
An Empirical Analysis of Super Resolution Techniques

for Image Restoration

by

Jeffrey S. Brown

Submitted to the Department of Electrical Engineering and Computer Science

in Partial Fulfillment of the Requirements for the Degrees of

Bachelor of Science in Electrical Science and Engineering

and Master of Engineering in Electrical Engineering and Computer Science

at the Massachusetts Institute of Technology

,May 8, 2000

Copyright 2000 Jeffrey S. Brown. All rights reserved.

The author hereby grants to M.I.T. permission to reproduce and

distribute publicly paper and electronic copies of this thesis

and to grant others the right to do so.

Author
Departmen Oflecical Engineering and Computer Science

May 8, 200 \

Certified by
Prof S. Lim

hesis pervjs

Accepted by Arthur'eSiith

Chairman, Department Committee on Graduate Theses

MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

JUL 2 7 2000

LIBRARIES

MITLibries
Document Services

Room 14-0551
77 Massachusetts Avenue
Cambridge, MA 02139
Ph: 617.253.2800
Email: docs@mit.edu
http://libraries.mit.eduldocs

DISCLAIMER OF QUALITY

Due to the condition of the original material, there are unavoidable
flaws in this reproduction. We have made every effort possible to
provide you with the best copy available. If you are dissatisfied with
this product and find it unusable, please contact Document Services as
soon as possible.

Thank you.

The images contained in this document are of
the best quality available.

An Empirical Analysis of Super Resolution Techniques for Image Restoration
by

Jeffrey S. Brown

Submitted to the

Department of Electrical Engineering and Computer Science

May 8, 2000

In Partial Fulfillment of the Requirements for the Degree of

Bachelor of Science in Electrical Engineering

and Master of Engineering in Electrical Engineering and Computer Science

ABSTRACT

In image restoration, super resolution techniques show promise to create more accurate results

than traditional processing methods such as interpolation and inverse filtering. Super resolution

techniques use nonlinear information, stochastic information, and information from multiple

offset pictures of the same scene to accurately reconstruct images beyond the traditional limits

imposed by aliasing and low pass filtering. Unfortunately, there is not a coherent theory of super

resolution, nor is there any known comparison of existing super resolution and traditional

algorithms. This thesis contains an empirical comparison of three super resolution techniques.

These algorithms significantly outperform basic interpolations and inverse filters when multiple

offset images of a scene are available. The algorithms' capabilities suggest changes to imaging

system design: it is shown that capturing many offset images of a scene can lead to more

accurate reconstructions, even if the multiple images come at the expense of lower signal-to-noise

ratios.

Thesis Supervisor: Prof. Jae S. Lim
Title: Professor of Electrical Engineering and Computer Science

VI-A Supervisor: Larry Candell
Title: Group Leader, Advanced Space Systems and Concepts

2

Acknowledgements

To Larry Candell for helping define a topic that was fascinating and personally compelling,
and for his subsequent support -

To Prof. Jae Lim for his helpful comments as advisor -

To Edward Wack for providing so much data and furnishing helpful information about
algorithms, analysis, and general imaging facts -

To Ed Leonard for his words of wisdom -

To Jennifer Bautista for the support -

To Bill Vanderson for his technical proofreading services -

To my parents for 22 years of encouragement, and for sending me to all the best schools -

3

Table of Contents

LIST OF FIGURES..------------...........---------------..................................5

CHAPTER 1 - INTRODUCTION... 6

1.1 PROBLEM & MOTIVATION......................................- - - - - --...8
1.2 SOLUTION & THESIS DEFINITION.. 10

CHAPTER 2 - BACKGROUND 12

2.1 IMAGING MODELS..............................--------------------... 12

2.1.1 D egradations..... .. 13
2.2 PRINCIPLES OF SUPER RESOLUTION .. 14

2.2.1 Mathematical Description... 17

2.2.2 Variety of Techniques ..-------.. .. - ------................................ 18

2.3 HISTORY OF SUPER RESOLUTION 19

CHAPTER 3 - METHOD DESCRIPTIONS..21

3.1 MINIMUM MEAN SQUARED ERROR (MMSE) METHODS .. 23
3.1.1 Technical Description... - - --... 24

3.2 MAXIMUM A POSTERIORI METHODS ... 26
3.2.1 Technical Description.. 28

3.3 PROJECTION ONTO CONVEX SETS... 31

3.3.1 Technical Description ... 32

3.4 BENCHMARK METHODS ... 35

CHAPTER 4 - TESTING & RESULTS..37

4.1 TESTBED DESCRIPTION- - ---...-- 38

4.1.1 Im age Selection ..-- -- --..------..--........................ 38

4.1.2 Fram es and Offsets..---.... ---------..................... 40

4.1.3 Signal-to-Noise Ratios ..-----........ - .-........... 41
4.1.4 Spatial Response Functions 42

4.1.5 D egradation Process ...--------.. . -----.......................... 43

4.1.6 Complete Testbed Specification...44
4.2 COMPARISON METRICS ... 45

4.3 RESULTS...- -----. - - - - - - - - - - --.. 47

4.3.1 Aggregate Results: SR algorithms and benchmarks in all situations..................................... 47

4.3.2 N oise Effects...-----.... --.. . - -- --- --- --- --- ---.............................. 49

4.3.3 Frames and Offsets.. 52

4.4.4 Image D ifferences ---..... - --- ---... 53

CHAPTER 5 - CONCLUSION ...-.............................. 58

5.1 FUTURE W ORK ..-----------------.. 60

APPENDIX A - DERIVATIONS...- -..... 62

APPENDIX B - MATLAB CODE .. 65

APPENDIX C - COMPLETE DATA .. 88

REFERENCES...--------------------------...93

4

List of Figures

Figure 1 General Solid State Imaging Model .. 13

Figure 2 Transfer Functions of a General Imaging System 13

Figure 3 A Frequency Domain Depiction of Imaging .. 15

Figure 4 Multiple Frames at Sub-Pixel Offsets .. 16

Figure 5 Classification of Some Super Resolution Techniques 19

Figure 6 Super Resolution Algorithms Chosen for Comparison 22

Figure 7 Gauss and Huber-Markov Penalty Functions ... 29

Figure 8 Scheme for Inverse Filtering and Interpolating 35

Figure 9 Three High Resolution Images Used in Algorithm Tests 39

Figure 10 C hoice of O ffsets .. 40

Figure 11 Spatial Response Function Used in Tests ... 42

Figure 12 Schematic of the Process to Produce Low Resolution Data Sets 43

Figure 13 Aggregate Performance ... 48

Figure 14 Selected Images showing Aggregate Performance 49

Figure 15 Fram e/N oise Tradeoff ... 50

Figure 16 Sample Images showing Frame/Noise Tradeoff 51

Figure 17 Frames and Offsets Comparison ... 52

Figure 18 Sample Images showing Frame Differences ... 54

Figure 19 Error for Three Different Test Images .. 55

Figure 20 The Three Test Images are Affected Similarly 56

5

Chapter 1 - Introduction

The pictures created by digital imagers are not perfect representations of the original scenes.

Instead, the optics and electronics of the imager distort the true signal, and discrete samples of

this distorted signal are produced. The amount of distortion depends on the size of the optics, the

size of the photodetecting elements, and the accuracy and tolerances of all components and their

support circuitry. If imaging technology were more advanced, the raw sample values might

convey sufficiently accurate information about the scene, and no additional processing would be

required. With current technology, however, the distortion can be severe and can limit the

usefulness of the data.

In modern space-based imagers, two problems are most severe: the low-pass filtering effect of the

optics and the aliasing caused by an insufficient spatial sampling rate. The first problem is a

consequence of finite aperture size - a finite aperture can only detect a subset of the diffracted

light, and this limits the frequencies passed by the optical system. The second problem is due to

the spacing of detector pixels on the focal plane. Fabrication technology and physics limit the

detector sizes and spacing, which limit the spatial sampling rate. In most cases, current

technology does not allow sampling at twice the highest focal plane frequency, so the sample

values are corrupted by aliasing.

Since the physical parameters of imaging systems change slowly, scientists and engineers use

signal processing techniques to increase imaging accuracy. In the past, linear filters were used,

with techniques such as Wiener filtering drawing from the rich history of linear system theory.

Unfortunately, traditional linear processing methods are inadequate for processing many modern

digital images. While they can mitigate certain transfer function effects and noise, linear methods

cannot undo aliasing or cutoff phenomena. Any given frequency may be cutoff by the optics,

may be aliased by the discrete sampling (if it is higher than one half of the sampling rate), or may

be passed by both systems with some modulation. Even if the frequency is passed with

modulation, higher frequencies may interfere via aliasing. In all of these cases, a linear filter

cannot reconstruct the original information at the frequency of interest.

6

Super resolution techniques attempt to restore image information at frequencies beyond the

traditional limits imposed by aliasing or low-pass filtering. This goal is impossible given a single

set of samples and no a priori information. In this case, frequencies that have been eliminated by

low pass filtering are irretrievably lost, and frequencies corrupted by aliasing cannot be de-

aliased. By incorporating additional information into the restoration, recovering higher

frequencies may still be difficult, but is no longer theoretically prohibited. Super resolution

algorithms use this knowledge to produce more accurate images.

Super resolution is possible because imaging systems are rich with additional information. For

example, images are always of finite size and have nonnegative intensity (due to the physical

imaging system). Furthermore, situations exist where multiple images of the same scene are

available, with each image offset some non-integer number of pixels. Any such source of

additional information restricts the set of candidate solutions, and allows the true image to be

estimated more finely and accurately. Chapter 2 discusses specific examples of how this

additional information can be used to improve reconstructions.

Many super resolution algorithms have been demonstrated, but there has been no known attempt

to compare super resolution algorithms in a general context. Most algorithms have been

presented as ad hoc solutions to specific imaging situations; rarely have their presentations been

accompanied by strict comparisons to other restoration schemes. The most common "proof" of

effectiveness is a before-and-after display of a single image. Without any comparison data, it is

difficult to find the most effective algorithm for any given imaging situation. There is no

principled way to choose among algorithms.

This thesis provides an empirical analysis of super resolution performance. Three common and

prominent super resolution approaches have been chosen which are representative of the field: a

minimum mean square error (MMSE) method, a maximum a posteriori method (MAP), and a

projection onto convex sets method (POCS). These algorithms are described with a common

notation and then rigorously tested with a variety of images and parameters (e.g. noise levels,

multiple frame offsets). The results are compared both mathematically and subjectively, as

described in Chapter 4. This process has created a complete data set that is useful for analyzing

imaging systems and choosing algorithms for specific applications.

7

The remainder of this introduction presents the problem, the motivation, and a more complete

description of its solution. Chapter 2 provides a physical and mathematical description of

imaging, along with the methods and history of the super resolution field. Chapter 3 gives

detailed descriptions of the three major algorithms and their implementations. Chapter 4 covers

the evaluation process and lists the test situations and results. Finally, Chapter 5 summarizes the

efforts and provides suggestions for future work.

1.1 Problem & Motivation

There are several outstanding problems related to super resolution, but the most compelling is the

issue of algorithm comparison. Many algorithms have been demonstrated, but there exists no

general consensus regarding which are superior. The lack of an all-encompassing theoretical

development makes the algorithms difficult to evaluate and compare to each other. Exacerbating

the problem further are the fundamental differences of the methods, and the fact that there is no

cohesive framework for describing and analyzing these mostly nonlinear iterative algorithms.

The result is that there has been no known attempt to compare super resolution algorithms in any

context.

This problem demands attention because more accurate information is valuable both scientifically

and commercially. Powerful desktop computers are increasing scientists' processing ability,

which similarly increases their demand for more detailed information. Fortunately, the rapid

increase in computational power is also promoting the viability of complex restoration

algorithms. Many super resolution algorithms employ iterative optimizations which until recently

were not computationally feasible. Furthermore, the cost of additional processing is now

significantly less than that of building an enlarged aperture imaging system.

A specific problem at MIT Lincoln Laboratory has provided the basis for this inquiry. Lincoln

Laboratory supports satellite-based imagers, such as the Geostationary Operation Environmental

Satellite (GOES) family of weather imagers. Many satellites are already in orbit, containing fixed

optics and electronics that limit their resolution. Discussions with meteorologists have

determined that higher resolution images are desirable, so Lincoln would like to use super

resolution algorithms to obtain better performance from existing hardware. Which algorithms

8

should be chosen? Which provide the most accurate reconstruction for a given situation? How

should imaging system parameters be set to take advantage of the algorithms? These questions

must be answered before super resolution techniques can be applied appropriately.

If super resolution algorithms prove effective, a set of additional questions becomes relevant.

These questions deal with the design of imaging systems to take advantage of the newfound

processing ability: Is it better to design an imaging system to take one high signal-to-noise ratio

(SNR) image, or several offset images each with a lower SNR? With super resolution techniques,

the latter may provide a more accurate final reconstruction. How helpful is it for the frames to be

uniformly spread? The same number of frames at random offsets may lead to similar accuracy.

Is there an optimal ratio of aperture size to pixel size? The use of a smaller and cheaper objective

lens may not harm performance.

To answer these questions, super resolution algorithms must be thoroughly analyzed. To do so

requires overcoming two major comparison issues: the choice of evaluation criteria, and the

choice of algorithms. The choice of evaluation criteria and metrics is not obvious; there is no

consistent measurement used in super resolution literature. In fact, the most common "proof' of

an algorithm's effectiveness is a before-and-after display of a few sample images [Alam 1997,

Gillette 1995, Irani 1990, Cohen 1998, Cheeseman 1994]. Unfortunately, this method does not

facilitate comparison, nor is it necessarily an indication of performance. A reasonable

comparison must encompass explicit mathematical comparisons along with the subjective image

viewing.

The second interesting issue is the application of the metric. Comparing every super resolution

technique ever proposed would be an enormous task. The fact that restoration is an ill-posed

problem means that there is no single right answer, and there are limitless reasonable methods

[Andrews 1977]. We would like an indication of effectiveness that does not involve coding every

algorithm. It would be useful to apply the metrics to a few general algorithms that are

representative of common approaches. The performance of these general methods will establish

benchmarks and provide a common base for more specific future inquiries. For this approach, the

difficulty is in choosing the methods that would be most useful to compare.

9

1.2 Solution & Thesis Definition

This thesis contains an empirical analysis of three major super resolution techniques. The goal

was to specify a fair set of evaluation metrics and use them to compare prominent super

resolution approaches (MMSE, MAP, and POCS) in a variety of contexts. This work provided

information that is generally applicable to the field, as well as specifically interesting to Lincoln

Laboratory. The process also produced a data set that answers the questions posed above.

The comparison was empirical for practical reasons. Most super resolution techniques consist of

iterative optimizations, which often include peculiar constraints or non-linear functions. These

procedures are difficult to analyze theoretically since they cannot be easily viewed within existing

frameworks; they cannot be analyzed as LTI filters, or any similarly established and well-

understood method. The algorithms are described mathematically in the thesis, and their basic

operation is explored; however, the empirical data is emphasized, since a complete theoretical

analysis is beyond the scope of a Master's Thesis.

With these facts in mind, we can discuss the solution to the two problems posed above: the

choice of comparison criteria and the choice of algorithms. The choice of comparison criteria

comprises both mathematical and subjective portions. Mathematically, no single metric is a

universal solution, so we have selected several mathematical quantities to compare. The metrics,

which are described in Chapter 4, compare mean squared error and Laplacian mean squared error.

The subjective criteria are used as a confirmation and "sanity check" for the mathematical data.

They include the viewing of the actual images and the visual identification of small features.

The choice of algorithms concentrated on general-purpose methods. There exists a substantial

body of super resolution literature treating a variety of specific imaging situations: stereoscopic

perspective changes, multiple independent motions between frames (often video sequences), or

searching for a particular target. For simplicity, we chose methods that treat only global

translation between frames and do not require other constraints on the original image. The simple

case of translational motion is sufficient to display the characteristics and potential of the

algorithms. Also, global translation is a good approximation for most satellite-based imagers.

With the chosen algorithms and metrics, an empirical comparison provides the hard data. The

test setup is designed to produce several types of degraded data: many simulated images, various

10

noise levels, and various multiple frame parameters (differing number of frames and offsets).

The test includes several "control" restorations, including interpolation and inverse filtering. All

results are compared both subjectively and according to the evaluation metrics, with the latter

being emphasized.

The desired outcome was a robust set of data concerning super resolution algorithms. This work

was designed to provide explicit mathematical results to the question of algorithm comparison;

this data is used to answer the questions posed earlier regarding algorithm comparison and

imaging system design. The data is useful as a theoretical and practical guide to super resolution

techniques.

11

Chapter 2 - Background

This chapter describes the imaging process, discusses the basis of super resolution, and presents a

compact history of the field. The Imaging Models section describes imaging both physically and

mathematically. The Principles of Super Resolution section defines super resolution and

examines the basis and the soundness of its methods, including a discussion of why super

resolution is possible. Finally, the History section recounts a brief history of the field.

Keep in mind throughout that this thesis is pursuing methods of image restoration, as opposed to

image enhancement. Restoration is concerned with mimicing the original scene as accurately as

possible, which is often the goal for scientific applications. Enhancement, on the other hand, is

willing to sacrifice accuracy in order to enhance certain qualities of the image. The result of

enhancements (such as high-pass filtering or histogram equalization) may look "sharper" or

"brighter" than the original, but will often be a less accurate depiction of the original scene. For a

discussion of enhancement verses restoration, see [Lim 1990] or a similar image processing text.

2.1 Imaging Models

The majority of modern digital imaging systems use solid state detectors to convert light intensity

into an electrical quantity. A simple diagram in Figure 1 shows the basic components of an

imaging system: the true image, optics, photodetectors, and readout electronics. The

photodetector may be a two-dimensional array or a linear array. The former case, known as a

staring array, can create two-dimensional images without any additional components. The latter

case, the linear array, must employ a scanning mirror or similar device to provide the second

dimension as the mirror scans across the image plane through time. Both types of arrays can be

found in imaging applications; fortunately, both models can be treated similarly as they suffer

from the same degradations.

12

Finite Readout Electronics DigitlFinite -- Digital
Image -- A/D Conversion Image

Focal
Plane

Optics,
Aperture

Infinite
True Image

Plane

Figure 1 - General Solid State Imaging Model

2.1.1 Degradations

The digital image in Figure 1 provides data about the true image plane, but this data has been

altered by several phenomena. Initially, note that only a finite portion of the image plane is

within view of the optics, due to the mechanical housing limiting the field of view. The optics

then impose a transfer function of low-pass character [Goodman 1968]. The result is an image on

the focal plane. The photodetectors cannot perform ideal (delta-function) sampling, but must

integrate photons over a finite area; this integration corresponds to another low-pass transfer

function. The focal plane is of finite size, which contributes a windowing function. Finally, the

charge values may undergo electronic filtering before being converted to digital samples. This

entire system is depicted in Figure 2, which is an adaptation of a model from [Alam 1997].

I(X,) 10 OTF d(x,y) -*XElectronic Filtering
I(x,y) X

.iiei pc Cutoff = foco Cutoff = fp A/D Conversion
Finite in space
Infinite in freq Optical Transfer Pixel Integration

Function w(x,y)

o[m,n]

Discrete samples

Figure 2 - Transfer functions of a general imaging system

13

Some definitions and clarifications are helpful before continuing with the degradation discussion.

The optical transfer function (OTF) and its inverse Fourier Transform, the point spread function

(PSF), are assigned liberal definitions throughout imaging literature; sometimes they refer to the

transfer function of the optics only, while sometimes they encompass the effects of the entire

imaging system. We will use the strict definition concerning optics, for which diffraction effects

cause a hard cutoff frequency, f0co, (IOTF1 = 0 for f > foco) for a perfect lens [Goodman 1968]. In

contrast, we will use the term Spatial Response Function (SRF) to represent the cumulative effect

of the PSF, pixel-integration, and any electronic filtering.

The degradations above present a formidable challenge to overcome. Frequencies above foco are

completely eliminated by the OTF. In many cases, frequencies below foc0 are corrupted by

undersampling. Undersampling is common in space-based imagers and occurs when the detector

spacing is greater than 1/2fm,, where fma., is the highest spatial frequency on the focal plane.

These aliasing and low-pass filtering operations are impossible to reverse without incorporating

additional information into the solution and utilizing nonlinear restoration techniques. The super

resolution field has developed to solve these difficult problems and to reconstruct information

beyond the traditional limits of linear techniques.

2.2 Principles of Super Resolution

It is now possible to discuss the principles and theories of super resolution using the systems and

terminology developed above. Super resolution (SR) typically refers to algorithms that increase

the sampling rate of an image while also introducing additional frequency content. This

distinguishes SR algorithms from most interpolation methods, which sample the existing

information more finely, but do not introduce additional information, or do not do so in a

principled and justified manner. In short, super resolution results are more accurate than

interpolations or linear filters.

Super resolution is difficult to achieve because of the severity of imaging system degradations.

The sampling process necessarily requires either low pass filtering or aliasing, and often includes

elements of both. These factors create an ill-posed inverse problem: given a single image and no

additional information, there are an infinite number of true distributions that could have produced

14

the observation. This difficulty is most apparent in a frequency domain depiction, as shown in

Figure 3. Complexity arises from the relationship of foco, fp, and the sampling rate.

f

Arbitrary Object Spectrum

If f f f
Optical Transfer Function OCO

Resultant spectrum after filtering
and sampling at rate f,

ff

Pixel Integration Effect

Figure 3 - A frequency domain depiction of imaging. For most modern space-based
imagers f, < foco, as pictured. f, is also the highest possible spatial sampling rate

for many imagers (see Appendix A for a derivation and explanation). In this

case, the post-sampling spectrum can be seen to have substantial aliasing.

Despite the difficulties shown in Figure 3, super resolution can be achieved if sufficient

additional information is incorporated into the restoration. Fortunately, imaging (particularly

space-based imaging) has many deterministic and stochastic information sources. Traditional

techniques, such as interpolations or inverse filters, cannot use this information because it is often

nonlinear or stochastic. Super resolution techniques excel because they are formulated explicitly

to take advantage of this information.

The main source of additional information used by super resolution techniques is data from

multiple offset images of the same scene. If these multiple images, or frames, are offset by sub-

pixel amounts, the result is a grid, possibly irregular, of more densely spaced samples. A

technique called microscanning has been proposed, which creates a uniform grid of samples by

purposely controlling these offsets [Watson 1992]. Most super resolution techniques do NOT use

15

controlled microscanning, however, but rather rely on random offsets introduced by line-of-sight

jitter, multiple orbital passes, or other factors. Figure 4 depicts different multi-frame situations.

