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Abstract Planning for multi-agent systems such as task assignment for teams
of limited-fuel unmanned aerial vehicles (UAVs) is challenging due to uncer-
tainties in the assumed models and the very large size of the planning space.
Researchers have developed fast cooperative planners based on simple models
(e.g., linear and deterministic dynamics), yet inaccuracies in assumed mod-
els will impact the resulting performance. Learning techniques are capable of
adapting the model and providing better policies asymptotically compared to
cooperative planners, yet they often violate the safety conditions of the system
due to their exploratory nature. Moreover they frequently require an imprac-
tically large number of interactions to perform well. This paper introduces the
intelligent Cooperative Control Architecture (iCCA) as a framework for com-
bining cooperative planners and reinforcement learning techniques. iCCA im-
proves the policy of the cooperative planner, while reduces the risk and sample
complexity of the learner. Empirical results in gridworld and task assignment
for fuel-limited UAV domains with problem sizes up to 9 billion state-action
pairs verify the advantage of iCCA over pure learning and planning strategies.

Keywords MDPs · Cooperative Planning · Reinforcement Learning · Risk
Management

1 Introduction

Applications involving multiple autonomous robots typically require that par-
ticipating agents remain capable of performing their advertised range of tasks
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in the face of noise, unmodeled dynamics and uncertainties. Many cooperative
control algorithms have been designed to address these and other, related is-
sues such as humans-in-the-loop, imperfect situational awareness, sparse com-
munication networks, and complex environments [Beard et al., 2002, Casal,
2002, Choi et al., 2009, Ketan Savla, 2008, Olfati-Saber et al., 2007, Ren
et al., 2007, Saligrama and Castañón, 2006, Wang et al., 2007, Xu and Oz-
guner, 2003]. While these methods had success in a variety of simulations and
some focused experiments, there remains room to improve overall performance
in real-world applications. For example, cooperative control algorithms are of-
ten based on simple, abstract models of the underlying system. This may aid
computational tractability and enable quick analysis, but at the cost of ignor-
ing real-world complexities such as noisy dynamics and stochastic outcomes
[Cassandras and Li, 2002, Singh et al., 2009, Wang et al., 2005]. Section 2
further provides specific examples regarding the assumptions made in the lit-
erature to obtain fast planners.

Researchers have long understood the negative impact of these modeling
errors on decision-making algorithms [Ben-Tal et al., 2006, Bertsimas et al.,
2011, Zhu and Fukushima, 2009], but the simple and robust extensions of
cooperative control algorithms to account for such errors are often overly con-
servative and generally do not utilize observations or past experiences to refine
poorly known models [Alighanbari et al., 2006, Bertuccelli, 2008]. Despite these
issues however, cooperative control algorithms provide a baseline capability for
achieving challenging multi-agent mission objectives. In this context, the fol-
lowing research question arises: How can current cooperative control algorithms
be extended to result in improved plans?

To address this question, we integrate learning with cooperative control
algorithms through the intelligent Cooperative Control Architecture (iCCA),
so that the planner can improve its solution over time based on its experi-
ences. The general iCCA template shown in Figure 1 consists of customizable
modules for implementing strategies against modeling errors and uncertainties
by integrating cooperative control algorithms with learning techniques and a
feedback measure of system performance. It is well known that most learning
algorithms are more effective when given some prior knowledge to guide the
search and/or steer exploration. In the iCCA framework, the cooperative plan-
ner offers this capability, ensuring that mission objectives are achieved even as
learning proceeds. In return, the learning algorithm enhances the performance
of the planner by offering adaptability to time-varying parameters.

Learning approaches for solving large-scale control problems can handle
unknown models, but they do not have a mechanism to avoid risky behaviors.
For example, in the context of an unmanned aerial vehicle (UAV) mission plan-
ning scenario, the learner might send UAVs with low fuel to remote locations
solely for the purpose of learning about the consequences of such behaviors.
To a human operator who has domain knowledge, such actions may not be
acceptable because losing a UAV is costly and the risk of losing a UAV is
high under this plan. On the contrary, cooperative planners provide safe plans
based on prior knowledge, yet their performance may be suboptimal in ac-
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Fig. 1 intelligent Cooperative Control Architecture, a template framework for the inte-
gration of cooperative control algorithms and machine learning techniques [Redding et al.,
2010b].

tuality. [Alighanbari, 2004, Beard et al., 2002, Casal, 2002, Choi et al., 2009,
Olfati-Saber et al., 2007, Ryan et al., 2004, Saligrama and Castañón, 2006,
Wang et al., 2007, Xu and Ozguner, 2003].

This paper introduces a novel approach that takes advantage of cooperative
planners and domain knowledge to mitigate the risk of learning, reduce the
overall sample complexity, and boost the performance of cooperative planners.
Empirical evaluations in gridworld domains and task assignment missions for
multiple UAVs with problem sizes up to 9 billion state-action pairs demon-
strate the advantage of our technique. Our approach is shown to provide better
solutions compared to pure planning methods, and safer plans compared to
pure learning techniques with lower sample complexity.

The structure of the paper is as follows. Section 2 provides the literature re-
view on cooperative planners and safety in RL. Section 3 illustrates the goal of
this paper through a pedagogical example. Section 4 covers the mathematical
framework and two existing learning techniques used in the paper. Section 5
explains the iCCA and our instantiation of iCCA to integrate cooperative
controllers with reinforcement learning (RL) techniques. Section 6 focuses on
a simplified problem where I) the applied RL method has an explicit policy
formulations and II) the model of the system is assumed to be known and
fixed. Section 7 relaxes the first assumption by extending the work to support
RL methods with implicit policy forms. Section 8 relaxes the second assump-
tion by allowing the system model to be partially known and adapt over time.
Section 9 concludes the paper by highlighting the contributions. Parts of this
article were published as separate papers [Geramifard et al., 2011a,b, Redding
et al., 2010a,b].

2 Related Work

In the controls community, many researchers have developed algorithms for
task assignment among teams of vehicles under the name of cooperative plan-
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ning [Alighanbari, 2004, Alighanbari et al., 2003, Beard et al., 2002, Berman
et al., 2009, Cassandras and Li, 2002, Castanon and Wohletz, 2009, Choi et al.,
2009, Ryan et al., 2004, Saligrama and Castañón, 2006, Wang et al., 2007,
2005]. As the name suggests, these methods use an existing world model for
planning vehicles task assignment. While, in theory, such planning problems
can be solved using dynamic programming (DP) [Bellman, 2003], the compu-
tation time required for solving realistic problems using DP is not practically
feasible. Consequently, cooperative planners are often focused on problems
with specific properties such as convexity, submodularity, etc. that render the
problem more tractable. Furthermore, they investigate approximation tech-
niques for solving planning problems.

[Cassandras and Li, 2002] adopted a receding horizon approach for plan-
ning in obstacle free 2D spaces where vehicles with constant speeds move ac-
cording to deterministic dynamics. [Singh et al., 2009] proposed a non-myopic
approach and derived theoretical guarantees on the performance of their al-
gorithm. Their main results are built upon the submodularity (a diminishing
returns property) assumption which is a limiting factor. [Alighanbari et al.,
2003] formulated the task allocation problem as a mixed-integer linear pro-
gram. They scaled their solution to large domains including 6 vehicles by ap-
proximating the decomposition of task assignment among vehicles. The main
drawback of the work is the assumption of deterministic dynamics for vehicle
movements. Wang et al. [2005] introduced a new method for maintaining the
formation among vehicles in domains with dynamic obstacles. Their approach
assumes a quadratic cost function and a Gaussian noise model. In our UAV
mission planning scenarios both these assumptions are violated: the penalty
function is step-shaped and the noise involved in the reward function has a
multinomial distribution. Castanon and Wohletz [2009] focused on stochas-
tic resource allocation problem. While their method scales well to domains
with 20 resources and 20 tasks, it cannot be applied to cases where multiple
assignments of simultaneous resources are required for the task completion.
Berman et al. [2009] tackled the problem of task allocation for swarms of
robots in a distributed fashion using stochastic policies. Their approach ad-
dresses the problem of maintaining a predefined distribution of robots on a
set of locations, yet does not support time varying distributions. Choi et al.
[2009] used a distributed auction-based approach for task assignment among
agents. They bounded the sub-optimality of their solution, yet extending their
work to stochastic models is still an open problem. In summary, cooperative
planners often result in sub-optimal solutions due to the model inaccuracy
or unsatisfied assumptions. Furthermore, these methods do not incorporate
learning to use perceived trajectories in order to improve future performance.

