk gauge field will also lead to perturbations in
metric, and as a result the propagator KA in (3.2)
should be supplemented by a graviton component.
Thus the effective vertex � is rather more involved
than the schematic form given in (3.8).

(2) Another side effect of the mixing with graviton is
that, in addition to Fig. 3, the conductivity also
receives a contribution from the ‘‘seagull’’ diagram
of Fig. 5, coming from quartic vertices involving
terms quadratic in metric perturbations (given in

Appendix E). We will show in Appendix F that
such contributions give only subleading corrections
in the low temperature limit and will be omitted.

(3) The careful treatment of spinor fields and associated
indices will require some care.

A. A general formula

We consider a free spinor field in (2.2) with an action

S ¼ �
Z

ddþ1x
ffiffiffiffiffiffiffi�g

p
ið �c�MDMc �m �c c Þ (4.1)

where �c ¼ c y�t and

DM ¼ @M þ 1

4
!abM�

ab � iqAM: (4.2)

The abstract spacetime indices are M;N . . . and the
abstract tangent space indices are a; b; . . . . The index
with an underline denotes that in tangent space. Thus �a

denotes gamma matrices in the tangent frame and �M those
in curved coordinates. According to this convention, for
example,

�M ¼ �aeMa ; �r ¼ ffiffiffiffiffiffiffi
grr

p
�r: (4.3)

We will make our discussion slightly more general, appli-
cable to a background metric given by the first line of (2.2)
with gMN depending on r only. Also for notational sim-
plicity we will denote

Z
k
¼
Z dd�1k

ð2�Þd�1
: (4.4)

We are interested in computing the one-loop correction
to the retarded two-point function of the boundary vector
current due to a bulk spinor field. In the presence of a
background gauge field profile, the fluctuations of the bulk
gauge field mix with those of the metric. Consider small

perturbations in aj � �Aj and hjt ¼ �gjt . In Appendix E

we find that the corrections to the Dirac action are given at
cubic order by

�S3½aj;hjt ;c �¼�i
X
j

Z
ddþ1x

ffiffiffiffiffiffiffi�g
p �c

�
�
�hjt�

t@jþ1

8
gjj@rh

j
t�

rtj� iqaj�
j

�
c

(4.5)

where �rtj � �t�r�j. Note that in the above equation and
below the summations over boundary spatial indices will
be indicated explicitly (with no summation associated
with repeated indices). There are also quartic corrections
(involving terms quadratic in bosonic fluctuations) which
are given in Appendix E. These terms give only subleading
corrections, as we discuss in Appendix F.

FIG. 4 (color online). Final formula for conductivity; radial
integrals only determine the effective vertex �, with exact
propagator for boundary theory fermion running in loop.

FIG. 5 (color online). The ‘‘seagull’’ diagram coming from
quartic vertices involving terms quadratic in bosonic perturba-
tions. The boundary is represented by a circle.
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Now we go to Euclidean signature via

t ! �itE ! ! i!E At ! iA
 iS ! �SE:

(4.6)

It is helpful to keep in mind that c and c y do not change
under the continuation, and we do not change �t. The
Euclidean spinor action can then be written as

SE ¼ i
Z

ddþ1x
ffiffiffi
g

p �c ð�MDð0Þ
M �mÞc þ �S3 þ � � � (4.7)

where �S3 can be written in momentum space as

�S3¼�T2
X
!m

X
�l

Z
k

Z
dr

ffiffiffiffiffiffiffi�g
p

� �c ðr;i!mþ i�l; ~kÞBðr;i�l; ~kÞc ðr;i!m; ~kÞ: (4.8)

Here the kernel Bðr; i�l; ~kÞ contains all dependence on the
gauge and metric fluctuations, which we have also Fourier
expanded:

Bðr;i�l; ~kÞ¼�i
X
j

�
�ikjh

j
t ðr;i�lÞ�tþgjj

8
@rh

j
t ðr;i�lÞ�rtj

�iqajðr;i�lÞ�j

�
: (4.9)

Note that since we are only interested in calculating the
conductivity at zero spatial momentum, we have taken aj
and hjt to have zero spatial momentum.

We now evaluate the one-loop determinant by integrat-
ing out the fermion field. We seek the quadratic depen-
dence on the gauge and graviton fields; the relevant term in
the effective action is given by the Feynman diagram in
Fig. 3 and is

�½aj; hjt � ¼ �T2

2

X
!m;�l

Z
k

Z
dr1

ffiffiffiffiffiffiffiffiffiffiffi
gðr1Þ

q
dr2

ffiffiffiffiffiffiffiffiffiffiffi
gðr2Þ

q

� trðDEðr1; r2; i!m þ i�l; ~kÞBðr2;�l; ~kÞ
�DEðr2; r1; i!m; ~kÞBðr1;��l; ~kÞÞ (4.10)

where the tr denotes the trace in the bulk spinor indices and

DEðr1; r2; i!m; ~kÞ denotes the bulk spinor propagator in the
Euclidean signature. As always we suppress bulk spinor
indices. The bulk spinor propagator is discussed in some
detail in Appendix C. The single most important property
that we use is its spectral decomposition

DEðr1; r2; i!m; ~kÞ ¼
Z d!

2�

�ðr1; r2;!; ~kÞ
i!m �!

; (4.11)

where �ðr1; r2;!; ~kÞ is the bulk spectral function. As is
shown in (C53) of Appendix C, the bulk spectral function
can be written in terms of that of the boundary theory as

�ðr; r0;!; ~kÞ ¼ c �ðrÞ���
B ð!; ~kÞc �ðr0Þ (4.12)

where the boundary spectral function �B is Hermitian and
c is the normalizable Lorentzian wave function for the
free Dirac equation in the black hole geometry.9 �Bð!; kÞ is
the boundary theory spectral density of the holographic
non-Fermi liquid, and was discussed in detail in [14] (see
Appendix D for a review). Note that in (4.12) bulk spinor
indices are suppressed and �, � in c label independent
normalizable solutions and as discussed in Appendix C can
be interpreted as the boundary spinor indices.
Now we introduce various momentum space Euclidean

boundary-to-bulk propagators for the gauge field and
graviton:

ajðr; i�lÞ ¼ KAðr; i�lÞAjði�lÞ;
hjt ðr; i�lÞ ¼ Khðr; i�lÞAjði�lÞ

(4.13)

where Ajði�lÞ is the source for the boundary conserved

current in Euclidean signature. These are objects which
propagate a gauge field source at the boundary to a gauge
field or a metric fluctuation in the interior, and so should
perhaps be called KA

A and KA
h ; we drop the second A label

since we will never insert metric sources in this paper.
KAðr; i�lÞ and Khðr; i�lÞ go to zero (for any nonzero

�l) at the horizon and they do not depend on the index j
due to rotational symmetry. Kh and KA are not indepen-
dent; in Appendix B we show that

@rKh ¼ �C
ffiffiffiffiffiffiffiffiffiffiffiffi
grrgtt

p
g
�dþ1

2

ii KA; (4.14)

with

C ¼ 2�2� (4.15)

where � is the background charge density (2.7).
Now using the definition of the propagators (4.13) we can

write the kernelBðr; i�l; ~kÞ in (4.9) in terms of a new object

Qjðr; ; i�l; ~kÞ that has the source explicitly extracted:

Bðr; i�l; ~kÞ ¼
X
j

Qjðr; i�l; ~kÞAjði�lÞ (4.16)

with

Qjðr;i�l; ~kÞ¼�i

�
�ikjKhðr;i�lÞ�tþgjj

8
@rKhðr;i�lÞ�rtj

� iqKAðr;i�lÞ�j

�
: (4.17)

Plugging (4.16) into (4.10), we can now express the
entire expression in terms of the boundary gauge field
source Ajði�lÞ. Taking two functional derivatives of this

expression with respect to Aj, we find that the boundary

Euclidean current correlator can now be written as

9For a precise definition of the normalizable Lorentzian wave
function, see again Appendix C. In this section, to avoid clutter,
we will use the boldface font to denote the normalizable solu-
tion. The non-normalizable solution will not appear.
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Gij
E ði�lÞ ¼ �T

X
!m

Z
k

Z
dr1

ffiffiffiffiffiffiffiffiffiffiffi
gðr1Þ

q
dr2

ffiffiffiffiffiffiffiffiffiffiffi
gðr2Þ

q
trðDEðr1; r2; i!m þ i�l; ~kÞQiðr2; i�l; ~kÞDEðr2; r1; i!m; ~kÞQjðr1;�i�l; ~kÞÞ:

(4.18)

Note that all objects in here are entirely well defined and self-contained; we now need only evaluate this expression.
To begin this process we first plug (4.11) into (4.18) and then perform the sum over !m using the techniques that were

outlined earlier in (3.5)–(3.7). We find that Eq. (4.18) can be further written as

Gij
E ði�lÞ ¼ �

Z
k

Z d!1

2�

d!2

2�

Z
dr1

ffiffiffiffiffiffiffiffiffiffiffi
gðr1Þ

q
dr2

ffiffiffiffiffiffiffiffiffiffiffi
gðr2Þ

q fð!1Þ � fð!2Þ
!1 � i�l �!2

� trð�ðr1; r2;!1; ~kÞQiðr2; i�l; ~kÞ�ðr2; r1;!2; ~kÞQjðr1;�i�l; ~kÞÞ; (4.19)

Now plugging (4.12) into (4.19) we find that

Gij
E ði�lÞ ¼ �

Z
k

Z d!1

2�

d!2

2�

fð!1Þ � fð!2Þ
!1 � i�l �!2

��

B ð!1; ~kÞ�i


�ð!1; !2; i�l; ~kÞ���
B ð!2; ~kÞ�j

��ð!2; !1;�i�l; ~kÞ (4.20)

with

�i

�ð!1;!2;i�l; ~kÞ
¼
Z
dr

ffiffiffi
g

p
c 
ðr;!1; ~kÞQiðr;i�l; ~kÞc �ðr;!2; ~kÞ: (4.21)

Let us now pause for a moment to examine this expression.
In the last series of manipulations we replaced the interior
frequency sum with an integral over real Lorentzian fre-
quencies; however by doing this we exploited the fact that
the spectral density factorizes in r. This allowed us to
absorb all radial integrals into �, which should be thought
of as an effective vertex for the virtual spinor fluctuations.
Now only the boundary theory spectral density �B appears
explicitly in the expression. This form for the expression is
perhaps not surprising from a field-theoretical point of
view; however it is interesting that we have an exact
expression for the vertex, found by evaluating radial inte-
grals over normalizable wave functions.

We now obtain the retarded Green’s function for the

currents by starting with Gij
E ði�lÞ for �l > 0 and analyti-

cally continuing Gij
E ði�lÞ to Lorentzian signature via

Gij
R ð�Þ ¼ Gij

E ði�l ¼ �þ i�Þ: (4.22)

We will suppress the i� in equations below for notational
simplicity but it is crucial to keep it in mind. For simplicity
of notations we will denote the Lorentzian analytic con-
tinuation of various quantities only by their argument, e.g.

KAðr; i�lÞji�l¼� ! KAðr;�Þ: (4.23)

We also make the analogous replacements for Kh, Q
i and

��
. Note that KAðr;�Þ and Khðr;�Þ have now become

retarded functions which are infalling at the horizon and
satisfy

K�
Aðr;�Þ¼KAðr;��Þ; K�

hðr;�Þ¼Khðr;��Þ: (4.24)

We thus find that the retarded Green’s function for the
currents can be written as

Gij
R ð�Þ ¼ �

Z
k

Z d!1

2�

d!2

2�

fð!1Þ � fð!2Þ
!1 ���!2 � i�

� ��

B ð!1; ~kÞ�i


�ð!1; !2;�; ~kÞ���
B ð!2; ~kÞ

��j
��ð!2; !1;�; ~kÞ (4.25)

where

�i

�ð!1; !2;�; ~kÞ ¼

Z
dr

ffiffiffi
g

p
c 
Q

ic � (4.26)

with

Qjðr;�; ~kÞ ¼ �i

�
�ikjKhðr;�Þ�t þ gjj

8
@rKhðr;�Þ�rtj

� iqKAðr;�Þ�j

�
: (4.27)

Note that in (4.20) both �ið!1; !2;�i�l; ~kÞ analytically
continue to �ið!1; !2;�; ~kÞ.10
The complex, frequency-dependent conductivity is

�ijð�Þ � Gij
R ð�Þ
i�

(4.28)

which through (4.25) is expressed in terms of intrinsic
boundary quantities; � can be interpreted as an effective
vertex. Note that from (4.24) one can readily check that

ðQiðr;�; ~kÞÞy ¼ �tQiðr;��; ~kÞ�t (4.29)

which implies that

�i�

�ð!1; !2;�; ~kÞ ¼ �i

�
ð!2; !1;��; ~kÞ: (4.30)

10This is due to the fact that KAð�i�lÞ ¼ KAði�lÞ.