Regardless of the offsets (controlled microscanning or uncontrolled and random), a substantial

amount of new data is added by each additional image, and this multi-frame data is utilized by

super resolution techniques.

~A A A A

* iAA A A AA

(a) (b) (c)

Figure 4 - Often multiple frames are available at sub-pixel offsets from each other. A two-
frame example is shown in (a). The graphic in (b) represents the data from (a)

in another format that is more amenable to picturing many frames. Each
triangle represents the center of a pixel, and the pixel size is shown as a dotted
line for perspective. In (c), we see an example of microscanning, where the array

was shifted in pixel increments in each direction, creating an effective
sampling grid at twice the original resolution in each direction.

While multi-frame data is important, other information is also used by super resolution techniques

to improve restoration accuracy. Two attributes commonly exploited are nonnegativity and finite

support. By physical definition, the intensity of any point cannot be negative. Thus any

reconstructions with negative values can be modified or eliminated. Likewise, Figure 1 shows

that a mechanical housing limits the field of view of the optics, so the image being reconstructed

is always of finite size.

In addtion, super resolution techniques use stochastic criteria. Stochastic knowledge can lead to

impressive results if the knowledge is specific enough, as demonstrated in a one-dimensional

experiment in [Ruderman 1992]. Very specific knowledge is usually unknown, however, and

algorithms commonly use just a smoothness criterion that gives smoother images more

precedence as solutions. Smoothness constraints are dependent upon the notion that natural

scenery is smooth more often than highly oscillatory. This notion is not infallible, and cases exist

where the smoothness constraint adversely affects the reconstruction. Nevertheless, smoothness

constraints are common and are additionally helpful in suppressing ringing artifacts.

16

2.2.1 Mathematical Description

The descriptions above are qualitative, but the super resolution problem and solution can also be

exhibited mathematically. The imaging problem is posed as

y = Wz+n , (1)

where y is a column vector of observed pixel values, z is a column vector of true pixel values, W

is a projection operator that is directly related to the SRF, and n is an additive noise vector.

Suppose y contains one frame's worth of data, and we wish to reconstruct z at a resolution twice

the resolution of y in each direction (four times the resolution area-wise). If N is the number of

elements of y (the number of data pixels available), then z has 4N elements. The problem is ill-

posed, with N equations and 4N unknowns. Stated differently, W is a wide matrix with N rows

and 4N columns. The columns of W cannot be linearly independent, so WTW is singular and

there is no exact solution, even with n = 0.

Mathematically, the goal of a super resolution algorithm is to regularize this ill-posedness and

generate a solution z that is most probable. Additional frames of data help substantially, since

each new data point adds a row to W. In the above case, four frames of data is technically

sufficient to solve the problem exactly, if there were no noise. Other constraints such as

nonnegativity also help regularize the problem, but in a less obvious way. They allow certain z's

to be eliminated as candidate solutions.

A final note concerns the availability of the data discussed above. It was stated that super

resolution algorithms use the imaging model (W) and multiple frames of data to produce their

super resolved outputs. Unfortunately, an imaging model and the offsets of the multiple frames

may not be known exactly a priori. For completeness, the calculation, estimation, and use of this

information is discussed in this thesis. It can be found in Chapter 4, and then again in the Future

Work section of Chapter 5.

17

2.2.2 Variety of Techniques

With knowledge of the existence and theory of super resolution, there are many different ways to

pose and solve the restoration problem. Some algorithms compose a cost function and use

iterative optimizations to find minima; some pose the problem stochastically and attempt to

maximize a probability distribution; still others use concepts like the theory of projection onto

convex sets; and many additional techniques exist, including hybrids of several concepts. No

approach is universally superior, and the methods are difficult to compare because they often

incorporate different information in unique ways. Also, the results produced in super resolution

literature are usually subjective and not suitable for algorithm-to-algorithm comparison.

To demonstrate the breadth of super resolution techniques, a classification of some super

resolution algorithms is shown in Figure 5. The components of Figure 5 will be discussed in

Chapter 3, but they are shown here to illustrate how numerous and varied the techniques are.

Because the differences between algorithms are so large, an empirical comparison is more

tractable than a theoretical one. Many of the algorithms from Figure 5 claim superior

performance; encouragingly, this thesis confirms those results with mathematical measurements,

helping prove that super resolution is a field with impressive potential.

The background and theory of super resolution techniques has now been presented. It is clear

that although the image restoration problem is difficult, super resolution algorithms are beginning

to use information that has previously not been used in reconstructions. This includes data from

multiple frames that are randomly offset from each other as well as the concepts of nonnegativity

and finite support. The exact manner of incorporating the information varies widely, and this can

be seen in the variety of techniques that have arisen. The techniques are treated rigorously in

Chapter 3, which follows the summary of super resolution history below.

18

Super Resolution Methods

Frequency Domain Spatial Domain Processing Hybrid (spatial & freq
Processing domain) Processing

Tsai & Huang Gerchberg Algorithm

Multi-Frame Max Entropy MMSE Methods Stochastic POCS
Interpolations Variants Methods

Various
Convex

MAP ML Constraint
Sets

Iterated
Backprojection

Different
Choices of

Prior

Figure 5 - Classification of some super resolution techniques. Note the wide variety of
methods. These methods will be discussed more closely in Chapter 3.

2.3 History of Super Resolution

Super resolution of imagery is a nascent field, with few results before the 1980's. This is not

surprising, however, due to the computational power required by most algorithms. Almost all

super resolution algorithms use either nonlinear information, non-uniformly spaced samples, or

stochastic information. The data can rarely be processed in a straightforward manner, and often

requires nonlinear iterative processing. This processing is computationally intensive and was

infeasible until recently. After a computational threshold was reached, super resolution

algorithms began to appear, and they have proliferated greatly as computational ability has

expanded.

The first notions of super resolution of imagery appeared in the 1960s (to the author's best

knowledge), and were based not upon multiple frames of data, but upon finite support. These

first results assumed oversampled imagers, in which the cutoff frequency of the optics (fO) was

the limiting factor and there was no aliasing. If the truth image has finite support, Harris showed

19

that without noise, the truth spectrum can be recovered exactly for all frequencies [Harris 1964].

Even with noise, spectrum "extrapolation" can occur beyond foco, which was shown by algorithms

such as Frieden's Maximum Likelihood and Maximum Entropy [Frieden 1972] and Gerchberg's

Error Energy Reduction [Gerchberg 1974]. This line of restoration has continued in the 1990s

with work by several authors [Hunt 1995, Sementilli 1994], most notably Hunt, who has written

an overview of principles and performance in [Hunt 1995].

The techniques above can achieve super resolution, but their usefulness is limited because they

require oversampled imagers. Most modern imagers are undersampled, and the aliasing

introduced by the undersampling invalidates the principles of those algorithms. For this

undersampled case, there were few image processing solutions until 1984, when Tsai and Huang

published their seminal multi-frame work [Tsai 1984]. Tsai and Huang used multiple Landsat

images from different orbital passes to produce a single image at a higher sampling rate. This is

the first known use of multiple offset images to solve the image restoration problem.

Tsai and Huang's work initiated an enormous surge in super resolution development, and by the

early 1990s, many new multi-frame algorithms had been proposed. The use of a multiple-frame

projection onto convex sets (POCS) algorithm was proposed in 1989 by Stark and Oskoui [Stark

1989]. A technique called iterated backprojection was proposed by Irani and Peleg in 1990,

which minimized a minimum mean squared error criteria with an approach similar to tomography

[Irani 1990]. In 1994, Cheeseman et al posed the problem stochastically and produced a

maximum a posteriori solution [Cheeseman 1994]. Subsequently many variants arose from each

of these techniques, producing the variety seen today in the field.

The current state of super resolution includes methods for most conceivable imaging situations.

This thesis is concerned with uniform translational motion between frames (for reasons already

discussed). Nevertheless, algorithms have been developed to use data from multiple spectral

bands, stereoscopic perspective changes, multiple independent motions within frames, and other

sources. For the case of uniform translational motion, Figure 5 provides an outline of some

current techniques, which will be discussed in Chapter 3. The future of super resolution and all

its variants is discussed in the Future Work section of Chapter 5.

20

Chapter 3 - Method Descriptions

Many super resolution algorithms exist, and the goal of this thesis is to analyze several of the

most common. In the previous chapter, Figure 5 classified the algorithms of interest: those

treating uniform translational motion between frames. Three algorithms (a Minimum Mean

Squared Error (MMSE) method, a Maximum a posteriori (MAP) method, and a Projection onto

Convex Sets (POCS) method) have been chosen from this list for an empirical comparison and

are circled in Figure 6. Each algorithm is described thoroughly in this chapter, and the benchmark

methods to which they are compared are given a cursory review.

As discussed in the introduction, we are pursuing prominent super resolution algorithms that

represent a wide sampling of the total super resolution field. The particular methods used in this

thesis were chosen according to a variety of criteria, including:

* ubiquity of the method in the literature,

* general applicability,

* reasonable implementation,

* lack of explicit training periods or numerous operator-set parameters,

* potential for superior performance.

The ubiquity criterion guarantees relevant results by directing the search away from obscure

methods. The general applicability criterion is important because some algorithms have been

derived for very specific imagers, SNRs, etc., which we wish to avoid. A reasonable

implementation is important for the eventual real-world application of the techniques. The lack

of training periods or human-set parameters is a practical matter, so that the algorithms can be

operated by users without expert knowledge of the algorithm parameters or training. Finally, the

potential for superior performance points us towards algorithms that use substantial a priori or

stochastic knowledge.

21

Super Resolution Methods

Frequency Domain Spatial Domain Processing Hybrid (spatial & freq
Processing domain) Processing

Tsai& I uangGerchberg Algorithm
Tsai & Huang

Multi-Frame Max Entropy MMSE Methods Stochastic POCS
Interpolations Variants Methods

Various
Convex

MAP ML Constraint
Sets

Iterated
Backprojection

Different
Choices of

Prior

Figure 6 - The super resolution algorithms chosen for comparison are circled.

Unfortunately, even these criteria do not guarantee a completely objective choice of algorithms.

Some algorithms were surely overlooked during literature searches. The author's biases may also

be reflected in the choices. While we strove for objectivity, it's important to remember that these

methods represent one author's analysis of the above factors.

After analyzing the above factors, three super resolution methods were chosen for comparison: a

Minimum Mean Squared Error (MMSE) method, a maximum a posteriori (MAP) method, and a

projection onto convex sets (POCS) method. It's reasonable to argue that the chosen methods

constitute a fair sampling of the super resolution field. The three methods are cross referenced

copiously in super resolution literature. Most of the methods can be found both in restoration

texts (such as Andrews' and Hunt's Digital Image Restoration [Andrews 1977]) and in summary

articles (such as "Super-Resolution from Image Sequences - A Review" [Borman 1999] or

"Survey of recent developments in digital image restoration" [Sezan May1990]). These

algorithms are popular, widespread, and important to the super resolution field.

Maximum Entropy (ME) methods can also be found in the references above, yet they have not

been included in this comparison. Of the many ME algorithms in existence, only one could be

22

found that was derived for an ill-posed reconstruction [Lyon 1997]. Conceptually, this

algorithm's operation was similar to the chosen MMSE approach. Experimentally, this was

confirmed by results that were also very similar to the MMSE results. Since this particular ME

formulation took substantially longer than the MMSE algorithm to produce similar results, it was

omitted from the tests.

Two final points are relevant to the descriptions below. The first is that for each general

approach, one particular implementation was chosen for the description and testing. These

implementations were chosen for their clear presentation or ease of realization, and not for speed

or efficiency. The goal of this thesis is to identify the methods that create the best

reconstructions; once identified, any specific approach can be carefully studied and optimized,

employing the references and notes from the Future Work section. The second point is that the

descriptions cover only the reconstruction portion of the algorithms. Some literature includes

methods for parameter estimation (SRF, SNR, etc.) or multiple-frame offset estimation; since

these tasks are peripheral to the real reconstruction work, these portions have been omitted from

the descriptions.

3.1 Minimum Mean Squared Error (MMSE) Methods

Given a model of the imaging process, any high resolution image can be passed through the

model to produce a simulated low resolution output. In matrix notation, W (the imaging model)

is known, so an estimate y, can be produced from the high resolution image z (a column vector of

data points) via:

Ye =Wz . (2)

MMSE methods return the high resolution image for which the simulated output is closest to the

actual observed data (in the MMSE sense). Mathematically, the output j is given by

= argmin(y-y,) T (y--y)=arg min(y - Wz(y Wz) , (3)
Z z

where y is a column vector of the observed pixel values.

23

This criterion is favorable, but it is also incomplete: the inverse imaging problem is ill-posed, so

many high resolution images exist which minimize the error. An additional choice must be made

among the qualified candidates.

The first MMSE method to be presented was an iterative backprojection algorithm proposed by

Irani and Peleg in 1990 [Irani 1990]. The term "iterative backprojection" refers to the algorithm's

operation: a high resolution estimate is composed, the imaging process is simulated, then the

differences between the simulated images and the actual images are backprojected to modify the

high resolution estimate. This process is iterated, with each successive iteration producing a more

accurate high resolution image. The ill-posedness problem is resolved by the choice of weights in

the backprojection. By choosing certain weighting structures, certain image qualities (like

smoothness) can be given precedence. Unfortunately, this control structure is implicit in the

algorithm, and is difficult to understand and utilize effectively.

Many extensions to Irani and Peleg's basic approach have been presented. A simple yet powerful

example is a solution by Hardie et al that introduces an explicit regularization term [Hardie

1998]. A MMSE term, along with a regularization term, constitute a composite cost function that

is minimized by an iterative optimization. Since the regularization term is an explicit cost term, it

can easily be understood and modified. The regularization term used below is a linear

smoothness constraint. The composite cost function is thus linear, but is still minimized

iteratively because of the huge number of variables. This Regularized MMSE (RMMSE) method

was coded for the algorithm comparison, and a complete description is given below.

3.1.1 Technical Description

Hardie et al's RMMSE algorithm seeks the high resolution image z that minimizes a cost

function, C(z):

z = arg min C(z) . (5)
z

24

The cost function is defined as:

C(z) =- (y - Wz)T (y -Wz) + - (Az) T (Az) , (4)
2 2

where:

* y is a column vector containing the pixel values of all the low resolution data.

* z is a column vector containing the pixel values of the high resolution estimate. The size of z

is determined by the resolution increase.

* W is a matrix determined by the system transfer function.

* X is a scalar parameter that determines the relative weight of the regularization term and

typically has a value around 0.05-0.1.

* A is a matrix of weights that produce a regularization term. For instance, if za is a given pixel

in the high resolution image, and Zb, ze, zd, and ze are the 4 cardinal neighbors of za, then row a

of A would read:

column: b c a d e

[0...0-%0...0-%0...010...0-%0...0-%0...0]

This weighting is used by Hardie et al and the regularization term has lower cost for a smooth

image than a rapidly varying image.

With the cost function thus defined, it is minimized with a standard iterative optimization (see

[Bertsekas 1995] or a similar optimization text for review). This particular gradient descent

method operates in the following manner:

e the gradient of the cost function is calculated

* the line extending in the negative gradient direction is searched for lowest cost (line

minimization method)

e z is updated to this point of lowest cost

* the next iteration begins

The initial value of z used to start the iteration was chosen to be the composite created by

averaging all low resolution frames. The calculations are straightforward but algebraically

25

intensive. The results, as derived by Hardie et al, are given below [Hardie 1998]. The iterative

update procedure is tersely written as

"n+1 "n n n (5)z" =z2 -e~g",(5

where the gradient, g", is given by

g" =W T (Wz -y)+2A Az . (6)

We calculate E by minimizing C(z" - Eg) with respect to E, yielding:

n= (Wg") T (Wz - y)+ (Ag") T Az (7)
.(Wg ")T(Wg ")+ A(A gn") (Ag ")

The above derivation is fairly general: the PSF need not be space-invariant, nor must it remain

constant from frame to frame. For this study, we're assuming a space-invariant PSF, which

allows some significant simplifications and computational savings. These computational

efficiencies can be found in the Matlab code.

This RMMSE algorithm was implemented directly from the above equations. The Matlab

function that implements the algorithm is located in Appendix B, which contains the code for all

the algorithms in this chapter.

3.2 Maximum a posteriori methods

The maximum a posteriori (MAP) approach produces the most probable high resolution

reconstruction, given the sample values. This is accomplished by creating a stochastic model of

the entire imaging system, which includes stochastic characterizations of all noise sources as well

as the truth image. Once the model is created, the algorithm produces the high resolution (HR)

26

restoration that is most probable. Under some conditions (e.g. Gaussian noise), the MAP

approach is similar to the MMSE approach.

A MAP algorithm chooses the high resolution image - that is most probable given the data

points, the imaging model, and the various probability distribution functions (PDFs):

2= arg max Pr{z Iy , (8)
z

where y is a column vector of low resolution data points. Using Bayes's theorem, this can be

rewritten as

2=zargmaxPr{yIz}Pr{z} . (9)

Since the logarithm is an order preserving function, the maximum can also be found via

2=argmaxln(Pr{y|z}Pr{z})=argmax(lnPr{yIz}+lnPr{z}) . (10)
z z

The first term of the sum, In Pr{y I z}, is the likelihood term, which is maximized by Maximum

Likelihood (ML) algorithms. This term represents how well the data correspond to the HR

estimate. If the restoration is ill-posed (i.e. more unknowns than data points), there may be many

z's that are all maxima. If a ML approach produces a single solution, that solution is suspect:

the algorithm is making a choice among equally qualified candidates, but the mechanisms of the

choice are not explicit - they are hidden within the algorithm or the initial conditions. In this ill-

posed case, the prior term, In Priz}, makes MAP a better choice. The prior term explicitly

represents a priori notions of the data to be observed.

The choice of prior term affects the final output of the algorithm. Many priors use notions of

smoothness, since many objects, both natural and man-made, are more likely to be smooth than

highly oscillatory. While they may fail, especially under contrived special cases, they are often

beneficial and certainly the most ubiquitous. One of the first MAP multi-frame algorithms, by

Cheeseman et al [Cheeseman 1994], uses a smoothness prior in which each HR pixel's value is

27

modeled as a normal distribution. Hardie et al also propose a solution using a Gaussian prior

[Hardie 1997].

Although the Gaussian prior is popular, it was not used for this algorithm comparison. It is

conceptually similar to the smoothness constraint of the RMMSE algorithm, and it doesn't

demonstrate the flexibility available with this stochastic formulation. Instead, we've chosen a

prior for this comparison based on Huber-Markov random fields, as demonstrated by Schultz and

Stevenson [Schultz 1996]. This prior models piecewise smooth data, or smooth regions separated

by discontinuities. This penalizes edges less than a Gaussian prior and is intuitively reasonable.

The specific formulation and equations of the MAP algorithm with its Huber-Markov prior are

laid out below.

3.2.1 Technical Description

The algorithm described below (and used in the comparison) is a hybrid of several MAP

algorithms. A framework by Hardie was most amenable to coding, but Hardie's Gaussian prior

was discarded in favor of Schultz and Stevenson's Huber-Markov Random Field (HMRF) prior

[Hardie 1997, Schultz 1996]. The hybrid algorithm required an additional modifications, which

is noted at the relevant point below.

To reiterate, a MAP algorithm chooses the Z that maximizes the distribuition

2=argmaxPr{zly}=argmax(InPr{y|z}+InPr{z}) . (11)
z z

Hardie shows that for Gaussian noise and a Gaussian prior, the above equation is equivalent to

2=argmin 1(y -Wz)y-Wz)+ 1z Cz , (12)
zL2C,2 2 Z

where an2 is the variance of the additive noise, and C, is the covariance matrix of z [Hardie 1997].

We keep the first term of the sum (which is a likelihood term), but discard the second term

(which relates to the Gaussian prior) and replace it with a Huber-Markov prior.

28

The Huber-Markov prior used by Schultz and Stevenson penalizes edges less harshly than the

Gaussian prior does. The probability density of z is defined as

Pr{z}= exp {-2P p,((Biz),)+P,((B2z),)pa((B3 d) Pa((B4z))

(13)

where Z is a normalizing constant, # is a parameter, and (); is the ith element of a column vector.

The matrices BI, B2, B 3, and B 4 are defined so that B~z has low values in smooth areas and high

values at edges. Specifically, B1 is defined so that row d of Biz is equal to ze - 2 Zd + Zf, where ze

is the pixel to the left of Zd and zj is the pixel to its right. B 2 is defined so that row d of B2z is

equal to /2 Ze - Zd + 2 zf, where Ze is the pixel to the lower left of Zd and zf is to its upper right. B 3

is defined so that row d of B3z is equal to Ze - 2 zd + zj, where ze is the pixel above Zd and zf is the

pixel below it. Finally, B 4 is defined so that row d of B 4z is equal to Ze - Zd + 2 Zf, where Ze is

the pixel to the lower right of Zd and zf is to its upper left.

Finally, the function pa(x) is the Huber penalty function, which operates on the individual

elements of the B~z vectors:

pa (x)= < (14)
Pa W =2a~x| -a 2, > a

The function is pictured in Figure 7 along with a Gaussian penalty function.

enay Gauss

Huber-Markov

x

Increasing high-freq content

Figure 7 - Gauss and Huber-Markov penalties. Edge regions (high values of x) are

penalized less severely by the HM function.

29

Schultz and Stevenson simplified the HMRF prior into a cost function similar to that of Hardie et

al. Incorporating their results into Hardie's cost function (replacing Hardie's Gaussian prior)

gives

2 = arg min (y-WzY'(y-Wz)
z2

+ Pa ((B1z)i)+ Pa((B 2Z)i)+ pa((B3Z)i)+ pa((B4 z)i). (15)

This equation is similar to the RMMSE equation from the previous section, and is easily

minimized with a similar iterative algorithm [Hardie 1997]. The value for) varies with the

amount of noise, but is typically ~ 0.05-0.1. This algorithm minimizes the cost function by:

* Calculating the gradient

* Choosing a stepsize e to move in the negative gradient direction

* Updating the estimate - to the new point and iterating

The gradient derivation follows the RMMSE derivation closely, except for the differences due to

the smoothness term. The derivation is relegated to Appendix A since it would not provide

additional understanding if listed here. After the gradient calculation, Hardie et al's RMMSE

method calculated a stepsize E using the line minimization method. Because of the mathematical

properties of their function, a closed form analytic solution for c could be produced. In this MAP

algorithm, on the other hand, a more complex function is being minimized, and a closed form

expression for c is more difficult to derive. For this reason u must be calculated in some other

manner.

