
A Modular Framework for Reusable Research

Software

by

Patrick William Anderson

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2000

© Patrick William Anderson, MM. All rights reserved.

The author hereby grants to MIT permission to reproduce and
distribute publicly paper and electronic copies of this thesis document

in whole or in part.

Author .
Department of Electrical Engineering and Computer Science

May 18, 2000

Certified by...
Nancy G. Leveson

Professor of Aeronautics and Astronautics
--Thesis Supervisor

Accepted by............
Arthur C. Smith

Chairman, Department Committee on Graduate dents
MASSACHUSETS INSTITUTE

OF TECHNOLOGY

JUL 2 7 2000

LIBRARIES

A Modular Framework for Reusable Research Software

by

Patrick William Anderson

Submitted to the Department of Electrical Engineering and Computer Science
on May 18, 2000, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Computer Science and Engineering

Abstract

Research which requires developing software is burdened with the effort of developing
tools to demonstrate and evaluate various topics and approaches. Often such research
tools are very short-lived, giving way frequently to new tools which demonstrate new
ideas and directions of the research. The result of such continuous change to the
requirements and features of reasearch tools is that they are usually discarded and
new tools developed when new needs arise. This thesis presents a framework on which
research tools can be constructed which maximizes the reusability and maintainability
of that code, and can reduce the cost of new development.

Thesis Supervisor: Nancy G. Leveson
Title: Professor of Aeronautics and Astronautics

2

Acknowledgments

I would like to thank the following people for their assisstance, support and encour-

agement on this project:

My supervisor, Professor Nancy Leveson, for taking on a student she need not

have and providing me with her support and encouragement in the face of adverse

and difficult circumstances. Thank you very much. I am most grateful.

Jeffrey Howard for providing me a sounding board, mercilessly attacking my ideas

at every turn, and generally giving me valuable feedback on the project and this thesis

while they were in development. His assisstance was essential to this effort.

Michael L. Smith, for first opening my eyes to the world of software engineering

and design so long ago.

3

Contents

1 Introduction 6

1.1 Rapid Changes in Requirements . 7

1.2 High Turnover Rate . 7

1.3 High Development Costs . 8

1.4 Obstacles to Reuse . 8

2 System Requirements, Safety and the SpecTRM Toolkit 10

2.1 Safety and System Requirements . 10

2.2 The SpecTRM Toolkit . 11

2.3 Toolkit Design Criteria and Requirements 12

2.4 Design Goals . 12

2.4.1 Flexibility . 13

2.4.2 Extensibility . 13

2.4.3 Maintainability . 14

2.5 Existing Tools . 14

2.5.1 Nim bus . 15

2.6 Problems with the Current Solution 16

3 The Design of Modular Frameworks 18

3.1 What is a modular framework? . 19

3.2 Issues That Impact Framework Design 22

3.2.1 Addressing Changing System Requirements 23

3.2.2 Addressing Changing Application Requirements 24

4

3.2.3 Addressing Changing Visual Requirements . .

3.2.4 Addressing Changing Abstract Requirements .

3.3 The Advantages of Modular Frameworks

3.3.1 D esign .

3.3.2 Development

3.3.3 Testing .

4 The SpecTRM Foundation Classes

4.1 Design of the Foundation Classes

4.1.1 Mechanisms

4.1.2 Services

4.2 Notes

4.2.1 Implementation Notes . .

4.2.2 Scenario Documentation

4.2.3 Illustrative Examples . .

4.3 Goals

4.4 Future Needs

4.5 New Development

A Framework Interfaces

5

25

26

26

27

28

29

30

30

31

35

37

37

38

39

40

40

42

43

Chapter 1

Introduction

Research software is a particularly challenging software engineering problem. It is

functionality driven, as is all applications development, but the requirements are

continually changing as the research progresses. This dynamic and very limited envi-

ronment inevitably leads to a host of unmaintainable and barely functional, software

which must be discarded with each new advance.

Ideally then, research software would be supported by a body of code which incor-

porated basic functionality most often used by the code so that changes could focus

on research driven needs and not on the detailed aspects of implementing those needs.

In principle, this is something that every body of research software would have, but

in practice limits on time, money and personnel drive development to be as rewarding

as is possible at all times, which implies that time spent doing maintenance to avoid

a greater amount of maintenance in the future gets sacrificed in the name of greater

functionality.

While there is very little work dealing with the causes behind the situation as it

stands in the academic community, anyone familiar with conditions there vis-a-vis

software development will find my description uncomfortably familiar. This author

regrets that only a vanishingly small amount of research into the real processes which

are used in practice in academia to develop software exists. Perhaps this situation

will be rectified in the future, but it seems unlikely.

The purpose of this thesis is to present a design for such a body of code and argue

6

that the design meets its goals. These goals include minimizing as much as is possible

the cost of modifying the software which is supported and not significantly adding to

the overall development time of the research software in question.

1.1 Rapid Changes in Requirements

The requirements of research software tend to change often and at times drastically.

This rate of change is driven by the progress of the research and changes in its focus.

This is only natural, as the purpose of the software is to assist (or even enable) the

research, and thus as the research progresses, the needs it imposes on the software

must change. This sort of phenomenon is especially evident in computer science

related research, where a research compiler might be built to support a research

language, but need to support a new version of that language on a regular basis, as

often as on a weekly basis. This is not to say that this sort of phenomenon is limited

to computer science research, as any research that requires computer assistance often

suffers from analogous software requirements problems.

1.2 High Turnover Rate

Research software tends to be replaced often, resulting in wasted effort as new im-

plementations of the same functionality are built from scratch over and over again.

This can be caused by "Not Built By Me" syndrome among the programmers as staff

changes as easily as by other more rational problems. Quite often, the software simply

reaches, or is delivered in, an unusable state, or an impossible to maintain one. The

end result is that quite often discarding the software and starting anew is obviously

easier than attempting maintenance of it.

7

1.3 High Development Costs

The usefulness of research software to the research effort is directly related to the

usability of the software in question. The functionality of the software is of course

paramount, but if that functionality is not usable by the researcher then it might as

well not exist. This leads to a situation where the only useful effort on the project is

to add new functionality.

This push for usable functionality often leads into the realm of graphical user

interfaces (GUIs), which are especially costly to develop as they involve a great deal

of minutiae to be dealt with and a large code base to be really usable. An under-

developed and buggy GUI will alienate the users more than a less functional but

usable alternative. In fact, the current set of tools that this thesis work is designed

to replace are so troublesome that every requirement from the users for the new tools

dealt with usability issues instead of functionality.

1.4 Obstacles to Reuse

Since the overriding pressure on the development of research software is the produc-

tion of useful and usable artifacts, it is usually under-designed and sloppy. Whatever

option works for the current need and can be implemented most quickly will be the

one chosen when design decisions come up during development, with no thought to

future needs. Since development staff and time are at a premium, refactoring will

always be pushed back in favor of adding new functionality, inevitably resulting in a

mangled design and unmaintainable code. No one can argue that an undirected de-

sign effort will result in unmaintainable code, but usually this problem is correctable

as it happens through what has come to be known as refactoring[5]. Unfortunately

since the time to refactor is not justifiable, then refactoring will not be done.

All of this adds up to code which is highly interdependent, ill documented, and

generally a mess. Attempting to reuse even simple and well documented code is

sometimes more work than it saves[3], so it is no surprise that reuse is not common

8

with research software. A code base is abused until it can no longer reliably serve its

intended function or a staffing change occurs, and then scrapped in favor of rewriting

the whole system from scratch.

9

Chapter 2

System Requirements, Safety and

the SpecTRM Toolkit

The focus of this thesis is a specific application: the Specification Tools and Require-

ments Methodology (SpecTRM) toolkit. The toolkit enables researchers to explore

the benefits of using a standard language for specifying systems. The goals of the

SpecTRM Requirements Language (SpecTRM-RL) are to provide a readable and an-

alyzable specification language for use in requirements and specification documents.[8}

The purpose of this project was to design a robust modular framework for the toolkit

with the goal of reducing the effects of changes in the specification language and its

visual representation on the overall code base of the toolkit.

