
MIT Open Access Articles

Dynamic Vehicle Routing for Robotic Systems

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Bullo, F., E. Frazzoli, M. Pavone, K. Savla, and S. L. Smith. “Dynamic Vehicle Routing for
Robotic Systems.” Proceedings of the IEEE 99, no. 9 (September 2011): 1482-1504.

As Published: http://dx.doi.org/10.1109/jproc.2011.2158181

Publisher: Institute of Electrical and Electronics Engineers (IEEE)

Persistent URL: http://hdl.handle.net/1721.1/81456

Version: Author's final manuscript: final author's manuscript post peer review, without
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike 3.0

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/81456
http://creativecommons.org/licenses/by-nc-sa/3.0/

1

Dynamic Vehicle Routing for Robotic Systems
Francesco Bullo Emilio Frazzoli Marco Pavone Ketan Savla Stephen L. Smith

Abstract—Recent years have witnessed great advancements in
the science and technology of autonomy, robotics and networking.
This paper surveys recent concepts and algorithms for dynamic
vehicle routing (DVR), that is, for the automatic planning of
optimal multi-vehicle routes to perform tasks that are generated
over time by an exogenous process. We consider a rich variety
of scenarios relevant for robotic applications. We begin by
reviewing the basic DVR problem: demands for service arrive
at random locations at random times and a vehicle travels to
provide on-site service while minimizing the expected wait time
of the demands. Next, we treat different multi-vehicle scenarios
based on different models for demands (e.g., demands with
different priority levels and impatient demands), vehicles (e.g.,
motion constraints, communication and sensing capabilities), and
tasks. The performance criterion used in these scenarios is
either the expected wait time of the demands or the fraction
of demands serviced successfully. In each specific DVR scenario,
we adopt a rigorous technical approach that relies upon methods
from queueing theory, combinatorial optimization and stochastic
geometry. First, we establish fundamental limits on the achievable
performance, including limits on stability and quality of service.
Second, we design algorithms, and provide provable guarantees
on their performance with respect to the fundamental limits.

I. INTRODUCTION

This survey presents a joint algorithmic and queueing ap-
proach to the design of cooperative control and task allocation
strategies for networks of uninhabited vehicles and robots.
The approach enables groups of robots to complete tasks in
uncertain and dynamically changing environments, where new
task requests are generated in real-time. Applications include
surveillance and monitoring missions, as well as transportation
networks and automated material handling.

As a motivating example, consider the following scenario:
a sensor network is deployed in order to detect suspicious
activity in a region of interest. (Alternatively, the sensor
network is replaced by a high-altitude sensory-rich aircraft
loitering over the region.) In addition to the sensor network,
a team of unmanned aerial vehicles (UAVs) is available and

Submitted to the Proceedings of the IEEE in May 2010, revised in February
2011. This research was partially supported by AFOSR award FA 8650-07-2-
3744, ARO MURI award W911NF-05-1-0219, NSF awards ECCS-0705451
and CMMI-0705453, and ARO award W911NF-11-1-0092.

F. Bullo is with the Center for Control, Dynamical Systems and Com-
putation and with the Department of Mechanical Engineering, University of
California, Santa Barbara, CA 93106 (bullo@engineering.ucsb.edu).

E. Frazzoli is with the Laboratory for Information and Decision Systems,
Department of Aeronautics and Astronautics, Massachusetts Institute of
Technology, Cambridge, MA 02139 (frazzoli@mit.edu).

M. Pavone is with the Jet Propulsion Laboratory, California Institute of
Technology, Pasadena, CA 91109 (marco.pavone@jpl.nasa.gov).

K. Savla is with the Laboratory for Information and Decision Systems,
Massachusetts Institute of Technology, Cambridge, MA 02139 (ksavla@mit.
edu).

S. L. Smith is with the Department of Electrical and Computer Engineering,
University of Waterloo, Waterloo ON, N2L 3G1 Canada (stephen.smith@
uwaterloo.ca).

The authors are listed in alphabetical order.

each UAV is equipped with close-range high-resolution on-
board sensors. Whenever a sensor detects a potential event,
a request for close-range observation by one of the UAVs
is generated. In response to this request, a UAV visits the
location to gather close-range information and investigates the
cause of the alarm. Each request for close-range observation
might include priority levels or time windows during which the
inspection must occur and it might require an on-site service
time. In summary, from a control algorithmic viewpoint, each
time a new request arises, the UAVs need to decide which
vehicle will inspect that location and along which route. Thus,
the problem is to design algorithms that enable real-time task
allocation and vehicle routing.

Accordingly, this paper surveys allocation and routing al-
gorithms that typically blend ideas from receding-horizon re-
source allocation, distributed optimization, combinatorics and
control. The key novelty in our approach is the simultaneous
introduction of stochastic, combinatorial and queueing aspects
in the distributed coordination of robotic networks.

Static vehicle routing: In the recent past, considerable ef-
forts has been devoted to the problem of how to cooperatively
assign and schedule demands for service that are defined over
an extended geographical area [1], [2], [3], [4], [5]. In these
papers, the main focus is in developing distributed algorithms
that operate with knowledge about the demands locations
and with limited communication between robots. However,
the underlying mathematical model is static, in that no new
demands arrive over time. Thus, the centralized version of the
problem fits within the framework of the static vehicle routing
problem (see [6] for a thorough introduction to this problem,
known in the operations research literature as the Vehicle
Routing Problem (VRP)), whereby: (i) a team of m vehicles
is required to service a set of n demands in a 2-dimensional
space; (ii) each demand requires a certain amount of on-
site service; (iii) the goal is to compute a set of routes that
optimizes the cost of servicing (according to some quality of
service metric) the demands. In general, most of the available
literature on routing for robotic networks focuses on static
environments and does not properly account for scenarios in
which dynamic, stochastic and adversarial events take place.

Dynamic vehicle routing: The problem of planning routes
through service demands that arrive during a mission exe-
cution is known as the “dynamic vehicle routing problem”
(abbreviated as the DVR problem). See Figure 1 for an
illustration of DVR. There are two key differences between
static and dynamic vehicle routing problems. First, planning
algorithms should actually provide policies (in contrast to pre-
planned routes) that prescribe how the routes should evolve as
a function of those inputs that evolve in real-time. Second,
dynamic demands (i.e., demands that vary over time) add
queueing phenomena to the combinatorial nature of vehicle

2

Fig. 1. An illustration of dynamic vehicle routing for a robotic system. From
panel #1 to #2: vehicles are assigned to customers and select routes. Panel
#3: the DVR problem is how to re-allocate and re-plan routes when new
customers appear.

routing. In such a dynamic setting, it is natural to focus
on steady-state performance instead of optimizing the perfor-
mance for a single demand. Additionally, system stability in
terms of the number of waiting demands is an issue to be
addressed.

Algorithmic queueing theory for DVR: The objective of
this work is to present a joint algorithmic and queueing ap-
proach to the design of cooperative control and task allocation
strategies for networks of uninhabited vehicles required to
operate in dynamic and uncertain environments. This approach
is based upon the pioneering work of Bertsimas and Van
Ryzin [7], [8], [9], who introduced queueing methods to solve
the simplest DVR problem (a vehicle moves along straight
lines and visits demands whose time of arrival, location
and on-site service are stochastic; information about demand
location is communicated to the vehicle upon demand arrival);
see also the earlier related work [10].

Starting with these works [7], [8], [9] and integrating ideas
from dynamics, combinatorial optimization, teaming, and dis-
tributed algorithms, we have recently developed a systematic
approach to tackle complex dynamic routing problems for
robotic networks. We refer to this approach as “algorithmic
queueing theory” for dynamic vehicle routing. The power of
algorithmic queueing theory stems from the wide spectrum of
aspects, critical to the routing of robotic networks, for which
it enables a rigorous study; specific examples taken from our
work in the past few years include complex models for the
demands such as time constraints [11], [12], service priori-
ties [13], and translating demands [14], problems concerning
robotic implementation such as adaptive and decentralized
algorithms [15], [16], complex vehicle dynamics [17], [18],
limited sensing range [19], and team forming [20], and even
integration of humans in the design space [21].

Survey content: In this work we provide a detailed
account of algorithmic queueing theory for DVR, with an
emphasis on robotic applications. We start in Section II by
reviewing the possible approaches to dynamic vehicle routing
problems. Then, in Section III, we describe the foundations of
algorithmic queueing theory, which lie on the aforementioned
works of Bertsimas and Van Ryzin. In the following four
sections we discuss some of our recent efforts in applying
algorithmic queueing theory to realistic dynamic routing prob-
lems for robotic systems.

Specifically, in Section IV we present routing policies for
DVR problems that (i) are spatially distributed, scalable to
large networks, and adaptive to network changes, (ii) have

remarkably good performance guarantees in both the light-
load regime (i.e., when the arrival rate for the demands is
small) and in the heavy-load regime (i.e., when the arrival rate
for the demands is large). Here, by network changes we mean
changes in the number of vehicles, the arrival rate of demands,
and the characterization of the on-site service requirement.

In Section V we discuss time-constrained and prioritized
service. For time-constrained DVR problems, we establish
upper and lower bounds on the optimal number of vehicles for
a given level of service quality (defined as the desired fraction
of demands that must receive service within the deadlines).
Additionally, we rigorously characterize two service policies:
in light load the DVR problem with time constraints is
closely related to a particular facility location problem, and in
moderate and heavy load, static vehicle routing methods, such
as solutions of traveling salesman problems, can provide good
performance. We then study DVR problems in which demands
have an associated level of priority (or importance). The
problem is characterized by the number of different priority
classes n and their relative levels of importance. We provide
lower bounds on the optimal performance and a service policy
which is guaranteed to perform within a factor 2n2 of the
optimal in the heavy-load.

We then study the implications of vehicle motion constraints
in Section VI. We focus on the Dubins vehicle, namely,
a nonholonomic vehicle that is constrained to move along
paths of bounded curvature without reversing direction. For
m Dubins vehicles, the DVR problem with arrival rate λ and
with uniform spatial distribution has the following properties:
the system time is (i) of the order λ2/m3 in heavy-load, (ii)
of the order 1/

√
m in the light-load if the vehicle density is

small, and of the order 1/ 3
√
m in the light-load if the density

of the vehicles is high.
In Section VII we discuss the case when vehicles are

heterogeneous, each capable of providing a specific type of
service. Each demand may require several different services,
implying that collaborative teams of vehicles must be formed
to service a demand. We present three simple policies for this
problem. For each policy we show that there is a broad class
of system parameters for which the policy’s performance is
within a constant factor of the optimal.

Finally, in Section VIII we summarize other recent results
in DVR and draw our conclusions.

II. ALGORITHMIC APPROACHES TO DVR PROBLEMS

In this section we review possible approaches to DVR
problems and motivate our proposed algorithmic queueing
theory approach.

A. On the Adaptation of Queueing Policies and Static Methods

A naive, yet reasonable approach to DVR problems would
be to adapt classic queueing policies to spatial queueing
systems. However, perhaps surprisingly, this adaptation is not
at all straightforward. For example, policies based on a First-
Come First-Served discipline, whereby tasks are fulfilled in the
order in which they arrive, are unable to stabilize the system
for all possible task arrival rates, in the sense that under such

3

policies the average number of tasks grows over time without
bound [7, page 608].

A second possibility is to combine static routing methods
(e.g., nearest neighbor or VRP-like methods) and sequential re-
optimization algorithms. This approach, indeed, will be at the
core of most of the policies we present in this work. However,
the joint selection of a static routing method and of the re-
optimization horizon in presence of robot and task constraints
(e.g., differential motion constraints or task priorities) makes
the application of this approach far from trivial. For example,
one can show that an erroneous selection of the re-optimization
horizon can lead to pathological scenarios where no task
receives service [22]. Likewise, direct application of VRP-
like methods might lead to infeasible paths for vehicles with
differential motion constraints. Finally, performance criteria
in dynamic settings commonly differ from those of the corre-
sponding static problems (e.g., in a dynamic setting, the wait
for service delivery might be a more important factor than the
total vehicle travel cost).

The general conclusion is that DVR problems require ad
hoc routing algorithms together with tailored performance
analyses. There are currently two main algorithmic approaches
that allow both a rigorous synthesis and a performance analysis
of routing algorithms for DVR problems; we review these two
approaches next.

B. Online Algorithms

An online algorithm is one that operates based on input in-
formation given up to the current time. Thus, these algorithms
are designed to operate in scenarios where the entire input is
not known at the outset, and new pieces of the input should
be incorporated as they become available. The distinctive
feature of the online algorithm approach is the method that is
used to evaluate the performance of online algorithms, which
is called competitive analysis [23]. In competitive analysis,
the performance of an online algorithm is compared to the
performance of a corresponding offline algorithm (i.e., an
algorithm that has a priori knowledge of the entire input) in
the worst case scenario. Specifically, an online algorithm is
c-competitive if its cost on any problem instance is at most c
times the cost of an optimal offline algorithm:

Costonline(I) ≤ c Costoptimal offline(I), ∀ problem instances I.

