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Abstract

The focus of this work is the time-frequency analysis of multimode Rayleigh-Lamb wave
signals for nondestructive evaluation. Dispersion curves are extracted from a single broad-
band signal containing several modes using the Morlet wavelet transform. The method is
applied to simulated as well as experimental signals. An Nd:YAG laser and PVDF trans-
ducers were used to generate and receive the Rayleigh-Lamb wave signals on an aluminium
plate. Direct arrivals and reflections from the edge of the plate, although obscure in the
time domain, were easily distinguishable in the time-frequency domain. Results show that
within a limited frequency range the time of flight of the direct arrivals and edge reflec-
tions may be extracted with good accuracy. The extracted information may then be used
to determine the location of the edge of the plate. This work suggests that with the aid
of time-frequency analysis, the presence of several modes in a Rayleigh-Lamb wave signal
need not be considered detrimental to nondestructive evaluation. It may, on the contrary,
provide a means of detecting discontinuities in the specimen.

Thesis Supervisor: Shi-Chang Wooh
Title: Associate Professor of Civil and Environmental Engineering
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Chapter 1

Introduction

1.1 Problem Statement

The merits of Lamb wave testing for the nondestructive evaluation (NDE) of plates have

been reiterated in the many works published on the subject. For instance, the advantages of

Lamb wave testing over conventional C-scanning have often been emphasized. When large

areas of a structure are to be inspected, Lamb waves are more attractive than bulk waves

since they can propagate over long distances to inspect a wider area [1].

It is a great misfortune, then, most authors lament, that Lamb waves are multimode by

nature. That is, there exist at least two wave modes at any given frequency, thus making

the signals complicated and difficult to interpret.

In general, there are two approaches taken to address this unfavorable circumstance.

The first deals with it at the experimental level by coaxing a single mode into dominance

(see for instance Alleyne and Cawley (1992) [2]). The other less established approach accepts

the multimode nature of the signal and treats it at the signal analysis level [3, 4, 5]. It is

the latter that is explored in this study.

Among the many methods in signal processing, time-frequency analysis lends itself quite

naturally to the analysis of multimode, broadband signals. In the analysis of dispersion, the

wavelet transform seems to be an excellent alternative to other more conventional methods

such as the short-time Fourier transform [3, 6, 7]. Due to its similarity to the STFT, the

Morlet wavelet in particular serves as a gateway towards the use of wavelets in this area.

Thus, the problem addressed in this study is this: To use the Morlet wavelet transform

to extract the Lamb wave dispersion characteristics from a multimode, broadband signal

17



for the purposes of nondestructive evaluation.

1.2 Historical Perspective

The formal solution to the problem of two-dimensional waves in a solid bounded by parallel

planes was first given by Rayleigh (1889) and Lamb (1889) [8]. It was only in the 1960s,

however, that Mindlin [9] and other authors achieved a fuller understanding of the impli-

cations of the frequency equation. The physical aspects and applications of the theory was

discussed in 1967 by Viktorov [10] in his classic text.

1.2.1 Lamb waves for NDE

Since then, many developments to the theory and application of Rayleigh-Lamb waves -

or simply Lamb waves - have been achieved. One notable development was the discovery

of leaky Lamb waves which have since been studied extensively by Bar-Cohen, Mal, et al.

[11, 12, 13, 14, 15], and Chimenti, et al. [16, 17, 18] and used for the NDE of cohesive

bonds, composite laminates and bonded plates.

Many authors have also applied the more classical Lamb waves towards the NDE of

materials and structures. For instance, Guo and Cawley [19, 20, 21] investigated the inter-

action of Lamb waves with delaminations in composite laminates . Castaings and Cawley

explored the use of air coupled transducers in generating a single Lamb mode and used to

method to detect defects [22]. Rogers determined elastic constants of isotropic plates from

measurements of phase velocities of individual modes [23].

