
MIT Open Access Articles

Robust Sampling-based Motion Planning
with Asymptotic Optimality Guarantees

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Luders, Brandon D., Sertac Karaman, and Jonathan P. How. “Robust Sampling-based
Motion Planning with Asymptotic Optimality Guarantees.” In AIAA Guidance, Navigation, and
Control (GNC) Conference. American Institute of Aeronautics and Astronautics, 2013.

As Published: http://dx.doi.org/10.2514/6.2013-5097

Publisher: American Institute of Aeronautics and Astronautics

Persistent URL: http://hdl.handle.net/1721.1/81452

Version: Author's final manuscript: final author's manuscript post peer review, without
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike 3.0

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/81452
http://creativecommons.org/licenses/by-nc-sa/3.0/

Robust Sampling-based Motion Planning with

Asymptotic Optimality Guarantees

Brandon D. Luders∗, Sertac Karaman†and Jonathan P. How‡

Aerospace Controls Laboratory

Massachusetts Institute of Technology, Cambridge, MA

luders@mit.edu, sertac@mit.edu, jhow@mit.edu

This paper presents a novel sampling-based planner, CC-RRT*, which gener-
ates robust, asymptotically optimal trajectories in real-time for linear Gaussian
systems subject to process noise, localization error, and uncertain environmental
constraints. CC-RRT* provides guaranteed probabilistic feasibility, both at each
time step and along the entire trajectory, by using chance constraints to efficiently
approximate the risk of constraint violation. This algorithm expands on existing
results by utilizing the framework of RRT* to provide guarantees on asymptotic
optimality of the lowest-cost probabilistically feasible path found. A novel risk-
based objective function, shown to be admissible within RRT*, allows the user to
trade-off between minimizing path duration and risk-averse behavior. This enables
the modeling of soft risk constraints simultaneously with hard probabilistic feasibil-
ity bounds. Simulation results demonstrate that CC-RRT* can efficiently identify
smooth, robust trajectories for a variety of uncertainty scenarios and dynamics.

I. Introduction

As motion planning algorithms continue to mature and become more sophisticated, a key re-
search focus is ensuring that said algorithms are applicable to real-world scenarios, in which a
system is subject to complex, dynamic, and/or uncertain constraints.1 Trajectories generated by
the motion planner must demonstrate robustness to a significant number of uncertainty sources,
not only internal to the system (e.g., sensing/process noise, localization error, model uncertainty),
but also due to an uncertain environment. To operate in real-time, a motion planner must be
able to quickly and efficiently identify feasible plans online that are robust to this uncertainty,
then continue to refine them based on desired performance criteria, such as traversal time and risk
aversion.

This paper presents a novel sampling-based planner, CC-RRT*, which generates robust, asymp-
totically optimal trajectories in real-time, subject to process noise, localization error, and dynamic
and/or uncertain environmental constraints. Probabilistic feasibility is guaranteed for linear Gaus-
sian systems by using chance constraints to ensure that the probability of constraint violation does
not exceed some user-specified threshold.2 CC-RRT* builds upon the previously-developed chance-
constrained rapidly-exploring random trees (CC-RRT) algorithm, which uses the trajectory-wise
constraint checking of RRT3 to efficiently bound the risk of constraint violation online.4 As a result,

∗Ph.D. Candidate, Dept of Aeronautics and Astronautics; Member AIAA
†Charles Stark Draper Assistant Professor of Aeronautics and Astronautics, MIT; Member AIAA
‡Richard Cockburn Maclaurin Professor of Aeronautics and Astronautics, MIT; Associate Fellow AIAA

1 of 25

American Institute of Aeronautics and Astronautics

CC-RRT can quickly identify trajectories subject to both internal and environmental uncertainty,
with guaranteed minimum bounds on constraint satisfaction probability at each time step.5 This
framework is expanded in this paper to consider both chance- constrained environmental boundaries
and guaranteed probabilistic feasibility over entire trajectories.

While RRT provides efficient exploration of high-dimensional state spaces, dynamically feasible
trajectories, and demonstrated applicability to complex motion planning applications,6 it has also
been shown to converge almost surely to non-optimal solutions.7 This limits the ability of RRT –
and thus CC-RRT, which builds upon it – to refine feasible solutions once identified, potentially
leading to low-quality trajectories heavily biased on initial tree growth.

The proposed CC-RRT* algorithm instead uses the recently-developed RRT* framework7,8 to
provide guarantees on asymptotic optimality of the lowest-cost probabilistically feasible path found,
by “rewiring” the tree toward lower-cost paths. The resulting real-time algorithm asymptotically
converges toward minimum-length, dynamically feasible trajectories which satisfy all time-step-
wise and path-wise probabilistic feasibility constraints specified, even in complex environments.
Alternatively, a novel, risk-based objective function is posed which allows the user to trade-off be-
tween minimizing path duration and risk-averse behavior. This objective uses the same risk bounds
computed to check the probabilistic feasibility constraints, such that no additional computation is
required, and is shown to be admissible as an RRT* objective. Unlike RRT*, CC-RRT* can thus
model both hard probabilistic feasibility constraints, and soft probabilistic feasibility constraints
via the risk- based objective.

After considering related work in Section II, Section III provides the problem statement. The
chance constraint formulation and risk bound evaluation used by CC-RRT* is reviewed and ex-
panded in Section IV. The CC-RRT* algorithm is introduced in Section V, while Section VI ana-
lyzes theoretical properties of the algorithm and the proposed risk-based objective function. Finally,
Section VII gives simulation results demonstrating that CC-RRT* can efficiently identify smooth,
robust trajectories for a variety of uncertainty scenarios and dynamics.

II. Related Work

This work falls into the larger category of planning under uncertainty, for which many algorithms
have been proposed.9 Within motion planning, types of uncertainty are often classified based on
whether the motion model or environment is uncertain, and whether it concerns its present state or
future predictability.10 This work focuses on uncertainty in model predictability and environmental
state, though it also admits environmental predictability uncertainty.5

Much work in chance-constrained path planning has focused on optimization-based frameworks.
Blackmore et al. use Boole’s inequality to obtain probabilistic feasibility for linear Gaussian systems
subject to process noise and localization error,2 while Ono and Williams use iterative risk allocation
to assign risk to each constraint as part of an iterative, two-stage optimization.11 Later work
by both focuses on less conservative chance constraint evaluation for convex12 and non-convex13

formulations. Vitus and Tomlin develop a hybrid analytic/sampling formulation for linear Gaussian
systems additionally subject to polyhedral state constraints with uncertain parameters.14 While
such optimizations have been demonstrated for real-time path planning, they lack the scalability
with respect to problem complexity inherent to sampling-based algorithms, a crucial consideration
in complex and dynamic environments. Because sampling-based algorithms such as CC-RRT*
perform trajectory-wise constraint checking, they can avoid these scalability concerns.

Several robust motion planning algorithms have been proposed using probabilistic roadmaps
(PRM),15 which construct a multi-query graph by connecting random configuration space sam-
ples, such as for uncertain obstacle vertices16,17 or sensing uncertainty.18 The stochastic motion
roadmap19 constructs a Markov decision process by sampling uncertain motions from PRM nodes,

2 of 25

American Institute of Aeronautics and Astronautics

but requires discretization of inputs; later work by Huynh et al. removes this restriction and
provides asymptotic optimality guarantees.20 The belief roadmap21 performs efficient belief space
planning using a factored covariance for nonlinear systems subject to process and sensing noise, but
is limited to kinematic motion planning. Recent work considers feedback policies for belief space
planning.22

Rapidly-exploring random trees have been previously used for robust planning, though many
existing approaches focus on internal uncertainty. Particle RRT23 uses particles to sample uncertain
motion, while Kewlani et al. use a finite-series approximation of the uncertainty propagation.24

Pepy et al. outer-approximate uncertainty sets to guarantee robust feasibility for nonlinear sys-
tems subject to bounded internal uncertainty.25 The LQG-MP algorithm26 linearizes nonlinear
dynamics subject to motion and sensing uncertainty, applying LQG to connect states within an
RRT. Environmental uncertainty is considered on a limited basis, by numerically integrating the
probability of collision between radial obstacles in a multi-agent scenario. Heuristics are used to
assess path quality, such as minimizing the covariance trace or maximizing standard deviations
to a collision. However, unlike CC-RRT*, the algorithm does not provide guaranteed bounds on
probabilistic feasibility or user-tunable robustness parameters.

The rapidly-exploring random belief tree (RRBT)27 samples and refines trajectories within the
RRT* framework, with robustness to motion and sensing uncertainty. In RRBT, tree rewiring
is performed only if the replacement trajectory achieves strictly lower cost and reduced system
covariance. However, this algorithm assumes a perfectly known environment; since CC-RRT*
considers uncertainties in both the system and the obstacles, it generally cannot rewire in this
manner. Instead, CC-RRT* folds bounds on the risk of constraint violation – which incorporates
both forms of uncertainty – directly into the cost function for rewiring. Like LQG-MP, RRBT
admits nonlinear dynamics, but their subsequent linearization implies that theoretical guarantees
of probabilistic feasibility can only be approximated. The CC-RRT* algorithm provides guaranteed
probabilistic feasibility to multiple forms of uncertainty for linear Gaussian systems, while using
efficient risk evaluation to ensure its suitability for real-time, online planning.