Safe exploration has been of special interest to practitioners applying RL
techniques to real world domains involving expensive resources. Pessimistic
approaches find optimal policies with respect to the worse possible outcome
of selected actions [Heger, 1994]. Consequently, resulting policies are often
overly constrained, yielding undesirable behavior in practice. Bounding the
probability of failure, risk-sensitive RL methods [Geibel and Wysotzki, 2005,
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Mihatsch and Neuneier, 2002] provide a less conservative approach by max-
imizing the performance subject to an acceptable risk level. Because these
methods do not guarantee the performance before the learning phase, they
are not suitable for online settings. Abbeel and Ng [2005] investigated explo-
ration within the context of batch apprenticeship learning. They conjectured
that running least-squares policy iteration [Lagoudakis and Parr, 2003] over
teacher generated trajectories yields safe policies for practical domains. While
in practice they reported safe policies, their approach does not have mathe-
matical guarantees. For deterministic MDPs, Hans et al. [2008] extended the
risk-sensitive RL approach by identifying states as super critical, critical, and
safe. While they demonstrated promising empirical results, their method can-
not be applied to stochastic domains. Knox and Stone [2010] discussed various
ways that an initial policy can bias the learning process, yet their approach
requires access to the value function of the given policy which may be hard
to calculate. Robust MDPs is another framework to capture the uncertainties
about the model and tune the policy to be robust within the space of possible
models [Bagnell et al., 2001, Nilim and Ghaoui, 2005]. These methods do not
take advantage of the online data and their resulting policies can be overly
conservative in practice. Recent work has extended robust MDPs to an adap-
tive framework by incorporating observed interactions to reduce the model
uncertainty [Bertuccelli et al., 2012]. While similar in some aspects to the ap-
proach given here, it is restricted to parameter estimation within the model
learning, and that work also does not explicitly capture the notion of risk that
is a key element of the iCCA learning. Within the controls community, safe
exploration is pursued under robust RL in which the stability of the system is
of main interest, but current state of the art methods do not extend to general
MDPs as they consider systems with linear transition models [Anderson et al.,
2007].

3 A Pedagogical Example: GridWorld-1

This section provides a pedagogical example, demonstrating how inaccurate
models can lead into suboptimal policies. In Section 6, we show how the opti-
mal policy can be obtained by using learning techniques.

Consider a grid world scenario shown in Figure 2(a), in which the task is
to navigate a UAV from the top-left corner (•) to the bottom-right corner (?).
Red areas highlight the danger zones where the UAV will be eliminated upon
entrance. At each step the UAV can take any action from the set {↑, ↓,←
,→}. However, due to wind disturbances, there is 30% chance that the UAV
is pushed into any unoccupied neighboring cell while executing the selected
action. The reward for reaching the goal region and off-limit regions are +1
and −1 respectively, while every other move results in −0.001 reward.

Figure 2(b) illustrates the policy (shown as arrows) calculated by a planner
using dynamic programming [Sutton and Barto, 1998] that is unaware of the
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Fig. 2. The GridWorld domain (a), the corresponding policy calculated with a planner assuming deterministic movement model and its true value function
(b) and the optimal policy with the perfect model and its value function (c). The task is to navigate from the top left corner highlighted as • to the right
bottom corner identified as �. Red regions are off-limit areas where the UAV should avoid. The movement dynamics has 30% noise of moving the UAV
to a random free neighboring grid cell. Gray cells are not traversable.

critic and is calculated/updated in an identical manner to
Sarsa.

III. PROBLEM STATEMENT

In this section, we use a pedagogical example to explain:
(1) the effect of unknown noise on the planner’s solution,
(2) how learning methods can improve the performance and
safety of the planner solution, and (3) how the approximate
model and the planner solution can be used for faster and
safer learning.

A. The GridWorld Domain: A Pedagogical Example

Consider a grid world scenario shown in Fig. 2-(a), in
which the task is to navigate a UAV from the top-left
corner (•) to the bottom-right corner (�). Red areas highlight
the danger zones where the UAV will be eliminated upon
entrance. At each step the UAV can take any action from the
set {↑, ↓,←,→}. However, due to wind disturbances, there
is 30% chance that the UAV is pushed into any unoccupied
neighboring cell while executing the selected action. The
reward for reaching the goal region and off-limit regions are
+1 and −1 respectively, while every other move results in
−0.001 reward.

Fig. 2-(b) illustrates the policy (shown as arrows) cal-
culated by a planner that is unaware of the wind together
with the nominal path highlighted as a gray tube. As
expected the path suggested by the planner follows the
shortest path that avoids direct passing through off-limit
areas. The color of each cell represents the true value of
each state (i.e., including the wind) under the planner’s
policy. Green indicates positive, white indicate zero, and red
indicate negative values3. Lets focus on the nominal path

3We set the value for blocked areas to −∞, hence the intense red color

from the start to the goal. Notice how the value function
jumps suddenly each time the policy is followed from an
off-limit neighbor cell (e.g., (8, 3) → (8, 4)). This drastic
change highlights the involved risk in taking those actions
in the presence of the wind.

The optimal policy and its corresponding value function
and nominal path are shown in Fig. 2-(c). Notice how the
optimal policy avoids the risk of getting close to off-limit
areas by making wider turns. Moreover, the value function
on the nominal path no longer goes through sudden jumps.
While the new nominal path is longer, it mitigates the risk
better. In fact, the new policy raises the mission success
rate from 29% to 80%, while boosting the value of the
initial state by a factor of ≈3. Model-free learning techniques
such as Sarsa can find the optimal policy through mere
interaction, although they require many training examples.
More importantly, they might deliberately move the UAV
towards off-limit regions to gain information about those
areas. If the learner is integrated with the planner, the
estimated model can be used to rule out intentional poor
decisions. Furthermore, the planner’s policy can be used as
a starting point for the learner to bootstrap on, reducing the
amount of data the learner requires to master the task.

Though simple, the preceding problem is fundamentally
similar to more meaningful and practical UAV planning sce-
narios. The following sections present the technical approach
and examines the resulting methods in this toy domain and
a more complex multi-UAV planning task where the size of
the state space exceeds 200 million state-action pairs.

IV. TECHNICAL APPROACH

This section provides further details of the intelligent
cooperative control architecture (iCCA), describing the pur-
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Fig. 2. The GridWorld domain (a), the corresponding policy calculated with a planner assuming deterministic movement model and its true value function
(b) and the optimal policy with the perfect model and its value function (c). The task is to navigate from the top left corner highlighted as • to the right
bottom corner identified as �. Red regions are off-limit areas where the UAV should avoid. The movement dynamics has 30% noise of moving the UAV
to a random free neighboring grid cell. Gray cells are not traversable.
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set {↑, ↓,←,→}. However, due to wind disturbances, there
is 30% chance that the UAV is pushed into any unoccupied
neighboring cell while executing the selected action. The
reward for reaching the goal region and off-limit regions are
+1 and −1 respectively, while every other move results in
−0.001 reward.