1.2.2 Experimental Approach

Most authors have directed their efforts towards developing techniques to generate a single

Lamb mode over a controlled frequency bandwidth. Alleyne and Cawley have published

extensively on the subject and provided an excellent review of possible methods of excita-

tion, response measurement and signal processing, as well as guidelines for the selection of

the appropriate mode and frequency range for different inspection requirements [2, 24, 25].

A common thread in all these studies is the use of angle-wedge transducers and nar-

rowband signals in order to transmit and receive a pre-determined Lamb mode at a given

frequency. In theory, a particular incident angle will generate only Lamb waves having

18



the corresponding phase velocity determined by Snell's law [10, 26]. In practice, however,

single-mode excitation is hampered by finite transducer width and beam divergence which

cause a finite range of frequencies and phase velocities to be excited [23]. This method also

requires sweeping in frequency or scanning in space in order to construct significant sections

of the Lamb wave dispersion curves.

The experimental setups often require great accuracy in alignment and, when scanning

in space, maintaining this accuracy in all tests. Nevertheless, this method remains attractive

due to the ease with which the received signals may be interpreted.

The use of array transducers has been explored as an alternative to angle-wedge trans-

ducers in single Lamb mode excitation [10]. Rose et al. [27, 28] has explored the use of

comb transducers for NDE and smart structures. Monkhouse et al. [1], for instance, devel-

oped flexible interdigital transducers to be imbedded in the structure designed to excite a

particular mode. Perhaps an even better alternative, and one that is still being explored,

is the use of array transducers capable of dynamically tuning to a preferred mode without

realigning the transducer configurations [29, 30].

1.2.3 Signal Analysis Approach

Another approach addresses the multimode nature of Lamb wave signals at the signal

processing stage. In exchange for greater ease in experimental implementation, broadband,

multimode signals are tolerated at the expense of an increase in computation.

Pierce et al. [31] analyzed broadband Lamb wave signals in aluminum and compos-

ite samples. They used the two-dimensional Fourier transform [32] on a set of waveforms

obtained using non-contacting laser generation and reception. Although they successfully

extracted dispersion curves by this method, one drawback in using the two dimensional

Fourier transform is that it still requires the acquisition of several signals at different loca-

tions.

Time frequency analysis methods, on the other hand, lend themselves quite naturally

to the analysis of dispersed waves by simultaneously analyzing the temporal and spectral

characteristics of signals. The advantage of time-frequency analysis over the two dimensional

Fourier transform is that the dispersion curves may in theory be extracted from a single

signal, as opposed to several signals.

One such scheme that has received quite a bit of attention is the wavelet transform.
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Inoue et al. [7] performed a wavelet analysis of broadband albeit single-mode flexural waves

in beams. Abbate et al. [3, 6] describe how the wavelet transform may be used in analyzing

Lamb wave signals, but lacked more extensive results. Veroy and Wooh [4, 5] performed

numerical simulations in which the wavelet transform was used to construct two-mode

dispersion curves from a single signal.

1.3 Scope and Limitations

The goal of this study is to extract the Lamb wave dispersion characteristics from broad-

band multimode signals using the wavelet transform. To achieve this, both numerical and

experimental investigations are performed.

1.3.1 Numerical Investigation

The feasibility of the method is first evaluated through a numerical investigation. Broad-

band signals are simulated and the entire frequency spectrum (from near zero to the Nyquist

frequency) is analyzed. Both single-mode and multimode signals are used in the numerical

tests. The results of this investigation is an algorithm capable of extracting group delay

from a multimode signal.

1.3.2 Experimental Verification

This algorithm is then applied to real Lamb wave signals. Broadband signals were obtained

using an Nd:YAG laser and polyvinylidene fluoride (PVDF) transducers to excite and detect

the Lamb waves in aluminum plates. The results are then analyzed and the algorithm

evaluated.

