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Abstract. Inverse reinforcement learning (IRL) is the task of learning
the reward function of a Markov Decision Process (MDP) given the tran-
sition function and a set of observed demonstrations in the form of state-
action pairs. Current IRL algorithms attempt to find a single reward
function which explains the entire observation set. In practice, this leads
to a computationally-costly search over a large (typically infinite) space
of complex reward functions. This paper proposes the notion that if the
observations can be partitioned into smaller groups, a class of much sim-
pler reward functions can be used to explain each group. The proposed
method uses a Bayesian nonparametric mixture model to automatically
partition the data and find a set of simple reward functions correspond-
ing to each partition. The simple rewards are interpreted intuitively as
subgoals, which can be used to predict actions or analyze which states are
important to the demonstrator. Experimental results are given for simple
examples showing comparable performance to other IRL algorithms in
nominal situations. Moreover, the proposed method handles cyclic tasks
(where the agent begins and ends in the same state) that would break
existing algorithms without modification. Finally, the new algorithm has
a fundamentally different structure than previous methods, making it
more computationally efficient in a real-world learning scenario where
the state space is large but the demonstration set is small.

1 Introduction

Many situations in artificial intelligence (and everyday life) involve learning a
task from observed demonstrations. In robotics and autonomy, there exists a
large body of literature on the topic of learning from demonstration (see [1] for
a survey). However, much of the robotics work has focused on generating direct
functional mappings for low-level tasks. Alternatively, one might consider assum-
ing a rational model for the demonstrator, and using the observed data to invert
the model. This process can be loosely termed inverse decision making, and in
practice it is often more challenging (both conceptually and computationally)
than more direct mapping approaches. However, inverting the decision-making
process may lend more insight as to the motivation of the demonstrator, and



2 Bernard Michini and Jonathan P. How

provide a richer explanation of the observed actions. Indeed, similar methodol-
ogy has been increasingly used in psychology and cognitive science for action
understanding and preference learning in humans [2, 3, 4, 5].

If the problem is formally cast in the Markov decision process (MDP) frame-
work, the rational model described above becomes an agent who attempts to
maximize cumulative reward (in a potentially sub-optimal fashion). Inverse deci-
sion making becomes the problem of finding a state reward function that explains
the observed state-action pairs of the agent, and is termed inverse reinforcement
learning (IRL) in the seminal work of [6].

There have since been a variety of IRL algorithms developed [7, 8, 9, 10,
11, 12, 13]. These algorithms attempt to find one single reward function that
explains the entirety of the observed demonstration set. This reward function
must then be necessarily complex in order to explain the data sufficiently, es-
pecially when the task being demonstrated is itself complicated. Searching for
a complex reward function is fundamentally difficult for two reasons. First, as
the complexity of the reward model increases, so too does the number of free
parameters needed to describe the model. Thus the search is over a larger space
of candidate functions. Second, the process of testing candidate reward func-
tions requires solving for the MDP value function (details in Section 2), the
computational cost of which typically scales poorly with the size of the MDP
state space, even for approximate solutions [14]. Thus finding a single, complex
reward function to explain the observed demonstrations requires searching over
a large space of possible solutions and substantial computational effort to test
each candidate.

One potential solution to these problems would be to partition the obser-
vations into sets of smaller sub-demonstrations. Then, each sub-demonstration
could be attributed to a smaller and less-complex class of reward functions.
However, such a method would require manual partitioning of the data into an
unknown number of groups, and inferring the reward function corresponding to
each group.

The primary contribution of this paper is to present an IRL algorithm that
automates this partitioning process using Bayesian nonparametric methods. In-
stead of finding a single, complex reward function, the demonstrations are parti-
tioned and each partition is explained with a simple reward function. We assume
a generative model in which these simple reward functions can be interpreted as
subgoals of the demonstrator. The generative model utilizes a Chinese Restau-
rant Process (CRP) prior over partitions so that the number of partitions (and
thus subgoals) need not be specified a priori and can be potentially infinite.

As discussed further in Section 5, a key advantage of this method is that
the reward functions representing each subgoal can be extremely simple. For
instance, one can assume that a subgoal is a single coordinate of the state space
(or feature space). The reward function could then consist of a single positive
reward at that coordinate, and zero elsewhere. This greatly constrains the space
of possible reward functions, yet complex demonstrations can still be explained
using a sequence of these simple subgoals. Also, the algorithm has no dependence
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on the sequential (i.e. temporal) properties of the demonstrations, instead focus-
ing on partitioning the observed data by associated subgoal. Thus the resulting
solution does not depend on the initial conditions of each demonstration, and
moreover naturally handles cyclic tasks (where the agent begins and ends in the
same state).