III. Problem Statement

Consider the linear time-invariant (LTI) discrete-time system dynamics subject to process noise

xt+1 = Axt +But +Gwt, (1)

wt ∼ N (0, Pw), (2)

where xt ∈ Rnx is the state vector, ut ∈ Rnu is the input vector, wt ∈ Rnw is a process noise
uncertainty acting on the system, and A,B,G are matrices of suitable dimension. The disturbance
wt is unknown at current and future time steps, but has a known unbounded probability distri-
bution (2), where N (â, Pa) represents a Gaussian random variable with mean â and covariance
Pa. The disturbances wt are independent and identically distributed across all time steps. The
initial/current state x0 may be assumed to be either perfectly known or uncertain with known
probability distribution

x0 ∼ N (x̂0, Px0). (3)

The system is additionally subject to constraints acting on the system state and input. These
constraints are assumed to take the form

xt ∈ Xt ≡ X − X1t − · · · − Xnot, (4)

ut ∈ U , (5)

3 of 25

American Institute of Aeronautics and Astronautics

where X ,X1t, . . . ,Xnot ⊂ Rnx are convex polytopes, U ⊂ Rnu , and the − operator denotes set
subtraction. The sets X and U define a set of time-invariant convex constraints acting on the
state and input, respectively. The sets X1t, . . . ,Xnot represent no convex, polytopic obstacles to be
avoided. The time dependence of Xt in (4) allows the inclusion of both static and dynamic obstacles.
For each obstacle, the shape and orientation are assumed to be known, while the placement is
uncertain. This is represented as

Xjt = X 0
j + cjt, ∀ j ∈ Z1,no , (6)

cjt ∼ N (ĉjt, Pcjt), ∀ j ∈ Z1,no , (7)

where the + operator denotes set translation and Za,b represents the set of integers between a and
b inclusive. In this model, for the jth obstacle, X 0

j ⊂ Rnx is a convex polytope of known, fixed
shape, while cjt ∈ Rnx represents an uncertain and/or time-varying translation.

The primary objective of the motion planning problem is to reach some goal region Xgoal ⊂ Rnx

while ensuring the input constraints (5) are satisfied, while the state constraints (4) are probabilis-
tically satisfied. This is represented via two types of chance constraints,

P (xt ∈ Xt) ≥ δs, ∀ t, (8)

P

(∧
t

xt ∈ Xt

)
≥ δp, (9)

where P(·) denotes probability,
∧

represents a conjunction over the indexed constraints (
∨

repre-
sents a disjunction), and δs, δp ∈ [0.5, 1]. The constraint (8) dictates that the state constraints be
satisfied at each time step with a probability of at least δs, while the constraint (9) dictates that
the state constraints be satisfied over all time steps with a probability of at least δp.

Consider the expected dynamics (1),

x̂t+1 = Ax̂t +But. (10)

Since there is uncertainty in the state, it is assumed sufficient for the expected mean x̂t to reach
the goal region Xgoal ⊂ Rnx ; denote

tf = inf{t ∈ Z0,∞ | x̂t ∈ Xgoal}. (11)

The path planner seeks to approximately solve the optimal control problem

min
ut

φf (x̂tf ,Xgoal) +

tf−1∑
t=0

φ(x̂t,Xgoal, ut) (12)

s.t. (1), (5), (8), (9), (10), (11), (13)

where φ, φf are cost functions to be optimized. These functions may be generalized to more
complex forms, such as incorporating the state and input constraints; in this work, they are used
to penalize risk (Section VI). By using x̂t rather than xt within the objective (12), the stochastic
elements of this optimization manifest themselves only in the chance constraints (8)-(9).

IV. Chance Constraints

This section reviews and expands the chance constraint formulation2 previously developed for
the CC-RRT algorithm to consider uncertainty in both vehicle state and obstacle placement.4 Two
expansions to the formulation are presented here. First, it is shown how to guarantee probabilistic

4 of 25

American Institute of Aeronautics and Astronautics

path-wide feasibility via the bound δp. Second, the environment boundaries X are also considered
as a probabilistic constraint, rather than a nominal constraint on the conditional mean.4

Given a sequence of inputs u0, . . . , utf−1, the distribution of the state xt, represented as the
random variable Xt, can be shown to be Gaussian:2

P (Xt|u0, . . . , utf−1) ∼ P (Xt|u0, . . . , ut−1)

∼ N (x̂t, Pxt) ∀ t ∈ Z0,N , (14)

where the mean x̂t and covariance Pxt can be represented implicitly as

x̂t+1 = Ax̂t +But ∀ t ∈ Z0,tf−1, (15)

Pxt+1 = APxtA
T +GPwG

T ∀ t ∈ Z0,tf−1. (16)

Eq. (15) effectively updates the distribution mean x̂t using the disturbance-free dynamics (10),
and (16) is independent of the input sequence and thus can be computed a priori off-line.

Consider the chance constraints (8)-(9), restated in terms of constraint violation as

P (xt 6∈ Xt) ≤ 1− δs, ∀ t ∈ Z0,tf , (17)

P

 tf∨
t=0

xt 6∈ Xt

 ≤ 1− δp. (18)

To render these constraints tractable, it is desirable to decompose them, first by time step, then by
obstacle. Temporal independence cannot be assumed in the case of (18), but Boole’s bound2 can
be applied to upper-bound its probability:

P

 tf∨
t=0

xt 6∈ Xt

 ≤ tf∑
t=0

P (xt 6∈ Xt) . (19)

It is similarly the case that the probabilities of violating each component of the state constraints
(4) are not independent. However, Boole’s bound can again be applied, yielding

P (xt 6∈ Xt) ≤ P (xt 6∈ X) +

no∑
j=1

P (xt ∈ Xjt) , ∀ t ∈ Z0,tf . (20)

Consider the jth obstacle at the tth timestep. Because the obstacle is polyhedral, it can be
represented through the conjunction of linear inequalities

nj∧
i=1

aTij(xt − cijt) < 0 ∀ t ∈ Z0,tf , (21)

where nj is the number of constraints defining the jth obstacle, and cijt is a point nominally
(i.e., cjt = ĉjt) on the ith constraint at time step t; aij is not dependent on t, since the obstacle
shape and orientation are fixed. To avoid the jth obstacle at the tth timestep, the system must
satisfy the disjunction

nj∨
i=1

aTij(xt − cijt) ≥ 0. (22)

5 of 25

American Institute of Aeronautics and Astronautics

To avoid the obstacle, it is sufficient to not satisfy any one of the constraints in the conjunction
(21); all constraints must be satisfied for a collision. Thus it is true that

P(collision with jth obstacle at tth time step) = P

(nj∧
i=1

aTij(Xt −Cijt) < 0

)
(23)

≤ P
(
aTij(Xt −Cijt) < 0

)
∀ i ∈ Z1,nj ,

where Cijt = cijt + (Cjt − ĉjt) is a random variable due to (6)-(7).
Suppose it is desired that the probability of collision with the jth obstacle at the tth time step

be less than or equal to some quantity ∆. To ensure this from (23), it is only necessary to show
that one of the constraints for the obstacle is satisfied with probability less than or equal to ∆:

nj∨
i=1

P
(
aTij(Xt −Cijt) < 0

)
≤ ∆. (24)

Via appropriate change of variables, it has been shown4 that the constraints (22) are probabilisti-
cally satisfied for the true state xt if the conditional mean x̂t satisfies the modified constraints

nj∨
i=1

aTij(x̂t − cijt) ≥ b̄ijt ≡
√

2Pverf−1 (1− 2∆) , (25)

Pv =
√
aTij(Pxt + Pcjt)aij . (26)

The term b̄ijt represents the amount of deterministic constraint tightening necessary to ensure
probabilistic constraint satisfaction.

Next, consider the polyhedral state constraints X , represented as the conjunction

nE∧
i=1

aTi0(xt − ci0) < 0 ∀ t ∈ Z0,tf , (27)

where nE is the number of constraints defining X , and ci0 is a point on the ith constraint. Because
X is deterministic and time-invariant, ci0 is also deterministic and time-invariant. Violation of the
constraints X at the tth timestep is equivalent to the disjunction of constraints

nE∨
i=1

aTi0(xt − ci0) ≥ 0. (28)

Boole’s bound can be applied one more time, such that

P

(
nE∨
i=1

aTi0(Xt − ci0) ≥ 0

)
≤

nE∑
i=1

P
(
aTi0(Xt − ci0) ≥ 0

)
. (29)

Suppose it is desired that the probability of violating the ith constraint of X at the tth time step
be less than or equal to some quantity ∆0. By applying a similar change of variable, this condition
is met by satisfying the modified constraint

aTi0(x̂t − ci0) < −b̄i0 ≡ −
√

2Pverf−1 (1− 2∆0) , (30)

Pv =
√
aTi0Pxtai0. (31)

Since Pxt can be computed off-line, the tightened constraints (25),(30) can be computed off-line,
implying that the complexity of the nominal formulation need not increase when chance constraints

6 of 25

American Institute of Aeronautics and Astronautics

are incorporated. In a similar manner as in Blackmore et al.,2 probabilistic feasibility of any state
or state sequence can be checked via these tightened, deterministic constraints. However, this
approach can be heavily conservative, as risk must be pre-allocated to each time step, obstacle,
and constraint, with limited knowledge of how much is needed for each.