In the recent past, dynamic vehicle routing problems have
been studied in this framework, under the name of the online
traveling repairman problem [24], [25], [26].

While the online algorithm approach applied to DVR has
led to numerous results and interesting insights, it leaves some
questions unanswered, especially in the context of robotic
networks. First, competitive analysis is a worst-case analysis,
hence, the results are often overly pessimistic for normal prob-
lem instances. Moreover, in many applications there is some
probabilistic problem structure (e.g., distribution of the inter-
arrival times, spatial distribution of future demands, distribu-
tion of on-site service times etc.), that can be advantageously
exploited by the vehicles. In online algorithms, this additional
information is not taken into account. Second, competitive

analysis is used to bound the performance relative to the
optimal offline algorithm, and thus it does not give an absolute
measure of performance. In other words, an optimal online
algorithm is an algorithm with minimum “cost of causality” in
the worst-case scenario, but not necessarily with the minimum
worst-case cost. Finally, many important real-world constraints
for DVR, such as time windows, priorities, differential con-
straints on vehicle’s motion and the requirement of teams to
fulfill a demand “have so far proved to be too complex to be
considered in the online framework” [27, page 206]. Some of
these drawbacks have been recently addressed by [28] where
a combined stochastic and online approach is proposed for a
general class of combinatorial optimization problems and is
analyzed under some technical assumptions.

This discussion motivates an alternative approach for DVR
in the context of robotic networks, based on probabilistic
modeling, and average-case analysis.

C. Algorithmic Queueing Theory

Algorithmic queueing theory embeds the dynamic vehicle
routing problem within the framework of queueing theory and
overcomes most of the limitations of the online algorithm
approach; in particular, it allows to take into account several
real-world constraints, such as time constraints and differential
constraints on vehicles’ dynamics. We call this approach
algorithmic queueing theory since its objective is to synthesize
an efficient control policy, whereas in traditional queueing
theory the objective is usually to analyze the performance of a
specific policy. Here, an efficient policy is one whose expected
performance is either optimal or optimal within a constant
factor.1 Algorithmic queueing theory basically consists of the
following steps:

(i) queueing model of the robotic system and analysis of
its structure;

(ii) establishment of fundamental limitations on perfor-
mance, independent of algorithms; and

(iii) design of algorithms that are either optimal or constant-
factor away from optimal, possibly in specific asymp-
totic regimes.

Finally, the proposed algorithms are evaluated via numerical,
statistical and experimental studies, including Monte-Carlo
comparisons with alternative approaches.

In order to make the model tractable, customers are usually
considered “statistically independent” and their arrival process
is assumed stationary (with possibly unknown parameters).
Because these assumptions can be unrealistic in some scenar-
ios, this approach has its own limitations. The aim of this
paper is to show that algorithmic queueing theory, despite
these disadvantages, is a very useful framework for the design
of routing algorithms for robotic networks and a valuable
complement to the online algorithm approach.

1The expected performance of a policy is the expected value of the
performance over all possible inputs (i.e., demand arrival sequences). A policy
performs within a constant factor κ of the optimal if the ratio between the
policy’s expected performance and the optimal expected performance is upper
bounded by κ.

4

III. ALGORITHMIC QUEUEING THEORY FOR DVR

In this section we describe algorithmic queueing theory. We
start with a short review of some fundamental concepts from
the locational optimization literature, and then we introduce
the general approach.

A. Preliminary Tools

The Euclidean Traveling Salesman Problem (in short, TSP)
is formulated as follows: given a set D of n points in Rd,
find a minimum-length tour (i.e., a closed path that visits all
points exactly once) of D. More properties of the TSP tour
can be found in Section A of the Appendix. In this paper, we
will present policies that require real-time solutions of TSPs
over possibly large point sets; this can indeed be achieved by
using efficient approximation algorithms presented in Section
B of the Appendix.

Let Q ⊂ R2 be a bounded, convex set (the following
concepts can be similarly defined in higher dimensions). Let
P = (p1, . . . , pm) be an array of m distinct points in Q. The
Voronoi diagram of Q generated by P is an array of sets,
denoted by V(P) = (V1(P), . . . , Vm(P)), defined by

Vi(P) = {x ∈ Q| ‖x− pi‖ ≤ ‖x− pj‖, ∀j ∈ {1, . . . ,m}},
where ‖ · ‖ denotes the Euclidean norm in R2. We refer to P
as the set of generators of V(P), and to Vi(P) as the Voronoi
cell or the region of dominance of the ith generator.

The expected distance between a random point q, generated
according to a probability density function ϕ : Q → R≥0, and
the closest point in P is given by

Hm(P,Q) := E
[
mink∈{1,...,m} ‖pk − q‖

]
.

The function Hm is known in the locational optimization
literature as the continuous Weber function or the continu-
ous multi-median function; see [29], [30] and the references
therein. The m-median of the set Q with density ϕ is the
global minimizer

P ∗m(Q) = arg min
P∈Qm

Hm(P,Q).

We let H∗m(Q) = Hm(P ∗m(Q),Q) be the global minimum
of Hm. The set of critical points of Hm contains all arrays
(p1, . . . , pm) with distinct entries and with the property that
each point pk is simultaneously the generator of the Voronoi
cell Vk(P) and the median of Vk(P). We refer to such Voronoi
diagrams as median Voronoi diagrams. It is possible to show
that a median Voronoi diagram always exists for any bounded
convex domain Q and density ϕ. More properties of the multi-
median function are discussed in Section C of the Appendix.

B. Queueing Model for DVR

Here we review the model known in the literature as the
m-vehicle Dynamic Traveling Repairman Problem (m-DTRP)
and introduced in [7], [8].

Consider m vehicles free to move, at a constant speed
v, within R2. The extension to higher-dimensional setups is
straightforward unless otherwise noted. On the other hand,
constraints on the motion of the vehicles (e.g., obstacles)

require in general non-trivial extensions of our approach, and
our results do not necessarily hold.

Demands are generated in a bounded and convex set Q,
called the environment, according to a homogeneous (i.e.,
time-invariant) spatio-temporal Poisson process, with time
intensity λ ∈ R>0, and spatial density ϕ : Q → R>0. In other
words, demands arrive to Q according to a Poisson process
with intensity λ, and their locations {Xj ; j ≥ 1} are i.i.d.
(i.e., independent and identically distributed) and distributed
according to a density ϕ whose support is Q. Many results in
this paper extend to the case in which Q is not convex, and we
refer the interested reader to our full-length papers for more
details.

A demand’s location becomes known (is realized) at its
arrival epoch; thus, at time t we know with certainty the
locations of demands that arrived prior to time t, but future
demand locations form an i.i.d. sequence. The density ϕ
satisfies:

P [Xj ∈ S] =
∫
S

ϕ(x) dx ∀S ⊆ Q, and
∫
Q
ϕ(x) dx = 1.

At each demand location, vehicles spend some time s ≥ 0
in on-site service that is i.i.d. and generally distributed with
finite first and second moments denoted by s̄ > 0 and s2. A
realized demand is removed from the system after one of the
vehicles has completed its on-site service. We define the load
factor % := λs̄/m.

The system time of demand j, denoted by Tj , is defined as
the elapsed time between the arrival of demand j and the time
one of the vehicles completes its service. The waiting time of
demand j, Wj , is defined by Wj = Tj − sj . The steady-state
system time is defined by T := lim supj→∞ E [Tj]. A policy
for routing the vehicles is said to be stable if the expected
number of demands in the system is uniformly bounded at
all times. A necessary condition for the existence of a stable
policy is that % < 1; we shall assume % < 1 throughout the
paper. When we refer to light-load conditions, we consider
the case %→ 0+, in the sense that λ→ 0+; when we refer to
heavy-load conditions, we consider the case % → 1−, in the
sense that λ→ (m/s̄)−.

Let P be the set of all causal, stable, and time-invariant
routing policies and Tπ be the system time of a particular
policy π ∈ P . The m-DTRP is then defined as the problem
of finding a policy π∗ ∈ P (if one exists) such that

T
∗

:= Tπ∗ = inf
π∈P

Tπ.

In general, it is difficult to characterize the optimal achiev-
able performance T

∗
and to compute the optimal policy π∗

for arbitrary values of the problem parameters λ, m, etc. It
is instead possible and useful to consider particular ranges of
parameter values and, specifically, asymptotic regimes such
as the light-load and the heavy-load regimes. For the purpose
of characterizing asymptotic performance, we briefly review
some useful notation. For f, g : N → R, f ∈ O(g)
(respectively, f ∈ Ω(g)) if there exist N0 ∈ N and k ∈ R>0

such that |f(N)| ≤ k|g(N)| for all N ≥ N0 (respectively,
|f(N)| ≥ k|g(N)| for all N ≥ N0). If f ∈ O(g) and
f ∈ Ω(g), then the notation f ∈ Θ(g) is used.

5

C. Lower Bounds on the System Time

As in many queueing problems, the analysis of the DTRP
problem for all the values of the load factor % in (0, 1) is
difficult. In [7], [8], [9], [31], lower bounds for the optimal
steady-state system time are derived for the light-load case
(i.e., % → 0+), and for the heavy-load case (i.e., % → 1−).
Subsequently, policies are designed for these two limiting
regimes, and their performance is compared to the lower
bounds.

For the light-load case, a tight lower bound on the system
time is derived in [8]. In the light-load case, the lower bound
on the system time is strongly related to the solution of the
m-median problem:

T
∗ ≥ 1

v
H∗m(Q) + s̄, as %→ 0+. (1)

The bound is tight: there exist policies whose system times,
in the limit % → 0+, attain this bound; we present such
asymptotically optimal policies for the light-load case below.

Two lower bounds exist for the heavy-load case [9], [31]
depending on whether one is interested in biased policies or
unbiased policies.

Definition III.1 (Spatially biased and unbiased policies). Let
X be the location of a randomly chosen demand and W be
its wait time. A policy π is said to be

(i) spatially unbiased if for every pair of sets S1, S2 ⊆ Q
E [W |X ∈ S1] = E [W |X ∈ S2]; and

(ii) spatially biased if there exist sets S1, S2 ⊆ Q such that

E [W |X ∈ S1] > E [W |X ∈ S2].

Within the class of spatially unbiased policies in P , the
optimal system time is lower bounded by

T
∗
U ≥

β2
TSP,2

2

λ
(∫
Q ϕ

1/2(x)dx
)2

m2 v2 (1− %)2
as %→ 1−, (2)

where βTSP,2 ' 0.7120 ± 0.0002 (for more detail on the
constant βTSP,2, we refer the reader to Appendix A).

Within the class of spatially biased policies in P , the
optimal system time is lower bounded by

T
∗
B ≥

β2
TSP,2

2

λ
(∫
Q ϕ

2/3(x)dx
)3

m2 v2 (1− %)2
as %→ 1−. (3)

Both bounds (2) and (3) are tight: there exist policies whose
system times, in the limit % → 1−, attain these bounds;
therefore the inequalities in (2) and (3) could indeed be
replaced by equalities. We present asymptotically optimal
policies for the heavy-load case below. It is shown in [9] that
the lower bound in equation (3) is always less than or equal
to the lower bound in equation (2) for all densities ϕ.

We conclude with some remarks. First, it is possible to show
(see [9], Proposition 1) that a uniform spatial density function
leads to the worst possible performance and that any deviation
from uniformity in the demand distribution will strictly lower
the optimal mean system time in both the unbiased and biased
case. Additionally, allowing biased service results in a strict

reduction of the optimal expected system time for any non-
uniform density ϕ. Finally, when the density is uniform there
is nothing to be gained by providing biased service.

D. Centralized and Ad-Hoc Policies

In this section we present centralized, ad-hoc policies that
are either optimal in light-load or optimal in heavy-load. Here,
we say that a policy is ad-hoc if it performs “well” only for
a limited range of values of %. In light-load, the SQM policy
provides optimal performance (i.e., lim%→0+ T SQM/T

∗
= 1):

The m Stochastic Queue Median (SQM) Pol-
icy [8] — Locate one vehicle at each of the m
median locations for the environment Q. When
demands arrive, assign them to the vehicle corre-
sponding to the nearest median location. Have each
vehicle service its respective demands in First-Come,
First-Served (FCFS) order returning to its median
after each service is completed.

This policy, although optimal in light-load, has two charac-
teristics that limit its application to robotic networks: First,
it quickly becomes unstable as the load increases, i.e., there
exists %c < 1 such that for all % > %c the system time T SQM
is infinite (hence, this policy is ad-hoc). Second, a central
entity needs to compute the m-median locations and assign
them to the vehicles (hence, from this viewpoint the policy is
centralized).