The paper proceeds as follows. Section 2 briefly covers preliminaries, and Sec-
tion 3 describes the proposed algorithm. Section 4 presents experimental results
comparing the proposed algorithm to existing IRL methods, and discussion is
provided in Section 5.

2 Background

The following briefly reviews background material and notation necessary for the
proposed algorithm. Throughout the paper, boldface is used to denote vectors
subscripts are used to denote the elements of vectors (i.e. zi is the ith element
of vector z).

2.1 Markov Decision Processes

A finite-state Markov Decision Process (MDP) is a tuple (S,A, T, γ,R) where S
is a set of M states, A is a set of actions, T : S ×A× S 7→ [0, 1] is the function
of transition probabilities such that T (s, a, s′) is the probability of being in state
s′ after taking action a from state s, R : S 7→ R is the reward function, and
γ ∈ [0, 1) is the discount factor.

A stationary policy is a function π : S 7→ A. From [15] we have the following
set of definitions and results:

1. The infinite-horizon expected reward for starting in state s and following
policy π thereafter is given by the value function V π(s,R):

V π(s,R) = Eπ

[ ∞∑
i=0

γiR(si)

∣∣∣∣∣ s0 = s

]
(1)

The value function satisfies the following Bellman equation for all s ∈ S:

V π(s,R) = R(s) + γ

[∑
s′

T (s, π(s), s′)V π(s′)

]
(2)

The so-called Q-function (or action-value function) Qπ(s, a,R) is defined as
the infinite-horizon expected reward for starting in state s, taking action a,
and following policy π thereafter.

2. A policy π is optimal for M iff, for all s ∈ S:

π(s) = argmax
a∈A

Qπ(s, a,R) (3)

An optimal policy is denoted as π∗ with corresponding value function V ∗

and action-value function Q∗.
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2.2 Inverse Reinforcement Learning

When inverse decision making is formally cast in the MDP framework, the prob-
lem is referred to as inverse reinforcement learning (IRL)[6]. An MDP/R is de-
fined as a MDP for which everything is specified except the state reward function
R(s). Observations (demonstrations) are provided as a set of state-action pairs:

O = {(s1, a1), (s2, a2), ..., (sN , aN )} (4)

where each pair Oi = (si, ai) indicates that the demonstrator took action ai
while in state si. Inverse reinforcement learning algorithms attempt to find a
reward function that rationalizes the observed demonstrations. For example,
find a reward function R̂(s) whose corresponding optimal policy π∗ matches the
observations O.

It is clear that the IRL problem is ill-posed. Indeed, R̂(s) = c ∀s ∈ S, where
c is any constant, will make any set of state-action pairs O trivially optimal.
Also, O may contain inconsistent or conflicting state-action pairs, i.e. (si, a1)
and (si, a2) where a1 6= a2. Furthermore, the “rationality” of the demonstrator
is not well-defined (e.g., is the demonstrator perfectly optimal, and if not, to
what extent sub-optimal).

Most existing IRL algorithms attempt to resolve the ill-posedness by making
some assumptions about the form of the demonstrator’s reward function. For
example, in [7] it is assumed that the reward is a sum of weighted state features,
and finds a reward function to match the demonstrator’s feature expectations.
In [8] a linear-in-features reward is also assumed, and a maximum margin opti-
mization is used to find a reward function that minimizes a loss function between
observed and predicted actions. In [9] it is posited that the demonstrator sam-
ples from a prior distribution over possible reward functions, and thus Bayesian
inference is used to find a posterior over rewards given the observed data. An im-
plicit assumption in these algorithms is that the demonstrator is using a single,
fixed reward function.

The three IRL methods mentioned above (and other existing methods such
as [10, 11, 13]) share a generic algorithmic form, which is given by Algorithm
1, where the various algorithms use differing definitions of “similar” in Step 2c.
We note that each iteration of the algorithm requires re-solving for the optimal
MDP value function in Step 2a, and the required number of iterations (and thus
MDP solutions) is potentially unbounded.