Alternatively, a more precise bound can be identified online for the probability of collision, both
for each time step and the entire trajectory, by computing bounds on the probability of satisfying
each individual constraint.4 This operation is only possible via trajectory-wise constraint checking,
as in a sampling-based algorithm such as RRT. In addition to being used to satisfy (17)-(18), these
bounds can also be used to penalize risky behavior as a soft constraint, if desired (Section VI). This
dynamic assignment of risk to each constraint uses similar logic as iterative risk allocation (IRA);11

however, whereas IRA iterates on the risk allocation for successive optimizations, a sampling-based
algorithm can directly compute an appropriate risk allocation for each constraint.

Consider the ith constraint of the jth obstacle at time step t, as specified in (21). Let ∆ijt(x̂, Px)
denote a bound on the probability that this constraint is satisfied for a Gaussian distribution with
mean x̂ and covariance Px; this has been shown to be4

∆ijt(x̂t, Pxt) =
1

2

1− erf

 aTij(x̂t − cijt)√
2aTij(Pxt + Pcjt)aij

 . (32)

Through a similar process, let ∆i0t denote the probability that the ith constraint of X is violated
at time step t for a Gaussian distribution with mean x̂ and covariance Px; then

∆i0t(x̂t, Pxt) =
1

2

1− erf

 aTi0(ci0 − x̂t)√
2aTi0(Pxt)ai0

 . (33)

These components can then be inserted into each usage of Boole’s bound (19),(20),(29) to
directly bound the probabilities of constraint violation. Define the terms

∆0t(x̂t, Pxt) =

nE∑
i=1

∆i0t(x̂t, Pxt), (34)

∆jt(x̂t, Pxt) = min
i=1,...,nj

∆ijt(x̂t, Pxt), (35)

∆t(x̂t, Pxt) = ∆0t(x̂t, Pxt) +

no∑
j=1

∆jt(x̂t, Pxt), (36)

∆(x̂t, Pxt) =

tf∑
t=0

∆t(x̂t, Pxt). (37)

7 of 25

American Institute of Aeronautics and Astronautics

Then (19) can be represented as

P

 tf∨
t=0

xt 6∈ Xt

 ≤
tf∑
t=0

P (xt 6∈ X) +

no∑
j=1

P (xt ∈ Xjt)

≤

tf∑
t=0

 nE∑
i=1

P
(
aTi0(Xt − ci0) ≥ 0

)
+

no∑
j=1

min
i=1,...,nj

P
(
aTij(Xt −Cijt) < 0

)
=

tf∑
t=0

 nE∑
i=1

∆i0t(x̂t, Pxt) +

no∑
j=1

min
i=1,...,nj

∆ijt(x̂t, Pxt)

=

tf∑
t=0

∆0t(x̂t, Pxt) +

no∑
j=1

∆jt(x̂t, Pxt)

 =

tf∑
t=0

∆t(x̂t, Pxt) = ∆(x̂t, Pxt).(38)

Thus, to satisfy the path-wise chance constraint (9), it is sufficient to show that

∆(x̂t, Pxt) ≤ 1− δp. (39)

By using a subset of the derivation above, it can be similarly shown that

∆t(x̂t, Pxt) ≤ 1− δs, ∀ t ∈ Z0,tf (40)

is a sufficient condition for satisfying the time-step-wise chance constraints (8).
Both sets of risk bounds are conservative approximations of the true risk of constraint violation;

the degree of conservatism increases in both the number of obstacles (for both path-wise and
time-step-wise probabilistic feasibility) and the number of time steps (for path-wise probabilistic
feasibility). As such, (40) typically provides a less conservative estimate of the true risk environment
than (39), though either can be used within the CC-RRT and CC-RRT* algorithms.

V. CC-RRT* Algorithm

This section introduces the CC-RRT* algorithm, a real-time algorithm designed to quickly
identify and refine probabilistically feasible trajectories in the presence of time-varying and/or
uncertain constraints. Through tight integration of sampling-based planning, chance constraints,
and the asymptotic optimality of the RRT* framework,7 this algorithm achieves both probabilistic
feasibility and asymptotic optimality while maintaining real-time tractability.

This algorithm builds upon the chance constrained RRT (CC-RRT) algorithm, which enables
the use of probabilistic constraints.4 Whereas the traditional RRT algorithm grows a tree of states
which are known to be feasible, CC-RRT grows a tree of state distributions known to satisfy an
upper bound on probability of collision. Additionally, the CC-RRT* algorithm has been designed
to fit into the constraints of the RRT* framework,7,8 such that guarantees on asymptotic optimality
are maintained. The RRT* framework expands on RRT by “rewiring” connections within the tree
in order to optimize a cost function satisfying certain criteria (Section VI). The CC-RRT* algorithm
expands this framework by checking probabilistic feasibility, via the chance constraints (39) and/or
(40).

To grow a tree of dynamically feasible trajectories, it is necessary for the CC-RRT* algorithm to
have an accurate model of the vehicle dynamics (1) for simulation. For each simulated trajectory,
the CC-RRT* algorithm propagates the predicted state distribution, which under the assumption
of Gaussian uncertainty is itself Gaussian. Thus, at each time step of each simulated trajectory, it is

8 of 25

American Institute of Aeronautics and Astronautics

only necessary to propagate the state conditional mean (15) and covariance (16)a. In this manner,
the distribution mean x̂t replaces the role of the true state xt in the nominal RRT algorithm.

The CC-RRT* tree is denoted by T , consisting of |T | nodes. Each node N of the tree T
consists of a sequence of state distributions, characterized by a distribution mean x̂ and covariance
P . A sequence of means and covariances is denoted by σ̄ and Π̄, respectively. The final mean and
covariance of a node’s sequence are denoted by x̂[N] and P [N], respectively.

The cost function (12), with φf = 0, is utilized in two forms within the CC-RRT* algorithm.
Let t[N] denote the terminal time step for node N . The notation

J [N] = dt

t[N]∑
t=0

f(x̂t, Pt), (41)

denotes the entire path cost from the starting state to the terminal state of node N , where dt is
the time step duration and f is the per-timestep cost objective specified by the user (Section VI).
For the state distribution sequence (σ̄, Π̄), the notation

∆J(σ̄, Π̄) = dt
∑

(x̂,P)∈(σ̄,Π̄)

f(x̂, P) (42)

denotes the cost of that sequence. Eq. (41) can be constructed recursively by utilizing (42): if
(σ̄, Π̄) denotes the trajectory of node N with parent Nparent, then

J [N] = J [Nparent] + ∆J(σ̄, Π̄). (43)

The CC-RRT* algorithm consists of two primary components, enabling its use in real-time
operations.6 The first component, the tree expansion step, is used to incrementally grow the tree
by simulating new trajectories; it is generally run continuously, using any available computational
resources. The second component, the execution loop, periodically selects the best available path
for execution, in addition to updating the current state of the vehicle, environment, and tree. In
this manner, portions of the tree which remain dynamically feasible are retained for future growth
cycles.

The tree expansion step for CC-RRT* is given by Algorithm 1. It starts with the current tree
T at time step t (line 1 of Algorithm 1) and seeks to add additional nodes to the tree, possibly
removing some in the process via rewiring. First, a state is sampled from the environment via the
“Sample” function (line 2). The function x = Sample() must return independent and identically
distributed samples from Xfree, the obstacle-free portion of the state space.8 It is assumed in
the problem statement (Section III) that all state elements are bounded. Thus, the approach
utilized here is to sample each state element independently, with each realization having a non-zero
probability, then filter out any infeasible samples.

Next, a node in T nearest to xsamp in terms of some distance metric is identified via the
“Nearest” function (line 3). The function N = Nearest(T , x) uses the Euclidean norm metric via7

N = Nearest(T , x) = arg min
N∈T
‖x− x̂[N]‖. (44)

The Steering law “Steer” is then applied to steer the terminal state mean x̂[Nnearest] to xsamp (line
4). The function (σ̄, Π̄) = Steer(x, P, y) returns a sequence of state distributions, characterized by
their means (σ̄) and covariances (Π̄), which originates at state x and terminates at state y. The
state distributions must be dynamically feasible: the mean sequence σ̄ must satisfy (15) with initial

aIn subsequent work, covariances of the form Pxt will often be rewritten as Pt to simplify presentation.