The problem of producing reliable safety-critical systems is not a new one. Indi-

cators exist that suggest many safety-related accidents are caused by system faults

traceable to deficiencies or errors in the system requirements or specifications. [10]

Intent Specifications and the SpecTRM toolkit seek to address this problem.

2.1 Safety and System Requirements

More and more, computers are entrusted with the operation of safety critical systems.

Unfortunately, software engineering is at best an inexact art, and so these systems are

extremely difficult to build. Testing cannot feasibly be done such that all possibilities

10

are examined, nor can such critical systems be allowed to fail. As it turns out, many

critical systems fail not because of software errors, but due to incorrect software. The

distinction is subtle but important: the software does what it is supposed to, but

what it is supposed to do was incorrectly communicated to the software engineers.

Specifications that can be read and understood by all of the individuals involved

with developing a system is key to solving this problem. Professor Nancy Leve-

son suggests a new form for specifying systems, the intent specification. The intent

specification[11] differs from a usual specification in that it is a hierarchical abstrac-

tion of intent instead of just an abstraction of a requirement and how to fulfill that

requirement. The hierarchy comes from the direct linking of each level to the level

below it to indicate the origin of each element in the lower level. This introduces trace

ability throughout all levels of the specification so that ideas at one level are clearly

connected to their progenitors at the level above. Level one abstractions define the

goals of the system, level two the design principles, level three the black box behavior,

level four the design representation and level five the implementation representation.

2.2 The SpecTRM Toolkit

The SpecTRM toolkit serves to explore ways in which a specification language can im-

prove the usefulness of specification and requirements documents. While the current

focus is on verifying the completeness of specifications, the properties of SpecTRM-

RL make it very useful to the requirements and specification development process in

a number of ways. The toolkit must support the language and allow for easy exper-

imentation into other advantages of the language, as well as adapt easily to changes

in the language as it evolves.

As it is currently conceived, the toolkit provides means to edit, analyze and

simulate SpecTRM-RL, as well as prepare level one and two intent specifications.

SpecTRM-RL is designed to convey level three intent specifications of black box sys-

tem behavior.

11

2.3 Toolkit Design Criteria and Requirements

Since the driving motivation behind a new development effort for the toolkit was to

produce an application that did not suffer from the problems of the existing tools, the

design criteria and requirements were simple. The new tools should be easy to use

and maintainable above all else, as these are the two major flaws in the existing tools.

As far as requirements are concerned, a duplication of the existing functionality was

the most immediate concern. Also, it was determined that due to the rapidly evolving

nature of the language, the development effort would have to focus on keeping the

code base very flexible and maintainable so as to be able to keep up.

All user requirements have been related to defects in the existing toolkit, so the

design of this set of tools was mostly informed by examining how the users used the

current toolkit, that toolkit's features, and research papers on new versions of the

language and possible avenues of future research.

2.4 Design Goals

The guiding principles for the design of the toolkit were:

" Flexibility

" Extensibility

* Maintainability

Many of the design decisions have been motivated by examination of existing

applications, application frameworks, and foundation class libraries. While even an

improved reproduction of any existing code base is the object of this project, existing

projects have provided valuable insight on the features best shared by parts of an

application, as well as features that best enable the isolation and coordination between

parts of an application necessary to give the properties desired in this tool set.

12

The practical result of these goals is a modular framework as described in Chapter

3. The principles guiding the design of such frameworks are described there, and the

design itself is detailed in Chapter 4.

2.4.1 Flexibility

The goal of this project is to produce a framework that supports a great deal of

flexibility and extensibility for whatever application is using it. In that spirit, the

framework only specifies operations necessary to its operation, and avoids specifying

behavior or functionality that might normally be associated with the components

described so as not to place unnecessary limits on their design.

However, the purpose of this project is not to produce a fully general framework,

but one that facilitates the SpecTRM tool set. Thus the framework attempts to har-

ness as much generality as is possible without being overly general, or attempting to

generalize features that would not provide benefit to the SpecTRM tool set. Gener-

ality is present in the interest of increasing flexibility. Excessive generality is avoided

by attempting to make the use of the framework as easy and straight forward as is

possible.

2.4.2 Extensibility

Extensibility allows new functionality to be added to the tool set without necessitating

changes in the existing code base. The primary means by which this is accomplished

is to make as much of the framework as is possible loosely coupled, if not completely

orthogonal. In terms of both functionality and implementation, decoupling of parts

of the framework prevent changes in one part from affecting others.

The practical upshot of loose coupling is fixed messages and call chains without

fixed recipients. This enables delegation and replacement of default handlers within

the framework so that any given module can be replaced with a module that imple-

ments that interface differently, or new modules can easily be added to implement

wholly new functionality.

13

2.4.3 Maintainability

Maintainable program code is essential to this project if any of the other goals are

to be met. While the basics of maintainable code, readability and good documen-

tation are tied almost exclusively to the process used to generate the code, higher

order aspects of maintainability can be designed into the system. Once the basic

needs of maintainability are met, maintainability becomes a function of the design,

architecture and testability aspects of the system. A well designed system is flexible

and easily understood if well documented, so changes to the system have minimal

impact and are easy to integrate. A good architecture for the system is also essential

simply because a well designed but poorly implemented system is no more maintain-

able than a poorly designed system. It might even be argued that the architecture is

more important than the design, because the implementation can work around many

design issues, while the design cannot possibly make up for a poor implementation.

Finally, a system is only maintainable when it can be regularly and easily tested at

every level so that the effects of changes to the system are immediately obvious. The

maintainability of the toolkit will directly determine its lifespan as a useful body of

code.

2.5 Existing Tools

The current implementation of the SpecTRM toolkit is based on a large set of macros

for the Microsoft Word word processing application, and a number of external pro-

grams to implement the simulator and visualization aspects of the toolkit. The pri-

mary interface to the system is through the Word application, where users write the

majority of the specification using special templates and custom macros. The simula-

tor is a separate program, called Nimbus, that uses an older version of the language,

the Requirements State Machine Language (RSML), to simulate the specification

after it has been translated from the Word document. The simulator is highly de-

pendent on the Component Object Model (COM) as all external event sources and

sinks communicate with the simulator via COM channels. The system as a whole is

14

very fragile, and requires a good deal of effort and knowledge to use.

2.5.1 Nimbus

The Nimbus system is a set of tools for creating intent specifications and simulating

SpecTRM-RL specifications. The various major tools are covered below:

The SpecTRM-RL Editing Macros

The SpecTRM-RL editing macros automate the process of building up SpecTRM-

RL specifications, and are represented to the user in Microsoft Word as a series of

text labeled tool-bars. Each button represents a language construct, essentially a

keyword, and causes that keyword to be inserted into the document at the current

caret position.

The macros do no consistency checking or other assistance with the program-

ming process. The user is required to write what superficially resembles a coherent

document but is in fact a program in SpecTRM-RL.

When the specification is complete, the user compiles it into RSML for simulation,

using a macro that creates a new document and populates it with RSML code. This

process is very time consuming, even for small specifications.

The RSML Simulator

The simulator program used in the system is a slightly modified version of the original

RSML simulator. The original simulator was used with minor modifications to min-

imize development time of the system. This decision caused many of the problems

with the current set of tools.

The simulator presents itself as an application that can load RSML documents,

and set up events, inputs, outputs and the like for the system. The simulator also dis-

plays a graphical representation of the system's state and modes that is synchronized

with the actual state of the simulation as it progresses.

15

The Channel Manager

The channel manager allows the user to set up input and output channels for the

simulation. The simulator provides both input and output channels according to

the system being simulated, but channels can also be provided by any application

supporting the COM protocols. Channels are accessed individually, and any number

of inputs and outputs can be arranged, as well as observers. For any given simulation

run for each channel an input, an output and optionally an observer are chosen.

This design allows multiple possibilities for sources, for instance, when simulating the

system under consideration, without having to set everything up multiple times.

2.6 Problems with the Current Solution

The current implementation of the SpecTRM toolkit suffers from several usability and

functionality problems necessitating a new toolkit. The most glaring is the lack of

documentation and coding standards, which makes the code unmaintainable. Other

issues with the toolkit are summarized below.