2.3 Chinese Restaurant Process Mixtures

Since the proposed IRL algorithm seeks to partition the observed data, a Chinese
restaurant process (CRP) is used to define a probability distribution over the
space of possible partitions. The CRP proceeds as follows:

1. The first customer sits at the first table.
2. Customer i arrives and chooses the first unoccupied table with probability

η
i−1+η , and an occupied table with probability c

i−1+η , where c is the number
of customers already sitting at that table.
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Algorithm 1: Generic inverse reinforcement learning algorithm.

GenericIRL(MDP/R, Observations O1:N , Reward representation R̂(s|w))
1. Initialize reward function parameters w0

2. Iterate from t = 1 to T :
(a) Solve for optimal MDP value function V ∗ corresponding to reward function

R̂(s|w(t−1))
(b) Use V ∗ to define a policy π̂.
(c) Choose parameters w(T ) to make π̂ more similar to demonstrations O1:N in

the next iteration.
3. Return Reward function given by R̂(s|w(T ))

The concentration hyperparameter η controls the probability that a customer
starts a new table. Using zi = j to denote that customer i has chosen table j,
Cj to denote the number of customers sitting at table j, and Ji−1 to denote the
number of tables currently occupied by the first i− 1 customers, the assignment
probability can be formally defined by:

P (zi = j|z1...i−1) =

{
CJ

i−1+η j ≤ Ji−1
η

i−1+η j = Ji−1 + 1
(5)

This process induces a distribution over table partitions that is exchangeable [16],
meaning that the order in which the customers arrive can be permuted and any
partition with the same proportions will have the same probability. A Chinese
restaurant process mixture is defined using the same construct, but each table
is endowed with parameters θ of a probability distribution which generates data
points xi:

1. Each table j is endowed with parameter θj , where θj is drawn i.i.d. from a
prior P (θ).

2. For each customer i that arrives:
(a) The customer sits at table j according to (5) (the assignment variable

zi = j).
(b) A datapoint xi is drawn i.i.d. from P (x|θj).

Thus each datapoint xi has an associated table assignment zi = j and is
drawn from the distribution P (x|θj). Throughout the paper we use i to index
state-action pairs Oi of the demonstrator (“customers” in the CRP analogy).
We use j to index partitions of the state-actions pairs (“tables” in the CRP
analogy). Finally, the table parameters θj in the CRP mixture model presented
above correspond to the simple reward function for each partition, which we
interpret as subgoals throughout the paper.

3 Bayesian Nonparametric IRL Algorithm

The following section describes the Bayesian nonparametric subgoal IRL algo-
rithm. We start with two definitions necessary to the algorithm.
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Definition 1 A state subgoal g is simply a single coordinate g ∈ S of the MDP
state space. The associated state subgoal reward function Rg(s) is:

Rg(s) =

{
c at state g
0 at all other states

(6)

where c is a positive constant.

While the notion of a state subgoal and its associated reward function may seem
trivial, a more general feature subgoal will be defined in the following sections
to extend the algorithm to a feature representation of the state space.

Definition 2 An MDP agent in state si moving towards some state subgoal g
chooses an action ai with the following probability:

P (ai|si, g) = π(ai|si, g) =
eαQ

∗(si,ai,Rg)∑
a

eαQ
∗(si,a,Rg)

(7)

Thus π defines a stochastic policy as in [15], and is essentially our model of
rationality for the demonstrating agent (this is the same rationality model as
in [9] and [4]). In Bayesian terms, it defines the likelihood of observed action ai
when the agent is in state si. The hyperparameter α represents our degree of
confidence in the demonstrator’s ability to maximize reward.

3.1 Generative Model

The set of observed state-action pairs O defined by (4) are assumed to be gen-
erated by the following model. The model is based on the likelihood function
above, but adds a CRP partitioning component. This addition reflects our basic
assumption that the demonstrations can be explained by partitioning the data
and finding a simple reward function for each partition.

An agent finds himself in state si (because of the Markov property, the agent
need not consider how he got to si in order to decide which action ai to take). In
analogy to the CRP mixture described in Section 2.3, the agent chooses which
partition ai should be added to, where each existing partition j has its own
associated subgoal gj . The agent can also choose to assign ai to a new partition
whose subgoal will be drawn from the base distribution P (g) of possible subgoals.
The assignment variable zi is set to denote that the agent has chosen partition
zi, and thus subgoal gzi . As in equation (5), P (zi|z1:i−1) = CRP (η, z1:i−1). Now
that a partition (and thus subgoal) has been selected for ai, the agent generates
the action according to the stochastic policy ai ∼ π(ai|si, gzi) from equation (7).