Fig. 2-(b) illustrates the policy (shown as arrows) cal-
culated by a planner that is unaware of the wind together
with the nominal path highlighted as a gray tube. As
expected the path suggested by the planner follows the
shortest path that avoids direct passing through off-limit
areas. The color of each cell represents the true value of
each state (i.e., including the wind) under the planner’s
policy. Green indicates positive, white indicate zero, and red
indicate negative values3. Lets focus on the nominal path
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from the start to the goal. Notice how the value function
jumps suddenly each time the policy is followed from an
off-limit neighbor cell (e.g., (8, 3) → (8, 4)). This drastic
change highlights the involved risk in taking those actions
in the presence of the wind.

The optimal policy and its corresponding value function
and nominal path are shown in Fig. 2-(c). Notice how the
optimal policy avoids the risk of getting close to off-limit
areas by making wider turns. Moreover, the value function
on the nominal path no longer goes through sudden jumps.
While the new nominal path is longer, it mitigates the risk
better. In fact, the new policy raises the mission success
rate from 29% to 80%, while boosting the value of the
initial state by a factor of ≈3. Model-free learning techniques
such as Sarsa can find the optimal policy through mere
interaction, although they require many training examples.
More importantly, they might deliberately move the UAV
towards off-limit regions to gain information about those
areas. If the learner is integrated with the planner, the
estimated model can be used to rule out intentional poor
decisions. Furthermore, the planner’s policy can be used as
a starting point for the learner to bootstrap on, reducing the
amount of data the learner requires to master the task.

Though simple, the preceding problem is fundamentally
similar to more meaningful and practical UAV planning sce-
narios. The following sections present the technical approach
and examines the resulting methods in this toy domain and
a more complex multi-UAV planning task where the size of
the state space exceeds 200 million state-action pairs.
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Fig. 2. The GridWorld domain (a), the corresponding policy calculated with a planner assuming deterministic movement model and its true value function
(b) and the optimal policy with the perfect model and its value function (c). The task is to navigate from the top left corner highlighted as • to the right
bottom corner identified as �. Red regions are off-limit areas where the UAV should avoid. The movement dynamics has 30% noise of moving the UAV
to a random free neighboring grid cell. Gray cells are not traversable.
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In this section, we use a pedagogical example to explain:
(1) the effect of unknown noise on the planner’s solution,
(2) how learning methods can improve the performance and
safety of the planner solution, and (3) how the approximate
model and the planner solution can be used for faster and
safer learning.

A. The GridWorld Domain: A Pedagogical Example

Consider a grid world scenario shown in Fig. 2-(a), in
which the task is to navigate a UAV from the top-left
corner (•) to the bottom-right corner (�). Red areas highlight
the danger zones where the UAV will be eliminated upon
entrance. At each step the UAV can take any action from the
set {↑, ↓,←,→}. However, due to wind disturbances, there
is 30% chance that the UAV is pushed into any unoccupied
neighboring cell while executing the selected action. The
reward for reaching the goal region and off-limit regions are
+1 and −1 respectively, while every other move results in
−0.001 reward.

Fig. 2-(b) illustrates the policy (shown as arrows) cal-
culated by a planner that is unaware of the wind together
with the nominal path highlighted as a gray tube. As
expected the path suggested by the planner follows the
shortest path that avoids direct passing through off-limit
areas. The color of each cell represents the true value of
each state (i.e., including the wind) under the planner’s
policy. Green indicates positive, white indicate zero, and red
indicate negative values3. Lets focus on the nominal path
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from the start to the goal. Notice how the value function
jumps suddenly each time the policy is followed from an
off-limit neighbor cell (e.g., (8, 3) → (8, 4)). This drastic
change highlights the involved risk in taking those actions
in the presence of the wind.

The optimal policy and its corresponding value function
and nominal path are shown in Fig. 2-(c). Notice how the
optimal policy avoids the risk of getting close to off-limit
areas by making wider turns. Moreover, the value function
on the nominal path no longer goes through sudden jumps.
While the new nominal path is longer, it mitigates the risk
better. In fact, the new policy raises the mission success
rate from 29% to 80%, while boosting the value of the
initial state by a factor of ≈3. Model-free learning techniques
such as Sarsa can find the optimal policy through mere
interaction, although they require many training examples.
More importantly, they might deliberately move the UAV
towards off-limit regions to gain information about those
areas. If the learner is integrated with the planner, the
estimated model can be used to rule out intentional poor
decisions. Furthermore, the planner’s policy can be used as
a starting point for the learner to bootstrap on, reducing the
amount of data the learner requires to master the task.

Though simple, the preceding problem is fundamentally
similar to more meaningful and practical UAV planning sce-
narios. The following sections present the technical approach
and examines the resulting methods in this toy domain and
a more complex multi-UAV planning task where the size of
the state space exceeds 200 million state-action pairs.

IV. TECHNICAL APPROACH

This section provides further details of the intelligent
cooperative control architecture (iCCA), describing the pur-

(c) Plan with the true model

Fig. 2 GridWorld-1 (a), the corresponding policy calculated with a planner assuming de-
terministic movement model and its true value function (b) and the optimal policy with the
perfect model and its value function (c). The task is to navigate from the top left corner
highlighted as • to the right bottom corner identified as ?. Red regions are off-limit areas
which the UAV should avoid. The dynamics model has 30% noise of moving the UAV to a
random free neighboring grid cell. Gray cells are not traversable.

wind, together with the nominal path highlighted as a gray tube. As expected,
the path suggested by the planner follows the shortest path that avoids directly
passing through off-limit areas. The color of each cell represents the true value
of each state (i.e., including the wind) under the planner’s policy. Green indi-
cates positive, white indicates zero, and red indicates negative values. We set
the value for blocked areas to −∞, hence the intense red color. The optimal
policy and its corresponding value function and nominal path are shown in
Figure 2(c). Notice how the optimal policy avoids the risk of getting close to
off-limit areas by making wider turns. While the new nominal path is longer, it
mitigates the risk better. In fact, the new policy raises the mission success rate
from 29% to 80%, while boosting the value of the initial state by a factor of
approximately three. Model-free learning techniques such as SARSA can find
the optimal policy through mere interaction, although they require a plethora
training examples. More importantly, they might deliberately move the UAV
towards off-limit regions just to gain information about those areas. However,
when integrated with the planner, the learner can rule out intentionally poor
decisions. Furthermore, the planner’s policy can be used as a starting point for
the learner to bootstrap on, reducing the amount of data the learner requires
to master the task.

This paper explains how planner solutions based on approximated models
(i.e., Figure 2-b) can be improved using learning techniques, while at the same
time, the risk in the learning process is reduced.
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4 Background

4.1 Markov Decision Process (MDP)

An MDP [Sutton and Barto, 1998] is a tuple defined by (S,A,Pass′ ,Rass′ , γ)
where S is a set of states, A is a set of actions, Pass′ is the probability of getting
to state s′ by taking action a in state s, Rass′ is the corresponding reward, and
γ ∈ [0, 1] is a discount factor that balances current and future rewards . A
trajectory is a sequence s0, a0, r0, s1, a1, r1, s2, . . ., where the action at ∈ A
is chosen according to a policy π : S × A → [0, 1] mapping each state-action
pair to a probability. The agent selects the action in each specified state using
its policy. Every consequent state is generated by the environment according
to the transition model (i.e., i ≥ 1, si+1 ∼ Paisi ). Given a policy π, the state-
action value function, Qπ(s, a), is the expected sum of the discounted rewards
for an agent starting at state s, taking action a, and then following policy π
thereafter:

Qπ(s, a) = Eπ

[ ∞∑
t=0

γtrt

∣∣∣∣s0 = s, a0 = a

]
. (1)

In finite state spaces, Qπ(s, a) can be stored in a table. The goal of solving an
MDP is to find the optimal policy which maximizes the expected cumulative
discounted rewards in all states. In particular, the optimal policy π∗ is defined
as:

∀s, π∗(s) = argmax
a∈A

Qπ
∗
(s, a). (2)

4.2 Reinforcement Learning in MDPs

The underlying goal of the two reinforcement learning (RL) algorithms pre-
sented here is to improve performance of the cooperative planning system over
time using observed rewards by exploring new agent behaviors that may lead
to more favorable outcomes. The details of how these algorithms accomplish
this goal are discussed in the following sections.