In heavy-load, the UTSP policy provides optimal unbiased
performance (i.e., lim%→1− TUTSP/T

∗
U = 1):

The Unbiased TSP (UTSP) Policy [9] — Let r be
a fixed positive, large integer. From a central point
in the interior of Q, subdivide the service region into
r wedges Q1, . . . ,Qr such that

∫
Qk ϕ(x)dx = 1/r,

k ∈ {1, . . . , r}. Within each subregion, form sets
of demands of size n/r (n is a design parameter).
As sets are formed, deposit them in a queue and
service them FCFS with the first available vehicle
by forming a TSP on the set and following it in
an arbitrary direction. Optimize over n (see [9] for
details).

It is possible to show that, as %→ 1−,

TUTSP ≤
(

1 +
m

r

) β2
TSP,2

2

λ
(∫
Q ϕ

1/2(x)dx
)2

m2 v2 (1− %)2
; (4)

thus, letting r →∞, the lower bound in (2) is achieved.
The same paper [9] presents an optimal biased policy.

This policy, called Biased TSP (BTSP) Policy, relies on an
even finer partition of the environment and requires ϕ to be
piecewise constant.

Although both the UTSP and the BTSP policies are optimal
within their respective classes, they have two characteristics
that limit their application to robotic networks: First, in the
UTSP policy, to ensure stability, n should be chosen so that
(see [9], page 961)

n >
λ2β2

TSP,2

(∫
Q ϕ

1/2(x) dx
)2

m2 v2 (1− %)2
;

6

therefore, to ensure stability over a wide range of values of
%, the system designer is forced to select a large value for
n. However, if during the execution of the policy the load
factor turns out to be only moderate, demands have to wait for
an excessively large set to be formed, and the overall system
performance deteriorates significantly. Similar considerations
hold for the BTSP policy. Hence, these two policies are ad-
hoc. Second, both policies require a centralized data structure
(the demands’ queue is shared by the vehicles); hence, both
policies are centralized.

Remark III.2 (System time bounds in heavy-load with zero
service time). If s̄ = 0, then the heavy-load regime is defined
as λ/m→ +∞, and all the performance bounds we provide
in this and in the next two sections hold by simply substituting
% = 0. For example, equation (2) reads

T
∗
U ≥

β2
TSP,2

2

λ
(∫
Q ϕ

1/2(x)dx
)2

m2 v2
as λ/m→ +∞. �

IV. ROUTING FOR ROBOTIC NETWORKS:
DECENTRALIZED AND ADAPTIVE POLICIES

In this section we first discuss routing algorithms that
are both adaptive and amenable to decentralized implemen-
tation; then, we present a decentralized and adaptive routing
algorithm that does not require any explicit communication
between the vehicles while still being optimal in the light-
load case.

A. Decentralized and Adaptive Policies
Here, we say that a policy is adaptive if it performs

“well” for every value of % in the range [0, 1). A candidate
decentralized and adaptive control policy is the simple Nearest
Neighbor (NN) policy: at each service completion epoch, each
vehicle chooses to visit next the closest unserviced demand,
if any, otherwise it stops at the current position. Because of
the dependencies among the inter-demand travel distances,
the analysis of the NN policy is difficult and no rigorous
results have been obtained so far [7]; in particular, there are
no rigorous results about its stability properties. Simulation
experiments show that the NN policy performs like a biased
policy and is not optimal in the light-load case orin the heavy-
load case [7], [9]. Therefore, the NN policy lacks provable
performance guarantees (in particular about stability), and does
not seem to achieve optimal performance in light-load or in
heavy-load.

In [15], we study decentralized and adaptive routing policies
that are optimal in light-load and that are optimal unbiased
algorithms in heavy-load. The key idea we pursue is that of
partitioning policies:

Definition IV.1 (Partitioning policies). Given a policy π for
the 1-DTRP and m vehicles, a π-partitioning policy is a family
of multi-vehicle policies such that

(i) the environment Q is partitioned into m openly disjoint
subregions Qk, k ∈ {1, . . . ,m}, whose union is Q,

(ii) one vehicle is assigned to each subregion (thus, there
is a one-to-one correspondence between vehicles and
subregions),

(iii) each vehicle executes the single-vehicle policy π in order
to service demands that fall within its own subregion.

Because Definition IV.1 does not specify how the environ-
ment is actually partitioned, it describes a family of policies
(one for each partitioning strategy) for the m-DTRP. The SQM
policy, which is optimal in light-load, is indeed a partitioning
policy wherebyQ is partitioned according to a median Voronoi
diagram and each vehicle executes inside its own Voronoi
region the policy “service FCFS and return to the median
after each service completion.” Moreover, specific partitioning
policies, which will be characterized in Theorem IV.2, are
optimal or within a constant factor of the optimal in heavy-
load.

In the following, given two functions ϕj : Q → R>0,
j ∈ {1, 2}, with

∫
Q ϕj(x) dx = cj , an m-partition (i.e.,

a partition into m subregions) is simultaneously equitable
with respect to ϕ1 and ϕ2 if

∫
Qi
ϕj(x) dx = cj/m for all

i ∈ {1, . . . ,m} and j ∈ {1, 2}. Theorem 12 in [32] shows that,
given two such functions ϕj , j ∈ {1, 2}, there always exists
an m-partition that is simultaneously equitable with respect to
ϕ1 and ϕ2, and whose subregions Qi are convex. Then, the
following results characterize the optimality of two classes of
partitioning policies [15].

Theorem IV.2 (Optimality of partitioning policies). Assume
π∗ is a single-vehicle, unbiased optimal policy in the heavy-
load regime (i.e., %→ 1−). For m vehicles,

(i) a π∗-partitioning policy based on an m-partition which
is simultaneously equitable with respect to ϕ and ϕ1/2

is an optimal unbiased policy in heavy-load.
(ii) a π∗-partitioning policy based on an m-partition which

is equitable with respect to ϕ does not achieve, in
general, the optimal unbiased performance, however it
is always within a factor m of it in heavy-load.

The above results lead to the following strategy: First, for
the 1-DTRP, one designs an adaptive and unbiased (in heavy-
load) control policy with provable performance guarantees.
Then, by using decentralized algorithms for environment par-
titioning, such as those recently developed in [33], one extends
such single-vehicle policy to a decentralized and adaptive
multi-vehicle policy.

Consider, first, the single vehicle case.
The single-vehicle Divide & Conquer (DC) Policy
— Compute an r-partition {Qk}rk=1 of Q that is
simultaneously equitable with respect to ϕ and ϕ1/2.
Let P̃ ∗1 be the point minimizing the sum of distances
to demands serviced in the past (if no points have
been visited in the past, P̃ ∗1 is set to be a random
point in Q), and let D be the set of outstanding
demands waiting for service. If D = ∅, move
to P̃ ∗1 . If, instead, D 6= ∅, randomly choose a
k ∈ {1, . . . , r} and move to subregion Qk; compute
the TSP tour through all demands in subregion Qk
and service all demands in Qk by following this
TSP tour. If D 6= ∅ repeat the service process in
subregion k + 1 (modulo r).

This policy is unbiased in heavy-load. In particular, if r →

7

+∞, the policy (i) is optimal in light-load and achieves
optimal unbiased performance in heavy-load, and (ii) is stable
in every load condition. It is possible to show that with r = 10
the DC policy is already guaranteed to be within 10% of the
optimal (for unbiased policies) performance in heavy-load. If,
instead, r = 1, the policy (i) is optimal in light-load and
within a factor 2 of the optimal unbiased performance in
heavy-load, (ii) is stable in every load condition, and (iii) its
implementation does not require the knowledge of ϕ. This last
property implies that, remarkably, when r = 1, the DC policy
adapts to all problem data (both % and ϕ). It is worth noting
that when r = 1 and ϕ is constant over Q the DC policy is
similar to the generation policy presented in [34].

The optimality of the SQM policy and Theorem IV.2(i)
suggest the following decentralized and adaptive multi-vehicle
version of the DC policy:

(i) compute an m-median of Q that induces a Voronoi
partition that is equitable with respect to ϕ and ϕ1/2,

(ii) assign one vehicle to each Voronoi region,
(iii) each vehicle executes the single-vehicle DC policy in

order to service demands that fall within its own subre-
gion, by using the median of the subregion instead of
P̃ ∗1 .

For a given Q and ϕ, if there exists an m-median of Q that
induces a Voronoi partition that is equitable with respect to ϕ
and ϕ1/2, then the above policy is optimal both in light-load
and arbitrarily close to optimality in heavy-load, and stabilizes
the system in every load condition. There are two main issues
with the above policy, namely (i) existence of an m-median of
Q that induces a Voronoi partition that is equitable with respect
to ϕ and ϕ1/2, and (ii) how to compute it. In [33], we showed
that for some choices of Q and ϕ a median Voronoi diagram
that is equitable with respect to ϕ and ϕ1/2 fails to exist.
Additionally, in [33], we presented a decentralized partitioning
algorithm that, for any possible choice of Q and ϕ, provides
a partition that is equitable with respect to ϕ and represents a
“good” approximation of a median Voronoi diagram (see [33]
for details on the metrics that we use to judge “closeness”
to median Voronoi diagrams). Moreover, if an m-median of
Q that induces a Voronoi partition that is equitable with
respect to ϕ exists, the algorithm will locally converge to
it. This partitioning algorithm is related to the classic Lloyd
algorithm from vector quantization theory, and exploits the
unique features of power diagrams, a generalization of Voronoi
diagrams.

Accordingly, we define the multi-vehicle Divide & Conquer
policy as follows.

The multi-vehicle Divide & Conquer (m-DC)
Policy — The vehicles run the decentralized parti-
tioning algorithm discussed above (see [33] for more
details) and assign themselves to the subregions (this
part is indeed a by-product of the algorithm in [33]).
Simultaneously, each vehicle executes the single-
vehicle DC policy inside its own subregion.

The m-DC policy is within a factor m of the optimal
unbiased performance in heavy-load (since the algorithm in
[33] always provides a partition that is equitable with respect

to ϕ), and stabilizes the system in every load condition. In
general, the m-DC policy is only suboptimal in light-load;
note, however, that the computation of the global minimum of
the Weber function Hm (which is non-convex for m > 1) is
difficult for m > 1 (it is NP-hard for the discrete version of
the problem); therefore, for m > 1, suboptimality has also to
be expected from any practical implementation of the SQM
policy. If an m-median of Q that induces a Voronoi partition
that is equitable with respect to ϕ exists, the m-DC will locally
converge to it, thus we say that the m-DC policy is “locally”
optimal in light-load.

Note that, when the density is uniform, a partition that is
equitable with respect to ϕ is also equitable with respect to
ϕ1/2; therefore, when the density is uniform the m-DC policy
is arbitrarily close to optimality in heavy-load (see Theorem
IV.2(i)).

The m-DC policy adapts to arrival rate λ, expected on-site
service s̄, and vehicle’s velocity v; however, it requires the
knowledge of ϕ.

Tables I and II provide a synoptic view of the results
available so far; in particular, our policies are compared with
the best unbiased policy available in the literature, i.e., the
UTSP policy with r → ∞. In Table I, an asterisk * signals
that the result is heuristic. Note that there are currently no
results about decentralized and adaptive routing policies that
are optimal in light-load and that are optimal biased algorithms
in heavy-load.

B. A Policy with No Explicit Inter-vehicle Communication

A common theme in cooperative control is the investigation
of the effects of different communication and information shar-
ing protocols on the system performance. Clearly, the ability to
access more information at each single vehicle cannot decrease
the performance level; hence, it is commonly believed that
providing better communication among vehicles will improve
the system’s performance. In [16], we propose a policy for
the DVR that does not rely on dedicated communication
links between vehicles, but only on the vehicles’ knowledge
of outstanding demands. An example is when outstanding
demands broadcast their location, but vehicles are not aware
of one another. We show that, under light load conditions, the
inability of vehicles to communicate explicitly does not limit
the steady-state performance. In other words, the information
contained in the outstanding demands (and hence the effects
of others on them) is sufficient to provide, in light load
conditions, the same convergence properties attained when
vehicles are able to communicate explicitly.

The No (Explicit) Communication (NC) Policy —
Let D be the set of outstanding demands waiting for
service. If D = ∅, move to the point minimizing the
average distance to demands serviced in the past by
each vehicle. If there is no unique minimizer, then
move to the nearest one. If, instead, D 6= ∅, move
towards the nearest outstanding demand location.