9 of 25

American Institute of Aeronautics and Astronautics

Algorithm 1 CC-RRT*, Tree Expansion
1: Inputs: tree T , current time step t
2: xsamp ← Sample()
3: Nnearest ← Nearest(T , xsamp)
4: (σ̄, Π̄)← Steer(x̂[Nnearest], P [Nnearest], xsamp)
5: if ProbFeas(σ̄, Π̄) then
6: Create node Nmin{σ̄, Π̄}
7: Nnear ← Near(T , xsamp, |T |)
8: for Nnear ∈ Nnear\Nnearest do
9: (σ̄, Π̄)← Steer(x̂[Nnear], P [Nnear], xsamp)

10: if ProbFeas(σ̄, Π̄) and J [Nnear] + ∆J(σ̄, Π̄) < J [Nmin] then
11: Replace Nmin with new node Nmin{σ̄, Π̄}
12: end if
13: end for
14: Add Nmin to T
15: for Nnear ∈ Nnear\Ancestors(Nmin) do
16: (σ̄, Π̄)← Steer(x̂[Nmin], P [Nmin], x̂[Nnear])
17: if ProbFeas(σ̄, Π̄) and J [Nmin] + ∆J(σ̄, Π̄) < J [Nnear] then
18: Delete Nnear from T
19: Add new node Nnew{σ̄, Π̄} to T
20: Update descendants of Nnew as needed
21: end if
22: end for
23: end if

mean x, while the covariance sequence Π̄ must satisfy (16) with initial covariance P . Additionally,
the inputs ut applied by this steering law must satisfy the input constraints (5). The choice of
steering law is heavily dependent on the dynamics being considered (Section VII).

The resulting distribution sequence is then checked for probabilistic feasibility via the function
“ProbFeas” (line 5). The Boolean function ProbFeas(σ̄, Π̄) returns true if the distribution sequence
(σ̄, Π̄) satisfies the probabilistic feasibility conditions (39)-(40), and false otherwise; its details are
given in Algorithm 2. The subroutine iterates over all elements of (σ̄, Π̄) (line 2 of Algorithm 2);
for the kth element with mean x̂ and covariance P (line 3), ∆t(x̂, P) and/or ∆(x̂, P) (depending on
which chance constraints are being enforced) are computed (line 4). It is assumed that the values
of ∆t at previous time steps are available for the computation of ∆(x̂, P). If either value exceeds
the maximum allowable risk (line 5), the subroutine returns false (line 6); if this does not occur
for any state distribution, the subroutine returns true (line 9).

If (σ̄, Π̄) is probabilistically feasible, a new node with that distribution sequence is created
(line 6 of Algorithm 1), but not yet added to T . Instead, nearby nodes are identified for possible
connections via the “Near” functionN = Near(T , x, n) (line 7), which returns a subset of nodesN ⊆
T . To enable probabilistic asymptotic optimality guarantees, CC-RRT* uses the implementation8

N = Near(T , x, n) ≡ {N ∈ T | ‖x̂[N]− x‖ ≤ rn}, (45)

rn = min

{(
γ

ζd

log n

n

)1/d

, µ

}
, (46)

where µ > 0 is a maximum radius specified by the user, and ζd denotes the volume of a unit ball
in Rd. The parameter γ > 0 is chosen such that8

γ ≥ 2d
(

1 +
1

d

)
µ(Xfree), (47)

where µ(V) denotes the volume of V and Xfree denotes the obstacle-free configuration space.

10 of 25

American Institute of Aeronautics and Astronautics

Algorithm 2 ProbFeas
1: Inputs: dynamically feasible K-time-

step sequence of means σ̄, covari-
ances Π̄

2: for k = 1 to K do
3: (x̂, P)← kth element of (σ̄, Π̄)
4: Compute ∆t(x̂, P) using (36) and

∆(x̂, P) using (37)
5: if ∆(x̂, P) > 1− δp or

∆t(x̂, P) > 1− δs then
6: return false

7: end if
8: end for
9: return true

Algorithm 3 CC-RRT*, Execution Loop

1: Initialize tree T with node (x̂0, Px0) for t = 0
2: while x̂t 6∈ Xgoal do
3: Use observations, if any, to update current state distri-

bution (x̂t, Pt) and node Nroot and/or environment
4: If needed, advance Nroot, remove infeasible parts of T
5: while time remaining for this time step do
6: Expand the tree by adding nodes (Algorithm 1)
7: end while
8: Identify path {Nroot, . . . , Ntarget} that minimizes (41)
9: if no paths exist then

10: Apply safety action and goto line 18
11: end if
12: for each node N{σ̄, Π̄} in path do
13: if ProbFeas(σ̄, Π̄) false then
14: Remove infeasible portion of path and goto line 8
15: end if
16: end for
17: Execute path
18: t← t+ ∆t
19: end while

Once the nearby nodes N are identified, CC-RRT* seeks to identify the lowest-cost, probabilis-
tically feasible connection from those nodes to xsamp (lines 8–13). For each possible connection, a
distribution sequence is simulated via the steering law (line 9). If the resulting sequence is prob-
abilistically feasible, and the cost of that node – represented as the sum J [Nnear] + ∆J(σ̄, Π̄), via
(43) – is lower than the cost of Nmin (line 10), then a new node with this sequence replaces Nmin

(line 11). The lowest-cost node is ultimately added to T (line 14).
Finally, a rewiring operation is performed based on attempting connections from the new node

Nmin to nearby nodes (lines 15–22), ancestors excluded (line 15). A distribution sequence is sampled
via the steering law from Nmin to the terminal state of each nearby node Nnear (line 16). If the
resulting sequence is probabilistically feasible, and the cost of that node is lower than the cost of
Nnear, then a new node with this distribution sequence replaces Nnear (lines 18–19).

By using the RRT* rewiring mechanism with an exact steering law, all descendants of a rewired
node remain dynamically feasible. As in that algorithm, the reduced path cost at the rewired node
Nnew should be propagated downward through all descendants (line 20). On the other hand, the
terminal covariance/risk may change due to rewiring, implying that it should also be propagated to
– and probabilistic feasibility re-checked at – descendant nodes. Because all uncertainty covariances
can be computed and time-indexed off-line (Section IV), these re-checks can be computed efficiently.
Additionally, under some conditions (e.g., non-increased uncertainty after rewiring), feasibility re-
checks are often not necessary to ensure probabilistic feasibility of descendants (Section VII). This
will be explored further in future work.

The CC-RRT* algorithm’s execution loop, which is performed at time intervals of ∆t, is given
by Algorithm 3. During each cycle, the objective of this algorithm is to identify the lowest-cost
path in the tree that is still feasible, and use the remaining time to grow the tree.

If new observations are available for the vehicle’s current state and/or environment (such as
movement of dynamic obstacles), these may be applied to the tree first, resulting in the update
of the current root node Nroot (line 3). If the terminal covariance P [Nroot] changes, it should be
propagated through the rest of the tree T . Every time the system advances past a node to one of its
children, all other children of that node are no longer dynamically feasible and should be removed

11 of 25

American Institute of Aeronautics and Astronautics

(line 4). For the duration of the time step, the tree is repeatedly expanded using Algorithm 1 (lines
5–7). Following this tree growth, the objective (41) is used to identify the lowest-cost path in the
tree (line 8). In practice, only paths which terminate in Xgoal are considered; if no such path exists,
the path which terminates closest to the goal region (in terms of Euclidean distance) is selected.

Once a path is chosen, it is re-checked for probabilistic feasibility6 against the current constraints
(lines 12–16). If this path is still probabilistically feasible, it is chosen as the current path to execute
(lines 17). Otherwise, the portion of the path that is no longer probabilistically feasible is removed
(lines 13–14), and the process is repeated until either a probabilistically feasible path is found or
the entire tree is pruned. If the latter case occurs, some “safety” motion primitive (e.g., come to a
stop) is applied to attempt to keep the vehicle in a safe state (lines 9–10).

VI. Analysis

This section analyzes the properties of the CC-RRT* algorithm, as presented in Section V.
First, it is shown that paths selected by the CC-RRT* algorithm satisfy all constraints for the path
planning problem (12)-(13) proposed in Section III, including the chance constraints (8)-(9). A
novel cost function is then introduced which incorporates the risk of constraint violation into the
objective, acting as a form of soft constraint on the objective. It is shown that this cost function is
admissible within the RRT* framework, meaning that the CC-RRT* algorithm is able to minimize
the proposed function with asymptotic optimality.

Theorem 1. All paths selected by Algorithm 3 satisfy the constraints (1),(5),(8),(9).

Proof. All trajectory segments are generated using the Steer function, which is required to satisfy
both (15), which is equivalent to (1) with wt = 0, and (5). For any node N{σ̄, Π̄} to be added
to the tree, ProbFeas(σ̄, Π̄) must return true. For that to be the case, every state distribution
(x̂, P) ∈ (σ̄, Π̄) must satisfy ∆(x̂, P) ≤ 1 − δp and ∆t(x̂, P) ≤ 1 − δs, i.e., (39)-(40). These
conditions remain satisfied after rewiring. From (34)-(38), these are sufficient to satisfy (8),(9). �

The cost function used is a novel feature of this work, as it explicitly incorporates the risk of
constraint violation inherent to chance constraints. It takes the form

f(x̂t, Pt) = CT + CR∆t(x̂t, Pt) + CM max
i={0,...,t}

∆t(x̂t, Pt), (48)

where CT ≥ 0, CR ≥ 0, CM ≥ 0, CTCRCM > 0. The cost component with coefficient CT seeks to
minimize path duration. The cost component with coefficient CR represents the accumulated risk
across all time steps, as measured by the risk bound ∆t(x̂t, Pt). Finally, the cost component with
coefficient CM penalizes the maximum risk bound encountered at any time step along the path.