" The compilation from specification to the form used by the simulator is a very

time-consuming process, on the order of hours for even moderately sized speci-

fications. Performance this poor makes the system essentially unusable.

* The compilation phase returns no syntactic or semantic errors until the com-

pilation is complete, as checking of the compiled specification is done by the

simulator when it is loaded. Even simple syntax errors result in a complete

re-run of the compilation phase, which as noted above can easily take hours.

" Users of the system must write code in the raw specification language in order

to make the specification compile. The reasoning behind the decision to require

the user to write code is unclear. Additionally, the language syntax is confusing

and unnecessarily verbose. Users should not be exposed to the internals of the

toolkit, and doing so requires a level of knowledge that is unrealistic to expect

among practicing engineers.

16

These first three difficulties have led members of the research group to translate

multi-hundred page specification documents by hand into the simulation language

rather than attempt to correct the specification to the point where it will compile.

This sort of activity is entirely unnecessary, as the purpose of the toolkit is to automate

using the specification language, not make it more work intensive. Also, from a

practical standpoint, human translation is error prone and simply not a good long-

term solution.

More important than these are the more technical issue that contribute to the

ineffectuality of the current software as a tool and its unsuitability as a long term

solution.

" Basing the toolkit around the Microsoft Word word processor incurs a huge

overhead, as well as subjecting the toolkit to the instabilities present in that

product. Empirical evidence from the group suggests that documents over a

certain size cause fatal errors in the application in most cases, and are often

corrupted in the process. Since the templates and macros that make up that part

of the toolkit are already sizeable, this makes creating even simple specifications

a risky proposition.

" Dependence on other features of the Microsoft platform, such as the Compo-

nent Object Model (COM) and other Microsoft applications makes the toolkit

very high maintenance, as many different versions of these technologies are in

common use.

" Fundamental limitations of the current implementation prohibit the system

from being useful outside of the research group, the most important of which is

performance, as detailed above.

It is not any one of these deficiencies that necessitated replacing the existing

software, but the overwhelming negative impact of all of them, exacerbated by the

condition of the code and documentation for the system. The next chapter deals with

the design of the foundation for the new toolkit in a general way to help illustrate

the actual design as presented in Chapter 4.

17

Chapter 3

The Design of Modular

Frameworks

The design of a modular framework is a careful balance of generality and domain-

specific needs. The right amount of generality for the application must be chosen

carefully, and the design must reflect this decision. Too much generality, and the

benefits of the framework are overwhelmed by the extra work needed to use it. Too

little, and the extra effort spent on design and construction of the framework is wasted

as the framework has a very limited lifespan.

The purpose of a modular framework is to minimize work necessitated by chang-

ing requirements. The more stable the foundation of an application, the more the

application code can rely on it. The more modular the application is, and the more

orthogonal those modules are with regards to each other, the more flexible the ap-

plication is, and more importantly, the more it withstands changing requirements.

So the design goals of a modular framework are to provide a stable foundation and

enable easy modularity for the benefit of the application.

It is important that using the framework be easier than simply using the under-

lying services it abstracts directly for two reasons: it will be less likely that wayward

programmers will bypass the framework, and it makes little sense to create a con-

struct whose purpose is to reduce workload that requires more work to use than the

work it saves.

18

3.1 What is a modular framework?

A modular framework is an architectural pattern that provides services with which

software can share common functionality and consistent features without limiting the

scope of future development. A modular framework usually consists of a mechanism

that enables modular software components and a set of additional services for use

by the application. The intent is that the component system and services have very

static interfaces and that functionality is added by adding components or services to

the framework instead of attempting to extend the interfaces of existing components

or services.

Modular frameworks have one goal: to isolate the application from changes in

underlying services and individual components of the application from each other.

This goal is achieved in two ways. Modularity encourages discrete functionality to be

encapsulated in separate components or modules, and it promotes orthogonality and

reuse. A framework provides policy-free services, not application functionality. It is,

instead, an environment in which application functionality is constructed.

Modular frameworks bridge the gap between support services and application

code in order to stabilize and abstract the environment in which applications oper-

ate. Even the touted portability of Java isn't enough, because the problem stems not

from the presence or absence of abstracted services, but instead which services are

abstracted and to what degree. Applications have specific needs from their services,

and the abstractions of those services that they use must be tailored to their needs.

Graphical User Interface (GUI) libraries, often mislabeled as "foundation classes1"

and component systems do little to actually provide a basis upon which applications

can build. They provide essential services, but to mistake those services for a frame-

work upon which a stable application can be implemented and grow is a dangerous

design error.

Most applications share a large number of common operations, especially in areas

'As we shall see, a very different definition of this term from the norm is used here, one which
seems to better capture its intent.

19

such as data and settings management. Most GUI libraries, most notably Microsoft's

Microsoft Foundation Classes (MFC) and Sun's Swing Toolkit, provide such services.

This seems to also be a design error (on the part of the designers of those toolkits),

as it tends to couple these services to a single fixed application architecture, which is

usually heavily biased towards the toolkit in which these frameworks appear, both in

terms of the actual widgets of which the GUI toolkit is formed, and the application

and document model favored by the toolkit. It is nearly impossible to use user

constructed widgets with the provided framework, and even more difficult to use a

different application model while still taking advantage of the provided services. For

a concrete example of this, in Sun's Swing toolkit the TreeModel class (the model

portion of the abbreviated form of Model-View-Controller which Swing is based on),

assumes that the children of a node will be stored in an array. Java supports a wide

variety of collection classes, but the children of a node must be stored as an array,

and there is no practical way to replace the model used by a view. More importantly,

the mechanisms at work in an application should be entirely separate from its visual

presentation, so overloading a visual toolkit with that sort of functionality seems

a case of feature creep. The modular framework allows all facets of a set of tools

or application suite to share common settings and data management functionality,

as well as common functionality that is domain-specific. For example, a program

development suite might share a module that provides parsing services for use by the

compiler, editor and code analysis tools.

A modular framework is distinct from component systems such as the Common

Object Request Broker Architecture (CORBA), Component Object Model (COM),

and Java Beans in that it is always domain specific to some degree. These other solu-

tions may provide several of the mechanisms of a good framework, even mechanisms

which are necessary for the implementation of a good framework, but they are not the

whole story. Just as bare file access does not constitute a useful data management

mechanism to the application programmer, a component system in isolation does

not provide the domain-specific but application-wide functionality needed to really

reduce programmer overhead during application development. These component sys-

20

tems provide easy and standard communications mechanisms between components,

but none of the domain specific services necessary to meet the goals of a good frame-

work.

Consider a component system, such as the Common Object Request Broker Archi-

tecture (CORBA). It provides a very useful communications and marshaling system

for creating both local and distributed software components. Now consider an ap-

plication using such a mechanism. The application must add its own error checking,

consistency checking, and usually build a basic set of components to be able to real-

ize any functionality. The goal of a modular framework is to adapt this mechanism

(or something like this) into something that an application in a particular problem

domain can use almost immediately.

Neither is a modular framework simply a generalization of common functionality

that may be shared by several modules and usually is the impetus for class hierarchies

in object-oriented design. Generalization suffers from the same fatal flaw as statistics:

The trend is only as good as the sample space from which it is derived. The tendency

to generalize object hierarchies in general is a good one. Unfortunately, usually this

overgeneralization results in hierarchies which are very brittle - as new examples of

the classes generalized over are produced, the hierarchy as a whole must be adapted

to accommodate them.

Consider a visual component for displaying graphs. It might contain a drawing

hierarchy, where all visual components of the graph inherit from an abstract class that

defines the interface for composing graphs and drawing them. In this domain-specific

graphing hierarchy, adding a new type of edge would necessitate refactoring the in-

heritance hierarchy at least to the point of adding a new base class for edges. This

involves modifying the existing Link class, and adding two new classes, one for the

abstract parent, and one for the new edge type. Even new classes that already have

abstract parents can disrupt the inheritance hierarchy a great deal. Suppose that the

draw method assumes a graph representation which is tree based. Suppose further

that a new class is introduced that allows the construction of arbitrary graphs. Po-

tentially every class in the hierarchy must be reworked, if the abstract classes contain

21

any of the logic for drawing the graph which makes assumptions about its structure.