In the NC policy, whenever one or more service requests
are outstanding, all vehicles will be pursuing a demand; in
particular, when only one service request is outstanding, all

8

TABLE I
POLICIES FOR THE 1-DTRP

Properties DC Policy, r →∞ DC Policy, r = 1 RH Policy [15] UTSP Policy, r →∞
Light-load performance optimal optimal optimal not optimal

Heavy-load performance optimal within 100 % of the optimal within 100% of the optimal* optimal

Adaptive to λ, s̄, and v yes yes yes no

Adaptive to ϕ no yes yes no

TABLE II
POLICIES FOR THE m-DTRP

Properties m-DC Policy, r →∞ UTSP Policy, r →∞
Light-load performance “locally” optimal not optimal

Heavy-load performance optimal for uniform ϕ, within m of optimal unbiased in general optimal

Adaptive to λ, s̄, and v yes no

Adaptive to ϕ no no

Distributed yes no

vehicles will move towards it. When the demand queue is
empty, vehicles will either (i) stop at the current location, if
they have visited no demands yet, or (ii) move to their ref-
erence point, as determined by the set of demands previously
visited.

In [16], we prove that the system time provided by the NC
policy converges to a critical point (either a saddle point or a
local minimum) of H∗m(Q) with high probability as λ→ 0+.
Let us underline that, in general, the achieved critical point
strictly depends on the initial positions of the vehicles. We
cannot exclude that the algorithm so designed will converge
indeed to a saddle point instead of a local minimum. This
is due to the fact that the algorithm does not follow the
steepest direction of the gradient of the function Hm, but
just the gradient with respect to one of the variables. On
the other hand, since the algorithm is based on a sequence
of demands and at each phase we are trying to minimize
a different cost function, it can be proved that the critical
points reached by this algorithm are no worse than the critical
points reached knowing a priori the distribution ϕ. In [16], we
also report results from illustrative numerical experiments that
compare the performance of the NC policy with a sensor-
based policy according to which a demand is considered
only by the vehicle whose reference point is closest to the
demand location at the time of its generation. We observe that,
as λ increases, the performance of the NC policy degrades
significantly, almost approaching the performance of a single-
vehicle system over an intermediate range of values of λ.
Interestingly, this efficiency loss seems to decrease for large λ,
and the numerical results suggest that the NC policy recovers
a similar performance as the sensor-based policy in the heavy
load limit.

Interestingly, the NC policy can be regarded as a learning
algorithm in the context of the following game [16]. The
service requests are considered as resources and the vehicles
as selfish entities. The resources offer rewards in a continuous
fashion and the vehicles can collect these rewards by traveling
to the resource locations. Every resource offers reward at a
unit rate when there is at most one vehicle present at its

location and the life of the resource ends as soon as more
than one vehicle are present at its location. This setup can be
understood to be an extreme form of congestion game, where
the resource cannot be shared between vehicles and where the
resource expires at the first attempt to share it. The total reward
for vehicle i from a particular resource is the time difference
between its arrival and the arrival of the next vehicle, if i
is the first vehicle to reach the location of the resource, and
zero otherwise. The utility function of vehicle i is then defined
to be the expected value of reward, where the expectation is
taken over the location of the next resource. Hence, the goal of
every vehicle is to select their reference location to maximize
the expected value of the reward from the next resource. In
[16], we prove that the median locations, as a choice for
reference positions, are an efficient pure Nash equilibrium for
this game. Moreover, we prove that by maximizing their own
utility function, the vehicles also maximize the common global
utility function, which is the negative of the average wait time
for service requests.

V. ROUTING FOR ROBOTIC NETWORKS: TIME
CONSTRAINTS AND PRIORITIES

In many vehicle routing applications, there are strict service
requirements for demands. This can be modeled in two ways.
In the first case, demands have (possibly stochastic) deadlines
on their waiting times. In the second case, demands have
different urgency or “threat” levels, which capture the relative
importance of each demand. In this section we study these
two related problems and provide routing policies for both
scenarios. We discuss hard time constraints in Section V-A
and priorities in Section V-B.

In this section we focus only on the case of a uniform spatial
density ϕ. However, the algorithms we present below extend
directly to non-uniform density. One simply replaces the equal
area partitions with simultaneously equitable (with respect to
ϕ and ϕ1/2) partitions, as described for the DC policy in
Section IV. The presentation, on the other hand, would become
more involved, and thus we restrict our attention to uniform
densities.

9

A. Time Constraints

In [11], [12] we introduced and analyzed DVR with time
constraints. Specifically, the setup is the same as that of the m-
DTRP, but now each demand j waits for the beginning of its
service no longer than a stochastic patience time Gj , which is
generally distributed according to a distribution function FG.
A vehicle can start the on-site service for the jth demand only
within the stochastic time window [Aj , Aj + Gj), where Aj
is the arrival time of the jth demand. If the on-site service for
the jth demand is not started before the time instant Aj +Gj ,
then the jth demand is considered lost; in other words, such
demand leaves the system and never returns. If, instead, the
on-site service for the jth demand is started before the time
instant Aj + Gj , then the demand is considered successfully
serviced. The waiting time of demand j, denoted again by
Wj , is the elapsed time between the arrival of demand j
and the time either one of the vehicles starts its service or
such demand departs from the system due to impatience,
whichever happens first. Hence, the jth demand is considered
serviced if and only if Wj < Gj . Accordingly, we denote by
Pπ [Wj < Gj] the probability that the jth demand is serviced
under a routing policy π. The aim is to find the minimum
number of vehicles needed to ensure that the steady-state
probability that a demand is successfully serviced is larger
than a desired value φd ∈ (0, 1), and to determine the policy
the vehicles should execute to ensure that such objective is
attained.

Formally, define the success factor of a policy π as
φπ := limj→+∞ Pπ [Wj < Gj]. We identify four types of
information on which a control policy can rely: 1) Arrival
time and location: we assume that the information on arrivals
and locations of demands is immediately available to control
policies; 2) On-site service: the on-site service requirement of
demands may either (i) be available, or (ii) be available only
through prior statistics, or (iii) not be available to control poli-
cies; 3) Patience time: the patience time of demands may either
(i) be available, or (ii) be available only through prior statistics;
4) Departure notification: the information that a demand leaves
the system due to impatience may or may not be available
to control policies (if the patience time is available, such
information is clearly available). Hence, several information
structures are relevant. The least informative case is when on-
site service requirements and departure notifications are not
available, and patience times are available only through prior
statistics; the most informative case is when on-site service
requirements and patience times are available.

Given an information structure, we then study the following
optimization problem OPT :

OPT : min
π

|π|, subject to lim
j→∞

Pπ [Wj < Gj] ≥ φd,

where |π| is the number of vehicles used by π (the existence of
the limit limj→∞ Pπ [Wj < Gj] and equivalent formulations
in terms of time averages are discussed in [12], [22]). Let m∗

denote the optimal cost for the problem OPT (for a given
information structure).

In principle, one should study the problem OPT for each
of the possible information structures. In [12], instead, we

considered the following strategy: first, we derived a lower
bound that is valid under the most informative information
structure (this implies validity under any information struc-
ture), then we presented and analyzed two service policies that
are amenable to implementation under the least informative
information structure (this implies implementability under any
information structure). Such approach gives general insights
into the problem OPT .

1) Lower Bound: We next present a lower bound for the
optimization problem OPT that holds under any information
structure. Let P = (p1, . . . , pm) and define

Lm(P,Q) := 1− 1
|Q|

∫
Q
FG

(
min

k∈{1,...,m}

‖x− xk‖
v

)
dx.

Theorem V.1 (Lower bound on OPT). Under any informa-
tion structure, the optimal cost for the minimization problem
OPT is lower bounded by the optimal cost for the minimiza-
tion problem

min
m∈N>0

m

subject to sup
P∈Qm

Lm(P,Q) ≥ φd.
(5)

The proof of this lower bound relies on some nearest-
neighbor arguments. Algorithms to find the solution to the
minimization problem in equation (5) have been presented in
[12].

2) The Nearest-Depot Assignment (NDA) Policy: We next
present the Nearest-Depot Assignment (NDA) policy, which
requires the least amount of information and is optimal in
light-load.

The Nearest-Depot Assignment (NDA) Policy —
Let P̃ ∗m(Q) := arg maxP∈Qm Lm(P,Q) (if there
are multiple maxima, pick one arbitrarily), and let
p̃∗k be the location of the depot for the kth vehicle,
k ∈ {1, . . . ,m}. Assign a newly arrived demand
to the vehicle whose depot is the nearest to that
demand’s location, and let Dk be the set of out-
standing demands assigned to vehicle k. If the set
Dk is empty, move to p̃∗k; otherwise, visit demands
in Dk in first-come, first-served order, by taking the
shortest path to each demand location. Repeat.

In [12] we prove that the NDA policy is optimal in light-load
under any information structure. Note that the NDA policy is
very similar to the SQM policy described in section III-D;
the only difference is that the depot locations are now the
maximizers of Lm, instead of the minimizers of Hm.

3) The Batch (B) Policy: Finally, we present the Batch (B)
policy, which is well-defined for any information structure,
however it is particularly tailored for the least informative case
and is most effective in moderate and heavy-loads.

The Batch (B) Policy — Partition Q into m equal
area regions Qk, k ∈ {1, . . . ,m}, and assign one ve-
hicle to each region. Assign a newly arrived demand
that falls in Qk to the vehicle responsible for region
k, and let Dk be the set of locations of outstanding
demands assigned to vehicle k. For each vehicle-
region pair k: if the set Dk is empty, move to the

10

median (the “depot”) of Qk; otherwise, compute a
TSP tour through all demands in Dk and vehicle’s
current position, and service demands by following
the TSP tour, skipping demands that are no longer
outstanding. Repeat.

Note that this policy is basically a simplified version of the
m-DC policy (with r = 1).

The following theorem characterizes the batch policy, under
the assumption of zero on-site service, and assuming the least
informative information structure.

Theorem V.2 (Vehicles required by batch policy). Assuming
zero on-site service, the batch policy guarantees a success
factor at least as large as φd if the number of vehicles is
equal to or larger than:

min
{
m
∣∣∣ sup
θ∈R>0

(1−FG(θ))(1−2g(m)/θ)≥φd
}
,

where g(m) := 1
2

(
β̄2

v2 |Q| λm2 +
√

β̄4

v4 |Q|2 λ2

m4 + 8 β̄2

v2 |Q| 1
m

)
,

and where β̄ is a constant that depends on the shape of the
service regions.

Furthermore, in [11] we show that when (i) the system is
in heavy-load, (ii) φd tends to one, and (iii) the deadlines are
deterministic, the batch policy requires a number of vehicles
that is within a factor 3.78 of the optimal.

B. Priorities

In this section we look at a DVR problem in which demands
for service have different levels of importance. The service ve-
hicles must then prioritize, providing a quality of service which
is proportional to each demand’s importance. We introduced
this problem in [13]. Formally, we assume an environment
Q ⊂ R2, with area |Q|, and m vehicles traveling in R2, each
with maximum speed v. Demands of type α ∈ {1, . . . , n},
called α-demands, arrive in the environment according to a
Poisson process with rate λα. Upon arrival, demands assume
an independently and uniformly distributed location in Q. An
α-demand requires on-site service with finite mean s̄α.

For this problem the load factor can be written as

% :=
1
m

n∑
α=1

λαs̄α. (6)

The condition % < 1 is necessary for the existence of a stable
policy. For a stable policy π, the average system time per
demand is

Tπ =
1
Λ

n∑
α=1

λαTπ,α,

where Λ :=
∑n
α=1 λα, and Tπ,α is the expected system time

of α-demands (under routing policy π). The average system
time per demand is the standard cost functional for queueing
systems with multiple classes of demands. Notice that we
can write Tπ =

∑n
α=1 cαTπ,α with cα = λα/Λ. Thus, if

we aim to assign distinct importance levels, we can model
priority among classes by allowing any convex combination
of Tπ,1, . . . , Tπ,n. If cα > λα/Λ, then the system time of α-
demands is being weighted more heavily than in the average

case. In other words, the quantity cαΛ/λα gives the priority of
α-demands compared to that given in the average system time
case. Without loss of generality we can assume that priority
classes are labeled so that

c1
λ1
≥ c2
λ2
≥ · · · ≥ cn

λn
, (7)

implying that if α < β for some α, β ∈ {1, . . . , n}, then the
priority of α-demands is at least as high as that of β-demands.

The problem is as follows. Consider a set of coefficients
cα > 0, α ∈ {1, . . . , n}, with

∑n
α=1 cα = 1, and satisfying

expression (7). Determine the policy π (if it exists) which
minimizes the cost

Tπ,c :=
n∑
α=1

cαTπ,α.

In the light-load case where % → 0+ we can use existing
policies to solve the problem. This is summarized in the
following remark.