4.2.1 SARSA

A popular approach among MDP solvers is to find an approximation toQπ(s, a)
(policy evaluation) and update the policy with respect to the resulting values
(policy improvement). Temporal Difference learning (TD) [Sutton, 1988] is a
traditional policy evaluation method in which the current Q(s, a) is adjusted
based on the difference between the current estimate of Q and a better approx-
imation formed by the actual observed reward and the estimated value of the
following state. Given (st, at, rt, st+1, at+1) and the current value estimates,
the temporal difference (TD) error, δt, is calculated as:

δt(Q) = rt + γQπ(st+1, at+1)−Qπ(st, at).
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The one-step TD algorithm, also known as TD(0), updates the value estimates
using:

Qπ(st, at) = Qπ(st, at) + αδt(Q), (3)

where α is the learning rate. SARSA (state action reward state action) [Rum-
mery and Niranjan, 1994] is basic TD for which the policy is directly derived
from the Q values as:

πSARSA(s, a) =

{
1− ε a = argmaxaQ(s, a)
ε
|A| Otherwise

,

in which ties are broken randomly, if more than one action maximizes Q(s, a).
This policy is also known as the ε-greedy policy.

4.2.2 Actor-Critic

Actor-critic methods parameterize the policy and store it as a separate entity
named actor. In this paper, the actor is a class of policies represented as the
Gibbs softmax distribution:

πAC(s, a) =
eρ(s,a)/τ∑
b e
ρ(s,b)/τ

,

in which ρ(s, a) ∈ R is the preference of taking action a in state s, and τ ∈
[0,∞) is a knob allowing for shifts between greedy and random action selection.
Since we use a tabular representation, the actor update amounts to:

ρ(s, a)← ρ(s, a) + αQ(s, a)

following the incremental natural Actor-Critic framework [Bhatnagar et al.,
2007]. The value of each state-action pair (Q(s, a)) is held by the critic and is
calculated/updated in an identical manner to SARSA, mentioned in Eqn. (3).

5 Intelligent Cooperative Control Architectur

Figure 1 depicts the general template of intelligent cooperative control archi-
tecture [Redding et al., 2010b]. The left rectangle with the gray boundary is
the control box and consists of three elements:

– Cooperative Planner: Given a problem model, this module provides safe
solutions with cheap computational complexity, often gained by simplifying
the model. Cooperative planners are usually domain-dependent.

– Learning Algorithm: This component implements learning by looking at
the past experiences of interactions. While in general any machine learning
algorithm can be used, RL methods are used in this paper.
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Fig. 3 The iCCA framework instantiation for safe integration of RL algorithms with coop-
erative planners with the ability to adjust the model online.

– Performance Analysis: This module regulates the interaction between
the learner and the cooperative planner. The duties of this module can
vary based on its instantiation. In this paper, its purpose is to evaluate the
risk involved in executing the actions suggested by the learner.

The rest of the figure resembles the conventional interaction between an agent
and an environment, in which, on every step the decision made by the control
system is sent to the world and executed (e.g., move a UAV to a certain loca-
tion). During the execution, the command might get distorted (e.g., the UAV
moves forward, but a wind gust impedes it). The outcome of each command ex-
ecution affects the world, and observations are returned to the control system.
The observation may also get distorted through noise, but this paper does not
consider partial observability. Note that Figure 1 depicts a general framework,
and depending on the instantiation of the template, numerous algorithms can
be derived.

5.1 Instantiating iCCA for Cooperative Learning

This sections explains how RL methods can be combined with cooperative
planners through the iCCA instantiation in order to 1) mitigate the risk in-
volved in the learning process, 2) improve the sample complexity of the learn-
ing methods, and 3) improve the performance of the cooperative planners.
The high level idea is to use the solution of the cooperative planner fed with
an approximate model to bias the policy of the RL agent in order to explore
solutions close to the behavior of the cooperative planner. Furthermore, ac-
tions that are deemed not safe (i.e., risky) are switched with the cooperative
planner solution.

Figure 3 depicts our instantiation of the iCCA framework for merging RL
methods with cooperative planners. An RL agent realizes the learning algo-
rithm module, while the risk analyzer instantiates the performance analysis
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box. Also note that observations are replaced with s, r, due to the full observ-
ability assumption. The underlying problem is formulated as an MDP with
the true model T = (P ,R). An approximate model of the MDP, T̂ = (P̂ , R̂)
is assumed to be available shown in the yellow box and is shared both by the
cooperative planner and the risk analyzer.

5.1.1 Cooperative Planner

For small MDPs, given the approximated model, the Value Iteration algorithm
[Sutton and Barto, 1998] is used to generate the planner’s policy, (i.e., πp). For
large UAV mission planning scenarios, however, running value iteration is not
feasible. Therefore the consensus based bundle algorithm (CBBA) [Choi et al.,
2009, Redding et al., 2010a] provides the solution. CBBA is a fast algorithm
for task assignment among UAVs that uses a deterministic model of the sys-
tem. All stochastic elements in T̂ are replaced with the events with maximum
expected values before being used in CBBA. For example if there is an 80%
chance to move from one state to another state, achieving a reward of 100,
the transition is assumed to be successful all the time with the corresponding
reward of 80. This paper uses CBBA as a black box that takes an approx-
imate model of the system and quickly provides a safe plan with respect to
the assumed model that obtains good cumulative rewards. Other cooperative
planners could easily be used to replace CBBA provided that they return safe
policies quickly.

5.2 RL Agent

For the learning module, any RL method can be used, although since our
work focuses on fast interaction between the control box and the world, using
computationally expensive methods such as LSPI [Lagoudakis and Parr, 2003]
is not advised. In this paper, we investigate the use of SARSA and Actor-Critic
methods that were covered in Section 4.

5.3 Risk Analyzer

When using learning techniques, providing safety plays a major role in the
applicability of the method in practical environments, where human lives and
expensive equipments are involved. The purpose of the risk analyzer is to
regulate the learner’s actions by filtering those that are deemed too risky
based on the assumed model. In general the model can involve stochasticity,
hence the notion of risk should be defined based on probabilities accordingly.
Algorithm 1 explains the risk analysis process. In particular, it is assumed that
there exists a function constrained : S → {0, 1}, which indicates if being in a
particular state is allowed or not.1 Risk is defined as the probability of visiting

1 Extending the constrained function to include actions as well as states is straight
forward, yet for simplicity excluded.
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Algorithm 1: safe (check the safety of the action suggested by the learner)

Input: s, a
Output: isSafe

1 risk← 0
2 for i← 1 toM do
3 t← 1

4 st ∼ T̂ (s, a)
5 while not constrained(st) and not isTerminal(st) and t < H

do

6 st+1 ∼ T̂ (st, π
p(st))

7 t← t+ 1

8 risk← risk + 1
i (constrained(st)− risk); /* Update Mean */

9 isSafe← (risk < ε)

any of the constrained states. The core idea is to use Monte-Carlo simulation
to estimate the risk level associated with the given state-action pair if planner’s
policy is applied thereafter by simulatingM trajectories from the current state
s. The first action is the learner’s suggested action a, and the rest of actions
come from the planner’s policy, πp. The approximated model, T̂ , is utilized
to sample successive states. Each trajectory is bounded to a fixed horizon H.
The risk of taking action a from state s is estimated by the probability of a
simulated trajectory reaching a risky state within horizon H. If this risk is
below a user-defined threshold, ε, the action is deemed to be safe. Note that
the planner’s policy is assumed to be safe with respect to the model in all
states. Hence the estimated risk corresponds solely to the first action of each
trajectory advised by the learner.

