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This paper presents a method for the efficient numerical computation of Casimir interactions between objects of
arbitrary geometries, composed of materials with arbitrary frequency-dependent electrical properties. Our method
formulates the Casimir effect as an interaction between effective electric and magnetic current distributions on
the surfaces of material bodies and obtains Casimir energies, forces, and torques from the spectral properties of a
matrix that quantifies the interactions of these surface currents. The method can be formulated and understood in
two distinct ways: (1) as a consequence of the familiar stress-tensor approach to Casimir physics, or, alternatively,
(2) as a particular case of the path-integral approach to Casimir physics, and we present both formulations in full
detail. In addition to providing an algorithm for computing Casimir interactions in geometries that could not be
efficiently handled by any other method, the framework proposed here thus achieves an explicit unification of
two seemingly disparate approaches to computational Casimir physics.
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I. INTRODUCTION

This paper presents a method for the efficient numeri-
cal computation of Casimir interactions between objects of
arbitrary geometries, composed of materials with arbitrary
frequency-dependent electrical properties. Our method for-
mulates the Casimir effect as an interaction between effective
electric and magnetic currents on the surfaces of material
bodies and obtains Casimir energies, forces, and torques
from the spectral properties of a matrix that quantifies the
interactions of these surface currents. Our final formulas for
Casimir quantities—Eqs. (I) below—may be derived in two
distinct ways: (a) by integrating the Maxwell stress tensor
over a closed bounding surface, as is commonly done in
purely numerical approaches to Casimir computation [1], but
with the distinction that here we evaluate the surface integral
analytically, or (b) by evaluating a path-integral expression for
the Casimir energy, as is commonly done in quasianalytical
approaches to Casimir physics [2], but with the distinction
that here we are not restricted to the use of geometry-
specific special functions. In this paper, we present these two
distinct derivations of our master formulas (1) and compare
our approach to existing computational Casimir methods.
A free, open-source software package implementing our
method is available [3]; the technical details of this and other
numerical implementations of our method will be discussed
elsewhere.

Results obtained using our technique have appeared in
print before [4–8], and Refs. [4,5] briefly sketched the
path-integral derivation of our method, but omitted many
details. The purposes of the present paper are to furnish a
complete presentation of the path-integral derivation and to
present the alternative stress-tensor derivation. By arriving at
identical formulas—our master formulas, Eq. (1)—from the
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two seemingly disparate starting points of path integrals and
stress tensors, we explicitly demonstrate the equivalence of
these two formulations of Casimir physics.

In particular, our demonstration of this equivalence fur-
nishes an alternative demonstration that the Maxwell stress
tensor in dispersive media—questionable under ordinary
circumstances—is, in fact, valid in the thermodynamic context,
as has been argued on other grounds by Pitaevskii [9] and by
Philbin [10,11] in the context of the canonical quantization
of macroscopic electromagnetism. An algebraic equivalence
similar to ours, but relating a path-integral expression to the
energy density instead of the Maxwell stress tensor, was
demonstrated in Ref. [12], which used this equivalence to
explain why the dispersive energy density (which is valid
in ordinary electrodynamics only for negligible dissipation
[13]) is the appropriate quantity to consider in the context
of thermal and quantum fluctuations. Our work does for the
stress tensor what Ref. [12] does for the energy density. (An
alternative approach to relating the stress-tensor picture to
the energy viewpoint was suggested in Ref. [14], but details
were omitted; also, the method was restricted to geometries
that admit a separating plane between objects, whereas the
method of this paper has no such restriction and is applicable
even to geometries containing objects with interpenetrating
features.)

Although Casimir physics has been with us for some 7
decades [15], the past 15 years have witnessed a renaissance
of interest in the field, driven by laboratory observations of
Casimir phenomena in an increasingly complex variety of
geometric and material configurations [16–20]. Whereas the
theoretical methods used in the original Casimir prediction
[15] were restricted to the case of simple geometries and
idealized materials, recent experimental progress has spurred
the development of theoretical techniques for predicting
Casimir forces among bodies of arbitrary shapes and ma-
terial properties. Such general-purpose Casimir methods have
typically pursued one of two general strategies.
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A first approach [2,21–26] seeks to exploit geometrical
symmetries by approximating Casimir quantities as expan-
sions in special functions (solutions of the scalar or vector
Helmholtz equation in various coordinate systems) that encode
global geometric information in a concise way. (Techniques of
this sort are often known as spectral methods [27].) These
methods have the virtue of yielding compact expressions
relating Casimir energies, forces, and torques to linear-algebra
operations (matrix inverse, determinant, and trace) on matrices
describing the interactions of the global basis functions.
As is commonly true for spectral methods, the expressions
are rapidly convergent (in the sense of obtaining accurate
numerical results with low-dimensional truncations of the
matrices) for highly symmmetric geometries, but less well-
suited to asymmetric configurations, where the very geometric
specificity encoded in the closed-form Helmholtz solutions
becomes more curse than blessing and requires the special-
function expansions to be carried out to high orders for even
moderate numerical precision.

An alternative approach is a numerical implementation of
the stress-tensor formulation of Casimir physics pioneered
by Lifshitz et al. [28,29]. Here the Casimir force on a
body is obtained by integrating the Maxwell stress tensor—
suitably averaged over thermal and quantum-mechanical
fluctuations—over a fictitious bounding surface surrounding
the body; in modern numerical approaches [1,30–32] the
integral is evaluated by numerical cubature (that is, as a
weighted sum of integrand samples) with values of the
stress tensor at each cubature point computed by solving
numerical electromagnetic scattering problems. As compared
to the special-function approach, this technique has the virtue
of great generality, as it allows one to take advantage of
the wide range of existing numerical techniques for solving
scattering problems involving arbitrarily complex geometries
and materials. The drawback is that the spatial integral over the
bounding surface adds a layer of conceptual and computational
complexity that is absent from the special-function approach.

In this paper we show how the best features of these
two approaches may be combined to yield a technique for
Casimir computations. Our fluctuating-surface-current (FSC)
approach expresses Casimir energies, forces, and torques
among bodies of arbitrary geometries and material properties
in terms of interactions among effective electric and magnetic
currents flowing on the object surfaces. The method borrows
techniques from surface-integral-equation formulations of
electromagnetic scattering [33] to represent objects entirely in
terms of their surfaces—thus retaining the full flexibility of
the numerical stress-tensor method in handling arbitrarily
complex asymmetric geometries—but bypasses the unwieldy
numerical cubatures of the usual stress-tensor approach to
obtain Casimir energies, forces, and torques directly from
linear-algebra operations (matrix inverse, determinant, and
trace) on matrices describing the interactions of the surface
currents, thus retaining the conceptual simplicity and compu-
tational ease of the usual special-function approach.

The FSC formulas for the zero-temperature Casimir energy,
force, and torque are

E = h̄

2π

∫ ∞

0
dξ ln

det M(ξ )

det M∞(ξ )
, (1a)

Fi = − h̄

2π

∫ ∞

0
dξ Tr

{
M−1(ξ ) · ∂M(ξ )

∂ri

}
, (1b)

T = − h̄

2π

∫ ∞

0
dξ Tr

{
M−1(ξ ) · ∂M(ξ )

∂θ

}
, (1c)

where M(ξ ) is just the usual matrix that arises in the
boundary-element method of electromagnetic scattering, but
here evaluated at a purely imaginary angular frequency ω =
iξ. [Boundary-element methods and the precise form of M(ξ )
are reviewed in Appendix B.] In (I), the ξ integrals extend
over the positive imaginary frequency axis, and the partial
derivative in the force (torque) equation is taken with respect
to a rigid displacement (rotation) of the object in question.
Readers familiar with scattering-matrix methods for Casimir
computations [2,23–26] will note the striking similarity of our
Eq. (1a) to the Casimir energy formulas reported in those works
(such as Eq. 5.13 of Ref. [2]); in both cases, the Casimir energy
is obtained by integrating over the imaginary frequency axis,
with an integrand expressed as a ratio of matrix determinants.
The difference lies in the meaning of the matrices in the two
cases; whereas the matrix in typical scattering-matrix Casimir
methods describes the interactions of incoming and outgoing
wave solutions of Maxwell’s equations, the matrix in our
Eqs. (1) describes the interactions of surface currents flowing
on the boundaries of the interacting objects in a Casimir
geometry. This distinction has important ramifications for the
convenience and generality of our method.

In traditional scattering-matrix Casimir methods, the matrix
that enters equations like (1) describes interactions among
the elements of a basis of known solutions of Maxwell’s
equations propagating to and from the interacting bodies. Such
treatments afford a highly efficient description of scattering in
the handful of geometries for which analytical solutions are
available—such as incoming and outgoing spherical waves for
spherical scatterers, left- and right-traveling plane waves for
planar geometries, cylindrical wave for cylinders, etc.—but
may be particularly inefficient for describing more general
objects, as, for example, if one attempts to describe scattering
from a cube using a basis of spherical waves. Moreover,
practical implementations of these methods require significant
retooling to accommodate shapes of objects; if, for example,
having formulated the method for spheres, one wishes instead
to treat spheroids, one must recompute Maxwell solutions in
a coordinate system and reformulate the matrices in equations
like (1) to describe the interactions of these solutions.

In contrast, the matrix in our Eqs. (1) describes the
interactions of surface currents flowing on the surfaces of
the interacting objects in a Casimir geometry, as discussed in
detail in Appendix B. A crucial advantage of this description
is that the basis we use to represent surface currents is
arbitrary. The basis functions are not required to solve the
wave equation or any other equation, and the choice of basis is
thus liberated from the underlying physics of the problem; we
are free to choose a basis that efficiently represents any given
geometry. One convenient choice—though by no means the
only possibility—is a basis of localized functions conforming
to a nonuniform surface-mesh discretization (Fig. 5), where the
mesh may be automatically generated for arbitrarily complex
geometries [34]. A particular advantage of this type of basis
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is that, once we have implemented our method using basis
functions of this type, we can apply it to arbitrary geometries
with almost no additional effort; in particular, having applied
the method to spheres, it is essentially effortless to apply it to
cubes (Sec. V).

The objective of this paper is to provide two separate
derivations of the master formulas (1), one based on the
stress-tensor formalism and making no reference to path
integration, and a second based on path integrals and making
no reference to stress tensors. These derivations contain a
number of theoretical innovations beyond the practical use-
fulness of the method itself; in particular, in the stress-tensor
derivation we state and prove a new integral identity involving
the homogeneous dyadic Green’s functions of Maxwell’s
equations (Appendix C), while in the path-integral derivation
we introduce a surface-current representation of the Lagrange
multipliers that constrain functional integrations over the
electromagnetic field, which we expect to be a tool of general
use in quantum field theory.

The Casimir method described in this paper is closely
related to the surface-integral-equation (SIE) formulation of
classical electromagnetic theory. Although well known in
the engineering literature [33], this technique has not been
extensively discussed in the Casimir literature, and for this
reason we provide in Appendix B a brief review of SIE
theory. The majority of this Appendix is a review of standard
material, with the exception of the explicit expressions for
the dyadic Green’s functions that we derive in Appendix B3.
In Secs. II and III, which constitute the centerpiece of the
paper, we present two separate derivations of the master
FSC formulas (1); one derivation starts from the stress-tensor
approach to Casimir physics (Sec. II), while an independent
derivation starts from a path-integral expression for the
Casimir energy (Sec. III). In Sec. IV, we note an important
practical simplification that follows from the structure of the
matrices in Eqs. (1). In Sec. V we validate our method by using
it to reproduce known results, then illustrate its generality by
applying it to geometries that would be difficult to address
using existing Casimir methods. (Further examples of the
utility of our method may be found in Refs. [4–8].) Our
conclusions are presented in Sec. VI. A number of technical
details are discussed in the appendixes. Technical details of
practical numerical implementations, as well as additional
computational applications, will be discussed elsewhere.

II. STRESS-TENSOR DERIVATION OF
THE FSC CASIMIR FORMULAS

The stress-tensor approach to Casimir physics relates
Casimir forces to classical dyadic Green’s functions (DGFs).
This technique was pioneered by Dzyaloshinskii, Lifshitz, and
Pitaevskii (DLP) in the 1950s [28,29] and has remained an
important computational strategy ever since [35,36]; in par-
ticular, modern numerical algorithms for computing Casimir
forces between bodies of complex geometries have tended to
use the stress-tensor approach, with values for the relevant
DGFs computed numerically [1,30–32]. Here, after briefly
reviewing the formalism relating Casimir forces to DGFs
(Sec. II A), we show that the concise SIE expressions for
the DGFs that we derive in Appendix B (Appendix B3)

afford a significant simplification of the usual computational
procedure. In particular, we show that the surface integral of
the stress tensor, which in previous work has typically been
evaluated by numerical cubature, may, in fact, be evaluated
analytically for an arbitrary closed surface of integration,
leaving behind a simple expression relating the Casimir force
to the trace of a certain matrix.