Remark V.3 (Light-load regime). In light-load, it can be
verified that the Stochastic Queue Median policy (see Sec-
tion III-D) provides optimal performance. That is, the vehicles
can simply ignore the priorities and service the demands in
the FCFS order, returning to their median locations between
each service. �

1) Lower Bound in Heavy-Load: In this section we present
a lower bound on the weighted system time Tπ,c for every
policy π.

Theorem V.4 (Heavy-load lower bound). The system time of
any policy π is lower bounded by

Tπ,c ≥
β2

TSP,2|Q|
2m2v2(1− %)2

n∑
α=1

(
cα + 2

n∑
j=α+1

cj

)
λα, (8)

as %→ 1−, where c1, . . . , cn satisfy expression (7).

Remark V.5 (Lower bound for all % ∈ [0, 1)). Lower
bound (8) holds only in heavy-load. We can also obtain a
lower bound that is valid for all values of %. However, in the
heavy-load limit it is less tight than bound (8). Under the
labeling in expression (7), this general bound for any policy
π is

Tπ,c ≥ γ2|Q|
m2v2(1− %)2

n∑
α=1

((
cα + 2

n∑
j=α+1

cj

)
λα

)
− mc1

2λ1
+

n∑
α=1

cαs̄α, (9)

where % ∈ [0, 1) and γ = 2/(3
√

2π) ≈ 0.266. �

2) The Separate Queues Policy: In this section we present
the Separate Queues (SQ) policy. This policy utilizes a prob-
ability distribution p = [p1, . . . , pn], where pα > 0 for
each α ∈ {1, . . . , n}, defined over the priority classes. The
distribution p is a set of parameters to be used to optimize
performance.

Separate Queues (SQ) Policy — Partition Q into
m equal area regions and assign one vehicle to

11

Fig. 2. A representative simulation of the SQ policy for one vehicle and two
priority classes. Circle shaped demands are high priority, and diamond shaped
are low priority. The vehicle is marked by a chevron shaped object and TSP
tour is shown in a solid line. The left-figure shows the vehicle computing a tour
through class 2 demands. The right-figure shows the vehicle after completing
the class 2 tour and computing a new tour through all outstanding class 1
demands.

each region. For each vehicle, if region contains no
demands, then move to median location of region
until a demand arrives. Otherwise, select a class
according to the distribution p. Compute a TSP
tour through all demands in region of the selected
class and service all of these demands by following
the TSP tour. When tour is completed, repeat by
selecting a new class.

Figure 2 shows an illustrative example of the SQ policy. In
the first frame the vehicle is servicing only class 2 (diamond
shaped) demands, whereas in the second frame, the vehicle is
servicing class 1 (circle shaped) demands.

3) Performance of the SQ Policy: By upper bounding the
expected steady-state number of demands in each class, we are
able to obtain the following expression for the system time of
the SQ policy in heavy-load:

T SQ,c ≤
β2

TSP,2|Q|
m2v2(1− %)2

n∑
α=1

cα
pα

(
n∑
i=1

√
λipi

)2

. (10)

Thus, we can minimize this upper bound by appropriately
selecting the probability distribution p = [p1, . . . , pn]. With
the selection

pα := cα for each α ∈ {1, . . . , n},
we obtain the following result.

Theorem V.6 (SQ policy performance). As % → 1−, the
system time of the SQ policy is within a factor 2n2 of
the optimal system time. This factor is independent of the
arrival rates λ1, . . . , λn, coefficients c1, . . . , cn, service times
s̄1, . . . , s̄n, and the number of vehicles m.

In [13], numerical experiments are used to verify the tight-
ness of the upper bound (10), and to compare methods for
optimization of the distribution p.

4) Heuristic Improvements: We now present two heuristic
improvements on the SQ policy. The first improvement, called
the queue merging heuristic, is guaranteed to never increase
the upper bound on the expected system time, and in certain
instances it significantly decreases the upper bound. To moti-
vate the modification, consider the case when all classes have

equal priority (i.e., c1/λ1 = · · · = cn/λn), and we use the
probability assignment pα = cα for each class α. Then, the
upper bound for the Separate Queues policy is n times larger
than if we (i) ignore priorities, (ii) merge the n classes into a
single class, and (iii) run the SQ policy on the merged class
(i.e., at each iteration, service all outstanding demands in Q
via the TSP tour).

Motivated by this discussion, we define a merge configu-
ration to be a partition of n classes {1, . . . , n} into ` sets
C1, . . . , C`, where ` ∈ {1, . . . , n}. The idea is to run the Sepa-
rate Queues policy on the ` classes, where class i ∈ {1, . . . , `}
has arrival rate

∑
α∈Ci λα and convex combination coefficient∑

α∈Ci cα. Given a merge configuration {C1, . . . , C`}, and
using the probability assignment pi =

∑
α∈Ci cα for each

class i ∈ {1, . . . , `}, the analysis leading to (10) can easily be
modified to yield an upper bound of

β2
TSP,2|Q|`

m2v2(1− %)2

∑̀
i=1

√∑
α∈Ci

cα
∑
β∈Ci

λβ

2

. (11)

The SQ-policy with merging can be summarized as follows:
Separate Queues (SQ) with Merging Policy —
Find the merge configuration {C1, . . . , C`} which
minimizes equation (11). Run the Separate Queues
policy on ` classes, where class i has arrival
rate

∑
α∈Ci λα and convex combination coefficient∑

α∈Ci cα.
Now, to minimize equation (11) in the SQ with Merging

policy, one must search over all possible partitions of a set
of n elements. The number of partitions is given by the Bell
Number and thus search becomes infeasible for more than
approximately 10 classes. However, one can also limit the
search space in order to increase the number of classes that
can be considered as in [13].

The second heuristic improvement for the SQ policy which
can be used in implementation is called the tube heuristic. The
heuristic improvement is as follows:

The Tube Heuristic — When following a tour,
service all newly arrived demands that lie within
distance ε > 0 of the tour.

The idea behind the heuristic is to utilize the fact that some
newly arrived demands will be “close” to the demands in
the current service batch, and thus can be serviced with
minimal additional travel cost. Analysis of the tube heuristic is
complicated by the fact that it introduces correlation between
demand locations.

The parameter ε should be chosen such that the total tour
length is not increased by more than, say, 10%. A rough
calculation shows that ε should scale as

ε ∼
√

µ|Q|
total expected number of demands

,

where µ is the fractional increase in tour length (e.g., 10%).
Numerical simulations presented in [13] show that this heuris-
tic, with an appropriately chosen value of ε, improves the
SQ performance by a factor of approximately 2. In a more
sophisticated implementation we define an εα for each α ∈

12

{1, . . . , n}, where the magnitude of εα is proportional to the
probability pα.

VI. ROUTING FOR ROBOTIC NETWORKS:
CONSTRAINTS ON VEHICLE MOTION

In this section, we consider the m-DTRP described in the
earlier sections with the addition of differential constraints on
the vehicle’s motion [18]. In particular, we concentrate on
vehicles that are constrained to move on the plane at constant
speed v > 0 along paths with a minimum radius of curvature
ρ > 0. Such vehicles, often referred to as Dubins vehicles,
have been extensively studied in the robotics and control
literature [35], [36], [37]. Moreover, the Dubins vehicle model
is widely accepted as a reasonably accurate model to represent
aircraft kinematics, e.g., for air traffic control [38], [39], and
UAV mission planning purposes [40], [4], [41]. Accordingly,
the DVR problem studied in this section will be referred to
as the m-Dubins DTRP. In this section we focus only on the
case of a uniform spatial density ϕ.

A feasible path for the Dubins vehicle (called Dubins path)
is defined as a path that is twice differentiable almost every-
where, and such that its radius of curvature is bounded below
by ρ. Since a Dubins vehicle cannot stop, we only consider
zero on-site service time. Hence, the generic load factor % =
λs̄/m, as defined in subsection III-B, becomes inappropriate
for this setup and, in accordance with Remark III.2, the heavy-
load regime is defined as λ/m → +∞. We correspondingly
define the light-load regime as λ/m→ 0+.

A. Lower Bounds

In this section we provide lower bounds on the system time
for the m-Dubins DTRP.

Theorem VI.1 (System time lower bounds). The optimal
system time for the m-Dubins DTRP satisfies the following
lower bounds:

T
∗ ≥ H∗m(Q)

v
, (12)

lim inf
dρ→+∞

T
∗
(

m

ρ|Q|
)1/3

≥ 3 3
√

3
4v

, (13)

lim inf
λ
m→+∞

T
∗m3

λ2
≥ 81

64
ρ|Q|
v3

, (14)

where |Q| is the area ofQ and dρ := ρ2m
|Q| is the nonholonomic

vehicle density.

The lower bound (12) follows from equation (1); however
this bound is obtained by approximating the Dubins distance
(i.e., the length of the shortest feasible path for a Dubins
vehicle) with the Euclidean distance. The lower bound (13) is
obtained by explicitly taking into account the Dubins turning
cost. Although the first two lower bounds of Theorem VI.1
are valid for any λ, they are particularly useful in the light-
load regime. The lower bound (14) is valid and useful in the
heavy-load regime.

Q
Fig. 3. Illustration of the Median Circling policy. The squares represent
P ∗m(Q), the m-median of Q. Each vehicle loiters about its respective
generator at a radius ρ. The regions of dominance are the Voronoi partition
generated by P ∗m(Q). In this figure, a demand has appeared in the subregion
roughly in the upper-right quarter of the domain. The vehicle responsible for
this subregion has left its loitering orbit and is en route to service the demand.

B. Routing Policies for the m-Dubins DTRP

We start by considering two policies that are particularly
efficient in light load. The first light-load policy, called the Me-
dian Circling policy, imitates the optimal policy for Euclidean
vehicles, assigning static regions of responsibility. As usual,
let P ∗m(Q) be the m-median of Q. The policy is formally
described as follows.

The Median Circling (MC) Policy — Let the loi-
tering orbits for the vehicles be circular trajectories
of radius ρ centered at entries of P ∗m(Q), with each
vehicle allotted one trajectory. Each vehicle visits the
demands in the Voronoi region Vi(P ∗m(Q)) in the
order in which they arrive. When no demands are
available, the vehicle returns to its loitering orbit;
the direction in which the orbit is followed is not
important, and can be chosen in such a way that the
orbit is reached in minimum time.

An illustration of the MC policy is shown in Figure 3.
We next introduce a second light-load policy, namely the

Strip Loitering policy, which is more efficient than the MC
policy when the nonholonomic vehicle density is large and
relies on dynamic regions of responsibility for the vehicles. An
illustration of the Strip Loitering policy is shown in Figure 4.

The Strip Loitering (SL) Policy — Bound the
environment Q with a rectangle of minimum height,
where height denotes the smaller of the two side
lengths of a rectangle. Let R and S be the width
and height of this bounding rectangle, respectively.
Divide Q into strips of width r, where

r = min

{(
4

3
√
ρ

RS + 10.38ρS
m

)2/3

, 2ρ

}
.

Orient the strips along the side of length R. Con-
struct a closed Dubins path, henceforth referred to as
the loitering path, which runs along the longitudinal
bisector of each strip, visiting all strips in top-to-
bottom sequence, making U-turns between strips at
the edges of Q, and finally returning to the initial
configuration. The m vehicles are allotted loitering

13

Q

Fig. 4. Illustration of the Strip Loitering policy. The trajectory providing
closure of the loitering path (along which the vehicles travel from the end of
the last strip to the beginning of the first strip) is not shown here for clarity
of the drawing.

d2d1

target

ρ

Fig. 5. Close-up of the Strip Loitering policy with construction of the point
of departure and the distances d1, and d2 for a given demand, at the instant
of appearance.

positions on this path, equally spaced, in terms of
path length.
When a demand arrives, it is allocated to the closest
vehicle among those that lie within the same strip
as the demand and that have the demand in front of
them. When a vehicle has no outstanding demands,
the vehicle returns to its loitering position as follows.
(We restrict the exposition to the case when a vehicle
has only one outstanding demand when it leaves its
loitering position and no more demands are allotted
to it before it returns to its loitering position; other
cases can be handled similarly.) After making a
left turn of length d2 (as shown in Figure 5) to
service the demand, the vehicle makes a right turn
of length 2d2 followed by another left turn of length
d2, and then returns to the loitering path. However,
the vehicle has fallen behind in the loitering path
by a distance 4(d2 − ρ sin d2

ρ). To rectify this, as it
nears the end of the current strip, it takes its U-turn
a distance 2(d2 − ρ sin d2

ρ) early.
Note that the loitering path must cover Q, but it need not

cover the entire bounding box of Q. The bounding box is
merely a construction used to place an upper bound on the
total path length.