The joint probability over O1:N , z, and g is given below, since it will be
needed to derive the conditional distributions necessary for sampling:

P (O1:N ,z, g) = P (O1:N |z, g) P (z, g) (8)

= P (O1:N |z, g) P (z) P (g) (9)

=

N∏
i=1

P (Oi|gzi)︸ ︷︷ ︸
likelihood

P (zi|z−i)︸ ︷︷ ︸
CRP

JN∏
j=1

P (gj)︸ ︷︷ ︸
prior

(10)
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where (9) follows since subgoal parameters gj for each new partition are drawn inde-
pendently from prior P (g) as described above. As shown in (10), there are three key
elements to the joint probability. The likelihood term is the probability of taking each
action ai from state si given the associated subgoal gzi , and is defined in (7). The CRP
term is the probability of each partition assignment zi given by (5). The prior term
is the probability of each partition’s subgoal (JN is used to indicate the number of
partitions after observing N datapoints). The subgoals are drawn i.i.d. from discrete
base distribution P (g) each time a new partition is started, and thus have non-zero
probability given by P (gj).

The model assumes that Oi is conditionally independent of Oj for i 6= j given gzi .
Also, it can be verified that the CRP partition probabilities P (zi|z−i) are exchangeable.
Thus, the model implies that the data Oi are exchangeable [16]. Note that this is weaker
than implying that the data are independent and identically distributed (i.i.d.). The
generative model instead assumes that there is an underlying grouping structure that
can be exploited in order to decouple the data and make posterior inference feasible.

The CRP partitioning allows for an unknown and potentially infinite number of
subgoals. By construction, the CRP has “built-in” complexity control, i.e. its concen-
tration hyperparameter η can be used to make a smaller number of partitions more
likely.

3.2 Inference

The generative model (10) has two sets of hidden parameters, namely the partition
assignments zi for each observation Oi, and the subgoals gj for each partition j. Thus
the job of the IRL algorithm will be to infer the posterior over these hidden vari-
ables, P (z, g|O1:N ). While both z and g are discrete, the support of P (z, g|O1:N ) is
combinatorially large (since z ranges over the set of all possible partitions of N inte-
gers), so exact inference of the posterior is not feasible. Instead, approximate inference
techniques must be used. Gibbs sampling [17] is in the family of Markov chain Monte
Carlo (MCMC) sampling algorithms and is commonly used for approximate inference
of Bayesian nonparametric mixture models [18, 19, 20]. Since we are interested in the
posterior of both the assignments and subgoals, uncollapsed Gibbs sampling is used
where both the z and g are sampled in each sweep.

Each Gibbs iteration involves sampling from the conditional distributions of each
hidden variable given all of the other variables (i.e. sample one unknown at a time
with all of the others fixed). Thus the conditionals for each partition assignment zi and
subgoal gj must be derived.

The conditional for partition assignment zi can be derived as follows:

P (zi|z−i, g,O) ∝ P (zi, Oi | z−i, O−i) (11)

= P (zi|z−i, g, O−i)P (Oi|zi, z−i, g, O−i) (12)

= P (zi|z−i) P (Oi|zi, z−i, g, O−i) (13)

= P (zi|z−i)︸ ︷︷ ︸
CRP

P (Oi|gzi)︸ ︷︷ ︸
likelihood

(14)

where (11) is the definition of conditional probability, (12) applies the chain rule, (13)
follows from the fact that assignment zi depends only on the other assignments z−i,
and (14) follows from the fact that each Oi depends only on its assigned subgoal gzi .
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Algorithm 2: Bayesian nonparametric IRL.

BNIRL(MDP/R, Observations O1:N , Confidence α, Concentration η)
1. for each unique si ∈ O1:N :

(a) Solve for and store V ∗(Rg), where g = si and Rg is defined by (20)

(b) Sample an initial subgoal g
(0)
1 from prior P (g) and set all assignments z

(0)
i = 1

2. for t = 1 to T :
(a) for each current subgoal g

(t−1)
j : Sample subgoal g

(t)
j from (17)

(b) for each observation Oi ∈ O1:N : Sample assignment z
(t)
i from (14)

3. Return samples z(1:T ) and g(1:T ), discarding samples for burn-in and lag if desired

When sampling from (14), the exchangeability of the data is utilized to treat zi
as if it was the last point to be added. Probabilities (14) are calculated with zi being
assigned to each existing partition, and for the case when zi starts a new partition
with subgoal drawn from the prior P (g). While the number of partitions is potentially
infinite, there will always be a finite number of groups when the length of the data N
is finite, so this sampling step is always feasible.