A. A review of stress-tensor Casimir physics

In the stress-tensor approach, the i-directed Casimir force
on a body is obtained by integrating the expectation value
of the Maxwell stress tensor over a closed bounding surface
surrounding the body:

Fi =
∫ ∞

0

dξ

π
Fi(ξ ), (2)

Fi(ξ ) =
∮
C
〈Tij (ξ ; x)〉 n̂j (x) dx. (3)

Here the integration surface C may be the surface of the body
in question or any fictitious closed surface in space bounding
the body (as in Fig. 4), and the expectation value is taken with
respect to quantum and thermal fluctuations. The expectation
value of Tij is next written in terms of the components of the
electric and magnetic fields,

〈Tij 〉 = ε〈EiEj 〉 + μ〈HiHj 〉
− δij

2
[ε〈EkEk〉 + μ〈HkHk〉]. (4)

[Here it is understood that ε = ε0ε
e and μ = μ0μ

e are
the (spatially constant) permittivity and permeability of the
exterior medium at the frequency in question; εe,μe are the
dimensionless relative quantities.] Finally, the fluctuation-
dissipation theorem is invoked to relate the expectation values
of products of field components to scattering DGFs [28,29]; at
temperature T = 0, the relations read

〈Ei(ξ,x)Ej (ξ,x′)〉 = −h̄ξGEE
ij (ξ ; x,x′), (5a)

〈Hi(ξ,x)Hj (ξ,x′)〉 = −h̄ξGMM
ij (ξ ; x,x′), (5b)

where, as discussed in Appendix A, GEE(ξ,x,x′) is the
scattered portion of the electric field at x due to an electric
current source at x′, all quantities having time dependence
∝e+ξ t ; similarly, GMM gives the scattered magnetic field due
to a magnetic current source. (In the original work, DLP wrote
∇ × ∇ × GEE in place of GMM; the equivalence of the two
quantities has been discussed, e.g., in Ref. [1].)

Inserting (4) and (5) into (3) yields an expression for the
Casimir force-per-unit-frequency in terms of scattering DGFs:

Fi(ξ ) = −h̄ξ

π

∮
C

{
εGEE

ij + μGMM
ij

− δij

2

[
εGEE

kk + μGMM
kk

]}
n̂j dx. (6)

Equation (6) is the starting point of many numerical Casimir
studies, as it reduces the computation of Casimir forces to the
computational of classical DGFs. In principle, the DGFs in
question may be computed using any of the myriad available
numerical techniques for classical scattering problems; to
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date, numerical Casimir investigations using both the finite-
difference method [30,31] and the discretized SIE method
reviewed in Appendix B [32,37] have appeared. In these
studies, the surface integral in (6) is evaluated by numerical
cubature, with the values of the integrand at each cubature
point computed by solving numerical scattering problems.

Here we proceed in a different direction. Instead of taking
Eq. (6) as the jumping-off point for a numerical investigation,
we continue the analytical development one step further by
inserting our explicit SIE expressions (B19) and (B22) into
Eq. (6) and analyzing the result. As we will see, this step will
allow us to evaluate the surface integral in (6) analytically,
eliminating the need for numerical cubature and resulting in a
compact matrix-trace formula for the Casimir force.

Because the thrust of the argument is easiest to present in
the simplest case of perfectly electrically conducting (PEC)

bodies, we begin with that case in Sec. II B, leaving the
treatment of general materials to Sec. II C.

B. Stress-tensor derivation of FSC formulas for PEC objects

In Sec. B 3 we derive explicit SIE expressions for the
DGFs that enter into the integrand of (6); for the case of
PEC scatterers, the relevant expressions are Eqs. (B19). Our
strategy here will be to insert these expressions into (6) and
analyze the result; to facilitate this procedure, it is convenient
first to write Eqs. (B19) in a slightly different form by (a)
expressing the four � dyadics in terms of the two G and
C dyadics (Appendix A) and (b) writing out inner products
like 〈f|�〉 explicitly as integrals over the supports of the basis
function f [compare Eqs. (B5), (B6), and (B7)]. Then the
quantities that enter into the integrand of (6) are

εGEE
ij (x,x) = −ε

∑
αβ

〈
�

EE,e
i (x)|fα〉Wαβ〈fβ |�EE,e

j (x′)
〉

= −μ0μ
e(κe)2

∑
αβ

Wαβ

{∫
sup fα

Gik(rα,x) fαk(rα) drα

}{∫
sup fβ

fβ�(rβ) G�j (x,rβ ) drβ

}
, (7a)

μGMM
ij (x,x) = −μ

∑
αβ

〈
�

ME,e
i (x)|fα〉Wαβ〈fβ |�EM,e

j (x′)
〉

= +μ0μ
e(κe)2

∑
αβ

Wαβ

{∫
sup fα

Cik(rα,x) fαk(rα) drα

}{∫
sup fβ

fβ�(rβ) C�j (x,rβ ) drβ

}
. (7b)

(Here κe = √
εeμeξ is the imaginary wave number of the exterior medium, and we have suppressed the dependence of the

G and C tensors on κe.) Note that both of these expressions have the same form: a sum over basis functions fα and fβ , with
a summand involving integrations over the supports of the basis functions. Indeed, Eqs. (7a) and (7b) are identical up to the
different kernel functions (G or C) that enter into the integrals over basis functions. Note also that the variable x, which is the
integration variable in the surface integral in (6), appears in (7) only through these kernel functions. This implies that, after
inserting (7) into (6), we will again have a sum of terms of this same form—a sum over basis functions, with the summand
involving integrals over the basis functions—and, moreover, that many of the factors in this summand will be independent of the
integration variable x in (6) and may thus be pulled outside the surface integral, which will now contain only factors of G and C.
The result is (Z0 = √

μ0/ε0,Z
e = √

μe/εe),

Fi(ξ ) = h̄

π

∑
αβ

WαβZ0Z
eκe

∫
sup fα

drα

∫
sup fβ

drβ {fαk(rα)Iik�(rα,rβ )fβ�(rβ)}, (8)

where, as anticipated, the surface integral is now contained inside the definition of the I kernel:

Iik�(rα,rβ) ≡ (κe)2
∮
C

{
Gik(rα,x)G�j (x,rβ ) − Cik(rα,x)C�j (x,rβ ) − δij

2
[Gmk(rα,x)G�m(x,rβ ) − Cmk(rα,x)C�m(x,rβ )]

}
n̂j dx.

The fact that W is a symmetric matrix (Wαβ = Wβα) allows us to rewrite Eq. (8) to read

Fi(ξ ) = h̄

2π

∑
αβ

WαβZ0Z
eκe

∫
sup fα

drα

∫
sup fβ

drβ {fαk(rα)I ik�(rα,rβ )fβ�(rβ)}, (9)

where we have defined a symmetrized version of the I kernel:

I ik�(r,r′) ≡ Iik�(r,r′) + Ii�k(r′,r).

The point of this step is that, as demonstrated in Appendix C, the surface integral in the definition of the I kernel may be
evaluated in closed form, for any topological two-sphere C, with the result

I ik�(r,r′) =
{

0, if r,r′ lie both inside or both outside C,

∂

∂rI
i

Gk�(rI,rE), if r,r′ lie on opposite sides of C,
(10)

where, in the second case, rI (rE) is whichever of r,r′ lies in the interior (exterior) of C.
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Armed with the dichotomy (10), we can now analyze the
quantity in curly brackets in (9). Recall that the bounding con-
tour C encloses one of the objects in our Casimir geometry; call
this object O1 and the remaining objects O2,3,.... Equation (10)
then tells us that the curly bracketed term in (9) vanishes
except when precisely one of the basis functions {fα,fβ} lies
on the surface of object O1. When this condition is satisfied,
the integral over basis functions in (9) reads

−Z0Z
eκe

∫
sup fα

drα

∫
sup fβ

× drβ

{
fαk(rα)

[
∂

∂rαi

Gk�(rα,rβ )

]
fβ�(rβ)

}

= 〈fα| ∂

∂rαi

�EE,e|fβ〉.

However, this is nothing but the derivative of the α,β element
of the SIE matrix (B6) with respect to a rigid infinitesimal
displacement of object O1 in the i direction,

= ∂

∂ri

Mαβ.

Inserting this into (9), we find that the imaginary-frequency-ξ
contribution to the Casimir force is given simply by

Fi(ξ ) = h̄

2π

∑
αβ

Wαβ ·
[

∂

∂ri

Mαβ

]

= h̄

2π
Tr

[
M−1 · ∂

∂ri

M
]

(11)

(where we have recalled the definition W = M−1), and
inserting this into (2) we obtain the FSC formula for the
Casimir force, Eq. (1b). To obtain the FSC formula for the
Casimir energy, we note that the Casimir force on an object
is minus the derivative of the energy with respect to a rigid
displacement of that object; using the standard identity

∂

∂ri

ln det M = Tr

[
M−1 · ∂

∂ri

M
]

,

and choosing the zero of energy to correspond to the energy of
the configuration in which all objects are removed to infinite
separations (for which configuration we denote the SIE matrix
by M∞), we recover Eq. (1a). Finally, Eq. (1c) follows from
taking derivatives with respect to a rigid rotation instead of a
rigid displacement.

This completes the stress-tensor derivation of the FSC
formulas for the case of PEC objects.

C. Stress-tensor derivation of FSC formulas for general objects

The derivation of the FSC formulas for general objects is
now a straightforward generalization of the procedure for PEC
objects. Again we start with Eq. (6), and again we insert in this
equation the factorized expressions for scattering DGFs that
we derived in Sec. B 3; the difference is that for non-PEC
objects we must now use the more complicated expressions
(B22). Mimicking the discussion following Eqs. (7) above
now leads to a modified version of Eq. (9) in which the I
kernel is promoted to a 2 × 2 matrix:

Fi(ξ ) = + h̄

2π
Tr

∑
αβ

(
WEE

αβ WEM
αβ

WME
αβ WMM

αβ

)∫
sup fα

drα

∫
sup fβ

drβ

{
fαk(rα)

(
Z0Z

eκeI ik�(rα,rβ) κeJ ip�(rα,rβ )

−κeJ ip�(rα,rβ ) κe

Z0Ze I ip�(rα,rβ)

)
fβ�(rβ)

}
,

(12)

with Tr denoting a 2 × 2 matrix trace and the J kernel defined in analogy to I:

J ik�(r,r′) ≡ Jik�(r,r′) + Ji�k(r′,r),

Jik�(rα,rβ) ≡ (κe)2
∮
C

{
Gik(rα,x)C�j (x,rβ ) + Cik(rα,x)G�j (x,rβ )

− δij

2
[Gmk(rα,x)C�m(x,rβ) + Cmk(rα,x)G�m(x,rβ)]

}
n̂j dx.

Again in analogy to I, the surface integrals in the definition of J may be evaluated in closed form to yield

J ik�(r,r′) =
{

0, if r,r′ lie both inside or both outside C,

∂

∂rI
i

Ck�(rI,rE), if r,r′ lie on opposite sides of C,
(13)

and, armed with (10) and (13), it is now easy to identify the integral over basis functions in (12) as nothing but the derivative of
the SIE matrix:

∫
sup fα

drα

∫
sup fβ

drβ

{
fαk(rα)

(
Z0Z

eκeI ik�(rα,rβ ) κeJ ip�(rα,rβ )

−κeJ ip�(rα,rβ ) κe

Z0Ze I ip�(rα,rβ )

)
fβ�(rβ)

}
= ∂

∂ri

(
MEE

αβ MEM
αβ

MME
αβ MMM

αβ

)
. (14)

Inserting (14) into (12) now simply reproduces Eq. (11) with the M matrix understood to refer to the general-material SIE matrix
in Eq. (B13).
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III. PATH-INTEGRAL DERIVATION OF THE FSC
CASIMIR FORMULAS

It is remarkable that the path-integral approach to Casimir
physics, which bears little superficial resemblance to the stress-
tensor formalism of the previous section, may nonetheless be
used to furnish a separate and entirely independent derivation
of the same FSC formulas that we derived above using
stress-tensor ideas. In this section we present this alternate
derivation. Our method builds on existing techniques for
extracting Casimir energies from constrained path integrals;
Appendix D reviews this previous work to provide background
and context for the discussion of this section.

The path-integral procedure presented here differs from
typical path-integral treatments of Casimir phenomena in at
least two ways. First, whereas many authors write the action
for the electromagnetic field in terms of the gauge-independent
E and B fields [2], or in terms of the four-vector potential Aμ

in a way that depends on a specific choice of gauge (often
the “temporal” or “Weyl” gauge A0 ≡ 0 [38]), here we write
the action in terms of Aμ with a Fadeev-Popov parameter
that allows arbitrary gauge choices (Sec. III A); we verify
explicitly that the Fadeev-Popov parameter is absent from all
final physical predictions. (This portion of our treatment is
similar to that of Ref. [39].)

Second (Sec. III B), we introduce a new implementation
of the constraint that the path integral extend only over field
configurations satisfying the boundary conditions. Our repre-
sentation emphasizes the continuity of the tangential E and H
fields across the surfaces of the objects in a Casimir geometry,
and the Lagrange multipliers that we introduce to enforce
the constraints have an attractive physical interpretation as
surface currents, thus establishing a connection to the SIE
ideas reviewed above.

Combining the techniques of Secs. III A and III B yields
an expression for the Casimir energy involving functional
integrals over both the electromagnetic field and the surface-
current distributions (Sec. III C). After integrating out the
photons, we are left with functional integrals over surface
currents, with an effective action describing the interactions of
these currents through the electrical media interior and exterior

to the objects. Upon discretization, this action turns out to
involve precisely the same surface-current-interaction matrix
that appears in the SIE formulation of scattering reviewed
in Appendix B, and the Casimir energy may be evaluated to
yield precisely the same results obtained via the stress-tensor
procedure of Sec. II.

A. Euclidean Lagrangian for the electromagnetic field

The usual (Minkowski-space) Lagrangian for the electro-
magnetic field is

S =
∫

dω

2π

∫
dxL(ω,x),

L(ω,x) = 1

2
[ε(ω,x)|E(ω,x)|2 − μ(ω,x)|H(ω,x)|2].