While this example may seem far fetched it is based on one simple assumption: We

cannot anticipate future needs when making functional generalizations.

Modular frameworks are also sometimes referred to here as foundation classes.

It seems that this is a better fit for the term than the GUI frameworks to which

it is usually applied although those frameworks sometimes include a small portion

of the basic functionality of a modular framework. Examining the phrase, it seems

that a class hierarchy that provides a stable basis for implementing the functionality

and visual presentation of a set of applications or tools better deserves the name

"foundation classes" than does a GUI toolkit with some data management features

mixed in. A modular framework provides the stable foundation needed to develop a

flexible and robustly designed application suite or tool set. While it is folly to expect

the world at large to conform to this author's notions of propriety in such things, this

is the definition of that term that will be used in this paper.

3.2 Issues That Impact Framework Design

For the purposes of this discussion, changes in the needs of applications are divided

into four broad categories: system requirements changes, application requirements

changes, visual requirements changes and abstract requirements changes. System

requirements include all requirements that involve underlying services, the operating

system, or system libraries. Application requirements address what functionality is

present in the application. Visual requirements are all requirements of the system

that deal with the presentation of the system to the user. Abstract requirements

are those requirements of the system that do not correspond directly to any one

aspect of the system and that are not generally as concrete as the other forms of

requirements. These four categories can be considered to divide all the requirements

of the applications based on the framework into four sections that layer hierarchically.

The purpose of the framework is to mitigate the effects of changing these require-

ments as much as is possible and to minimize the amount of code thrown away no

22

matter how drastic the changes may become.

3.2.1 Addressing Changing System Requirements

The purpose of the framework being a strong foundation for the application is to

isolate the application from system changes, and even system requirements changes.

This goal is accomplished, in broad terms, by isolating and abstracting system func-

tionality for the application. The real issue is how to go about accomplishing this

amazing feat.

In a naive view of the problem, it might be sufficient to simply abstract system

services. This abstraction promotes portability, but not much else. The key is not to

abstract the services that are provided, but to abstract the services that the applica-

tion requires and work from there. The important distinction between this approach

and simply doing a top-down design of the application is that instead of starting with

the features of the application and designing from there, one starts with the needs of

the features of the application and then applies a top-down approach to the design.

For instance, almost every application does some form of configuration and settings

management. In many cases this process is as simple as maintaining a single file with

a list of key/value pairs. But it can be as complicated as the Microsoft Windows

Registry. In the abstract, these two extremes are not at all different - in reality,

the reality of implementation, that is, they could not be farther apart. By creating

an abstract settings management service in the framework, we relieve the application

programmer of a good deal of repetitive work.

How should this be accomplished? Naively, we might simply create an interface

that defines a key/value pair mapping associated with a file. This technically fills the

need and abstracts the underlying system, but in actuality turns into a greater amount

of work for any settings management more complex than a single flat hierarchy sharing

a single location on disk. What if a hierarchical system is needed? Or a conditional

system based on scoping of some sort? The naive model quickly breaks down and

becomes much more of a burden than a boon.

A better solution would be to approach the problem from a top-down standpoint

23

- what does the application need to concern itself with? The application (and by

extension the application programmer) only wants to be able to store structured,

persistent state. A good abstraction might be a language-level environment model

for settings. As long as this abstraction is fairly opaque and has good defaults for

storage location and structure and the like, then the application need never concern

itself with changes to how it operates.

It can be seen that by choosing abstractions in the framework carefully and pay-

ing particularly close attention to their scope, that a robust and reliable foundation

for application programming can be created. The services provided may be domain

neutral or specific, but they should all be as orthogonal and limited in scope as is

possible. To paraphrase Antoine de St. Exupery, a good framework service abstrac-

tion is arrived at, not when there is nothing left to add, but when there is nothing

left to take out.

3.2.2 Addressing Changing Application Requirements

Application requirements usually develop and change significantly over time. I do not

refer here to so-called "features" of an application, but to the original requirements

that bring about the concrete representations in the software that are labelled as ap-

plication features. In fact, the literature dealing with office automation suggests that

this change is entirely necessary to that process, and that good business automation

begins by translating the forms for a business process onto the user's screen and then

getting feedback from the user about how the process might be improved from there.

This is due to the fact that the possibilities inherent in automation are not obvious to

the user until the process has been automated, and at that point the system usually

turns out to need a different set of features[1]. In fact, it is often lamented in the

literature that most systems are delivered implementing a set of features that are

entirely unlike what the users desire, largely due to this phenomenon.

Modular frameworks address this issue by making it easy to modularize the func-

tionality which provides the features of an application. With this sort of modulariza-

tion in place, it is much easier for an application to adapt to changing requirements,

24

as changes simply introduce new modules, obsolete modules, or require changes to

how modules are used.

So, by reducing changing features to changes in discrete modules, and by making

the construction of modules simple enough to encourage systems with a great number

of them, distinct and abstract, a modular framework reduces the design and work

impact of a rapidly evolving set of requirements.

3.2.3 Addressing Changing Visual Requirements

While modular frameworks do not explicitly address the issue of changing visual

requirements, they do allow visual components to be isolated from functional com-

ponents and vice versa. They also can allow visual components to easily adopt a

differing data model than the rest of the system to further isolate visual requirements

from other requirements of the system.

The advantages of visual components of the application using a different data

model than the functional components are myriad. Applications are discouraged

somewhat from exposing the programmer's representation directly to the user, as

they are already using a different data model. The visual component is free to change

its data model without incurring any more than the cost of updating whatever code

does translation between its representation and the system representation. Having

two or more distinct representations can aid in catching malformed data structures.

While it might be argued that the cost of maintaining two data structures out-

weighs the benefits it would bring, this is not necessarily the case. It all depends on

the granularity of the modules in the system and their interdependencies. If the visual

component is mostly self-contained and monolithic, then maintaining its own data

representation is less expensive as conversions need to be done less often. Otherwise

it may be prohibitive to maintain such a duplication, but then all components may be

exposed to changes in data representations needed by changing visual requirements.

This does not necessarily invalidate the claim that the framework will help mitigate

the effects of such requirements changing, as it will not always be necessary to change

representations to meet the new requirements, especially if the representation is well

25

designed.

Even without having a distinct and separate data model, visual components that

rely on other modules instead of being monolithic incur much less overhead in the

face of change. In a monolithic system, the effects of changes are much harder to

predict and control than in a more modular one.

3.2.4 Addressing Changing Abstract Requirements

Abstract requirements are a difficult concept to deal with concretely. They have been

called many things by many different design methodologies, but in essence they boil

down to one class of needs: they are those needs that affect the system as a whole and

are not reducible directly to some set of other types of requirements. Examples include

efficiency requirements ("It should be fast enough to meet our real-time needs.") or

interaction requirements ("It should be easy to use."). These sorts of requirements

affect the system as a whole and can skew the system's design.

Modular frameworks do not attempt to address these sorts of requirements di-

rectly. However, the modularity the framework encourages in the application tends

to isolate the functionality most affected by abstract requirements changes. For exam-

ple, computationally expensive operations can be abstracted into a separate module

so that optimization of those operations can be done without disrupting the rest of

the framework.

3.3 The Advantages of Modular Frameworks

Modular frameworks are not a silver bullet[6] by any means, and in many cases

trying to turn one into the cure for all a project's ills will violate its design goals

and turn a potentially helpful architectural tool and the application it supports into

a maintenance nightmare. The key fact here is that modular frameworks do not

enforce better application design in all cases, but ideally they do encourage it by

making the right thing to do the easy one.