The conditional for each partition’s subgoal gj is derived as follows:

P (gj |z,O) ∝ P (OIj |gj ,z, O−Ij )P (gj |z, O−Ij ) (15)

=
∑
i∈Ij

P (Oi|gzi) P (gj |z, O−Ij ) (16)

=
∑
i∈Ij

P (Oi|gzi)︸ ︷︷ ︸
likelihood

P (gj)︸ ︷︷ ︸
prior

(17)

where (15) applies Bayes’ rule, (16) follows from the fact that each Oi depends only
on its assigned subgoal gzi , and (17) follows from the fact that the subgoal gj of each
partition is drawn i.i.d. from the prior over subgoals. The index set Ij = {i : zi = j}.

Sampling from (17) depends on the form of the prior over subgoals P (g). When
the subgoals are assumed to take the form of state subgoals (Definition 1), then P (g)
is a discrete distribution whose support is the set S of all states of the MDP. In this
paper, we propose the following simplifying assumption to increase the efficiency of the
sampling process.

Proposition 1 The prior P (g) is assumed to have support only on the set SO of MDP
states, where SO = {s ∈ S : s = si for some observation Oi = (si, ai)}.

This proposition assumes that the set of all possible subgoals is limited to only those
states encountered by the demonstrator. Intuitively it implies that during the demon-
stration, the demonstrator achieves each of his subgoals. This is not the same as assum-
ing a perfect demonstrator (the expert is not assumed to get to each subgoal optimally,
just eventually). Sampling of (17) now scales with the number of unique states in the
observation set O1:N . While this proposition may seem limiting, the experimental re-
sults in Section 4 indicate that it does not affect performance compared to other IRL
algorithms and greatly reduces the required amount of computation. Algorithm 2 de-
fines the proposed Bayesian nonparametric inverse reinforcement learning method. The
algorithm outputs samples which form a Markov chain whose stationary distribution
is the posterior, so that sampled assignments z(T ) and subgoals g(T ) converge to a
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sample from the true posterior P (z, g|O1:N ) as T → ∞ [17, 21]. Note that instead of
solving for the MDP value function in each iteration (as is typical with IRL algorithms,
see Algorithm 1), Algorithm 2 pre-computes all of the necessary value functions. The
number of required value functions is upper bounded by the number of elements in
the support of the prior P (g). When we assume Proposition 1, then the support of
P (g) is limited to the set of unique states in the observations O1:N . Thus the required
number of MDP solutions scales with the size of the observed data set O1:N , not with
the number of required iterations. We see this as an advantage in a learning scenario
when the size of the MDP is potentially large but the amount of demonstrated data is
small.

3.3 Convergence in Expected 0-1 Loss

To demonstrate convergence, it is common in IRL to define a loss function which in
some way measures the difference between the demonstrator and the predictive output
of the algorithm [8, 9, 10]. In Bayesian nonparametric IRL, the assignments z and
subgoals g represent the hidden variables of the demonstration that must be learned.
Since these variables are discrete, a 0-1 loss function is suitable:

L [(z, g), (ẑ, ĝ)] =

{
1 if (ẑ, ĝ) = (z, g)
0 otherwise

(18)

The loss function evaluates to 1 if the estimated parameters (ẑ, ĝ) are exactly equal
to the true parameters (z, g), and 0 otherwise. We would like to show that, for the
Bayesian nonparametric IRL algorithm (Algorithm 2), the expected value of the loss
function (18) given a set of observations O1:N is minimized as the number of iterations
T increases. Theorem 1 establishes this.

Theorem 1 Assuming observations O1:N are generated according to the generative
model defined by (10), the expected 0–1 loss defined by (18) is minimized by the em-
pirical mode of the samples (z(1:T ), g(1:T )) output by Algorithm 2 as the number of
iterations T →∞.

Proof. It can be verified that the maximum a posteriori (MAP) parameter values,
defined here by

(ẑ, ĝ) = argmax
(z,g)

P (z, g|O1:N )

minimize the expected 0–1 loss defined in (18) given the observations O1:N (see [22]).
By construction, Algorithm 2 defines a Gibbs sampler whose samples (z(1:T ), g(1:T ))
converge to samples from the true posterior P (z, g|O1:N ) so long as the Markov chain
producing the samples is ergodic [17]. From [23], a sufficient condition for ergodicity
of the Markov chain in Gibbs sampling requires only that the conditional probabilities
used to generate samples are non-zero. For Algorithm 2, these conditionals are defined
by (14) and (17). Since clearly the likelihood (7) and CRP prior (5) are always non-
zero, then the conditional (14) is always non-zero. Furthermore, the prior over subgoals
P (g) is non-zero for all possible g by assumption, so that (17) is non-zero as well.