The MC and SL policies will be proven to be efficient in
light-load. We now propose the Bead Tiling policy which will
be proven to be efficient in heavy-load. A key component of
the algorithm is the construction of a novel geometric set,
tuned to the kinetic constraints of the Dubins vehicle, called
the bead [17]. The construction of a bead Bρ(`) for a given
ρ and an additional parameter ` > 0 is illustrated in Figure 6.

10

ρ

p− p+
Bρ(!)

!

Fig. 2. Construction of the “bead” Bρ(!). The figure shows how the upper half of the boundary is constructed, the bottom half is symmetric.

Next, we study the probability of targets belonging to a given bead. Consider a bead B entirely contained in Q

and assume n points are uniformly randomly generated in Q. The probability that the ith point is sampled in B is

µ(!) =
Area(Bρ(!))

Area(Q)
.

Furthermore, the probability that exactly k out of the n points are sampled in B has a binomial distribution, i.e.,

indicating with nB the total number of points sampled in B,

Pr[nB = k| n samples] =
(

n

k

)
µk(1− µ)n−k.

If the bead length ! is chosen as a function of n in such a way that ν = n · µ(!(n)) is a constant, then the limit

for large n of the binomial distribution is [31] the Poisson distribution of mean ν, that is,

lim
n→+∞

Pr[nB = k| n samples] =
νk

k!
e−ν .

C. The Recursive Bead-Tiling Algorithm

In this section, we design a novel algorithm that computes a Dubins path through a point set in Q. The proposed

algorithm consists of a sequence of phases; during each of these phases, a Dubins tour (i.e., a closed path with

bounded curvature) will be constructed that “sweeps” the set Q. We begin by considering a tiling of the plane such

June 30, 2006 DRAFT

Fig. 6. An illustration for the construction of the bead for a given ρ and `.

Q

Fig. 7. An illustration of the mBT policy.

We start with the policy for a single vehicle.

The Bead Tiling (BT) Policy — Bound the en-
vironment Q with a rectangle of minimum height,
where height denotes the smaller of the two side
lengths of a rectangle. Let R and S be the width
and height of this bounding rectangle, respectively.
Tile the plane with identical beads Bρ(`) with ` =
min{CBTAv/λ, 4ρ}, where

CBTA =
7−√17

4

(
1 +

7πρS
3|Q|

)−1

.

The beads are oriented to be along the width of the
bounding rectangle. The Dubins vehicle visits all
beads intersecting Q in a row-by-row fashion in top-
to-bottom sequence, servicing at least one demand
in every nonempty bead. This process is repeated
indefinitely.

The BT policy is extended to the m-vehicle Bead Tiling
(mBT) policy in the following way (see Figure 7).

The m-vehicle Bead Tiling (mBT) Policy — Di-
vide the environment into regions of dominance with
lines parallel to the bead rows. Let the area and
height of the i-th vehicle’s region be denoted with
|Q|i and Si. Place the subregion dividers in such a
way that

|Q|i +
7
3
πρSi =

1
m

(
|Q|+ 7

3
πρS

)
for all i ∈ {1, . . . ,m}. Allocate one subregion to
every vehicle and let each vehicle execute the BT
policy in its own region.

14

C. Analysis of Routing Policies

We now present the performance analysis of the routing
policies we introduced in the previous section.

Theorem VI.2 (MC policy performance in light-load). The
MC policy is a stabilizing policy in light-load, i.e., as λ/m→
0+. The system time of the Median Circling policy in light-
load satisfies, as λ/m→ 0+,

lim sup
λ
m→0+

TMC

T
∗ ≤ 1 + 25

√
dρ,

and, in particular,

lim
dρ→0+

lim sup
λ
m→0+

TMC

T
∗ = 1.

Theorem VI.2 implies that the MC policy is optimal in
the asymptotic regime where λ/m → 0+ and dρ → 0+.
Hence, the MC policy is particularly efficient in light-load for
low values of the nonholonomic vehicle density. Moreover,
Theorem VI.2 together with Theorem VI.1 and Equation (21)
(provided in the Appendix) implies that the optimal system
time in the aforementioned asymptotic regime belongs to
Θ (1/(v

√
m)).

We now characterize the performance of the SL policy.

Theorem VI.3 (SL policy performance in light-load). The SL
policy is a stabilizing policy in light-load, i.e., when λ/m→
0+. Moreover, the system time of the SL policy satisfies, as
λ/m→ 0+,

T SL ≤


1.238
v

(
ρRS+10.38ρ2S

m

)1/3

+ R+S+6.19ρ
mv

for m ≥ 0.471
(
RS
ρ2 + 10.38S

ρ

)
,

RS+10.38ρS
4ρmv + R+S+6.19ρ

mv + 1.06ρ
v otherwise.

Theorem VI.3 together with Theorem VI.1 implies that
the SL policy is within a constant factor of the optimal in
the asymptotic regime where λ/m → 0+ and dρ → +∞.
Moreover, in such asymptotic regime the optimal system time
belongs to Θ (1/(v 3

√
m)).

Finally, we characterize the performance of the mBT policy.

Theorem VI.4 (mBT policy performance in heavy-load). The
mBT policy is a stabilizing policy. Moreover, the system time
for the mBT policy satisfies the following

lim
λ
m→+∞

TmBT
m3

λ2
≤ 71

ρ|Q|
v3

(
1 +

7πρS
3|Q|

)3

.

Theorem VI.3 together with Theorem VI.1 implies that the
mBT policy is within a constant factor of the optimal in heavy-
load, and that the optimal system time in this case belongs to
Θ
(
λ2/(mv)3

)
.

It is instructive to compare the scaling of the optimal system
time with respect to λ, m and v for the m-DTRP and for the
m-Dubins DTRP. Such comparison is shown in Table III. One
can observe that in heavy-load the optimal system time for the
m-Dubins DTRP is of the order λ2/(mv)3, whereas for the
m-DTRP it is of the order λ/(mv)2. Therefore, our analysis

TABLE III
A COMPARISON BETWEEN THE SCALING OF THE OPTIMAL SYSTEM TIME

FOR THE m-DTRP AND FOR THE m-DUBINS DTRP.

m-DTRP m-Dubins DTRP

T
∗

Θ
`
λ/(mv)2

´
Θ

`
λ2/(mv)3

´
(λ/m→ +∞) [8] [18]

T
∗

Θ
`
1/(v
√
m)

´
Θ

`
1/(v
√
m)

´
(dρ → 0+)

(λ/m→ 0+) [42] Θ
`
1/(v 3√m)

´
(dρ → +∞)

[18]

rigorously establishes the following intuitive fact: bounded-
curvature constraints make the optimal system much more
sensitive to increases in the demand generation rate. Perhaps
less intuitive is the fact that the optimal system time is also
more sensitive with respect to the number of vehicles and the
vehicle speed in the m-Dubins DTRP as compared to the m-
DTRP. Extension of the results for the Dubins DTRP in the
light-load case for dimensions higher than 2 is still an open
problem. We have extended the results for the Dubins DTRP
in the heavy-load case to the three-dimensional case [43].
However, the extension to dimensions higher than 3 is still
an open problem.

In [18], we report results from illustrative numerical exper-
iments on the performance of MC, SL and mBT policies. A
close observation of the system time in the light-load case
shows that the territorial MC policy is optimal as dρ → 0+

and the gregarious SL policy is constant-factor optimal as
dρ → +∞. This suggests the existence of a phase transition in
the optimal policy for the light-load scenario as one increases
the number of vehicles for a fixed ρ and Q (recall that
dρ = ρ2m/|Q|). It is desirable to study the fundamental
factors driving this transition, ignoring its dependence on the
shape of Q. Towards this end, envision an infinite number of
vehicles operating on the unbounded plane. In this case, the
configuration P ∗m(Q) yielding the minimum of the function
Hm is that in which the Voronoi partition induced by P ∗m(Q) is
a network of regular hexagons [42]. Moreover, in this scenario,
the SL policy reduces to vehicles moving straight on infinite
strips. In this setup, it is observed that the phase transition
can be characterized by a critical value of the dimensionless
parameter of the nonholonomic density [18], estimated to
be dunbd

ρ ≈ 0.0587. An alternate interpretation is that the
transition occurs when each vehicle is responsible for a region
of area 5.42 times that of a minimum turning-radius disk.
This critical value of dρ obtained for unbounded domain
has been found to be very close to the values obtained, via
numerical experiments, for bounded domains [18]. This result
provides a system architect with valuable information to decide
upon the optimal strategy in the light-load scenario for given
problem parameters. Similar phase transition phenomena for
other vehicles have been studied in [44].

VII. ROUTING FOR ROBOTIC NETWORKS:
TEAM FORMING FOR COOPERATIVE TASKS

Here we study demands (or tasks) that require the si-
multaneous services of several vehicles [20]. In particular,

15

consider m vehicles, each capable of providing one of k
services. We assume that there are mj > 0 vehicles capable
of providing service j (called vehicles of service-type j), for
each j ∈ {1, . . . , k}, and thus m :=

∑k
j=1mj .

In addition, we assume there are K different types of tasks.
Tasks of type α ∈ {1, . . . ,K} arrive according to a Poisson
process with rate λα, and assume a location i.i.d. uniformly
in Q.2 The total arrival rate is λ :=

∑K
α=1 λα. Each task-type

α requires a subset of the k services. We record the required
services in a zero-one (column) vector Rα ∈ {0, 1}k. The jth
entry of Rα is 1 if service j is required for task-type α, and
0 otherwise. The on-site service time for each task-type α has
mean s̄α. To complete a task of type α, a team of vehicles
capable of providing the required services must travel to the
task location and remain there simultaneously for the on-site
service time. We refer to this problem as the dynamic team
forming problem [20].

As a motivating example, consider the scenario given in
Section I where each demand (or task) corresponds to an event
that requires close-range observation. The sensors required
to properly assess each event will depend on that event’s
properties. In particular, a event may require several different
sensing modalities, such as electro-optical, infra-red, synthetic
aperture radar, foliage penetrating radar, and moving target
indication radar [45]. One solution would be to equip each
UAV with all sensing modalities (or services). However, in
many cases, most events will require only a few sensing
modalities. Thus, we might increase our efficiency by having a
larger number of UAVs, each equipped with a single modality,
and then forming the appropriate sensing team to observe each
event.

We restrict our attention to task-type unbiased policies;
policies π for which the system time of each task (denoted by
Tπ,α) is equal, and thus Tπ,1 = Tπ,2 = · · · = Tπ,K =: Tπ .
We seek policies π which minimize the expected system time
of tasks Tπ . Policies of this type are amenable to analysis
because the task-type unbiased constraint collapses the feasible
set of system times from a subset of RK to a subset of R.
Defining the matrix

R := [R1 · · · RK] ∈ {0, 1}k×K, (15)

a necessary condition for stability is

R[λ1s̄1 · · · λKs̄K]T < [m1 · · · mk]T (16)

component-wise. Note that this condition is akin to the “load
factor” in Subsection III-B. However, the space of load factors
is much richer, and thus light and heavy-load are no longer
simply defined. To simplify the problem we take an alterna-
tive approach. We study the performance as the number of
vehicles becomes very large, i.e., m → +∞. In addition,
we simply look at the order of the expected delay, without
concern for the constant factors. It turns out that this analysis
provides substantial insight into the performance of different
team forming policies. This type of asymptotic analysis is
frequently performed in computational complexity [46] and
ad-hoc networking [47].

2As in Section V, the algorithms in this section extend directly to a non-
uniform spatial density by utilizing simultaneously equitably partitions.

A. Three Team Forming Policies

We now present three team forming policies.
The Complete Team (CT) Policy — Form m/k
teams of k vehicles, where each team contains one
vehicle of each service-type. Each team meets and
moves as a single entity. As tasks arrive, service
them by one of the m/k teams according to the
UTSP policy.

For the second policy, recall that the vector R1K records in
its jth entry the number of task-types that require service j,
where 1K is a K × 1 vector of ones. Thus, if

R1K ≤ [m1, . . . ,mk]T (17)

component-wise, then there are enough vehicles of each
service-type to create bmTSTc teams, where

mTST := min

{
mj

eTj R1K

∣∣∣∣ j ∈ {1, . . . , k}
}

dedicated teams for each task-type, where ej is the jth vector
of the standard basis of Rk. Thus, when equation (17) is
satisfied, we have the following policy.

The Task-Specific Team (TT) Policy — For each
of the K task-types, create bmTSTc teams of vehicles,
where there is one vehicle in the team for each
service required by the task-type. Service each task
by one of its bmTSTc corresponding teams, according
to the UTSP policy.