Theorem 2. The cost function (41), using (48), is an admissible cost function for RRT*.

Overview of proof. Using the framework established by Karaman and Frazzoli,8 there are three
conditions the cost function (41), using (48), must satisfy to be admissible.

First, the cost must be monotonic: if σ̄1|σ̄2 denotes the concatenation of path segments σ̄1

and σ̄2, then ∆J(σ̄1) ≤ ∆J(σ̄1|σ̄2). Since CT , CR, CM ≥ 0 and ∆t(x̂t, Pt) ≥ 0, then f(x̂t, Pt) ≥
0 ∀ (x̂t, Pt), implying monotonicity.

Second, the cost must be additive, i.e., c(σ̄1|σ̄2) = c(σ̄1) + c(σ̄2). This is verified via (43). Note
that finding a maximum-risk state further down a path does not retroactively increase the value of
maxi={0,...,t} (∆t(x̂t, Pt)) at previous times.

Finally, the cost must be Lipschitz continuous: there exists some κ > 0 such that

|∆J(σ̄1)−∆J(σ̄2)| ≤ κ sup
τ∈[0,1]

‖x̂1(τ)− x̂2(τ)‖, (49)

12 of 25

American Institute of Aeronautics and Astronautics

where τ ∈ [0, 1] parametrizes the state distribution trajectories x̂1(·) and x̂2(·) for σ̄1 and σ̄2,
respectively. The CT -component of the cost function is clearly Lipschitz continuous. For the
CR-component, consider ∆t(x̂t, Pt), which is a sum of terms (34) and (35) defined by (32) and
(33), respectively. The error function erf(·) is continuous with a bounded slope, and both aij
and ai0 are also bounded. Thus smooth shifts in the state uncertainty distribution via x̂t and/or
Pxt yield smooth variations on ∆ijt(x̂t, Pxt) and ∆i0t(x̂t, Pxt), implying that the CR-component
is also Lipschitz continuous. Finally, the CM -component applies the maximum operator on the
CR-component, which is Lipschitz continuous, and thus is Lipschitz continuous as well. Thus, the
sum of these terms, which compromises the cost function, is Lipschitz continuous.

As the above conditions are satisfied by the cost function (41), (48), it is thus admissible for
RRT*. �

VII. Simulation Results

This section presents simulation results which demonstrate the effectiveness of the CC-RRT*
algorithm in efficiently identifying smooth, robust trajectories subject to both internal and exter-
nal uncertainties. Applying CC-RRT* with a time-based objective (e.g., CR, CM = 0) is shown
to generate trees of trajectories satisfying all robustness chance constraints, yielding an asymptot-
ically optimal trajectory that is both probabilistically and dynamically feasible. As the likelihood
of constraint violation tends to increase with proximity to obstacles, the chance constraints will
typically be active in the final trajectory, with solutions often approaching the maximum allowable
risk. Alternatively, by incorporating measures of risk within the objective (e.g., CR, CM > 0),
the resulting trees and trajectories demonstrate more risk-averse behavior, avoiding riskier actions
unless deemed necessary to reduce path duration, as determined by the relative coefficient weights.

Six variants of the RRT algorithm are compared throughout this section: RRT,3 RRT*,8 CC-
RRT,4 CC-RRT-Risk (same as CC-RRT, but utilizing (48) with CT , CR, CM > 0), CC-RRT*
(Algorithm 1 with CT > 0, CR = CM = 0), and CC-RRT*-Risk (CT , CR, CM > 0).

A. Illustrative Scenario

Consider the 2D single integrator dynamics

xt+1 =

[
1 0

0 1

]
xt +

[
dt 0

0 dt

]
ut + wt,

where dt = 0.1 s. The position variables xt = (pxt , p
y
t) are constrained within a bounded, two-

dimensional 10m × 10m environment, containing four obstacles with uncertain placement (Figure
1). The velocity inputs ut = (vxt , v

y
t) are subject to the input constraints U = {(vxt , v

y
t) | |vxt | ≤

v̄, |vyt | ≤ v̄}, where v̄ = 0.5 m/s. The system is modeled as a circular object, considered as a point
mass during planning by expanding all obstacles by its radius.

The system is subject to three forms of uncertainty. First, the initial state x0 is subject to
localization error (3) more prominent in the y-direction,

x0 ∈ N (x̂0, P
(1)
x0), P (1)

x0 = 10−5

[
5 0

0 30

]
.

At each time step, the system is subject to process noise (2) more prominent in the x-direction,

wt ∈ N (0, P (1)
w), P (1)

w = 10−5

[
30 0

0 5

]
.

13 of 25

American Institute of Aeronautics and Astronautics

Finally, the placement of each obstacle is itself uncertain. At all time steps, the displacement of
the jth obstacle is governed by (7), where

cjt ∈ N (ĉjt, P
(1)
cj), P (1)

cj =

[
σj 0

0 σj

]
, ∀ t,

where σj > 0. In this environment (Figure 1 – obstacles are placed at their means ĉjt), σj = 0.2 for
the upper-left obstacle, σj = 0.1 for the bottom-right obstacle, and σj = 0.001 for the other two
obstacles. The system is required to satisfy a minimum probability of constraint violation at each
time step of δs = 0.9; no path-wise probability bound is imposed.

In the following scenarios, the external uncertainty is time-invariant, while the internal uncer-
tainty is monotonically increasing (without bound) and path-independent. Thus any nodes re-wired
to a shorter path (i.e., via the CC-RRT* objective) are guaranteed to be less uncertain, and prob-
abilistic feasibility of all descendant nodes is assured without re-checking. Even if a node is rewired
to a longer path via the risk-based objective of CC-RRT*-Risk, the implied risk reduction in the
rewired path means descendant nodes are likely to demonstrate more robust feasibility.

The 2D position is sampled uniformly within the bounds of the feasible 2D environment. The
steering law simply draws a line connecting the old and new positions; the system traverses this line
at speed v̄. A path is considered to reach the goal is the final position is within 0.25m of the goal
location. Finally, the nearby node function uses a maximum radius µ = 1 m, while µ(Xfree) = Afree,
where Afree denotes the 2D area of the environment.

Figure 1 shows typical trees and solution paths returned by each algorithm after 5000 nodes
of tree growth, via Algorithm 1. As expected, the RRT-based algorithms (Figures 1(a), 1(b), and
1(c)) generate trees which are relatively random and unorganized in their path structure, yielding
non-smooth paths and short path segments. In contrast, the RRT*-based algorithms (Figures 1(d),
1(e), and 1(f)) attempt to rewire the tree to reduce path costs every time a new sample is added,
yielding more organized trees with longer node path segments. The cost-minimizing paths identified
by these algorithms thus tend to be relatively smooth, as demonstrated in the images.

Both RRT (Figure 1(a)) and RRT* (Figure 1(d)) identify short paths to the goal which take
the system between all obstacles. However, both algorithms do not consider the risk of constraint
violation, and thus are likely to select risky behaviors in order to minimize path duration. In
particular, the uncertainty in the placement of the bottom-right obstacle presents a high chance of
collision for the system as it passes nearby. The other algorithms only add trajectories to the tree
if they satisfy (40) via Algorithm 2. A “buffer” containing no (probabilistically feasible) tree paths
can be seen around each obstacle and the environment boundaries for those algorithms, reflecting
regions where the cumulative uncertainty violates the maximum-risk bound. This buffer is larger
for the more uncertain obstacles, and increases with distance from the starting position as process
noise accumulates. No probabilistically feasible path exists that takes the system between the two
lower obstacles, implying the paths chosen by RRT and RRT* violate probabilistic feasibility.

CC-RRT* (Figure 1(e)) identifies a minimum-cost solution path which takes the system around
both lower obstacles to the left, to avoid the uncertain bottom-right obstacle, then passes between
the upper obstacles at a sufficient distance to remain probabilistically feasible. Such a path would
also be feasible for CC-RRT (Figure 1(b)), but is unlikely to be sampled. Because CC-RRT is
not an asymptotically optimal algorithm, it cannot refine tree paths once generated; thus solution
paths are highly dependent on the random placement of initial tree samples. For example, in Figure
1(b)), the minimum-time path to goal passes around all obstacles to the right, even though a path
between them would have been probabilistically feasible if identified.

Both CC-RRT* and CC-RRT*-Risk are subject to the same probabilistic constraints; however,
the shapes of both the resulting trees and solution paths are significantly affected by the use

14 of 25

American Institute of Aeronautics and Astronautics

(a) RRT (b) CC-RRT (c) CC-RRT-Risk

(d) RRT* (e) CC-RRT* (f) CC-RRT*-Risk

Figure 1. Demonstrative 5000-node trees generated by each algorithm for the single integrator. The
objective is to plan a path from the start (brown dot, bottom) to the goal (lime green circle, top);
the minimum-cost path after 5000 nodes is shown in orange. The 2-σ uncertainty ellipse is shown for
the placement uncertainty of each obstacle.

(a) CC-RRT* (b) CC-RRT*-Risk

Figure 2. Figures 1(e) and 1(f), with homotopic boundaries marked in blue.

