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Actor-Critic Policy Learning

in Cooperative Planning

Josh Redding∗, Alborz Geramifard†, Han-Lim Choi‡, Jonathan P. How§

Aerospace Controls Laboratory

Massachusetts Institute of Technology

Cambridge, MA 02139

In this paper, we introduce a method for learning and adapting cooperative
control strategies in real-time stochastic domains. Our framework is an instance
of the intelligent cooperative control architecture (iCCA)1. The agent starts by
following the “safe” plan calculated by the planning module and incrementally
adapting its policy to maximize the cumulative rewards. Actor-critic and consensus-
based bundle algorithm (CBBA) were employed as the building blocks of the iCCA
framework. We demonstrate the performance of our approach by simulating limited
fuel unmanned aerial vehicles aiming for stochastic targets. In one experiment
where the optimal solution can be calculated, the integrated framework boosted
the optimality of the solution by an average of %10, when compared to running
each of the modules individually, while keeping the computational load within the
requirements for real-time implementation.

I. Introduction

Planning for heterogeneous teams of mobile, autonomous, health-aware agents in uncertain and
dynamic environments is a challenging problem. In such a setting, the agents are simultaneously
engaged and continuously interact with each other, their surroundings and with potential threats.
They may encounter evasive targets and need to reason through adversarial actions with insufficient
data. Or, agents may receive delayed, lossy and contaminated communications or experience sensor
and actuator failures. On top of these challenges, autonomous agents must be robust to unmodeled
dynamics or parametric uncertainties while remaining capable of performing their advertised range
of tasks.

Although much work has been done in the area of multi-agent planning in uncertain environ-
ments2–5, key gaps in the current literature include:
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• How to improve planner performance over time in the face of uncertainty and a
dynamic world?
• How to use current knowledge and past observations to become both robust to likely

failures and intelligent with respect to unforeseen future events?

In this research, we focus primarily on the former question. That is, we are interested specifically
in improving the performance of the system over time in an uncertain world. To facilitate this, we
adopt the intelligent cooperative control architecture (iCCA) previously introduced by the authors1.
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Figure 1: An intelligent Cooperative Control Architecture, a framework for the integration of
cooperative control algorithms and machine learning techniques.

As seen in Figure 1, iCCA is comprised of a cooperative planner, a learner, a metric for
performance-to-date. Each of these elements is interconnected and plays a key role in the overall
architecture. For this research, we use the consensus-based bundle algorithm (CBBA)6 as the co-
operative planner to solve the multi-agent task allocation problem. For the learning algorithm, we
implemented an actor-critic reinforcement learner which uses information regarding performance to
explore and suggest new behaviors that would likely lead to more favorable outcomes than the cur-
rent behavior would produce. The performance analysis block is implemented as a “risk” analysis
tool where actions suggested by the learner can be overridden by the baseline cooperative planner
if they are deemed too risky. This synergistic planner-learner relationship yields a “safe” policy in
the eyes of the planner, upon which the learner can only improve. Ultimately, this relationship will
help to bridge the gap to successful and intelligent execution in real-world missions.

In the remainder of this paper, we detail the integration of learning with cooperative control and
show how the marriage of these two fields can result in an intelligent, adaptable planning scheme
in the context of teams of autonomous agents in uncertain environments. We first formulate an
instance of the iCCA framework and introduce a method for learning and adapting cooperative
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control strategies in real-time stochastic domains. An agent starts by following a “safe” plan
calculated by its planning module and then incrementally adapts the associated policy in order
to maximize the cumulative rewards via actor-critic reinforcement learning. We then demonstrate
the performance of our approach by simulating limited fuel unmanned aerial vehicles aiming for
stochastic targets. We proceed as follows: We motivate and formally state the multi-agent planning
problem in Section II. The specifics of the proposed architecture are then detailed in Section III and
followed by a discussion of simulation results in Section IV and lastly by a summary of conclusions.

II. Problem Statement

Having introduced the general problem, outlined a few key research gaps, and proposed our
solution, we now prepare to dive a little deeper by formally presenting the problem we aim to solve
and by giving some useful background information. We first outline a small, yet difficult, multi-
agent scenario in Section II.A where traditional cooperative control techniques tend to struggle,
due to the presence of significant uncertainties. Some relevant background information is given in
Section ??, followed by the formulation of the planning problem associated with the scenario of
interest in Section II.C along with further details of the proposed solution approach, including how
it addresses the research gap of interest.