5.4 Model

This box captures the model estimate of the MDP, T̂ = (P̂ , R̂). This estimate
can be adjusted as more observations is received. In this paper, we first focus
on fixed models. In Section 8, we relax this assumption by allowing the model
to evolve over time, realizing a more accurate estimation.

5.5 Cooperative Learning: The High Level Control Loop

All sections so far described the mechanics inside each individual box. Conse-
quently, a high level process, named Cooperative Learning, is required to tailor
the functionality of all these modules together. We introduce three cooperative
learning loops in the next three sections. The first cooperative learner assumes
that I) the model estimate of the system remains fixed, and II) the RL agent
has an explicit form of the policy (e.g., Actor-Critic). The second cooperative
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Algorithm 2: Cooperative Learning-1

Input: s, r
Output: a

1 ap ∼ πp(s) /* CooperativePlanner */

2 al ∼ πl(s) /* Learner */

3 a← al

4 if not safe(s, a) then
5 a← πp

6 ρ(s, a)← ρ(s, a)− λ
7 ActorCritic.learn(s, r, a)
8 return a

learner relaxes assumption I, while the third cooperative learner relaxes both
assumptions I and II.

6 Using Fixed Models with Explicit Policy Forms

This section introduces the first cooperative planner that incorporates fixed
models of the environment, while assumes that the RL agent has an explicit
policy form (assumptions I and II). Algorithm 2 shows the pseudo-code for
the main loop of the iCCA control box. First the safe action of the planner,
ap, and the learner action al are generated using the corresponding policies
πp and πl (lines 1,2). The safety of the learning agent is then tested using
the safe function (line 4). If the action is safe, it will be executed on the next
step, otherwise the action is replaced with the planner’s action, ap, which is
assumed to be safe (line 5). What this process dictates, however, is that state-
action pairs explicitly forbidden by the safe function will not be intentionally
visited. Therefore, if the safe function is built on a poor model, it can hinder the
learning process in parts of the state space for which the safety is miscalculated
due to the wrong model. To reduce the probability of the learner suggesting
the same action, the preference corresponding to the unsafe action, ρ(s, a),
is reduced by λ (line 6). The λ parameter is picked by the domain expert
to discourage suggesting unsafe actions by the learner. Furthermore, in order
to bias the policy of the actor initially, the preferences of state-action pairs
sampled from πp are increased by the user-defined value λ. This initialization
encourages the agent to select actions similar to the cooperative planner in
the beginning of the learning process.

6.1 Empirical Evaluation

This section compares the performance of iCCA with respect to pure learn-
ing and pure cooperative planning approaches in both GridWorld-1 and more
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Fig. 4 The mission scenarios of interest: a team of two UAVs plan to maximize their
cumulative reward along the mission by cooperating to visit targets. Target nodes are shown
as circles with rewards noted as positive values and the probability of receiving the reward
shown in the accompanying cloud. Note that some target nodes have no value. Constraints
on the allowable visit time of a target are shown in square brackets.

complicated UAV mission planning scenarios. Figures 4 depicts the mission
scenarios of interest where a team of two fuel-limited UAVs cooperate to max-
imize their total reward by visiting valuable target nodes in the network. The
base is highlighted as node 1 (green circle), targets are shown as blue circles
and agents are shown as triangles. The total amount of fuel for each agent
is highlighted by the number inside each triangle. For those targets with an
associated reward, it is given as a positive number nearby. The constraints on
the allowable times when the target can be visited are given in square brackets
and the probability of receiving the known reward when the target is visited is
given in the white cloud near the node. If two agents visit a node at the same
time, the probability of visiting the node would increase accordingly. Each
reward can be obtained only once and traversing each edge takes one fuel cell
and one time step. UAVs may loiter at any of the nodes indefinitely if, for
some reason, they believe loitering to be the “optimal” action. The fuel burn
for a loitering action is also one unit, except for any UAV at the base, where
it is assumed to be stationary and its fuel level is therefore not depleted. The
mission horizon was set to 8 time steps for UAV 7-2 scenario and 11 for the
UAV 10-2 scenario.

6.1.1 UAV Mission Planning: MDP formulation

The state space was formulated as [l1, f1, . . . , ln, fn, v1, . . . , vm, t]
T , where li

and fi were integer values highlighting the location and the remaining fuel
respectively for UAV i (i ∈ 1 . . . n). vj was a single bit signaling if node j
had been visited before, where (j ∈ 1 . . .m), and t was the current time step.
There were n UAVs and m nodes participating in the scenario. The action
space was [l+1 , . . . , l

+
n ] where l+i was the node to which the agent was traveling.
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The transition function (Pass′) was deterministic for the UAV position, fuel
consumption, and time variables of the state space, while it was stochastic for
the visited list of targets. The detailed derivation of the complete transition
function should be trivial following the corresponding graph in Figure 4. That
is, transitions were allowed between nodes for which there was an edge on the
graph. The reward on each time step was stochastic and calculated as the sum
of rewards from visiting new desired targets minus the total burnt fuel cells on
the last move. Notice that a UAV received the target reward only if it landed
on an unvisited node and lucky enough to obtain the reward. In that case, the
corresponding visibility bit turned on, and the agent received the reward. The
crash penalty or mission failure was equal to the negative sum of rewards at
all nodes for both scenarios in order to prioritize safety over visiting targets.
The mission failed if any UAV ran out of fuel or was not at the base by the
end of the mission horizon.

6.1.2 Experimental Results

Both for GridWorld-1 and UAV 7-2 scenario, the optimal solutions were ob-
tained using dynamic programming on the true model and used as the base-
line for the optimality. Unfortunately, calculating an optimal solution was not
feasible for the UAV 10-2 case, with about 9 billion state action pairs. This
computation for UAV 7-2 scenario took about a day to calculate all expected
values over more than 100 million state-action pairs. Thus, this approach can-
not be easily scaled for larger sizes of the problem. For GridWorld-1, the
constrained function was +1 for all off-limit (red) region and 0 otherwise.
As for the UAV mission planning scenarios, the fixed model was the expected
stochastic model of the world. The constrained function returned +1 only
if any of the UAVs ran out of fuel or was not at the base by the end of hori-
zon.2 Since the assumed model in both domains were static one Monte-Carlo
simulation is enough to calculate the risk ∈ {0, 1}. For baseline planners, the
Value Iteration and CBBA methods were used for GridWorld-1 and the UAV
mission planning scenarios correspondingly. Note that Value Iteration did not
have access to the true model, while CBBA could not use the exact stochastic
model due to its deterministic assumption of the dynamics. The quality of
CBBA was probed on each domain by executing its policy online for 10,000
episodes. For Value Iteration the expected value of the initial state was sim-
ply fetched from the table. For each learning algorithm (i.e., Actor-Critic and
iCCA) the best learning rate was found empirically where the learning rate
was calculated by:

αt = α0
N0 + 1

N0 + Episode #1.1 .