At this point the implementation diverges from both published sources. With the gradient as

given above, a step size e is chosen by the Armijo rule. The Armijo rule is an iterative step size

selection algorithm with good theoretical convergence properties, and Appendix A summarizes

the inclusion of the Armijo rule. The stepsize e produced by the Armijo rule guarantees that

C(zk+l) < C(zk), and the entire process is iterated until the cost function converges to a minimum.

The result is the MAP estimate of z. The Matlab code for this algorithm can be found in

Appendix B.

30

3.3 Projection Onto Convex Sets

Projection onto convex sets (POCS) algorithms differ substantially from other super resolution

algorithms (like MMSE & MAP) in both their formulation and their operation. Instead of

minimizing or maximizing certain quantities, POCS algorithms produce an image that has a

specific set of qualities. These qualities are chosen by the user and take the form of convex sets

(a set is convex if ax + (1 - a)y e C for Vx,ye C and Vae [0,1]). The POCS theorem guarantees

that the result of the algorithm is a data set that satisfies every constraint set. POCS algorithms

are easily extendible, and additions, omissions, or changes to the constraint sets require only

localized rederivations. Unfortunately, POCS is intrinsically highly iterative, is hard to optimize

for speed, and runs more slowly than many other algorithms.

The theory of convex projections forms the theoretical basis for POCS algorithms. Suppose it is

known that a solution vector z has certain properties, and each property can be stated as a convex

set. If we have m such constraints, then z is in the intersection of all the convex sets, or

z el 1 C . (16)

Next, we define a projection operator Pi for each set where the result of applying Pi to any z

results in Pz e C,. The theory of POCS states that for any choice of z", the iteration zk,* = Pm P.-]

... P 2 P1 zk will cause z to converge to a point in [C, , thus satisfying every constraint [Stark

1989]. This intersection may have more than one element, so the solution may not be unique and

is usually affected by the starting point, z".

POCS restoration requires that one's knowledge about an image is expressible using convex sets.

Fortunately, this is true of most qualities of interest. For instance, we know that a true image

distribution has nonnegative intensity. This can be expressed as the convex set

CA ={z : 0< z} , (17)

where z is a column vector and z > 0 means that every element of z is > 0.

31

The projection PA onto set CA can be simply defined as:

PA Z - -'es (18)
z, , elseI

This nonnegativity constraint is just one example of the many constraints available. Other

constraints can relate to the observed low resolution pixels, the energy of the reconstruction, a

priori knowledge of the scene, or other more creative data sets.

Since all POCS iterations operate in the same manner, differences are produced solely by varying

the choice, number, and content of the convex sets. The specific choices made for this thesis are

given below and fully specified. Note that the inclusion of additional constraints would produce

different results, so the power of POCS lies in the ability to choose the best constraint sets.

3.3.1 Technical Description

The specific POCS algorithm analyzed in this thesis is similar to Stark and Oskoui's formulation

[Stark 1989]. The choice of convex sets and their associated projections are listed here. Once all

sets are defined, the algorithm operates simply by iterating zk* = P. P.-'... P2 P1 zk until zk* = zk.

At this point, z satisfies every constraint, and is thus a viable solution.

The constraint sets used for this thesis are an amplitude constraint, an energy constraint, a finite

support constraint, and the data point constraints from Stark and Oskoui [Stark 1989]. Stark and

Oskoui also include a reference-image constraint, but we omit it since it relies heavily on specific

a priori information. The initial guess, z0, influences the solution when [I C, has more than one

member. Stark and Oskoui demonstrated better performance when zo had similar structure to the

true high resolution image (as opposed to a constant initial image). For this reason, zo was

synthesized as an interpolation of the low resolution data points.

32

The amplitude constraint was mentioned above, and is the most simple. We know that the

intensity of any pixel can never be negative, so we define

CA ={z: 0 z} (19)

PA z = {O <} (20)
zi , else

The energy constraint guarantees that the high resolution result does not have more energy than

the low resolution actual data. This constraint is defined as

CE Z:HZ12 E (21)

Z if|z|2E (22)
EZ (E /jjzI|2)z if |zI12 > E

where E is the maximum energy allowed for the reconstructed image and Ilx1 2 = x . We

typically define E as the energy in a low resolution frame.

The finite support constraint guarantees that the reconstructed image is bounded in space, and is

defined as

Cs =(z: z = 0 for i 0 A} (23)

z. if ieA

0 else J

where A is a finite region of space, typically the region for which we have data points.

33

Finally, the observed pixel values provide the most constraints, and each pixel is treated as a

separate constraint with a separate convex set and projection. We define the j'h data point's

constraint as

C1 = {z : y - (Wz) <IS , (25)

where yj is the j1h data point of the data vector y and (Wz)j is the corresponding value of the vector

that results from applying the imaging model (W) to the high resolution estimate z. This says

simply that if we use our high resolution estimate to produce a low resolution simulated data set,

then our simulated data must conform to the observed data within some margin 8. The associated

projection is defined as

(Wz); -y I

P z= { k. (26)
j z+WT ' , (Wz) - yj >,5

(W TW)i

where kj is the vector with length equal to length(y) and with each element having value zero

except for the jth row, which has value (yj - (Wz)1).

Note that Stark and Oskoui use 5= 0. The data presented in Chapter 4 was created by setting 5 to

3 times the standard deviation of the additive noise, or.6 = 0.01 in the case of no additive noise.

This approach was taken from [Sezan Jan1990].

34

3.4 Benchmark Methods

The three super resolution algorithms in this thesis are analyzed and compared to some

benchmark methods. The benchmark methods include a single frame bicubic interpolation, an

inverse filter with interpolation, a multiple-frame interpolation, and a multiple-frame interpolation

followed by inverse filtering. A brief summary of the benchmark methods is given here, and the

Matlab code for their implementation is found in Appendix B.

The bicubic interpolation is implemented with Matlab's built-in two-dimensional interpolation

operator (interp2). Its operation is straightforward, and details can be obtained from the Matlab

software package or an image processing text such as [Lim 1990].

To process single frames of data, the inverse filter with interpolation employs a two step process

which is shown in Figure 8. The initial step filters the data with a constrained inverse filter, and

the second step interpolates the result. The filter in step one is implemented via Fourier

transform. The SRF is transformed and inverted, with the gain of the inverse filter constrained to

reduce spurious noise amplification (Gain < 10). The amplitude constraint is implemented so that

phase information in the inverse filter is preserved. With the filter thus created, one frame of data

is Fourier transformed, multiplied by the constrained inverse filter, and inverse transformed. The

result is a new spatial-domain image, which is then interpolated up to the desired rate using the

bicubic interpolator discussed above.

SRF Inverse -- Constrain Gain
out(x,y) = 1/in(x,y) out(x,y) =

in(x,y) if lin(x,y)l < 10,

Image -+ F~nxy/i~~) le

X
Result Bicubic + - F-

Interpolation

Figure 8 - Scheme for single-frame inverse filtering and interpolating. 'F' represents the
two-dimensional Fourier Transform.

35

A multiple frame interpolator serves as another benchmark. Two multi-frame interpolators are

actually used: one for uniform offsets and another for non-uniform. For uniform offsets, a high

resolution grid is filled with sample values from all low resolution frames, and any empty grid

points are filled by a bicubic interpolation. For non-uniform offsets, each high resolution grid

point is determined by a weighted average of the three nearest low resolution pixels. For this

scheme, the weights are inversely proportional to distance.

The final benchmark is created by passing the output of the multi-frame interpolator through an

inverse filter. The inverse filter is implemented with an algorithm designed by Irani and Peleg

[Irani 1991]. This algorithm is not linear; it was chosen because it amplifies noise less than a

linear constrained inverse filter, and produces slightly better results. Again, the Matlab code for

all methods is found in Appendix B.

36

Chapter 4 - Testing & Results

This chapter describes the empirical algorithm comparison and its results. Several test images are

chosen and degraded in a variety of ways. The degradations are known by the algorithms, both

super resolution and benchmark, which operate to produce estimates of the high resolution truth.

The reconstructed high resolution images are compared to the high resolution truth with several

mathematical metrics. In the Results section, the relevant results are displayed, showing the

superior performance of SR algorithms over the benchmarks and the limited differences between

SR algorithms.

The test situations were carefully chosen to answer the types of questions posed in the

introduction about the performance and application of SR techniques. Specifically, the tests were

designed to answer these questions:

* Are super resolution algorithms superior to linear filters and interpolations?

* What are the performance differences among super resolution algorithms?

* Is a single high-SNR image better than several offset low-SNR images?

* How does restoration relate to the number of frames and the uniformity of the offsets?

* What is the optimal ratio of aperture size to pixel size?

This chapter continues with a description of the testbed, metrics, and results. The Testbed

Description discusses the image selection, the degradation process, and the parameters. The

Comparison Metrics section presents and justifies the metrics used for algorithm comparison.

The Results section displays the results for each test situation and makes some conclusions

regarding the performance of the tested algorithms and how the data answers the questions posed

above.

37

4.1 Testbed Description

This section describes the testbed and its parameters. The testing procedure is straightforward -

determine high resolution "truth" images and the parameters to be varied, then for each image and

parameter choice:

" Degrade the high resolution image to produce a low resolution data set

* Input the low resolution data to all algorithms

* Compare the high resolution outputs to the high resolution truth images.

The parameters, which are discussed below, are summarized here. Three high resolution truth

images are used. One parameter is the number of low resolution (LR) frames available; this test

uses 1, 2, 4, & 8 frames. Related to the number of frames are the offsets between frames; for

each number of frames there are two different offset schemes. Another parameter is the amount

of additive noise; we use four different Signal-to-Noise Ratios (SNRs), which are defined in

Section 4.1.3. Finally, the Spatial Response Function (SRF) could be varied, but we've chosen a

single SRF to limit the already large number of parameters. In general, the parameters were

chosen with reference to the GOES8 satellite. The GOES8 was chosen to represent space-based

imagers because Lincoln Laboratory has extensive GOES data.

The tests were carried out in Matlab on a 200 MHz processor. The run times of the algorithms

are not recorded because the implementations were not chosen for speed, were not exhaustively

optimized, and because Matlab's lethargy in certain iterative computations would skew the

results. Each parameter in the tests is discussed below, and all are followed by a description of

the degradation process and the complete testbed specification.

4.1.1 Image Selection

Three high resolution truth images are used for testing. The three images are shown in Figure 9:

a Landsat image of Rhode Island, another Landsat image of South Dakota, and Lena.

38

(a)

(C)

Figure 9 - Three high resolution images used in algorithm tests. Image (a) is a Landsat
image of Rhode Island, (b) is a Landsat image of South Dakota, and (c) is Lena.

The images were chosen for the variety of features they display. The Landsat images offer

complex scenes that are typical for space-based imagers. The Rhode Island image is taken with

clear skies; land, cities, and ocean provide edges and small features. The South Dakota image is

taken with cloud cover, which provides high contrast boundaries between clouds and earth.

Finally, the Lena image is regularly used in image processing literature and provides a simpler

scene that is easy for humans to interpret.

39

4.1.2 Frames and Offsets

The performance of super resolution algorithms should improve with the number of frames

available and should depend upon the offsets between frames. For this reason, we examine one,

two, four, and eight frame reconstruction and we vary the offsets in the multi-frame cases. The

particular offsets used in the tests are shown in Figure 10 using the notation developed in Chapter

2, Figure 4.

Figure 10 - Choice of offsets. For the various test situations, the offsets between low
resolution frames are shown above. The triangles represent the centers of low
resolution pixels, and the dotted lines show the size of a low resolution pixel for
perspective (see Chapter 2, Figure 4 for more details).

For the single frame case, there is obviously no variety possible. For the two frame case a

diagonal offset was used to provide a uniform sampling grid and a purely horizontal offset was

used to produce a non-uniform data set, which is similar to the data set from a GOES8 satellite.

For the four frame case there is both a uniform grid and a grid with the three additional frames

positioned randomly. Finally, for the eight frame case a random choice of offsets was made.

40

The numerical values of the offsets are given in Table 1. For each situation, the offsets of all

frames are given relative to the first frame (defined as offset (vertical = 0, horizontal = 0)). The

offsets are measured in units of low resolution pixels.

2 Frame Uniform 2 Frame NonUn 4 Frame Uniform 4 Frame NonUn 8 Frame NonUn
(0, 0) (0, 0) (0, 0) (0, 0) (0,0)
(0.5, 0.5) (0, 0.5) (0, 0.5) (0.25, 0.75) (0, 0.5)

(0.5, 0) (0.5, 0.25) (0.25, 0.25)
(0.5, 0.5) (0.75, 0.5) (0.25, 0.75)

(0.5, 0.25)
(0.5, 0.5)
(0.75, 0)
(0.75, 0.75)

Table 1 - Offsets for multi-frame test data.

4.1.3 Signal-to-Noise Ratios

Another important restoration parameter is the signal to noise ratio (SNR). We would like to

determine if super resolution algorithms perform better or worse than traditional methods as the

noise increases. For our tests we assume additive Gaussian noise, a reasonable assumption based

on typical noise sources and the aggregate result of many independent sources.

There are several ways to define SNR, and the following method used by Lincoln Laboratory is

adopted by this thesis: the SNR is defined as the peak signal value divided by the standard

deviation of the noise. For the GOES8 imager, a modern weather satellite, the SNR is

approximately 300.

For this testbed, four noise levels are used: SNR = infinity, 300, 150, & 75. The infinity case,

corresponding to no noise, provides a baseline for systems with extremely low noise. The SNR =

300 corresponds to a GOES-like value. The SNRs = 150, 75 are chosen to study the effects of

additional noise on the reconstruction.

41

4.1.4 Spatial Response Functions

A final parameter to be varied could be the Spatial Response Function (SRF). Changes in the

SRF, which blurs the image, can strongly affect the resultant restorations. Also, the relationship

between the SRF and the spatial sampling rate is important. Varying the SRF may produce

interesting results, but in order to limit the extent of an already large test matrix, we have used

only a single SRF. The SRF used was calculated during calibration of the GOES8 satellite, and is

shown in Figure 11. Note that this SRF is asymmetric.

X10

2~.

Is

05~.

0~

4

4

Low Resolution Pixels 1 Low Resolution Ppxels
0 0

Figure 11 - Spatial Response Function used in tests. This SRF was characterized for a
GOES weather satellite imager.

42

4.1.5 Degradation Process

The parameter choices are discussed above; each choice of parameters produces a set of low

resolution images to be processed. We now discuss the specifics of how the parameters are

combined to form the simulated data sets.

For each choice of parameters, the following process produces the final low resolution data. The

high resolution "truth" image is convolved with the SRF to produce a blurred high resolution

image. This blurred image is then downsampled to the desired low resolution of a single frame.

The downsampling process is repeated for the number of frames chosen, with the image shifted

with each downsample to correspond to the chosen offsets. At this point, a number of low

resolution data frames exist which correspond to blurred, downsampled, offset images. Finally

Gaussian noise is added in a quantity determined by the chosen SNR and the peak value of the

blurred and downsampled images. The entire process is shown graphically in Figure 12.

Figure 12-- Schematic of degradation process to produce low resolution data sets.

Each low resolution data set produced in this manner is presented to the restoration algorithms.

The complete testbed specifications are given below.

43

00.

00.

4.1.6 Complete Testbed Specification

The testbed is completely specified in this section: all parameters are listed, all algorithms, and

all the information presented to each algorithm. This section includes a discussion of why certain

facts (e.g. offsets) are considered known, and need not be estimated by the algorithms.

All the imaging parameters that vary are summarized in Table 2. A

produced, as directed above, for each different set of parameters.

low resolution data set is

1 Frame 2 Frame
Uniform

2 Frame

NonUnif

4 Frame
Uniform

4 Frame 8 Frame

Image 1 infinity
300
150
75

Image 2 infinity
300
150
75

Image 3 infinity
300
150

75

Table 2 - Summary of all testing parameters. For each element in the table, all algorithms
operate on the test data and all metrics are calculated on each result.

For each data set, all three super resolution algorithms operate on the data. The single frame

bicubic interpolation and inverse filter algorithms also operate on every data set (for multi-frame

sets, they operate on the first image of the set). For multi-frame sets, the appropriate multi-frame

interpolation is also run. For every restoration, the algorithms are operated to increase resolution

by a factor of two in each direction (a single factor was chosen to limit the size of an already huge

test matrix). This choice is arbitrary, but is not as restrictive as it appears: since the number of

frames varies, it is possible to extrapolate to more general results. For instance, we could

estimate that performance with 8 data frames and a resolution increase of 4X in each direction

should be similar to the performance observed with 2 data frames and an increase of 2X in each

direction.

SNR

44

8 Frame

NonUnif

4 Frame

NonUnif

Finally, each algorithm is given accurate estimates of the Spatial Response Function (SRF), the

multi-frame offsets, and the noise level. Many procedures exist for determining these quantities

[Shekarforoush 1998, Kaltenbacher 1996], which are generally over-specified by the data. In

addition, specific information is often known a priori, such as calibration results and SRF

estimates. For these reasons, it is reasonable to assume that this data can be calculated accurately

and passed to the processing algorithms. In our tests, no error was introduced into the data, but

doing so would be more realistic and is discussed in the Future Work section of the Conclusion.

For each low resolution data set, then, each algorithm produces a single high resolution

reconstruction. The comparison of these outputs is discussed in the next section, which in turn is

followed by the results.

4.2 Comparison Metrics

The comparison of images is difficult: no single metric has been devised as an authoritative

measure of image accuracy. This is particularly true within the super resolution literature, where

many presentations lack mathematical comparisons altogether. Without any performance

metrics, super resolution algorithms cannot be compared. For this reason, we have compiled

several metrics which, when used together, provide acceptable results. These metrics are not a

panacea to the comparison problem, but for our tests have provided a reasonable mathematical

basis.

The two mathematical metrics used are a normalized mean squared error (MSE) and a normalized

Laplacian mean squared error (LMSE). The metrics require both the existence of a high

resolution truth and a certain relationship between sampling rates. The fact that the high

resolution truth is known is assured by the testbed setup (discussed above). The required

relationship between sampling rates is that both the truth and the reconstruction must have

equivalent sampling rates. This could be accomplished by either decimating the truth image to

the reconstruction rate, or interpolating the reconstruction up to the truth rate. Since the results

are equivalent for perfect decimation and bandlimited interpolation, the decimation is chosen for

its lower computational complexity.

45

The mean squared error between two signals is a common metric, which is mathematically

defined as:

2 27MSE = Z [(x, y) - f^(x, y)]2 (27)
x y

We normalize the MSE by dividing the Equation 36 by the energy of the truth image, which is

simply the sum of the squared values of every pixel in the image.

Also, the LMSE is defined as:

LMSE =Z [g(x,y) -g(x,y)] 2 , (28)
x y

where g(xy) is defined as

g(x,y)=z(x+1,y)+z(x-l,y)+z(x,y+l)+z(x,y-1)- 4 z(x,y) . (29)

The Laplacian MSE is taken from Pratt [Pratt 1978], and it weighs edge regions more heavily

than the pure MSE does. It is a good measure of the effective low-pass filtering, since it drops off

more quickly than the MSE measure as low-pass filtering increases. Just as with the other two

metrics, we normalize the LMSE, in this case by dividing by the energy of g(x,y).

A few additional steps help create a more accurate comparison. First, the border regions of

images can be corrupted by processing. To account for this, the metrics are operated on both the

full images and the images with a border region removed. Second, the shifts between low

resolution images could cause uncertainty in the alignment of the high resolution reconstruction

(as compared to the original). This problem is eliminated by aligning the images (using a cross

correlation) before running the metrics. See the Matlab code in Appendix B for details of the

comparison process.

46

4.3 Results

The tests outlined above produced numerous results. Both metrics were computed for the output

of every algorithm in every test situation (see Table 2). The complete data set is contained in

Appendix C, and below are plots and sample images that display the results in a graphical format.

In the tables below, POCS data for the nonuniform 4- and 8-frame cases are absent. This is not

due to any theoretical limits of POCS; it is only the result of an implementation problem and the

author's time constraints. Also, the plotted errors are from the metrics operating on the images

with the borders removed. The results are similar for the border regions included, as can be seen

in the data in Appendix C.

4.3.1 Aggregate Results: SR algorithms and benchmarks in all situations

The overall behavior of the three chosen super resolution (SR) algorithms is impressive,

especially as the number of data frames increases. Figure 13 displays two graphs, one for each

metric. The plotted error values are the sum of the errors from the three test images. They are

shown for all combinations of SNR, number of frames, and offsets. The POCS data for the 4-

and 8-frame nonuniform situations was not computed, as discussed in the previous section.

These results clearly show the following conclusions:

0 The differences between SR algorithms and benchmarks are miniscule in the single frame

case, but expand dramatically as more data frames are available.

* The three SR algorithms all exhibit similar performance.

* The POCS algorithm performs better in the case of no noise and worse with noise. This

matches expectations, since the POCS implementation used here has no smoothness

constraint; with no noise, it is not over-smoothing the data, but with noise, it is more

susceptible to errors.

47

Smu r.i..a - - - - -- - - -

MSE Metric Benchmark
Algorithms

1.20E-01

8.OOE-02 -- -- RMMSE
- MAP

6OOE-02 POCS

Mintero
4.00E-024.00Euper* Minterp/Inv

2.OOE-02 Resolution
Algorithms

O.OOE+00 -- - - ----

Frames, Offsets, and SNR

LMSE Metric

3.50E+00

3.OOE+00

2.OOE+OO

1.00E+00

5.OOE-O1
5.OOE-01

0 .0 0 E + 0 0. .

Frames, Offsets, and SNR

-4-R M M S E
-- MAP

Minterp
--- Miriterp/Inv

Figure 13 - Aggregate performance. The two error metrics are plotted verses the test
situation. From left to right, the SNRs are 75, 150, 300, and infinity for each
frame/offset combination.

More specific comparisons will come later along with more concise, revised plots. Nevertheless,

the aggregate behavior displayed by this full data set is impressive. Super resolution algorithms

perform substantially better than multi-frame interpolations and inverse filters regadless of the

uniformity of the offsets. To confirm these metrics subjectively, a few sample images are shown

48

uJ

below in Figure 14. Besides the general impression of sharpness, note the smaller features which

can be found in the multi-frame super resolution reconstructions but not in the benchmarks.

Figure 14 - Selected images for 4 Frame, uniform offsets, SNR 300, South Dakota image.
Note the features that can be seen in the super resolution images but not the
degraded or interpolated images.