Modular frameworks offer many advantages that may be obtained with other

26

methods, sometimes even with less effort. However, no other method offers the

combination of advantages offered by modular frameworks without significant dis-

advantages as well. Inheritance hierarchies, for instance, offer many of the same

advantages as a framework, and while it might seem that a well designed inheritance

hierarchy is a sufficient substitute for a modular framework, this is not the case in

a research environment. In the research environment, staff turnover is high, and so

having a black-box abstraction eases the learning curve for new developers. Inheri-

tance hierarchies are too difficult and time consuming to understand, and too easy to

abuse. Even their proponents admit that inheritance-based object designs are easier

to abuse and harder to learn[4], and justify their choice by claiming that a white-box

abstraction is sufficiently advantageous to a black-box abstraction to make these dis-

advantages worthwhile. Unfortunately, this is simply not the case. Program code,

while it often offers insight into how a system works, only encourages dependence on

implementation details.

One need only look at the problems encountered by major operating systems ven-

dors in trying to maintain backwards compatability to find the flaw in this logic. Any

information revealed to the user of an API will have to be maintained as true indefi-

nitely at the risk of destroying backwards compatability. Since the goal of a modular

framework is to reduce overhead in maintenance and extension of the application,

then a black-box abstraction as is present with a component system is preferable to

a white-box abstraction where programmers can easily become dependent on imple-

mentation details.

Modular frameworks offer advantages in design, development and testing over

other methods. While these advantages are not individually unique to modular frame-

works, modular frameworks provide them all in a way that is more useful than other

methods.

3.3.1 Design

A modular framework allows the developer to design for the general case and still

implement the simple case, so functionality develops more quickly and there is still

27

room to grow. The framework should encourage good modularity and very stable

interfaces. The encouragement can affect even the application built on the framework,

by serving as a positive example.

A good example of the success, from a design standpoint, of a modular framework

is the Quicktime software development kit from Apple Computer. Quicktime has been

in production for over 10 years at this point, and applications written for version 2.0

still run on version 4.1.2 Quicktime supports a robust component model, and instead

of changing existing interfaces has always added new interfaces to take advantage of

new capabilities. The component interfaces are extremely stable. The only way one

might improve on this model would be to use explicit versioning in the interfaces

to prevent developers from accidentally using outdated interfaces. Quicktime avoids

the usual negative effects of multiple interfaces3 by never overloading an interface

through multiple versions but instead adding new calls when newer functionality is

needed. This is not to say that Quicktime is a fairy tale of perfect growth over time

- it too has suffered from needing to maintain compatibility with existing flaws, for

instance. Quicktime does seem to have weathered the years much better than most

of its surviving contemporaries.

3.3.2 Development

The time to a working prototype is greatly shortened when using a modular frame-

work as core functionality can be fully developed without waiting for less central

functionality and without hindering the development of such functionality. By care-

fully implementing the minimal core functionality of the framework services and base

components while designing robust and flexible interfaces, effort can be focused on

reaching important early functionality goals. As the full flexibility or feature set of

those services are needed, they can be fleshed out without disturbing the rest of the

development process.

2 The transition from version 1 to version 2 altered the component interface because it is based
on the Macintosh System Software, which was changed at that time.

'For an example of these effects, the reader is encouraged to examine the evolution of Microsoft's
Win32 API or some of the core MacOS APIs.

28

For example, consider a simple service integrated into a framework. Modules

depending on that service can begin coding to its interface right away, and a very

simple implementation of that interface can be constructed without precluding a

fully featured implementation later, which can be added seamlessly as the application

matures.

3.3.3 Testing

An obvious benefit to a modular architecture is in testing. Each module should de-

pends only on other modules or services, so replacing each module with a matching

test module becomes simple. It becomes possible to test any subset of the system,

assuming each module has a test harness counterpart, from single modules to the sys-

tem as a whole. The component mechanism also precludes the need for recompilation

against a test bed when testing.

29

Chapter 4

The SpecTRM Foundation Classes

This chapter discusses the concrete and abstract aspects of the design of the Spec-

TRM Toolkit Foundation Classes (STFC) and presents the argument that the design

fulfills its requirements. The requirements of the design, simply stated, are that it

be maintainable and robust in the face of changing requirements. The framework,

or as it is also called, foundation classes, provide basic common services and support

structure to all the individual tools in the tool kit.

4.1 Design of the Foundation Classes

The modular framework architecture provide two main sets of features to the ap-

plication, mechanisms and services. Mechanisms are intended to be integrated into

applications using the framework, while services are intended to be used by applica-

tions and modules. The foundation classes do not constitute a completed application

in and of themselves. They provide much of the skeleton of the application, but the

important specifics are deliberately left out in furtherance of the framework's goals.

The implementation of the foundation classes was done in the Java language,

and much of the design is presented in reference to that language for convenience.

The foundation classes are implemented in Java for a number of reasons, including

the fact that Java provides at the language level several complex features that would

otherwise have to be implemented for other language environments, and that the Java

30

class library as provided by Sun Microsystems is very comprehensive. So it might be

said that Java was chosen simply because of convenience, but that is not the whole

story. Portability is another part of the picture, as well as platform independence.

While the goal of "write once, run anywhere"' has never actually been met by Java, it

is a close enough approximation that careful programming can make up the difference.

4.1.1 Mechanisms

The mechanisms provided by the foundation classes allow the application to be de-

veloped in as modular a fashion as possible. The component system is a general

requirement of modularity, while the artifact mechanism adds a very flexible system

of application data management for use by the application.

The Component Mechanism

The component system allows modules of the system to have consistent interfaces

but not be tied to any specific implementation. Using Java as an implementation

language in this case greatly simplifies the creation of a component system, as Java

provides at the language level several of the features needed. Most important among

them is the notion of interfaces, which allow implementations to be divorced from

type specifications. The component model used in the STFC is based entirely on

Java interfaces in implementing the necessary black box abstraction. Another aspect

of a component model, self discovery, is also provided by Java, in the form of its

reflection mechanism. Extraneous or experimental capabilities can be integrated into

modules and used by client code without altering the module interface, as well as

allowing code to use modules abstractly. While the component mechanism does not

enforce orthogonality of modules, as indeed it can and should not, it does serve to

enable a greater degree of orthogonality.

The component system is defined primarily by a single Java interface, the Compo-

nent interface. This interface describes the features shared by all components in the

1A mnemonic for the claim that Java binaries can be compiled once and run on any computer
having a conforming Java Virtual Machine installed.

31

system, and all components in the system must implement it. Specific module's com-

ponent interfaces are defined by extending the Component interface. The Component

interface defines a set of functionality all components must provide:

" A stream interface that allows components to exchange data in flexible ways

without overburdening their interfaces. This is probably the most experimental

feature of the component system, and may well prove to have very limited

usefulness and need to be removed.

" Identifier accessors for component type and instance, so individual components

can be programmatically identified in a consistent way.

" Status accessors so that the status of all components potentially in the system

can be ascertained. The system allows for missing and malfunctioning compo-

nents and can deal with them in constructive ways.

" The component system also requires the overriding of several basic Java mech-

anisms:

- Construction and finalization of components are controlled by the frame-

work, so components must define the OnConstruction and OnFinalization

methods. By controlling the construction and finalization of components,

the framework can handle framework-specific resources devoted to compo-

nents transparently.

- Equality testing and the hashCode operation are required to be overridden

by all components. The default overridden behavior in the AbstractCom-

ponent defines two component instances as being equal if they are the same

component, but this definition may be inaccurate or inadequate for some

components. The hashCode operation is also required because of the ways

in which the Java class libraries depend on the hashCode of equal objects

also being equal.

32

- The conversion to the String type is required of all components. This al-

lows the framework to easily output diagnostic messages without requiring

specific functionality of every component.

A number of specific component types are defined by the framework to simplify

application development and provide the functionality needed by the artifact mech-

anism. Other component types have been defined to fill out the functionality of the

tool kit.

* ArtifactHandler components implement the infrastructure of the Artifact sys-

tem, providing the core logic for using codecs and associating artifacts with

components other than themselves.

o StorageHandler components are the core component for all possible interfaces

to data storage, defining an interface that accepts universal resource locators

(URLs) and produces a Stream that has an associated MIME type.

" Codec The codec component serves to convert data of one MIME type to

another. It is used in the intermediate process of converting data retrieved

from storage into artifact objects in the system.

" Edit Edit components provide an interface for manipulating artifacts. In gen-

eral each Edit component deals with a specific artifact type and none other, but

this notion is not enforced, only encouraged for the sake of orthogonality.