CHARGE TRANSPORT BY HOLOGRAPHIC FERMI SURFACES PHYSICAL REVIEW D 88, 045016 (2013)

045016-11



We now make a further manipulation on the expression
for the effective vertex (4.26) to rewrite the first term there
in terms of @rKh, which can then be related simply to KA

via (4.14). To proceed note that the wave function c
satisfies the Dirac equation (C2), which implies
that11 (see Appendix C 1 for details)

c 
ðr;!1Þ�tc �ðr;!2Þ
¼ i

!1�!2

1ffiffiffi
g

p @rð ffiffiffi
g

p
c 
ðr;!1Þ�rc �ðr;!2ÞÞ: (4.31)

We now use this identity in the first term ofQj in (4.27) and
integrate by parts. We can drop both boundary terms: the
term at infinity vanishes since the c are normalizable, and
the term at the horizon vanishes because the graviton wave
function hit (and thus Kh) vanishes there.12 We then find
that (4.27) can be rewritten as

Qjðr;�; ~kÞ ¼ �i

�
� kj

!1 �!2

@rKhðr;�Þ�r

þ gii
8
@rKhðr;�Þ�rtj � iqKAðr;�Þ�j

�
;

(4.32)

where it is important to note that this expression makes
sense only when sandwiched between the two on-shell
spinors in �. This manipulation replaced the Kh with
its radial derivative @rKh, and one can now use the relation
between gauge and graviton propagators (4.14) to elimi-
nate @rKh in favor of KA, leaving us with

Qjðr;�; ~kÞ ¼ KAðr;�Þ
�
Y1�

j þ iY2kj
!1 �!2

�r þ iY3�
r t j
�

(4.33)

where

Y1 ¼ �qg
�1

2

jj ; Y2 ¼ �Cg
�dþ1

2

jj

ffiffiffiffiffiffi
gtt

p
; Y3 ¼ 1

8
g
�d

2

jj C:

(4.34)

This is the form of Qj that will be used in the remainder of
this calculation. In (4.33), the C-dependent terms [C was
given in (4.15)] can be interpreted as giving a ‘‘charge
renormalization’’ resulting from mixing between the gauge
field and graviton.

B. Angular integration

We will now use the spherical symmetry of the under-
lying system to perform the angular integration in (4.25).

For this purpose we choose a reference direction, say, with

kx ¼ k � j ~kj and all other spatial components of ~k vanish-
ing. We will denote this direction symbolically as � ¼ 0
below. Then from the transformation properties of spinors
it is easy to see that

�Bð ~kÞ ¼ Uð�Þ�Bðk; � ¼ 0ÞUyð�Þ;
�ið ~kÞ ¼ Rijð�ÞUð�Þ�jðk; � ¼ 0ÞUyð�Þ

(4.35)

where Rijð�Þ is the orthogonal matrix which rotates a

vector ~k to � ¼ 0 and U is the unitary matrix which does
the same rotation on a spinor (i.e. in �, 
 space). The
angular integral in (4.25) is reduced to

1

ð2�Þd�1

Z
dd�2�Rikð�ÞRjlð�Þ ¼ C�ij�kl (4.36)

where C is a normalization constant and dd�2� denotes the
measure for angular integration. Note that C ¼ 1

4� for

d ¼ 3 and C ¼ 1
12�2 for d ¼ 4. The conductivity can now

be written as

�ijð�Þ ¼ �ij�ð�Þ (4.37)

with

�ð�Þ¼� C

i�

Z 1

0
dkkd�2

Z d!1

2�

d!2

2�

fð!1Þ�fð!2Þ
!1���!2� i�

�X
i

��

B ð!1;kÞ�i


�ð!1;!2;�;kÞ���
B ð!2;kÞ

��i
��ð!2;!1;�;kÞ (4.38)

where �Bð!; kÞ and �i
��ð!2; !1;�; kÞ in (4.38) and in all

expressions below should be understood as the correspond-
ing quantities evaluated at � ¼ 0 as in (4.35).
Equation (4.38) can now be further simplified in a basis

in which �B is diagonal, i.e. ��

B ¼ ��

B�
�
, leading to

�ð�Þ¼� C

i�

Z 1

0
dkkd�2

Z d!1

2�

d!2

2�

fð!1Þ�fð!2Þ
!1���!2� i�

���
Bð!1;kÞM��ð!1;!2;�;kÞ��

Bð!2;kÞ (4.39)

where (there is no summation over �, � below)

M��ð!1;!2;�;kÞ¼X
i

�i
��ð!1;!2;�;kÞ�i

��ð!2;!1;�;kÞ

(4.40)

with �i given by (4.26). From (4.30) we also have

M�
��ð!1; !2;�; kÞ ¼ M��ð!1; !2;��; kÞ: (4.41)

The DC conductivity can now be obtained by taking the
� ! 0 limit in (4.39), which can be written as

11For !1 ¼ !2 the equation below reduces to the conservation
of fermionic number.
12This is analogous to the well-known statement that At van-
ishes at black hole horizons, and is similarly most transparent in
Euclidean signature, where a nonzero hit at the shrinking time
cycle indicates a delta-function contribution to the Einstein
tensor.
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�DC ¼ �C

2

X
�;�

Z 1

0
dkkd�2

Z d!

2�

@fð!Þ
@!

� ��
Bð!; kÞM��ð!; kÞ��

Bð!; kÞ þ S (4.42)

where

M��ð!; kÞ � lim
�!0

M��ð!þ�; !;�; kÞ (4.43)

is real [from (4.41)]. Note that the term written explicitly in
(4.42) is obtained by taking the imaginary part of

1
!1���!2�i� in (4.39). The rest, i.e. the part proportional

to the real part of 1
!1���!2�i� , is collectively denoted as S.

We will see in Sec. VI B that such contribution vanishes
in the low temperature limit, so we will neglect it from
now on.

Let us now look at the � ! 0 limit of (4.43), for which
the 1

!1�!2
term in (4.33) has to be treated with some care.

Naively, it appears divergent; however, note that

lim
�!0

1

�
c 
ðr;!þ�; ~kÞ�rc �ðr;!; ~kÞ

¼ �c 
ðr;!; ~kÞ�r@!c �ðr;!; ~kÞ (4.44)

is finite because [see Eq. (C39) of Appendix C]

c 
ðr;!; ~kÞ�rc �ðr;!; ~kÞ ¼ 0: (4.45)

Introducing

�i

�ð!; kÞ � lim

�!0
�i


�ð!��; !;�; kÞ (4.46)

we thus have

M��ð!; kÞ ¼ X
i

�i
��ð!; kÞ�i

��ð!; kÞ (4.47)

and from (4.44) and (4.43)

�j

�ð!; ~kÞ¼

Z
dr

ffiffiffiffiffiffiffi�g
p

KAðr;�¼0Þc 
ðr;!; ~kÞ

�ðY1�
jþiY3�

rtj�ikjY2�
r@!Þc �ðr;!; ~kÞ:

(4.48)

The above expressions (4.39) and (4.42) are very gen-
eral, but we can simplify them slightly by using some
explicit properties of the expression for �B. We seek
singular low-temperature behavior in the conductivity,
which will essentially arise from low frequency singular-
ities in �B. At the holographic Fermi surfaces described
in [14], at discrete momenta k ¼ kF, only one of the
eigenvalues of �B, say �1

B, develops singular behavior.
We can extract the leading singularities in the T ! 0 limit
by simply taking the term in (4.39) proportional to ð�1

BÞ2.
Thus (4.39) simplifies to

�ð�Þ¼� C

i�

Z 1

0
dkkd�2

Z d!1

2�

d!2

2�

fð!1Þ�fð!2Þ
!1���!2� i�

��1
Bð!1;kÞM11ð!1;!2;�;kÞ�1

Bð!2;kÞ (4.49)

and we will only need to calculate M11. Similarly, for the
one-loop DC conductivity,

�DC ¼ �C

2

Z 1

0
dkkd�2

Z d!

2�

@fð!Þ
@!

� �1
Bð!; kÞM11ð!; kÞ�1

Bð!; kÞ: (4.50)

C. M11 in d¼ 3

For definiteness, let us now focus on d ¼ 3 and choose
the following basis of gamma matrices:

�r ¼ ��3 0

0 ��3

 !
; �t ¼ i�1 0

0 i�1

 !
;

�x ¼ ��2 0

0 �2

 !
; �y ¼ 0 �2

�2 0

 !
:

(4.51)

Now we write

c 1¼ð�ggrrÞ�1
4

�1

0

 !
; c 2¼ð�ggrrÞ�1

4

0

�2

 !
(4.52)

where �1;2 are two-component bulk spinors. As discussed

in Appendix D, in the basis (4.51), the fermion spectral
function is diagonal and the subscripts 1, 2 in (4.52) can be
interpreted as the boundary spinor indices. Also note that
in this basis the Dirac equation is real in momentum space
and �1;2 can be chosen to be real.

It then can be checked that �x (evaluated at � ¼ 0) only
has diagonal components while �y only has off-diagonal
components. From (4.40), we then find that

M11 ¼ �x
11ð!1; !2;�; kÞ�x

11ð!2; !1;�; kÞ; (4.53)

where

�x
11ð!1; !2;�; kÞ ¼

Z
dr

ffiffiffiffiffiffiffi
grr

p
KAð�Þ ��T

1 ð!1; kÞ

�
�
Y1�

3 � iY2k

!1 �!2

�2 þ Y3�
1

�
��1ð!2; kÞ: (4.54)

Similarly, for the DC conductivity,

M11 ¼ �x
11ð!; kÞ�x

11ð!; kÞ (4.55)

with

�x
11ð!; kÞ ¼

Z
dr

ffiffiffiffiffiffiffi
grr

p
KAðr;� ¼ 0Þ ��T

1 ðr;!; kÞ
� ðY1�

3 þ Y3�1 þ ikY2�
2@!Þ�1ðr;!; kÞ:

(4.56)
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Equations (4.53)–(4.56) are a set of complete and
self-contained expressions that can be evaluated numeri-
cally if the wave functions �1;2 are known. Y1;2;3 were

introduced here in (4.34).
As this was a somewhat lengthy exposition, let us briefly

recap: after a great deal of calculation, we find the optical
and DC conductivities are given by (4.49) and (4.50), with
(for d ¼ 3) M11 given by (4.53) and (4.54) and M11 given
by (4.55) and (4.56).

V. EFFECTIVE VERTICES

In this section we study in detail the analytic properties
of the effective vertices (4.53)–(4.56) appearing respec-
tively in the expressions for optical and DC conductivities
(4.49) and (4.50) in the regime of low frequencies and
temperatures. We will restrict to d ¼ 3.

For simplicity of notations, from now on we will sup-
press various superscripts and subscripts in M11, �x

11,
M11, �

x
11 and �1, and denote them simply as M, �, M,

� and �. Recall that under complex conjugation

��ð!1; !2;�; kÞ ¼ �ð!2; !1;��; kÞ (5.1)

M�ð!1; !2;�; kÞ ¼ Mð!1; !2;��; kÞ (5.2)

and both �ð!; kÞ andMð!; kÞ are real. Introducing scaling
variables

w1 � !1

T
; w2 � !2

T
; s � �

T
(5.3)

we will be interested in the regime

w1; w2; s ¼ fixed; T ! 0: (5.4)

A. Some preparations

As in the discussion of Sec. II B it is convenient to
separate the radial integral in (4.54) into two parts, coming
from IR and UV regions respectively, i.e.

� ¼ �IR þ�UV (5.5)

with

�UV ¼
Z 1

rc

dr
ffiffiffiffiffiffiffi
grr

p
. . . ; �IR ¼

Z rc

r0

dr
ffiffiffiffiffiffiffi
grr

p
. . . (5.6)

where r0 is the horizon at a finite temperature and rc is the
crossover radius specified in (2.24) and (2.25). In the inner
(IR) region it is convenient to use coordinate 	 introduced
in (2.17), and then

�IR ¼
Z 	0

	c

d	
ffiffiffiffiffiffiffiffi
g		

p
. . . (5.7)

In the limit (5.3), as discussed around (2.25), we can take
rc ! r� and 	c ! 0 in the integrations of (5.6) and (5.7).
Note, however, this limit can only be straightforwardly
taken provided that the integrals of (5.6) are convergent

as rc ! r�. Below wewill see in some parameter range this
is not so and the limit should be treated with care.
Now let us look at the integrand of the vertex (4.54) in

the limit (5.3). For this purpose let us first review the
behavior of the vector propagator KA and spinor wave
function � in the IR and UV regions, which are discussed
respectively in some detail in Sec. II B and Appendix D
(please refer to these sections for definitions of various
notations below):
(1) From Eq. (2.35), we find in the outer region

KAð�Þ ¼ �ð0Þ
þ

að0Þþ
þ iOðT3Þ

¼ r� r�
r

þOðTÞ þ iOðT3Þ (5.8)

with the leading term independent of � and T
and real. In the above we have also indicated the
leading temperature dependence of the imaginary
part [from (2.31)]. In the inner region from the
second line of Eq. (2.35) we have

KAð�Þ ¼ TKAðs; 	Þ þOðT4Þ � � � (5.9)

where

KAðs; 	Þ ¼ 1

a
ð0Þ
þ

ð�þ
I þGyðsÞ��

I Þ (5.10)

has no explicit T dependence.
(2) In the outer region, to lowest order in T, the normal-

izable spinor wave function � can be expanded
in ! as

� ¼ �ð0Þ þ!�ð1Þ þ � � � (5.11)

where �ð0Þ and �ð1Þ are defined respectively in
(D32) and (D33) and are T-independent.
In the inner region, to leading order, � can be
written as [from (D35)]

� ð	;wÞ ¼ að0Þþ
W

T��k��
I þ � � � (5.12)

where að0Þþ and W0 are some k-dependent constants
(but independent of ! and T), and ��

I ð	;wÞ do not
have any explicit dependence on T. The above
expression, however, does not apply near a Fermi

surface k ¼ kF where að0Þþ ðkFÞ is zero. Near a Fermi
surface we have instead [see discussion in
Appendix D around (D38)]

�ð	;w; TÞ ¼ 1

W
½aþðk;!; TÞT��kF��

I ð	;wÞ
� að0Þ� ðkFÞT�kF�þ

I ð	;wÞ� (5.13)

where
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aþðk;!; TÞ ¼ c1ðk� kFÞ � c2!þ c3T þ � � �
¼ c1ðk� kFð!; TÞÞ (5.14)

with real coefficients c1, c2, c3. Again in (5.13) all
the T dependence has been made manifest. Here
we have also introduced a ‘‘generalized’’ Fermi
momentum kFð!; TÞ defined by

kFð!; TÞ ¼ kF þ 1

vF

!� c3
c1

T þ � � � (5.15)

with vF ¼ c1
c2
.