1.3.3 Limitations

The subject of wavelets is a broad and rapidly developing field. There are many different

wavelets, but only the Morlet wavelet is used and evaluated in this study. A survey and

evaluation of other wavelets is beyond the scope of this thesis.

The experimental investigation is also limited to one aluminum plate sample. Future

studies will most certainly involve plates of other thicknesses and materials, and containing

different types of defects.
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The ultimate goal is to develop a method for the characterization of defects, i.e., to

determine the location, size, nature and orientation of the defect. Although much has yet

to be done in order to achieve this goal, the method described in this study will be shown

capable of detecting a discontinuity in the form of an edge on the plate. Other types of

discontinuities are not investigated in this thesis.

1.4 Thesis Organization

Chapters 2 and 3 give a brief review of the principles of dispersion, Lamb waves and time

frequency analysis using wavelets. Far from being complete treatises, these chapters were

intended to highlight the main ideas essential in the different aspects of the study.

The numerical investigation is discussed in Chapter 4. The implementation of the

method, and its application to simulated single mode and multimode signals are discussed.

Chapter 5 describes in detail the experimental set-up used and analyzes the results of

the experiments. A summary of the main points of the thesis and an evaluation of the

method follow in Chapter 6.

The appendix contains supporting data and calculations as well as a more complete list

of specifications of the equipment used.
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Chapter 2

Dispersive Systems:

Rayleigh-Lamb Waves

2.1 Introduction

This chapter is divided into three major sections. The first gives a brief explanation of the

phenomenon of dispersion, and the concepts of phase and group velocity are defined. The

second section deals with the characterization of dispersive systems in general. In particular,

the relationship between the phase response of a system and dispersion is explained. The

last section deals with Rayleigh-Lamb waves.

2.2 Dispersion

The phenomenon of dispersion was observed and investigated as early as the mid-1800's. A

simple analytical explanation for the phenomenon, first given by Stokes, begins by consider-

ing two propagating harmonic waves with equal amplitude but different angular frequencies

ui and W2

u(x, t) = A[ei(klx~wit) + ei(k2X-w2t)] (2.1)
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where k1 and k2 are the wavenumbers and i = V(-1). Assume further that wi and W2 are

only slightly different, and let

1-(wi + w2)
2
1

A (wi - w2)
2

1
k = -(k 1 + k2 )

2
1

Ak = -(ki - k2 )
2

(2.2)

(2.3)

Eqn. (2.1) may then be written as

u(x, t) = 2A cos (Akx - Awt)e i(kx~wt) (2.4)

As shown in Fig. 2-1, the low frequency term envelopes the high frequency signal, thus

forming a succession of wave groups. The high frequency term in Eqn. (2.4) propagates at

the average velocity c where

C
c = k (2.5)

Since c is the velocity at which a point of constant phase propagates, it is called the phase

velocity. The overall wave group defined by the envelope propagates at the group velocity

Cg given by

c=Ak (2.6)

Figure 2-1: A
frequencies.

Low frequency envelope, c9 High frequency carrier, c

wave group formed by two harmonic waves with slightly varying angular
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In the limit as Ak -+ 0, the group velocity takes the form

_dw

dk (2.7)

2.3 Characterization of Dispersive Systems

2.3.1 Characterization in the Time Domain

A linear time-invariant system, schematically depicted in Fig. 2-2, can be fully characterized

in the time domain by its impulse response h(t) through the convolution sum

g(t) = f(t) * h(t) f f(t)h(t' - t)dt' (2.8)

where g(t) is the output due to a given input f(t). The impulse response is the response of

the system when the input is a Dirac delta function, 6(t).