4.3.2 Noise Effects

Noise affects all reconstructions and presents interesting questions. The most obvious question is

for all other factors constant, how does more noise degrade the reconstruction? The answer,

which can be seen in the Figure 13, is that the effect is small. This is because most algorithms

(benchmark and super resolution) perform smoothing, which masks noise (as well as the signal).

49

I

The algorithm without a smoothing mechanism (POCS) performed best in the no noise case but

was harmed most by noise increases.

An additional question about noise relates to the design of imaging systems. Suppose the frame

rate of an imager could be increased at the expense of a lower SNR for each frame. If offsets

could be introduced between frames, then capturing several low-SNR images may be superior to

capturing a single high-SNR frame. The test data is arranged in Figure 15 to show how super

resolution algorithms perform as the SNR is lowered and more frames are added.

Frame/Noise Tradeoff - MSE Metric

1 .20E-01l

1.OOE-01 - --.. RMMSE
8.OOE-02 0 - ~ ~ -1MAP

w
CD 6.OOE-02 POCS

4.OOE-02 Minterp

2.OOE-02 -- Minterp/Inv

0.00E+00 -

1F, 2N, 2U, 4N, 4U, 2N, 2U, 4N, 4U, 8N,
300 150 150 75 75 300 300 150 150 75

Frames, Offsets, & SNR

Frame/Noise Tradeoff - LMSE Metric

1F, 2N, 2U, 4N, 4U, 2N, 2U,
300 150 150 75 75 300 300

Frames, Offsets, & SNR

-+- RMMSE
-- MAP

POCS
Minterp

-E- Minterp/Inv

4N, 4U, 8N,
150 150 75

Figure 15 - Frame/Noise Tradeoff. As the number of frames doubles, the SNR is halved for
this test. Note that for the super resolution algorithms, a situation with more
low-SNR frames is preferable to one with fewer high-SNR frames.

50

w
CO

3.OOE+00

2.50E+00

2.OOE+00

1.50E+00

1.00E+00

5.00E-01

0.OOE+00

The plots above show the definite trend that more frames are preferable to a high SNR. An

interesting extension could experiment with a wider range of SNRs and frames to seek

fundamental limits. Again, to show some true images, Figure 16 displays some samples.

High Resolution Trutn E, 1 Frame, SNR 300 RMMSE, 4 Frames, SNR 75

High Resolution Truth MAP, 4 Frames, SNR 75

High Resolution Truth

Figure 16 - Sample images for Frame/Noise tradeoff. A truth image is displayed along with
the result of the three algorithms (RMMSE, MAP, & POCS) operating on a
single frame with high SNR and multiple frames at a lower SNR.

51

4.3.3 Frames and Offsets

Figure 13 showed the general trend that as the number of frames increases, the accuracy increases

for all multi-frame algorithms, and particularly super resolution algorithms. These relationships

are examined more closely in Figure 17 below.

Frames & Offsets - MSE Metric

1.20E-01

1.OOE-01 - -+- RMMSE
8.00E-02 -- U- MAP

U) 6.OOE-02 POCS

4.OOE-02 Minterp

2.OOE-02 -le- Minterp/Inv

O.OOE+00
1F, 2N, 2U, 4N, 4U, 8N, 1F, 2N, 2U, 4N, 4U, 8N,
.Inf inf inf inf inf inf 75 75 75 75 75 75

Frames, Offsets, & SNR

Frames & Offsets - LMSE Metric

3.50E+00

3.OOE+00 -4- RMMSE
2.50E+OO ...- R MAP

w 2.OOE+OO P008
1.50E+00 -Minterp
1.OOE+00 -N- Minterp/Inv
5.OOE-01

O.OOE+00
1F, 2N, 2U, 4N, 4U, 8N, 1F, 2N, 2U, 4N, 4U, 8N,
inf inf inf inf inf inf 75 75 75 75 75 75

Frames, Offsets, & SNR

Figure 17 - Frames & Offsets Comparison. The metrics are plotted for each algorithm, and

the horizontal axis is arranged with adjacent points having equivalent SNRs.

This allows easier comparisons between different frame/offset pairs. The results

for SNR = 300, 150 were omitted to make the plots more readable, as they are

similar to the shown plots.

52

The graphs in Figure 17 clearly show the advantages of multiple frames of data. Super resolution

algorithms are particularly adept at extracting information from additional frames, shown by the

monotonically decreasing error. Note that the uniform cases are always more accurate than the

random offsets, as expected. Nevertheless, capturing more frames is always preferable, even if

the offsets are random. Note also that the relationship between the number of frames and the

error is nonlinear and dependent on the SNR. In general, though, the error was approximately

halved by going from one frame of data to eight.

Regarding the benchmarks, the multiple frame interpolation selectively followed by an inverse

filter, there is only slight inconsistent improvement as the number of frames increases. All of the

multiple frame interpolations exceed the accuracy of the single frame, but after that point, the

performance is erratic. This is acceptable, because the offsets and the interpolation process can

interact negatively; the interpolation, since it is not perfect and bandlimited, can introduce

spurious data. This spurious data is filtered along with the true data, harming results. In super

resolution algorithms, on the other hand, the filtering process and the offsets are treated

concurrently, which eliminates the distortion introduced by a pure interpolation followed by a

filter.

Sample images are displayed in Figure 18 to confirm the numeric findings. Notice the features

that are present in the truth, gone in the degraded and single frame reconstructions, but present

again in the higher frame-number reconstructions.

4.4.4 Image Differences

All the results above have summed the errors of the three test images. This is acceptable because

the results are similar across images, so the summation allows a more concise view of the data

without occluding information. Nevertheless, there are some small differences among algorithms

for the various images that are useful to observe. Figure 19 displays error plots for the three

images separately.

53

High Resolution Truth Degraded

4 Frames 8 Frames

Figure 18 - Differences from number of frames. All of the above images were created by
the MAP algorithm. The degraded images all had SNR = 150. The number of
frames is shown below each image, and the offsets were random in the multi-
frame cases. (Note the ringing introduced at the border of the image as the

number of frames increases. This ringing occurs because the low resolution
frames are offset from each other, and the information at the image boundaries
is irregular).

54

Different Images - MSE Metric

6.OOE-02 --------

5.OOE-02 -- RMMSE

4.OOE-02 -4- MAP

CO 3.OOE-02 POCS
- Minterp

2.OOE-02 -- X- Minterp/Inv
1.OOE-02

O.OOE+OO 0
1F 2N 2U 4N 4U 8N 1F 2N 2U 4N 4U 8N 1F 2N 2U 4N 4U 8N

Frames & Offsets

Different Images - LMSE Metric

1.20E+00

1.0E+00 -- RMMSE
8.OOE-01 - - -1- MAP

Lu
U 6.OOE-01 --- POCS

4.E-Minterp
-MI- Minterp/Inv

2.OOE-01

0. 00E +00
1F 2N 2U 4N 4U 8N 1F 2N 2U 4N 4U 8N 1F 2N 2U 4N 4U 8N

Frames & Offsets

Figure 19 - Error for the three different test images. The data is shown for a single
SNR = 300. Each plot has three separate regions: the first is Image 1, Rhode
Island, the second is Image 2, South Dakota, and the third is Image 3, Lena.

The conclusions drawn from Figure 19 help develop and confirm intuitive notions of

performance. For instance, the MSE metric has the highest error for Rhode Island and the lowest

for Lena. This is expected, since the Lena image is the most simple, with large uniform regions,

while Rhode Island is most complex, with substantial higher-frequency content throughout the

image. We expect the low-frequency smooth regions to be reconstructed accurately, so Lena, and

to a lesser extend South Dakota, will have their MSE lowered by the miniscule error in the

smooth regions. In contrast, the Laplacian MSE metric has similar errors for all three image.

This is because the LMSE weighs the high-frequency content of images; without their smooth

regions to lower the average, Lena and North Dakota have similar error levels to Rhode Island.

Finally, disregarding the absolute level of error, note that the three images are affected similarly

by the algorithms. Some sample images are shown in Figure 20.

55

Multi-frame Interp. & Inv.

High Resolution Truth

High Resolution Truth

Multi-frame Interp. & Inv.

Multi-frame Interp. & Inv.

RMMSE algorithm

RMMSE algorithm

Figure 20 - Super resolution algorithms affect the three test images similarly. For each

image, the high resolution truth is shown along with the multiple frame
interpolation and inverse filter benchmark and the RMMSE reconstruction.
The data consisted of two frames with a uniform offset and a SNR = 300.
The improvement over the benchmark is similar for all three images.

56

High Resolution Truth RMMSE algorithm

The results and commentary above have answered many questions about the performance of

super resolution algorithms. This analysis has shown that these super resolution methods

outperform benchmark interpolations and inverse filters when multiple frames of data are

available at non-integer offsets. In all tested ranges of SNR, super resolution algorithms excelled,

regardless of whether the offsets between frames were uniform or random (except for the POCS

exceptions as noted). No major peculiarities exist in the data. In general, all three super

resolution algorithms produced similar results; the exception was POCS, which lacking a

smoothing operator, did well with no noise but suffered as noise was added.

The conclusion follows in Chapter 5 with a recapitulation of the questions, answers, and the

supporting data. Chapter 5 also discusses extensions or improvements on this work that could be

pursued.

57

Chapter 5 - Conclusion

This thesis has provided the first known comparison encompassing several super resolution and

traditional algorithms. Three multi-frame algorithms (RMMSE, MAP, and POCS) were selected

as a sampling of the super resolution field. These algorithms were compared to each other and to

a set of benchmarks, which included inverse filtering and single and multiple frame

interpolations. All algorithms were coded in Matlab and tested on a series of simulated data with

varying frames, offsets, signal-to-noise ratios, and images.

In summary, the super resolution algorithms consistently outperformed the benchmark methods.

When only a single frame of data was available the differences were small, but as more frames

were added, the differences became dramatic. The uniformity of the offsets between frames had

only a minor impact on results. Lower Signal-to-Noise Ratios (SNRs) led to less accurate

reconstructions, but SNR was the parameter that affected the results least significantly. The

overwhelming factor, as expected, was the number of frames available.

A more specific discussion of the results follows. The questions presented in the introduction are

listed below and answered subsequently:

* Are super resolution algorithms superior to traditional linear techniques?

* Are there substantial differences among the various super resolution algorithms?

" How does noise affect performance? Are results more accurate if a few high-SNR frames are

available or many low-SNR frames?

* How does the number of frames and offsets affect performance? Are random offsets as

helpful as a uniform grid?

" What is the optimal ratio of aperture size to pixel dimensions?

This thesis has shown that super resolution algorithms are indeed superior to traditional

restoration techniques. The data in Figure 13 clearly shows that super resolution (SR) algorithms

reconstruct images with less error than the benchmarks mentioned above. The differences are

small, as expected, when only a single frame of data is available. As more offset frames are

58

available, though, the SR algorithms excel. The mathematical metrics show this effect, and

subjective image viewing confirms the variation in level of detail.

Though super resolution algorithms are superior to traditional methods, the performance

differences among super resolution algorithms are small. Note how closely the error curves

follow each other in Figures 13, 15, 17, and 19. This behavior is reasonable because all SR

algorithms use the same information and follow the same general rule: to construct a viable high

resolution image that would produce the observed samples. A contrast exists between POCS and

the other two algorithms, and is due to the lack of a smoothness operator in this particular POCS

implementation. Without a smoothing regularization, POCS should perform better in low noise

and worse in high noise; this performance was observed (note that a POCS smoothness constraint

could be defined, but it was not in order to introduce variety). It appears that the basic algorithm

is not vital to super resolution, but the regularization and weighting terms are closely tied to

performance in noise. In general, POCS was the algorithm most suitable to changes and

expansions, and may be the best choice for continuing experiments. POCS requires a lengthy

iterative implementation, however, and was the slowest of the tested algorithms.

It was found that noise affects reconstructions, but not nearly as much as other factors. Figure 15

illustrates that doubling the number of frames and halving the SNR produces consistently better

results among SR algorithms. This suggests a future shift in imager design: imagers should take

many offset frames, even at the expense of SNR, and let the processing software produce accurate

composite images. Exceptions to this rule appear when the SR algorithm is susceptible to noise

(notice the POCS curves, which flatten out more quickly). Thus a balance can be reached

between the number of frames and the SNR, that balance being decided by the choice of

algorithm.

Regarding the frames and offsets, the results provided some new information but mostly affirmed

expectations. We expected the accuracy to increase as the number of frames increased, and this

effect was observed. We also expected the accuracy to be higher for uniform than non-uniform

offsets, and this phenomenon was likewise observed. We expected the incremental improvement

to fall as more frames were used; Figure 17 shows that the improvement between 4 and 8 frames

is small and the error curve begins to level off (additional experiments with higher numbers of

frames could confirm this). Finally, it was found that more frames are preferable, even if the

offsets are more random for the larger number of frames.

59

The question of optimal ratio of aperture size to pixel dimensions was not answered. The

experiments were not completed due to time constraints. The question is compelling, though, and

could be answered with future experiments as discussed below.

The overall results are consistent with the claims made in the super resolution literature. Super

resolution algorithms do outperform interpolations and offer more accurate reconstructions in

most cases.

5.1 Future Work

This thesis has produced interesting results, but many additional questions remain unanswered.

One line of inquiry could extend this basic framework to more algorithms. Another possibility

would follow the effect of more parameters, such as noise in the SRF characterization or offsets.

An ambitious extension would be to devise mathematical comparison metrics that are widely

accepted as accurate measures of image quality. Finally, ambitious research could attempt to

unify the disparate super resolution work into a theoretically cohesive field. These four possible

extensions are discussed below.

A straightforward extension of this thesis could be a similar testbed with additional algorithms.

We have examined three super resolution algorithms (RMMSE, MAP, and POCS), and chosen a

single implementation of each algorithm (see Chapter 3). The results have been compared with

several simple metrics and some qualitative visual analysis. A useful comparison could

encompass more algorithms and more implementations. There are countless other super

resolution algorithms in existence, including different implementations of RMMSE, MAP, or

POCS [Cheeseman 1994, Cohen 1998, Irani 1990, Sezan Jan1990]. Even for the

implementations in this thesis, different smoothness parameters could be introduced. The POCS

algorithm used in this thesis could be extended to work correctly with randomly offset data, also.

Another straightforward extension could vary different parameters. We have varied the offsets,

SNRs, number of frames, and images; we have ignored different spatial response functions

(SRFs), different factors of resolution increase, and noisy estimates of the SRF or offsets. In

reality, each digital imager has a different SRF. The SRFs can vary widely, and are a main

60

contributor to degradation. An interesting comparison would gauge algorithm performance as the

SRF became larger or smaller in spatial extent. The factor of resolution increase could also be

varied. Finally, we have used correct SRFs and offsets, but in reality they can never be known

exactly. The results of erroneous estimates could be explored to give more realistic information.

A more difficult task would be the development of new mathematical metrics for comparisons.

After decades of image processing, few metrics exist for the comparison of images. The results

of the metrics that do exist are considered suggestive rather than authoritative. A great benefit to

image processing would be a metric or series of metrics that are universally accepted. To create

such a metric is difficult, though, especially considering the disparate demand of image users:

edge regions may be interesting to some while smooth areas are relevant to others. Nevertheless,

advanced metrics could be devised, perhaps as the result of rigorous modeling of human vision

and perception, which could surpass today's simple metrics.

Finally, super resolution research could be continued along theoretical lines towards a unification

of the field. There is little cohesiveness or organization in the super resolution field. Many

independent algorithms have been developed, but have not been compared either theoretically or

empirically. This thesis has provided an empirical comparison of certain algorithms, and the

results beg for more research and a better understanding of the field. Unifying research could:

* derive theoretical limits of performance

* compare algorithms theoretically

* unify the variety of techniques, including algorithms that utilize stereoscopic perspective

changes, multiple independent motion between frames, and multispectral data.

The conclusion of this thesis is that super resolution should continue to be actively researched and

analyzed. This thesis has illustrated by empirical comparison that super resolution algorithms are

useful and powerful. It has also shown that the availability of super resolution processing may

change future imaging system designs. As computational power continues to increase, super

resolution algorithms will become even more useful and powerful. The results demonstrated in

these initial experiments are encouraging.

61

Appendix A - Derivations

This Appendix contains certain derivations as referenced in the text:
1) Derivation of the spatial sampling rate
2) Derivation of the MAP optimization, including the Armijo Rule

Derivation of the Spatial Sampling Rate

In Figure 3 it is stated that fp, the first null of the pixel transfer function, is also the highest

possible sampling rate. This is true of most imagers with 2-dimensional focal plane arrays.

Exceptions can be found with scanning arrays, and these exceptions are discussed below.

To show that f, is also the highest possible sampling rate, a one-dimensional argument is shown

here. The extrapolation to two dimensions is straightforward.

Sampling is often idealized as multiplication by a train of impulse functions (see [Oppenheim

1997] for a complete treatment of sampling). In the Fourier Transform domain, the multiplication

of the signal (intensity distribution) and the impulse train becomes a convolution of their

respective Fourier transforms. The Fourier transform of an impulse train is an impulse train of

different amplitude and period. If the samples in the spatial domain differ by distance D,

D- x
D

then the distance between the impulses in the Fourier transform is 27/D, which is the spatial

sampling rate:

21r/D

(All amplitudes are ignored in this derivation for simplicity since they do not affect the frequency

relationships that are being demonstrated).
In a solid-state imager, the impulse train by itself is a poor model of the sampling process;

intensity cannot be easily measured at infinitesimal points. Instead, a photodetecting element has

finite size, and its output is related to the average (or total) intensity over the finite pixel area. A

model that produces this averaging effect begins with a convolution of the signal with a pixel

aperture.

62

*

x A x

If one multiplies the result of the convolution by an impulse train, each sample gives the average
value of the intensity over the pixel area that is centered on the sampling point.

To see that f, is equal to the spatial sampling rate, examine the Fourier transform of the pixel
aperture (the boxcar function above). Its Fourier transform is a sinc function with its first null at

the frequency fp = n/A:

Magnitude

f, = I/A

The pixels of a 2-dimensional array cannot overlap, so it must be true that 2A <= D (the pixel
spacing must at least as large as the pixel width). It is possible for 2A < D, and this corresponds
to fill factors of less than 100%. Even with 2A = D (a 100% fill factor), however, we see that the

spatial sampling rate, 2n/D = 27/2A = 7r/A = fp. Thus in the best case, the spatial sampling rate

is fp. If the fill factor is less than 100%, then the spatial sampling rate is less than f,.

The statements above apply to 2-dimensional arrays of photodetectors. In Chapter 2 scanning

arrays are also mentioned, in which the photodetectors are a 1-dimensional array and the second
dimension is created by scanning the array across an image in time:

image

In this case, the pixels are sampled at regular time intervals to create a 2-dimensional image.
Notice that the sampling rate can be set to frequencies higher than fp; this corresponds to

sampling the pixels before they've shifted an entire pixel width from the previous sample. Thus

scanning arrays do not face the same physical limitation on sampling rate in the scanning

direction.

63

Derivation of the MAP optimization including the Armijo Rule

As stated in Chapter 3, the MAP derivation closely follows the RMMSE derivation. The MAP
derivation is outlined here.

The MAP cost function given in Equation 15 is:

= argmin-(y-Wz)'(y-Wz)
z2

+ pa ((BI z) i) + pa((B2Z)i)+pa ((B3z),)+ pa((B4z),)
2 i

The iterative optimization is:

n+1 _ n n n

The gradient, g", is given by:

g" = WT (Wz - y) + A(B f((Blz),a)+ B2f ((B2z),a)+ B3f ((B3 z),a)+ BLf((B4z),a)) ,

wheref(v,a) returns the vector v, except every element of v that is greater than a is replaced with
a, and every element less than - a is replaced by - a.

The stepsize E is then calculated by the Armijo Rule. The Armijo Rule guarantees convergence;
its development is outlined in [Bertsekas 1995]. The rule operates according to the following
steps:

* Choose an initial guess c = s and choose a reduction factor [3
* If C(z) - C(zk - e egk) > a threshold value, then use this E
* Otherwise set e = s13 and repeat the above step.

The threshold value is defined as - cEV C(zk)'dk, where

dk= -V C(zk)
o a parameter, we use 0.01
#= a paramter, we use 0.2

The Armijo stepsize is used to generate zk*l, and the entire operation iterates until C(z) converges.

64

Appendix B - Matlab Code

This Appendix contains the Matlab code for all the algorithms and comparisons used in this

thesis. The following functions are found below:

Comparison Functions:
ALIGN

COMPARE

- Used in the comparison process. Takes a truth image and a
reconstruction and aligns them properly. The regions that overlap are
passed to the COMPARE function (see below).
- Takes two images from ALIGN and calculates the mathematical
metrics.

Super Resolution Algorithms:
MAP - The maximum a posteriori implementation for uniform offsets.
MAPT - The maximum a posteriori implementation for nonuniform offsets.

POCS - The projection onto convex sets implementation for uniform offsets.

RMMSE - The regularized minimum mean squared error implementation for
uniform offsets.

RMMSET - The RMMSE implementation for nonuniform offsets.

HARDIE - Averages the offset data to produce a smooth initial estimate for the
above algorithms.

Benchmark Components:
MINTERP - Multiple frame interpolation algorithm.
SPECINTERP - The multiple frame interpolation for the specific case of 2 frames with

horizontal offsets
SPEC2INTERP - The multiple frame interpolation for the special case of 2 frames with

diagonal offsets
IP - The inverse filtering algorithm that follows multi-frame interpolations

(algorithm devleoped by Irani and Peleg [Irani 1991]).
CIF - The inverse filtering algorithm used in the single frame case

Before the code is listed, some of the common data formats are summarized. Most of the

algorithms require knowledge of the offsets between the low resolution frames. These offsets are

stored in an array named 'R' or 'RLR' (R is for Registration, and the optional LR is to clarify that

the data is in units of Low Resolution Frames). The 'R' array has two columns and as many rows

as there are images. Row one always corresponds to image one and has values [0 0]. Each

subsequent row gives the offset of the current frame from the first image, and the data is stored as

a fraction of the low-resolution pixel size for the row displacement and column displacement.

Thus, if frame 2 is offset one half of a low-resolution pixel in the row direction and three quarters

of an LR pixel in the column direction, row 2 of the 'R' array would be [0.5 0.75].

Another common data set used by the functions below is the Spatial Response Function. This

data is stored in a two-dimensional array and is usually called 'psf,' despite the inconsistency with

the terminology mentioned in Chapter 2. Unless stated otherwise, the 'psf variable contains

samples of the SRF at the sampling rate of the desired reconstruction.

65

Finally, the images themselves are stored in a 3-dimensional array (M, N, K), where M is the row,
N is the column, and K is the frame.