(3) We now collect the asymptotic behavior of various
functions appearing in the effective vertices (4.54)
and (4.56):
(a) For r ! 1,

�� r�mR; KAð�Þ�Oð1Þ ffiffiffiffiffiffiffi
grr

p �1

r
;

Y1�1

r
; Y2;3� 1

rd
(5.16)

and thus the UV part of the integrals are always
convergent as r ! 1. Note that in our conven-
tion mR>� 1

2 with the negative mass corre-

sponding to the alternative quantization.
(b) For r ! r�, in the outer region,

ffiffiffiffiffiffiffi
grr

p � 1

r�r�
; Y1;Y3�Oð1Þ; Y2�r�r�:

(5.17)

From (5.8), KAð�Þ � r� r�. From (D32) and
(D33),

�ð0Þ ¼ 1

W
ðað0Þþ �ð0Þ� � að0Þ� �ð0Þ

þ Þ; (5.18)

and

�ð1Þ ¼ 1

W
ðað1Þþ �ð0Þ� þ að0Þþ �ð1Þ�

� að1Þ� �ð0Þ
þ � að0Þ� �ð1Þ

þ Þ (5.19)

where

�ðnÞ
� � ðr� r�Þ��k�n; r ! r�: (5.20)

(c) Near the event horizon 	 ! 	0,

KAðs; 	Þ ¼ ð	0 � 	Þi s
4�ð1þ � � �Þ; (5.21)

and

��
I ðw; 	Þ � c�ð	0 � 	Þi w4� þ c��ð	0 � 	Þ�i w4�

(5.22)

where c� are some 	-independent constant
spinors (which depend on w and k). Also note

g		� 1

	0�	
; Y1;3�Oð1Þ; Y2�ð	0�	Þ12:

(5.23)

One can then check that the integrals for the
IR part (5.7) are always convergent near the
horizon 	0.

B. Low temperature behavior

With the preparations of the last subsection, we will now
proceed to work out the low temperature behavior of the
effective vertices (4.54) and (4.56), which in turn will play
an essential role in our discussion of the low temperature
behavior of the DC and optical conductivities in Sec. VI.
The stories for (4.54) and (4.56) are rather similar. For
illustration we will mainly focus on (4.56) and only point
out the differences for (4.54). The qualitative behavior of
the vertices will turn out to depend on the value of �k. We
will thus treat different cases separately.

1. �k <
1
2

Let us first look at the inner region contribution.
Equations (5.9) and (5.12) give the leading order tempera-
ture dependence as

� / ðað0Þþ Þ2T1�2�k þ � � � (5.24)

where we have also used that
ffiffiffiffiffiffi
gtt

p / T. The outer region

contribution �UV starts with order OðT0Þ and we can thus
ignore (5.24) at leading order. The full vertex can be
written as

�ð!; kÞ ¼ �0ðkÞ þOðT1�2�kÞ (5.25)

where �0ðkÞ is given by the zeroth order term of �UV and
can be written as

�0ðkÞ¼
Z 1

r�
dr

ffiffiffiffiffiffiffi
grr

p r�r�
r

�
�ð0ÞT

�
�qR

r
�3þCR3

8r3
�1

�
�ð0Þ

� ikC
ffiffiffi
h

p R3

r3
�ð0ÞT�2�ð1Þ

�
(5.26)

where we have taken rc ! r� in the lower limit of the
integral [as commented below (5.7)], and have plugged in
the explicit form of Y1;2;3. From (5.16)–(5.20) it can also be

readily checked that the integral is convergent on both ends.
Note that �0ðkÞ is independent of both T and ! and real.
Similarly for (4.54), one has

�ð!1; !2;�; kÞ ¼ �0ðw1; w2; s; kÞ þOðT1�2�kÞ (5.27)

with the leading term �0 given by

�0ðw1; w2; s; kÞ ¼ �0ðkÞ: (5.28)
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2. �k � 1
2

When �k 
 1
2 , the inner region contribution (5.24) is

no longer negligible for generic momentum. Closely
related to this, the leading outer region contribution, which
is given by (5.26), now becomes divergent at the lower
end (near r�). More explicitly, from Eqs. (5.17)–(5.20)
we find that as r ! r�, the integrand of (5.26) behaves
schematically as

ðað0Þþ Þ2ðr� r�Þ�2�k þOððr� r�Þ0Þ þ � � � : (5.29)

The divergence is of course due to our artificial separation
of the whole integral into the IR and UV regions and there
should be a corresponding divergence in �IR in the limit
	c ! 0 to cancel the one from (5.26). What the divergence
signals is that the leading contribution to the full effective
vertex now comes from the IR region, as the UV
region integral is also dominated by the IR end. Thus for
a generic momentum k, the effective vertex � has the
leading behavior

�ð!; kÞ � ðað0Þþ Þ2T1�2�k þ � � � : (5.30)

A slightly tricky case is �k ¼ 1
2 , for which �0 has a

logarithmic divergence and could lead to a logT contribu-
tion once the divergence is canceled. We have not checked
its existence carefully, as it will not affect the leading
behavior of the DC and optical conductivities (as will be
clear in the discussion of the next section). Thus in what
follows, it should be understood that for �k ¼ 1

2 , the OðT0Þ
behavior in (5.30) could be logT.

It can also be readily checked that for generic k, the
effective vertex � has the same temperature scaling as �.

At a Fermi surface k ¼ kF, a
ð0Þ
þ ðkFÞ ¼ 0 [14], for which

the leading order term in (5.30) vanishes. Thus near a
Fermi surface, which is the main interest of this paper,
we need also to examine subleading terms. Plugging (5.13)
into the expression (4.56) for the vertex, we find that near
kF the temperature dependence of � (including both IR and
UV contributions) can be written as13

�ð!; kÞ ¼ Bð!; kÞðaþðk;!; TÞÞ2T1�2�k þ �0;finite þOðTÞ
(5.31)

where Bðk;!Þ is a smooth function of k and nonvanishing
near kF. At low temperatures it scales with temperature as
OðT0Þ. �0;finite denotes the finite part of (5.26), which is

again ! and T-independent, and a smooth function of k
(also at kF). For k� kF & OðTÞ, using (5.14) we can
further write (5.31) as

�ð!; kÞ ¼ Bð!; kFÞc21ðk� kFð!; TÞÞ2T1�2�kF

þ �0ðkFÞ þ � � � (5.32)

where kFð!; TÞ was the ‘‘generalized Fermi momentum’’
introduced in (5.15). In (5.32) we have also used

�0;finiteðkFÞ ¼ �0ðkFÞ (5.33)

as from (5.29) �0 is finite at kF. Note that expression (5.32)
applies to all �kF including �kF <

1
2 .

From (5.32), note that at the Fermi surface k ¼ kF,

�ð!; kFÞ �
(
OðT0Þ �kF <

3
2

OðT3�2�kF Þ �kF 
 3
2

(5.34)

and the vertex develops singular temperature dependence
for �kF 
 3

2 . However, at the generalized Fermi momentum

kFð!; TÞ, the singular contribution is suppressed. This
structure will be important below in understanding the
low temperature behavior of the DC and optical
conductivities.
Similarly the vertex (4.54) can be written for k� kF &

OðTÞ as
�ð!1;!2;�;kÞ¼ ~Bð!1;!2;�;kFÞc21ðk�kFð!1;TÞÞ

�ðk�kFð!2;TÞÞT1�2�kF þ�0ðkFÞþ���
(5.35)

where ~Bð!1; !2;�; kÞ is a smooth function of k, which
scales with temperature asOðT0Þ, and we have used (5.28).
To summarize the main results of this section:
(1) For �k <

1
2 , the effective vertices are OðT0Þ for all

momenta. For both the DC and optical conductiv-
ities they are given by �0ðkÞ of (5.26), which is a
smooth function of k.

(2) For �k 
 1
2 , the vertices develop singular tempera-

ture dependence for generic momenta as T1�2�k . But
near the Fermi surface [more precisely at the gen-
eralized Fermi momentum kFð!;TÞ] the singular
contribution is suppressed.

(3) For all values of �kF , the vertices for the DC and

optical conductivities are given by (5.32) and (5.35)
respectively.

VI. EVALUATION OF CONDUCTIVITIES

With the behavior of the effective vertices in hand we
can now finally turn to the main goal of the paper: the
leading low temperature behavior of the DC and optical
conductivities. We will first present the leading tempera-
ture scaling and then calculate the numerical prefactors in
the last subsection. In the discussion below we will only
consider a real �k. Depending on the values of q and m,
there could be regions in momentum space where �k is
imaginary, referred to as oscillatory regions in [13,14]. We
consider the contribution from an oscillatory region in
Appendix F 2. We will continue to follow the notations
introduced in (5.3) with below w ¼ !

T and fðwÞ ¼ 1
ewþ1 .

13There is also a term proportional to aþðk;!; TÞ@!�
aþðk; !; TÞT1�2�kF from the last term in (4.56), but its coeffi-
cient, being proportional to ��T

I �2��
I is zero.
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A. DC conductivity

Let us first consider the leading low temperature depen-
dence of the DC conductivity (4.50) which we copy here
for convenience

�DC ¼ �
Z dw

2�

@fðwÞ
@w

Iðw; TÞ (6.1)

with w ¼ !
T and (dropping all the super- and subscripts)

Iðw; TÞ � C

2

Z 1

0
dkkd�2�2

Bðw; k; TÞ�2ðw; k; TÞ: (6.2)

Note that as a function w, the Fermi function fðwÞ is
independent of T; thus all the T dependence of �DC is
contained in the momentum integral Iðw; TÞ.

As discussed in [14] (and reviewed in Appendix D), for
generic momentum, the spinor spectral function �B has
leading low temperature dependence

�B � T2�k : (6.3)

Using (6.3), (5.25), and (5.30), we find that for a generic
momentum (up to possible logarithmic corrections)

�2
B�

2 �
(
T4�k �k <

1
2

T2 �k 
 1
2

(6.4)

where the leading contribution of the first line (for �k <
1
2 )

comes from the UV part of the vertex, while for the second
line the leading contribution comes from the IR part of the
vertex.

Near a Fermi surface as reviewed at the end of
Appendix D

�B ¼ 2h1Im�

ðk� kFð!; TÞ � Re�Þ2 þ ðIm�Þ2 ; (6.5)

where h1 is a positive constant, kFð!;TÞ is given by (5.15)
and

� ¼ T2�kF gðwÞ: (6.6)

gðwÞ is a T-independent scaling function (depending on
kF=�) which can be obtained from the retarded function
in AdS2 evaluated at kF [see (D43)–(D47) for explicit
expressions].

Now let us consider the momentum integral (6.2) near a
Fermi surface. For this purpose it is convenient to intro-
duce a new integration variable

y ¼ k� kFð!; TÞ (6.7)

in terms of which (6.2) can be written to leading order as

Iðw; TÞjFS ¼ 2Ch21k
d�2
F

Z 1

�1
dy

�
Im�

ðy� Re�Þ2 þ ðIm�Þ2
�
2

�ðBðkFÞc21y2T1�2�kF þ �0ðkFÞÞ2 þ � � �
(6.8)

where we have used (5.32). Now the key is that since

�� T2�kF , by scaling y ! T2�kF y, the term proportional

to A in the last parenthesis becomes proportional to T1þ2�kF

and can be ignored. Now the integral can be straightfor-
wardly evaluated and we find that

Iðw; TÞjFS ¼ C0

2 ImgðwÞT
�2�kF (6.9)

where

C0 ¼ 2�Ch21k
d�2
F �2

0ðkFÞ: (6.10)

Clearly (6.9) dominates over the contribution from regions
of momentum space away from a Fermi surface which
from (6.4) can at most be OðT0Þ.14
Plugging (6.9) into (6.1), we then find that for all �kF the

DC conductivity has the following leading low temperature
behavior:

�DC ¼ �T�2�kF (6.11)

where � is a numerical prefactor given by

� ¼ �C0

2

Z dw

2�

@fðwÞ
@w

1

ImgðwÞ : (6.12)

We will discuss the numerical evaluation of � in Sec. VI C.