II.A. Problem Scenario
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Figure 2: The mission scenarios of interest: A team of two UAVs plan to maximize their cumulative
reward along the mission by cooperating to visit targets. Target nodes are shown as circles with
rewards noted as positive values and the probability of receiving the reward shown in the accom-
panying cloud. Note that some target nodes have no value. Constraints on the allowable visit time
of a target are shown in square brackets.

Here we outline the scenarios in which we developed and tested each of the modules in the iCCA
framework. Referring to Figures 2, we see a depiction of the mission scenarios of interest where a
team of two fuel-limited UAVs cooperate to maximize their total reward by visiting valuable target
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nodes in the network. The base is highlighted as node 1 (green circle), targets are shown as blue
circles and agents as triangles. The total amount of fuel for each agent is highlighted by the number
inside each triangle. For those targets with an associated reward it is given as a positive number
nearby. The constraints on the allowable times when the target can be visited are given in square
brackets and the probability of receiving the known reward when the target is visited is given in the
white cloud nearest the node.a Each reward can be obtained only once and traversing each edge
takes one fuel cell and one time step. We also allow UAVs to loiter at any of the nodes indefinitely
if, for some reason, they believe that to be the “optimal” action. The fuel burn for loitering action
is also one unit, except for any UAVs at the base, where they are assumed to be stationary and
their fuel level is therefore not depleted. The mission horizon was set to 8 time steps for UAV 7-2
scenario and 11 for the UAV 10-2 scenario.

II.B. Markov Decision Processes

As the scenarios above are modeled each as a multi-agent Markov Decision Process (MDP)7–9, we
now provide some relevant background. The MDP framework provides a general formulation for
sequential planning under uncertainty. An MDP is defined by tuple (S,A,Pass′ ,Rass′ , γ), where S is
the set of states, A is the set of possible actions. Taking action a from state s has Pass′ probability
of ending up in state s′ and receiving reward Rass′ . Finally γ ∈ [0, 1] is the discount factor used to
prioritize early rewards against future rewards.b A trajectory of experience is defined by sequence
s0, a0, r0, s1, a1, r1, · · · , where the agent starts at state s0, takes action a0, receives reward r0, transit
to state s1, and so on. A policy π is defined as a function from S ×A to the probability space [0, 1],
where π(s, a) corresponds to the probability of taking action a from state s. The value of each
state-action pair under policy π, Qπ(s, a), is defined as the expected sum of discounted rewards
when the agent takes action a from state s and follow policy π thereafter:

Qπ(s, a) = Eπ

[ ∞∑
t=1

γt−1rt

∣∣∣∣s0 = s, a0 = a,

]
.

The optimal policy π∗ maximizes the above expectation for all state-action pairs:

π∗ = argmaxaQ
π∗(s, a)

II.C. MDP Formulation

Here, we formulate the scenarios of interest into MDP framework, as described above.

II.C.1. State Space S

We formulated the state space as [N1, F1, . . . , Nn, Fn, V1, . . . , Vm, t]T , where Ni and Fi are integer
values highlighting the location and the remaining fuel respectively for UAV i (i ∈ 1 . . . n). Vj is a

aIf two agents visit a node at the same time, the probability of visiting the node would increase accordingly.
bγ can be set to 1 only for episodic tasks, where the length of trajectories are fixed.
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single bit signaling if node j has been visited before, where (j ∈ 1 . . .m), and t is the current time
step. There are n UAVs and m nodes participating in the scenario.

II.C.2. Action Space A

Action space is [N+
1 , . . . , N

+
n ] where N+

i is the node to which the agent is traveling, or where it will
be at the next time interval.

II.C.3. Transition Function Pass′

The transition function is deterministic for the UAV position, fuel consumption, and time variables
of the state space, while it is stochastic for the visited list of targets. The detailed derivation of the
complete transition function should be trivial following the corresponding graph in Figure 2. That
is, transitions are allowed between nodes for which there is an edge on the graph.

II.C.4. Reward Function Rass′

The reward on each time step is stochastic and calculated as the sum of rewards from visiting
new desired targets minus the total burnt fuel cells on the last move. Notice that a UAV receives
the target reward only if it lands on an unvisited rewarding node and lucky enough to obtain the
reward. In that case, the corresponding visibility bit will turn on, and the agent receive the reward.
The crash penalty equals to the negative sum of rewards at all nodes for both scenarios in order
to prioritize safety over visiting targets. It occurs when any UAV runs out of fuel or is not at the
base by the end of the mission horizon.