ALIGN.M

Used in computing metrics. Align ensures that the two images are aligned correctly, and then calls compare.m, which produces the
actual numeric metrics.

function out = align(orig, new);

% Shifts 2 images into alignment and compares using COMPARE.M

% OUT = ALIGN(ORIG, NEW)

% ORIG, NEW are images at the same sampling rates, and can be different sizes or misaligned.
% OUT is comparison data from COMPARE.M

% Create a cross-correlation
d = xcorr2(new,orig);

%% Find point with highest correlation.
%% The row is stored as 'r', the column as c'.
[temp, c] = max(max(d));
[temp, r] = max(max(d'));

%% Some size data for later
[rows-o, cols-o] = size(orig);
[rows n, cols-n] = size(new);

% Calculate th upper left pixel of ORIG, relative to NEW
UL = [(r-rows o+1), (c-cols o+1)];

%% Set NEW and ORIG to just the aligned areas that overlap
new = new(max(UL(l),1):min(r,rows n), max(UL(2),1):min(c,colsn));
orig = orig(max(1,2-UL(l)):min(rowsn-UL(1)+1,rows-o), max(1,2-UL(2)):min(cols-n-UL(2)+l,cols o));

%% Error out if there is a problem
if size(new) -= size(orig)

error('Algorithm failure: size mismatch');
end

%% Do the numerical comparisons by calling compare.m
out = compare(orig,new);

%% Also, do the same comparisons on the images, excluding the image boundaries
%% (5 pixels around the entire images) to eliminate possible boundary problems
[r,c] = size(orig);
out = [out; compare(orig(5:(r-5),5:(c-5)),new(5:(r-5),5:(c-5)))];

% End of function ALIGN.M

COMPARE.M

Used in computing metrics. Is called by ALIGN.M and returns a vector of metrics.

function out = compare(I1,12)
% Compares two images using NMSE and NLMSE metrics

% out = compare(Il,12)
% Inputs II, 12 are images
% OUT is a column vector of metrics:
% [NMSE
% NLMSE (Laplacian)]

% Create a difference image

66

diff= Il -12;
[rows, cols] = size(diff);

% Energy of Imagel (used in normalizations below)
energyll = sum(sum(Il.A2));

% Mean Squared Error
MSE = sum(sum(diff.A2)); % Mean Square Error
NMSE = MSE / energyll; % NORMALIZED MSE (from Pratt p.1 8 2)

% "Laplacian" MSE (from Pratt p.182)
kernel = [0 1 0; 1 -4 1; 0 1 0];
GI = conv2(I1,kernel,'valid');
G2 = conv2(12,kernel,'valid');
NLMSE = (sum(sum((G1 - G2).A2)))/(sum(sum(G1.A2)));

out = [NMSE; NLMSE];

% End of Function COMPARE.M

MAP.M

This implements the Maximum a posteriori restoration for all but the 4 and 8 frame random offsets.

function [out,COST] = map(y,RLR,psflambda,nn,initial-image,weights)

% MAP algorithm with Huber-Markov Prior (Stevenson, Hardie)

% [OUT,COST] = map(Y,RLR,PSF,LAMBDA,N,INITIMAGE,WEIGHTS)

% Y is the low res image sequence (MxNxP)
% R is the low res registration data (standard form)
% PSF is at the desired (high) resolution
% LAMBDA is the regularization parameter
% N is the number of iterations
% INITIMAGE is the first guess: 1=const,[2=hardie]
% WEIGHTS is a weights array calculated and saved by RMMSE.M
% OUT is the final high resolution image

% This version is designed to run as Matlab code; it vectorizes as many operations as possible.

global size z size y size-psf psf center GAIN gridoffsetHR RHR;

% Constants
GAIN = 2; % Resolution increase in each dimension
alpha = 1; % Huber-Markov Parameter; common value from Stevenson paper

% Set PSFCENTER
psf center = ceil(size(psf)/2);
size-psf = size(psf);

% Create a high resolution grid, convert all offsets to HR pixels
gridoffsetLR = [min(RLR(:,1)), min(RLR(:,2))];
R_HR = RLR.*GAIN;
gridoffset-HR = gridoffsetLR.*GAIN;

[sizey(l) size-y(2) nimages] = size(y);

% Initial estimate of the high-res image
if nargin < 6

initial-image = 2 % Default
end;
if initial-image == 1

% Constant image
size z(1) = max(RHR(:,1)-min(RHR(:,1))+GAIN*size-y(1))-l;
sizez(2) = max(RHR(:,2)-min(RHR(:,2))+GAIN*size y(2))-1;
average value = sum(sum(y(:,:,l)))/size-y(l)/sizey(

2);
z = average-value*ones(size z(1),size-z(2));

67

clear average_value;
else

% Default is same as initial image = 'hardie' -- Nearest-neighbor interpolation
z = hardie(y,RLR,psf,1/300,'1995');

end; % of initial-image selection

% Begin gradient descent iteration here
number-of iterations = nn;
for qq=1:number of iterations,

% Apply imaging process to HR estimate to get a LR estimate
sim = conv2(z,psf,'same');
for k=1:n _images,

ri = (1 -gridoffset__HR()+RHR(k,1)):GAIN: (GAIN *size-y(1)-gridoffset_HR(1)+R_HR(k,1));
ci = (1-gridoffsetHR(2)+RHR(k,2)):GAIN:(GAIN*size-y(2)-gridoffsetHR(2)+RHR(k,2));
ysim(:,:,k) = sim(ri,ci);

end;
clear ri ci sim; % Clear Memory space

% MSE between SIM and ACTUAL LR images
sum1 = y - ysim;

% Calculate the other common sums (4 different sums for Huber-Markov)
beta_1 = [1 -2 1];
beta_2 = [0.5 0 0; 0 -1 0; 0 0 0.5];
beta_3 = [1; -2; 1];
beta_4 = [0 0 0.5; 0 -10; 0.5 0 0];
sum2 1 = conv2(z,beta__,'same');
sum2_2 = conv2(z,beta 2,'same');
sum2_3 = conv2(z,beta_3,'same');
sum2_4 = conv2(z,beta_4,'same');

% Calculate COST and display
COST = 0.5*sum(sum(sum(suml .2))) + lambda/2*(rho(sum2_1,alpha) +

rho(sum2_2,alpha) + rho(sum2_3,alpha) + rho(sum2_4,alpha))

% Compute Gradients
g = weights*reshape(suml,prod(size(suml)),l);
g = reshape(g,size z(1),sizez(2)); % From vector in matrix form
% Special derivatives for piecewise cost function are computed
% by function GR(adient)
g = -g + lambda * (gr(sum2_1,beta_1,alpha) + gr(sum2_2,beta_2,alpha) ...

+ gr(sum2_3,beta_3,alpha) + gr(sum2_4,beta_4,alpha));

% Compute epsilon using the Armijo Rule
s= 10;
sigma= le-2;
beta = 1/5;
% Initialize
epsilon = s /beta;
K = sigma * sum(sum(g.A2));
new-cost = COST;
% Armijo Loop
while (COST - new cost) < (epsilon*K)

epsilon = epsilon * beta;
% Calculation of NEWCOST (This is fairly long, but compare it to the original COST computation above)

temp = conv2((z-epsilon*g),psf,'same');
for k=1 :nimages,
ri = (1-gridoffsetHR(1)+R HR(k,1)):GAIN:(GAIN*size y(l)-gridoffsetHR(1)+RHR(k,1));
ci = (1-gridoffset HR(2)+RHR(k,2)):GAIN:(GAIN*size y(2)-gridoffsetHR(2)+RHR(k,2));
ysim(:,:,k) = temp(ri,ci);
end;
clear ri ci temp;
% MSE between SIM and ACTUAL LR images
sum1 = y - ysim;

% Calculate the other common sums (4 different sums for Huber-Markov)
sum2_1 = conv2((z-epsilon*g),beta_1,'same');
sum2_2 = conv2((z-epsilon*g),beta_2,'same');
sum2_3 = conv2((z-epsilon*g),beta_3,'same');

68

sum2_4 = conv2((z-epsilon*g),beta_4,'same');

% Calculate COST and display
newcost = 0.5 *sum(sum(sum(suml. ^2))) + lambda/2*(rho(sum2_ ,alpha) +

rho(sum2_2,alpha) + rho(sum2_3,alpha) + rho(sum2_4,alpha));

end;
% End of Armijo Loop - Stepsize Epsilon has been chosen

%Update Z (38)
z = z - epsilon*g;
if abs(COST - new cost)/COST < 1e-5

break; % Break out of loop if we're really close to the minimum
end;

% Loop and iterate again
end;

out = z;

%%%%%%%%%% START FUNCTION RHO %%%%%%%%%%
function out = rho(x,alpha)

% See cost function in Stevenson
temp = abs(x) < alpha;
out = sum(sum((temp.*(x.^2)) + (not(temp).*(2*alpha*abs(x)-alphaA2))));

%%%%%%%%%% END FUNCTION RHO %%%%%%%%%%%%

%%%%%%%%%% START FUNCTION GR %%%%%%%%%%
function out = gr(x,beta,alpha)

% See my gradient calculations
out =X;

out(find(x > alpha)) = alpha;
out(find(x < alpha)) = -alpha;
out = conv2(out,beta,'same');

%%%%%%%%%% END FUNCTION GR %%%%%%%%%%%%

% End of function MAP.M

MAPT.M

This implements the Maximum a posteriori restoration for the 4 and 8 frame random offsets. The code is very similar to MAP.M,

except for the handling of the different offsets.

function [out,COST] = map(y,RLR,psflambda,nn,initial-image,weights)
% MAP algorithm with Huber-Markov Prior (Stevenson, Hardie)

% [OUT,COST] = map(Y,RLR,PSF,LAMBDA,N,INITIMAGE,WEIGHTS)

% Y is the low res image sequence (MxNxP)
% R is the low res registration data (standard form)
% PSF is at the desired (high) resolution
% LAMBDA is the regularization parameter
% N is the number of iterations
% INIT IMAGE is the first guess: 1=const,[2=hardie]
% WEIGHTS is a weights array that has been calculated and saved by RMMSET.M
% OUT is the final high resolution image

% This version is designed to run as Matlab code; it vectorizes as many operations as possible.

global size z size-y size-psf psf center GAIN gridoffsetHR RHR;

% Resolution increase in each direction
GAIN =2;

69

alpha = 1; % Huber-Markov Parameter; common value from Stevenson paper

% Set PSFCENTER
psf-center = ceil(size(psf)/2);
size-psf = size(psf);

% Create a high resolution grid, convert all offsets to HR pixels
gridoffsetLR = [min(RLR(:,1)), min(RLR(:,2))];
R HR = R_LR.*GAIN;
gridoffset HR = gridoffsetLR.*GAIN;

[sizey(l) size-y(2) n_images] = size(y);

% Initial estimate of the high-res image
if nargin < 6

initial image = 2 % Default
end;
if initialimage == 1

% Constant image
sizez(1) = max(RHR(:,1)-min(RHR(:,l))+GAIN*sizey(l))-1;
sizez(2) = max(RHR(:,2)-min(RHR(:,2))+GAIN*size-y(2))-1;
averagevalue = sum(sum(y(:,:,l)))/sizey(l)/size-y(

2);
z = average value*ones(size z(l),size-z(2));
clear average-value;

else
% Default is same as initial-image = 'hardie'
% Nearest-neighbor interpolation
% CHANGED FOR 8RANDOM
%z = hardie(y,RLR,psf,1/300,'1995');
z = minterp(y,RLR);

end; % of initial-image selection

% Begin gradient descent iteration here
numberof iterations = nn;
for qq=1:number of iterations,

% Apply imaging process to HR estimate to get a LR estimate
ysim= weights'*reshape(z,prod(size(z)),1);
ysim = reshape(ysim,size-y(l),size-y(2),nimages);
% MSE between SIM and ACTUAL LR images
suml = y - ysim;

% Calculate the other common sums (4 different sums for Huber-Markov)
beta_1 = [1 -2 1];
beta_2 = [0.5 0 0; 0 -1 0; 0 0 0.5];
beta_3 = [1; -2; 1];
beta_4 = [0 0 0.5; 0 -1 0; 0.5 0 0];
sum2_1 = conv2(z,beta_1,'same');
sum2_2 = conv2(z,beta_2,'same');
sum2_3 = conv2(z,beta_3,'same');
sum2_4 = conv2(z,beta_4,'same');

% Calculate COST and display
COST = 0.5 *sum(sum(sum(suml .A2))) + lambda/2 *(rho(sum2_ 1,alpha) +
rho(sum2_2,alpha) + rho(sum2_3,alpha) + rho(sum2 4,alpha))

% Compute Gradients
g = weights*reshape(suml,prod(size(suml)),1);
g = reshape(g,size z(1),size-z(2)); % From vector in matrix form
% Special derivatives for piecewise cost function are computed
% by function GR(adient)
g = -g + lambda * (gr(sum2_1,betal,alpha) + gr(sum2_2,beta_2,alpha) ...
+ gr(sum2 3,beta 3,alpha) + gr(sum2_4,beta_4,alpha));

% Compute epsilon using the Armijo Rule
s = 10;
sigma = le-2;
beta = 1/5;
% Initialize

70

epsilon = s / beta;
K = sigma * sum(sum(g.A2));
new-cost = COST;
% Armijo Loop
while (COST - new cost) < (epsilon*K)
epsilon = epsilon * beta;
% Calculation of NEWCOST
% (This is fairly long, but compare it to the original COST computation above)

ysim = weights'*reshape((z-epsilon*g),prod(size(z)),1);
ysim= reshape(ysim,size-y(l),sizey(2),n-images);

% MSE between SIM and ACTUAL LR images
sum1 = y - ysim;

% Calculate the other common sums (4 different sums for Huber-Markov)
sum2_1 = conv2((z-epsilon*g),beta_1,'same');
sum2 2 = conv2((z-epsilon*g),beta 2,'same');
sum2 3 = conv2((z-epsilon*g),beta_3,'same');
sum2_4 = conv2((z-epsilon*g),beta_4,'same');

% Calculate COST and display
new cost = 0.5*sum(sum(sum(suml.A2))) + lambda/2*(rho(sum2_l,alpha) +

rho(sum2_2,alpha) + rho(sum2_3,alpha) + rho(sum2_4,alpha));
end;
% End of Armijo Loop - Stepsize Epsilon has been chosen

%Update Z (38)
z = z - epsilon*g;

if abs(COST - new cost)/COST < 1e-5
break; % Break out of loop if we're really close to the minimum

end;

% Loop and iterate again
end;

out = z;

%%%%%%%%%% START FUNCTION RHO %%%%%%%%%%
function out = rho(x,alpha)

% See cost function in Stevenson
temp = abs(x) < alpha;
out = sum(sum((temp.*(x.A2)) + (not(temp).*(2*alpha*abs(x)-alphaA2))));

%%%%%%%%%% END FUNCTION RHO %%%%%%%%%%%%

%%%%%%%%%% START FUNCTION GR %%%%%%%%%%
function out = gr(x,beta,alpha)

% See my gradient calculations
out = X;
out(find(x > alpha)) = alpha;
out(find(x < alpha)) = -alpha;
out = conv2(out,beta,'same');

%%%%%%%%%% END FUNCTION GR %%%%%%%%%%%%

% End of function MAPT.M

POCS.M

This implements the Projection Onto Convex Sets restoration for all but the 4 and 8 frame random offsets.

function [out, projections this iter] = pocs(y,RLR,psfdelta,nn,initial_image)
% POCS restoration algorithm (Stark and Oskoui, 1989)

% [OUT, Final-projections] = pocs(Y,RLR,PSF,DELTA,NINITIMAGE)

71

% Y is the low res image sequence (MxNxP)
% R is the low res registration data (standard form)
% PSF is at the desired (high) resolution
% DELTA is a parameter. Set to 0.01 for no noise, approx 3sigma for noise
% N is the number of iterations
% INITIMAGE is the first guess: 1=const,[2=hardie]
% OUT is the final high resolution image

% This is a POCS formulation that follows closely the development
% in Stark and Oskoui 1989. At a later time, additional convex constraints
% may be added, and will be noted here. The current implementation must
% be iterative, because the nature of POCS is iterative and each projection
% must operate on the output of the previous projection. This is no (obvious)
% way to parallelize or vectorize the computations. That having been said,
% the iterations were made as efficient as possible.

GAIN =2;

% Define sigma, which is the flipped PSF
sigma = flipud(fliplr(psf));
sigmacenter = ceil(size(sigma)/2);
sigma-size = size(sigma);
sigma-squared = sum(sum(sigma.^2));

% Define E for use in Energy Constraint below
% E containts the energy of each LR frame, multiplied by GAINA2
E = sum(sum(y.A2)) * GAINA2;

% Create a high resolution grid, convert all offsets to HR pixels
gridoffsetLR = [min(RLR(:,1)), min(RLR(:,2))];
RHR = R_LR.*GAIN;
gridoffsetHR = gridoffsetLR.*GAIN;

% Initial estimate of the high-res image
[size-y(1) sizey(2) n-images] = size(y);
if initial-image == 1

% Constant image
sizez(l) = max(RHR(:,1)-min(R.HR(:,1))+GAIN*sizey(l))-1;
size-z(2) = max(RHR(:,2)-min(RHR(:,2))+GAIN*sizey(2))-1;
averagevalue = sum(sum(y(:,:,1)))/size-y(1)/size-y(

2);
z = average.value*ones(size-z(1),sizez(2));
clear averagevalue;

else
% Default is same as initial-image = 'hardie'
% Nearest-neighbor interpolation
z = hardie(y,RLR,psf,1/300,'1995');

end; % of initial_image selection
size z = size(z);

% Create a frame of zeros around the HR data
total size = size z + 20; % Frame is 10 pixels wide (20 total)
if sigma-center > 11 % If the PSF extends beyond the frame, error

error(This implementation requires a smaller PSF');
end;
temp = zeros(total-size);
temp(11:10+size z(l),11:10+size-z(2)) = z; % Place z into the center of the frame
z = temp;
clear temp;

% BEGINNING OF PROJECTION ITERATIONS
number-of iterations = nn;
for qq=1:number of iterations,

projectionsthisiter = 0;

% For each LR sample value, we must do a projection
for k=1:n.images,

% For this particular LR image (k), i and ci give the HR grid point
% that corresponds to each LR pixel.
ri = (1 -gridoffset_HR(1)+RHR(k,1)):GAIN:(GAIN*size y(1)-gridoffset_HR(1)+RHR(k,1));

72

ci = (1-gridoffsetHR(2)+RHR(k,2)):GAIN:(GAIN*size-y(2)-gridoffsetHR(2)+R HR(k,2));

for i=1:length(ri),
for j=1:length(ci),

% First, we compute (z,sigma).
r = ri(i); c= ci(j);
out row_1= 10 + r - sigma-center(1) + 1;
out row-u = 10 + r + sigma center(1) - 1;
outcol_1= 10 + c - sigma-center(2) + 1;
outcolu = 10 + c + sigma-center(2) - 1;

% Now the upper and lower limits have been set. Using these limits,
% we multiply to obtain (z,sigma)
z sigma = z(out row-l:out row u,out col.l:out-col-u) .* sigma;
zsigma = sum(sum(z-sigma));
% If z sigma = realdata, we're done. Otherwise we adjust z.
difference = y(ij,k) - z sigma;
if abs(difference) > delta,

z(out row-l:out row-u,out_coll:out_col-u) =
z(out-row_1:out-row-u,out_col l:out col-u) +...
(difference/sigma-squared)*sigma;

projections-this-iter = projections-this-iter + 1;
end;

end; % j
end; % i

end; % k

%% At this point, we have carried out the projections for all the LR pixel
%% data. Next, we will perform the projections for the other criteria, such
%% as positivity, etc.

% Finite support condition
temp = zeros(totalsize);
temp(l 1: 10+size z(l), 11:10+size-z(2)) = z(1:10+size z(1), 11:10+sizez(2));
z = temp; clear temp;

% Amplitude Constraint (positivity)
z = (z >=O) .* z; % Changes all negative values to zero

% Energy Constraint
% Note: E is defined before the main iteration, since it does not change
% We impose a constraint for each LR image. See additional notes for an
% explanation of how the energy bounds were determined.
fork = 1 :nimages,

% Compute the HR pixels that bound the LR image (ignoring the zero-padded frame)
upper left = [1-gridoffset HR(1)+RHR(k,l) l-gridoffset HR(2)+RHR(k,2)];
lower-right = upper-left + [GAIN*(size y(l)-1) GAIN*(size-y(2)-1)];
% Account for the zero-pad frame around z, and move in by the radius of the PSF
upper-left = upper-left + [9 9] + sigma-center;
lower-right = lower right + [11 11] - sigma-center;
% Compute the energy of this "smaller" portion of the HR image
Ez = sum(sum(z(upper_left(1):lower right(l),upperleft(2):ower right(2)).A2));
% if Ez > E then adjust, otherwise do nothing.
if Ez > E(k),

z = z * sqrt(E(k)/Ez);
end;

end;

% Display how many updates occured (if 0, we've reached the intersection
% of all the Convex Constraint Sets, and we can quit).
projections-this-iter
if projections-this iter == 0

projections thisjiter = -qq; % A hack to output how many it took
break; % break out of loop; we're done

end;

end; % of entire iteration procedure

73

out= z(11:size z(l)+10,11:size-z(2)+10);

% End of function POCS.M

POCST.M

This implements the Projection Onto Convex Sets restoration for the 4 and 8 frame random offsets.

function [out, projections-thisjiter] = pocs(y,R LR,psfdelta,nn,initial-image)
% POCS restoration algorithm (Stark and Oskoui, 1989)

% [OUT, Final-projections] = pocs(Y,RLR,PSF,DELTA,N,INITIMAGE)

% Y is the low res image sequence (MxNxP)
% R is the low res registration data (standard form)
% PSF is at the desired (high) resolution
% DELTA is a parameter. Set to 0.01 for no noise, approx 3 sigma for noise
% N is the number of iterations
% INITIMAGE is the first guess: 1=const,[2=hardie]
% OUT is the final high resolution image

% This is a POCS formulation that follows closely the development
% in Stark and Oskoui 1989. At a later time, additional convex constraints
% may be added, and will be noted here. The current implementation must
% be iterative, because the nature of POCS is iterative and each projection
% must operate on the output of the previous projection. This is no (obvious)
% way to parallelize or vectorize the computations. That having been said,
% the iterations were made as efficient as possible.