Rewriting E and H in terms of the four-vector potential Aμ,
integrating by parts, and rotating to Euclidean space via the
prescription {ω,A0,A0∗} → {iξ,iA0,iA0∗} yields a Euclidean
action density of the form

LE(ξ,x) = ε(iξ,x)

2
(−ξ 2Ai∗Ai − iξA0∗∂iA

i

− iξAi∗∂iA
0 + A0∗∂i∂iA

0)

+ 1

2μ(iξ,x)
(Ai∗∂j ∂jA

i − Ai∗∂i∂jA
j ),

or, introducing a convenient matrix-vector notation,

L′
E(ξ,x) = 1

2

⎛
⎜⎜⎜⎝
A0

A1

A2

A3

⎞
⎟⎟⎟⎠

†

[ D1(ξ ) − D2(ξ ) ]

⎛
⎜⎜⎜⎝
A0

A1

A2

A3

⎞
⎟⎟⎟⎠ , (15)

where we have defined⎛
⎜⎜⎜⎝
A0

A1

A2

A3

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

√
εμA0

A1

A2

A3

⎞
⎟⎟⎟⎠ (16)

and

D1 =

⎛
⎜⎜⎜⎜⎝

−εξ 2 + 1
μ
∇2 0 0 0

0 −εξ 2 + 1
μ
∇2 0 0

0 0 −εξ 2 + 1
μ
∇2 0

0 0 0 −εξ 2 + 1
μ
∇2

⎞
⎟⎟⎟⎟⎠ , D2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

−εξ 2 i
√

ε
μ
ξ∂x i

√
ε
μ
ξ∂y i

√
ε
μ
ξ∂z

i
√

ε
μ
ξ∂x

1
μ
∂2
x

1
μ
∂x∂y

1
μ
∂x∂z

i
√

ε
μ
ξ∂y

1
μ
∂y∂x

1
μ
∂2
y

1
μ
∂y∂z

i
√

ε
μ
ξ∂z

1
μ
∂z∂x

1
μ
∂z∂y

1
μ
∂2
z

⎞
⎟⎟⎟⎟⎟⎟⎠

.

The four-vector field Aμ defined by (16) will be the field over which we path integrate, and Eq. (15) is almost, but not quite, the
quantity that enters into the exponent of the constrained path-integral expression for the Casimir energy, Eq. (D3). To complete
the story, we must add a Fadeev-Popov gauge fixing term, which we do in analogy to the usual QED procedure [40] by simply
displacing the coefficient of D2 term in (15) away from unity to ensure that the matrix in square brackets has no zero eigenvalues.
Our final Euclidean action is

LE(ξ,x) = Aμ

[
D1(ξ ) −

(
1 − 1

αFP

)
D2(ξ )

]
μν

Aν ≡ A · D(ξ ) · A, (17)
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where the Faddeev-Popov gauge-choice parameter αFP may be chosen to have any finite value and is absent from all final physical
predictions, as explicitly verified below [see Eqs. (34) and (35)]. Following the general procedure reviewed in Appendix D, we
can now write the Casimir energy at inverse temperature β in the form

E = − 1

β
ln

Z(β)

Z∞(β)
= − 1

β

∞∑
n=0

ln
Z(β,ξn)

Z∞(β,ξn)
, (18)

Z(β,ξ ) =
∫

[DAμ]Ce− β

2

∫
A·D(ξ )·A dx, (19)

with the notation [· · · ]C indicating that the functional integration ranges only over field configurations that satisfy the boundary
conditions in the presence of our interacting material objects.

B. Boundary conditions enforced by
surface-current Lagrange multipliers

In a scattering geometry consisting of one or more homoge-
neous bodies bodies embedded in a homogeneous medium, the
boundary conditions on the electromagnetic field are simply
that the tangential E and H fields be continuous across all
material boundaries: If x is a point on the surface of an object,
then we require

ta · [Ein(x) − Eout(x)] = 0, (20a)

ta · [Hin(x) − Hout(x)] = 0, (20b)

where {E,H}in,out are the fields evaluated just inside and just
outside the object surface at x, and where ta (a ∈ {1,2}) are
vectors tangent to the surface at x [Fig. 1(a)]. In terms of the
modified four-vector potential Aμ, these conditions may be
written in the form

tai
{
L

E,in
iμ (x) − L

E,out
iμ (x)

}
Aμ(x) = 0, (21a)

tai
{
L

M,in
iμ (x) − L

M,out
iμ (x)

}
Aμ(x) = 0, (21b)

where LE,r and LM,r are differential operators that operate on
Aμ to yield the components of the E and H fields in region r .
(We are here using a shorthand in which the Aμ fields in the
different regions, Aμ,in and Aμ,out, are abbreviated simply as
Aμ and pulled outside the braces.) In a homogeneous region
with spatially constant relative permittivity and permeability
ε(ξ,x) = εr (ξ ),μ(ξ,x) = μr (ξ ), the L operators take the form

LE,r =

⎛
⎜⎜⎝

− 1√
εrμr ∂x iξ 0 0

− 1√
εrμr ∂y 0 iξ 0

− 1√
εrμr ∂z 0 0 iξ

⎞
⎟⎟⎠ , (22a)

LM,r = 1

μr

⎛
⎜⎝

0 0 −∂z ∂y

0 ∂z 0 −∂x

0 −∂y ∂x 0

⎞
⎟⎠ . (22b)

Equations (21) are a set of four boundary conditions for each
point x on the surfaces of the material bodies in our geometry;
in the language of Appendix D, these are our constraints Lαφ,
and to each constraint we now associate a Lagrange multiplier.
We use the symbols Ka(x) and Na(x) (a = 1,2), respectively,
to denote the Lagrange multipliers associated with constraints
(21a) and (21b) at the single point x [Fig. 1(b)]. Then the δ

functions that enforce the boundary conditions (21) at x are

δ(Ein
‖ (x) − Eout

‖ (x)) =
∫

dKx

(2π )2
eiKx·[LE,in

μ −LE,out
μ ]Aμ(x),

(23a)

δ(Hin
‖ (x) − Hout

‖ (x)) =
∫

dNx

(2π )2
eiNx·[LM,in

μ −LM,out
μ ]Aμ(x),

(23b)

where we may think of {Kx,Nx} = ∑2
a=1{Ka,Na}ta as

vectors in the tangent space to the boundary surface at x.

Aggregating the corresponding δ functions for all points on
the surface of a single object, we obtain functional δ functions,

∫
DK(x)ei

∫
∂O K(x)·[LE,in

μ −LE,out
μ ]Aμ(x)dx, (24a)∫

DN(x)ei
∫
∂O N(x)·[LM,in

μ −LM,out
μ ]Aμ(x)dx, (24b)

where the integral in the exponent is over the surface
∂O of an object in our geometry, and where the functional
integrations

∫
DK,

∫
DN extend over all possible tangential

vector fields on ∂O.
Since K and N are tangential vector fields on ∂O that

enforce the continuity of the tangential electric and magnetic
fields, respectively, it is tempting to interpret these quantities as
electric and magnetic surface current densities, and with their
introduction our path-integral formalism begins to exhibit the
first glimmers of resemblance to the SIE picture reviewed in
Appendix B.

C. Evaluation of the constrained path integral

In general we have one copy of the functional δ func-
tions (24) for the surface of each object in our geometry. Let
{Kr ,Nr} denote the Lagrange-multiplier distributions on the
surface of the rth object; the constrained path integral then
reads

Z(β,ξ ) =
∫

[DAμ]Ce− β

2

∫
A·D·A dx

=
∫ ∏

r

DKrDNr

∫
DAμ{e− β

2

∫
A·D·A dx

× e+i
∑

r

∫
∂Or

{Kr ·(LE,r−LE,e)+Nr ·(LM,r−LM,e)}·A dx},
(25)
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FIG. 1. (Color online) Enforcing boundary conditions via surface-current Lagrange multipliers. (a) Consider a single point x on the surface
of an object in a Casimir geometry. The boundary conditions at x, which must be satisfied in the constrained path integral (19), are that the
tangential components of the E and H fields be continuous as we pass from inside to outside the object [Eq. (20)]; here {t1,t2} are vectors
tangent to the surface at x. (b) We rewrite the boundary conditions in terms of differential operators LE,M operating on the A field, and we
introduce Lagrange multipliers {K1,K2,N 1,N 2} to enforce the boundary conditions at x; specifically, K1,K2 enforce the tangential E-field
continuity at x, while N1,N 2 enforce the tangential H-field continuity [Eq. (23)]. (c) Repeating this procedure for all points on the object
surface, we obtain Lagrange multiplier fields K(x),N(x), which have an obvious interpretation as the electric and magnetic surface currents of
Fig. 4. Integrating the photon field out of the path integral then yields an effective action describing the interactions of these surface currents
[Eqs. (28), (41), and (42)], leading ultimately to our FSC formulas for the Casimir energy.

with
∫
∂Or

denoting integration over the surface of object r

and with the path integration over A in the second line now
unconstrained [compare Eq. (D6)]. This is just a standard
Gaussian functional integral, which we proceed to evaluate
using standard techniques [40,41].

To this end, it is convenient to think of breaking up the
functional integration over Aμ into separate integrations over
the fields in each object and in the exterior region,∫

DAμ =
∫

DAμ
e

∏
r

DAμ
r ,

where Aμ
r is the field in the interior of region r and Aμ

e is the
field in the exterior region. The matrix D(x), which depends
on x through ε and μ, is constant in each region due to the
piecewise homogeneity of the geometry, while the operators
LEM,r only operate on the fields in region r . The functional
integral becomes

Z(β,ξ )

=
∫ ∏

r

DKr DNr

∫
DAμ

e

∏
r

DAμ
r

×{e− β

2

∫
Ve

Ae ·De ·Ae − β

2

∑
r

∫
Vr

Ar ·Dr ·Ar

× e+i
∑

r

∫
∂Or

{[Kr ·LE,r+Nr ·LM,r ]·Ar−[Kr ·LE,e+Nr ·LM,e]·Ae}dx},
(26)

with
∫
Vr

denoting volume integration over the interior of
region r . Now performing the Gaussian functional integrations
over the fields Aμ

r immediately yields an expression of the
form (D8),

Z(β,ξ ) = {#}
∫ ∏

r

DKr DNre
− 1

β
Seff

, (27)

where
{
#
}

is an unimportant constant that cancels upon
taking the ratio in (18) (and which is omitted from the
equations below) and where the effective action for the surface

currents,

Seff =
R∑

r=1

Sr [Kr ,Nr ] + Se

[{Kr ,Nr}Rr=1

]
, (28)

contains terms describing both the self-interactions and the
mutual interactions of currents on the object surfaces, as we
now discuss.

Consider first what happens when we integrate Aμ
r out

of (26). Because the exponent of (26) couples Aμ
r only to

Kr ,Nr (and not to currents on other objects r ′ �= r), integrating
out Aμ

r yields an effective action involving only Kr ,Nr :∫
DAμ

r e− β

2

∫
Ar ·Dr ·Ar+i

∫
∂Or

[Kr ·LE,r+Nr ·LM,r ]·Ar

= e
− 1

2β

∫∫
∂Or

[Kr ·LE,r+Nr ·LM,r ]·D−1
1 ·[Kr ·LE,r+Nr ·LM,r ]

≡ e
− 1

β
Sr [Kr ,Nr ]

.

The effective action Sr describes the self-interactions of
electric and magnetic currents on ∂Or mediated by virtual
photons propagating through the interior of object r . More
precisely, we have

Sr [Kr ,Nr ] = 1

2

∫
∂Or

dx
∫

∂Or

dx′{ Kr (x) · γ EE,r(x,x′) · Kr (x′)

+ Kr (x) · γ EM,r(x,x′) · Nr (x′)

+ Nr (x) · γ ME,r(x,x′) · Kr (x′)

+ Nr (x) · γ MM,r(x,x′) · Nr (x′)}, (29)

with the components of the tensor kernels given by (P,Q ∈
{E,H})

γ
PQ,r
ij = L

P,r
iμ D−1

rμνL
Q,r
jν . (30)

We will see presently that the γ PQ,r matrices here turn out to
be nothing but the usual dyadic Green’s tensors �PQ,r for the
homogeneous medium inside object Or .
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To see this, it is easiest to perform the matrix multiplications
of Eq. (30) in momentum space, where we have

LE,r =

⎛
⎜⎜⎝

−i 1√
εrμr kx iξ 0 0

−i 1√
εrμr ky 0 iξ 0

−i 1√
εrμr kz 0 0 iξ

⎞
⎟⎟⎠ ,

LM,r = 1

μr

⎛
⎜⎜⎜⎝

0 0 −ikz iky

0 ikz 0 −ikx

0 −iky ikx 0

⎞
⎟⎟⎟⎠ ,

and [cf. Eq. (17)]

D−1
r =

[
Dr,1 −

(
1 − 1

αFP

)
Dr,2

]−1

= −
[

1

μr

(
κ2 + |k|2

)
1 −

(
1 − 1

αFP

)
Dr,2

]−1

(31)

= − μr

κ2 + |k|2
[

1 + μr

(
1 − αFP

κ2 + |k|2
)

Dr,2

]
, (32)

where 1 is the 4 × 4 unit matrix, {εr ,μr} are the (spatially
constant) permittivity and permeability of object r at imaginary
frequency ξ,κ = √

εrμrξ, and the momentum-space form of
the Dr,2 matrix is

Dr,2 = − 1

μr

⎛
⎜⎜⎜⎝

κ2 κkx κky κkz

κkx k2
x kxky kxkz

κky kykx k2
y kykz

κkz kzkx kzky k2
z

⎞
⎟⎟⎟⎠ .