15 of 25

American Institute of Aeronautics and Astronautics

of different cost objectives. Whereas CC-RRT* seeks the geometrically-shortest path subject to
the robustness constraints (Figure 1(e)), CC-RRT*-Risk instead identifies a path which passes
around all obstacles to the right at a significant distance (Figure 1(f)). While the resulting path is
similar to the example path generated for CC-RRT (Figure 1(b)), it is generated via the rewiring
process, which yields asymptotically optimal convergence. Repeated executions of the algorithm for
this scenario would yield very similar final paths (Section VII-B). (Using the risk-based objective
function has little effect on CC-RRT, as observed by CC-RRT-Risk in Figure 1(c).)

Because the trees for CC-RRT* and CC-RRT*-Risk have been rewired based on different cost
functions, the resulting trees show significant qualitative differences. Paths passing around obstacles
in the CC-RRT* tree (Figure 1(e)) tend to travel parallel to the obstacle surfaces, in order to
minimize path duration. On the other hand, paths passing around obstacles in the CC-RRT*-Risk
tree (Figure 1(f)) tend to travel perpendicular to the obstacle surfaces, in order to minimize the
time spent by trajectories in higher-risk (and thus higher-cost) regions.

Of particular note are the “homotopic boundaries” of each tree: those boundaries separating
portions of the tree that pass around obstacles on differing sides, thus belonging to different ho-
motopies. Figure 2 reproduces Figures 1(e) and 1(f) with homotopic boundaries approximately
marked. The boundaries of the CC-RRT* tree (Figure 2(a)) largely follow the Voronoi minimum-
distance boundaries, with a slight preference for passing around the lower obstacles on the left.
For CC-RRT*-Risk, these boundaries have shifted significantly; for example, along the top of the
environment (i.e., above all obstacles), nearly all tree paths approach from the right-hand side.

Governing these changes is the trade-off between minimizing path length and minimizing risk,
as dictated by the cost coefficients of (48). Consider the ratio of cost coefficients γ = CR/CT , where
it is assumed that CM = CR; Figure 3 shows how the resulting CC-RRT*-Risk trees evolve as γ
is varied. For low values of γ (Figure 3(a)), the resulting tree behavior is essentially the same as
CC-RRT* (γ = 0). As γ is increased to 1 (Figure 3(b)), only subtle changes can be observed in
the tree and path. When γ is increased to 10 (Figure 3(c)), the upper-right homotopic boundary
sweeps past the goal, causing the solution path to shift toward passing all obstacles on the outside.
The solution path increases its distance from obstacles as γ increases further (Figures 3(d), 3(e)).

Regardless, it is essential that CT > 0: including a cost term which minimizes path duration
acts as a regularization parameter for CC-RRT*, especially in low-risk regions. Figure 3(f) shows
the trees and paths that typically result when CT = 0, i.e., γ → ∞. In regions where the risk
bounds approach zero, tree behavior essentially reverts to the unorganized nature of RRT, resulting
in risk-averse paths that are often significantly less smooth.

Figure 4(a) depicts a 500-node tree with the 2 − σ uncertainty ellipses visible for each tree
node, showing the accumulation of uncertainty over time. This effect is even more pronounced in

Figure 4(b), in which the covariances of the localization uncertainty P
(1)
x0 and model uncertainty

P
(1)
w have each been scaled up by a factor of 10. The distance the system must maintain from the

room boundaries clearly increases as paths move toward the goal. Figure 4(c) adds a path-wise
probabilistic feasibility bound of δp = 0.9, in addition to a reduced time-step-wise bound δs = 0.5.
Due to the additional chance constraint (9), the space of feasible solutions here is significantly
reduced compared to δs = 0.9 (Figure 1(f)), as expected. In all these cases, even as the size and
shape of the tree varies considerably, the final path selected is qualitatively unchanged. This final
path invariance is due to the risk-based cost objective encouraging risk-averse behavior, even as
the hard probabilistic feasibility constraints are varied.

B. Simulation Trials

Consider the same single integrator dynamics of Section VII-A now applied to a different environ-
ment containing four obstacles (Figure 6). The environment is 37 feet (11.3 m) long and 18 feet

16 of 25

American Institute of Aeronautics and Astronautics

(a) γ = 10−5 (b) γ = 100 (c) γ = 101

(d) γ = 103 (e) γ = 105 (f) γ →∞

Figure 3. Demonstrative 5000-node trees generated by CC-RRT*-Risk for various cost ratios γ for
the single integrator.

(a) 2−σ uncertainty ellipses shown for
tree (500 nodes)

(b) P
(1)
x0 , P

(1)
w × 10 (5000 nodes) (c) δs = 0.5, δp = 0.9 (5000 nodes)

Figure 4. Demonstrative trees generated by CC-RRT*-Risk for various values of δs, δp, P
(1)
x0 , and P

(1)
w

17 of 25

American Institute of Aeronautics and Astronautics

Table 1. Properties of solution path after 2500 nodes, over 50 trials

Path Duration (s) Maximum Risk Bound Accumulated

Algorithm Mean SD Min Max Mean SD Min Max Risk (mean)

CC-RRT*-Risk 22.7 0.40 22.1 24.2 0.002 0.002 0.001 0.013 0.004

CC-RRT* 20.3 0.14 20.0 20.6 0.189 0.010 0.158 0.200 0.782

RRT* 19.8 0.12 19.4 20.0 0.472 0.025 0.401 0.500 2.717

CC-RRT-Risk 27.2 3.46 21.4 40.5 0.143 0.047 0.029 0.200 0.421

CC-RRT 27.1 3.97 22.2 40.1 0.126 0.061 0.004 0.198 0.368

RRT 26.6 3.65 21.0 42.6 0.357 0.112 0.019 0.491 1.058

(5.5 m) wide; the upper and lower corridors are 2.5 feet (0.76 m) wide each. This environment is
geometrically symmetric along the centerline of its long axis; however, the uncertainty environment
is not symmetric. In this environment, only the bottommost obstacle has placement uncertainty,

cjt ∈ N (ĉjt, P
(2)
cj), P (2)

cj =

[
0.05 0

0 0.05

]
, ∀ t;

all other obstacle locations are known precisely. The system is subject to the same process noise

as before, P
(2)
w = P

(1)
w , while the localization error is 10 times as large, P

(2)
x0 = 10P

(1)
x0 . A time-step-

wise probabilistic feasibility bound of δs = 0.8 is enforced. A path is considered to reach the goal
if the final position is within 0.5m of the goal location.

Fifty simulations were performed of each algorithm, each growing a tree of 2500 nodes. Three
quantities were evaluated for the lowest-cost path, corresponding to the three components of (48):
(1) path duration; (2) maximum risk bound, i.e., maxi={0,...,t}∆t(x̂t, Pt); and (3) accumulated risk,

defined as ∆A ≈ dt
∑tf

t=0 ∆t(x̂t, Pxt) (this is distinct from the path-wise risk bound (37)).
Figure 5 charts the evolution of each of these properties as a function of the number of tree

nodes. In each figure, the median over all 50 trials for each algorithm is indicated as a solid
line, while the shaded region surrounding it denotes the 10th-to-90th percentiles. The percentiles
are not displayed when comparing the RRT-based algorithms, where the huge variation in these
properties otherwise obscures the overall trends. Data is only shown once all trials have found
at least one feasible path to goal, a quantity discussed further below. Table 1 gives additional
statistical properties of the solution path after 2500 nodes for each algorithm.

RRT* consistently achieves shorter path durations than CC-RRT* and CC-RRT*-Risk, since
it is not subject to the same robustness requirements (Figure 5(a)). CC-RRT* also consistently
achieves shorter path durations than CC-RRT*-Risk, since CC-RRT* only seeks to minimize path
durations, while CC-RRT*-Risk includes it as one term in a multi-objective optimization. For the
same reason, CC-RRT*-Risk’s path duration does not decrease monotonically like CC-RRT* and
RRT*, though it trends in the same direction.

On the other hand, CC-RRT*-Risk is able to identify much shorter paths than any of the RRT-
based algorithms, including RRT, which does not have to consider robustness requirements (Figure
5(b)). This is largely due to the significant variation in path duration returned by the RRT-based
algorithms: Table 1 notes that the standard deviation of all RRT-based algorithms is about an
order of magnitude larger than their RRT*-based counterparts, while the maximum path durations
returned are about twice as large.

From Table 1, the final solution path returned by RRT* is consistently the shortest; its worst-
case path duration is equal to or lower than the path durations returned in all other algorithm trials.
However, the mean path duration of CC-RRT* is only 2.5% larger than RRT*, despite additionally

18 of 25

American Institute of Aeronautics and Astronautics

(a) Path Duration, RRT*-based algorithms (b) Path Duration, RRT-based algorithms

(c) Maximum Risk Bound, RRT*-based algorithms (d) Maximum Risk Bound, RRT-based algorithms

(e) Accumulated Risk, RRT*-based algorithms (f) Accumulated Risk, RRT-based algorithms

Figure 5. Evolution of path duration, maximum risk bound, and accumulated risk, as a function of
number of nodes, for each algorithm over 50 trials. Median value is indicated as a solid line; the
shaded region denotes the 10th-to-90th percentiles (not shown for right-hand-side figures).