2 Since the transition model for this case is deterministic, for faster computation, we
first calculated and stored all-pairs shortest paths using Floyd-Warshall algorithm [Cormen
et al., 2001]. On each step, an action was assumed safe if after executing the action, the UAV
has enough fuel to return to the base using the shortest path values. This process returns
identical answers compared to Algorithm 1.
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Fig. 5 A comparison of the collective rewards received in GridWorld-1 using cooperative
planning alone (red), pure learning (blue), and when both are coupled via the iCCA frame-
work (green). The optimal performance (black) was calculated via dynamic programming.

The best α0 and N0 were selected through experimental search of the sets of
α0 ∈ {0.01, 0.1, 1} and N0 ∈ {100, 1000, 106} for each algorithm and scenario.
λ was set 100 and τ was set to 1 for the actor. The number of interactions
for each simulation was limited to 104 and 105 steps for GridWorld-1 and
UAV mission planning scenarios respectively. This led to a cap of 40 minutes
of computation for each simulation on an Intel Xeon 2.40 GHz with 4 GB
of RAM and Linux Debian 5.0. The performance of learning algorithms was
extracted by running the greedy policy with respect to the existing preferences
of the actor. For iCCA, unsafe moves again were replaced by the cooperative
planner’s solution. All learning method results were averaged over 60 runs
except for the UAV 10-2 scenario for which it was averaged over 30 runs.
Error bars represent 95% confidence intervals.

GridWorld-1 Figure 5 compares the performance of Actor-Critic, iCCA, the
baseline planner (Fig 2-b), and the expected optimal solution (Fig 2-c) in
GridWorld-1. The X-axis shows the number of steps the agent executed an
action, while the Y -axis highlights the cumulative rewards of each method
after each 1,000 steps. Notice how iCCA outperformed pure learning Actor-
Critic. In particular iCCA outperformed the planner (red) after 6,000 steps
by navigating farther from the danger zones. Actor-Critic, on the other hand,
could not outperform the planner by the end of 10,000 steps. Note that the
black line represents the expected return under the optimal policy, yet simu-
lated trajectories may obtain higher return. This explains why the standard
error around the iCCA’s performance slightly exceeds the optimal line.
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Fig. 6 (a) A comparison of the collective rewards received in UAV 7-2 using cooperative
planning alone (red), pure learning (blue), and when both are coupled via the iCCA frame-
work (green). The optimal performance (black) was calculated via dynamic programming.
(b) The final performance of all methods scaled based on the expected performance of the
worst and best policies.

UAV 7-2 Scenario Similarly, Figure 6(a) depicts the performance of Actor-
Critic, iCCA, CBBA, and optimal policies in the UAV 7-2 scenario. The Y -
axis shows the cumulative reward, while the X-axis represents the number
of interactions. It is clear that the Actor-Critic performed much better inside
the iCCA framework and performed better than CBBA alone. The reason is
that CBBA provided a good starting point for the Actor-Critic to explore the
state space, while the risk analyzer filtered risky actions of the actor leading
to catastrophic situations. Figure 6(b) shows the performance of iCCA and
Actor-Critic relative to the optimal policy after 105 steps of interaction with
the domain and the averaged optimality of CBBA through 10,000 trials. No-
tice how the integrated algorithm could on average boost the best individual
optimality performance (i.e., CBBA’s result) by 10%.

UAV 10-2 Scenario Figure 7(a) depicts the same set of results for the UAV
10-2 scenario. Since the size of the state-action pairs for this domain is about
9 billion, running dynamic programming to obtain the optimal policy was not
feasible. For that reason the performance of the optimal policy is excluded.
Since the state space was much larger than the UAV 7-2 scenario, Actor-Critic
method had a hard time to find a sensible policy even after 105 steps. Online
CBBA still could find a good policy to the approximated problem. When both
CBBA and Actor-Critic were put together through the iCCA framework, the
agent could achieve better performance even early on, after only 104 steps.
Figure 7(b) shows the averaged performance of each method at the end of the
learning phase. Notice that iCCA again could boost the performance of CBBA
solution statistically significantly.
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Fig. 7 A comparison of the collective rewards received in UAV 10-2 scenario when strictly
following plans generated by CBBA alone, Actor-Critic reinforcement learning outside of
the iCCA environment, i.e., without initialization and guidance from CBBA, and the result
when these are coupled via the iCCA framework.

7 Relaxing the Explicit Policy Form Assumption

The initial policy of Actor-Critic type learners can be biased simply as they
parameterize the policy explicitly. For learning schemes that do not represent
the policy as a separate entity, such as SARSA, cooperative learning is not
immediately obvious. This section presents a new cooperative learning algo-
rithm for integrating learning approaches without an explicit actor component
relaxing Assumption I. The idea is motivated by the concept of the Rmax al-
gorithm [Brafman and Tennenholtz, 2001]. The approach can be explained
through the mentor-prodégé analogy, where the planner takes the role of the
mentor and the learner takes the role of the prodégé. In the beginning, the
prodégé does not know much about the world, hence, for the most part they
take actions advised by the mentor. While learning from such actions, after a
while, the prodégé feels comfortable about taking a self-motivated actions as
they have been through the same situation many times. Seeking permission
from the mentor, the prodégé could take the action if the mentor thinks the
action is safe. Otherwise the prodégé should follow the action suggested by
the mentor.

Algorithm 3 details the new cooperative learning process. On every step,
the learner inspects the suggested action by the planner and estimates the
“knownness” of the state-action pair by considering the number of times that
state-action pair has been experienced following the planner’s suggestion. The
K parameter controls the transition speed from following the planner’s policy
to following the learner’s policy. Given the knownness of the state-action pair,
the learner probabilistically decides to select an action from its own policy. If
the action is deemed to be safe, it is executed. Otherwise, the planner’s policy
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Algorithm 3: Cooperative Learning-2

Input: s, r
Output: a

1 a ∼ πp(s) /* CooperativePlanner */

2 knownness← min{1, count(s,a)K }
3 if rand() < knownness then
4 a′ ∼ πl(s) /* Learner */

5 if safe(s, a′) then
6 a← a′

7 else
8 count(s, a)← count(s, a) + 1

9 learner.update(s, r, a)
10 return a

overrides the learner’s choice (lines 4-6). If the planner’s action is selected, the
knownness count of the corresponding state-action pair is incremented. Finally
the learner is executed depending on the choice of the learning algorithm.
Note that any RL algorithm, even the Actor-Critic family of methods, can be
integrated with cooperative planners using Algorithm 3 since line 9 is the only
learner-dependent line, defined in the general form.

7.1 Experimental Results

This section compares the empirical performance of SARSA combined with co-
operative planners (CSARSA), with pure learning and pure planning methods
in both the GridWorld-1 domain and the UAV 7-2 mission planning scenario.
All cooperative planners and settings remained the same from the previous set
of experiments in Section 6.1.2. The knownness parameter, K, for CSARSA
was empirically selected out of {10, 20, 50}. The exploration rate (ε) for SARSA
and CSARSA was set to 0.1. All learning method results were averaged over
60 runs.

GridWorld-1 Figure 8 compares the performance of CSARSA, SARSA, the
baseline planner (Fig 2-b), and the expected optimal solution (Fig 2-right) in
the pedagogical GridWorld domain. The X-axis shows the number of steps the
agent executed an action, while the Y -axis highlights the cumulative rewards
of each method after each 1,000 steps. Notice how CSARSA outperformed pure
learning approaches. Compared to Figure 5, SARSA based methods learned
faster. This observation can be explained by two facts: 1) SARSA’s policy is
embedded in the Q−value function, whereas the actor requires another level of
learning for the policy on the top of learning the Q−value function and 2) Al-
gorithm 3 provides a better exploration mechanism (i.e., Rmax like) compared
to Algorithm 2, where exploration is realized internally by the actor.
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Fig. 9 Probability of crash (left) and optimality (right) of SARSA, CBBA (planner), and
CSARSA algorithms at the end of the training session in the UAV 7-2 mission planning
scenario. CSARSA improved the performance of both CBBA and SARSA. The optimality
improvement of CSARSA was statistically significant.