GAIN = 2;

% Define sigma, which is the flipped PSF
sigma = flipud(fliplr(psf));
sigma-center = ceil(size(sigma)/2);
sigma-size = size(sigma);
%sigma squared = sum(sum(sigma.A2));
psfs = interp2(psf,'cubic');

% Define E for use in Energy Constraint below
% E containts the energy of each LR frame, multiplied by GAINA2
E = sum(sum(y.A2)) * GAINA2;

% Create a high resolution grid, convert all offsets to HR pixels
gridoffsetLR = [min(RLR(:,1)), min(RLR(:,2))];
R_HR = R_LR.*GAIN;
gridoffsetHR = gridoffsetLR.*GAIN;

% Initial estimate of the high-res image
[sizey(l) size-y(2) n-images] = size(y);
if initial-image == 1

% Constant image
%size-z(l) = max(RHR(:,1)-min(RHR(:,1))+GAIN*sizey(l))-l;
%size z(2) = max(RHR(:,2)-min(RHR(:,2))+GAIN*sizey(2))-1;
size-z(1) = GAIN*sizey(1);
size-z(2) = GAIN*size _y(2);
average value = sum(sum(y(:,:,1)))/size-y(l)/size y(2);
z = average-value*ones(size z(1),size.z(2));
clear average value;

else
% Default is same as initial-image = 'hardie'
% Nearest-neighbor interpolation
% CHANGED FOR 8RANDOM
%z= hardie(y,RLR,psf,1/300,'1995');
z = minterp(y,RLR);

end; % of initialimage selection
sizez = size(z);

% Create a frame of zeros around the HR data

74

total-size = size z + 20; % Frame is 10 pixels wide (20 total)
if sigma center > 11 % If the PSF extends beyond the frame, error

error('This implementation requires a smaller PSF');
end;
temp = zeros(totalsize);
temp(11:10+size z(1),11:10+size z(2)) = z; % Place z into the center of the frame
z = temp;
clear temp;

% BEGINNING OF PROJECTION ITERATIONS
numberof iterations = nn;
for qq=1:number of iterations,

projections-this-iter = 0;

% For each LR sample value, we must do a projection
for k=1:nimages,

% For this particular LR image (k), ri and ci give the HR grid point
% that corresponds to each LR pixel.
ri = (1 -gridoffsetHR(1)+RHR(k,1)):GAIN:(GAIN*size y(l)-gridoffsetHR(1)+RHR(k,1));

ci = (1-gridoffsetHR(2)+RHR(k,2)):G AIN:(G AIN*size y(2)-gridoffsetHR(2)+RHR(k,2));

for i=1 :length(ri),
for j=1:length(ci),

% First, we compute (z,sigma).
r = ri(i); c = ci(j);
%%% ADDITION
if (mod(r,1)==0) & (mod(c,1)==0)

sigma = flipud(fliplr(psf));
out row__ = 10 + r - sigmacenter(1) + 1;

outrow u = 10 + r + sigmacenter(l) - 1;
outcol_1= 10 + c - sigmacenter(2) + 1;
outcol u = 10 + c + sigma-center(2) - 1;

elseif (mod(r,1)==0) & (mod(c,1)==.5)
sigma = flipud(flipr(psfs(1:2:17,2:2:17)));
out-row_ = 10 + r - sigma-center(1) + 1;

out rowu = 10 + r + sigmascenter(1) - 1;
outcolI = 10 + ceil(c) - sigma center(2) + 1;

out-col u = 10 + floor(c) + sigmacenter(2) - 1;
elseif (mod(r,1)==.5) & (mod(c,1)==0)

sigma = flipud(fliplr(psfs(2:2:17,1:2:17)));
out-row_1= 10 + ceil(r) - sigmascenter(1) + 1;
out-row-u = 10 + floor(r)+ sigmacenter(1) - 1;
out colI = 10 + c - sigma-center(2) + 1;

out col-u = 10 + c + sigmacenter(2) - 1;
elseif (mod(r,1)==.5) & (mod(c,1)==.5)

sigma = flipud(fliplr(psfs(2:2:17,2:2:17)));
outrow_1 = 10 + ceil(r) - sigma_center(1) + 1;
out rowu = 10 + floor(r)+ sigma_center(1) - 1;
out-col_= 10 + ceil(c) - sigmascenter(2) + 1;
outcol u = 10 + floor(c) + sigma center(2) - 1;

else
error('Offsets are not multiples of 1/4 LR pixel');

end;

sigma-squared = sum(sum(sigma.^2));

% Now the upper and lower limits have been set. Using these limits,
% we multiply to obtain (z,sigma)
z_sigma = z(out rowl:outrow u,out-col_1:out col-u) .* sigma;
z_sigma = sum(sum(z-sigma));
% If z-sigma = realdata, we're done. Otherwise we adjust z.
difference = y(ij,k) - z-sigma;
if abs(difference) > delta,

z(out rowl:out row u,out-coll:out col-u)=
z(out rowl:out row u,outcoll:out col u) +
(difference/sigma squared)*sigma;

projections-this iter = projectionsthis-iter + 1;
end;

end; % j

75

end; % i
end; % k

%% At this point, we have carried out the projections for all the LR pixel
%% data. Next, we will perform the projections for the other criteria, such
%% as positivity, etc.

% Finite support condition
temp = zeros(total-size);
temp(l 1: 1O+size z(l),l 1:10+sizez(2)) = z(1 1:10+sizez(l),l 1:10+sizez(2));
z = temp; clear temp;

% Amplitude Constraint (positivity)
z = (z >=O) .* z; % Changes all negative values to zero

% Energy Constraint
% Note: E is defined before the main iteration, since it does not change
% We impose a constraint for each LR image. See additional notes for an
% explanation of how the energy bounds were determined.
for k = 1nimages,

% Compute the HR pixels that bound the LR image (ignoring the zero-padded frame)
upperleft = [1-gridoffsetHR(1)+RHR(k,1) 1-gridoffsetHR(2)+R_ HR(k,2)];
lower-right = upper-left + [GAIN*(size-y(l)-1) GAIN*(sizey(2)-1)];
% Account for the zero-pad frame around z, and move in by the radius of the PSF
upper-left = floor(upperleft + [9 9] + sigmacenter);
lower-right = ceil(lowerright + [11 11] - sigma center);
% Compute the energy of this "smaller" portion of the HR image
Ez = sum(sum(z(upperJeft(l):lowerright(l),upper_left(2):ower-right(2)).A2));
% if Ez > E then adjust, otherwise do nothing.
if Ez > E(k),

z = z * sqrt(E(k)/Ez);
end;

end;

% Display how many updates occured (if 0, we've reached the intersection
% of all the Convex Constraint Sets, and we can quit).
projectionsthis_iter
if projections.thisiter == 0

projections-thisiter = -qq;
break; % break out of loop; we're done

end;
end; % of entire iteration procedure

out = z(11:sizez(l)+10,11:size-z(2)+10);

% End of function POCST.M

RMMSE.M

This implements the Regularized Minimum Mean Squared Error
restoration for all but the 4 and 8 frame random offsets.

function [out,weights) = rmmse(y,RLR,psflambda,number.of iterations,initial image,weights)
% Regularized MMSE algorithm (Hardie 1998)

% [OUT,weights] = rmmse4(Y,RLR,PSF,LAMBDA,N,INITIMAGE,WEIGHTS)

% Y is the low res image sequence (MxNxP)
% R is the low res registration data (standard form)
% PSF is at the desired (high) resolution
% LAMBDA is the regularization parameter
% N is the number of iterations
% INITIMAGE is the first guess: 1=const,[2=hardiel
% WEIGHTS, if specified, is an already-calculated weights array
% OUT is the final high resolution image

% This version is designed to run as Matlab code;
% it vectorizes as many operations as possible.

76

global sizez size-y size_psf psfcenter GAIN gridoffset HR RHR;

% Resolution increase in each direction
GAIN = 2;

% Set PSFCENTER
psf center = ceil(size(psf)/2);
size psf = size(psf);

% Create a high resolution grid, convert all offsets to HR pixels
gridoffset-LR = [min(RLR(:,l)), min(R LR(:,2))];
R_HR = R_LR.*GAIN;
gridoffsetHR = gridoffsetLR.*GAIN;

[sizey(l) size-y(2) nimages] = size(y);
% Initial estimate of the high-res image
if nargin < 6

initial-image = 2 % Default
end;
if initial-image == 1

% Constant image
size z(l) = max(R HR(:,1)-min(RHR(:,1))+GAIN*size y(l))-3; %-l;
sizez(2) = max(RHR(:,2)-min(RHR(:,2))+GAIN*size-y(2))-3; %-1;
average-value = sum(sum(y(:,:,l)))/size-y(l)/size y(2);
z = averagevalue*ones(size-z(1),sizez(2));
clear average-value;

else
% Default is same as initial-image = 'hardie'
% Nearest-neighbor interpolation
z = hardie(y,RLR,psf,1/300,'1995');

end; % of initial-image selection
size z = size(z);

% Compute the WEIGHTS matrix and store it if it hasn't
% been passed as an argument
if nargin < 7,

% Convert the scalar LRPIXEL to a row,column,image (m,n,k)
% (k,m,n are row vectors. Their length is the total number of LR pixels.
% Any given index into k,m,n gives a triplet (mn,k) for a single LR pixel)
for kk = 1:n images

for nn = 1:sizey(2)
for mm= 1:size-y(l)

scalar-pixel = (kk-l)*sizey(l)*sizey(2) + (nn-l)*sizey(l) + mm;
k(scalar._pixel) = kk;
m(scalarpixel) = mm;
n(scalar-pixel) = nn;

end;
end;

end;
% Convert from a low res (m,n,k) to a high res Row & Column
z_row = 1 - gridoffsetHR(l) + R_HR(k,l)'+ GAIN*(m-1);
z col = 1 - gridoffsetHR(2) + RHR(k,2)'+ GAIN*(n-1);

% Create a sparse matrix of weights
% Below this point is a hack used due to memory constraints.
% The WEIGHTS matrix is calculated piecewise and stored, then
% is reassembled below from the files.

filenames = 'abcdefghij'; % 10 of them
for j = 0:9,
weights = [];
for i = 1:prod(size(z))/10,

temp = weight(z row,z-col,i+prod(size(z))/10*j,psf); % Column Vector
% temp = weight(zrow,z-col,i,psf);

weights = [weights temp]; % Store the transpose (more efficient)
end;
save(filenames(j+ 1),'weights');

77

display('One tenth complete');
clear weights;
end;

% Now the portions of the weights matrix are stored in MAT files.
% We need to load, concatenate horizontally, then transpose to create
% the final WEIGHTS matrix in the proper orientation.
temp = [];
for j=l:10,

clear weights, load(filenames(j));
temp = [temp weights];

end;
weights = temp';
clear temp;

end; % of NARGIN < 7 (WEIGHTS unspecified)

% Begin gradient descent iteration here
for qq=l:numberof iterations,

% Apply imaging process to HR estimate to get a LR estimate
sim = conv2(z,psf,'same');
for k=1:n_images,

ri = (1 -gridoffsetHR(l)+RHR(k,1)):GAIN:(GAIN*size y(l)-gridoffsetHR(l)+RHR(k,1));
ci = (1-gridoffsetHR(2)+RHR(k,2)):GAIN:(GAIN*size y(2)-gridoffsetHR(2)+R _HR(k,2));
ysim(:,:,k) = sim(ri,ci);

end;
clear ri ci sim;
% MSE between SIM and ACTUAL LR images
sum1 = y - ysim;

% Calculate the other common sum (with alpha)
alpha = [0 -0.25 0; -0.25 1 -0.25; 0 -0.25 0];
sum2 = conv2(z,alpha,'same');

% Display COST for user
COST = 0.5*sum(sum(sum(suml A2))) + lambda/2*sum(sum(sum2.A2))
%disp('Press Ctrl-C to terminate, any other key to iterate again');
%pause

% Compute Gradients (iterations are instantaneous without the next line)
g = weights*reshape(suml,prod(size(suml)),1);
g = reshape(g,sizez(l),size-z(2)); % From vector in matrix form
g = -g + (lambda * conv2(sum2,alpha,'same')); % Add 'alpha' term

% Compute gamma
sim = conv2(g,psf,'same');
for k= 1:n_images,

ri = (1-gridoffsetHR(l)+RHR(k,1)):GAIN:(GAIN*sizey(l)-gridoffsetHR(1)+R_HR(k,1));
ci = (1-gridoffsetHR(2)+RHR(k,2)):GAIN:(GAIN*size-y(2)-gridoffset HR(2)+RHR(k,2));
gamma(:,:,k) = sim(ri,ci);

end;
clear ci ri sim;

% Compute g-bar
g-bar = conv2(g,alpha,'same');

% Compute epsilon -
epsilon = sum(sum(sum(-gamma.*suml))) + lambda*sum(sum(gbar.*sum2));
epsilon = epsilon / (sum(sum(sum(gamma.A2))) + lambda*sum(sum(g bar.A2)));

% Update Z (38)
z = z - epsilon*g;

% Loop and iterate again
end;

out = z;

%%%%%%%%%% START FUNCTION WEIGHT %%%%%%%%%%

78

function out = weight(z row,z col,hr-pixel,psf)
global size-z size y size-psf psf-center gridoffsetHR RHR GAIN;

% Convert the scalar HRPIXEL into a Row & Column
r_col = ceil(hrpixel/size z(l))*ones(size(z row));
r_row = 1 + mod(hrpixel-l,size-z(l))*ones(size(zrow));
% If hr pixel is close enough to influence Ir-pixel, find weight from PSF
r row = psf center(l) + zrow - r row; % (Reuse variables)
r_col = psfcenter(2) + zcol - rcol;

criteria = (r-row > 0) & (r_col > 0) & (r_row <= size psf(l)) & (r col <= size-psf(2));
scalar-arg = rrow(find(criteria)) + sizepsf(l)*(r _col(find(criteria))-1);

out = sparse(find(criteria),ones(size(scalar-arg)),psf(scalar-arg),ength(r row),l);

%%%%%%%%%% END FUNCTION WEIGHT %%%%%%%%%%

% End of function RMMSE.M

RMMSET.M

This implements the Regularized Minimum Mean Squared Error restoration for the 4 and 8 frame random offsets.

function [out,weights] = rmmset(y,RLR,psflambda,number of iterations,initialimage,weights)
% Regularized MMSE algorithm (Hardie 1998)

% [OUT,weights] = rmmset(Y,RLR,PSF,LAMBDA,N,INITIMAGE,WEIGHTS)

% Y is the low res image sequence (MxNxP)
% R is the low res registration data (standard form)
% PSF is at the desired (high) resolution
% LAMBDA is the regularization parameter
% N is the number of iterations
% INITIMAGE is the first guess: 1=const,[2=hardie]
% WEIGHTS, if specified, is an already-calculated weights array
% OUT is the final high resolution image

% This version is designed to run as Matlab code;
% it vectorizes as many operations as possible.

global size z size y size psf psf center GAIN gridoffset HR RHR;

% Resolution increase in each direction
GAIN =2;

% Set PSFCENTER
psfcenter = ceil(size(psf)/2);
size-psf = size(psf);

% Create a high resolution grid, convert all offsets to HR pixels
gridoffsetLR = [min(R LR(:,l)), min(RLR(:,2))];
R_HR = RLR.*GAIN;
gridoffsetHR = gridoffset LR.*GAIN;

[sizey(l) sizey(2) n-images] = size(y);
% Initial estimate of the high-res image
if nargin < 6

initial-image = 2 % Default
end;
if initial-image == 1

% Constant image
sizez(l) = max(RHR(:,1)-min(RHR(:,1))+GAIN*sizey(l))-3; %-l;
size z(2) = max(RHR(:,2)-min(RHR(:,2))+GAIN*size-y(2))-3; %-1;
average value = sum(sum(y(:,:,l)))/size.y(l)/size-y(2);
z = average value*ones(size-z(l),size z(2));
clear averagevalue;

else

79

% Default is same as initial-image = 'hardie'
% Nearest-neighbor interpolation
% CHANGED FOR 8RANDOM
%z = hardie(y,RLR,psf,1/300,'1995');
z = minterp(y,RLR);

end; % of initial-image selection
sizez = size(z);

% Compute the WEIGHTS matrix and store it if it hasn't
% been passed as an argument
if nargin < 7,

% Convert the scalar LRPIXEL to a row,column,image (m,n,k)
% (k,m,n are row vectors. Their length is the total number of LR pixels.
% Any given index into k,m,n gives a triplet (m,n,k) for a single LR pixel)
for kk = 1:nimages

for nn = 1:size-y(2)
for mm = 1:size y(l)

scalar-pixel = (kk-1)*size y(l)*size-y(2) + (nn-l)*size y(l) + mm;
k(scalar-pixel) = kk;
m(scalar-pixel) = mm;
n(scalar-pixel)= nn;

end;
end;

end;
% Convert from a low res (m,n,k) to a high res Row & Column
zrow = 1 - gridoffsetHR(1) + RHR(k,l)'+ GAIN*(m-1);
z_col = 1 - gridoffsetHR(2) + RHR(k,2)'+ GAIN*(n-1);

% Create a sparse matrix of weights
% Below this point is a hack used due to memory constraints.
% The WEIGHTS matrix is calculated piecewise and stored, then
% is reassembled below from the files.

filenames = 'abcdefghij'; % 10 of them
forj = 0:9,
weights = [];
for i = 1:prod(size(z))/10,

temp = weight(zrow,z-col,i+prod(size(z))/10*j,psf); % Column Vector
% temp = weight(zjrow,zcol,i,psf);

weights = [weights temp]; % Store the transpose (more efficient)
end;
save(filenames(j+l),'weights');
display('One tenth complete');
clear weights;
end;

% Now the portions of the weights matrix are stored in MAT files.
% We need to load, concatenate horizontally, then transpose to create
% the final WEIGHTS matrix in the proper orientation.
temp = [];
forj=1:10,

clear weights, load(filenames(j));
temp = [temp weights];

end;
weights = temp';
clear temp;

end; % of NARGIN < 7 (WEIGHTS unspecified)

% Begin gradient descent iteration here
for qq=1:numberof iterations,

% Apply imaging process to HR estimate to get a LR estimate
ysim = weights'*reshape(z,prod(size(z)),1);
ysim = reshape(ysim,size-y(l),size-y(2),nimages);
% MSE between SIM and ACTUAL LR images
sum1 = y - ysim;

% Calculate the other common sum (with alpha)

80

alpha = [0 -0.25 0; -0.25 1 -0.25; 0 -0.25 01;
sum2 = conv2(z,alpha,'same');

% Display COST for user
COST = 0.5*sum(sum(sum(suml A2))) + lambda/2*sum(sum(sum2.A2))
%disp('Press Ctrl-C to terminate, any other key to iterate again');
%pause

% Compute Gradients (iterations are instantaneous without the next line)
g = weights*reshape(suml,prod(size(suml)),1);
g = reshape(g,sizez(1),sizez(2)); % From vector in matrix form
g = -g + (lambda * conv2(sum2,alpha,'same')); % Add 'alpha' term

% Compute gamma
gamma = weights'*reshape(g,prod(size(g)),l);
gamma = reshape(gamma,size.y(1),size-y(2),n_images);
% Compute g-bar
g-bar = conv2(g,alpha,'same');

% Compute epsilon
epsilon = sum(sum(sum(-gammna. *suml))) + lambda*sum(sum(g-bar. *sum2));
epsilon = epsilon / (sum(sum(sum(gamma.A2))) + lambda*sum(sum(gbar A2)));

%Update Z (38)
z = z - epsilon*g;

% Loop and iterate again
end;

out = z;

%%%%%%%%%% START FUNCTION WEIGHT %%%%%%%%%%
function out = weight(zrow,z-col,hr-pixel,psf)
global size-z size y size-psf psf center gridoffsetHR RHR GAIN;

% Convert the scalar HR_PIXEL into a Row & Column
r col = ceil(hr-pixel/size-z(1))*ones(size(z row));
r_row = 1 + mod(hr _pixel-1,size_ z(l))*ones(size(z row));
% If hrpixel is close enough to influence lr-pixel, find weight from PSF
r_row = psf center(1) + z-row - rjrow; % (Reuse variables)
r_col = psf center(2) + z-col - r-col;

%out = zeros(size(r row));
criteria = (r-row > 0) & (rcol > 0) & (rrow <= size.psf(l)) & (rcol <= size_ psf(2));
scalar-arg = rrow(find(criteria)) + sizepsf(l)*(rcol(find(criteria))-1);
%out(find(criteria)) = psf(scalar-arg);

out = sparse(find(criteria),ones(size(scalar-arg)),psf(scalar-arg),length(r__row),1);

%%%%%%%%%% END FUNCTION WEIGHT %%%%%%%%%%

% End of function RMMSET.M

MINTERP.M

This is a multi-frame interpolation method that creates a high resolution grid, and then fills each grid point with the weighted sum of
the 3 nearest data points.

function out = minterp(gactual,RLR,hpsf)
% A multi-frame interpolation method

% F = hardie(G,R,HPSF)

% G - MxNxK, K= number of low res images
% R = registration matrix for low res images (see notes)
% HPSF = psf at desired resolution
% F = a single high-res image

81

GAIN =2;

%%
%% This is a multi-frame interpolation method that creates a high
%% resolution grid, and then fills each grid point with the weighted
%% sum of the 3 nearest data points. Once the high res grid has been
%% filled, it can be inverse-filtered with the PSF if desired.
%%

% Create a list of high resolution offsets
R_HR = R_LR*GAIN;

[g-rows g-cols num images] = size(gactual);
n = numjimages;

for c=0:2*g cols-l,
for r=0:2*grows-1,

ro = mod(r, GAIN);
co = mod(c, GAIN);

% First, compute distances from current offset to all real data
% points in the current LR pixel and all adjacent pixels.
distcenter = R-_HR - ones(numjimages,1)*[ro co];
dist left = RHR - ones(numlimages,l)*[ro co+GAIN];
dist-right = RHR - ones(num images,l)*[ro co-GAIN];
distup = RHR - ones(numjimages,l)*[ro+GAIN co];
distdown = RHR - ones(num images,l)*[ro-GAIN co];

% The above matrices contain differences in the row and column
% direction... we want to convert this to a single scalar distance.
dist center = sqrt(dist-center(:,1).^ 2 + distcenter(:,2).^2);
distileft = sqrt(distjleft(:,1).^2 + dist left(:,2).A2);
dist-right = sqrt(dist.right(:,1).^2 + distright(:,2).^2);
dist-up = sqrt(dist-up(:,1).^2 + dist-up(:,2).^2);
dist-down = sqrt(dist-down(:,l).^2 + dist down(:,2).A2);

% Now we wish to find the 3 closest real data points
% (the 3 points with the smallest distances). Note that if any
% point has distance=0, we can quit and assign that value.
distances = [distcenter; distileft; dist right; dist-up; dist-down];

if distances > 0.001
% (No point is distance 0)
[dl p1] = min(distances); distances(pl) = inf;
[d2 p2] = min(distances); distances(p2) = inf;
[d3 p3] = min(distances);

% Calculate weights from the distances
wl = 1/d1; w2 = 1/d2; w3 = 1/d3;

switch floor((pl-1)/numimages)
case 0, row adjust = 0; col-adjust = 0;
case 1, row-adjust = 0; col-adjust = -1;
case 2, row adjust = 0; col-adjust = 1;
case 3, row-adjust = -1; col-adjust = 0;
case 4, row-adjust = 1; col-adjust = 0;
otherwise, error(Error with point pl');
end;

out(r+l,c+l) = wl *eval('gactual(floor(r/GAIN)+l+rowadjust, floor(c/GAIN)+1+col-adjust, pl -floor((pl-l)/n)*n)', '0');

switch floor((p2-1)/numaimages)
case 0, row-adjust = 0; col-adjust = 0;
case 1, row-adjust = 0; col-adjust = -1;
case 2, row-adjust = 0; col-adjust = 1;
case 3, row-adjust = -1; col-adjust = 0;
case 4, row adjust = 1; col-adjust = 0;
otherwise, error(Error with point p2');
end;

82

out(r+1,c+1) = out(r+1,c+1) + w2*eval('gactual(floor(r/GAIN)+1+row-adjust, floor(c/GAIN)+1+coladjust, p2-floor((p2-
1)/n)*n)', '0');

switch floor((p3-1)/num images)
case 0, row-adjust = 0; col-adjust = 0;
case 1, row-adjust = 0; coladjust = -1;
case 2, row-adjust = 0; col-adjust = 1;
case 3, row-adjust = -1; col-adjust = 0;
case 4, row-adjust = 1; col adjust = 0;
otherwise, error(Error with point p3');
end;

out(r+l,c+l) = out(r+1,c+1) + w3*eval('gactual(floor(r/GAIN)+1+row adjust, floor(c/G AIN)+1+col-adjust, p3-floor((p3-
1)/n)*n)', '0');

out(r+1,c+1) = out(r+1,c+1)/(wl+w2+w3);

else
% One of the distances is zero
[d p] = min(distances);
if d < 0,

error('Error: negative distance found!');
end;
if p > num-images,

error(Error: a point from another frame has distance zero!');
end;
out(r+l,c+1) = gactual(floor(r/GAIN)+l, floor(c/GAIN)+1, p);

end;
end;

end;
% We're done filling the high res grid.