2.3.2 Characterization in the Frequency Domain

The system may likewise be completely characterized in the frequency domain by the fre-

quency response or transfer function, as depicted in Fig. 2-3. The frequency response is

defined as the complex gain that the system applies when the input is a complex exponential

[33). That is, if f(t) = ei't, then

g(t) = H(w)eiw't (2.9)

Figure 2-2: Time-domain characterization of a linear time-invariant system.
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where

H(w) J h(t)e-'iwdt. (2.10)

is the transfer function. If the input is a Dirac delta function,

f f = e1 dw = 6(t), (2.11)

then by superposition and by the definition of the impulse response,

h (t) = g (t) = 1f H (w) e'wtdw. (2.12)

The Fourier transforms of the input and output, F(w) and G(w) respectively, are then

related by

G(w) = H(w)F(w). (2.13)

The frequency response may also be expressed in polar form

H(w) = |H(w)|eiO") (2.14)

where |H(w)l is the magnitude response, and #(w) is the phase response of the system.

The magnitude response is a measure of the amplification or attenuation introduced by the

system as a function of the input frequency. The phase response is a measure of the phase

shift that the system applies to an input of frequency w. The effect of the phase response

may be better understood by considering the concept of group delay.

2.3.3 Group Delay

The group delay T(w) is defined as the negative of the slope of the phase response [33]

r (W) = o (2.15)
do
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Figure 2-3: Frequency domain characterization of a linear time-invariant system.

To illustrate the effects of group delay on the response of a system, we consider a system

with frequency response

H(w) = eiq(w) (2.16)

This system introduces no attenuation or amplification; its only effect is a phase shift #.

We consider two cases. First, # is linear in w; and second, # is nonlinear and the input f(t)

is narrowband.

Linear Phase

If # is a linear function of w

#(w) = #0 - tow (2.17)

where to and 0 are constants, the group delay is given by

r (w) = -d(# - too) = to.
do

(2.18)

For an arbitrary input f(t) with the Fourier transform F(w), the Fourier transform of the

output is given by

G(w) = F(w)ei(o~Wto) (2.19)
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Taking the inverse Fourier transform

g(t) = ei, 27ro F(w)e''Gt-toldo (2.20)

which reduces to

g(t) = f (t - to)e 4 o. (2.21)

Therefore, a linear phase response given by Eqn. (2.17) causes a constant phase shift #0

and delays the input by to. The constant group delay therefore leaves the input undistorted

and only shifts it in time.

Nonlinear Phase

Next, we consider a system with frequency response still given by Eqn. (2.16), but with

arbitrary nonlinear phase #. We examine its effects on a narrowband input given by

f(t) = s(t)eot. (2.22)

For instance, Fig. 2-4(a) shows the time characteristics of an oscillatory signal of frequency

wo within a finite duration wave packet s(t). The frequency spectrum of this pulse, shown

in Fig. 2-4(b), has a sharp peak at wo. Since the Fourier transform F(w) is nonzero only in

the vicinity of w = wo, we are led to consider the Taylor expansion of # around wo

#(w) = #(wo) + (W - Wo) +l - -- (2.23)

By dropping higher order terms and using Eqn. (2.15), the effect of the phase of the system

can then be approximated by

#(W) ~ #0 - (W - WO)ro (2.24)

where To = T(wo), #o = #(wo). Henceforth, the symbol (o will be used to symbolize the

function ((w) evaluated at w = wo.
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With this linear approximation, the Fourier transform of the response is

G(w) - F(w)ei("o+woTo-o), (2.25)

and the inverse Fourier transform can be expressed as

g(t) -eIoWOTO) [+r F(w)e o(t-T) dw (2.26)

which yields

g(t) s(t - To)e(0*+wot). (2.27)

Therefore, the effect of the nonlinear phase # on the narrowband signal with center frequency

wO may be approximated as a constant phase shift #(wo) on the oscillatory signal and a delay

of T(wo) on the envelope.

If we therefore consider an arbitrary signal f (t) as a superposition of narrowband com-

ponents, then the effect of the system H(w) - eiO(w) on each component centered at w, may

be approximated in a similar manner. In the case of broadband signals, a nonlinear phase

response introduces a group delay that is not constant but may vary significantly with w.