Note that since both � @f
@w and ImgðwÞ are positive and

even, the integral in the above expression is manifestly
positive.
We emphasize that in the above derivation it is crucial

that the same k� kFð!; TÞ appears in both the spectral
function (6.5) and the effective vertex (5.32). As a result the
leading contribution to the DC conductivity is dominated
by the UV part of the effective vertex due to suppression at
kFð!; TÞ, despite the fact that for �k >

1
2 the vertex is

generically dominated by the IR part.
Finally note that in writing down (6.11) we have

assumed there is a single Fermi surface. In the presence
of multiple Fermi surfaces, the contribution from each of
them can be simply added together and the one with the
largest �kF dominates.

B. Optical conductivity

Let us now look at the optical conductivity, which from
(4.49) can be written as

�ð�Þ ¼ � C

i�

Z d!1

2�

d!2

2�

� fð!1Þ � fð!2Þ
!1 ���!2 � i�

Ið!1; !2;�; TÞ (6.13)

where

14See Appendix F 2 for a discussion of the contribution from
oscillatory regions which is again at most of order OðT0Þ.
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Ið!1; !2;�; TÞ �
Z 1

0
dkkd�2Ið!1; !2;�; kÞ (6.14)

with

Ið!1; !2;�; kÞ ¼ �Bð!1; kÞ�ð!1; !2;�; kÞ
��ð!2; !1;�; kÞ�Bð!2; kÞ: (6.15)

Recall that the vertex � satisfies (5.1) which implies that

�ð�Þ ¼ ��ð��Þ (6.16)

as one would expect since the system has time-reversal
symmetry.

1. Temperature scaling

All the temperature dependence of (6.13) is in
Ið!1; !2;�; TÞ which we examine first. As in (6.3) and
(6.4) one finds that away from a Fermi surface I has the
following leading T dependence:

Ið!1; !2;�; kÞ �
(
T4�k �k <

1
2

T2 �k 
 1
2

(6.17)

where for �k <
1
2 the leading contribution comes from the

UV part of the vertex, while for the second line the leading
contribution comes from the IR part of the vertex. Thus one
could at most get

Ið!1; !2;�; TÞ �OðT0Þ (6.18)

from regions of momentum space away from a Fermi
surface.

Near a Fermi surface � has the low temperature
expansion (5.35) and �B is given by (6.5) and (6.6).
Introducing y ¼ k� kFð!1; TÞ, then the integral has the
following structure

Ið!1; !2;�; TÞjFS �
Z

dy

�
Im�1

ðy� Re�1Þ2 þ ðIm�1Þ2
�

�
�

Im�2

ðyþ �� Re�2Þ2 þ ðIm�2Þ2
�

� ðb1yðyþ �ÞT1�2�kF þ �0ðkFÞÞ
� ðb2yðyþ �ÞT1�2�kF þ �0ðkFÞÞ

(6.19)

where

� � 1

vF

ð!1 �!2Þ; (6.20)

�1;2 � �ð!1;2Þ, and b1;2 are some y-independent functions
of !1, !2, � which scale with temperature as OðT0Þ. For
y�OðT0Þ (i.e. away from the Fermi surface) the integrand
scales as (6.17). Near the Fermi surface, i.e. in the range
y & OðTÞ, as in the analysis of (6.8), due to the fact that

�1;2 � T2�kF , the dominant contribution in the y-integral

comes from the region y�OðT2�kF Þ. One then finds from a
simple scaling that the term proportional to �2

0ðkFÞ (i.e. the
UV part of the vertex) is dominating. The corresponding
temperature scaling of (6.19) depends on the range of �.

For ��OðT2�kF Þ, one has
Ið!1; !2;�; TÞjFS � T�2�kF ; ��OðT2�kF Þ (6.21)

while for ��OðTÞ, one finds

Ið!1; !2;�; TÞjFS �
(
�2
0T

�2�kF �kF <
1
2

�2
0T

2�kF
�2 �kF 
 1

2

: (6.22)

To summarize, the contribution from near the Fermi
surface is given by

�ð�Þ ¼ �C�2
0ðkFÞ
i�

Z
dkkd�2

Z d!1

2�

d!2

2�

� fð!1Þ � fð!2Þ
!1 ���!2 � i�

�Bð!1; kÞ�Bð!2; kÞ þ � � �
(6.23)

which is of the form of that for a Fermi liquid in the
absence of vortex corrections.

2. Contribution from Fermi surface

Now let us look at the contribution from the Fermi
surface in detail and work out the explicit frequency
dependence. As discussed above we only need include
the UV part of the effective vertex, which gives

IðFSÞð!1; !2;�; TÞ ¼ �2
0ðkFÞkd�2

F

Z
dk�Bð!1; kÞ�Bð!2; kÞ:

(6.24)

The latter integral can be done straightforwardly (see
Appendix G 2 for details) and gives

IðFSÞð!1; !2;�; TÞ ¼ 2�h1�
2
0ðkFÞkd�2

F �Bð!2; K2Þ
¼ 2�h1�

2
0ðkFÞkd�2

F �Bð!1; K1Þ
(6.25)

where K2 � kFð!1; TÞ þ ��ð!1Þ and K1 � kFð!2; TÞ þ
��ð!2Þ. We now plug (6.25) into (6.13) and evaluate one
of the frequency integral as follows. Split the integrand into
two terms; in the one with the fð!2Þ, we use the second line
of (6.25) and do the !1 integral, which can be written asZ d!1

2�

�Bð!1;K1Þ
!1���!2� i�

¼GRð!2þ�;K1Þ

¼ h1

� �
vF
þ��ð!2Þ��ð!2þ�Þ

(6.26)

where in the first line we used the spectral decomposition
of the boundary fermionic retarded function GR and the
second line used (D39). Similarly for the term with fð!1Þ
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we can use the first line of (6.25) and do the !2 integral,
which gives

Z d!2

2�

�Bð!2;K2Þ
!1���!2� i�

¼ h1
�
vF
þ�ð!1Þ���ð!1��Þ :

(6.27)

Combining them together we thus find that

�ð�Þ ¼ C0

i�

Z d!

2�

fð!Þ � fð!þ�Þ
� �

vF
þ��ð!Þ ��ð!þ�Þ (6.28)

where C0 was introduced before in (6.10). It is now mani-
fest from the above equation that in the� ! 0, we recover
(6.11). This confirms the claim below (4.43) that S in (4.42)
vanishes at leading order at low temperatures.

We now work out the qualitative� dependence of (6.28)
which has a rich structure depending on the value of �kF .

As stated earlier we work in the low temperature limit

T ! 0 with s ¼ �
T fixed.

(1) �kF <
1
2 : In this case given (6.6), to leading order we

can ignore the term proportional to � in the down-
stairs of the integrand of (6.28). Then �ð�Þ can be
written in a scaling form

�ð�Þ ¼ T�2�kF F1ð�=TÞ (6.29)

with F1ðsÞ a universal scaling function given by

F1ðsÞ ¼ C0 Z dw

2�

fðwþ sÞ � fðwÞ
is

� 1

gðwþ sÞ � g�ðwÞ (6.30)

with g given by (D44). In the s ! 0 limit we recover
the DC conductivity (6.11). In the limit s ! 1,
which corresponds to the regime T � � � �,
using (D46) we find that15

�ð�Þ ¼ C00ð�i�Þ�2�kF (6.31)

where C00 is a real constant given by

C00 ¼ � C0

4�ih2

�
Z 1

�1

dy

cðkFÞð1þ yÞ2�kF � c�ðkFÞð1� yÞ2�kF

(6.32)

with cðkFÞ given by (D45). In obtaining (6.31) we
have made a change of variable w ¼ s

2 ðy� 1Þ in

(6.30) and taken the large s limit. Note that
the falloff in (6.31) is much slower than the
Lorentzian form familiar from Drude theory. The

behavior (6.29) and (6.31) are indicative of a system
without a scale and with no quasiparticles.

(2) �kF >
1
2 : In this case there are two regimes:

(a) with u ¼ �

T
2�kF

¼ fixed and s ¼ uT2�kF
�1 ! 0,

we find (6.28) becomes

�ð�Þ ¼ T�2�kF F2ðuÞ (6.33)

with

F2ðuÞ ¼ C0

2�i

Z
dw

@fðwÞ
@w

1
u
vF

þ 2iImgðwÞ :

(6.34)

Since @f
@w is peaked around w ¼ 0, we can ap-

proximate the above expression by setting gðwÞ
to its value at w ¼ 0, leading to a Drude form

�ð�Þ 
 iC0T�2�kF

2�

1
u
vF

þ 2iImgð0Þ ¼
!2

p

1

 � i�

(6.35)

with

!2
p � vFC

0

2�
;

1



� 2 Imgð0ÞvFT

2�kF :

(6.36)

This behavior is consistent with charge transport
from quasiparticles with a transport scattering

rate given by 
 / T�2�kF . Furthermore we could
interpret C0 as proportional to the quasiparticle
density. Indeed from (6.10) it is proportional to
the area of the Fermi surface. Note that �0ðkFÞ
in C0 can be interpreted as the effective charge
of the quasiparticles.

(b) For s ¼ �
T ¼ fixed, the two � terms in the

downstairs of the integrand of (6.28) are much
smaller than the � term, and we can then
expand in power series of �, with the lowest
two terms given by

�ð�Þ ¼ i!2
p

�
ð1þ T2�kF

�1kðsÞ þ � � �Þ (6.37)

with

kðsÞ ¼ vF

s2

Z
dwðfðwÞ � fðwþ sÞÞ

� ðg�ðwÞ � gðwþ sÞÞ: (6.38)

In the large s limit using (D46) we find

kðsÞ!�að�2isÞ2�kF
�1; a¼4vFh2ImcðkFÞ

2�kF þ1

(6.39)

in which case �ð�Þ (i.e. for T � � � �) can
be written as

15Note that in our setup � is a UV cutoff scale; thus we always
assume � � �.
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�ð�Þ ¼ i!2
p

�
� 2a!2

pð�2i�Þ2�kF�2 þ � � � :
(6.40)

The leading 1=� piece in (6.37) gives rise to a
term proportional to �ð�Þ with a weight
consistent with (6.35). The subleading scaling
behavior may be interpreted as contribution
from the leading irrelevant operator.

Note that in both regimes discussed above the
temperature scalings are consistent with those
identified earlier in (6.21) and (6.22). For real
part of �ð�Þ we have � / !1 �!2 / � as
constrained by the delta function resulting
from the imaginary part of 1

!1���!2�i� in

(6.23), while for the imaginary part of �ð�Þ
the dominant term (i.e. the term proportional

to i
� ) comes from the region !1 �!2 �

OðT2�kF Þ.
(3) �kF ¼ 1

2 : For the marginal Fermi liquid, the � term

in the downstairs of (6.28) is of the same order as �,
and we have

�ð�Þ ¼ T�1F3

�
�

T
; log

T

�

�
(6.41)

where F2 can be written as

F3 ¼ C0 Z dw

2�

fðwþ sÞ � fðwÞ
is

� 1
s
vF

þ gðwþ sÞ � g�ðwÞ (6.42)

with gðwÞ now given by (D47). Due to time reversal
symmetry the real part �1ð�Þ of �ð�Þ is an even
function in � and thus for �=T < 1, one can again
approximate �ð�Þ by a Drude form with the trans-
port scattering time 
 / 1

T . For� � T, using (D48)

we find that

�ð�Þ¼ 1

�

C0

2�ic1

�
1

log�
T

þ 1

ðlog�
T Þ2

�
1þ i�

2
þ 1

vFc1

��

þ��� (6.43)

which is analogous to (6.31), but with logarithmic
modifications. Recall that there are no logarithmic
corrections for the DC conductivity (6.11).

C. Numerical coefficients

In this section, we discuss the numerical computation of
the conductivities in 2þ 1 boundary dimension (d ¼ 3).

1. Optical conductivity

The optical conductivity is given by (6.28) that we copy
here for convenience:

�ð�Þ¼ C0

i�

Z d!

2�

fð!Þ�fð!þ�Þ
� �

vF
þ��ð!Þ��ð!þ�Þ (6.44)

where C0 ¼ 2�Ch21k
d�2
F �2

0ðkFÞ. The formula implicitly

depends on the bulk fermion mass m and charge q. We
are using this version since it only contains one ! integral
and it is easier to evaluate than (4.39). In order to compute
�ð�Þ for a fixedm and q, we need the following quantities:
(i) Fermi momentum: kFðm; qÞ.