% End of function MINTERP.M

SPECINTERP.M

A special interpolation function designed solely for the case of 2 frames with purely horizontal offset.

function out = specinterp(y);

% OUT = specinterp(y);

% y is a 2-frame data set with horizontal offset = 0.5 LR

[rows cols n images] = size(y);

for k=0:cols-1,
out(:,1+2*k) = interp(y(:,1+k,1),2);
out(:,2+2*k) = interp(y(:,l+k,2),2);

end;
% End of function SPECINTERP.M

SPECINTERP2.M

A special interpolation function designed solely for the case of 2 frames with diagonal offset.

function out = spec2interp(y);

% OUT = specinterp(y);

% y is a 2-frame data set with diagonal offset = [0.5 0.5]

[rows cols n-images] = size(y);

for c=l:cols
for r=1:rows

83

out(1+2*(r-1),1+2*(c-1)) = y(r,c,l);
out(2+2*(r-l),2+2*(c-1)) = y(r,c,2);

templ = eval('0.25*y(r,c+1,1)','0');
temp2 = eval('0.25*y(r-1,c,2)','0');
out(1+2*(r-1),2+2*(c-l)) = 0.25*y(r,c,l) + 0.25*y(r,c,2) + temp1 + temp2;

temp3 = eval('0.25*y(r+1,c,1)','0');
temp4 = eval('0.25*y(r,c-1,2)','V');
out(2+2*(r-1),1+2*(c-1)) = 0.25*y(r,c,1) + 0.25*y(r,c,2) + temp3 + temp4;

end;
end;
% End of function SPECINTERP2.M

IP.M

This is an inverse filtering algorithm used for some benchmarks, as devised by Irani and Peleg 1989.

function fnew = ip(gactual,hpsfc,n)
% Irani and Peleg's method, ONE frame

% f = ip(g,hpsfc,n)
% Input g is a single low-res image,
% hpsf is arbitrary (usually hpsf), and its relative
% resolution gives the resolution increase
% c is a constant (tweek experimentally).
% n is the number of iterations to run
% Output f is a single high-res image

fold = gactual; % Initial guess

for i=l:n
gdiff= gactual - conv2(fold,hpsf,'same'); % Apply model, calculate diff
fnew = fold + l/c*conv2(gdiffhpsf,'same'); % Backproject diffs
fold = fnew;

% Do again
end;

% End function IP.M

HARDIE.M

This computes the high resolution initial guess that is used by many of the super resolution algorithms. It creates
this guess by filling every point in the high resolution grid with the value of the nearest data point.

function f = hardie(gactual,RLR,hpsfnsr,method)
% Hardie's method(s) for restoration

% F = hardie(G,R,HPSF,NSR,METHOD)

% G - MxNxK, K= number of low res images
% R = registration matrix for low res images (see notes)
% HPSF = psf at desired resolution
% NSR = the Noise-to-Signal ratio of the images
% METHOD ='1995,''1997'
% F = a single high-res image

GAIN =2;

%%%
%% Hardie has published 3 main articles, each successively more complex. His 1995 method, the simplest, consists of
%% registering the offsets, and just choosing the nearest LR pixel to fill each HR pixel. His 1997 method takes the
%% result of Method 1 and applies a certain Wiener filter as a deconvolution operator. His 1998 method is completely

%% unrelated, and is not covered in this file
%%%

84

if ndims(gactual) == 2 % Create a variable
that contains

njimages = 1;
% the # of low-res images available

else n_images = size(gactual);
nimages = n-images(3);

end

%%%%%%%%%%%%%%%%%%

%% METHOD 1 - 1995

% Round the registration values to the nearest HR points
R_LR = RLR - fix(RLR); % offset = offset MOD pixelsize
R_HR = round((RLR*GAIN)); % offset = quantize(offset)

[g-rows g-cols junk] = size(gactual);
harddata = zeros(GAIN);

for offsetr=1:GAIN,
for offset c=1:GAIN, % for each offset within a single LR pixel

% First, find what frame(s) are in this bin
relevent = [];
for row=1:njimages,

if RHR(row,:) == [(offset r-1) (offset c-1)]
relevent = [relevent, row];

end;
end;

% Second, if this bin has any frames, fill all such bins
if length(relevent) > 0

hard-data(offset-r,offset-c) = 1; % Mark this bin as legit data
if length(relevent) == 1 % Expected Case = I frame per bin

for i=0:(g_rows-1),
forj=0:(gcols-1)
point = (1+[ij]-fix(RLR(relevent,:)));
if (point>=1) & (point <= [g-rows g-cols])

f(offsetr+i*GAIN,offsetc+j*GAIN) = gactual(point(1),point(2),relevent);
end;

end;
end;

else % Other Cases = Multiple frames per bin
error('Multiple frames per bin is not supported yet');

end;
end;

end;
end;

% At this point, the HR image F has certain pixels filled, and many pixels empty (0). For each empty pixel, we fill it
% according to Hardie 1995, which copies the value from the nearest neighbor.

% Now, we go through again and fill the still-empty bins

[drow dcol] = find(hard data) % Find points with hard data
for offset r=1 :GAIN,

for offsetc=1:GAIN,

if hard data(offset r,offset c) == 0 % IF bin is empty
list = sqrt((drow - offsetr).A2 + (dcol - offset c).A2);
% (list gives the distance from the current bin to all the
% hard-data bins... so just find the smallest, and fill)
[junk indices] = min(list);
% Copy hard data into empty cells
for i=0:(g rows-1),

for j=O:(gcols-1)
f(offset_r+i*GAIN,offset_c+j*GAIN) = f(drow(indices(l))+i*GAIN,dcol(indices(1))+j*GAIN);

end;
end;

end;

85

end;
end;

%% At this point, the complete high-res image resides in T
%% This is the end of Hardie 1995. If the command line specified '1995' method, we exit here. Otherwise, we continue...

if method == '1995'
return;

end;

%%%%%%%%%%%%%%%%%%
%% METHOD 2 - 1997

if method == '1997'

% FFT must be at least this many points to ensure true linear convolution
sizef = size(f);
11 = max(sizef + size(hpsf));

if 11 > 1024
error(Image too big; would require a 2048x2048 or larger FFT');

elseif 11> 512
11 = 1024;

elseif 11 > 256
11= 512;

elseif 11> 128
11 =256;

else
11 = 128;

end;

% Convert to Frequency Domain
F = fft2(f,11,11);
Hpsf = fft2(hpsf,11,11);

% Create Wiener Filter
Hw = conj(Hpsf) ./ (abs(Hpsf).^2 + nsr);

% Apply Filter (multiplication in frequency domain)
F=F.* Hw;

% Inverse Filter and keep the valid part
f = abs(ifft2(F));
f = f(1:sizef(l),1:sizef(2));

%% Now T holds the 1997 version of the image.
end;

% End of function HARDIE.M

CIF.M

This function performs a Constrained Inverse Filter. It is used solely in the 1-frame case. First this inverse filter is run on the data, and
then the result is cubic interpolated up to the high resolution grid (the interpolation is not in this file).

function out = cif(i, psf, low limit)
% Perform a Constrained Inverse Filter on image

% OUT = cif(IMAGE, FULLPSF, LOWLIMIT)

if nargin == 2
lowlimit = 0.1;

end
hlow = psf;

% Choose FFT size
[rows cols] = size(i);

86

if ((rows < 246) & (cols < 246))
fftsize = 256;

elseif ((rows < 502) & (cols < 502))
fftsize = 512;

elseif ((rows < 1014) & (cols < 1014))
fftsize = 1024;

else
error('Input image too large. Use partial image.');

end

% FFT, constrain, multiply, IFFT
Hlow = fft2(hlow,fft size,fft size);
I = fft2(i,fft-size,fft size);
Hcon = max(Hlow,(low _limit*Hlow./abs(Hlow)));
% possibly do something to the above line to smooth it...
clear Hlow;
Inew = I./Hcon;
clear I; % No longer need it, but we need to manage memory!
out = abs(ifft2(Inew));
out = out(l:rows,l:cols);

% End of function CIF.M

87

Appendix C - Complete Data

This Appendix contains the complete results.
The data is divided first into sections for each number of frames and SNR. For each section, the
results of the metrics are shown for all algorithms and each of the three test images (hrl = Rhode
Island, hr2 = South Dakota, hr3 = Lena). Each metric is listed twice for every situation: the top
number is the result of the metric applied to the entire image, and the bottom number is the result
of the metric applied to the image without a border region 5 pixels wide.

Guide to the data format:

Metrics for
Imagel

Metrics for
Image2

Metrics for
Image3

(hrl)
NMSE
NLMSE J
NMSE
NLMSE
(hr2)
NMSE
NLMSE
NMSE
NLMSE
(hr3)
NMSE
NLMSE
NMSE
NLMSE

/
The number of frames, whether the
offsets are U(niform) or N(on-Uniform),
and the SNR

2U Frames SNR=inf

RMMSE MAP POCS

The 3 Super Resolution
Algorithms

MINT MINT/INV

The 2 benchmarks:
MINT = Multi-
frame interpolation
MINT/INV =
MINT followed by
an inverse filter

Top two metrics of each grouping are
calculated for the ENTIRE restored
imaoe (Rottom twn ari for the imare

minus a border region). I
For example, the data in this square
would correspond to:
Image = #3 = Lena
Metric = NLMSE on entire image
Algorithm = Multi-frame interpolation
followed by inverse filter
Number of Frames = 2
Offsets between frames = uniform
SNR = infinity (no noise)

88

.
T
A

(hrl)
NMSE
NLMSE
NMSE
NLMSE
(hr2)
NMSE
NLMSE
NMSE
NLMSE
(hr3)
NMSE
NLMSE
NMSE
NLMSE

(hrl)
NMSE
NLMSE
NMSE
NLMSE
(hr2)
NMSE
NLMSE
NMSE
NLMSE
(hr3)
NMSE
NLMSE
NMSE
NLMSE

(hrl)
NMSE
NLMSE
NMSE
NLMSE
(hr2)
NMSE
NLMSE
NMSE
NLMSE
(hr3)
NMSE
NLMSE
NMSE
NLMSE

1 Frame SNR=inf

RMMSE MAP POCS MINT MINT/INV
4.29E-02 4.15E-02 4.19E-02 4.81E-02 5.25E-02
9.49E-01 9.43E-01 9.40E-01 9.69E-01 9.67E-01
3.99E-02 4.04E-02 4.OOE-02 4.43E-02 4.29E-02
9.48E-01 9.48E-01 9.43E-01 9.69E-01 9.68E-01

3.91E-02 3.56E-02 4.02E-02 4.77E-02 6.01E-02
8.91E-01 8.60E-01 9.04E-01 9.21E-01 9.35E-01
3.64E-02 3.56E-02 3.79E-02 4.54E-02 5.13E-02
8.66E-01 8.42E-01 8.92E-01 9.09E-01 9.22E-01

9.11E-03 8.35E-03 1.07E-02 1.40E-02 2.11E-02
8.55E-01 9.OBE-01 9.93E-01 8.93E-01 9.18E-01
7.28E-03 8.01E-03 9.13E-03 1.03E-02 1.1OE-02
8.29E-01 8.89E-01 9.82E-01 8.86E-01 8.99E-01

1 frame SNR=150

RMMSE MAP POCS MINT MINTINV
4.34E-02 4.17E-02 4.23E-02 4.82E-02 5.26E-02
9.50E-01 9.43E-01 9.44E-01 9.69E-01 9.68E-01
4.01 E-02 4.06E-02 4.08E-02 4.44E-02 4.29E-02
9.49E-01 9.49E-01 9.48E-01 9.69E-01 9.68E-01

3.98E-02 3.59E-02 4.06E-02 4.79E-02 6.04E-02
8.93E-01 8.59E-01 9.08E-01 9.22E-01 9.36E-01
3.69E-02 3.58E-02 3.86E-02 4.56E-02 5.15E-02
8.69E-01 8.41E-01 8.96E-01 9.11E-01 9.22E-01

9.46E-03 7.97E-03 1.09E-02 1.41E-02 2.12E-02
8.60E-01 8.81E-01 9.99E-01 8.95E-01 9.19E-01
7.46E-03 7.79E-03 9.33E-03 1.04E-02 1.11E-02
8.32E-01 8.73E-01 9.88E-01 8.88E-01 9.00E-01

2N SNR=inf
Frames

RMMSE MAP POCS MINT MINT/INV
3.63E-02 3.70E-02 2.72E-02 4.48E-02 3.91E-02
8.85E-01 8.92E-01 7.29E-01 9.31E-01 9.21E-01
3.44E-02 3.63E-02 2.74E-02 4.05E-02 3.76E-02
8.88E-01 9.03E-01 7.42E-01 9.34E-01 9.23E-01

3.13E-02 3.06E-02 2.39E-02 4.68E-02 3.65E-02
8.04E-01 7.86E-01 6.89E-01 8.76E-01 8.54E-01
3.03E-02 3.07E-02 2.65E-02 4.09E-02 3.49E-02
7.87E-01 7.72E-01 6.94E-01 8.63E-01 8.34E-01

6.44E-03 5.02E-03 5.25E-03 1.29E-02 7.05E-03
7.28E-01 6.98E-01 7.17E-01 8.11E-01 7.76E-01
5.1OE-03 4.83E-03 5.34E-03 8.25E-03 5.94E-03
6.99E-01 6.85E-01 7.01E-01 7.94E-01 7.44E-01

89

1 Frame SNR=300

RMMSE MAP POCS MINT MINT/IN
4.32E-02 4.16E-02 4.19E-02 4.81E-02 5.26E-02
9.49E-01 9.44E-01 9.40E-01 9.69E-01 9.67E-01
3.99E-02 4.05E-02 4.02E-02 4.43E-02 4.29E-02
9.48E-01 9.49E-01 9.43E-01 9.69E-01 9.68E-01

3.95E-02 3.57E-02 4.02E-02 4.77E-02 6.02E-02
8.92E-01 8.59E-01 9.05E-01 9.22E-01 9.35E-01
3.66E-02 3.56E-02 3.81E-02 4.54E-02 5.14E-02
8.67E-01 8.40E-01 8.93E-01 9.09E-01 9.22E-01

9.31E-03 7.85E-03 1.08E-02 1.41E-02 2.11E-02
8.57E-01 8.81E-01 9.95E-01 8.94E-01 9.18E-01
7.32E-03 7.69E-03 9.19E-03 1.03E-02 1.10E-02
8.30E-01 8.73E-01 9.85E-01 8.87E-01 8.99E-01

1 frame SNR=75

RMMSE MAP POCS MINT MINT/IN
4.41E-02 4.23E-02 4.40E-02 4.87E-02 5.30E-02
9.52E-01 9.45E-01 9.49E-01 9.70E-01 9.68E-01
4.08E-02 4.1OE-02 4.28E-02 4.48E-02 4.33E-02
9.51E-01 9.52E-01 9.53E-01 9.70E-01 9.69E-01

4.12E-02 3.75E-02 4.22E-02 4.85E-02 6.11E-02
9.02E-01 8.76E-01 9.25E-01 9.25E-01 9.38E-01
3.86E-02 3.73E-02 4.08E-02 4.63E-02 5.24E-02
8.77E-01 8.58E-01 9.16E-01 9.14E-01 9.25E-01

9.95E-03 8.45E-03 1.16E-02 1.43E-02 2.14E-02
8.69E-01 8.93E-01 1.026 8.98E-01 9.21E-01
7.94E-03 8.25E-03 9.96E-03 1.06E-02 1.13E-02
8.41E-01 8.85E-01 1.014 8.91E-01 9.01E-01

2N SNR=300
Frames

RMMSE MAP POCS MINT MINT/IN
3.63E-02 3.70E-02 3.27E-02 4.48E-02 3.92E-02
8.85E-01 8.93E-01 8.40E-01 9.31E-01 9.21E-01
3.45E-02 3.64E-02 3.29E-02 4.05E-02 3.77E-02
8.88E-01 9.04E-01 8.53E-01 9.34E-01 9.23E-01

3.14E-02 3.06E-02 2.85E-02 4.69E-02 3.67E-02
8.06E-01 7.86E-01 8.10E-01 8.78E-01 8.56E-01
3.05E-02 3.07E-02 3.11E-02 4.1OE-02 3.50E-02
7.89E-01 7.73E-01 8.08E-01 8.64E-01 8.36E-01

6.50E-03 5.1OE-03 6.50E-03 1.30E-02 7.10E-03
7.30E-01 7.OOE-01 8.51E-01 8.12E-01 7.78E-01
5.1OE-03 4.90E-03 6.60E-03 8.30E-03 6.OOE-03
7.OOE-01 6.87E-01 8.31E-01 7.95E-01 7.46E-01

(hrl)
NMSE
NLMSE
NMSE
NLMSE
(hr2)
NMSE
NLMSE
NMSE
NLMSE
(hr3)
NMSE
NLMSE
NMSE
NLMSE

(hrl)
NMSE
NLMSE
NMSE
NLMSE
(hr2)
NMSE
NLMSE
NMSE
NLMSE
(hr3)
NMSE
NLMSE
NMSE
NLMSE

(hrl)
NMSE
NLMSE
NMSE
NLMSE
(hr2)
NMSE
NLMSE
NMSE
NLMSE
(hr3)
NMSE
NLMSE
NMSE
NLMSE

2N SNR=150
Frames

RMMSE MAP POCS MINT MINT/INV
3.66E-02 3.72E-02 3.50E-02 4.50E-02 3.93E-02
8.87E-01 8.94E-01 8.74E-01 9.32E-01 9.22E-01
3.47E-02 3.64E-02 3.53E-02 4.06E-02 3.78E-02
8.90E-01 9.05E-01 8.87E-01 9.35E-01 9.24E-01

3.18E-02 3.08E-02 3.04E-02 4.71E-02 3.72E-02
8.10E-01 7.88E-01 8.38E-01 8.81E-01 8.63E-01
3.09E-02 3.09E-02 3.32E-02 4.12E-02 3.57E-02
7.94E-01 7.77E-01 8.38E-01 8.69E-01 8.44E-01

6.60E-03 5.20E-03 7.30E-03 1.30E-02 7.30E-03
7.38E-01 7.07E-01 8.96E-01 8.17E-01 7.86E-01
5.30E-03 5.OOE-03 7.30E-03 8.30E-03 6.1OE-03
7.09E-01 6.95E-01 8.76E-01 8.OOE-01 7.54E-01

2U SNR=inf
Frames

RMMSE MAP POCS MINT MINT/INV
2.87E-02 3.05E-02 2.48E-02 4.57E-02 3.98E-02
8.31E-01 8.35E-01 7.70E-01 9.47E-01 9.56E-01
2.78E-02 2.96E-02 2.44E-02 4.02E-02 3.64E-02
8.32E-01 8.32E-01 7.76E-01 9.36E-01 9.40E-01

1.73E-02 1.51E-02 1.34E-02 4.62E-02 3.37E-02
6.46E-01 5.90E-01 5.71E-01 9.18E-01 9.29E-01
1.69E-02 1.53E-02 1.38E-02 4.07E-02 3.14E-02
6.18E-01 5.67E-01 5.54E-01 9.OOE-01 8.88E-01

4.61E-03 4.21E-03 4.OOE-03 1.41E-02 9.06E-03
6.96E-01 6.91E-01 6.83E-01 9.04E-01 9.28E-01
4.30E-03 4.20E-03 4.04E-03 9.24E-03 6.37E-03
6.72E-01 6.84E-01 6.75E-01 8.57E-01 8.17E-01

2U SNR=150
Frames

RMMSE MAP POCS MINT MINTINV
2.91E-02 3.05E-02 2.88E-02 4.58E-02 4.OOE-02
8.35E-01 8.32E-01 8.20E-01 9.48E-01 9.57E-01
2.83E-02 2.97E-02 2.82E-02 4.03E-02 3.66E-02
8.36E-01 8.32E-01 8.25E-01 9.37E-01 9.41E-01