The task-specific team policy can be applied only when
there is a sufficient number of vehicles of each service-type.
The following policy requires only a single vehicle of each
service type. The policy partitions the task-types into groups,
where each group is chosen such that there is a sufficient
number of vehicles to create a dedicated team for each task-
type in the group. The task-specific team policy is then run on
each group sequentially. The groups are defined via a service
schedule which is a partition of the K task-types into L ≤ K
time slots, such that each task-type appears in precisely one
time slot, and the task-types in each time slot are pairwise
disjoint (i.e., in a given time slot, each service appears in
at most one task-type).3 We now formally present the third
policy.

The Scheduled Task-Specific Team (STT) Policy
— Partition Q into mCT := min{m1, . . . ,mk} equal
area regions and assign one vehicle of each service-
type to each region. In each region form a queue for
each of the K task-types. For each time slot in the
schedule and each task-type in the time slot, create
a team containing one vehicle for each required
service. For each team, service the first n tasks (n is
a design parameter) in the corresponding queue by
following an optimal TSP tour. When the end of the
service schedule is reached, repeat. Optimize over n
(see [20] for details).

3Computing an optimal schedule is equivalent to solving a vertex coloring
problem, which is NP-hard. However, an approximate schedule can be
computed via known vertex coloring heuristics; see [20] for more details.

16

B. Performance of Policies

To analyze the performance of the policies we make the fol-
lowing simplifying assumptions: (A1) There are n/k vehicles
of each service-type. (A2) The arrival rate is λ/K for each
task-type. (A3) The on-site service time has mean s̄ and is
upper bounded by smax for all task-types. (A4) There exists
p ∈ [1/k, 1] such that for each j ∈ {1, . . . , k} the service
j appears in pK of the K task-types. Thus, each task will
require service j with probability p.

With these assumptions, the stability condition in equa-
tion (16) simplifies to

λ

m
<

1
pks̄

. (18)

We say that λ is the total throughput of the system (i.e., the
total number of tasks served per unit time), and Bm := λ/m
is the per-vehicle throughput.

Finally, we study the system time as the number of vehicles
m becomes large. As m increases, if the density of vehicles is
to remain constant, then the environment must grow. In fact,
the ratio

√|Q|/v must scale as
√
m, [48]. In [2] this scaling

is referred to as a critical environment. Thus we will study the
performance in the asymptotic regime where (i) the number of
vehicles m→ +∞; (ii) on-site service times are independent
of m; (iii) |Q(m)|/(mv2(m))→ constant > 0.

To characterize the system time as a function of the per-
vehicle throughput Bm we introduce the canonical throughput
vs. system time profile fTmin,T ord,Bcrit

: R>0 → R>0 ∪ {+∞}
which has the form

Bm 7→

max
{
Tmin,

T ord(Bm/Bcrit)
(1−Bm/Bcrit)2

}
, if Bm < Bcrit,

+∞, if Bm ≥ Bcrit.
(19)

This profile (see Figure 8) is described by the three positive
parameters Tmin, T ord and Bcrit, where T ord ≥ Tmin. These
parameters have the following interpretation:
• Tmin is the minimum achievable system time for any

positive throughput.
• Bcrit is the maximum achievable throughput (or capacity).
• T ord is the system time when operating at (3−√5)/2 ≈

38% of capacity Bcrit. Additionally, T ord captures the
order of the system time when operating at a constant
fraction of capacity.

For each of the three policies π, we can write the system
time as Tπ ∈ O

(
fTmin,T ord,Bcrit

(Bm)
)

for some values of Tmin,
T ord, and Bcrit. In addition, we can write the lower bound
in the form T

∗ ∈ Ω
(
fTmin,T ord,Bcrit

(Bm)
)
. We summarize the

corresponding parameter values for the policies and the lower
bound in Table IV. We refer the reader to [20] for the proof
of each upper and lower bound. In this table, k is the number
of services, K is number of task-types, L is the length of the
service schedule, C := mTST/bmTSTc, and p is the probability
that a task-type requires service j for each j ∈ {1, . . . , k}.

From these results we draw several conclusions. First, if the
throughput is very low, then the CT Policy has an expected
system time of Θ(

√
k), which is within a constant factor of

the optimal. In addition, if p is close to one and each task

! !"# !"$!"% !"& '
'!

!'

'!
!

'!
'

'!
#

'!
(

'!
$

)*+,-.*/-0

1
2
34
5

Bcrit

Sy
st

em
T

im
e

T

Tmin

Throughput Bm

T ord

Fig. 8. The canonical throughput vs. system time profile for the dynamic
team forming problem. The semi-log plot is for parameter values of Tmin = 1,
T ord = 10, and Bcrit = 1. If Bm ≥ Bcrit, then the system time is +∞.

TABLE IV
A COMPARISON OF THE CANONICAL THROUGHPUT VS. SYSTEM TIME
PARAMETERS FOR THE THREE POLICIES. HERE pK ≤ L ≤ K IS THE

SCHEDULE LENGTH.

Tmin T ord Bcrit

Lower bound
`
T
∗´ √

k k 1
pks̄

CT Policy
√
k k 1

ks̄

TT Policy
√
pkK pkK 1

Cs̄pk

STT Policy L
√
k Lk K

smaxLk

requires nearly every service, then CT is within a constant
factor of the optimal in terms of capacity and system time.
Second, if p ∼ 1/k and each task requires few services, then
the capacity of CT is sub-optimal, and the capacity of both
TT and STT are within a constant factor of optimal. However,
the system time of the TT and STT policies may be much
higher than the lower bound when the number of task-types
K is very large. Third, the TT policy performs at least as well
as the STT policy, both in terms of capacity and system time.
Thus, one should use the TT policy if there is a sufficient
number of vehicles of each service-type. However, if p ∼ 1/k
and if resources are limited such that the TT policy cannot
be used, then the STT Policy should be used to maximize
capacity.

VIII. SUMMARY AND FUTURE DIRECTIONS

In this paper we presented a joint algorithmic and queueing
approach to the design of cooperative control, task allocation
and dynamic routing strategies for networks of uninhabited
vehicles required to operate in dynamic and uncertain environ-
ments. The approach integrates ideas from dynamics, combi-
natorial optimization, teaming, and distributed algorithms. We
have presented dynamic vehicle routing algorithms with prov-
able performance guarantees for several important problems.
These include adaptive and decentralized implementations,
demands with time constraints and priority levels, vehicles
with motion constraints, and team forming. These results
complement those from the online algorithms literature, in
that they characterize average case performance (rather than
worst-case), and exploit probabilistic knowledge about future
demands.

17

Dynamic vehicle routing is an active area of research and,
in recent years, several directions have been pursued which
were not covered in this paper. In [14], [49], we consider
moving demands. The work focuses on demands that arrive
on a line segment, and move in a perpendicular direction
at fixed speed. The problem has applications in perimeter
defense as well as robotic pick-and-place operations. In [19],
a setup is considered where the information on outstanding
demands is provided to the vehicles through limited-range on-
board sensors, thus adding a search component to the DVR
problem with full information. The work in [50] and [51]
considers the dynamic pickup and delivery problem, where
each demand consists of a source-destination pair, and the
vehicles are responsible for picking up a message at the source,
and delivering it to the destination. In [8], the authors consider
the case in which each vehicle can serve at most a finite
number of demands before returning to a depot for refilling. In
[52], a DVR problem is considered involving vehicles whose
dynamics can be modeled by state space models that are
affine in control and have an output in R2. Finally, in [21]
we consider a setup where the servicing of a demand needs
to be done by a vehicle under the supervision of a remotely
located human operator.

The dynamic vehicle routing approach presented in this
paper provides a new way of studying robotic systems in dy-
namically changing environments. We have presented results
for a wide variety of problems. However, this is by no means
a closed book. There is great potential for obtaining more
general performance guarantees by developing methods to deal
with correlation between demand positions. In addition, there
are many other key problems in robotic systems that could
benefit from being studied from the perspective presented in
this paper. Some examples include search and rescue missions,
force protection, map maintenance, and pursuit-evasion.

ACKNOWLEDGMENTS

The authors wish to thank Alessandro Arsie, Shaunak D.
Bopardikar, and John J. Enright for numerous helpful discus-
sions about topics related to this paper.

REFERENCES

[1] B. J. Moore and K. M. Passino, “Distributed task assignment for
mobile agents,” IEEE Transactions on Automatic Control, vol. 52, no. 4,
pp. 749–753, 2007.

[2] S. L. Smith and F. Bullo, “Monotonic target assignment for robotic
networks,” IEEE Transactions on Automatic Control, vol. 54, no. 9,
pp. 2042–2057, 2009.

[3] M. Alighanbari and J. P. How, “A robust approach to the UAV task
assignment problem,” International Journal on Robust and Nonlinear
Control, vol. 18, no. 2, pp. 118–134, 2008.

[4] R. W. Beard, T. W. McLain, M. A. Goodrich, and E. P. Anderson,
“Coordinated target assignment and intercept for unmanned air vehicles,”
IEEE Transactions on Robotics and Automation, vol. 18, no. 6, pp. 911–
922, 2002.

[5] G. Arslan, J. R. Marden, and J. S. Shamma, “Autonomous vehicle-target
assignment: A game theoretic formulation,” ASME Journal on Dynamic
Systems, Measurement, and Control, vol. 129, no. 5, pp. 584–596, 2007.

[6] P. Toth and D. Vigo, eds., The Vehicle Routing Problem. Monographs
on Discrete Mathematics and Applications, SIAM, 2001.

[7] D. J. Bertsimas and G. J. van Ryzin, “A stochastic and dynamic vehicle
routing problem in the Euclidean plane,” Operations Research, vol. 39,
pp. 601–615, 1991.

[8] D. J. Bertsimas and G. J. van Ryzin, “Stochastic and dynamic vehicle
routing in the Euclidean plane with multiple capacitated vehicles,”
Operations Research, vol. 41, no. 1, pp. 60–76, 1993.

[9] D. J. Bertsimas and G. J. van Ryzin, “Stochastic and dynamic ve-
hicle routing with general interarrival and service time distributions,”
Advances in Applied Probability, vol. 25, pp. 947–978, 1993.

[10] H. N. Psaraftis, “Dynamic vehicle routing problems,” in Vehicle Routing:
Methods and Studies (B. Golden and A. Assad, eds.), pp. 223–248,
Elsevier (North-Holland), 1988.

[11] M. Pavone, N. Bisnik, E. Frazzoli, and V. Isler, “A stochastic and
dynamic vehicle routing problem with time windows and customer im-
patience,” ACM/Springer Journal of Mobile Networks and Applications,
vol. 14, no. 3, pp. 350–364, 2009.

[12] M. Pavone and E. Frazzoli, “Dynamic vehicle routing with stochastic
time constraints,” in IEEE Int. Conf. on Robotics and Automation,
(Anchorage, AK), pp. 1460–1467, May 2010.

[13] S. L. Smith, M. Pavone, F. Bullo, and E. Frazzoli, “Dynamic vehicle
routing with priority classes of stochastic demands,” SIAM Journal on
Control and Optimization, vol. 48, no. 5, pp. 3224–3245, 2010.

[14] S. D. Bopardikar, S. L. Smith, F. Bullo, and J. P. Hespanha, “Dynamic
vehicle routing for translating demands: Stability analysis and receding-
horizon policies,” IEEE Transactions on Automatic Control, vol. 55,
no. 11, pp. 2554–2569, 2010.

[15] M. Pavone, E. Frazzoli, and F. Bullo, “Adaptive and distributed algo-
rithms for vehicle routing in a stochastic and dynamic environment,”
IEEE Transactions on Automatic Control, vol. 56, no. 6, 2011. To appear.

[16] A. Arsie, K. Savla, and E. Frazzoli, “Efficient routing algorithms for
multiple vehicles with no explicit communications,” IEEE Transactions
on Automatic Control, vol. 54, no. 10, pp. 2302–2317, 2009.

[17] K. Savla, E. Frazzoli, and F. Bullo, “Traveling Salesperson Problems for
the Dubins vehicle,” IEEE Transactions on Automatic Control, vol. 53,
no. 6, pp. 1378–1391, 2008.

[18] J. J. Enright, K. Savla, E. Frazzoli, and F. Bullo, “Stochastic and dynamic
routing problems for multiple UAVs,” AIAA Journal of Guidance,
Control, and Dynamics, vol. 34, no. 4, pp. 1152–1166, 2009.

[19] J. J. Enright and E. Frazzoli, “Cooperative UAV routing with limited
sensor range,” in AIAA Conf. on Guidance, Navigation and Control,
(Keystone, CO), Aug. 2006.

[20] S. L. Smith and F. Bullo, “The dynamic team forming problem:
Throughput and delay for unbiased policies,” Systems & Control Letters,
vol. 58, no. 10-11, pp. 709–715, 2009.

[21] K. Savla, T. Temple, and E. Frazzoli, “Human-in-the-loop vehicle
routing policies for dynamic environments,” in IEEE Conf. on Decision
and Control, (Cancún, México), pp. 1145–1150, Dec. 2008.