III. iCCA

In this section, we detail our instance of the intelligent cooperative control architecture (iCCA),
describing the purpose and function of each element and how the framework as a whole fits together
with the MDP formulated in the previous section.

As seen in Figure 3, we use the consensus-based bundle algorithm (CBBA)6 as the cooper-
ative planner to solve the multi-agent task allocation problem. For the learning algorithm, we
implemented an actor-critic reinforcement learner which uses information regarding performance
to explore and suggest new behaviors that would likely lead to more favorable outcomes than the
current behavior would produce. The performance analysis block is implemented as a “risk” anal-
ysis tool where actions suggested by the learner can be overridden by the baseline cooperative
planner if they are deemed too risky. In the sections that follow, each of these blocks is described
in a bit more detail.

III.A. Cooperative Planner

At its fundamental level, the cooperative planner yields a solution to the multi-agent path planning,
task assignment or resource allocation problem, depending on the domain. This means it seeks to
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Figure 3: iCCA framework as implemented. CBBA planner and risk analysis and the actor-critic
learner formulated within an MDP.

fulfill the specific goals of the application in a manner that optimizes an underlying, user-defined
objective function. Many existing cooperative control algorithms use observed performance to
calculate temporal-difference errors which drive the objective function in the desired direction5,10.
Regardless of how it is formulated ( e.g. MILP, MDP, CBBA, etc...), the cooperative planner, or
cooperative control algorithm, is the source for baseline plan generation within iCCA.

In this research, we implemented a decentralized auction protocol called the consensus-based
bundle algorithm as the cooperative planner. The following section details this approach.

III.A.1. Consensus-Based Bundle Algorithm

CBBA is a decentralized auction protocol that produces conflict-free assignments that are relatively
robust to disparate situational awareness over the network.

CBBA consists of iterations between two phases: In the first phase, each vehicle generates a
single ordered bundle of tasks by sequentially selecting the task giving the largest marginal score.
The second phase resolves inconsistent or conflicting assignments through local communication
between neighboring agents. In the local communication round, some agent i sends out to its
neighboring agents two vectors of length Nt: the winning agents vector zi ∈ INt and the winning
bids vector yi ∈ RNt

+ . The j-th entries of the zi and yi indicate who agent i thinks is the best
agent to take task j, and what is the score that agent gets from task j, respectively. The essence
of CBBA is to enforce every agent to agree upon these two vectors, leading to agreement on some
conflict-free assignment regardless of inconsistencies in situational awareness over the team.

There are several core features of CBBA identified in [6]. First, CBBA is a decentralized decision
architecture. For a large team of autonomous agents, it would be too restrictive to assume the
presence of a central planner (or server) with which every agent communicates. Instead, it is more
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natural for each agent to share information via local communication with its neighbors. Second,
CBBA is a polynomial-time algorithm. The worst-case complexity of the bundle construction is
O(NtLt) and CBBA converges within max{Nt, LtNa}D iterations, where Nt denotes the number
of tasks, Lt the maximum number of tasks an agent can win, Na the number of agents and D is the
network diameter, which is always less than Na. Thus, the CBBA methodology scales well with
the size of the network and/or the number of tasks (or equivalently, the length of the planning
horizon). Third, various design objectives, agent models, and constraints can be incorporated by
defining appropriate scoring functions. It is shown in [6] that if the resulting scoring scheme satisfies
a certain property called diminishing marginal gain, a provably good feasible solution is guaranteed.

While the scoring function primarily used in [6] was a time-discounted reward, a more recent
version of the algorithm is due to Ponda11 and handles the following extensions while preserving
convergence properties:

• Tasks that have finite time windows of validity
• Heterogeneity in the agent capabilities
• Vehicle fuel cost

This research uses this extended version of CBBA as the cooperative planner and adds to it addi-
tional constraints on fuel supply to ensure agents cannot bid on task sequences that require more
fuel than they have remaining.

III.B. Risk/Performance Analysis

One of the main reasons for cooperation in a cooperative control mission is to minimize some
global cost, or objective function. Very often this objective involves time, risk, fuel, or other
similar physically-meaningful quantities. The purpose of the performance analysis module is to
accumulate observations, glean useful information buried in the noise, categorize it and use it to
improve subsequent plans. In other words, the performance analysis element of iCCA attempts to
improve agent behavior by diligently studying its own experiences3 and compiling relevant signals
to drive the learner and/or the planner.