(The passage from the second to the third line of Eq. (32)
is a standard algebraic manipulation in quantum field theory;
see, e.g., Eq. (9.58) of Ref. [40]. The fact that we obtain
such a concise form for the inverse of the matrix in square
brackets in (31) is due to the fact that Dr,2 is a rank 1 matrix
and is known in numerical analysis as the Sherman-Morrison
formula [42].)

We now note the crucial fact that the second term in (32)
makes no contribution to the effective action for the surface
currents. Indeed, the contribution of this term to the γ kernels
in (30) involves triple matrix products of the form LP,r · Dr,2 ·
(LQ,r )T; but an explicit calculation reveals that (c = 1/

√
εrμr )

LE,r · Dr,2 · (LE,r )T = 1

μr

⎛
⎜⎝

−ickx iξ 0 0

−icky 0 iξ 0

−ickz 0 0 iξ

⎞
⎟⎠

·

⎛
⎜⎜⎜⎜⎝

κ2 κkx κky κkz

κkx k2
x kxky kxkz

κky kykx k2
y kykz

κkz kzkx kzky k2
z

⎞
⎟⎟⎟⎟⎠

·

⎛
⎜⎜⎜⎝

−ickx −icky −ickz

iξ 0 0

0 iξ 0

0 0 iξ

⎞
⎟⎟⎟⎠ (33)

=

⎛
⎜⎝

0 0 0

0 0 0

0 0 0

⎞
⎟⎠ , (34)

and the other three possible L · D · L products also vanish
identically:

LE,r · Dr,2 · (LM,r )T = LM,r · Dr,2 · (LE,r )T

= LM,r · Dr,2 · (LM,r )T = 0. (35)

This furnishes the promised demonstration that the gauge-
choice parameter αFP makes no appearance in the effective
action (29), thus explicitly confirming the gauge invariance of
our procedure.

Having verified that only the first term in (30) contributes
to the γ kernels in (30), these kernels are now easy to evaluate.
First,

γ EE,r = − μr

κ2 + |k|2 [LE,r · 1 · (LE,r )T]

= − μr

κ2 + |k|2

⎛
⎜⎝

−ickx iξ 0 0

−icky 0 iξ 0

−ickz 0 0 iξ

⎞
⎟⎠

·

⎛
⎜⎜⎜⎝

−ickx −icky −ickz

iξ 0 0

0 iξ 0

0 0 iξ

⎞
⎟⎟⎟⎠

= ξ
Z0Z

r

κ(κ2 + |k|2)

⎡
⎢⎣
⎛
⎜⎝

κ2 0 0

0 κ2 0

0 0 κ2

⎞
⎟⎠

+

⎛
⎜⎝

k2
x kxky kxkz

kykx k2
y kykz

kzkx kzky k2
z

⎞
⎟⎠
⎤
⎥⎦ .

However, a quick comparison with the momentum-space
forms of the DGFs in Appendix A reveals this to be nothing
but ξ times the electric-electric DGF for Or , i.e.,

γ EE,r (ξ ; k) = ξ · �EE,r (ξ ; k),

or, transforming back to real space,

γ EE,r (ξ ; x,x′) = ξ · �EE,r (ξ ; x,x′),

and the connection of our formalism to SIE methodology
begins to come into even sharper relief.

Next,

γ EM,r = − μr

κ2 + |k|2 [LE,r · 1 · (LM,r )T] (36)

= − 1

κ2 + |k|2

⎛
⎝−ickx iξ 0 0

−icky 0 iξ 0
−ickz 0 0 iξ

⎞
⎠

·

⎛
⎜⎜⎜⎝

0 0 0
0 ikz −iky

−ikz 0 ikx

iky −ikx 0

⎞
⎟⎟⎟⎠ (37)
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= − ξ

κ2 + |k|2

⎛
⎝ 0 −kz ky

kz 0 −kx

−ky kx 0

⎞
⎠ , (38)

and again comparing with Appendix A reveals that we have
simply

γ EM,r = ξ · �EM,r .

Having established the obvious pattern, it is now a short step
to confirm that the remaining two cases of the γ kernel in (30)
are simply [43]

γ ME,r = ξ · �ME,r , (39)

γ MM,r = ξ · �MM,r , (40)

and Eq. (29), the portion of the effective action for surface
currents that arises from integrating the photon field in the

interior of object Or out of (26), reads

Sr [Kr ,Nr ] = ξ

2

∫
∂Or

dx
∫

∂Or

dx′
(

Kr (x)
Nr (x)

)

·
(

�EE,r �EM,r

�ME,r �MM,r

)
·
(

Kr (x′)
Nr (x′)

)
. (41)

Next, we consider integrating the photon field in the exterior
region (Aμ

e ) out of Eq. (26). Although the computations
proceed exactly as before, the the resulting contribution to
the effective action is slightly more complicated. Because the
exponent of (26) contains terms that couple Aμ

e to the currents
on all object surfaces (unlikeAμ

r , which couples only to surface
currents on the single object Or ), the result of integrating out
Aμ

e will be an effective action describing the interactions of
surface currents on all object surfaces mediated by exchange
of virtual photons propagating through the external medium:

Se[{Kr ,Nr}] = ξ

2

∑
r,r ′

∫
∂Or

dx
∫

∂Or′
dx′

(
Kr (x)
Nr (x)

)
·
(

�EE,e �EM,e

�ME,e �MM,e

)
·
(

Kr ′ (x′)
Nr ′ (x′)

)
. (42)

Combining (41) and (42), the full path integral (27) now reads, for the particular case of two objects,

Z(β,ξ ) =
∫

DKiDNi exp

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− ξ

2β

∫ ⎛
⎜⎜⎝

K1

N1

K2

N2

⎞
⎟⎟⎠

T

· (�
) ·

⎛
⎜⎜⎝

K1

N1

K2

N2

⎞
⎟⎟⎠
⎫⎪⎪⎪⎬
⎪⎪⎪⎭

, (43)

with

(�) =

⎛
⎜⎜⎜⎝

�EE,1 + �EE,e �EM,1 + �EM,e �EE,e �EM,e

�ME,1 + �ME,e �MM,1 + �MM,e �ME,e �MM,e

�EE,e �EM,e �EE,2 + �EE,e �EM,2 + �EM,e

�ME,e �MM,e �ME,2 + �ME,e �MM,2 + �MM,e

⎞
⎟⎟⎟⎠ .

Note that the quantity � · ( K
N ) in (43) is nothing but the left-

hand side of Eq. (B13).
Having elucidated the structure of the effective action

for surface currents, the remainder of our derivation is
now straightforward. To evaluate the functional integral over
sources in (43), we approximate K and N as expansions
in a finite set of tangential basis functions representing
surface currents flowing on the surface of the interacting
Casimir objects, as is done in the boundary-element method
of computational electromagnetism [cf. Eq. (B12)]:

K(x) =
∑

kαfα(x), N(x) = −
∑

nαfα(x).

We now insert these expansions into (43) and approximate
the infinite-dimensional integrals over K and N as finite-
dimensional integrals over the kα and nα coefficients:∫

DKiDNi =⇒ J
∫ ∏

α

dkα

∏
α

dnα,

where J , the Jacobian of the variable transformation, is
an unimportant constant that cancels upon taking the ratio
in (18) (and which is not written out in the equations below).

Equation (43) now becomes simply

Z(β,ξ ) =
∫ ∏

α

dkα

∏
α

dnαe
− ξ

2β (k
n)

T·M(ξ )·(k
n),

a finite-dimensional Gaussian integral which we evaluate
immediately to obtain

= {#} · [det M(ξ )]−1/2, (44)

where M(ξ ) is nothing but the SIE matrix discussed in
Appendix B (and, once again, {#} is just an irrelevant constant
into which the ξ/2β prefactor in the exponent disappears).
Now finally inserting (44) into (19) and (18) leads immediately
back to our FSC formulas (1), and our derivation is complete.

IV. EQUALITY OF THE PARTIAL TRACES

An important practical simplification of the FSC formulas
follows from the structure of the BEM matrices. Recall
from (1) that the quantity that enters into the FSC expression
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for the Casimir force is

Tr

{
M−1 · ∂M

∂ri

}
=
∑
αβ

M−1
αβ

[
∂Mβα

∂ri

]
(45)

(with a similar expression for the torque). We show that the
trace in (45) neatly splits into two equal subtraces, and thus
that to compute the full trace we need only sum a subset of the
diagonal elements of the matrix in curly brackets (and double
the result). In practice this reduces the computational expense
of the trace computation by a factor of two or greater.

To understand the physical intuition behind this simpli-
fication, note that the sum in (45) runs over the elements
of our basis of surface-current expansion functions, which
includes functions defined on the surfaces of each of the objects
in our Casimir geometry. In evaluating the portion of this
sum contributed by basis functions defined on a single object
surface, we are, in effect, computing a sort of surface integral
over the surface of that object. Intuitively, we might expect
that, to compute the force on one object, it would suffice to
evaluate this surface integral over the surface of that object
alone, or over the surfaces of all other objects, but that we
need not do both. As we now show, this physical expectation
is borne out by the mathematics; to compute the full trace
in (45) we need only sum the contributions of basis functions
on the surface of the object on which we are computing the
force and double the result.

As before, let the objects in our Casimir geometry be
labeled Or , r = 1,2, . . ., with O1 the object on which we
are computing the Casimir force, and let Dr be the dimension
of the subblock of the M matrix corresponding to object Or

(that is, Dr is the number of surface-current basis functions
defined on the surface of Or ). The dimension of the full matrix
is D = ∑

Dr .
A rigid displacement of object O1 leaves unchanged the

interactions between all pairs of basis functions save those
pairs in which precisely one basis function lives on O1. We
can thus split the sum in (45) into two pieces:

∑
αβ

M−1
αβ

[
∂Mαβ

∂ri

]
=

D1∑
α=1

D∑
β=D1+1

M−1
αβ

[
∂Mβα

∂ri

]

+
D∑

α=D1+1

D1∑
β=1

M−1
αβ

[
∂Mβα

∂ri

]
. (46)

The first piece on the right-hand side here is the sum of the first
D1 diagonal elements of the matrix M−1 · ∂M

dri
, while the second

piece is the sum of the remaining D − D1 elements. However,
from the fact that M is a symmetric matrix (Mαβ = Mβα) it
now follows that the two pieces here are equal, and thus to
compute the full trace we need only sum the first D1 diagonal
elements of M−1 · ∂M

dri
(or the latter D − D1 elements, if they

are fewer) and double the result; i.e.,

TrM−1 · ∂M
∂ri

= 2
D1∑

α=1

D∑
β=D1+1

M−1
αβ

[
∂Mαβ

∂ri

]
.

In practice, a convenient way to evaluate this quantity is to LU
factorize the matrix M, solve the linear systems M · Xm = Bm,
where the vectors Xm are the first D1 columns of ∂M

∂ri
, then

extract and sum the mth elements of the vectors Bm and double

the result. The equality of the partial traces then ensures that
this operation requires just D1 linear solves, in contrast to the
full D solves that would be required in the absence of the
simplification.

V. APPLICATIONS

A. Casimir forces between metallic spheres and cubes

To validate our method and demonstrate its flexibility, we
first calculate the Casimir force between pairs of metallic
particles of spherical and cubical shapes (Fig. 2).

For the sphere-sphere case, the Casimir force may be com-
puted using scattering-matrix methods based on a spherical-
wave decomposition of the electromagnetic field [44,45], with
the Casimir energy expressed in terms of interactions among
waves labeled by the usual spherical indices {�,m}. At large
values of the sphere-sphere separation, only waves with small
values of � are relevant, and in this regime Ref. [44] obtained an
asymptotic power series for the force, whose first four terms
we have plotted in Fig. 2 (lower dashed curve). At smaller
values of the sphere-sphere separation, the sum over spherical
waves may be evaluated numerically, as is done in Fig. 2 (open
blue circles) with waves up to � = 40 retained for each of the
two possible polarizations, corresponding to 2(� + 1)2 = 3362
basis functions for each sphere.

To perform the calculation using FSC techniques, we
discretize the surfaces of the objects into small surface patches
and expand surface currents using the localized basis functions

1e-08

1e-06

0.0001

0.01

1

100

10000

0.1 1 10
1e-08

1e-06

0.0001

0.01

1

100

10000

FIG. 2. (Color online) Casimir force between PEC spheres and
between PEC cubes. The solid green circles indicate sphere-sphere
data computed using the FSC method described in this paper,
while the open blue circles indicate sphere-sphere data computed
using a numerical implementation of the scattering-matrix method
of Ref. [44]. (The lower dashed-line curve indicates the first four
terms of the asymptotic series for the sphere-sphere Casimir force
reported in Ref. [44].) The solid red squares indicate cube-cube data
computed using the FSC method described in this paper; for this
geometry, scattering-matrix methods and indeed almost all existing
Casimir methods would be unwieldy or impossible to apply. The
upper dashed-line curve indicates the proximity-force approximation
(PFA) to the cube-cube force, FPFA = 4R2 π2h̄c

240L4 for cubes of face area
4R2.
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of Fig. 1; in this case, the number of basis functions retained in
the description of the surface currents is 2976 for each sphere.
As illustrated in Fig. 2, the FSC calculation (solid red circles)
reproduces the results of the spherical-wave calculation.
Note that our choice of surface-mesh basis functions allows
us to concentrate more degrees of freedom in the regions
where we expect the surface source densities to be most
rapidly varying—namely, the regions of each sphere that
most closely approach the other sphere—while simultaneously
using a relatively coarse-grained representation of weakly
interacting regions. Thus, already for the simple sphere-sphere
geometry our method begins to exhibit practical advantages
over spherical-wave-basis methods, in which the resolution
can be increased only globally rather than locally.