At T ¼ 0, ReG�1ðk;! ¼ 0Þ changes its sign at the
Fermi momentum. We determine the location of this
sign change using the Newton method (up to 40
iterations). The algorithm needs an initial k value
where the search starts. This initial value was set by
empirical linear fits on kFðm; qÞ. When there were
multiple Fermi surfaces, we picked the primary
Fermi surface (the one with the largest kF).

Computing G�1 involves solving the Dirac
equation in the bulk. We used Mathematica’s
NDSolve to solve the differential equation
using AccuracyGoal=PrecisionGoal¼12...22, and
WorkingPrecision ¼ 70. Typical IR and UV cutoffs
are 10�12 . . . 10�20 and 10�25 . . . 10�40, respectively.
The resulting kF values are typically accurate to the
10th digit.

(ii) Numerator of the Green’s function: h1ðm; qÞ.
The numerator of the fermionic Green’s function is
determined by fitting a parabola on six data points
of G�1ðk;! ¼ 0Þ near the Fermi surface (i.e.
k ¼ kF � 10�5 . . . kF þ 10�5), and then taking the
derivative of the parabola at k ¼ kF. The computa-
tion of redundant data points makes the resulting h1
value somewhat more accurate, but its main func-
tion is to monitor the stability of the numerics:
whenever the six points are not forming an approxi-
mately straight line, we know that the kF finding
algorithm has failed. In this case, we need to go
back and ‘‘manually’’ obtain the value of the Fermi
momentum.

(iii) Self-energies: �ð!;m; q; TÞ.
Let ~�ð!Þ denote the self-energy at the Fermi sur-
face with the linear !

vF
term included. Then,

GRð!; kÞ ¼ h1

ðk� kFÞ � ~�ð!Þ : (6.45)

Since we already know h1 and kF, we determine ~�
by computing the fermionic Green’s function

at k ¼ kF. Computing both ~��ð!;m; q; TÞ and
~�ð!þ�;m; q; TÞ then gives the denominator
of (6.44).

(iv) Effective vertex: �ð!1; !2;�; k;m; qÞ.
The numerical code computed the frequency-
dependent �i

�
ð!1; !2;�; k;m; qÞ [see (4.26) for

an explicit formula] instead of the simpler �0ðkFÞ.

FAULKNER et al. PHYSICAL REVIEW D 88, 045016 (2013)

045016-20



We determine �ð!1; !2;�; kÞ by first numerically
computingKAðr;�Þ, which is the bulk-to-boundary
gauge field propagator with ingoing boundary con-
ditions at the horizon. (Note that at� ¼ 0 this may
be done analytically.) We then compute the spinor
propagator with normalizable UV boundary condi-
tions at both !1 and !2 and also compute the �
integral using a single NDSolve call. The integra-
tion proceeds towards the horizon where it oscil-
lates somewhat before converging.

By using the above quantities, we compute the conduc-
tivity at a fixed� and T by performing the integral over !
in (6.44). The Fermi functions suppress the integral expo-
nentially outside a certain window set by the parameters;
see Fig. 6. The size of this window can be determined and
is used to automatically set the integration limits. The
integrand is computed at 15 . . . 30 points. We used
Mathematica’s parallel computing capabilities in order to
compute three data points at the same time.

Figure 7 show the scaling functions F1;2 defined in the

previous section for �kF <
1
2 and �kF >

1
2 . The behavior in

limiting cases agrees with the analysis above.

2. DC conductivity

The DC conductivity can be computed using (6.11):

�DCðTÞ ¼ � kFC

2

Z
d!

@fð!TÞ
@!

h21�
2ð!;TÞ

Im�ð!; kF; TÞ : (6.46)

The computation of kF, h1 and � was detailed in the
previous subsection. The ! derivative inside �ð!;TÞ is
computed by taking the difference of the wave functions
with �! ¼ 10�6 . . . 10�8. The numerical AC conductivity
in the zero frequency limit matched the output of the DC
conductivity code.

For a given pair ðm; qÞ, the DC conductivity is computed
at different temperatures between T ¼ 10�4 . . . 10�8.
Then, the temperature-independent � coefficient is com-

puted by a fit using �ðm; qÞ ¼ �DCðm; q; TÞT2�kF . In the
m-q space, the resolution was 45� 45 with a computation
time of approximately 22 hours. The results are seen
in Fig. 8. The plot shows log�ðm; qÞ using a color code.

The numerically unstable areas (with error larger than 3%)
are colored gray in the figure. For �kF > 1:1 (in the G2

component) the numerical inaccuracies became too large.
For q < 0:3, the automated kF finding algorithm typically
failed and we had to determine kF manually.
Note the deep blue line in the G1 spinor component. At

these points, the effective vertex �0ðkFÞ changes sign and
therefore the leading contribution to the DC conductivity
vanishes (so does the leading contribution to the optical
conductivity since it is also proportional to �0). Since
the DC effective vertex is real, this happens along a
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FIG. 6 (color online). Typical functions whose integral gives the conductivity: �ð�Þ ¼ R1
�1 Ið!Þd!. The two figures correspond to

�� T and � � T. The real and imaginary parts are indicated by blue (dark) and orange (light) curves, respectively.
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FIG. 7 (color online). These figures show the scaling functions
for the optical conductivity. Top: Real and imaginary parts of the
scaling function F1 for m ¼ 0, q ¼ 1, where the IR fermion
exponent is �kF 
 0:24. Bottom: Real and imaginary parts of the

scaling function F2 for m ¼ 0, q ¼ 2, where the IR fermion
exponent is �kF 
 0:73 and hence we are in the regime with a

stable quasiparticle. As indicated in the figure, both real and
imaginary parts resemble the Drude behavior.
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codimension 1 line in them-q plane. This ‘‘bad metal’’ line
crosses the �kF ¼ 1=2 line at aroundm� 0:18 and q� 3:4

(not in the figure).

VII. DISCUSSION AND CONCLUSIONS

Despite the complexity of the intermediate steps, the
result that we find for the DC conductivity is very simple.
One can package all radial integrals into effective vertices
in a way that makes it manifest that the actual conductivity
is completely determined by the lifetime of the one-particle
excitations, as is clear from the formula (6.23).

We should stress that from a field-theoretical point of
view this conclusion is not a priori obvious, as the single-
particle lifetime measures the time needed for the particle
to decay, whereas the conductivity is sensitive to theway in
which it decays. For example, if the Fermi quasiparticles
are coupled to a gapless boson (as is the case in many
field-theoretical constructions of non-Fermi liquids; see
e.g. [1,54–70] and references therein), small-momentum
scattering is strongly preferred because of the larger phase
space available to the gapless boson at smaller momenta.
However, this small-momentum scattering does not
degrade the current and so contributes differently to the
conductivity than it does to the single-particle lifetime,
meaning that the resistivity grows with temperature with
a higher power than the single-particle scattering rate [64].
Such systems are therefore better metals than one would
have guessed from the single-particle lifetime.

In our calculation, the current dissipation is more effi-
cient. To understand why, note that in our gravity treatment
the role played by the gapless boson in the above example
is instead filled by theAdS2 region. From a field theoretical
point of view, our system can be described by a low energy

effective action [14,71,72] in which fermionic excitations
� around a free fermion Fermi surface hybridize with
those of a strongly coupled sector, which can be considered
as the field theory dual of theAdS2 region and was referred
to as a semilocal quantum liquid (SLQL) in [73]. See
Fig. 9. The SLQL provides a set of fermionic gapless
modes to which the excitations around the Fermi surface
can decay. In our bulk treatment this process has a nice
geometric interpretation in terms of the fermion falling into
the black hole, as in Fig. 2. The crucial point is that because
of the semilocal nature of the SLQL—as exhibited by the
self-energy (6.6)—there are gapless fermionic modes for
any momentum.16 Thus the phase space for scattering is not
sensitive to the momentum transfer, and the conductivity is
determined by the one-particle lifetime.
We find that the conductivity at the marginal Fermi

liquid point �kF ¼ 1
2 (when the single-particle spectral

FIG. 8 (color online). The plots show the coefficient log�ðm; qÞ for the primary Fermi surface for both spinor components.
In the white regions there is no Fermi surface. Black lines indicate half-integer �kF ðm; qÞ. In the two gray regions in G2 the numerical

computations were unreliable (with error greater than 3%).

FIG. 9 (color online). The system can be described by a low
energy effective action where fermionic excitations � around a
free fermion Fermi surface hybridize with those in a strongly
coupled sector (labeled as SLQL in the figure) described on the
gravity side by the AdS2 region [14,71,72] (see [18] for a more
extensive review).

16This is similar to that postulated for the bosonic fluctuation
spectrum in the MFL description of the cuprates [4]. But an
important distinction is that here the gapless modes are
fermionic.
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function takes the MFL form) is consistent with a linear
resistivity, just as is observed in the strange metals. The
correlation between the single-particle spectral function
and the collective behavior and transport properties is a
strong and robust prediction of our framework. While it is
fascinating that this set of results is self-consistent, we do
stress that the marginal �kF ¼ 1

2 point is not special from

our gravity treatment, and more work needs to be done to
understand if there is a way to single it out in holography.17
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APPENDIX A: RESISTIVITY IN CLEAN SYSTEMS

In a translation-invariant and boost-invariant system at
finite charge density (without disorder or any other mecha-
nism by which the charge carriers can give away their
momentum), the DC resistivity is zero. An applied electric
field will accelerate the charges. This statement is well
known but we feel that some clarification will be useful. It
can be understood as follows. Start with a uniform charge
density at rest and in equilibrium, in a frame where

jt � � � 0; Ttt ¼ � � 0; Tii ¼ P;

ji ¼ 0; �i � Tti ¼ 0;
(A1)

� is the energy density and P is the pressure. Boost18 by a
velocity ui to a frame where

ji ¼ ui�; �i ¼ uið�þ PÞ: (A2)

This gives

ji ¼ �

�þ P
�i; (A3)

which is effectively a constitutive relation. In a nonrelativ-
istic system, the enthalpy �þ P reduces to the mass of the
particles. Combining this with conservation of momentum
(Newton’s law)

@t�
i ¼ �Ei (A4)

and Fourier transforming gives

jið�Þ ¼ i

�

�2

ð�þ PÞE
ið�Þ (A5)

and hence

Re�ð�Þ ¼ ��2

�þ P
�ð�Þ (A6)

plus, in general, dissipative contributions. Note that in

systems where the relation ~J ¼ �
�þP ~� is an operator equa-

tion, momentum conservation implies that there are no
dissipative contributions, and the conductivity is exactly
given by (A6). This is indeed consistent with the leading
term we obtained in (2.44).
The Fermi surface contribution which is the main result

of the paper does not contain a delta function in �, as the
Fermi surface current can dissipate via interactions with
the OðN2Þ bath. Although the total momentum (of the
Fermi surface plus bath) is conserved, the time it takes
the bath to return momentum given to it by the Fermi
surface degrees of freedom is parametrically large in N,
as in probe-brane conductivity calculations [75]. The DC
conductivity we obtain is averaged over a long time that is
of OðN0Þ.
Our discussion here is somewhat heuristic, but a more

careful hydrodynamic analysis that also takes into account
the leading frequency dependence was performed e.g. in
[76], where it was explicitly shown that the presence of
impurities broadens this delta function into a Drude peak.