Thus the Markov chain is ergodic and the samples (z(1:T ), g(1:T )) converge to sam-
ples from the true posterior P (z, g|O1:N ) as T → ∞. By the strong law of large
numbers, the empirical mode of the samples, defined by

(z̃, g̃) = argmax
(z(1:T ),g(1:T ))

P (z, g|O1:N )
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converges to the true mode (ẑ, ĝ) as T →∞, and this is exactly the MAP estimate of
the parameters which was shown to minimize the 0–1 loss. ut

We note that, given the nature of the CRP prior, the posterior will be multimodal
(switching partition indices does not affect the partition probability even though the
numerical assignments z will be different). As such, the argmax above is used to define
the set of parameter values which maximize the posterior. In practice, the sampler need
only converge on one of these modes to find a satisfactory solution.

The rate at which the loss function decreases relies on the rate the empirical sam-
ple mode(s) converges to the true mode(s) of the posterior. This is a property of the
approximate inference algorithm and, as such, is beyond the scope of this paper (con-
vergence properties of the Gibbs sampler have been studied, for instance in [24]). As
will be seen empirically in Section 4, the number of iterations required for convergence
is typically similar to (or less than) that required for other IRL methods.

3.4 Action Prediction

IRL algorithms find reward models with the eventual goal of learning to predict what
action the agent will take from a given state. As in Algorithm 1, the typical output of
the IRL algorithm is a single reward function that can be used to define a policy which
predicts what action the demonstrator would take from a given state.

In Bayesian nonparametric IRL (Algorithm 2), in order to predict action ak from
state sk, a subgoal must first be chosen from the mode of the samples ĝ = mode(g(1:T )).
This is done by finding the most likely partition assignment zk after marginalizing over
actions using Equation (11):

zk = argmax
zi

∑
a

P (zi | ẑ−i, ĝ, Ok = (sk, a) ) (19)

where ẑ is the mode of samples z(1:T ). Then, an action is selected using the policy
defined by (7) with ĝzk as the subgoal.

Alternatively, the subgoals can simply be used as waypoints which are followed in
the same order as observed in the demonstrations. In addition to predicting actions, the
subgoals in ĝ can be used to analyze which states in the demonstrations are important,
and which are just transitory.

3.5 Extension to Discrete Feature Spaces

Linear combinations of state features are commonly used in reinforcement learning
to approximately represent the value function in a lower-dimensional space [14, 15].
Formally, a k-dimensional feature vector is a mapping Φ : S 7→ Rk. Likewise, a discrete
k-dimensional feature vector is a mapping Φ : S 7→ Zk, where Z is the set of integers.

Many of the IRL algorithms listed in Section 2.2 assume that the reward function
can be represented as a linear combination of features. We extend Algorithm 2 to
accommodate discrete feature vectors by defining a feature subgoal in analogy to the
state subgoal from Definition 1.

Definition 3 Given a k-dimensional discrete feature vector Φ, a feature subgoal g(f)
is the set of states in S which map to the coordinate f in the feature space. Formally,
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g(f) = {s ∈ S : Φ(s) = f} where f ∈ Zk. The associated feature subgoal reward
function Rg(f)(s) is defined as follows:

Rg(f)(s) =

{
c, s ∈ g(f)
0, s /∈ g(f)

(20)

where c is a positive constant.

From this definition it can be seen that a state subgoal is simply a specific instance
of a feature subgoal, where the features are binary indicators for each state in S.
Algorithm 2 runs exactly as before, with the only difference being that the support
of the prior over reward functions P (g) is now defined as the set of unique feature
coordinates induced by mapping S through φ. Proposition 1 is also still valid should
we wish to again limit the set of possible subgoals to only those feature coordinates in
the observed demonstrations, Φ(s1:N ). Finally, feature subgoals do not modify any of
the assumptions of Theorem 1, thus convergence is still attained in 0-1 loss.

4 Experiments

Experimental results are given for three test cases. All three use a 20× 20 Grid World
MDP (total of 400 states) with walls. Note that while this is a relatively simple MDP,
it is similar in size and nature to experiments done in the seminal papers of each of the
compared algorithms. Also, the intent of the experiments is to compare basic properties
of the algorithms in nominal situations (as opposed to finding the limits of each).