The use of such feedback within a planner is of course not new. In fact, there are very few
cooperative planners which do not employ some form of measured feedback. In this research, we
implemented this module as a risk analysis element where candidate actions are evaluated for risk
level. Actions deemed too risky are replaced with another of lower risk. The details of this feature
are given in the following section.

III.C. Learning Algorithm

Although learning has many forms, iCCA provides a minimally restrictive framework where the
contributions of the learner to fall into either of two categories:

1. Assist the cooperative planner by adapting to parametric uncertainty of internal
models
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2. Suggesting candidate actions to the cooperative planner that the learner sees as
beneficial

The focus of our research is on the latter category, where suggested actions are generated by
the learning module through the learned policy. A popular approach among MDP solvers is to
find an approximation to Qπ(s, a) (policy evaluation) and update the policy with respect to the
resulting values (policy improvement). Temporal Difference learning (TD)12 is a traditional policy
evaluation method in which the current Q(s, a) is adjusted based on the temporal difference error
akin to the gradient vector. Given (st, at, rt, st+1, at+1) and the current value estimates, the TD
error, δt, is calculated as:

δt(Q) = rt + γQπ(st+1, at+1)−Qπ(st, at).

The one-step TD algorithm, also known as TD(0), updates the value estimates using:

Qπ(st, at) = Qπ(st, at) + αδt(Q),

where α is the learning rate. We chose to formulate the learner as an actor-critic type, where TD
method used for the critic section. As for the actor, the policy was represented using Gibbs softmax
method:

π(s, a) =
eP (s,a)/τ∑
b e
P (s,b)/τ

,

in which P (s, a) is the preference of taking action a in state s, and τ ∈ (0,∞] is the temperature
parameter acting as a knob shifting from greedy towards random action selection. Since we use a
tabular representation the actor update amounts to:

P (s, a)← P (s, a) + αQ(s, a)

following the incremental natural actor-critic framework13. We initialized the actor’s policy with
the action preferences generated by the baseline CBBA planner. As actions are pulled from the
policy for implementation, they are evaluated for risk level and can be overridden by CBBA if the
action would lead the agent into an undesirable configuration, such as crashing or running out of
fuel. As the agent implements the policy, the critic receives rewards for the actor’s actions.

As a reinforcement learning algorithm, the actor-critic element of iCCA introduces the key
concept of bounded exploration such that the learner can explore the parts of the world that may
lead to better system performance while ensuring that the agent remains safe within its operational
envelope and away from states that are known to be undesirable. In order to facilitate this bound,
the risk analysis module inspect all suggestive actions of the actor, and replaces the risky ones
with the baseline CBBA policy. This process guides the learning away from catastrophic errors.
In essence, the baseline cooperative control solution provides a form of “prior” over the learner’s
policy space while acting as a backup policy in the case of an emergency.
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A canonical failure of learning algorithms in general, is that negative information is extremely
useful in terms of the value of information it provides. We therefore introduce the notion of a
“virtual reward”. In this research, the virtual reward is a large negative value delivered by the
risk analysis module to the learner for risky actions suggested by the actor and pruned by the risk
analysis module. When this virtual reward is delivered, the learner associates it with the previously
suggested action, therefore dissuading the learner from suggesting that action again, reducing the
number of “emergency overrides” in the future.

IV. Experimental Results

In this section, we present and discuss simulation results for the scenarios described in Sec-
tion II.A. For the UAV 7-2 scenario, we were able to solve the problem using backward dynamic
programing in order to use this solution as the baseline for the optimality.c Unfortunately, calcu-
lating an optimal solution was not feasible for the UAV 10-2 case, with about 9 billion state action
pairs. However, we ran the CBBA algorithm online on the expected deterministic version of both
scenarios on each step for 10,000 episodes. Finally, we empirically searched for the best learning
rates for the Actor-Critic and iCCA methods where the learning rate was calculated by:

αt = α0
N0 + 1

N0 + Episode#1.1 .