The FSC method really comes into its own in treating
objects that cannot be efficiently described by analytical
Maxwell solutions, such as the case of two cubes. To handle
such a geometry using scattering-matrix methods, we would
be forced either to expand fields in and around the cubes in
spherical waves—an approach which would require retaining
basis functions up to inordinately large values of � except in
the long-distance limit [46]—or to reformulate the method in
a basis of Maxwell solutions for cubical scatterers, for which
analytical expressions are not available. In contrast, the FSC
approach handles the geometry with no more effort than is
required for the sphere-sphere case (inset and solid blue circles
in Fig. 2).

An additional limitation of the spherical-wave approach
is that it is inherently restricted to separation distances
large enough that the interacting objects may be enclosed
in nontouching, nonoverlapping spheres. For the cube-cube
geometry pictured in Fig. (2), this would render the method
inapplicable for distances L/R < 1.47, excluding much of the
range plotted in the figure.

B. Repulsion of an anisotropic nanoparticle from a square
aperture in a thin metallic plate

Reference [6] considered the Casimir force on an elongated
nanoparticle above an aperture in a thin metallic plate and
predicted a regime in which the force on the nanoparticle
is repulsive. This work, as well as subsequent investigations
of similar phenomena [47,48], considered only circular
apertures; here we investigate the case of a square aperture
(Fig. 3). We consider the Casimir force on a cylindrical
nanoparticle (lower inset), whose axis coincides with the
axis of a thin (20-nm) plate with a 1-μm square aperture,
as a function of the distance Z between the vertical center
of the nanoparticle and the center of the thin plate. Both
cylinder and plate are made of real (lossy) gold, described by
a relative dielectric function ε(ξ ) = 1 + w2

p/[ξ (ξ + γ )] with
{wp,γ } = {1.37 × 1016,5.32 × 1013} rad/s. When the center
of the nanoparticle is vertically aligned with the center of
the plate (Z = 0), the z-directed Casimir force vanishes by
symmetry; as the nanoparticle is displaced slightly in the
positive z direction it experiences first a repulsive Casimir
force (shaded region of plot) which peaks near the value
of Z at which the nanoparticle first lies entirely above the
plate. As the nanoparticle is raised further above the plate, the
repulsive force decreases in magnitude and eventually crosses

-6

-4

-2

0

2

4

6

8

10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.70 0.1 0.2 0.3 0.4 0.5 0.6 0.7

-6

-4

-2

0

2

4

6

8

10

FIG. 3. (Color online) Casimir force on an elongated cylindrical
nanoparticle above a square aperture in a thin plate. The upper inset
(not to scale) shows the particle-plate geometry, while the lower
inset is a close-up view of the surface mesh used to represent the
particle. The axis of the nanoparticle (the z axis) is perpendicular to
the plane of the plate; the center of the nanoparticle lies a distance
Z above the center of the plate. In the regime 0 � Z � 330 nm, the
z-directed force on the nanoparticle is positive; i.e., the particle is
repelled from the plate. The shaded portion of the graph indicates this
repulsive-force regime. For Z > 185 the nanoparticle lies entirely
above the plate and the force is thus unambiguously repulsive. Both
the nanoparticle and the plate are made of finite-conductivity gold
(see text).

over into an attractive force whose magnitude decays at large
Z (unshaded region of the plot).

The fact that the square-hole geometry reproduces the
repulsion phenomenon observed in the circular-hole case is
not particularly surprising, but we note that this geometry
exhibits several features which would make it prohibitively
expensive if not outright impossible to treat using any other
Casimir method of which we are aware. In particular, the
interpenetrating nature of the nanoparticle-plate configuration
would immediately render most scattering-matrix methods
inapplicable. Moreover, the drastic distance in length scales
between the tiny (20-nm-diameter) cylinder and the rela-
tively large (5-μm-radius) plate, together with the absence
of rotational symmetry, would pose severe challenges to
finite-difference methods. In contrast, the FSC method easily
accommodates nonuniform surface meshes, allowing us to
describe the nanoparticle surface as a union of appropriately
sized surface patches even as we use much larger patches for
the plate surface.

VI. CONCLUSIONS

The FSC approach to Casimir physics, together with
other recently developed Casimir methods such as the finite-
difference approaches [30,31,49,50], constitutes an advance
in the development of Casimir algorithms that mirrors an
earlier evolution in computational electromagnetism (EM).
In the latter field, traditional special-function approaches
such as Mie’s method for spherical scattering began to be
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complemented in the 1960s and 1970s by a host of numerical
techniques that expanded the range of geometries that could be
accurately and efficiently treated. Today, numerical techniques
for general geometries coexist with geometry-specific special-
function approaches to constitute a rich and varied arsenal
of computational EM techniques appropriate for almost any
conceivable situation.

In the future, we expect a similar situation to prevail
in the Casimir field. General-purpose methods such as the
one presented here will not replace scattering-matrix Casimir
methods any more than finite-difference Maxwell solvers
have replaced the theory of Mie scattering; instead, methods
such as our FSC technique will coexist with scattering-
matrix methods, augmenting the toolbox of available methods
available for predicting Casimir interactions across the gamut
of geometric and material configurations.

Among general-geometry numerical Casimir methods, the
FSC approach is unique in obtaining compact determinant
and trace formulas for Casimir quantities. All other general-
purpose numerical methods rely on numerical evaluation of
a surface integral for the Casimir force and torque (and on
even more unwieldy numerical volume integrations for the
Casimir energy). For this reason, we expect the FSC approach
to be the most efficient numerical Casimir method for the
piecewise-homogeneous material configurations to which it
applies.

In addition to the practical usefulness of the FSC Casimir
formulas, the two independent derivations that we have
provided in this paper contain a number of theoretical
innovations that we expect to find broader application. In
particular, in the stress-tensor derivation we stated and proved
a new integral identity involving the homogeneous DGFs of
Maxwell’s equations (Appendix C), while in the path-integral
derivation we introduced a new type of Lagrange multiplier
to constrain the functional integration over the photon field.
We hope the latter technique will prove to be a generally
useful tool in quantum field theory; one possible application
beyond the Casimir realm is the boundary dependence of
entanglement entropy in the electromagnetic field, a subject
recently addressed for scalar fields [51].

What challenges lie ahead for FSC Casimir computations?
If the evolution of computational Casimir physics continues to
mimic that of computational EM, an obvious next step will be
the development of fast solvers [52]—algorithms that exploit
physical insight to reduce the computational complexity of
matrix manipulations in equations like (1) from O(N3) to
a more tractable scaling such as O(N ln N ), where N, the
dimension of the matrix, is the number of surface-current
expansion functions {fα} retained in Eqs. (B3) and (B12).
Although a number of algorithms are known for evaluating
matrix-vector products involving SIE matrices in O(N ln N )
time [52], the question of how best to exploit such algorithms to
evaluate the determinant and trace in Eqs. (1) is nontrivial. To
date, all FSC Casimir calculations have considered problems
of moderate complexity (N � 104), for which dense-direct
linear-algebra solvers are adequate; however, future problems
may require going beyond this regime, in which case fast
solvers will be essential.

A separate challenge is to apply FSC techniques to the
calculation of Casimir forces out of thermal equilibrium, as

well as to the closely related problem of near-field radiative
heat transfer. These problems, which represent a logical next
step in the study of fluctuation-induced forces beyond the
equilibrium Casimir case, have begun very recently to be
investigated using scattering-matrix [26,53,54] and numerical
[55] methods. A hybrid technique combining scattering-matrix
ideas with SIE-based numerical calculations was proposed
in [8], but was restricted to a cylindrical-wave basis; to
date there has been no basis-independent surface-current
formulation of nonequilibrium fluctuation problems. Could
the FSC technique presented in this paper be modified to
apply to these problems? If so, what physical insight would
the surface-current formulation lend, and what improvements
could be achieved in the efficiency of practical calculations?

In this paper we have said almost nothing about the practical
challenges inherent in concrete numerical implementations of
the FSC formulas. Among these are (a) how best to choose
the surface-current basis functions {fα} for a given geometry,
(b) how to evaluate the multidimensional integrals that enter
into the elements of the M matrix [such as Eqs. (B6)];
(c) how to compute the matrix determinant, inverse, and trace
in Eqs. (1), and (d) how to evaluate the imaginary-frequency
integrations in Eqs. (1), as well as the Matsubara sums in
their finite-temperature analogs. All of these challenges will
be addressed in subsequent publications.
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APPENDIX A: HOMOGENEOUS AND SCATTERING
DYADIC GREEN’S FUNCTIONS

For reference, we collect here some well-known results
concerning the DGFs of classical electromagnetic theory
[56,57].

In the presence of known volume densities of electric and
magnetic current J(x),M(x) at a fixed imaginary frequency ξ ,
the components of the electric and magnetic fields are given
by linear convolution relations of the form

Ei(x) =
∫ {

�EE
ij (ξ ; x,x′)Jj (x′) + �EM

ij (ξ ; x,x′)Mj (x′)
}
dx′,

Hi(x) =
∫ {

�ME
ij (ξ ; x,x′)Jj (x′) + �MM

ij (ξ ; x,x′)Mj (x′)
}
dx′.

These relations define the four DGFs �.
In an infinite homogeneous medium with spatially con-

stant relative permeability and permittivity ε(ξ ; x) = εr (ξ ),
μ(ξ ; x) = μr (ξ ), the four � functions may be expressed in
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terms of just two tensors:

�EE,r (ξ,r,r′) = −Z0Z
rκr G(κr,r − r′), (A1a)

�ME,r (ξ,r,r′) = κrC(κr,r − r′), (A1b)

�EM,r (ξ,r,r′) = −κr C(κr,r − r′), (A1c)

�MM,r (ξ,r,r′) = − κr

Z0Zr
G(κr,r − r′), (A1d)

(
Z0 =

√
μ0

ε0
, Zr =

√
μr

εr
, κr = √

μ0μrε0εrξ

)
,

where G, sometimes referred to as the “photon Green’s
function,” is the solution to the equation

[∇ × ∇ × +κ2]G(κ; r) = δ(r)1 (A2)

and C is defined by

C = 1

κ
∇ × G. (A3)

(Note that G and C have dimensions of inverse length, while
the � functions have dimensions of field or surface current
density; for example, �ME has dimensions of magnetic field or
electric surface current density.)

Explicit expressions for the components of G and C are

Gij =
[
δij − 1

κ2
∂i∂j

]
G0, Cij = − 1

κ
εijk∂kG0, (A4)

where G0 is the scalar Green’s function for the Helmholtz
equation,

G0(κ; r − r′) = e−κ|r−r′ |

4π |r − r′| , (A5)

which satisfies

[∇2 − κ2]G0(κ; r − r′) = δ(r − r′).

1. Momentum-space representations

The momentum-space decomposition of the scalar Green’s
function (A5) is

G0(κ; r) =
∫

dk
(2π )3

G̃0(κ; k)eik·r,

with

G̃0(κ; k) = 1

κ2 + |k|2 .

(In what follows we generally omit the ∼ designation, relying
on context to differentiate between real- and momentum-space
functions.)

The momentum-space version of (A4) reads

Gij =
[
δij + kikj

κ2

]
G0, Cij = − i

κ
εijkkkG0, (A6)

or, in matrix format,

G(k) = 1

κ2(κ2 + |k|2)

⎡
⎢⎣
⎛
⎜⎝

κ2 0 0

0 κ2 0

0 0 κ2

⎞
⎟⎠ (A7a)

+
⎛
⎝ k2

x kxky kxkz

kykx k2
y kykz

kzkx kzky k2
z

⎞
⎠
⎤
⎦

C(k) = i

κ(κ2 + |k|2)

⎛
⎝ 0 −kz ky

kz 0 −kx

−ky kx 0

⎞
⎠ . (A7b)

2. Scattering dyadic Green’s functions

In a general inhomogeneous region, the DGFs may be
expressed as the sum of two terms,

�EE(ξ ; x,x′) = �EE,x(ξ ; x − x′) + GEE(ξ ; x,x′) (A8)

(and similarly for the other three � functions); here �EE,x is
the homogeneous DGF for an infinite medium with constant
εr ,μr set equal to their values at x, and GEE is the scattering
part of the DGF, which describes the fields scattered from
the inhomogeneities in the geometry. The first term in (A8)
is singular as x → x′, but the second term is perfectly well
defined in that limit and is the quantity that enters into the
fluctuation-dissipation expressions for the spectral density of
fluctuations in products of field components, as discussed in
Sec. II.

APPENDIX B: A REVIEW OF THE
SURFACE-INTEGRAL-EQUATION FORMULATION OF

CLASSICAL ELECTROMAGNETISM

Computational Casimir physics is intimately related to
the theory of classical electromagnetic scattering, and many
practical methods for predicting Casimir interactions are based
on well-known techniques for solving scattering problems.
Among the classical scattering methods that have been appro-
priated for Casimir purposes are the T -matrix method [2,24,
58], the method of reflection coefficients [23], and the numer-
ical finite-difference method [30,31]. The method discussed
in this paper derives from yet another well-known approach
to scattering problems, namely, the method of SIEs. (SIE
techniques were first used for Casimir studies in Ref. [4], while
Refs. [32,37] presented an SIE-based implementation of the
numerical stress-tensor method.) As background for the main
text of this paper, in this appendix we review the well-known
SIE procedure.