" Simulator Simulator components execute their input under the control of an-

other component. At present, the only sort of input that is executable is the

framework-internal SpecTRM-RL language representation, which implies a sin-

gle simulator component. However, it is conceivable that simulators with dif-

ferent behaviors or properties could be introduced, as well as simulators that

use alternate language forms for the purposes of experimentation.

" Display components consist of non-interactive data displays, which are usually

static, but may change over time.

33

" Interaction components allow simulation of the user experience in conjunction

with simulator components, and can be used to gather user feedback.

" Analysis components accept structured data at their input stream, performing

some manipulation on that data and outputting the modified data stream on

their output stream. Analysis components can easily be strung together to

perform powerful operations.

" Functional components are primarily event sources for simulator components

via their output stream, but can represent any sort of general computation or

action that does not operate on data streams. One example might be plug-in

components for use by an Edit component.

These components make up the minimal set of component types that are necessary

to implement all current and planned features of the tool kit.

The Artifact Mechanism

Artifacts in the tool kit are considered to be any sort of user manipulatable data, from

specification documents, projects and compiled simulation code to stored settings and

preferences. All concrete data produced by the system is considered to be an artifact,

so the definition is very close to the sense in which the word is used in business

contracts when referring to deliverables.

The artifact mechanism allows multiple types of data to be manipulated by the

tool kit in an orthogonal way. Each type of artifact has an associated handler encap-

sulating all the logic for using that artifact, including all the knowledge about which

other components can be used in conjunction with it.

Each artifact type extends the Artifact interface to form a new interface that

describes how to interact with that sort of artifact. The base Artifact interface des-

ignates means of tracking artifact dependencies and dealing with composite artifacts,

defined as artifacts which themselves contain artifacts, such as a project artifact that

contains document and specification artifact types.

34

The ArtifactManager singleton serves as a central point of contact for the system,

and keeps a collection of artifacts currently in the system for short-circuiting artifact

and URL requests. The ArtifactManager also does searches in conjunction with the

ComponentManager for ArtifactHandlers to handle specific artifacts. The purpose

of this feature is to encapsulate the matching process in anticipation of needing to

change the algorithm at some future date.

An example scenario of how the artifact mechanism actually interacts with the

rest of the system can be found in Section 4.2.2.

4.1.2 Services

Services in the the foundation classes are conceptually distinct from mechanisms in

that they are meant to be used by the tool kit and not integrated into the tools. They

are also intended to be self contained and have static interfaces.

The Settings Service

The Settings Service manages a hierarchical chain of settings for the application

allowing defaults to be derived from any parent level and variable numbers of modules

operating on any given level. The abstraction provided is similar to an environment

in any block-structured language.

The Settings Service consists of a settings manager that stores settings service

configuration, and the settings object, which handles the bookkeeping of looking up

values in the hierarchical tree. Settings objects are meant to be serialized with the

containing object and only rely on the manager to determine who their enclosing

scope should be and when they should promote values to that scope.

The SettingsManager class is a singleton that stores information about how dif-

ferent types of settings are related and manages storage and retrieval for singleton

settings types, which generally represent system-wide default.

The Settings class simulates an environment from which values can be retrieved.

It optionally has an enclosing settings environment from which it can fetch values

35

that are exposed but not shadowed. It has a set of exposed values, and a mapping

for values it actually defines. It can be serialized as part of any class that uses it.

The Logging Service

The Logging service acts as a point of contact for the rest of the application, providing

logging facilities. Logs can be prioritized, sorted, collated, and filtered. Current logs

can also be reviewed by the application as it runs, for debugging purposes.

The logging service consists of a Logging Manager, which sets up logs, sets up

priority levels, and manages log settings. Logs can be addressed by name, identifier,

object reference, or by doing a lookup on a target message. Logs can be buffered for

performance or unbuffered for diagnostic purposes. Unbuffered logs are guaranteed

(within the limits of the Java runtime system) to be up to date with every message

written. Logs can be directed to any sort of stream, file or otherwise. Messages are

sent to specific logs based on priority and origin.

The Logging Manager class is a singleton that stores information about the various

logs, priority levels, and dispatch rules. The Logging Manager uses the Settings

Service to maintain its settings information across system shutdown.

This class implements the stream interface, and wraps a stream of the appropriate

type. It also performs buffering and can automatically set up streams at the request

of the Logging Manager.

The Message Service

The message service provides message substitution for internationalization purposes.

Messages to be retrieved can be based on strings, constants or other identifiers. Mes-

sages are substituted for other messages according to a user installed mapping. Mes-

sages and metadata can be retrieved from settings, property files, archive manifests

or streams. Message service objects can be attached to different classes for ease of

use and flexibility.

36

The Exception Service

The exception service provides a simple means for objects in the system to raise mean-

ingful exceptions without duplicating code or writing complicated code to construct

meaningful messages. The exception service is meant to be tailored slightly by each

class using it. It can accept a set of strings or objects implementing the runnable in-

terface that produce strings and indicators about where arguments to each exception

message creation are to be inserted in the list. Typical usage would be for a class

to have an instance of the ExceptionService class and a static method that calls it

appropriately for use by the rest of the object's methods.

4.2 Notes

These notes provide additional material relevant to the design, but not essential to

understanding the overall structure and intent. They include illustrative examples,

examinations of common usage scenarios, and discussions of rationale.

4.2.1 Implementation Notes

Concurrency

Service classes must be thread safe and reentrant if possible. Certain conditions may

cause methods in those classes to block, but this should be the exception to the rule.

The logging service in particular must be able to handle many messages from several

threads simultaneously without having a noticeable impact on the performance of

the application. Services in general should not incur any penalties on the application

unless absolutely necessary.

Component implementations should also be thread safe. Robustness in the face

of concurrency is a must in a heavily thread-based environment like the Java runtime

system.

37

Declaring and Using Exceptions

Each package in the system should have a single top-level exception class used by

all functions in that package to raise exceptions specific to classes in the package.

This prohibition comes about because the dispatch mechanism in Java deals oddly

with exceptions when it comes to signature matching. Also, catch clauses become

very unwieldly when more than two or three different exceptions need to be dealt

with explicitly. It is much easier to simply declare the raised exception as the root

exception type for that package and raise some derived type if necessary. The client

can sort out what actually happened, but more often than not, exceptional conditions

are not dealt with very gracefully anyway, so it does not matter.

4.2.2 Scenario Documentation

Opening an Artifact

" A request to visit a URL is generated, and sent to the Artifact Manager.

" If the artifact is present in the system, the appropriate Artifact Handler is

invoked to service the request.

" If not, the Artifact Manager invokes the Storage Manager to bring the Artifact

into the system.

- A request to locate a URL is received by the Storage Manager.

- The Storage Manager queries the Component Manager for appropriate

components to handle the request.

* The appropriate Storage Handler Component creates a stream from a

URL, and deduces the MIME type of the stream.

* A Codec Component converts the stream into a Java Artifact Object.

* The artifact is delivered to the Artifact Manager.

" The artifact manager searches the available artifact handlers for one that can

handle this particular artifact, and sends it the Artifact, the URL, and the

38

MIME type, and registers the Artifact as being present in the system.

- The chosen artifact handler locates (through the component manager) the

necessary components it requires to present the artifact to the user, and

instantiates them if necessary.

- Sometimes, the artifact handler will be the same one that deals with what-

ever user interface element generated the original request, in which case,

everything works out.

* If no Artifact Handler is found, the artifact manager should raise an exception.

Storing an Artifact

* A request to store an artifact is generated and passed to the artifact manager.

* The artifact manager finds the associated URL and queries the Storage Manager

for its status.

* The storage manager locates the appropriate store object or instantiates one if

necessary.

e The storage manager takes the artifact and uses codecs to convert it into the

desired format.

* The storage manager passes the data to the appropriate store for storage.

4.2.3 Illustrative Examples

Use of Universal Resource Locators in the Toolkit

Universal Resource Locators (URLs) are used extensively in the toolkit to link arti-

facts to one another and even between different portions of an artifact. More infor-

mation on the structure and meaning of URLs in general is available from RFC 1738.