[22] M. Pavone, Dynamic Vehicle Routing for Robotic Networks. PhD thesis,
Department of Aeronautics and Astronautics, Massachusetts Institute of
Technology, June 2010.

[23] D. D. Sleator and R. E. Tarjan, “Amortized efficiency of list update and
paging rules,” Communications of the ACM, vol. 28, no. 2, pp. 202–208,
1985.

[24] S. O. Krumke, W. E. de Paepe, D. Poensgen, and L. Stougie, “News
from the online traveling repairman,” Theoretical Computer Science,
vol. 295, no. 1-3, pp. 279–294, 2003.

[25] S. Irani, X. Lu, and A. Regan, “On-line algorithms for the dynamic
traveling repair problem,” Journal of Scheduling, vol. 7, no. 3, pp. 243–
258, 2004.

[26] P. Jaillet and M. R. Wagner, “Online routing problems: Value of
advanced information and improved competitive ratios,” Transportation
Science, vol. 40, no. 2, pp. 200–210, 2006.

[27] B. Golden, S. Raghavan, and E. Wasil, The Vehicle Routing Prob-
lem: Latest Advances and New Challenges, vol. 43 of Operations
Research/Computer Science Interfaces. Springer, 2008.

[28] P. Van Hentenryck, R. Bent, and E. Upfal, “Online stochastic optimiza-
tion under time constraints,” Annals of Operations Research, vol. 177,
no. 1, pp. 151–183, 2009.

[29] P. K. Agarwal and M. Sharir, “Efficient algorithms for geometric
optimization,” ACM Computing Surveys, vol. 30, no. 4, pp. 412–458,
1998.

[30] Z. Drezner, ed., Facility Location: A Survey of Applications and Meth-
ods. Series in Operations Research, Springer, 1995.

[31] H. Xu, Optimal Policies for Stochastic and Dynamic Vehicle Routing
Problems. PhD thesis, Massachusetts Institute of Technology, Cam-
bridge, MA, 1995.

[32] S. Bespamyatnikh, D. Kirkpatrick, and J. Snoeyink, “Generalizing ham
sandwich cuts to equitable subdivisions,” Discrete & Computational
Geometry, vol. 24, pp. 605–622, 2000.

18

[33] M. Pavone, A. Arsie, E. Frazzoli, and F. Bullo, “Distributed algorithms
for environment partitioning in mobile robotic networks,” IEEE Trans-
actions on Automatic Control, vol. 56, no. 9, 2011. To appear.

[34] J. D. Papastavrou, “A stochastic and dynamic routing policy using
branching processes with state dependent immigration,” European Jour-
nal of Operational Research, vol. 95, pp. 167–177, 1996.

[35] L. E. Dubins, “On curves of minimal length with a constraint on
average curvature and with prescribed initial and terminal positions and
tangents,” American Journal of Mathematics, vol. 79, pp. 497–516, 1957.

[36] S. M. LaValle, Planning Algorithms. Cambridge University Press, 2006.
Available at http://planning.cs.uiuc.edu.

[37] U. Boscain and B. Piccoli, Optimal Syntheses for Control Systems on
2-D Manifolds. Mathématiques et Applications, Springer, 2004.

[38] L. Pallottino and A. Bicchi, “On optimal cooperative conflict resolution
for air traffic management systems,” IEEE Transactions on Intelligent
Transportation Systems, vol. 1, no. 4, pp. 221–231, 2000.

[39] C. Tomlin, I. Mitchell, and R. Ghosh, “Safety verification of conflict res-
olution manoeuvres,” IEEE Transactions on Intelligent Transportation
Systems, vol. 2, no. 2, pp. 110–120, 2001.

[40] P. Chandler, S. Rasmussen, and M. Pachter, “UAV cooperative path
planning,” in AIAA Conf. on Guidance, Navigation and Control, (Denver,
CO), Aug. 2000.

[41] C. Schumacher, P. R. Chandler, S. J. Rasmussen, and D. Walker, “Task
allocation for wide area search munitions with variable path length,” in
American Control Conference, (Denver, CO), pp. 3472–3477, 2003.

[42] E. Zemel, “Probabilistic analysis of geometric location problems,”
Annals of Operations Research, vol. 1, no. 3, pp. 215–238, 1984.

[43] K. Savla, F. Bullo, and E. Frazzoli, “Traveling Salesperson Problems for
a double integrator,” IEEE Transactions on Automatic Control, vol. 54,
no. 4, pp. 788–793, 2009.

[44] K. Savla and E. Frazzoli, “On endogenous reconfiguration for mobile
robotic networks,” in Workshop on Algorithmic Foundations of Robotics,
(Guanajuato, Mexico), Dec. 2008.

[45] E. K. P. Chong, C. M. Kreucher, and A. O. Hero III, “Monte-Carlo-
based partially observable Markov decision process approximations
for adaptive sensing,” in Int. Workshop on Discrete Event Systems,
(Göteborg, Sweden), pp. 173–180, May 2008.

[46] B. Korte and J. Vygen, Combinatorial Optimization: Theory and Al-
gorithms, vol. 21 of Algorithmics and Combinatorics. Springer, 4 ed.,
2007.

[47] P. Gupta and P. R. Kumar, “The capacity of wireless networks,” IEEE
Transactions on Information Theory, vol. 46, no. 2, pp. 388–404, 2000.

[48] V. Sharma, M. Savchenko, E. Frazzoli, and P. Voulgaris, “Transfer time
complexity of conflict-free vehicle routing with no communications,”
International Journal of Robotics Research, vol. 26, no. 3, pp. 255–
272, 2007.

[49] S. L. Smith, S. D. Bopardikar, and F. Bullo, “A dynamic boundary
guarding problem with translating demands,” in IEEE Conf. on Deci-
sion and Control and Chinese Control Conference, (Shanghai, China),
pp. 8543–8548, Dec. 2009.

[50] H. A. Waisanen, D. Shah, and M. A. Dahleh, “A dynamic pickup and
delivery problem in mobile networks under information constraints,”
IEEE Transactions on Automatic Control, vol. 53, no. 6, pp. 1419–1433,
2008.

[51] M. R. Swihart and J. D. Papastavrou, “A stochastic and dynamic model
for the single-vehicle pick-up delivery problem,” European Journal of
Operational Research, vol. 114, pp. 447–464, 1999.

[52] S. Itani, E. Frazzoli, and M. A. Dahleh, “Dynamic travelling repairperson
problem for dynamic systems,” in IEEE Conf. on Decision and Control,
(Cancún, México), pp. 465–470, Dec. 2008.

[53] J. Beardwood, J. Halton, and J. Hammersly, “The shortest path through
many points,” in Proceedings of the Cambridge Philosophy Society,
vol. 55, pp. 299–327, 1959.

[54] J. M. Steele, “Probabilistic and worst case analyses of classical problems
of combinatorial optimization in Euclidean space,” Mathematics of
Operations Research, vol. 15, no. 4, p. 749, 1990.

[55] A. G. Percus and O. C. Martin, “Finite size and dimensional dependence
of the Euclidean traveling salesman problem,” Physical Review Letters,
vol. 76, no. 8, pp. 1188–1191, 1996.

[56] R. C. Larson and A. R. Odoni, Urban Operations Research. Prentice
Hall, 1981.

[57] D. Applegate, R. Bixby, V. Chvátal, and W. Cook, “On the solution of
traveling salesman problems,” in Documenta Mathematica, Journal der
Deutschen Mathematiker-Vereinigung, (Berlin, Germany), pp. 645–656,
Aug. 1998. Proceedings of the International Congress of Mathemati-
cians, Extra Volume ICM III.

[58] N. Christofides, “Worst-case analysis of a new heuristic for the trav-
eling salesman problem,” Tech. Rep. 388, Carnegie Mellon University,
Pittsburgh, PA, Apr. 1976.

[59] S. Arora, “Nearly linear time approximation scheme for Euclidean TSP
and other geometric problems,” in IEEE Symposium on Foundations of
Computer Science, (Miami Beach, FL), pp. 554–563, Oct. 1997.

[60] S. Lin and B. W. Kernighan, “An effective heuristic algorithm for the
traveling-salesman problem,” Operations Research, vol. 21, pp. 498–
516, 1973.

[61] N. Megiddo and K. J. Supowit, “On the complexity of some common
geometric location problems,” SIAM Journal on Computing, vol. 13,
no. 1, pp. 182–196, 1984.

[62] C. H. Papadimitriou, “Worst-case and probabilistic analysis of a geo-
metric location problem,” SIAM Journal on Computing, vol. 10, no. 3,
1981.

APPENDIX

A. Asymptotic Properties of the Traveling Salesman Problem
in the Euclidean Plane

Let D be a set of n points in Rd and let TSP(D) denote
the minimum length of a tour through all the points in D;
by convention, TSP(∅) = 0. Assume that the locations of the
n points are random variables independently and identically
distributed in a compact set Q; in [53], [54] it is shown that
there exists a constant βTSP,d such that, almost surely,

lim
n→+∞

TSP(D)
n1−1/d

= βTSP,d

∫
Q
ϕ̄(q)1−1/d dq, (20)

where ϕ̄ is the density of the absolutely continuous part of the
point distribution. For the case d = 2, the constant βTSP,2 has
been estimated numerically as βTSP,2 ' 0.7120±0.0002 [55].
Notice that the bound (20) holds for all compact sets: the
shape of the set only affects the convergence rate to the limit.
According to [56], if Q is a “fairly compact and fairly convex”
set in the plane, then equation (20) provides a “good” estimate
of the optimal TSP tour length for values of n as low as 15.

B. Tools for Solving TSPs
The TSP is known to be NP-complete, which suggests that

there is no general algorithm capable of finding the optimal
tour in an amount of time polynomial in the size of the input.
Even though the exact optimal solution of a large TSP can be
very hard to compute, several exact and heuristic algorithms
and software tools are available for the numerical solution of
TSPs.

The most advanced TSP solver to date is arguably
concorde [57]. Polynomial-time algorithms are available
for constant-factor approximations of TSP solutions, among
which we mention Christofides’ algorithm [58]. On a more
theoretical side, Arora proved the existence of polynomial-
time approximation schemes for the TSP, providing a (1 + ε)
constant-factor approximation for any ε > 0 [59].

A modified version of the Lin-Kernighan heuristic [60]
is implemented in linkern; this powerful solver yields
approximations in the order of 5% of the optimal tour cost very
quickly for many instances. For example, in our numerical
experiments on a machine with a 2GHz Intel Core Duo
processor, approximations of random TSPs with 10,000 points
typically required about twenty seconds of CPU time.4

4The concorde and linkern solvers are freely available for academic
research use at www.tsp.gatech.edu/concorde/index.html.

19

We presented algorithms that require online solutions of
possibly large TSPs. Practical implementations of the algo-
rithms would rely on heuristics or on polynomial-time approx-
imation schemes, such as Lin-Kernighan’s or Christofides’. If
a constant-factor approximation algorithm is used, the effect
on the asymptotic performance guarantees of our algorithms
can be simply modeled as a scaling of the constant βTSP,d.

C. Properties of the Multi-Median Function

In this subsection, we state certain useful properties of the
multi-median function, introduced in Section III-A. The multi-
median function can be written as

Hm(P,Q) := E
[
mink∈{1,...,m} ‖pk − q‖

]
=

m∑
k=1

∫
Vk(P)

‖pk − q‖ϕ(q) dq,

where V(P) = (V1(P), . . . , Vm(P)) is the Voronoi partition
of the set Q generated by the points P . It is straightforward
to show that the map P 7→ H1(P,Q) is differentiable and
strictly convex on Q. Therefore, it is a simple computational
task to compute P ∗1 (Q). On the other hand, when m > 1, the
map P 7→ Hm(P,Q) is differentiable (whenever (p1, . . . , pm)
are distinct) but not convex, thus making the solution of the
continuous m-median problem hard in the general case. It is
known [29], [61] that the discrete version of the m-median
problem is NP-hard for d ≥ 2. However, one can provide
tight bounds on the map m 7→ H∗m(Q). This problem is
studied thoroughly in [62] for square regions and in [42] for
more general compact regions. It is shown that, in the limit
m → +∞, H∗m(Q)

√
m → chex

√|Q| almost surely [42],
where chex ≈ 0.377 is the first moment of a hexagon of unit
area about its center. This optimal asymptotic value is achieved
by placing the m points at the centers of the hexagons in a
regular hexagonal lattice within Q (the honeycomb heuristic).
Working towards the above result, it is also shown [42], [18]
that for any m ∈ N:

0.3761

√
|Q|
m
≤ H∗m(Q) ≤ c(Q)

√
|Q|
m
, (21)

where c(Q) is a constant depending on the shape of Q.