Surface-integral techniques have a long history in electro-
magnetic theory [59], dating back to the equivalence principles
of Love [60] and Schelkunoff [61] and the Stratton-Chu
equations [62] from the first half of the 20th century. Numerical
implementation of SIEs—known as the “boundary-element
method” (BEM) or the “method of moments”—emerged in the
1970s as an alternative to other computational procedures such
as the finite-difference method (FDM) and the finite-element
method (FEM) [57,63]. Whereas the FDM and the FEM
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FIG. 4. (Color online) Schematic depiction of a scattering
geometry in the SIE picture. A collection of arbitrarily shaped
homogeneous bodies, with frequency-dependent relative electrical
properties {εr ,μr}, is embedded in a homogeneous medium with
electrical properties {εe,μe}. Incident radiation, characterized by
electric and magnetic fields Einc,Hinc, impinges on the objects to
induce surface currents; for perfectly conducting objects we have
only electric surface currents (K), while for general objects we have
equivalent electric and magnetic (N) surface currents. The goal of
SIE methods is to solve for the surface-current distributions in terms
of the incident fields, after which we can compute the scattered fields
anywhere in space from the surface currents. [The dotted line indicates
a fictitious bounding contour C surrounding one of the objects over
which we integrate the Maxwell stress tensor to compute the Casimir
force on that object (Sec. II).]

proceed by numerically solving a spatially local form of
Maxwell’s equations, and thus allow treatment of materials
with essentially arbitrary spatial variation of the dielectric
permittivity and magnetic permeability, the SIE approach takes
advantage of the analytically known solutions of Maxwell’s
equations in homogeneous media and thus in practice is
most readily applicable to piecewise-homogeneous material
configurations. For this reason, while the FDM and FEM have
the advantage of being able to treat a wider class of materials,
the SIE method exhibits significant practical advantages for the
piecewise-homogeneous geometries typically encountered in
Casimir studies.

To fix ideas and notation for the main text of this paper, we
here review the SIE formulation of electromagnetic scattering
problems, beginning in Appendix B1 with the simplest case
of PEC scatterers and then generalizing in Appendix B2 to the
case of arbitrary materials.

The material of these two sections is well known and
entirely standard within the computational EM literature and
is reviewed here only for completeness. However, in Appendix
B3 we carry the SIE formalism one step beyond what is usually
done to write explicit expressions [Eqs. (B19) and (B22)]
for scattering DGFs in terms of the SIE matrices and the
homogeneous DGFs.

Throughout this appendix we refer to the scattering situ-
ation depicted schematically in Fig. 4, in which a collection
of homogeneous scatterers (with frequency-dependent relative
electrical properties {εr ,μr}) is embedded in a homogeneous
medium (electrical properties {εe,μe}) and irradiated by
incident radiation characterized by an incident electric field
Einc.

1. The SIE method For PEC bodies

We first consider the case in which the scattering objects in
Fig. 4 are perfect conductors. An incident field impinging on
PEC bodies induces a tangential electric current distribution
K(x) on the body surfaces, which gives rise to a scattered field
according to

Escat(x) =
∫

�EE,e(x,x′) · K(x′) dx′; (B1)

here the integral extends over the surfaces of the bodies and
�EE,e is the homogeneous DGF for the exterior medium. (Our
notation for DGFs is summarized in Appendix A; throughout
this section we work at a single frequency and suppress
frequency arguments to E,�, and K.) For a given incident field
Einc we can solve for K by requiring that the total (incident
+ scattered) field satisfy the appropriate boundary condition,
which for PEC bodies is simply that the total tangential E field
vanish for all points x on the body surfaces:

[Escat(x) + Einc(x)] × n̂(x) = 0.

[Here taking the cross product with n̂(x), the outward-pointing
surface normal at x, is simply a convenient way of extracting
the tangential components of a vector.] Inserting (B1) yields
an integral equation for K(x):[ ∫

�EE,e(x,x′) · K(x′) dx′
]

× n̂(x) = −Einc(x) × n̂(x).

(B2)

Equation (B2) is known as the “electric-field integral equation
(EFIE)” [33].

Thus far all we have done is restate the problem in an
integral-equation form. The next step is to discretize this
integral equation by introducing a finite set of tangential
vector-valued basis functions {fα(x)}, defined on the surfaces of
the bodies, which serve a dual purpose as expansion functions
for surface currents and test functions for boundary conditions.
As noted in Sec. I, an advantage of SIE methods is that they
place no restriction on these basis functions; in particular,
the {fα} need not solve the wave equation or any other
equation and need not encapsulate any global information

FIG. 5. (Color online) One possible choice of expansion func-
tions for tangential currents on object surfaces is obtained by
discretizing object boundaries into unions of small flat panels and
introducing localized basis functions describing elemental currents
sourced and sunk at panel vertices: These are “RWG” basis functions,
associated with each edge (pair of triangles) in the mesh [64].
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about the scattering geometry. Of course, if symmetries are
present, then we may wish to choose the {fα} in a way that
reflects them—we might choose vector spherical harmonics
for a spherical scatterer, say, or a Fourier basis for a planar
scatterer—but nothing in the SIE formulation requires such
a choice, and we are equally free to choose the {fα} to be
arbitrary polynomials, piecewise-linear functions, or any other
functions we like. For scatterers of complex geometries, a
particularly convenient strategy is to discretize object surfaces
into small flat panels and take the {fα} to describe elemental
currents sourced and sunk at panel vertices [64], as depicted
in Fig. 5. The localized basis functions that result from
such a procedure are known as “boundary elements,” and
SIE implementations based on them are commonly known
as “boundary-element methods’ (BEMs) or the “method of
moments.”

Having chosen a set of basis functions, the surface electric
current distribution is approximated as a finite expansion in
the {fα}:

K(x) =
∑

kαfα(x). (B3)

This expansion is then inserted into (B2), and the inner product
of that equation is taken with each member in the set {fα},
yielding one equation for each of the unknown coefficients kα.

Collecting these equations yields a linear system of the form

Mk = v, (B4)

where k is the vector of kα coefficients, the elements of the
right-hand-side vector v describe the interactions of the basis
functions with the incident field,

vα = −
∫

sup fα
fα(x) · Einc(x) dx (B5a)

≡ −〈fα|Einc〉 (B5b)

(where sup fα is the support of basis function fα), and the
elements of the M matrix describe the interactions of the basis
functions with each other through the exterior medium:

Mαβ =
∫

sup fα
dx

∫
sup fβ

dx′ fα(x) · �EE,e(x,x′) · fβ(x′) (B6a)

≡ 〈fα|�EE,e|fβ〉. (B6b)

The linear system (B4) may be solved for the surface-current
expansion coefficients {kα}, after which we can compute the
components of the scattered field at an arbitrary point in the
exterior medium using the discretized form of Eq. (B1):

Escat
i (x) =

∑
α

kα

∫
sup fα

�
EE,e
ij (x,x′)fαj (x′) dx′ (B7a)

≡
∑

α

kα

〈
�

EE,e
i (x)

∣∣fα〉. (B7b)

[The second lines of Eqs. (B5), (B6), and (B7) define
some useful shorthand for commonly encountered integrals;
in (B7b) note that the contracted index and the integrated
argument to � are suppressed, while the uncontracted index
and nonintegrated argument are written out.]

2. The SIE method for general bodies

For PEC bodies, the mathematics of the SIE procedure
neatly mirrors the physics of the actual situation. Indeed, for
good conductors at moderate frequencies it really is true that
the physical induced currents are confined near the object
surfaces; the surface current distribution K(x) for which we
solve in an SIE method thus has a direct physical interpretation
as an induced surface current.

The situation is more complicated for general (non-PEC)
objects, for here the physical induced currents are no longer
confined to the surfaces, but instead extend throughout the
bulk of the object. The obvious extension of the procedure
outlined above would be to introduce a volume discretization
and solve a system analogous to (B4) for the coefficients
in an expansion of a volume current density J(x). Such a
procedure, while retaining the intuitive interpretation of the
quantity computed as a physical current density, would suffer
from poor complexity scaling, as the number of unknowns
[and thus the dimension of the linear system corresponding
to (B4)] would scale like the volume, not the surface area, of
the scattering objects.

An alternative approach is to abandon the strategy of
solving for the physical volume sources and to solve instead for
equivalent surface sources that give rise to the same scattered
fields. The mathematical machinery underlying this approach
is a vector generalization of Green’s theorem known as the
Stratton-Chu equations [62], which relate the E and H fields
in the interior of a region to the tangential components of the
fields on the boundary of that region. More precisely, let ∂Or

be the surface of the rth object in our geometry, and for points
x on ∂Or define two tangential vector fields according to

Keff(x) ≡ n̂(x) × H(x), Neff(x) ≡ E(x) × n̂(x), (B8)

where n̂ is the outward-pointing normal to ∂Or at x and where
E and H are the total fields at that that point. The Stratton-Chu
equations are then the following surface-integral expressions
for the fields inside and outside ∂Or :

Ein = −
∫

∂Or

{�EE,n · Keff + �EM,n · Neff} dx′, (B9a)

Hin = −
∫

∂Or

{�ME,n · Keff + �MM,n · Neff} dx′, (B9b)

Eout = Einc +
∫

∪∂Or

{�EE,e · Keff + �EM,e · Neff} dx′, (B10a)

Hout = Hinc +
∫

∪∂Or

{�ME,e · Keff + �MM,e · Neff} dx′.

(B10b)

[In Eqs. (B9) and (B10), the r and e superscripts on � label
the homogeneous DGFs for the medium interior to ∂Or and
the exterior medium, respectively; the spatial arguments to E,
�, K, and N are as in Eq. (B1), but are suppressed here to save
space.]

Note the following differences between expressions (B9)
and (B10) for the interior and exterior fields: (a) the surface
integrals in the two cases differ in sign, arising from the reversal
of direction of the surface normal in (B8); (b) the � dyadics
in (B9) are those for the homogeneous medium interior to
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Or , while in (B10) we instead have those for the the exterior
medium; (c) in (B9) we integrate over the single surface ∂Or ,
while in (B10) the integral is over the union of all object
surfaces, ∪ ∂Or (which we may think of as the boundary of
the exterior medium, ∪ ∂Or = ∂Oe); (d) the incident fields
contribute to expressions (B9) for the exterior fields, but are
absent from expressions (B9) for the interior fields.

Although the tangential vector fields defined by (B8) are
simply the components of the E and H fields and do not
correspond to physical source densities, nonetheless the form
of Eqs. (B9) and (B10) suggests interpreting Keff and Neff

as effective electric and magnetic surface current densities,
which, if known, would allow computation of the fields
anywhere in space, just as knowledge of the physical surface
current K suffices in the PEC case to determine uniquely the
full scattered field. To emphasize this analogy, we henceforth
drop the “eff” designation from K and N.

As in the PEC case, the K and N distributions are
determined by requiring that the total fields satisfy appropriate
boundary conditions. For non-PEC bodies these are simply
that the tangential components of the total fields be continuous
across material boundaries; for a point x on the surface of a
body we have

[Eout(x) − Ein(x)] × n̂(x) = 0, (B11a)

[Hout(x) − Hin(x)] × n̂(x) = 0. (B11b)

Inserting (B9) and (B10) into (B11) leads to integral
equations for K and N that generalize Eq. (B2) for non-PEC
bodies. As in the PEC case, the next step is to discretize these
integral equations by approximating the electric and magnetic
surface currents as expansions in a finite set of tangential
vector-valued basis functions defined on the object surfaces,

K(x) =
∑

kαfα(x), N(x) = −
∑

nαfα(x), (B12)

and testing the integral equations obtained from (B11) with
each basis function. (The minus sign in the magnetic surface-
current expansion is a useful convention that leads to a
symmetric linear system [63].) The result of this procedure
is a linear system of the same general form as (B4), but now
enlarged to exhibit a 2 × 2 block structure:(

MEE MEM

MME MMM

)(
k
n

)
=
(

vE

vM

)
. (B13)

In Eq. (B13), the elements of the right-hand-side vector
describe the interactions of the basis functions with the incident
electric and magnetic fields [compare Eq. (B5)],(

vE
α

vM
α

)
= −

( 〈
fα|Einc〉〈
fα|Hinc〉

)
, (B14)

while the elements of the M matrix describe the basis functions
interacting with each other both through the exterior medium
and through the medium interior to one of the scattering bodies.
For example, the elements of the MEE block are

MEE
αβ = 〈fα|�EE,e + �EE,r |fβ〉 (B15)

and similarly for the other blocks. (The �EE,r term here is
present only if basis functions fα and fβ are defined on the
surface of the same object Or , while the �EE,e term is present

even for basis functions defined on the surfaces of different
objects.)

After solving (B13), the scattered fields at an arbitrary point
x are obtained, in analogy to Eq. (B7), from the expansions

Escat
i (x) =

∑
α

{
kα

〈
�

EE,e
i (x)

∣∣fα〉 − nα

〈
�

EM,e
i (x)

∣∣fα〉}, (B16a)

H scat
i (x) =

∑
α

{
kα

〈
�

ME,e
i (x)

∣∣fα〉 − nα

〈
�

MM,e
i (x)

∣∣fα〉}.
(B16b)

(These are the scattered fields in the exterior region; the
expressions for fields in the interior of object r are similar, but
involve the homogeneous DGFs �PQ,r for the medium interior
to object r .)