APPENDIX B: MIXING BETWEEN GRAVITON
AND VECTOR FIELD

In this section we construct the tree-level equations of
motion for the coupled vector-graviton fluctuations about
the charged black brane background. The action can be
written in the usual form,

S ¼ 1

2�2

Z
ddþ1x

ffiffiffiffiffiffiffi�g
p �

R� 2�� R2

g2F
F��F

��

�
; (B1)

with background metric given by

ds2 ¼ �gttdt
2 þ grrdr

2 þ giidx
2
i (B2)

17See [50,74] for recent work in this direction.
18We perform a small boost ui � c, so we can use the Galilean
transformation, even if the system is relativistic.
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and a nonzero background profile A0ðrÞ. It is convenient to
work with the radial background electric field Er ¼ @rA0,
which satisfies the equation of motion

@rðEr

ffiffiffiffiffiffiffi�g
p

gttgrrÞ ¼ 0: (B3)

We will denote the r-independent quantity

Q � �Er

ffiffiffiffiffiffiffi�g
p

gttgrr ¼ �2�
g2F
2R2

(B4)

where we have used (2.7).
Now consider small fluctuations

AM ! A0�M0 þ aM; gMN ! gMN þ hMN: (B5)

We seek to determine the equations of motion for these
fluctuations; we first use our gauge freedom to set

hrM ¼ ar ¼ 0: (B6)

At quadratic level in fluctuations the Maxwell action can
now be written as

SEM¼�C1

Z
ddþ1x

�
1

4

ffiffiffiffiffiffiffi�g
p

fMNf
MN

�1

2
Erð ffiffiffiffiffiffiffi�g

p
gttgrrþ ffiffiffiffiffiffiffi�g

p
gtrgtrÞð2ÞEr

�Erðgttgrr ffiffiffiffiffiffiffi�g
p Þð1Þf0r�QðhitfirþhirftiÞ

�
(B7)

with

C1 ¼ 2R2

g2F�
2
; fMN ¼ @MaN � @NaM: (B8)

The canonical momentum for a� is then given by

�i ¼ 1

C1

�S

�@rai
¼ � ffiffiffiffiffiffiffi�g

p
grrgiifri �Qhit (B9)

�t ¼ ffiffiffiffiffiffiffi�g
p

grrgrrf0r þ ð ffiffiffiffiffiffiffi�g
p

grrgrrÞð1ÞEr: (B10)

The equation for ar is essentially the Gauss law constraint
in the bulk and leads to the conservation of this canonical
momentum,

@��
� ¼ 0: (B11)

Finally, the dynamical equations for ai are

� @r�
� þ ffiffiffiffiffiffiffi�g

p
@�f

�� ¼ 0: (B12)

We turn now to the gravitational fluctuations. At this
point it is helpful to specialize to the zero momentum limit;
i.e. all fluctuations depend only on t and r. Now all spatial
directions are the same, and so we pick one direction
(calling it y) and focus only on hy�, with � ¼ ðt; rÞ, and
where the indices are raised by the background metric.
We will then find a set of coupled equations for ay and hyt
(and ar and hyr , which will be set to zero in the end). The
relevant equations then become

�y ¼ � ffiffiffiffiffiffiffi�g
p

grrgyya0y �Qhyt (B13)

@r�
y � ffiffiffiffiffiffiffi�g

p
gyygtt!2ay ¼ 0 (B14)

2�2C1Qay ¼ � ffiffiffiffiffiffiffi�g
p

gyyg
rrgtt@rh

y
t : (B15)

Taking a derivative of the first equation with respect to r
one can derive an equation for ay alone

@rð ffiffiffiffiffiffiffi�g
p

grrgyya0yÞ þ
�
2�2C1Q2 grrgttffiffiffiffiffiffiffi�g

p
gyy

� ffiffiffiffiffiffiffi�g
p

gyygtt!2

�
ay ¼ 0: (B16)

Note now that using

gtt ¼ fr2; grr ¼ 1

r2f
; gii ¼ r2 (B17)

we find that (B16) becomes

@rðrd�1fa0yÞ þ
�
CQr�d�1 �!2rd�5

f

�
ay ¼ 0: (B18)

In the last expression we introduced the constant

C � 2�2C1Q ¼ 2�2�: (B19)

In d ¼ 3, Cjd¼3 ¼ 4
ffiffi
3

p
gF

ðr�RÞ2.
Equation (B15) implies a corresponding relation

between the bulk-to-boundary propagators Ka, Kh of
the metric and gauge field, which is important for our
calculation:

CKa ¼ � ffiffiffiffiffiffiffi�g
p

gyyg
rrgtt@rKh: (B20)

APPENDIX C: SPINOR BULK-TO-BULK
PROPAGATOR

In this appendix we derive the spinor bulk-to-bulk
propagator. For simplicity of exposition we focus on the
case when the dimension d of the boundary theory is odd;
the correspondence between bulk and boundary spinors is
different when d is even, and though a parallel treatment
can be done we shall not perform it here. We denote byN
the dimension of the bulk spinor representation; in the case

that d is odd we have N ¼ 2
dþ1
2 . Our treatment will

essentially apply to any asymptotically AdS spacetime
with planar slicing and a horizon in the interior; the crite-
rion of asymptotically AdS is important only in the precise
choice of UV boundary conditions and can be easily modi-
fied if necessary.

1. Spinor equations

We begin with the bulk spinor action:

S ¼ �i
Z

ddþ1x
ffiffiffiffiffiffiffi�g

p �c ð�MDM �mÞc (C1)
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where �c � c y�t. From here we can derive the usual Dirac
equation,

ð�MDM �mÞc ¼ 0; (C2)

where the derivativeDM is understood to include both the
spin connection and couplings to background gauge fields

DM ¼ @M þ 1

4
!abM�

ab � iqAM: (C3)

The abstract spacetime indices are M;N . . . and the
abstract tangent space indices are a; b; . . . . The index
with an underline denotes that in tangent space. Thus �a

denotes gamma matrices in the tangent frame and �M those
in curved coordinates. Note that

�M ¼ �aea
M: (C4)

The nonzero spin connections for (2.2) and (2.3) are
given by

!tr ¼ � 1

2

g0tt
gtt

ffiffiffiffiffiffiffi
grr

p
et; !i r ¼ 1

2

g0ii
gii

ffiffiffiffiffiffiffi
grr

p
ei; (C5)

with

et ¼ g
1
2
ttdt; ei ¼ g

1
2

iidx
i: (C6)

From the above one finds that

1

4
!abM�

M�ab ¼ �r

4
@r log ð�ggrrÞ � UðrÞ�r: (C7)

In momentum space the Dirac equation (C2) can then be
written explicitly as

½�ið!þqAtÞ�tþ iki�
iþ�rð@rþUÞ�m�c ð!; ~k;rÞ¼0

(C8)

whose conjugate can be written as

�c ½�ið!þ qAtÞ�t þ iki�
i � ð@Qr þUÞ�r �m� ¼ 0:

(C9)

Applying (C8) and (C9) to c � and �c 
 in (4.31) respec-

tively and using (C7), one can readily derive (4.31).

2. Green’s functions

We define the retarded and advanced bulk-to-bulk
propagator as

DRðt; ~x; r; r0Þ ¼ i�ðtÞhfc ðt; ~x; rÞ; �c ð0; r0Þgi (C10)

DAðt; ~x; r; r0Þ ¼ �i�ð�tÞhfc ðt; ~x; rÞ; �c ð0; r0Þgi (C11)

whose Fourier transform along boundary directions satisfy
the equation

ð�MDM �mÞDR;Aðr; r0;!; ~kÞ ¼ � iffiffiffiffiffiffiffi�g
p �ðr� r0Þ:

(C12)

In the above equations we have suppressed the bulk
spinor indices which we will do throughout the paper.

The spectral function �ðr1; r2;!; ~kÞ is defined by

�ðr; r0;!; ~kÞ ¼ �iðDRðr; r0;!; ~kÞ �DAðr; r0;!; ~kÞÞ:
(C13)

The Euclidean two-point function is related to DR by the
standard analytic continuation

DEðr; r0; i!m; ~kÞ ¼ DRðr; r0;! ¼ i!m; ~kÞ (C14)

and satisfies the spectral decomposition

DEðr; r0; i!m; ~kÞ ¼
Z d!

2�

�ðr; r0;!; ~kÞ
i!m �!

: (C15)

We define the corresponding boundary retarded and
advanced Green’s functions as follows:

GR
�
ðt; ~xÞ ¼ i�ðtÞhfO�ðt; ~xÞ;Oy


ð0Þgi (C16)

GA
�
ðt; ~xÞ ¼ �i�ð�tÞhfO�ðt; ~xÞ;Oy


ð0Þgi (C17)

where O is the boundary operator dual to the bulk field c
and �, 
 are boundary spinor indices. The boundary
spectral function �B is defined by

GRð!; ~kÞ �GAð!; ~kÞ ¼ i�Bð!; ~kÞ; (C18)

and is Hermitian:

�y
B ¼ �B: (C19)

From (C16) the linear response relation is

hOðkÞi ¼ GRðkÞ�t�ðkÞ (C20)

where � denotes a source, �t is the boundary gamma
matrix, and we have suppressed the spinor indices.
Our convention for bulk Gamma matrices is that

ð�aÞy ¼ �t�a�t; ð�tÞ2 ¼ �1 (C21)

and for boundary ones

ð�tÞ2 ¼ �1; ð�tÞy ¼ ��t: (C22)

As mentioned earlier we will focus on odd d, for which
case, there is also a �5 in the bulk which anticommutes
with all the �a’s and satisfies

ð�5Þy ¼ �5; ð�5Þ2 ¼ 1: (C23)

3. Bulk solutions

We begin by recalling how to obtain the boundary
retarded Green’s function and some properties of the solu-
tions to the Dirac equation (C2) (see also [28]).
Near the horizon r0, it is convenient to choose the

infalling and outgoing solutions as the basis of wave
functions
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c in;out
a ðr;!; ~kÞ ! 	in;out

a e�i!�ðrÞ; r ! r0 (C24)

where �ðrÞ � �R
dr

ffiffiffiffiffiffiffiffiffiffiffiffi
grrg

tt
p

, and 	a are constant basis

spinors, which satisfy the constraint

ð1	 �t�rÞ	in;out
a ¼ 0: (C25)

The index a labels different independent solutions. From

the above equation clearly we have a 2 f1 . . .N2 g.
Equation (C25) also implies that for any a, b

�c in
a �

rc out
b ¼ 0: (C26)

We will normalize

	iny
a 	in

b ¼ �ab; 	outy
a 	out

b ¼ �ab: (C27)

Near the boundary r ! 1 it is convenient to consider
purely normalizable c and purely non-normalizable Y
solutions defined respectively by

c �ðr ! 1Þ ! ��� r�mR�d=2 (C28)

Y�ðr ! 1Þ ! �þ� rþmR�d=2 (C29)

where ��� are constant spinors which satisfy

ð1	 �rÞ��� ¼ 0: (C30)

Again index � labels different solutions and runs from 1

to N
2 (as the two different eigenspaces of �r span the

full spinor space). Since the normalizable and non-
normalizable solutions correspond to boundary operator
and source respectively, � can be interpreted as the bound-
ary theory spinor index. We choose the normalization

�y�� ��
 ¼ ��
 (C31)

and have the following completeness relation:X
�

��� �y�� ¼ 1

2
ð1� �rÞ: (C32)

It is also convenient to choose

�þ� ¼ �5��� (C33)

where �5 was introduced earlier around (C23). The bound-
ary gamma matrices can then be defined as

�
�
�
 ¼ �ið��� Þy���þ
 : (C34)

Now expand the infalling solutions in terms of c � and
the Y�

c in
a ¼ Y�A�a þ c �B�a (C35)

where A and B are both N
2 � N

2 matrices that connect the

infalling and boundary solutions. Identifying A with the
source � (C20), with �t defined as in (C34), one can then
check19 that B can be identified precisely with hOi. It then

follows that the boundary theory spinor retarded Green’s
function GR can be written as

ðGR�
tÞ�
 ¼ ðBA�1Þ�
 (C36)

with �t the boundary theory gamma matrix. This is the
covariant generalization of expressions given previously
for the boundary fermion Green’s function [28], and will be
useful in what follows. One can find the advanced bound-
ary theory correlator by using outgoing solutions and their
corresponding outgoing expansion coefficient matrices B,
A in (C36).
We now compute some Wronskians that we will need

later. Note first that by using the Dirac equation (C2) we
can show that for any two radial solutions c 1ðrÞ, c 2ðrÞ
evaluated at the same frequency and momentum, the
Wronskian W½c 1; c 2� defined as

W½c 1; c 2� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi�ggrr

p
c 1ð!; kÞ�rc 2ð!; kÞ (C37)

is a radial invariant, i.e. @rW ¼ 0. Using (C28) and (C29)
at r ¼ 1 one then finds that

W½c �;Y
� ¼ �����r�þ
 ¼ ���� �þ
 ¼ i�t
�


¼ �W½Y�; c 
� (C38)

where we have used (C34). It can also be readily checked
that

W½c �; c 
� ¼ W½Y�;Y
� ¼ 0 (C39)

and

W½c in; c out� ¼ 0;

W½c in
a ; c

in
b � ¼ �ab ¼ �W½c out

a ; c out
b �:

(C40)

Also note that

W½c �; c
in
a � ¼ ið�tAÞ�a; W½Y�; c

in
a � ¼ �ið�tBÞ�a:

(C41)

We can also expand the outgoing solutions as

c out
a ¼ Y�

~A�a þ c �
~B�a; (C42)

with

W½c �; c
out
a � ¼ ið�t ~AÞ�a;

W½Y�; c
out
a � ¼ �ið�t ~BÞ�a:

(C43)

Using the above Wronskians we can also write

c � ¼ ic in
a ðAy�tÞa� � ic out

a ð ~Ay�tÞa�: (C44)

4. Constructing the propagator

We are now ready to construct the bulk-to-bulk retarded
propagator DR which satisfies Eq. (C12) together with the
boundary conditions that as either argument r or r0 ! r0
the propagator should behave like an infalling wave in
(C24), and similarly as r or r0 ! 1 the propagator should

19As discussed e.g. in [28], hOi should be identified with the
boundary value of the canonical momentum conjugate to c .
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be normalizable as in (C28). Note that the Dirac operator in
(C12) above acts only on the left index of the propagator
(which is a matrix in spinor space) and on the argument r;
if we can demonstrate that the propagator indeed satisfies
this equation then it will also satisfy the corresponding
equation with the differential operator acting from the right
and as a function of r0, by the equality of left and right
inverses. Thus we will only explicitly show that the opera-
tor satisfies the equation in r. For the advanced propagator
DA, the only difference is that the propagator should
behave like an outgoing wave at the horizon.