Since each narrowband component is delayed by a different amount, the nonlinearity of the

phase causes the signal to be distorted. Components which were in phase initially may no

longer be in phase at a later time. The group delay may then also be considered a measure

of the distortion or dispersion introduced by the system.

At this point, it may already be clear that the concepts of phase and group velocity are

intimately related to those of phase response and group delay respectively. This relationship

is explained in greater detail in the next section.
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Figure 2-4: (a) A narrowband signal and (b) its corresponding frequency spectrum.
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2.4 Wave Motion: Dispersive Systems

The dynamics of wave motion in a physical system may be described in terms of its elements:

" the problem - the physical system as described by the governing equation and bound-

ary conditions

" the forcing function - the input or forcing applied to the system

* the solution - the output or response of the system.

When the system is homogeneous, i.e., when there is no input or forcing applied, the solution

corresponds to the free vibration response of the physical system.

In the case of homogeneous 1-D problems, we often seek solutions corresponding to

harmonic waves

g(x, t) = Aei(t-kx) (2.28)

where A is a constant. These solutions must satisfy the governing equations as well as the

boundary conditions. Considering such solutions generally yields an equation of the form

f (k, w)Aei'(wt-kx) - 0 (2.29)

which requires that

f (k,w) = 0 (2.30)

for g(x, t) to be nontrivial [34]. This implies that harmonic waves may propagate only when

k and w satisfy the characteristic equation. The correspondence between wavenumber

and frequency is also called the dispersion relation. Hence, the dispersion relation is a

characteristic of the system which stems from either the governing equation or the boundary

conditions (or both).
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Forced Wave Motion

Considering inputs of the form x(t) = eiwt, solutions corresponding to propagating waves

would then be of the form

g(t) = A(w)ei(tL~kx) (2.31)

where k and w satisfy the dispersion relationship. The frequency response of the system is

then

H(w) = A(w)e- ik (2.32)

The phase response of the system is therefore

#(w) = -kx. (2.33)

We consider once again a narrowband input of the form given by Eqn. (2.22). As in the

previous section, we approximate the effects of Eqn. (2.32) by expanding A(w) and #(w)

around w, as follows

A(w) A, (2.34)

#(W) ~ x k, + (w - uwo) . (2.35)

The output is then

g(t) s t - eiwo* -/co) (2.36)
cgo

where

co cgo = (2.37)
=['Iwo

Hence, the wave packet travels at velocity cgo, while the high frequency carrier travels

within the envelope s(t) at the phase velocity, co. The group delay is then simply the time

of flight of a wave which traveled a distance x at velocity cgo. The constant phase shift of

32



the oscillatory signal is similarly related to the phase velocity of the wave.

Multimode Dispersion

Furthermore, it is possible that the relationship between wavenumber and frequency as de-

termined by the characteristic equation (Eqn. (2.30)) is not unique. That is, at a particular

frequency w, there may exist several admissible values of k (or vice versa). The system

then supports more than one mode of propagation, where each mode is associated with a

dispersion relationship kn(w). Since the system is assumed to be linear, then the frequency

response is simply

H(w) = H 2(w) (2.38)

where H(w) is the frequency response corresponding to the nth mode and is given by

Hn(w) = An (w)eikn. (2.39)

The frequency response of the output, G(w), may then be written as

G (w) = F(w) Hn (u). (2.40)

Expanding each term in the same manner as in Eqn. (2.35), the output is then

g(t) = E Anos t X) eiWo(t~/Cn). (2.41)

Hence, the cumulative effect of multimode dispersion is simply the superposition of each of

the modal responses of the system. This is shown schematically in Fig. 2-5.
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Figure 2-5: Response of a multimode system.
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2.5 Rayleigh-Lamb Waves