3. Explicit SIE expressions for dyadic Green’s functions

The discretized SIE method reviewed in the previous two
sections is typically employed as a numerical technique, with
the linear systems (B4) and (B13) solved using methods of
computational linear algebra and the scattered fields (B7))
and (B16) evaluated numerically. In this paper, in contrast, we
use the SIE formalism in a somewhat unusual way, by carrying
the analytical development one step further than is commonly
done. By exploiting the formal solution of Eqs. (B4) and (B13),
we obtain useful expressions for scattering DGFs in terms of
the formal inverse of the SIE matrix M. These expressions are
be used in Sec. II to derive compact FSC expressions relating
Casimir quantities to linear-algebraic manipulations of the M
matrix. Although these final expressions will ultimately be
evaluated numerically, the analytical expressions derived in
this subsection are an important ingredient in their derivation
by stress-tensor methods. (The expressions derived in this
section are not needed for the path-integral derivation of the
FSC Casimir formulas.)

a. The PEC case

The scattering DGF GEE
ij (x,x′) is the scattered electric field

at x due to a point electric source at x′ (Appendix A); here
we need the case in which both x and x′ lie in the exterior
medium. To compute this quantity using the SIE technique of
Appendix B1, we take the incident field to be the field of a
unit-strength j -directed point electric current source at a point
x′ in the exterior medium, which is simply

Einc
i (x) = �

EE,e
ij (x,x′).

Then the elements of the right-hand-side vector in (B4) are

vα = −〈
fα
∣∣�EE,e

j (x′)
〉
, (B17)

while the coefficients in the expansion of the scattered field
may be obtained as the formal solution of (B4),

kα =
∑

β

WαβVβ (B18)

(where W = M−1 is the inverse SIE matrix). Inserting (B18)
and (B17) into (B7), the scattered field at x—which is just the
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scattering DGF we are seeking to compute—is

GEE
ij (x,x′) = −

∑
αβ

〈
�

EE,e
i (x)

∣∣fα〉Wαβ

〈
fβ
∣∣�EE,e

j (x′)
〉
. (B19a)

We also need the magnetic-magnetic DGF GMM, which is the
scattered magnetic field due to a point magnetic source. This is
obtained in easy analogy to the above by (a) taking the incident
field to be the field of a magnetic point source instead of an
electric point source, which has the effect of substituting �EM

for �EE in (B17), and (b) computing the scattered magnetic
field instead of the scattered electric field, which has the effect
of substituting �ME for �EE in (B1). The result is

GMM
ij (x,x′) = −

∑
αβ

〈
�

ME,e
i (x)

∣∣fα〉Wαβ

〈
fβ
∣∣�EM,e

j (x′)
〉
. (B19b)

b. The general case

To obtain explicit expressions for scattering DGFs in gen-
eral geometries, we mimic the procedure followed above, but
now using the general SIE formalism outlined in Appendix B1
instead of the PEC formalism of Appendix B1 . To compute
GEE, we again take the incident field to be the field of a
unit-strength j -directed point electric source at a point x′ in the
exterior medium, in which case the elements of the right-hand
side of Eq. (B13) are(

vE
α

vM
α

)
=
( 〈

fα
∣∣�EE,e

j (x′)
〉

〈
fα
∣∣�ME,e

j (x′)
〉
)

. (B20)

The expansion coefficients that enter into Eq. (B16) are given,
in analogy to Eq. (B18), by the formal solution of (B13):(

kα

nα

)
=
∑

β

(
WEE

αβ WEM
αβ

WME
αβ WMM

αβ

)(
V E

β

V M
β

)
. (B21)

Inserting (B20) and (B21) into (B16), and proceeding similarly
for the magnetic-magnetic case, then yields the generalization
of Eq. (B19) to non-PEC geometries:

GEE
ij (x,x′)

= −
∑
αβ

( 〈
�

EE,e
i (x)

∣∣fα〉
−〈

�
EM,e
i (x)

∣∣fα〉
)

·
(

Wαβ

)
·
( 〈

fβ
∣∣�EE,e

j (x′)
〉

〈
fβ
∣∣�ME,e

j (x′)
〉
)

,

(B22a)

GMM
ij (x,x′)

= −
∑
αβ

( 〈
�

ME,e
i (x)

∣∣fα〉
−〈

�
MM,e
i (x)

∣∣fα〉
)

·
(

Wαβ

)
·
( 〈

fβ
∣∣�EM,e

j (x′)
〉

〈
fβ
∣∣�MM,e

j (x′)
〉
)

.

(B22b)

Equations (B19) and (B22) are the most important results of
this appendix. The crucial property of these expressions is
that they present the inhomogeneous Green’s function in a
fully factorized form in which factors depending on x are
separated from those depending on x′. In this sense, Eqs. (B19)
are similar to Green’s-function expansions for special ge-
ometries commonly encountered in the literature, such as
spherical-harmonic expansions for spherical geometries or
Bessel-function expansions for cylindrical geometries [2,13];

the difference, of course, is that (B19) is applicable to arbitrary
geometries, with the geometric information encoded in the W
matrix and the basis functions {fα}.

APPENDIX C: PROOF OF INTEGRAL IDENTITIES

In this Appendix we state and prove an integral identity
that underlies the stress-tensor derivation of the FSC formulae
presented in Sec. II. An identity bearing at least a superficial
resemblance appears in Eq. A.6 of Ref. [65].

In Sec. II, we introduced a three-index integral kernel I
defined by

Iikl(r,r′) = κ2
∮
C
VA(r,r′,x) nA(x) dx, (C1)

where the integration is over a closed surface in space (a
topological two-sphere) C and the integrand contains products
of factors of DGFs:

VA(r,r′,x) = G1
ikG

2
lA − δiA

2
G1

BkG
2
lB − C1

ikC
2
lA + δiA

2
C1

BkC
2
lB .

(C2)

Here the G and C dyadics are those defined by Eqs. (A2)
and (A3); we use capital Roman letters (A,B, . . .) to denote
contracted indices, and we are using a shorthand notation in
which κ arguments are suppressed and spatial arguments are
replaced with superscripts,

G1
ij ≡ Gij (κ,x − r), G2

ij ≡ Gij (κ,r′ − x).

We also defined a symmetrized version of I,

I ikl(r,r′) = Iikl(r,r′) + Iilk(r′,r)

≡ κ2
∮
C
V A(x) nA(x) dx, (C3)

with

V A(x) = G1
ikG

2
lA + G1

kAG2
il − δiAG1

BkG
2
lB − C1

ikC
2
lA

−C1
kAC2

il + δiAC1
BkC

2
lB . (C4)

The goal of this appendix is to demonstrate that, by appealing
to the defining properties of the G and C dyadics, the surface
integral in (C3) can be evaluated in closed form, with the result
(depicted schematically in Fig. 6)

I ikl(r,r′)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, if both r,r′ lie inside C,
∂

∂ri
Gkl(r − r′), if r lies inside and r′ lies outside C,

− ∂
∂ri

Gkl(r − r′), if r lies outside and r′ lies inside C,

0, if both r,r′ lie outside C.

(C5)

[As far as we can tell, the symmetrization in Eq. (C3)
is necessary to achieve the compact form of Eq. (C5); our
attempts to evaluate the nonsymmetrized I in concise form
were unsuccessful.]

For the purposes of this appendix it is convenient to work
in length units such that κ = 1. With this convention, the G
and C dyadics are related to the scalar Green’s function for the
Helmholtz equation according to

Gij = [δij − ∂i∂j ]G0, Cij = −εijk∂kG0, (C6)
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∮
C

{
G(1)G(2) + · · ·

}
dx = 0

∮
C

{
G(1)G(2) + · · ·

}
dx = 0

∮
C

{
G(1)G(2)+· · ·

}
dx ∝ ∂G(r, r′)

∂r

FIG. 6. (Color online) Schematic summary of the integral identity (C5) proved in Appendix C . We consider a closed bounding surface C
and choose two points r and r′, which may lie both inside (left panel), both outside (center panel), or on opposite sides (right panel) of C. We
write an expression [Eq. (C4)] that involves products of DGFs, one connecting r to a point x on C and a second connecting x to r′. Then we
evaluate the surface integral of this expression as x ranges over all of C. The answer we obtain depends on the relative positioning of r and r′

with respect to C: If the two points lie both inside or both outside C, the surface integral vanishes, while if the two points lie on opposite sides
of C then the surface integral yields the derivative of a DGF connecting r to r′.

and G0 satisfies

[∂A∂A − 1]G0(r) = δ(r). (C7)

The evaluation of the surface integral (C3) now proceeds in
several stages.

1. Apply divergence theorem

The first step is to recast the surface integral in (C3) as a
volume integral over the volume bounded by C,∮

C
V AnA dA =

∫
V

∂AV A dV (C = ∂V)

=
∫
V

W dV,

where we put W ≡ ∂AV A.

Each of the six terms in V A contains two factors and
hence contributes two terms to W (by the chain rule for
differentiation). Terms of the form ∂ACiA vanish; to each of the
remaining (nonvanishing) terms we assign a label, as tabulated
in Table I. Note that derivatives of G2

ij enter with a minus sign,

TABLE I. Terms in W ≡ ∂AV A.

Label Term

W 1
[
∂AG1

ik

] [
G2

lA

]
W 2 − [

G1
ik

] [
∂AG2

lA

]
W 3

[
∂AG1

kA

] [
G2

il

]
W 4 − [

G1
kA

] [
∂AG2

il

]
W 5 − [

∂iG
1
kA

] [
G2

lA

]
W 6

[
G1

kA

] [
∂iG

2
lA

]
W 7 − [

∂AC1
ik

] [
C1

lA

]
W 8

[
C1

kA

] [
∂AC2

il

]
W 9

[
∂iC

1
Ak

] [
C2

lA

]
W 10 − [

C1
Ak

] [
∂iC

2
lA

]

because we are differentiating with respect to x, which enters
the argument of G2

ij with a minus sign.

2. Treatment of W 2 and W 3

We first consider the terms labeled W 2 and W 3 in Table I.
Starting with the first of these, we have

W 2 = −[
G1

ik

][
∂AG2

lA

]
.

Expand the second factor using (C6):

= −[
G1

ik

][
∂l(1 − ∂A∂A)G2

0

]
.

Apply (C7):

= +[
G1

ik

]
[∂lδ(2)].

Integrate by parts:

∼ +[
∂lG

1
ik

]
[δ(2)], (C8)

where ∼ means “equivalent as long as we are underneath the
volume-integration sign’ and δ(2) is shorthand for δ(r′ − x).
(Note that the minus sign coming from the integration by parts
is canceled by the minus sign coming from the fact that x
enters 2 with a minus sign, as noted above.)

By analogous operations, we find

W 3 ∼ −[δ(1)]
[
∂kG

2
il

]
, (C9)

where δ(1) is shorthand for δ(x − r). We now set aside
results (C8) and (C9) for future use.

3. Treatment of remaining terms

a. Rewrite in terms of G0

Turning next to the remaining eight terms in Table I, we
begin by using (C6) to rewrite everything in terms of the scalar
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TABLE II. Terms in X.

Label Term

X1 −δkl

[
∂iG

1
0

] [
G2

0

]
X2

[
∂iG

1
0

] [
∂k∂lG

2
0

]
X3 δik

[
∂lG

1
0

] [
G2

0

]
X4 −δik

[
∂AG1

0

] [
∂A∂lG

2
0

]
X5 −δil

[
G1

0

] [
∂kG

2
0

]
X6 δkl

[
G1

0

] [
∂iG

2
0

]
X7 δil

[
∂A∂kG

1
0

] [
∂AG2

0

]
X8 − [

∂k∂lG
1
0

] [
∂iG

2
0

]
X9 −δkl

[
∂A∂AG1

0

] [
∂iG

2
0

]
X10 +∂il

[
∂A∂AG1

0

] [
∂kG

2
0

]
X11 +δkl

[
∂iG

1
0

] [
∂A∂AG2

0

]
X12 −δik

[
∂lG

1
0

] [
∂A∂AG2

0

]
X13 −δil

[
∂A∂kG

1
0

] [
∂AG2

0

]
X14 +δik

[
∂AG1

0

] [
∂l∂AG2

0

]
X15 − [

∂iG
1
0

] [
∂k∂lG

2
0

]
X16

[
∂k∂lG

1
0

] [
∂iG

2
0

]
Green’s function:

W 1 + W 4 + W 5 + W 6

= [
∂AG1

ik − ∂iG
1
kA

][
G2

lA

] + [
G1

kA

][
∂iG

2
lA − ∂AG2

il

]
= [

δik∂AG1
0 − δkA∂iG

1
0

][
δlAG2

0 − ∂l∂AG2
0

]
+ [

δkAG1
0 − ∂k∂AG1

0

][
δlA∂iG

2
0 − δil∂AG2

0

]
,

W 7 + W 8 + W 9 + W 10

= −εikBεlAC

[
∂A∂BG1

0

][
∂CG2

0

] + εkABεilC

[
∂BG1

0

][
∂A∂CG2

0

]
+ εAkBεlAC

[
∂i∂BG1

0

][
∂CG2

0

] − εAkBεlAC

[
∂BG1

0

][
∂i∂CG2

0

]
.