In this respect, all artifacts support hyper-linking. In general hyperlinking is used to

convey dependencies to the user and to allow specifications to be self referential.

39

In practice, this works by using only URLs to identify artifacts not in the system,

and for storage purposes artifacts in the system must store their origin anyway, so

they too can be consistently referred to by URLs. Artifacts that have been loaded

into the system can be referred to by the artifact URL pseudo-protocol as well.

Level one, two and three intent specifications use references heavily, and the use

of URLs reflects this.

4.3 Goals

The goals of this design were to produce a maintainable, extensible and flexible foun-

dation for the SpecTRM tool kit. These goals have been met. As has been described in

the previous chapter and this one, the design is a modular framework that adequately

supports all the necessary functionality and is both maintainable and extensible.

4.4 Future Needs

The design is sufficient to meet future needs for two reasons. The first is that the

modules are generally orthogonal to each other - they do not have overlapping

functionality or responsibilities. The second is that the framework is extensible, so it

need not anticipate future needs, only allow for their existence and uncertain nature.

The elements of the framework are orthogonal because they either break up com-

plex responsibilities and functionality into smaller pieces that are themselves orthogo-

nal, in the case of the Artifact mechanism, or they encapsulate them instead, as in the

case of the Edit component. The individual components of the artifact mechanism ex-

hibit orthogonality in that they each have one or two well defined (in terms of interface

and specification) responsibilities and no class shares responsibility for performing a

given task. Any class used in implementing the mechanism is therefore transparently

replaceable at any point as long as its responsibilities do not change. It may seem

that the mechanism does not exhibit orthogonality as many of the classes depend on

others for certain functionality. Orthogonality is not violated in these cases, because

40

there is a clear chain of command and each class involved has a specific responsibility

that involves no ambiguities. Thus the responsibility of the controlling object is to

coordinate the objects doing the work. Orthogonality is possible only when black box

abstractions are used and when units are functionally distinct. The mistake made

by many object-oriented designs with respect to orthogonality is omitting the second

criterion. Black box abstraction is relatively easy to obtain, if only by publishing only

specifications and carefully constructing them to be explicit in what is not guaran-

teed as well as what is guaranteed. Orthogonality, on the other hand, is a much more

difficult proposition. The tendency in growing systems is to cluster functionality to

close too data, because it is easier to write such code[3]. The result becomes a small

number of or even a single class, which rapidly becomes a maintenance nightmare.

Even refactoring, while it can be used to break up such a behemoth, cannot automat-

ically isolate distinct functionality. So, while orthogonality is a laudable goal, very

little seems to be known about how designers can achieve it.

Extensibility is usually gained at the expense of orthogonality. Generalizations

of classes to form hierarchies are brittle, and the shared responsibility present in the

parent class makes it non-orthogonal to its derived classes. In a component system,

inheritance does not generally occur, only responsibility chains[2]. Extensibility comes

mostly from maintainability, orthogonality and encapsulation of policy. Orthogonality

has already been discussed, as has maintainability, which arises mostly from properties

of the code itself and not the design. The only remaining aspect is policy. Policy

refers to the situation in which an object enforces behavior on its clients. An example

of this might be a set abstraction that forces its clients to refer to members of the set

according to their position in its representation. While this may be a very contrived

example, it illustrates how easily abstractions can accidentally enforce policy because

of their implementation. In more useful cases, it is possible to design interfaces to

such abstractions that prevent them from enforcing policy. In practice, this usually

means that the interfaces are as simple as is feasible, because introducing other factors

into the interface that do not relate most directly to the abstraction at hand tends to

encourage the implementors of those objects to enact policy. The interface for each

41

component in the framework was designed with this goal in mind, but only time can

tell if this aspect of the design will be successful.

4.5 New Development

New development with the tool kit can take one of two forms: new components can

be added to introduce new functionality, or new component interfaces can be added

to refine or extend existing interfaces or create wholly new component types.

To view the problem from a top-down perspective, new development stems from

new needs not covered by the current code base. New functionality will either be

similar enough to current functionality, adding new output formats via codec com-

ponents, for instance, or it will require new component types. Either way, existing

components, due to the orthogonality of their interfaces and the black box abstraction

using a Java interface gives, will be unaffected by introduction of new components

or component types. The only possible exceptions are manager classes which provide

convenience operations for dealing with components.

42

Appendix A

Framework Interfaces

43

package spectrm.framework.component;

* Interface: Component

* Author: Patrick Anderson

*

* Notes: The Component interface defines methods common to all

* framework components. Every component should implement this

* interface or an interface which extends this one.

*

* Last Modified: 05/16/2000

interface Component {

* OnConstruction and OnFinalization provide a means for components

* to have initialization and finalization code while still turning

* over control of the construction and finalization process to the

* framework.

public void OnConstructionO;

public void OnFinalizationO;

* All components must provide overridden versions of certian operations.

* Each operator is present for a very specific and usually technical

* reason.

public boolean equals(Object rhs);

44

public int hashCodeO;

public String toStringO;

* These methods define the stream interface for components. Since Java

* streams consist of Objects, this is a perfectly general mechanism.

* The interface is intended to allow components to exchange data without

* burdening their interfaces with explicit methods.

*

* The StreamType class is a type which encapsulates an enumeration that

* has the standard values of Input, Output, Error, Exception, and Data.

*

* Unfortunately the Stream argument must be of type object as

* the InputStream and OutputStream classes have no other common ancestor.

public Object getStream(StreamType type);

public void setStream(StreamType type, Object stream)

throws ComponentException;

public void addStream(StreamType type, Object stream)

throws ComponentException;

public Object removeStream(StreamType type, Object stream)

throws ComponentException;

* The following eight methods are convienence methods included

* for the benefit of readability. The overhead is considered minimal,

* as they are trivially implemented in the AbstractComponent class.

*/

public InputStream getlnputStreamo;

public OutputStream getOutputStream();

45

public OutputStream getErrorStreamo;

public OutputStream getExceptionStreamo;

public void setInputStream(InputStream stream)

throws ComponentException;

public void setOutputStream(OutputStream stream)

throws ComponentException;

public void setErrorStream(OutputStream stream)

throws ComponentException;

public void setExceptionStream(OutputStream stream)

throws ComponentException;

* The isNull operation allows for the creation of a Null object pattern

* for Components. This allows the null subclass to fail gracefully and

* removes much redundant reference checking. Specific implementors of

* the Component interface should provide factory methods to their clients.

public boolean isNull();

* ComponentIdentifier is part of an Identifier pattern which uniquely

* differentiates all component types. The pattern allows for changing

* identifiers and schemas for differentiation.

public static ComponentIdentifier getComponentIdentifierO;

* InstanceIdentifiers identify specific instances of a component in the

* same manner as ComponentIdentifiers.

46

public InstanceIdentifier getInstanceIdentifiero;

* The ComponentStatus is another enumeration class which describes the

* overall status of the component. Possible values include: Functional,

* NonFunctional, Missing, and Unknown.

public ComponentStatus getComponentStatus 0;

* getStatusInfo allows components to implement component specific

* diagnostic and debugging status. The actual result of this method

* is component specific.

public StatusInfo getStatusInfo(;

}

47

package spectrm.framework.component;

import spectrm.framework.artifact.Artifact;

import java.net.URL;

* Interface: ArtifactHandler

* Author: Patrick Anderson

*

* Notes: The ArtifactHandler component interface specifies the basic

* operations common to all artifact handlers throughout the

* mechanism.

*

* Last Modified: 05/16/2000

interface ArtifactHandler extends Component {

* Tests for whether or not this handler can cope with specific artifact

* types. While it is not yet the case that a single handler and

* associated components can deal with multiple artifact types, it

* is possible that integrated editors for compound artifacts may arise.

* This interface decouples the matching process from the ArtifactManager.

*/

public boolean supportedArtifact(Artifact artifact);

public Set getSupportedArtifactso;

* Directs the handler to take stewardship of the artifact. Usually,

48

* this will mean organizing other components to actually handle the

* editing or display of the artifact.

public boolean handleArtifact(Artifact artifact);

* This alternate form which takes a URL is a convienence construction.