The agent can move in all eight directions or choose to stay. Transitions are noisy,
with probability 0.7 of moving in the chosen direction. The discount factor γ = 0.99,
and value iteration is used to find the optimal value function for all of the IRL algo-
rithms tested. The demonstrator in each case makes optimal decisions based on the
true reward function. While this is not required for Bayesian nonparametric IRL, it is
an assumption of one of the other algorithms tested [7]. In all cases, the 0-1 policy loss
function is used to measure performance. The 0-1 policy loss simply counts the num-
ber of times that the learned policy (i.e. the optimal actions given the learned reward
function) does not match the demonstrator over the set of observed state-action pairs.

4.1 Grid World

The first example uses the state-subgoal Bayesian nonparametric IRL algorithm. The
prior over subgoal locations is chosen to be uniform over states visited by the demon-
strator (as in Proposition 1). The demonstrator chooses optimal actions towards each of
three subgoals (x, y) = {(10, 12), (2, 17), (2, 2)}, where the next subgoal is chosen only
after arrival at the current one. Figure 3 shows the state-action pairs of the demonstra-
tor (left), the 0-1 policy loss averaged over 25 runs (center), and the posterior mode
of subgoals and partition assignments (colored arrows denote assignments to the cor-
responding colored boxed subgoals) after 100 iterations (right). The algorithm reaches
a minimum in loss after roughly 40 iterations, and the mode of the posterior subgoal
locations converges to the correct coordinates. We note that while the subgoal locations
have correctly converged after 100 iterations, the partition assignments for each state-
action pair have not yet converged for actions whose subgoal is somewhat ambiguous.
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Fig. 3: Observed state-action pairs for simple grid world example (left), where arrows
indicate direction of the chosen action and X’s indicate choosing the “stay” action. 0-1
policy loss for Bayesian nonparametric IRL (center). Posterior mode of subgoals and
partition assignments (right). Colored arrows denote assignments to the corresponding
colored boxed subgoals.

4.2 Grid World with Features Comparison

In the next test case, Bayesian nonparametric IRL (for both state- and feature-subgoals)
is compared to three other IRL algorithms, using the same Grid World setup as in Sec-
tion 4.1: “Abbeel” IRL using the quadratic program variant [7], Maximum Margin
Planning using a loss function that is non-zero at states not visited by the demonstra-
tor [8], and Bayesian IRL [9]. A set of six features φ1:6(s) are used, where feature k
has an associated state sφk . The value of feature k at state s is simply the Manhattan
distance (1-norm) from s to sφk :

φk(s) = ||s− sφk ||1 (21)

The true reward function is defined as R(s) = wTφ(s) wherew is a vector of randomly-
chosen weights. The observations consist of five demonstrations starting at state (x, y) =
(15, 1), each having 15 actions which follow the optimal policy corresponding to the
true reward function. Note that this dataset satisfies the assumptions of the three com-
pared algorithms, though it does not strictly follow the generative process of Bayesian
nonparametric IRL. Figure 4 shows the state-action pairs of the demonstrator (left) and
the 0-1 policy loss, averaged over 25 runs versus iteration for each algorithm (right). All
but Bayesian IRL achieve convergence to the same minimum in policy loss by 20 itera-
tions, and Bayesian IRL converges at roughly 100 iterations (not shown). Even though
the assumptions of the Bayesian nonparametric IRL were not strictly satisfied (the
assumed model (10) did not generate the data), both the state- and feature-subgoal
variants of the algorithm achieved performance comparable to the other IRL methods.

Table 1 compares average initialization and per-iteration run-times for each of the
algorithms. These are given only to show general trends, as the Matlab implementa-
tions of the algorithms were by no means optimized for efficiency. The initialization
of Bayesian nonparametric IRL takes much longer than the others, since during this
period the algorithm is pre-computing optimal value functions for each of the possible
subgoal locations (i.e. each of the states encountered by the demonstrator). However,
the Bayesian nonparametric IRL per-iteration time is roughly an order of magnitude
less than the other algorithms, since the others must re-compute an optimal value
function each iteration.
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Fig. 4: Observed state-action pairs for grid world comparison example (left). Compar-
ison of 0-1 Policy loss for various IRL algorithms (right).

Table 1: Run-time comparison for various IRL algorithms.