With the benefit of hindsight, we now simply write down
the answer for the bulk-to-bulk retarded and advanced
propagator

DR;Aðr; r0;!; kÞ ¼ c �ðrÞGR;A
�
 ð!; kÞc 
ðr0Þ

�
8<
:Y�ðrÞ�t

�
c 
ðr0Þ r < r0

c �ðrÞ�t
�
Y
ðr0Þ r > r0

: (C45)

We now set out to prove that the above propagators have
all of the properties required of them, very few of which are
manifest in this form. We will discuss DR explicitly, with
exactly parallel story for DA. For r > r0 we have

DRðr; r0;!; kÞ ¼ c �ðrÞðGR
�
ð!; kÞc 
ðr0Þ � �t

�
Y
ðr0ÞÞ
(C46)

which satisfies (C12) in r, as well as the boundary condi-
tion that the solution be normalizable as r ! 1, as the
dependence on r is simply that of the normalizable solution
c �. For r < r0 we have

DRðr; r0;!; kÞ ¼ ðc �ðrÞGR
�
ð!; kÞ � Y�ðrÞ�t

�
Þc 
ðr0Þ:
(C47)

Now using (C36) and (C35) we can write the above
equation as

DRðr; r0;!; kÞ ¼ �c in
a ðrÞðA�1�tÞa
c 
ðr0Þ (C48)

which satisfies both the defining equation (C12) and the
infalling boundary condition for r < r0, as the dependence
on r is now simply that of the infalling solution.

We now verify that the discontinuity across r ¼ r0 is
consistent with the delta function in (C12), which when
integrated across r ¼ r0 becomesffiffiffiffiffiffiffiffiffiffiffiffiffiffi�ggrr
p

�rðDRðrþ �; rÞ �DRðr; rþ �ÞÞ ¼ �i: (C49)

Inserting (C45) into this equation we thus need to show

� i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi�ggrr

p
�rðc �ðrÞ�t

�
Y
ðrÞ � Y�ðrÞ�t
�
c 
ðrÞÞ ¼ 1;

(C50)

where the right-hand side is an identity matrix in the bulk
spinor space. To show it we first contract both sides from

the left with Y�ðrÞ. The right-hand side becomes just Y�.
The left-hand side then becomes a sum of two Wronskians

(C37); the Wronskian of Y with itself vanishes as in (C39),
and we find then for the left-hand side

� iW½Y�; c ���t
�
Y
 ¼ �ð�tÞ2�
Y
 ¼ Y�; (C51)

where in the first equality we have used (C38). This is then
consistent with (C50). Similarly contracting (C50) to the

left with c � we find

iW½c �;Y��ð�tÞ�
c 
 ¼ c �; (C52)

which is again satisfied. Note that since c � and Y�

altogether form a complete basis, we have now verified
the full matrix equation (C50), and thus the propagator
proposed in (C45) is indeed correct.
Now given (C45), taking the difference between DR and

DA, from (C13) and (C18) we thus find that

�ðr; r0;!; kÞ ¼ c �ðrÞ�B
�
ð!; kÞc 
ðr0Þ (C53)

where � and �B are respectively the bulk and boundary
spectral density. This is the expression used in (4.12).

APPENDIX D: BOUNDARY SPINOR
SPECTRAL FUNCTIONS

In this appendix we specialize the discussion of the
previous appendix to d ¼ 3 in an explicit basis and review
the boundary retarded Green’s function derived in [14].
We choose the following basis of bulk Gamma matrices:

�r ¼ ��3 0

0 ��3

 !
; �t ¼ i�1 0

0 i�1

 !
;

�x ¼ ��2 0

0 �2

 !
; �y ¼ 0 �2

�2 0

 ! (D1)

with

�5 ¼ 0 i�2

�i�2 0

 !
: (D2)

Writing

c ¼ ð�ggrrÞ�1
4e�i!tþikix

i �1

�2

 !
(D3)

and choosing the momentum to be along the x-direction
with kx ¼ k, the corresponding Dirac equation (C2) can be
written as

ð ffiffiffiffiffiffiffi
grr

p
@r þm�3Þ�� ¼

�
i
ffiffiffiffiffiffi
gtt

p
�2uþ ð�1Þ�

ffiffiffiffiffiffi
gii

q
k�1

�
��

(D4)

with u ¼ !þ qAt and � ¼ 1, 2. Note that (D1) is chosen
so that �1;2 decouple from each other and Eq. (D4) is real

for real !, k.
The infalling solutions c in

1;2 can be written in terms of

those of (D4),
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c in
1 ¼ ð�ggrrÞ�1

4e�i!tþikix
i �in

1

0

 !
;

c in
2 ¼ ð�ggrrÞ�1

4e�i!tþikix
i 0

�in
2

 !
;

(D5)

and �in
� can in turn be expanded near the boundary as

�in
a 
r!1

Aar
mR

0

1

 !
þ Bar

�mR
1

0

 !
a ¼ 1; 2: (D6)

We choose the constant spinors in (C28) and (C29) to
satisfy (C33)

��1 ¼

1

0

0

0

0
BBBBB@

1
CCCCCA; ��2 ¼

0

0

1

0

0
BBBBB@

1
CCCCCA;

�þ1 ¼

0

0

0

1

0
BBBBB@

1
CCCCCA; �þ2 ¼

0

�1

0

0

0
BBBBB@

1
CCCCCA

(D7)

and the corresponding boundary Gamma matrices (C34)
are given by

�t ¼ �i�2; �x ¼ ��1; �y ¼ ��3: (D8)

The matrices A and B introduced in (C35) are then given by

A ¼ 0 A2

�A1 0

 !
; B ¼ B1 0

0 B2

 !
(D9)

and from (C36) the boundary retarded function is diagonal
with components given by

GR
��ð!; kÞ ¼ B�

A�

; � ¼ 1; 2: (D10)

The set of normalizable and non-normalizable
solutions introduced in (C28) and (C29) can be written
more explicitly as

c 1¼ð�ggrrÞ�1
4

�1

0

 !
; c 2¼ð�ggrrÞ�1

4

0

�2

 !
(D11)

and

Y1¼ð�ggrrÞ�1
4

0

�2

 !
; Y2¼�ð�ggrrÞ�1

4

�1

0

 !
(D12)

where �1;2 and �1;2 are two-component bulk spinors

defined by

��ðr ! 1Þ ! 1

0

 !
r�mR (D13)

��ðr ! 1Þ ! 0

1

 !
rþmR: (D14)

Let us now briefly summarize the low temperature and
frequency behavior of c � and GR [14] which are needed
for understanding the scaling behavior of the effective
vertex and conductivities. The regime we are interested
in is

T ! 0; with w ¼ !

T
¼ fixed: (D15)

The discussion proceeds by dividing the radial direction
into inner and outer regions, which is rather similar to that
of the vector field in Sec. II B. For definiteness below we
will consider � ¼ 1 in (D4) and drop the subscript 1.

1. Boundary retarded function

To leading order in T in the limit of (D15), the Dirac
equation (D4) in the inner region reduces to that in the
near-horizon metric (2.18) with w as the frequency con-
jugate to 
. In particular, the spinor operator develops an IR
scaling dimension given by

�k �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

kR
2
2 � e2dq

2 � i�
q

; m2
k � m2 þ k2R2

r2�
:

(D16)

Near the boundary of the inner region (i.e. 	 ! 0), the
solutions to (D4) behave as 	��k and we can choose the
basis of solutions specified by their behavior near 	 ! 0
(which also fixes their normalization)

��
I ! v	

�
TR2

2

r� r�

�	�k ¼ v			�k ; 	 ! 0: (D17)

where v� are some constant spinors (independent of 	
and !). The retarded solution for the inner region can be
written as [14]

�ðretÞ
I ð	;wÞ ¼ �þ

I þGkðwÞ��
I : (D18)

where GkðwÞ is the retarded function for the spinor in the
AdS2 region [14] and will be reviewed at the end of this
section.20

In the outer region we can expand the solutions to (D4)
in terms of analytic series in ! and T. In particular, the
zeroth order equation is obtained by setting ! ¼ 0 and
T ¼ 0 (i.e. the background metric becomes that of the
extremal black hole). Examining the behavior the resulting
equation near r ¼ r�, one finds that �� ðr� r�Þ��k ,
which matches with those of the inner region in the cross-
over region (2.25). It is convenient to use the basis which is
specified by the boundary condition

20Note that due to normalization difference GkðwÞ defined here
differs from (D28) of [14] by a factor T2�k .
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�ð0Þ
� ! v	

�
r� r�
R2
2

���k

r ! r�: (D19)

Once the zeroth order solutions are specified, higher order

solutions �ðnÞ
� ðrÞ can then be determined uniquely from

�ð0Þ
� using perturbation theory, and the two linearly inde-

pendent solutions �� can be written as21

��ðrÞ ¼
X1
n

!n�ðnÞ
� ðrÞ (D20)

where for economy of notation, we have left implicit the
expansion in T. Comparing (D17) and (D19), in the over-
lapping region we have the matching

�� $ T��k��
I : (D21)

�� can be expressed in terms of the set of normalizable
and non-normalizable solutions introduced in (D13) and
(D14) (recall that all quantities here refer to � ¼ 1)

�� ¼ b��þ a�� (D22)

where from (D20), a�, b� can be expanded in perturbative
series in ! and T, with the zeroth order expressions

denoted by að0Þ� , bð0Þ� which are functions of k only.
Using (D18), (D21), (D10), and (D22), now the full

retarded boundary Green’s function can then be written
as [14]

GRð!; kÞ ¼ bþ þ GkT
2�kb�

aþ þ GkT
2�ka�

(D23)

which implies that the corresponding spectral function
scales with temperature as

�B � 2 ImGR � T2�k : (D24)

2. Normalizable solution

Let us now turn to the low energy behavior of the bulk
normalizable solution�. Using (D22),� can be written in
the outer region as

� ðr;!Þ ¼ 1

W
ðaþð!Þ��ðr;!Þ � a�ð!Þ�þðr;!ÞÞ

(D25)

where

W � aþb� � a�bþ: (D26)

The Wronskian for Eq. (D4) is

W½�1; �2� ¼ �T
1�

2�2 (D27)

where �1;2 are two solutions. Applying it to �� we find

that

W½�þ;��� ¼ const: (D28)

Normalizing�� so that the constant on the right-hand side
of the above equation is !-independent, then after insert-
ing the ! expansion (D20) of ��, Eq. (D28) must be
saturated by the zeroth order term and all the coefficients
of higher order terms on the left-hand side must be zero,
e.g. at first order in !,

�ð0ÞT
þ �2�ð1Þ� þ�ð1ÞT

þ �2�ð0Þ� ¼ 0: (D29)

Furthermore, equating the value of W½�þ;��� at r ¼ r�
and at r ¼ 1 we conclude that

W ¼ �ivTþ�2v� (D30)

which is !-independent.
Expanding (D25) in! we find that in the outer region�

can be written as

� ¼ �ð0Þ þ!�ð1Þ þ � � � (D31)

where

�ð0Þ ¼ 1

W
ðað0Þþ �ð0Þ� � að0Þ� �ð0Þ

þ Þ; (D32)

and

�ð1Þ ¼ 1

W
ðað1Þþ �ð0Þ� þ að0Þþ �ð1Þ� � að1Þ� �ð0Þ

þ � að0Þ� �ð1Þ
þ Þ:

(D33)

The expression for � in the inner region can then be
obtained from matching as

�ð	;w; TÞ ¼ 1

W
ðaþT��k��

I ð	;wÞ � a�T�k�þ
I ð	; wÞÞ

(D34)

with the lowest order term given by

�ð	;w; TÞ ¼ að0Þþ
W

T��k��
I þ � � � : (D35)

3. Near a Fermi surface

At a Fermi surface k ¼ kF we have [14]

að0Þþ ðkFÞ ¼ 0 (D36)

and (D35) does not apply. Near kF we have the expansion

aþðk;!; TÞ ¼ c1ðk� kFÞ � c2!þ c3T þ � � � (D37)

where c1 ¼ @ka
ð0Þ
þ ðkFÞ, c2 ¼ �að1Þþ ðkFÞ. Thus near kF,

in the inner region the leading behavior for �ð	;w; TÞ
becomes

� ð	;w; TÞ ¼ 1

W
½aþðk;!; TÞT��kF��

I ð	;wÞ
� að0Þ� ðkFÞT�kF�þ

I ð	;wÞ� (D38)21Note that as r ! r�, �
ðnÞ
� ðrÞ � ðr� r�Þ��k�n.
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where the coefficient of the first term aþðk;!; TÞ should be
now understood as given by (D37).

Finally let us look at the behavior of the retarded Green’s
function (D23) near a Fermi surface (D36), which can be
written as

GR ¼ h1
k� kFð!; TÞ ��ð!; kÞ : (D39)

kFð!; TÞ in (D39) is defined as the zero of (D37), i.e.
aþðkFð!; TÞÞ ¼ 0 and can be considered as a generalized
Fermi momentum

kFð!; TÞ � kF þ 1

vF

!� c3
c1

T þ � � � (D40)

where vF � c1
c2
is positive for �kF >

1
2 . �ð!; kÞ is given by

� ¼ h2T
2�kFGkF

�
!