In this study, we consider in particular the case of waves in a plate having traction-free

boundaries, known as Rayleigh-Lamb waves. Referring to the coordinate system shown

in Fig. 2-6, Rayleigh-Lamb waves propagate in the x-direction and result from multiple

reflections of P and SV waves from the boundaries. A comprehensive discussion may be

found in the classic text by Graff [8]. The main aspects of the problem and results are

briefly outlined here. We define

uX, uY = displacement in the x and y-direction

cL = longitudinal wave velocity

CT = transverse wave velocity

k = x-direction wavenumber

h = plate thickness

The frequency, w, and wavenumber, k, satisfy

U = kc. (2.42)

The vertical and horizontal wavenumbers satisfy

2 2W
C 2 k
cL

o2 =2
c2 

k
CT

Considering symmetric solutions of the form [8]

fl = i(Bkcosay + C(3cos/3y)e i(kx-wt)

U = (-Ba sinay + Cksin/3y)e i(kx-wt)
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and applying the boundary conditions on the corresponding stresses leads to the character-

istic equation

tan ph 40#k 2

=a~ - (2.47)
tan ah (k2 - /32)2 (.7

This is the dispersion relation for symmetric modes. Similarly, considering antisymmetric

solutions of the form

i = (Akcosay - D/cos/y)ei(kx-wt) (2.48)

UY = (Aasinay + Dksin3y)e i(kx-wt) (2.49)

and applying the stress-free boundary conditions yields

tan #h (k2 __ 32)2

tan ah 4a _ .k2  (2.50)

This is the dispersion relation for antisymmetric modes.

The dispersion relations (Eqn. (2.47) and (2.50)) may also be written as

(k2 _ 02)2 cos a sin # + 4k 2ao sin a cos 0 = 0 (2.51)
2 2 2 2

2 )2- h h 2h h
(k2 _ p2- 2 sin a- cos 0- + 4k2a# cos a sin 0 0 (2.52)

2 2 2 2

for symmetric and antisymmetric modes respectively. These alternative forms of the dis-

persion relation are better suited to numerical computation [23]. The dispersion curves for

aluminum with Poisson's ratio v = 0.35 and Young's modulus E = 70 GPa are shown in

Fig. 2-7.

The phase velocity curves were calculated using a root finding algorithm developed in

the 1960s by Van Wijngaarden, Dekker et al. and improved by Brent [35]. This method

requires an initial estimate of the root. For the fundamental symmetric and antisymmetric

modes, S, and A 0, initial estimates are obtained using the limiting values of the phase

velocities for very low frequencies. At low frequencies, the phase velocity of the So, mode is
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Figure 2-6: Plate of thickness 2h with traction free boundaries.

given by [23]

E
lim c = (2.53)

fh-+0 p(1 - 2)(

while the phase velocity of the A, mode is

lim ca = _ E 2) (2.54)
fh-0 3p(1 -- v2)

Using these values as initial estimates, the phase velocities at a frequency slightly A(fh)

greater than zero are calculated. Successive roots are calculated using previous roots as

initial approximations. For instance, after using Brent's algorithm to calculate the phase

velocity c[1] where

c[n] = c(nA(f h)) (2.55)

c[2] is obtained using c[1] as the initial estimate. Generally, the root at c[n] is determined

by using the previously calculated root c[n - 1] as the initial approximation.

For the higher modes, a less elegant method was used to obtain the initial estimates.

First, the frequency-thickness product fh at which the phase velocity is approximately 10

km/s (or any arbitrary maximum value) is first calculated by brute force, i.e., by plotting

Eqns. (2.51)-(2.52) versus fh for c = 10 km/s and scanning the plot to find the location

of the root. Successive roots are then calculated using the same procedure as for the
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Figure 2-7: Dispersion curves for aluminum plotted against the frequency-thickness product,
fh, in terms of (a) phase velocity c and (b) group velocity c9 .
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fundamental modes.