Initialization (sec) Per-iteration (sec)

BN-IRL 15.3 0.21

Abbeel-IRL 0.42 1.65

MaxMargin-IRL 0.41 1.16

Bayesian-IRL 0.56 3.27

4.3 Grid World with Loop

In the final experiment, five demonstrations are generated using subgoals as in Section
4.1. The demonstrator starts in state (x, y) = (10, 1), and proceeds to subgoals (x, y) =
{(19, 9), (10, 17), (2, 9), (10, 1)}. Distance features (as in Section 4.2) are placed at each
of the four subgoal locations. Figure 5 (left) shows the observed state-action pairs. This
dataset clearly violates the assumptions of all three of the compared algorithms, since
more than one reward function is used to generate the state-action pairs. However, the
assumptions are violated in a reasonable way. The data resemble a common robotics
scenario in which an agent leaves an initial state, performs some tasks, and then returns
to the same initial state.

Figure 5 (center) shows that the three compared algorithms, as expected, do not
converge in policy loss. Both Bayesian nonparametric algorithms, however, perform
almost exactly as before and the mode posterior subgoal locations converge to the
four true subgoals (Figure 5 right). Again, the three compared algorithms would have
worked properly if the data had been generated by a single reward function, but such a
reward function would have to be significantly more complex (i.e. by including temporal
elements). Bayesian nonparametric IRL is able to explain the demonstrations without
modification or added complexity.

5 Discussion

5.1 Comparison to Existing Algorithms

The example in Section 4.2 shows that, for a simple problem, Bayesian nonparametric
IRL performs comparably to existing algorithms in cases where the data are generated
using a single reward function. Approximate computational run-times indicate that
overall required computation is similar to existing algorithms. As noted in Section 3.2,
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Observed Demonstrations for Loop

X−position

Y
−

po
si

tio
n

5 10 15 20

20

18

16

14

12

10

8

6

4

2

Posterior Mode Subgoals

X−position

Y
−

po
si

tio
n

5 10 15 20

20

18

16

14

12

10

8

6

4

2

0 10 20 30 40 50
0

20

40

60

80

100

120

140

160

Iteration

0−
1 

Lo
ss

 (
25

−
ru

n 
av

er
ag

e)

0−1 Policy Loss

 

 

BN−IRL State
BN−IRL Feature
Abbeel IRL
MaxMargin IRL
Bayesian IRL

Fig. 5: Observed state-action pairs for grid world loop example (left). Comparison of
0-1 Policy loss for various IRL algorithms (center). Posterior mode of subgoals and
partition assignments (right).

however, Bayesian nonparametric IRL solves for the MDP value function once for each
unique state in the demonstrations. The other algorithms solve for the MDP value
function once per iteration. We see this fundamental difference as an advantage which
will make the new algorithm scalable to real-world domains where the size of the state
space is large and the set of demonstrations is small. Testing in these larger domains
is an area of ongoing work.

The loop example in Section 4.3 highlights several fundamental differences between
Bayesian nonparametric IRL and existing algorithms. While the example resembles the
fairly-common traveling salesman problem, it breaks the fundamental assumption of ex-
isting IRL methods that the demonstrator is optimizing a single reward function. These
algorithms could be made to properly handle the loop case, but not without added com-
plexity or manual partitioning of the demonstrations. Bayesian nonparametric IRL, on
the other hand, is able to explain the loop example without any modifications. The
ability of the new algorithm to automatically partition the data and explain each group
with a simple subgoal reward eliminates the need to find a single, complex temporal
reward function. Furthermore, the Chinese restaurant process prior naturally limits the
number of partitions in the resulting solution, rendering a parsimonious explanation of
the data.

5.2 Related and Future Work

Aside from the relation to existing IRL methods, we see a connection to option meth-
ods for MDPs [25]. While the original work explains how to use options to perform
potentially complex tasks in an MDP framework, Bayesian nonparametric IRL could
be used to learn options from demonstrations. Options in this case would take the form
of optimal policies corresponding to each of the learned subgoal rewards. Exploration
of the connection to option learning is an avenue of future work.

There are several other areas of ongoing and future work. First, the results given
here are for simple problems and are by no means exhaustive. Ongoing work seeks to
apply the method in more complex robotics domains where the size of the state space
is significantly larger, and the observations are generated by an actual human demon-
strator. Also, Bayesian nonparametric IRL could be applied to higher-level planning
problems where the list of subgoals found by the algorithm may be useful in more
richly analyzing the human demonstrator.
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