UAV 7-2 Scenario In order to test our approach under harder circumstances,
5% chance of edge traverse failure was added for each UAV, resulting in a
fuel burn without no movement. This noise value was not included in the ap-
proximated model, hence the safety checking mechanism could not consider
it. Figure 9 shows the results of the same battery of learning algorithms used
in GridWorld-1 applied to the UAV mission planning scenario at the end of
learning (i.e., 105 steps of interaction). Akin to the previous section, CBBA
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was used as the base line planner. The left plot exhibits the risk of executing
the corresponding policy while the right plot depicts the optimality of each
solution. At the end of learning, SARSA could barely avoid crashing scenarios
(about 90%), thus yielding low performance with less than 50% optimality.
This observation coincides with the previous experiments with this domain
where the movement model was noise free (Figure 6), highlighting the impor-
tance of biasing the policy of learners in large domains and avoiding risky
behaviors. On average, CSARSA reduced the probability of failure of SARSA
and CBBA by 67% and 6% correspondingly, yet the latter improvement was
not statistically significant. At the same time, CSARSA raised the optimality
of CBBA by 7%. This improvement was statistically significant.

8 Relaxing the Fixed Model Assumption

So far the approximated model of the MDP, T̂ , was assumed to be static
during the course of interaction with the world. In this section, the coopera-
tive learner is extended so that the approximate model can also be adapted
through the course of online learning, relaxing Assumptions I, II. In particular
the parametric form of the model is assumed to be able to capture the true
model, where parameters of the model are adjusted using adaptive parameter
estimation. Empirical results demonstrate that the performance of the result-
ing system increases. Finally the drawbacks of having an underpowered model
representation are covered and an alternative solution is suggested.

8.1 Pedagogical GridWorld-2

Consider the GridWorld-2 domain shown in Figure 10(a), in which the task is
to navigate from the bottom-middle (•) to one of the top corner grid cells (?),
while avoiding the danger zone (◦), where the agent will be eliminated upon
entrance. At each step the agent can take any action from the set {↑, ↓,←,→}.
However, due to wind disturbances unbeknownst to the agent, there is a 20%
chance the agent will be transferred into a neighboring unoccupied grid cell
upon executing each action. The reward for reaching either of the goal regions
and the danger zone are +1 and −1, respectively, while every other action
results in −0.01 reward.

First consider the conservative policy shown in Figure 10(b) designed for
high values of wind noise. As expected, the nominal path, highlighted as a gray
watermark, follows the long but safe path to the top left goal. The color of each
grid represents the true value of each state under the policy. Green indicates
positive, and white indicates zero. The value of blocked grid cells are shown
as red. Figure 10(c) depicts a policy designed to reach the right goal corner
from every location. This policy ignores the existence of the noise, hence the
nominal path in this case gets close to the danger zone. Finally Figure 10(d)
shows the optimal solution. Notice how the nominal path under this policy
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Fig. 10 The gridworld domain is shown in (a), where the task is to navigate from the
bottom middle (•) to one of the top corners (?). The danger region (◦) is an off-limit area
where the agent should avoid. The corresponding policy and value function, are depicted
with respect to (b) a conservative policy to reach the left corner in most states, (c) an
aggressive policy which aims for the top right corner, and (d) the optimal policy.

avoids getting close to the danger zone. Section 6 demonstrated that when an
approximate model (e.g., the model used to generate policies in Figure 10-
b,c) is integrated with a learner, it can rule out suggested actions by the
learner that are poor in the eyes of the planner, resulting in safer exploration.
Furthermore, the planner’s policy can be used as a starting point for the
learner to bootstrap on, potentially reducing the amount of data required
by the learner to master the task. However, the model used for planning was
static. This section introduces a new cooperative learner that allows the model
box to be adapted through the learning process. The focus here is on the case
where the parametric form of the approximated model (T̂ ) includes the true
underlying model (T ) (e.g., assuming an unknown uniform noise parameter for
the gridworld domain). Section 8.3 discusses the drawbacks of this approach
when T̂ is unable to exactly represent T and introduces a potential alternative.
Adding a parametric model to the planning and learning scheme is easily
motivated by the case when the initial bootstrapped policy is wrong, or built
from incorrect assumptions. In such a case, it is more effective to simply switch
the underlying policy with a better one, rather than requiring a plethora of
interactions to learn from and refine a poor initial policy. The remainder of this
section introduces a cooperative learning process that is able to intelligently
switch-out the underlying policy, refined by the learning process.
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Algorithm 4: Cooperative Learning-3

Input: s, r
Output: a

1 a ∼ πp(s)
2 knownness← min{1, count(s,a)K }
3 if rand() < knownness then
4 a′ ∼ πl(s)
5 if safe(s, a′) then
6 a← a′

7 else
8 count(s, a)← count(s, a) + 1

9 learner.update(s, r, a)

10 model.update(s, r, a) /* Update T̂ */

11 if ||T̂ p − T̂ || > ∆T then

12 T̂ p ← T̂
13 planner.update() /* Update πp */

14 if πp is changed then
15 reset all counts to zero

16 return a

Algorithm 4 depicts the new cooperative learning algorithm. Lines 1-7 are
identical to Algorithm 3, while lines 8-13 highlight the new part of the al-
gorithm which includes model adaptation. The risk mitigation process is the
same as Algorithm 3. Line 10 updates the current estimate of the model, based
on the observations, providing more accurate safety estimations compared to a
fixed-model-based risk analyzer, as the Monte-Carlo simulations are generated
using the most recent estimated model (T̂ ). Furthermore, if the change to the
model used for planning crosses a user-defined threshold (∆T ), the planner
revisit its policy and keeps record of the new model (lines 10-12). If the policy
changes, the counts of all state-action pairs are set to zero so that the learner
start watching the new policy (mentor) from the scratch (line 13,14). An im-
portant observation is that the planner’s policy should be seen safe through
the eyes of the risk analyzer at all times. Otherwise, most actions suggested
by the learner will be deemed too risky by mistake, as they are followed by
the planner’s policy. Hence, in this case, the output of the iCCA is reduced to
the baseline planner’s policy.

8.2 Experimental Results

This section probes the effectiveness of the adaptive modeling approach (i.e., Al-
gorithm 4), called AM-iCCA, compared to (i) the static model iCCA (i.e., Al-
gorithm 3) and (ii) the pure learning approach. The empirical settings omitted
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Fig. 11 Empirical results of AM-iCCA, iCCA, and SARSA algorithms in the GridWorld-2.

here were identical to those of Section 6.1.2. Five Monte-Carlo simulations were
used to evaluate risk (i.e., M = 5). Each algorithm was tested for 100 trials.
The risk tolerance (ε) was set to 20%. For the AM-iCCA, the noise parameter
was estimated as:

noise =
#unintended agents moves + initial weight

#total number of moves + initial weight
.

Both iCCA methods started with the noise estimate of 40% with the count
weight of 100.