1.79E-02 1.55E-02 1.84E-02 4.63E-02 3.41E-02
6.55E-01 5.94E-01 6.60E-01 9.20E-01 9.34E-01
1.76E-02 1.57E-02 1.87E-02 4.09E-02 3.19E-02
6.27E-01 5.73E-01 6.38E-01 9.01 E-01 8.92E-01

4.90E-03 4.40E-03 6.30E-03 1.41E-02 9.30E-03
7.1OE-01 7.OOE-01 8.42E-01 9.08E-01 9.38E-01
4.60E-03 4.40E-03 6.OOE-03 9.30E-03 6.60E-03
6.86E-01 6.94E-01 8.19E-01 8.61E-01 8.27E-01

90

2N SNR=75
Frames

RMMSE MAP POCS MINT MINT/IN
3.75E-02 3.76E-02 3.82E-02 4.56E-02 4.04E-02
8.94E-01 8.96E-01 9.04E-01 9.38E-01 9.32E-01
3.56E-02 3.68E-02 3.82E-02 4.12E-02 3.89E-02
8.98E-01 9.09E-01 9.17E-01 9.43E-01 9.36E-01

3.35E-02 3.20E-02 3.42E-02 4.79E-02 3.91E-02
8.31E-01 8.04E-01 8.73E-01 8.93E-01 8.87E-01
3.27E-02 3.20E-02 3.70E-02 4.22E-02 3.77E-02
8.14E-01 7.91E-01 8.70E-01 8.83E-01 8.70E-01

7.20E-03 5.90E-03 8.50E-03 1.34E-02 8.OOE-03
7.60E-01 7.38E-01 9.45E-01 8.35E-01 8.20E-01
5.90E-03 5.60E-03 8.40E-03 8.70E-03 6.80E-03
7.30E-01 7.23E-01 9.24E-01 8.18E-01 7.88E-01

2U SNR=300
Frames

RMMSE MAP POCS MINT MINT/lN
2.88E-02. 3.07E-02 2.68E-02 4.57E-02 3.98E-02
8.32E-01 8.39E-01 7.97E-01 9.47E-01 9.56E-01
2.79E-02 2.98E-02 2.63E-02 4.02E-02 3.65E-02
8.33E-01 8.35E-01 8.02E-01 9.36E-01 9.40E-01

1.75E-02 1.51E-02 1.59E-02 4.62E-02 3.39E-02
6.49E-01 5.87E-01 6.20E-01 9.18E-01 9.31E-01
1.71E-02 1.53E-02 1.61E-02 4.OBE-02 3.16E-02
6.20E-01 5.65E-01 5.99E-01 9.OOE-01 8.89E-01

4.70E-03 4.30E-03 5.20E-03 1.41E-02 9.1OE-03
7.OOE-01 6.97E-01 7.83E-01 9.06E-01 9.32E-01
4.40E-03 4.30E-03 5.1OE-03 9.30E-03 6.40E-03
6.76E-01 6.91E-01 7.63E-01 8.58E-01 8.20E-01

2U SNR=75
Frames

RMMSE MAP POCS MINT MINTlIN
3.03E-02 3.12E-02 3.22E-02 4.61E-02 4.08E-02
8.42E-01 8.38E-01 8.50E-01 9.51E-01 9.65E-01
2.94E-02 3.03E-02 3.15E-02 4.06E-02 3.75E-02
8.45E-01 8.37E-01 8.56E-01 9.41E-01 9.50E-01

2.01E-02 1.67E-02 2.28E-02 4.67E-02 3.53E-02
6.83E-01 6.07E-01 7.1OE-01 9.25E-01 9.51E-01
2.OOE-02 1.69E-02 2.34E-02 4.14E-02 3.32E-02
6.55E-01 5.85E-01 6.88E-01 9.07E-01 9.09E-01

5.70E-03 5.30E-03 7.70E-03 1.44E-02 9.80E-03
7.53E-01 7.52E-01 8.95E-01 9.23E-01 9.70E-01
5.40E-03 5.20E-03 7.30E-03 9.50E-03 7.20E-03
7.27E-01 7.40E-01 8.72E-01 8.74E-01 8.58E-01

SNR=inf4N
Frames

POCS MINT M
No Data 4.70E-024

9.56E-01 E
4.12E-02
9.47E-01

4.87E-023
9.38E-01
4.33E-02
9.23E-01

1.51 E-02
8.99E-01
9.71 E-03
8.57E-01

RMMSE
2.56E-02
7.76E-01
2.46E-02
7.75E-01

1.54E-02
5.90E-01
1.46E-02
5.62E-01

4.08E-03
6.08E-01
3.39E-03
5.81 E-01

(hrl)
NMSE
NLMSE
NMSE
NLMSE
(hr2)
NMSE
NLMSE
NMSE
NLMSE
(hr3)
NMSE
NLMSE
NMSE
NLMSE

(hrl)
NMSE
NLMSE
NMSE
NLMSE
(hr2)
NMSE
NLMSE
NMSE
NLMSE
(hr3)
NMSE
NLMSE
NMSE
NLMSE

(hrl)
NMSE
NLMSE
NMSE
NLMSE
(hr2)
NMSE
NLMSE
NMSE
NLMSE
(hr3)
NMSE
NLMSE
NMSE
NLMSE

MAP
2.62E-02
7.54E-01
2.57E-02
7.64E-01

1.32E-02
5.12E-01
1.20E-02
4.81 E-01

4.76E-03
6.03E-01
2.87E-03
5.29E-01

91

4N SNR=150
Frames

RMMSE MAP POCS MINT MINT/INV
2.61E-02 2.65E-02 No Data 4.71E-02 4.17E-02
7.80E-01 7.58E-01 9.58E-01 9.74E-01
2.50E-02 2.59E-02 4.13E-02 3.83E-02
7.80E-01 7.66E-01 9.49E-01 9.62E-01

1.60E-02 1.35E-02 4.88E-02 3.73E-02
6.01E-01 5.17E-01 9.40E-01 9.72E-01
1.53E-02 1.24E-02 4.34E-02 3.57E-02
5.74E-01 4.89E-01 9.23E-01 9.41E-01

4.33E-03 5.04E-03 1.52E-02 9.63E-03
6.23E-01 6.23E-01 9.05E-01 9.31E-01
3.62E-03 3.09E-03 9.82E-03 6.95E-03
5.95E-01 5.44E-01 8.62E-01 8.37E-01

4U SNR=inf
Frames

RMMSE MAP POCS MINT MINTINV
2.24E-02 2.30E-02 2.60E-03 4.02E-02 3.83E-02
7.21E-01 6.98E-01 1.22E-01 8.86E-01 9.27E-01
2.20E-02 2.31E-02 2.60E-03 3.64E-02 3.60E-02
7.22E-01 7.09E-01 1.21E-01 8.86E-01 9.22E-01

1.29E-02 9.60E-03 1.OOE-03 3.94E-02 3.52E-02
5.35E-01 4.24E-01 6.71E-02 8.08E-01 9.06E-01
1.26E-02 9.60E-03 1.10E-03 3.54E-02 3.39E-02
5.08E-01 4.02E-01 6.68E-02 7.90E-01 8.61E-01

3.1OE-03 2.30E-03 2.OOE-04 1.15E-02 8.30E-03
5.44E-01 4.64E-01 6.91E-02 7.67E-01 8.38E-01
2.90E-03 2.30E-03 3.OOE-04 7.50E-03 5.40E-03
5.22E-01 4.52E-01 6.68E-02 7.34E-01 7.04E-01

MINT/INV
4.14E-02
9.71 E-01
3.80E-02
9.59E-01

3.71 E-02
9.69E-01
3.55E-02
9.39E-01

9.44E-03
9.18BE-01
6.75E-03
8.24E-01

4N SNR=300
Frames

RMMSE MAP POCS MINT MINT/IN
2.57E-02 2.62E-02 No Data 4.70E-02 4.15E-02
7.76E-01 7.54E-01 9.56E-01 9.72E-01
2.47E-02 2.57E-02 4.12E-02 3.81E-02
7.76E-01 7.63E-01 9.47E-01 9.59E-01

1.56E-02 1.32E-02 4.87E-02 3.72E-02
5.94E-01 5.08E-01 9.39E-01 9.71E-01
1.48E-02 1.20E-02 4.33E-02 3.56E-02
5.66E-01 4.78E-01 9.23E-01 9.41E-01

4.16E-03 4.83E-03 1.51E-02 9.47E-03
6.14E-01 6.1OE-01 9.01E-01 9.20E-01
3.47E-03 2.94E-03 9.72E-03 6.78E-03
5.88E-01 5.35E-01 8.58E-01 8.26E-01

4N SNR=75
Frames

RMMSE MAP POCS MINT MINT/IN
2.72E-02 2.71 E-02 No Data 4.73E-02 4.22E-02
7.93E-01 7.66E-01 9.59E-01 9.79E-01
2.62E-02 2.65E-02 4.14E-02 3.89E-02
7.95E-01 7.75E-01 9.51E-01 9.68E-01

1.78E-02 1.53E-02 4.94E-02 3.86E-02
6.34E-01 5.57E-01 9.49E-01 9.94E-01
1.72E-02 1.41E-02 4.41E-02 3.71E-02
6.06E-01 5.29E-01 9.33E-01 9.63E-01

5.08E-03 5.98E-03 1.54E-02 1.01E-02
6.76E-01 7.07E-01 9.20E-01 9.57E-01
4.39E-03 3.99E-03 9.96E-03 7.37E-03
6.49E-01 6.28E-01 8.78E-01 8.65E-01

4U SNR=300
Frames

RMMSE MAP POCS MINT MINT/IN
2.24E-02 2.30E-02 1.53E-02 4.02E-02 3.84E-02
7.23E-01 6.95E-01 5.46E-01 8.85E-01 9.26E-01
2.21E-02 2.30E-02 1.53E-02 3.64E-02 3.61E-02
7.23E-01 7.07E-01 5.54E-01 8.85E-01 9.22E-01

1.31E-02 9.70E-03 9.90E-03 3.94E-02 3.54E-02
5.39E-01 4.25E-01 4.42E-01 8.12E-01 9.11E-01
1.28E-02 9.70E-03 1.01E-02 3.55E-02 3.42E-02
5.12E-01 4.03E-01 4.24E-01 7.94E-01 8.67E-01

3.1OE-03 2.40E-03 2.80E-03 1.16E-02 8.40E-03
5.49E-01 4.73E-01 4.84E-01 7.71E-01 8.43E-01
3.OOE-03 2.40E-03 2.60E-03 7.50E-03 5.50E-03
5.27E-01 4.59E-01 4.62E-01 7.38E-01 7.1OE-01

4U SNR=150
Frames

RMMSE MAP POCS MINT MINTINV
2.28E-02 2.31E-02 1.99E-02 4.04E-02 3.88E-02
7.27E-01 6.96E-01 6.48E-01 8.90E-01 9.33E-01
2.25E-02 2.32E-02 1.99E-02 3.66E-02 3.64E-02
7.28E-01 7.08E-01 6.56E-01 8.90E-01 9.29E-01

1.36E-02 1.01E-02 1.34E-02 3.96E-02 3.56E-02
5.48E-01 4.36E-01 5.30E-01 8.17E-01 9.18E-01
1.34E-02 1.02E-02 1.37E-02 3.57E-02 3.44E-02
5.21E-01 4.14E-01 5.09E-01 7.98E-01 8.73E-01

3.30E-03 2.60E-03 4.1OE-03 1.17E-02 8.60E-03
5.61 E-01 4.85E-01 6.11 E-01 7.81 E-01 8.63E-01
3.1OE-03 2.50E-03 3.90E-03 7.70E-03 5.70E-03
5.38E-01 4.71E-01 5.84E-01 7.48E-01 7.30E-01

(hrl)
NMSE
NLMSE
NMSE
NLMSE
(hr2)
NMSE
NLMSE
NMSE
NLMSE
(hr3)
NMSE
NLMSE
NMSE
NLMSE

(hrl)
NMSE
NLMSE
NMSE
NLMSE
(hr2)
NMSE
NLMSE
NMSE
NLMSE
(hr3)
NMSE
NLMSE
NSMSE
NLMSE

(hrl)
NMSE
NLMSE
NMSE
NLMSE
(hr2)
NMSE
NLMSE
NMSE
NLMSE
(hr3)
NMSE
NLMSE
NMSE
NLMSE

POCS MINT
No Data 4.10OE-02

8.98E-01
3.72E-02
8.98E-01

4.03E-02
8.34E-01
3.67E-02
8.21 E-01

1.18E-02

7.76E-01

MINT/INV
3.79E-02
9.27E-01
3.58E-02
9.23E-01

3.38E-02
9.04E-01
3.30E-02
8.66E-01

8.16E-03
8.64E-01

7.-35.68E-03
7.-17.45E-01

MAP
2.24E-02
6.84E-01
2.18E-02
6.92E-01

1.16E-02
4.44E-01
9.53E-03
4.08E-01

5.27E-03
5.79E-01
2.19E-03
4.32E-01

RMMSE
2.26E-02
7.14E-01
2.13E-02
7.1 0E-01

1.36E-02
5.27E-01
1.20E-02
4.93E-01

3.99E-03
5.54E-01
2.70E-03
5.04E-01

4U SNR=75
Frames

RMMSE MAP POCS MINT MINT/IN
2.39E-02 2.35E-02 2.59E-02 4.09E-02 3.98E-02
7.40E-01 7.OOE-01 7.43E-01 9.01E-01 9.51E-01
2.35E-02 2.36E-02 2.58E-02 3.71 E-02 3.76E-02
7.41E-01 7.12E-01 7.54E-01 9.01E-01 9.47E-01

1.54E-02 1.17E-02 1.98E-02 4.04E-02 3.74E-02
5.82E-01 4.74E-01 6.49E-01 8.39E-01 9.61E-01
1.53E-02 1.18E-02 2.01E-02 3.66E-02 3.64E-02
5.56E-01 4.55E-01 6.26E-01 8.24E-01 9.19E-01

4.1OE-03 3.60E-03 6.40E-03 1.20E-02 9.40E-03
6.23E-01 5.91E-01 7.84E-01 8.29E-01 9.39E-01
3.90E-03 3.60E-03 6.1OE-03 8.00E-03 6.50E-03
6.OOE-01 5.76E-01 7.59E-01 7.93E-01 8.02E-01

8N SNR=300
Frames

RMMSE MAP POCS MINT MINT/IN
2.27E-02 2.25E-02 No Data 4.1OE-02 3.79E-02
7.15E-01 6.84E-01 8.97E-01 9.26E-01
2.13E-02 2.18E-02 3.72E-02 3.58E-02
7.11 E-01 6.92E-01 8.97E-01 9.22E-01

1.37E-02 1.17E-02 4.04E-02 3.38E-02
5.30E-01 4.45E-01 8.35E-01 9.05E-01
1.21E-02 9.60E-03 3.68E-02 3.31E-02
4.97E-01 4.10E-01 8.23E-01 8.69E-01

4.03E-03 5.34E-03 1.18E-02 8.20E-03
5.58E-01 5.86E-01 8.09E-01 8.66E-01
2.75E-03 2.23E-03 7.79E-03 5.73E-03

5.07E-01 4.37E-01 7.76E-01 7.47E-01

8N SNR=75
Frames

RMMSE MAP POCS MINT MINT/IN
2.38E-02 2.28E-02 No Data 4.16E-02 3.92E-02
7.30E-01 6.85E-01 9.09E-01 9.46E-01
2.24E-02 2.21E-02 3.78E-02 3.70E-02
7.25E-01 6.92E-01 9.07E-01 9.41E-01

1.58E-02 1.34E-02 4.13E-02 3.63E-02
5.71E-01 4.83E-01 8.68E-01 9.64E-01
1.41E-02 1.08E-02 3.77E-02 3.57E-02
5.35E-01 4.35E-01 8.54E-01 9.26E-01

4.72E-03 6.31E-03 1.22E-02 8.94E-03
6.14E-01 6.84E-01 8.56E-01 9.38E-01
3.45E-03 3.08E-03 8.14E-03 6.44E-03
5.62E-01 5.20E-01 8.21E-01 8.18E-01

92

8N
Frames

8N SNR=150
Frames

RMMSE MAP POCS MINT MINT/INV
2.28E-02 2.24E-02 No Data 4.11 E-02 3.81 E-02
7.16E-01 6.83E-01 9.OOE-01 9.30E-01
2.15E-02 2.19E-02 3.73E-02 3.61E-02
7.13E-01 6.92E-01 8.99E-01 9.26E-01

1.41E-02 1.19E-02 4.06E-02 3.44E-02

5.39E-01 4.48E-01 8.43E-01 9.16E-01
1.26E-02 9.74E-03 3.69E-02 3.35E-02
5.05E-01 4.11 E-01 8.27E-01 8.76E-01

4.19E-03 5.48E-03 1.19E-02 8.39E-03
5.72E-01 6.09E-01 8.22E-01 8.86E-01
2.91E-03 2.44E-03 7.89E-03 5.91E-03
5.23E-01 4.65E-01 7.90E-01 7.67E-01

SNR=inf

References

M.S. Alam, J.G. Bognar, R.C. Hardie, B.J. Yasuda, "High resolution infrared image
reconstruction using multiple, randomly shifted, low resolution, aliased frames," SPIE
Vol. 3063, 102-112, 1997.

H.C. Andrews and B.R. Hunt, Digital Image Restoration, Prentice-Hall, Englewood Cliffs NJ,
1977.

D.P. Bertsekas, Nonlinear Programming, Athena Scientific, Belmont MA, 1995.

S. Borman and R.L. Stevenson, "Super-Resolution from Image Sequences - A Review," 1998
Midwest Symposium on Circuits and Systems, IEEE Comput. Soc., 374-378, 1999.

P. Cheeseman, B. Kanefsky, R. Kraft, J. Stutz, and R. Hanson, "Super-Resolved Surface
Reconstruction From Multiple Images," Technical Report FIA-94-12, NASA Ames
Research Center, Artificial Intelligence Branch, 1994.

B. Cohen and I. Dinstein, "Resolution Enhancement By Polyphase Back-Projection Filtering,"

Proc. IEEE ICASSP, Vol. 5, 2921-2924, 1998.

B.R. Frieden, "Restoring with Maximum Likelihood and Maximum Entropy," J. Opt. Soc.

America, Vol. 62 No. 4, 511-518, April 1972.

R.W. Gerchberg, "Super-resolution through error energy reduction," Optica Acta, Vol. 21 No. 9,
709-720, 1974.

J.C. Gillette, T.M. Stadtmiller, and R.C. Hardie, "Aliasing reduction in staring infrared imagers
utilizing subpixel techniques," Optical Engineering, Vol. 34 No. 11, 3130-3137,
November 1995.

J.W. Goodman, Introduction to Fourier Optics, McGraw-Hill, San Francisco, 1968.

R.C. Hardie, K.J. Barnard, and E.E. Armstrong, "Joint MAP Registration and High-Resolution
Image Estimation Using a Sequence of Undersampled Images," IEEE Trans. Image

Proc., Vol. 6 No. 12, 1621-1632, December 1997.

R.C. Hardie, K.J. Barnard, J.G. Bognar, and E.A. Watson, "High-resolution image reconstruction
from a sequence of rotated and translated frames and its application to an infrared

imaging system," Optical Engineering, Vol. 37 No. 1, 247-260, 1998.

J.L. Harris, "Diffraction and Resolving Power," J. Opt. Soc. America, Vol. 54 No. 7, 931-936,
July 1964.

B.R. Hunt, "Super-Resolution of Images: Algorithms, Principles, Performance," Int. Journal. of
Imaging Systems and Technology, Vol. 6, 297-304, 1995.

M. Irani and S. Peleg, "Super Resolution From Image Sequences," IEEE 101 Intl. Conference on
Pattern Recognition, 115-120, 1990.

93

M. Irani and S. Peleg, "Improving Resolution by Image Registration," CVGIP: Graphical Models
and Image Processing, Vol. 53 No. 3, 231-239, May 1991.

E. Kaltenbacher and R.C. Hardie, "High Resolution Infrared Image Reconstruction Using
Multiple, Low Resolution, Aliased Frames," Proc. IEEE 1996 National Aerospace and
Electronics Conference (NAECON), Vol. 2, 702-709, 1996.

J.S. Lim, Two-Dimensional Signal and Image Processing, Prentice Hall, Englewood Cliffs, NJ,
1990.

R.G. Lyon, J.M. Hollis, and J.E. Dorband, "A Maximum Entropy Method with a priori Maximum
Likelihood Constraints," Astrophysical Journal, Vol. 478 No. 2, 658-662, April 1997.

A.V. Oppenheim and A.S. Willsky with S.H. Nawab, Signals and Systems, Second Edition,
Prentice Hall, Upper Saddle River, NJ, 1997.

W.K. Pratt, Digital Image Processing, John Wiley & Sons, New York, 1978.

D.L. Ruderman and W. Bialek, "Seeing Beyond the Nyquist Limit," Neural Computation, Vol. 4,
682-690, 1992.

R.R. Schultz and R.L. Stevenson, "Extraction of High-Resolution Frames from Video
Sequences," IEEE Trans. Image Proc., Vol. 5 No. 6, 996-1011, June 1996.

P.J. Sementilli, M.S. Nadar, and B.R. Hunt, "Empirical Evaluation of a Bound on Image
Superresolution Performance," SPIE, Vol. 2302, 178-187, 1994.

M.I. Sezan and A.MTekalp, "Adaptive Image Restoration with Artifact Suppression Using the
Theory of Convex Projections," IEEE Trans. Acoustics, Speech, and Signal Proc., Vol.

38 No. 1, 181-185, Jan 1990.

M.I. Sezan and A.M. Tekalp, "Survey of recent developments in digital image restoration," Opt.
Eng. 29(5), 393-404, May 1990.

H. Shekarforoush and R. Chellappa, "Multi-channel Super-resolution for Image Sequences with
Application to Airborne Video Data," Image and Multidimensional Digital Signal

Processing 1998 Proceedings, 207-210, 1998.

H. Stark and P. Oskoui, "High-resolution Image Recovery from Image-plane Arrays, Using

Convex Projections," J. Opt. Soc. of America A, Vol. 6 No. 11, 1715-1726, 1989.

R.Y. Tsai and T.S. Huang, "Multiframe image restoration and registration, " Advances in

Computer Vision and Image Processing, Eds. T.Y. Tsai and T.S. Huang, Vol. 1, 317-339,
1984.

E.A. Watson, R.A. Muse, and F.P. Blommel, "Aliasing and blurring in microscanned imagery,"
SPIE, Vol. 1689, 242-250, 1992.

94