T

�
(D41)

and h1, h2 are positive constants whose values are known
numerically. The spectral function can be written as

�B ¼ 2 ImGR ¼ 2h1Im�

ðk� kFð!; TÞ � Re�Þ2 þ ðIm�Þ2 :

(D42)

For notational convenience we write

�ð!; T; kFÞ ¼ T2�kF g

�
!

T
;
kF
�

�
(D43)

where the explicit expression for g can be obtained from
that of Gk given in Appendix D of [14]

g

�
!

T
;
k

�

�
¼h2ð4�Þ2�kcðkÞ�ð

1
2þ�k� i!

2�Tþ iqedÞ
�ð12��k� i!

2�Tþ iqedÞ
(D44)

with cðkÞ given by

cðkÞ ¼ �ð�2�kÞ�ð1þ �k � iqedÞ
�ð2�kÞ�ð1� �k � iqedÞ

�k � �k

�k þ �k

(D45)

and �k � mR2 þ i kRR2

r�
� iqed.

22 g approaches a constant

as w ¼ !=T ! 0 and as w ! 1
gðwÞ ! h2e

�i��kcðkÞð2wÞ2�k : (D46)

For the marginal Fermi liquid case, �kF ¼ 1
2 , the above

expressions should be modified. Instead one finds that

g ¼ 2�id1u� �c1

�
2u log

T

�
þ 2uc ð�iuÞ þ i�uþ i

�
þ � � � (D47)

where u � !
2�T � qed; c is the digamma function; c1, d1

are positive constants23; and � � � denotes terms which are
real and analytic in ! and T. In the limit w ¼ !=T ! 1
Eq. (D47) becomes

gðwÞ ¼ id1w� c1w logwþ � � � : (D48)

APPENDIX E: COUPLINGS TO GRAVITON
AND VECTOR FIELD

In this section we determine the couplings of a spinor to
graviton and gauge field fluctuations; these are necessary to
construct the bulk vertex. We consider a free spinor field
with the action

S ¼ �
Z

ddþ1x
ffiffiffiffiffiffiffi�g

p
ið �c�MDMc �m �c c Þ

¼
Z

ddþ1 ffiffiffiffiffiffiffi�g
p

L (E1)

where �c ¼ c y�t. We now consider a perturbed metric of
the form

ds2 ¼ �~gttdt
2 þ hðdyþ bdtÞ2 þ grrdr

2 þ hdx2i (E2)

with

b � hyt ; ~gtt ¼ gtt þ hb2: (E3)

The new spin connections are given by

!ty ¼ f2e
r (E4)

!tr ¼ �~f0e
t þ f2e

y (E5)

!yr ¼ f1e
y þ f2e

t (E6)

!ir ¼ f1e
i (E7)

with

f1 � 1

2

h0

h

ffiffiffiffiffiffiffi
grr

p
; f2 � 1

2

ffiffiffiffiffiffiffiffiffiffiffiffi
h

grr~gtt

s
b0; ~f0 � 1

2

~g0tt
~gtt

ffiffiffiffiffiffiffi
grr

p
(E8)

and
22Note that the sign of the second term in �k depends on which
component of the spinor we are looking at. Here the sign is for
the first component. Also note that the definitions of cðkÞ and h2
differ by a phase factor from those used in [14]. In particular, the
definition of h2 in (D41) ensures it is positive as discussed in
Appendix D4 of [14].

23They are related by

d1
c1

¼ 1

2

�
�þ 2 Imc

�
1

2
þ iqed

��
¼ �

1þ e�2�qed
:
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et ¼ ~g
1
2
ttdt; ey ¼ h

1
2ðdyþ bdtÞ;

er ¼ g
1
2
rr ei ¼ h

1
2dxi:

(E9)

Also note that

�t ¼ ~g
�1

2
tt �

t; �y ¼ �~g
�1

2
tt b�

t þ h�1
2�y: (E10)

We thus find that the corrections to the Dirac action are
given by (with a � ay):

�L3 ¼ �i �c

�
�g

�1
2

tt h
y
t�

t@y þ 1

4
f2�

r t y � ih�1
2qay�

y
�
c ;

(E11)

at cubic order.
In (E11) we have restored the indices on b � hyt , ay

because they make the covariant nature of the expression
manifest.

At quartic order there are both b2c 2 and bac 2 terms.
For completeness we list them, although they are not
required for our calculation. The couplings of the bulk
spinor which are quadratic in the bosonic bulk modes
(altogether, quartic in fluctuations) are

L4 ¼ ffiffiffiffiffiffiffi�g
p

i �c

�
hb2

2gtt
ð�MDM �mÞð0Þ

� bffiffiffiffiffiffi
gtt

p �t

�
hb

2gtt
Dt � iqa

�
þ 1

4
�rð~f0Þð2Þ

�
c (E12)

where

ð~f0Þð2Þ ¼ 1

2

ffiffiffiffiffiffiffi
grr

p
@r

�
hb2

gtt

�
: (E13)

APPENDIX F: OTHER CONTRIBUTIONS

In the main text we concentrated on the contributions
from a Fermi surface in Fig. 3. Here we consider various
other contributions to the conductivities which we
neglected in the main text. These include the contributions
from seagull diagrams depicted in Fig. 5 which arise from
quartic couplings involving the graviton (schematically,
terms like h2 �c c and hA �c c in the Lagrangian), and
contributions from the oscillatory region, i.e. the region
in momentum space where the IR dimension for the fer-
mionic operator is imaginary. We justify our neglect of
these contributions by showing that they are nonsingular in
temperature and thus are subleading compared to those
considered in the main text. Our discussion will be
schematic.

1. Seagull diagrams

Wewrite the schematic form of a seagull diagram Swith
external Euclidean frequency �l:

Sijð�lÞ¼T
X
i!m

Z dd�1k

ð2�Þd�1

Z
dr1

ffiffiffiffiffiffiffiffiffiffiffi
gðr1Þ

q
� trðPjðr1;�i�l; ~kÞ

�DEðr1;r1;i!m; ~kÞPiðr1;i�l; ~kÞÞ: (F1)

Here Pi contains the information of the graviton or gauge
field propagators and vertex and is deliberately left vague.
It is shown in Eq. (G6) in Appendix G that the Matsubara
sum can be rewritten in terms of an integral over the bulk
spectral density

T
X
i!m

DEðr1; r2; i!m; ~kÞ ¼
Z d!

2�
tanh

�

!

2

�
�ðr1; r2;!; ~kÞ:

(F2)

Now as before we express the bulk spectral density in
terms of the boundary spectral density �B and bulk

normalizable wave functions c aðrÞ: �ðr; r0; !; kÞ ¼
c �ðr; kÞ��


B ð!; kÞc 
ðr0; kÞ. Away from the Fermi surface

the discussion of (F1) parallels that of the main text. In
particular, the potential singular T dependence coming
from the IR part of the vertex is compensated by T depen-
dence of the spectral function, and as a result is nonsingu-
lar. Near a Fermi surface, the eigenvalues of the boundary
spectral density matrix take the form (6.5) and (6.6). As we
take T ! 0, since all the other factors in (F1) are analytic
in momentum k, the k-integral can be schematically
written as

Z
dk

Im�

ðk� kFð!; TÞ � Re�Þ2 þ ðIm�Þ2 � � � � (F3)

with all the other factors evaluated at k ¼ kFð!; TÞ. The
above integral can then be straightforwardly integrated
and yields a contribution of order OðT0Þ. Also similar to
the discussion in the main text, the potential singular
contribution from the effective vertex is suppressed at
k ¼ kFð!; TÞ, resulting in a nonsingular contribution.

2. Oscillatory region contribution

We return to the expression (4.49) for the conductivity as
an integral over k. In the previous sections we have studied
the temperature dependence of the region of k near a Fermi
surface at kF. Here we ask whether the ‘‘oscillatory
region’’ (values of k such that particle production occurs
in the AdS2 region of the geometry) make significant
contributions to the conductivity. We will find that their
contribution is finite at T ¼ 0, and hence subleading com-
pared to the T�2� behavior of a Fermi surface. We will not
worry about numerical factors here.
For illustration, let us look at the DC conductivity (6.1)

and (6.2), which we copy here for convenience

�DC ¼ �C

2

Z 1

0
dkkd�2

Z d!

2�

@fð!Þ
@!

�2
Bð!; kÞ�2ð!; k; TÞ:

(F4)

CHARGE TRANSPORT BY HOLOGRAPHIC FERMI SURFACES PHYSICAL REVIEW D 88, 045016 (2013)

045016-31



In the low temperature limit, the fermion spectral density
in the oscillatory region may be written

�oscð!; kÞ ¼ Im
ei�jcj!i� þ 1

ei�
0 jcj!i� þ 1

; (F5)

where c!i� is the IR Green’s function (with the IR dimen-

sion imaginary) at T ¼ 0. ei�;�
0
are phases. This expression

is valid in the oscillatory regime k<kosc¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2e2d�m2

kR
2
2

q
[see Eq. (68) of [14]]. The important point now is that as a
function of !, the object (F5) is bounded. In fact, it can be
bounded uniformly in k [i.e. we can find a constant Å such

that 	A> �oscð!; kÞ for all k < kosc]. Numerical evidence
for this statement is Fig. 7 of [13]. In the oscillatory region
(5.25) still applies except that �k is now imaginary. Thus
we see that in the oscillatory region the effective vertex � is
also nonsingular in the limit T ! 0.

We thus conclude that the contribution from the oscil-
latory region to �DC is nonsingular in the low temperature
limit.

APPENDIX G: SOME USEFUL FORMULAS

Here we compile some standard and useful identities
that are used in the main text.

1. How to do Matsubara sums

A standard trick to perform a Matsubara sum over
discrete imaginary Euclidean frequencies is to rewrite the
sum over frequencies as a contour integral (we consider
fermionic frequencies here)

T
X
i!m

! 1

2�i

Z
C
d!

1

2
tanh

�

!

2

�
(G1)

where we take the contour C to encircle all the poles.
A convenient deformation of the contour is to make it
into two lines, one running left to right just above the
real axis and the other running right to left just below. In
the fermionic case this encircles all the poles. Exactly
parallel manipulations can be used to obtain the identity
(�l ¼ 2�l


 with l an integer)

T
X
!m

1

ið!m þ�lÞ �!1

1

i!m �!2

¼ � fð!1Þ � fð!2Þ
!1 � i�l �!2

(G2)

with

fð!Þ ¼ 1

e
! � 1
(G3)

where the upper (lower) sign is for fermion (boson).
One can apply this kind of technique for the frequency

sums involving spinor bulk-to-bulk propagator. As an ex-
ample consider the spectral decomposition of a Euclidean
correlation function

DEði!nÞ ¼
Z d�

2�

�ð�Þ
i!n þ�

: (G4)

We then find that

T
X
i!m

DEði!mÞ¼ 1

2�i

Z d�

2�

Z 1

�1
d!

1

2
tanh

�

!

2

�
�ð�Þ

�
�

1

!þ i���
� 1

!� i���

�
: (G5)

The bracketed factor reduces to a delta function, and we
find

T
X
i!m

DEð; i!mÞ ¼ 1

2

Z d�

2�
tanh

�

�

2

�
�ð�Þ: (G6)

Similarly consider

Sð�lÞ � T
X
!m

DE
1 ð!m þ�lÞDE

2 ð!mÞ

¼ T
X
!m

Z d!1

2�

d!2

2�

�1ð!1Þ
ið!m þ�lÞ �!1

�2ð!2Þ
i!m �!2

;

where !m ¼ 2�m

 with m a half-integer (an integer) for

fermions (bosons), while �l ¼ 2�l

 with l an integer.

Then using (G2) we find that

Sð�lÞ ¼ �
Z d!1

2�

d!2

2�

fð!1Þ � fð!2Þ
!1 � i�l �!2

�1ð!1Þ�2ð!2Þ:
(G7)

2. Useful integrals

We now give details for some integrals which we
encountered in the main text. First consider the integral
in (6.24)

IB �
Z

dk�Bð!1; kÞ�Bð!2; kÞ (G8)

where

�Bð!; kÞ ¼ 2 Im

�
h1

k� kFð!; TÞ � �

�
: (G9)

The above integral has the form

Iða; bÞ ¼ �
Z

dk

�
1

k� a
� 1

k� a�

��
1

k� b
� 1

k� b�

�
(G10)

which can be carried out straightforwardly by opening
the parenthesis and evaluating each term using contour
integration. Note that since both a and b lie in the upper
half plane, only two among the four terms contribute and
we find

Iða; bÞ ¼ 4� Im

�
1

b� � a

�
: (G11)
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We thus find that

IB ¼ 4� Im

�
h21

1
vF
ð!1 �!2Þ þ��ð!1Þ � �ð!2Þ

�
¼ 2�h1�Bð!1; K1Þ ¼ 2�h1�Bð!2; K2Þ (G12)

with K1 ¼ kFð!2; TÞ þ��ð!2Þ and K2 ¼ kFð!1; TÞ þ��ð!1Þ.
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