Pedagogical GridWorld-2 For the iCCA algorithm, the planner followed the
conservative policy (Figure 10-b). As for AM-iCCA, the planner switched from
the conservative to the aggressive policy (Figure 10-c), whenever the noise es-
timate dropped below 25%. The knownness parameter (K) was set to 10.
Figure 11 compares the cumulative return obtained in the GridWorld-2 do-
main for SARSA, iCCA, and AM-iCCA based on the number of interactions.
The expected performance of both static policies are shown as horizontal lines,
estimated by 10,000 simulated trajectories. The improvement of iCCA with a
static model over the pure learning approach is statistically significant in the
beginning, while the improvement is less significant as more interactions were
obtained. Although initialized with the conservative policy, the adaptive model
approach within iCCA (shown as green in Figure 11) quickly learned that the
actual noise in the system was much less than the initial 40% estimate and
switched to using (and refining) the aggressive policy. As a result of this early
discovery and switching planner’s policy, AM-iCCA outperformed both iCCA
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Algorithm 5: Conservative CBBA

Input: UAVs
Output: Plan

1 MaxFuel← UAVs.fuel
2 UAVs.fuel← UAVs.fuel− 3
3 ok← False
4 while not ok or MaxFuel = UAVs.fuel do
5 Plan←CBBA(UAVs)
6 ok← True
7 for u ∈ UAVs, Plan[u] = ø do
8 UAVs.fuel[u]← min(MaxFuel[u], UAVs.fuel[u] + 1)
9 ok← False

10 return Plan

and SARSA, requiring two times less data compared to other learning meth-
ods to reach the asymptotic performance. For example, compare AM-iCCA’s
performance after 4,000 steps to other learning methods’ performance after
8,000 steps. Over time, however, all methods reached the same level of perfor-
mance. On that note, it is important to see that all learning methods (SARSA,
iCCA, AM-iCCA) improved on the baseline static policies, highlighting their
sub-optimality.

UAV 7-2 Scenario The UAV 7-2 Scenario was implemented with 5% move-
ment noise identical to Section 7.1. The baseline cooperative planner, CBBA,
was implemented in two versions: aggressive and conservative. The aggressive
version used all remaining fuel cells in one iteration to plan the best set of
target assignments ignoring the possible noise in the movement. Algorithm 5
illustrates the conservative CBBA algorithm. The input to the algorithm is
the collection of UAVs (U). First the current fuel of UAVs are saved and
decremented by 3 (lines 1-2). Then on each iteration, CBBA is called with the
reduced amount of fuel cells. Consequently, the plan will be more conserva-
tive compared to the case where all fuel cells are considered. If the resulting
plan allows all UAVs to get back to the base safely, it will be returned as the
solution. Otherwise, UAVs with no feasible plan (i.e., Plan[u] = ø) will have
their fuels incremented by one, as long as the fuel does not exceed the orig-
inal fuel value (line 8). Notice that aggressive CBBA is equivalent to calling
CBBA method on line 5 with the original fuel levels. Akin to the GridWorld-2
domain, the iCCA algorithm only took advantage of the conservative CBBA
because the noise assumed to be fixed at 40%. As for AM-iCCA, the planner
switched from the conservative to the aggressive CBBA, whenever the noise
estimate dropped below 25%. The best knownness parameter (K) was selected
from {10, 20, 50} for both iCCA and AM-iCCA.

Figures 12 shows the results of learning methods (SARSA, iCCA, and
AM-iCCA) together with two variations of CBBA (conservative and aggres-
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Fig. 12 Results of SARSA, CBBA-conservative, CBBA-Aggressive, iCCA and AM-iCCA
algorithms at the end of the training session in the UAV mission planning scenario. AM-
iCCA improved the best performance by 22% with respect to the allowed risk level of 20%.

sive) applied to the UAV mission planning scenario. Figure 12(a) represents
the solution quality of each learning method after 105 steps of interactions.
The quality of fixed CBBA methods were obtained through averaging over
10,000 simulated trajectories, where on each step of the simulation a new plan
was derived to cope with the stochasticity of the environment. Figure 12(b)
depicts the optimality of each solution, while Figure 12(c) exhibits the risk of
executing the corresponding policy. First note that SARSA at the end of train-
ing yielded 50% optimal performance, together with more than 80% chance of
crashing a UAV. Both CBBA variations outperformed SARSA. The aggressive
CBBA achieved more than 80% optimality in cost of 25% crash probability,
while conservative CBBA had 5% less performance, as expected, it realized a
safe policy with rare chances of crashing. The iCCA algorithm improved the
performance of the conservative CBBA planner again by introducing risk of
crash around 20%. While on average it performed better than that aggressive
policy, the difference was not statistically significant. Finally AM-iCCA out-
performed all other methods statistically significantly, obtaining close to 90%
optimality. AM-iCCA boosted the best performance of all other methods by
22% on average (Figure 12-a). The risk involved in running AM-iCCA was
also close to 20%, matching the selected ε value.

These results highlight the importance of an adaptive model within the
iCCA framework: 1) model adaptation provides a better simulator for evalu-
ating the risk involved in taking learning actions, and 2) planners can adjust
their behaviors according to the model, resulting in better policies serving as
the stepping stones for the learning algorithms to build upon.

8.3 Extensions

So far, the true model was assumed to be representable within the functional
form of the approximated model. But what are the consequences of using coop-
erative learning if this assumption does not hold? Returning to the GridWorld-



26 Alborz Geramifard† et al.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

1

2

3

4

5

Fig. 13 The GridWorld-3 scenario: identical to GridWorld-2, yet the noise is only applied
in windy grid cells (∗).

2 domain, consider the case where the 20% noise is not applied to all states.
Figure 13 depicts such a scenario through GridWorld-3 where the noise is only
applied to the grid cells marked with a ∗. While passing close to the danger
zone is safe, when the agent assumes the uniform noise model by mistake, it
generalizes the noisy movements to all states including the area close to the
danger zone. This can cause the AM-iCCA to converge to a suboptimal policy,
as the risk analyzer filters optimal actions suggested by the learner due to the
inaccurate model assumption.

The root of this problem is that iCCA always filters the risky actions of
the learner, even though the underlying assumed model might be incorrect.
In order to allow the learning agent the freedom of trying potentially risky
actions asymptotically, the safety check should be turned off for all states at
some point. Back to the mentor/prodégé analogy, the prodégé may simply
stop checking if the mentor thinks an action is safe once s/he feels comfortable
taking a self-motivated action. Thus, the learner will eventually circumvent
the need for a planner altogether. More specifically, line 4 of Algorithm 4 is
changed, so that if the knownness of a particular state reaches a certain thresh-
old, probing the safety of the action is not mandatory anymore. While this
approach introduces another parameter to the framework, it is conjectured
that the resulting process converges to the optimal policy under certain condi-
tions. This conjecture is due to the fact that under an ergodic policy realized
by the ε-greedy policy, all state-action pairs will be visited infinitely often.
Thus at some point the knownness of all states should exceed any predefined
threshold, which leads to 1) having SARSA suggest an action for every state,
and 2) turning the risk filtering mechanism off for all states. As a result, the
whole iCCA framework would eventually reduce to pure SARSA with an ini-
tial set of weights. Under certain conditions, it can be shown that the resulting
method is convergent to the optimal policy with probability one [Melo et al.,
2008]. Detailed analysis of these points is the topic of the ongoing research.

9 Contributions

This paper introduced cooperative learners formed by combining planners
with RL algorithms through the intelligent Cooperative Control Architecture
(iCCA). The first set of cooperative learners were built on top of RL methods
with explicit policy parameterization and the underlying model was assumed
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to be fixed. The second set of cooperative learners relaxed the assumption of an
explicit parametric form for the RL methods, allowing the fusion of any online
RL technique with cooperative planners. The third set of cooperative learners
accommodated the notion of adaptive modeling within the framework. This
paper also explained the drawbacks of adaptive modeling when the parametric
form of the model cannot be captured in the exact model. We probed these
three cooperative learners in pedagogical grid-world domains and UAV mission
planning scenarios with state-action spaces up to 9 billion pairs. Empirical re-
sults demonstrated that cooperative learners boosted the performance of fixed
planners and reduced the risk and sample complexity involved in the learning
process.
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