19 of 25

American Institute of Aeronautics and Astronautics

enforcing robustness guarantees via δs. The paths returned by CC-RRT*-Risk are only slightly
longer; its mean path duration is 15% larger than RRT* and 12% larger than CC-RRT*.

In terms of the maximum risk bound, the clearest distinction between the RRT*-based algo-
rithms is that maximum risk tends to increase with more nodes for RRT* and CC-RRT*, while it
tends to decrease with more nodes for CC-RRT*-Risk (Figure 5(c)). Because RRT* and CC-RRT*
do not include any risk-based terms in their cost objectives, the rewiring process will leverage any
margin between the current maximum risk value and the allowable bound to decrease path dura-
tion. As more nodes are added, the path is brought closer to obstacles, and the maximum risk
value tends to converge to its bound. For CC-RRT*, that bound is 1 − δs = 0.2; for RRT*, that
bound approaches 0.5, i.e., the value of the risk bound if the state distribution mean were exactly
on a constraint boundary. CC-RRT*-Risk, however, quickly drives the maximum risk to nearly
zero, with very little variation past 1000 nodes, even though any value less than 0.2 would satisfy
the probabilistic constraints.

Unlike the RRT*-based algorithms, the RRT-based algorithms (Figure 5(d)) show very little
change in their risk as more nodes are added. This is due to the non-optimal nature of RRT-based
algorithms, where the placement of the initial tree samples has a disproportionate impact on the
nature of paths generated. Notably, CC-RRT-Risk (which uses risk terms in its objective) performs
slightly worse than CC-RRT, suggesting that adding risk-based terms to the objective is only useful
in an asymptotically optimal algorithm.

The mean and worst-case values of the maximum risk bound are 1–2 orders of magnitude
smaller for CC-RRT*-Risk than all other algorithms (Table 1). As is the case for path duration,
the standard deviation of all RRT-based algorithms is larger than their RRT*-based counterparts.
For each algorithm except CC-RRT*-Risk, at least one trial brings the maximum risk bound very
close to its allowable bound of 0.2 (CC-RRT, CC-RRT-Risk, CC-RRT*) or 0.5 (RRT, RRT*).
Finally, both CC-RRT* and CC-RRT*-Risk have significantly less variation in the maximum risk
bound than RRT*. The trends for accumulated risk (Figures 5(e), 5(f)) are similar.

Figure 6 shows an overlay of the final solution paths returned by each algorithm after 2500
nodes over the same 50 trials for this scenario (initial state on left, goal on right). The non-optimal
algorithms (Figures 6(a), 6(c), and 6(e)) vary wildly in the qualitative nature of the paths returned,
as suggested by their large corresponding variations in Table 1. There is a slight decrease in the
number of paths which pass near the uncertain bottommost obstacle for CC-RRT (Figure 6(c) and
CC-RRT-Risk (Figure 6(e)), which are risk-aware, compared to RRT (Figure 6(a)), which is not,
but highly variable behavior is still displayed.

The final solution paths returned by the asymptotically optimal algorithms (Figures 6(b), 6(d),
and 6(f)) are much more smooth and consistent; however, they do not all necessarily fall into
the same homotopies. All of the paths returned by the RRT* algorithm come very close to the
boundaries of the leftmost and rightmost obstacles, with very little variation within each homotopy
(Figure 6(b)). However, the paths are split between passing those obstacles from above (19 out of
50) or from below (31 out of 50). Because the environment is geometrically symmetric, and RRT*
is not a risk-aware algorithm, RRT* is likely to consider paths in both homotopies, even though
one is subject to a much higher risk of collision than the other.

CC-RRT* is much less likely to select paths which pass near the uncertain obstacle: 41 of
50 trials pass the leftmost and rightmost obstacles from above (Figure 6(d)). Additionally, all
paths chosen maintain sufficient distance from the obstacles, especially the bottommost obstacle,
to ensure probabilistic feasibility constraints are satisfied. Regardless, the paths returned by the
algorithm are not consistent: 3 of the 50 trials pass the leftmost and rightmost obstacles from
below, while the remaining 6 trials alternate.

CC-RRT*-Risk, which not only acknowledges the risk posed by uncertainty but explicitly opti-
mizes against it via rewiring, consistently identifies paths in the uppermost homotopy in all 50 trials

20 of 25

American Institute of Aeronautics and Astronautics

(a) RRT (b) RRT*

(c) CC-RRT (d) CC-RRT*

(e) CC-RRT-Risk (f) CC-RRT*-Risk

Figure 6. Overlay of final solution paths returned in all 50 trials for each algorithm.

Table 2. Number of nodes sampled until feasible path to goal found (rounded up to nearest 10
samples), and per-node computation results, over 50 trials

Nodes to Feas. Runtime

Algorithm Mean Max per Node (ms)

CC-RRT*-Risk 73 270 17.84

CC-RRT* 80 270 17.04

RRT* 91 460 7.17

CC-RRT-Risk 78 220 1.36

CC-RRT 89 390 1.36

RRT 88 350 0.83

21 of 25

American Institute of Aeronautics and Astronautics

Figure 7. Evolution of computation per node, as
a function of number of nodes, over 50 trials.

Figure 8. Evolution of mean path duration, as a
function of computation time, over 50 trials.

(Figure 6(f)). It is the only algorithm of the six to recognize the asymmetry of this environment
due to its uncertainty in all trials. In parts of the environment where the risk is relatively low,
CC-RRT*-Risk exhibits more variation in its paths than seen from either RRT* or CC-RRT*. But
as the system passes the uppermost obstacle, there is very little variation in the paths at all: all
50 paths pass very near the centerline of that corridor. Because CC-RRT*-Risk incorporates risk
bounds within its objective, regions with higher risk correspond to larger cost gradients, and thus
less variation.

Table 2 shows the mean and maximum number of nodes required to find a feasible path to the
goal region Xgoal across all trials for each scenario considered above, rounded up to the nearest 10
samples. The number of nodes required is fairly consistent across all algorithms: a feasible path is
found on average in under 100 nodes, while a feasible path is always found within 500 nodes. This
implies that the effect of these modifications on finding feasible paths is limited, at best.

Table 2 also shows the average time required to generate a feasible node for each algorithm
across all trials, including failed attempts to connect new samplesb. The most notable increase in
computation comes from switching from an RRT-based algorithm to its RRT*-based equivalent,
resulting in a per-node runtime increase by a factor of 9–13. This factor can be significantly affected
by the complexity of the dynamics and the steering law that is used, as RRT-based algorithms do
not require use of a steering law, and thus must be considered carefully. By comparison, introducing
robustness via chance constraints only results in a runtime increase by a factor of 1.6–2.5 per node,
consistent with previous results.4 The impact of introducing risk-based terms into the cost function
is minimal. Regardless, both CC-RRT*-Risk and CC-RRT* remain suitable for real-time use.

Figure 7 shows an evolution of the computation time required per node, as a function of tree
size; computation has been averaged every 10 nodes to smooth the plots. The computation required
per node for the RRT*-based algorithms increases at a faster rate up to about 700 nodes or so,
where it begins to level off and even decrease slightly. This is likely due to the radius rn of (46)
decreasing over time, limiting the number of rewiring connections attempted.

Finally, 50 more trials were performed for each algorithm in which each Algorithm 3 is given 30
seconds to grow a tree, with no upper bound on the number of nodes. Figure 8 shows the evolution
of the mean path duration, as a function of computation time elapsed, for these trials. Even with
the robustness modifications of CC-RRT* and CC-RRT*-Risk, both algorithms find higher-quality
(in terms of past duration) than any RRT-based algorithms, with robustness guarantees, within
the initial seconds of computation.

bAll simulations were performed in a Java implementation on a quad-core 2.40-GHz processor.

22 of 25

American Institute of Aeronautics and Astronautics

C. Double Integrator

Consider the more complex 2D double integrator dynamics,

xt+1 =

1 0 dt 0

0 1 0 dt

0 0 1 0

0 0 0 1

xt +

1
2dt

2 0

0 1
2dt

2

dt 0

0 dt

ut + wt,

where, again, dt = 0.1 s; the system operates in the same environment as Section VII-B. In addition
to the previous state constraints, this problem is also subject to the velocity state constraints
|vxt | ≤ vmax, |vyt | ≤ vmax, where vmax = 2.5 m/s, as well as the input ut = (axt , a

y
t) constraints

|axt | ≤ ā, |a
y
t | ≤ ā, where ā = 5.0 m/s2.

The system is subject to the same three forms of uncertainty, though their values have changed:

P (3)
x0 = 10−3

[
I2 02

02 02

]
, P (3)

w = 10−6

[
02 02

02 I2

]
, P (3)

cj = 0.05

[
I2 02

02 02

]
, ∀ t.

As in the previous scenario, only the bottommost obstacle is uncertain. The system is required to
satisfy δs = 0.8; no path-wise probability bound is imposed.