(C10)

We can trade Levi-Civita symbols for Kronecker δ’s using the
standard identity

εABCεDEF = δAD[δBEδCF − δBF δCE]

+ δAE[δBF δCD − δBDδCF ]

+ δAF [δBDδCE − δBEδCD].
We then find

W 7 + W 8 + W 9 + W 10

= [
∂A∂AG1

0

][
δil∂kG

2
0 − δkl∂iG

2
0

]
− [

δik∂lG
1
0 − δkl∂iG

1
0

][
∂A∂AG2

0

]
−δil

[
∂k∂AG1

0

][
∂AG2

0

] + δik

[
∂AG1

0

][
∂l∂AG2

0

]
− [

∂iG
1
0

][
∂k∂lG

2
0

] + [
∂k∂lG

1
0

][
∂iG

2
0

]
. (C11)

b. Label individual terms

To proceed, we now assign a label to each separate term
in (C10) and (C11):

W 1 + W 4 + W 5 + W 6 + W 7 + W 8 + W 9 + W 10 =
16∑

n=1

Xn.

The precise forms of the Xn terms are detailed in Table II.

c. Recombine terms

We first note the obvious cancellations:

X2 + X15 = 0, X4 + X14 = 0,

X7 + X13 = 0, X8 + X16 = 0.

Summing and appropriately recombining the remaining terms,
we find

X1 + X3 + X11 + X12

= [
δkl∂iG

1
0 − δik∂lG

1
0

][
∂A∂AG2

0 − G2
0

]
and

X5 + X6 + X9 + X10

= [
∂A∂AG1

0 − G1
0

][
δil∂kG

1
0 − δkl∂iG

1
0

]
.

From (C6) it follows that

[δkl∂iG0 − δik∂lG0] = [∂iGkl − ∂lGik].

Using this and (C7), we can rewrite the previous two equations
in the form

X1 + X3 + X11 + X12 = [
∂iG

1
kl − ∂lG

1
ik

]
[δ(2)] (C12)

and

X5 + X6 + X9 + X10 = [
δ(1)

][
∂kG

2
il − ∂iG

2
kl

]
. (C13)

4. Final steps

Finally, we combine Eqs. (C8), (C9), (C12), and (C13) to
obtain

I ikl =
∫
V
{W 2 + W 3 + X1 + X3 + X11 + X12

+X5 + X6 + X9 + X10} dx

=
∫
V

{[
∂iG

1
kl

]
δ(2) − δ(1)

[
∂iG

2
kl

]}
dx.

Writing out the function arguments, this reads

I ikl(r,r′) =
∫
V
{[∂iGkl(x − r)]δ(r′ − x)

− δ(x − r)[∂iGkl(r′ − x)]}dx. (C14)

We now proceed on a case-by-case basis depending on the
positions of r,r′.

(i) First, if r and r′ both lie outside the bounding surface
C, then neither δ function contributes and we have I = 0.

(ii) If r lies inside C while r′ lies outside C, then only the
second δ function contributes, and we find

Iikl(r,r′) = −∂iGkl(r′ − r) = +∂iGkl(r − r′).

(iii) If r lies outside C while r′ lies inside C, then only the
first δ function contributes, and we find

Iikl(r,r′) = ∂iGkl(r′ − r) = −∂iGkl(r − r′).

(iv) Finally, if both r and r′ lie inside C then both δ functions
contribute, their contributions cancel, and we find I = 0.

The result (C5) is thus established, and our proof is
complete.
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5. The J kernel

The development of Sec. II C also makes reference to
a version of the I kernel defined in analogy to Eqs. (C1)
and (C2), but with the “GG − CC” structure of (C2) replaced
with a “CG + GC” structure:

Jikl(r,r′) = κ2
∮
C
YA(r,r′,x) nA(x) dx, (C15)

YA(r,r′,x) = C1
ikG

2
lA − δiA

2
C1

BkG
2
lB + G1

ikC
2
lA

− δiA

2
G1

BkC
2
lB . (C16)

We also define a symmetrized version defined in analogy
to (C3):

J ikl(r,r′) = Jikl(r,r′) + Jilk(r′,r).

In Appendix A we noted that the curl operation takes G into
C and C into −G. [Technically, in the latter case there is an
additional δ function, which we neglect for reasons discussed
in conjunction with Eqs. (40) above.] With this observation we
see that (C16) is obtained from (C2) simply by taking the curl
with respect to the k index and thus that the J kernel is the
result of the same operation applied to the I kernel:

J ikl(r,r′)

= 1

κ
εkAB∂AI iBl(r,r′)

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, if both r,r′ lie inside C,

∂
∂ri

Ckl(r − r′), if r lies inside and r′ lies outside C,

− ∂
∂ri

Ckl(r − r′), if r lies outside and r′ lies inside C,

0, if both r,r′ lie outside C.

APPENDIX D: A REVIEW OF CONSTRAINED
PATH-INTEGRAL TECHNIQUES

FOR CASIMIR ENERGIES

The path-integral derivation of the FSC Casimir formulas
presented in Sec. III follows earlier work on path-integral
formulations of field-fluctuation problems. These techniques
were pioneered by Bordag, Robaschik, and Wieczorek [39]
and by Li and Kardar [66,67] and have since been further
developed by a number of authors (see [2,68] for extensive
surveys of recent developments.) This appendix presents a
brief review of the key steps in this approach.

1. Casimir energies from constrained path integrals

In the presence of material boundaries, the partition
function for a quantum field φ (which may be scalar, vector,
electromagnetic, or otherwise, but is here assumed bosonic) at
inverse temperature β takes the form

Z(β) =
∫

[Dφ(τ,x)]C e− 1
h̄
Sβ [φ], (D1)

where the action Sβ is the spacetime integral of the Euclidean
Lagrangian density for the φ field,

Sβ[φ] =
∫ h̄β

0
dτ

∫
dx LE{φ(τ,x)}, (D2)

and where the notation [· · · ]C in (D1) indicates that this is
a constrained path integral, in which the functional integra-
tion extends only over field configurations φ satisfying the
appropriate boundary conditions at all material boundaries.

If the boundary conditions are time independent and the
Lagrangian density contains no terms of higher-than-quadratic
order in φ and its derivatives, then it is convenient to introduce
a Fourier series in the Euclidean time variable,

φ(τ,x) =
∑

n

φn(x)e−iξnτ , ξn = 2πn

h̄β
,

whereupon the path integral (D1) factorizes into a product of
contributions from individual frequencies,

Z(β) =
∏
n

Z(β; ξn),

Z(β; ξn) =
∫

[Dφn(x)]C e−S[φn;ξn], (D3)

with

S[φn(x); ξn] = β

∫
dxLE{φn(x)e−iξnτ }

representing the contribution to the full action (D2) made only
by those field configurations with Euclidean-time dependence
∼e−iξnτ . The free energy is then obtained as a sum over
Matsubara frequencies,

F = − 1

β
ln

Z(β)

Z∞(β)
= − 1

β

∞∑
n=0

ln
Z(β,ξn)

Z∞(β,ξn)
, (D4)

where Z∞(Z∞) is Z(Z) evaluated with all material objects
separated by infinite distances [dividing out these contributions
in (D4) is a useful convention that amounts to a choice of the
zero of energy]. In the zero-temperature limit, the frequency
sum becomes an integral, and the zero-temperature Casimir
energy is

E = − h̄

2π

∫ ∞

0
dξ ln

Z(ξ )

Z∞(ξ )
. (D5)

(Here and below we omit the β argument to Z .)

2. Enforcing constraints via functional δ functions

Equations (D4) and (D5) reduce the computation of Casimir
energies to the evaluation of constrained path integrals (D3).
In most branches of physics, the path integrals associated
with physically interesting quantities are difficult to evaluate
because the action S in the exponent contains interaction
terms (terms of third or higher order in the fields and their
derivatives). In Casimir physics, on the other hand, the
action is not more than quadratic in φ, and the difficulty
in evaluating expressions like (D3) stems instead from the
challenge of implementing the implicit constraint on the
functional integration measure, arising from the boundary
conditions and indicated by the [· · · ]C notation in (D3).

The innovation of Bordag [39] and of Li and Kardar [66]
was to represent these constraints explicitly through the use of
functional δ functions. If the boundary conditions on φ may
be expressed as the vanishing of a set of quantities {Lαφ},
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where {Lα} will generally be some family of linear integro-
differential operators indexed by a discrete or continuous label
α, then the constrained path integral may be written in the form

Z(ξn) =
∫

[Dφn(x)]Ce−S[φn;ξn]

=
∫

Dφn(x)
∏
α

δ(Lαφ)e−S[φn;ξn], (D6)

where now the functional integration over φn is uncon-
strained. A particularly convenient representation for the
one-dimensional Dirac δ function is

δ(u) =
∫

dλ

2π
eiλu, (D7)

where we may think of λ as a Lagrange multiplier enforcing
the constraint that u vanish. Inserting one copy of (D7) for
each δ function in the product in (D6) yields

Z(ξn) =
∫

Dφn(x)
∫ ∏

α

dλα

2π
e−S[φn;ξn]+i

∑
α λαLαφ.

The final step is to evaluate the unconstrained integral over φ;
since the exponent is quadratic in φ, this can be done exactly
using standard techniques of Gaussian integration, yielding an
expression of the form

Z(ξn) = {#}
∫ ∏

α

dλα e−Seff{λα} (D8)

[where {#} is a constant that cancels in the ratios in (D4)
and (D5)]. The constrained functional integral over the field φ

is thus replaced with a new integral over the set of Lagrange
multipliers {λα}, with an effective action Seff describing
interactions mediated by the original fluctuating field φ.

3. Representation of boundary conditions

Equation (D8) makes clear that the practical convenience
of path-integral Casimir computations is entirely determined
by the choice of the Lagrange multipliers {λα} and the
complexity of their effective action Seff ; these, in turn, depend
on the details of the boundary conditions imposed on the
fluctuating field. For a given physical situation there may
be multiple ways to express the boundary conditions, each
of which will generally lead to a distinct expression for
the integral in (D8). Ultimately, of course, all choices must
lead to equivalent results, but different choices may exhibit
significant differences in computational complexity and in the
range of geometries that can be efficiently treated. Several
different representations of boundary conditions and Lagrange
multipliers have appeared in the literature to date.

The original work of Bordag et al. [39] considered QED
in the presence of superconducting boundaries, with the
boundary conditions taken to be the vanishing of the normal
components of the dual field-strength tensor; in the notation of
the previous section, Lxφ = n̂μF ∗

μν(x), and the set of Lagrange
multipliers {λx} constitutes a three-component auxiliary field
defined on the bounding surfaces. The method is applicable
to the computation of electromagnetic Casimir energies, but
the treatment was restricted to the case of parallel planar
boundaries.

Li and Kardar [66,67] considered a scalar field satisfying
Dirichlet or Neumann boundary conditions on a prescribed
boundary manifold. Here again the boundary conditions
amount to the vanishing of a local operator applied to φ,
Lxφ = φ(x) (Dirichlet) or Lxφ = |∂φ/∂n|x (Neumann), and
we have one Lagrange multiplier λ(x) for each point on the
boundary manifold. In this case it is tempting to interpret λ(x)
as a scalar source density, confined to the boundary surfaces
and with a self-interaction induced by the fluctuations of the φ

field. This formulation was capable, in principle, of handling
arbitrarily shaped boundary surfaces, but was restricted to the
case of scalar fields.

The technique of Refs. [66,67] was subsequently reformu-
lated [2,44,69] in a way that allowed extension to the case
of the electromagnetic field. Whereas the original formulation
imposed a local form of the boundary conditions—and took the
Lagrange multipliers λ(x) to be local surface quantities—the
revised formulation abandons the surface-source picture in
favor of an alternative viewpoint emphasizing incoming and
outgoing electromagnetic waves. This approach associates one
Lagrange multiplier λα to each multipole term in a multipole
expansion of the EM field, with the choice of multipole
basis (spherical, cylindrical, etc.) governed by the symmetries
of the problem; the effective action Seff then describes the
interactions among multipoles.

The virtue of multipole expansions is that, for certain
geometries, a small number of multipole coefficients may
suffice to solve many problems of interest to high accu-
racy. This has long been understood in domains such as
electrostatics and scattering theory, and in recent years has
been impressively demonstrated in the Casimir context as
well [2,44,69], where multipole expansions have been used
to obtain rapidly convergent and even analytically tractable
series for Casimir energies in certain special geometries. The
trick, of course, is that the very definition of the multipoles
already encodes a significant amount of information about the
geometry, thus requiring relatively little additional work to pin
down what more remains to be said in any particular situation.

However, this blessing becomes a curse when we seek a
unified formalism capable of treating all geometries on an
equal footing. The very geometric specificity of the multipole
description, which so streamlines the treatment of compatible
or nearly compatible geometries, has the opposite effect
of complicating the treatment of incompatible geometries;
thus, whereas a basis of spherical multipoles might allow
highly efficient treatment of interacting spheres or nearly
spherical bodies, it would be a particularly unwieldy choice
for the description of cylinders, tetrahedra, or parallelepipeds.
Of course, for each new geometric configuration we could
simply redefine our multipole expansion and correspondingly
reimplement the full arsenal of computational machinery
(a strategy pursued for a dizzying array of geometries in
Ref. [2]), but such a procedure contradicts the spirit of a
single, general-purpose scheme into which we simply plug
an arbitrary experimental geometry and turn a crank.

Instead, the goal of designing a more general-purpose
implementation of the path-integral Casimir paradigm leads
us to seek a representation of the boundary conditions that,
while inevitably less efficient than spherical multipoles for
spheres (or cylindrical multipoles for cylinders, or ...), has the
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flexibility to handle all manner of surfaces within a single
computational framework. This is one motivation for the

FSC approach to Casimir computations, whose path-integral
derivation we presented in Sec. III.
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