* The implementation simply calls on the StorageManager to produce

* the named artifact and then behaves exactly as the previous method.

*/

public boolean handleArtifact(URL url);

}

49

package spectrm.framework.component;

import spectrm.framework.artifact.Artifact;

import java.net.URL;

* Interface: StorageHandler

* Author: Patrick Anderson

*

* Notes: The StorageHandler component interface specifies the basic

* interface common to all StorageHandlers. The StorageHandler

* encapsulates the process of dealing with artifacts in relation

* to persistant store. Encoding and decoding is done by using

* Codec components.

*

* Last Modified: 05/16/2000

public interface StorageHandler extends Component {

* Some protocols require persistent state in order to operate correctly.

* This call allows such protocols a means of estabishing that state.

public void associate(URL url)

throws ComponentException;

* Establishes whether the given protocol and location are supported by

* this handler.

50

public boolean supportedURL(URL url)

throws ComponentException;

* Retrieve an artifact from the associated store. Raises an exception

* if the URL is not meaningful or is not associated with this store.

public Artifact getArtifact(URL url)

throws ComponentException;

* getAvailableArtifacts returns a set containing the URLs of all the

* artifacts in the associated store. If this StorageHandler requires

* setup by way of the associate call, then the set will be null if the

* given URL doesn't have enough in common with the associated URL.

*/

public Set getAvailableArtifacts(URL url);

* Stores an artifact in the associated storage location.

*/

public void putArtifact(Artifact artifact, URL url)

throws ComponentException;

}

51

package spectrm.framework.component;

* Interface: Codec

* Author: Patrick Anderson

*

* Notes: The Codec component interface defines a component which

* translates data from one form to another. Codecs can be

* unidirectional or bidirectional, and should support both

* the streams interface and explicit operation using encode

* and decode method calls.

*

* Last Modified: 05/16/2000

public interface Codec extends Component {

* Describes the type of data this codec accepts, using framework

* specific MIME types (RFC 1521).

public MimeType get InputType C);

* This method should almost always return the type associated with

* framework artifacts, but might not always do so, for instance in

* the case of translation between framework internal data

* representations.

52

public MimeType getOutputTypeo;

* An explicit encoding operation on the target object which returns

* an appropriate object representing or containing the result. The

* target object must represent the input type of the codec.

public Object encode(Object obj);

* Identical to encode, except that the target object must represent

* the output type of the codec and the operation may throw an exception

* if the codec is unidirectional.

public Object decode(Object obj)

throws ComponentException;

}

53

package spectrm.framework.component;

import spectrm.framework.artifact.Artifact;

import java.net.URL;

* Interface: Edit

* Author: Patrick Anderson

*

* Notes: The Edit component interface defines the interface for both

* data manipulation and read-only data display components.

*

* Last Modified: 05/16/2000

public interface Edit extends Component {

* Opens the given artifact for editing and display.

public void open(Artifact artifact);

* Repositions the current editing position within the artifact to

* the location specified by the given URL. URLs must either be

* artifact specific or have locality with the artifacts which are

* currently open in the Edit component.

public void reposition(URL url);

54

* Returns the URL representing the location closest to the current

* editing position. The structure of the URL is heavily artifact

* dependent and should be used as a magic cookie whenever possible.

public URL getCurrentPositionO;

* Roughly equivalent to save and save as. Provided for access by the

* reflection mechanism for programmatic control of the component.

public void store(Artifact artifact

public void store(Artifact artifact, URL url

* Discard any changes to the artifact and release it from this component.

*/

public void close(Artifact artifact);

* Returns a set containing the artifacts currently in use by this

* component.

public Set openArtifactso;

}

55

package spectrm.framework.component;

import spectrm.framework.artifact.Artifact;

* Interface: Simulator

* Author: Patrick Anderson

*

* Notes: The Simulator component interface defines the interface for

* all state machine based simulation components. Incoming

* events arrive on the component's input stream, and outgoing

* events are pushed into the component's output stream.

*

* Last Modified: 05/16/2000

public interface Simulator extends Component {

* Sets up a simulation of the specified artifact, which should

* represent data which is meaningful to the simulator.

public void simulate(Artifact artifact);

* Allows the simulator to accept initial conditions for the simulation.

public void initialize(Artifact artifact);

56

* Starts the simulation.

public void startO;

* Runs the simulation through a single step.

public void stepO;

* Stops the simulation.

public void stopo;

}

57

package spectrm.framework.component;

import spectrm.framework.artifact.Artifact;

* Interface: Display

* Author: Patrick Anderson

*

* Notes: The Display component interface defines the interface for all

* components which display static or dynamic data to the user.

* Dynamic displays should recieve updates via the streams

* interface.

*

* Last Modified: 05/16/2000

public interface Display extends Component {

* Provide data to the component for display.

public void initialize(Artifact data);

* Direct the component to focus the display on some portion of the data.

public void focus(URL position);

}

58

package spectrm.framework.component;

import spectrm.framework.artifact.Artifact;

* Interface: Interaction

* Author: Patrick Anderson

*

* Notes: The Interaction component interface defines the interface for

* all components which provide user interaction with simulations

* or other components. Interaction components should cooperate

* with other components mainly through the streams interface.

*

* Last Modified: 05/16/2000

public interface Interaction extends Component {

* Sets up the display and interaction aspects of the component.

public void setup(Artifact description);

/**

* Allows the component to have any internal state set.

public void initialize(Artifact state);

* Produces a copy of the current internal state of the component.

59

*/

public Artifact dumpo;

* Freezes the component at the point the method was called. Further

* input may be discarded or queued depending on the implementation.

public void freezeO;

* Causes the component to resume responding to user and stream input.

* If input was buffered, all incoming events are processed immediately

* to make the state consistent.

public void resumeo;

}

60

package spectrm.framework.component;

import spectrm.framework.artifact.Artifact;

* Interface: Analysis

* Author: Patrick Anderson

*

* Notes: The Analysis component interface defines the interface for

* data analysis components. Incoming data arrives on the input

* stream and processed data is pushed out the output stream,

* allowing for chaining of analyses.

*

* Last Modified: 05/16/2000

interface Analysis extends Component {

* Initialization provides a means for the component to accept any

* initial state needed to perform it's analysis.

public void initialize(Artifact state);

}

61

package spectrm.framework.component;

import spectrm.framework.artifact.Artifact;

* Interface: Functional

* Author: Patrick Anderson

*

* Notes: The Functional component interface defines the interface for

* components which perform some work in the system, for example

* providing input events to the simulator.

*

* Last Modified: 05/16/2000

interface Functional extends Component {

/**

* Allows the component to accept initial state.

public void initialize(Artifact state);

* Since the functional components are not generally stream based,

* this method allows the user of the component to prod it into

* performing whatever work it does.

*/

public void activateO;

}

62

Bibliography

[1] Kent Beck. Extreme Programming Explained: Embrace Change. Addison-Wesley,

2000.

[2] Erich Gamma ... [et al.]. Design Patterns: Elements of Reusable Object-Oriented

Software. Addison-Wesley, 1995.

[3] William J. Brown ... [et al.]. AntiPatterns. John Wiley and Sons, Inc., 1998.

[4] Brian Foote. Designing to Facilitate Change with Object-Oriented Frameworks.

Masters thesis, University of Illinois at Urbana-Champaign, Department of Com-

puter Science, 1988.

[5] Martin Fowler. Refactoring: Improving the Design of Existing Code. Addison-

Wesley, 1999.

[6] Jr. Frederick P. Brooks. The Mythical Man-Month. Addison-Wesley, 1995.

[7] Andrew Hunt and David Thomas. The Pragmatic Programmer: From Journey-

man to Master. Addison-Wesley, 2000.

[8] Nancy G. Leveson. Completeness in formal specification language design for

process-control systems.

[9] Nancy G. Leveson. Sample intent specification: Altitude switch.

[10] Nancy G. Leveson. Safeware: System Safety and Computers. Addison-Wesley,

1995.

63

[11] Nancy G. Leveson. Draft intent specifications (including spectrm-rl) user manual.

1999.

64