The sampling strategy augments the position sampling for the single integrator with velocity
sampling. With some small probability (currently 5%), the 2D velocity is sampled uniformly within
the full velocity constraints |vxt | ≤ vmax, |vyt | ≤ vmax, ensuring that every feasible state has a non-
zero probability of being sampled. Otherwise, the 2D velocity is sampled as

vx = ṽ cos ψ̃, vy = ṽ sin ψ̃,

where ψ̃ is sampled uniformly between 0 and 2π, and ṽ is sampled uniformly between Vmin = 1.0
m/s and Vmax = 2.0 m/s. The steering law fits a cubic spline to each coordinate in order to
maintain an approximate traversal speed v̄ = 1.0 m/s; the details are omitted for brevity. A path
is considered to reach the goal if the final position is within 0.5m of the goal location. The nearby
node function uses a maximum radius µ = 5 m, while µ(Xfree) = 4v2

maxAfree.
Figure 9 demonstrates typical trees and final solution paths generated by CC-RRT* and CC-

RRT*-Risk for this scenario. Similar behaviors are observed for both algorithms as in the single-
integrator scenarios, though the degree of suboptimality in the solution paths is higher due to both
the reduced number of nodes and the increased state dimension. Regardless, all paths in each tree
satisfy probabilistic feasibility requirements for δs = 0.8, with additional conservatism induced in
the solution path by using a risk-based objective in Figure 9(b).

Finally, Figure 10 shows a 1000-node CC-RRT*-Risk tree and solution path generated for the
double integrator dynamics (subject to the same localization error and process noise) in a cluttered
20m × 10m environment, consisting of 30 obstacles with randomized placement uncertainty. This
demonstrates the scalability of the CC-RRT* algorithm to very complex environments, in both the
number of obstacles and the uncertainty characterization.

VIII. Conclusions

This paper has introduced the CC-RRT* algorithm, for robust, scalable, and asymptotically
optimal path planning. The algorithm efficiently computes bounds on risk of constraint violation
using a chance constraint formulation – expanded in this work to consider path-wise feasibility
bounds and probabilistic environmental boundaries – to ensure all trajectories considered are both

23 of 25

American Institute of Aeronautics and Astronautics

(a) CC-RRT* (b) CC-RRT*-Risk

Figure 9. Demonstrative 1500-node trees and minimum-cost paths generated by the CC-RRT* algo-
rithms for the double integrator.

Figure 10. Demonstrative 1000-node tree and minimum-cost path generated by the CC-RRT*-Risk
algorithm for the double integrator in a highly-cluttered and uncertain environment.

dynamically and probabilistically feasible. These risk bounds are also utilized within a novel,
risk-based cost function, shown to be admissible for RRT*, such that the RRT* framework can be
leveraged to ensure asymptotic optimality of paths returned. Simulation results have demonstrated
that CC-RRT* can be utilized to identify smooth, robust trajectories, displaying a level of risk-
averse behavior specified by the user.

Future work will expand the theory behind CC-RRT*, including extension to more complex
cost functions, nonlinear dynamics, and/or non-Gaussian uncertainty.28 Additional simulation
and hardware results will be explored for more complex scenarios and dynamics, including non-
holonomic vehicles;29 dynamic obstacles, including pursuit-evasion scenarios;30 and dynamic real-
time operations.

References

1K. Iagnemma and M. Buehler, eds. Special issue on the DARPA grand challenge, part 1. Journal of Field
Robotics, 23(8):461–652, August 2006.

2L. Blackmore, H. Li, and B. Williams. A probabilistic approach to optimal robust path planning with obstacles.
In American Control Conference (ACC), 2006.

3S. M. LaValle. Rapidly-exploring random trees: A new tool for path planning. Technical Report 98-11, Iowa
State University, October 1998.

4B. Luders, M. Kothari, and J. P. How. Chance constrained RRT for probabilistic robustness to environmental
uncertainty. In AIAA Guidance, Navigation, and Control Conference (GNC), Toronto, Canada, August 2010. (AIAA-

24 of 25

American Institute of Aeronautics and Astronautics

2010-8160).
5G. S. Aoude, B. D. Luders, J. M. Joseph, N. Roy, and J. P. How. Probabilistically safe motion planning to

avoid dynamic obstacles with uncertain motion patterns. Autonomous Robots, 35(1):51–76, 2013.
6Y. Kuwata, J. Teo, G. Fiore, S. Karaman, E. Frazzoli, and J. P. How. Real-time motion planning with

applications to autonomous urban driving. IEEE Transactions on Control Systems Technology, 17(5):1105–1118,
September 2009.

7S. Karaman and E. Frazzoli. Sampling-based algorithms for optimal motion planning. International Journal
of Robotics Research, 30(7):846–894, June 2011.

8S. Karaman and E. Frazzoli. Incremental sampling-based algorithms for optimal motion planning. In Robotics:
Science and Systems (RSS), 2010.

9S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics. MIT Press, 2005.
10S. M. LaValle and R. Sharma. On motion planning in changing, partially-predictable environments. Interna-

tional Journal of Robotics Research, 16(6):775–824, 1995.
11M. Ono and B. C. Williams. Iterative risk allocation: A new approach to robust model predictive control with

a joint chance constraint. In Proceedings of the IEEE Conference on Decision and Control, 2008.
12L. Blackmore and M. Ono. Convex chance constrained predictive control without sampling. In Proceedings of

the AIAA Guidance, Navigation and Control Conference, 2009.
13M. Ono, L. Blackmore, and B. C. Williams. Chance constrained finite horizon optimal control with nonconvex

constraints. In Proceedings of the American Control Conference, 2010.
14M. P. Vitus and Tomlin. C. J. A hybrid method for chance constrained control in uncertain environments. In

IEEE Conference on Decision and Control (CDC), 2012.
15L. E. Kavraki, P. Svestka, J. C. Latombe, and M. H. Overmars. Probabilistic roadmaps for path planning

in high-dimensional configuration spaces. IEEE Transactions on Robotics and Automation, 12(4):566–580, August
1996.

16P. E. Missiuro and N. Roy. Adapting probabilistic roadmaps to handle uncertain maps. In IEEE International
Conference on Robotics and Automation (ICRA), pages 1261–1267, Orlando, FL, May 2006.

17L. J. Guibas, D. Hsu, H. Kurniawati, and E. Rehman. Bounded uncertainty roadmaps for path planning. In
Proceedings of the International Workshop on the Algorithmic Foundations of Robotics, 2008.

18B. Burns and O. Brock. Sampling-based motion planning with sensing uncertainty. In IEEE International
Conference on Robotics and Automation (ICRA), pages 3313–3318, Roma, Italy, April 2007.

19R. Alterovitz, T. Siméon, and K. Goldberg. The stochastic motion roadmap: A sampling framework for
planning with Markov motion uncertainty. In Proceedings of Robotics: Science and Systems, 2007.

20V. A. Huynh, S. Karaman, and E. Frazzoli. An incremental sampling-based algorithm for stochastic optimal
control. In IEEE International Conference on Robotics and Automation (ICRA), pages 2865–2872, Saint Paul, MN,
2012.

21S. Prentice and N. Roy. The belief roadmap: Efficient planning in belief space by factoring the covariance.
International Journal of Robotics Research, 28(11-12):1448–1465, 2009.

22A. Agha-mohammadi, S. Chakravorty, and N. M. Amato. FIRM: Feedback controller-based information-
state roadmap – a framework for motion planning under uncertainty –. In IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 4284–4291, San Francisco, CA, 2011.

23N. A. Melchior and R. Simmons. Particle RRT for path planning with uncertainty. In IEEE International
Conference on Robotics and Automation (ICRA), 2007.

24G. Kewlani, G. Ishigami, and K. Iagnemma. Stochastic mobility-based path planning in uncertain environ-
ments. In Proceedings of the IEEE International Conference on Intelligent Robots and Systems, pages 1183–1189, St.
Louis, MO, USA, October 2009.

25R. Pepy, M. Kieffer, and E. Walter. Reliable robust path planning. International Journal of Applied Math and
Computer Science, 1:1–11, 2009.

26J. van den Berg, P. Abbeel, and K. Goldberg. Lqg-mp: Optimized path planning for robots with motion
uncertainty and imperfect state information. International Journal of Robotics Research, 30(7):1448–1465, 2011.

27A. Bry and N. Roy. Rapidly-exploring random belief trees for motion planning under uncertainty. In IEEE
International Conference on Robotics and Automation (ICRA), 2011. To appear.

28B. Luders and J. P. How. Probabilistic feasibility for nonlinear systems with non-Gaussian uncertainty using
RRT. In AIAA Infotech@Aerospace Conference, St. Louis, MO, March 2011. (AIAA-2011-1589).

29S. Karaman and E. Frazzoli. Sampling-based optimal motion planning for non-holonomic dynamical systems.
In IEEE International Conference on Robotics and Automation (ICRA), pages 5026–5032, Karlsruhe, Germany, 2013.

30S. Karaman and E. Frazzoli. Incremental sampling-based algorithms for a class of pursuit-evasion games. In
Workshop on the Algorithmic Foundations of Robotics, Atlanta, GA, 2010.

25 of 25

American Institute of Aeronautics and Astronautics

	I Introduction
	II Related Work
	III Problem Statement
	IV Chance Constraints
	V CC-RRT* Algorithm
	VI Analysis
	VII Simulation Results
	A Illustrative Scenario
	B Simulation Trials
	C Double Integrator

	VIII Conclusions