The best α0 and N0 were selected through experimental search of the sets of α0 ∈ {0.01, 0.1, 1} and
N0 ∈ {100, 1000, 106} for each algorithm and scenario. Table 1 shows the best performing values.
For all experiments, we set the preference of the advised CBBA state-action pairs to 100. Risky
actions resulted in −100 preference for the state-actions pairs in the actor. τ was set to 1 for the
actor.

UAV 7-2 UAV 10-2
Algorithm α0 N0 α0 N0

Actor-Critic 0.1 1, 000, 000 0.1 1, 000
iCCA 0.01 100 0.01 100

Table 1: The best α0 and N0 found empirically out of 9 configurations for each algorithm and scenario.

Figure 4-(a) depicts the performance of iCCA and Actor-Critic averaged over 60 runs in the
UAV 7-2 scenario. The Y-axis shows the cumulative reward, while the X-axis represents the number
of interactions. Each point on the graph is the result of running the greedy policy with respect
to the existing preferences of the actor. For iCCA, risky moves again were replaced by the CBBA
baseline solution. Error bars represent the standard error with %90 confidence interval. In order
to show the relative performance of these methods with offline techniques, both the optimal and
CBBA solutions are highlighted as horizontal lines. It is clear that the actor-critic performs much

cThis computation took about a day to calculate all expected values over more than 100 million state action pairs.
Hence this approach can not be easily scaled for larger sizes of the problem.
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better when wrapped into the iCCA framework and performs better than CBBA alone. The reason
is that CBBA provides a good starting point for the actor-critic to explore the state space, while
the risk analyzer filters risky actions of the actor leading into catastrophic situations. Figure 4-
(b) shows the optimality of iCCA and Actor-Critic after 105 steps of interaction with the domain
and the averaged optimality of CBBA through 10, 000 trials. Notice how the integrated algorithm
could on average boost the best individual optimality performance of both individual components
by %10.
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Figure 4: A comparison of the collective rewards received in UAV 7-2 scenario when strictly fol-
lowing plans generated by CBBA alone, actor-critic reinforcement learning outside of the iCCA
environment, i.e. without initialization and guidance from CBBA, and the result when these are
coupled via the iCCA framework are all compared against the optimal performance as calculated
via dynamic programming

For the second set of results, we performed the same set of runs in the UAV 10-2 scenario. Figure
5-(a) depicts the performance of actor-critic, CBBA, and iCCA algorithms in this domain averaged
over 30 runs. Since the size of the state-action pairs for this domain is about 9 billion, we could not
take advantage of the dynamic programing approach to calculate the optimal solution. Since the
state space scaled by a huge factor compared to UAV 7-2 scenario, actor-critic method had a hard
time to find a sensible policy even after 105 steps. Online CBBA still could find a good policy to the
approximated problem. When both CBBA and actor-critic put together through iCCA framework,
the agent could achieve a better performance even early on after 104 steps. Figure 5-(b) shows the
averaged performance of each method at the end of the learning phase. Notice that iCCA again
could boost the performance of CBBA solution.

V. Conclusions

In conclusion, we introduced a method for learning and adapting cooperative control strategies
in real-time stochastic domains. Our framework of choice was an instance of the intelligent cooper-
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Figure 5: A comparison of the collective rewards received in UAV 10-2 scenario when strictly
following plans generated by CBBA alone, actor-critic reinforcement learning outside of the iCCA
environment, i.e. without initialization and guidance from CBBA, and the result when these are
coupled via the iCCA framework.

ative control architecture (iCCA) presented in [1]. A “safe” plan was generated by the Consensus-
Based Bundle Algorithm6, which initialized a policy which was then incrementally adapted by
a natural actor-critic learning algorithm to increase planner performance over time. We success-
fully demonstrated the performance of our approach by simulating limited-fuel UAVs aiming for
stochastic targets in two scenarios involving uncertainty.

VI. Future Work

Perhaps one of the main drawbacks of our proposed realization of the iCCA framework was the
use of hash tables for representing the policy and the value function. While this approach could
improve the performance of the CBBA algorithm, we suspect that by taking advantage of linear
function approximation, the learning process can take less time as learned values are generalized
among related states. While from the algorithmic side both TD and actor-critic methods were
successfully extended to the linear approximation case, both approaches assume the existence of
the “right” basis functions a priori. We are currently working on novel ways to expand the linear
basis in an automated fashion so that it can capture interesting correlations among features. In
the future, we are interested to integrate our feature discovery method with natural actor-critic in
order to boost the learning speed and push the scalability of iCCA to even larger domains.
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