For sufficiently small A(fh), the group velocity c9 may be calculated using a simple

finite-difference approximation to

do
C -- d (2.56)
g dk

The angular frequency and wavenumber may be calculated from the phase velocity and

frequency, and the derivative is approximated by taking

dw w(k + Ak) - w(k) (257)
dk Ak

for sufficiently small Ak.
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Chapter 3

Time-Frequency Analysis Using

Wavelets

3.1 Introduction

Once the multi-mode Lamb wave signals have been obtained, it is then necessary to consider

the method by which the velocity information is to be extracted from the signals. In signal

processing, transformations are often used to extract certain features of the signal which

may otherwise be difficult to observe in its original form. The kind of information that can

be extracted depends on the characteristics of the basis functions used in the transformation.

3.1.1 The Classical Fourier Transform

In the classical Fourier transform (FT), a signal f(t) is expressed as the sum of functions

{eit} with pure frequency w. The Fourier transform f(w) is defined as

f (w) j f (t)e-'wdt (3.1)

which provides a measure of the spectral content of the function f(t) over the whole time

domain. In the time-frequency plane, the Fourier transform represents information along

the line w = w', as shown in Fig. 3-la. Hence, evaluating the FT in the entire frequency

range maps a signal from the time domain onto the frequency domain.
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2Aw
(b) F*-

to t

Figure 3-1: Region investigated in the time-frequency plane by (a) the Fourier transform
and (b) time-frequency analysis.

3.1.2 Nonstationary Signals and Time Frequency Analysis

There are many instances, however, when one may be interested in measuring the spectral

content of a signal over a localized span of time. For instance, Fig. 3-2 shows signals with

finite support', localized features or time-varying frequency content. When analyzing such

signals, it might be desired to localize in both time and frequency so as to capture their

local temporal characteristics as well. It is beneficial in these cases to inspect a finite area in

the time-frequency plane instead of a line, as shown in Fig. 3-1b. In such a time-frequency

analysis, the temporal and spectral characteristics are investigated simultaneously, and the

transform coefficients measure the average spectral content over a finite interval in time.

3.2 Short-Time Fourier Transform

To address the deficiencies of the Fourier transform in extracting local frequency informa-

tion, a time-localizing window function is often used [36]. This method is known as the

'The support of a function f is defined as "the smallest closed set A for which f(x) is identically zero for
all x ( A" [36].
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Nonstationary signals with (a) compact support, (b) local features and (c)
time-varying frequency content.
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short-time Fourier transform (STFT). The STFT of a function f(t) is defined as

F(w, b) = f [f(t e-i] w(t - b)dt (3.2)

where w(t) is a window function and the parameter b is varied so as to cover the whole time

axis. A function qualifies as a window function if it is in L 2 (R) where R is the set of real

numbers. This requires that

J |tw(t)|2dt < oo. (3.3)

The center of a window function, to is defined as

to= 1 f' tlw(t)|2dt, (3.4)

where ||w1|2 is the L 2 norm, defined as

II ||12 = w(t)12dt . (3.5)

The radius Aw, or half the width of the window, is defined as the standard deviation or

root mean squared duration of w,

A = (t -- to)2 |w(t)|2 dt 1/2 (3.6)

If w is to be used as a window function for time-frequency analysis, then it must also

provide localization in the frequency domain, i.e., its Fourier transform Tb must also satisfy

Eqn. (3.3). Although the smallest possible time-frequency window is generally desired,

the widths of the window functions w and ig satisfy the Heisenberg Uncertainty Principle

[36, 37]

(2Aw)(2,At) ;> 2. (3.7)

This principle states that there is a lower limit to the size of the time-frequency window,

and therefore to the degree of accuracy with which we can analyze a signal in both time
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and frequency. Equality in Eqn. (3.7) holds if and only if w is a Gaussian function, i.e.,

og (t) = e-( ). (3.8)

The Fourier transform or W9 is also a Gaussian and is given by

zb9(w) = f ei). (3.9)

The widths of w9 and t69 are

2Awg = , (3.10)

2Ag = 2 (3.11)

Once the widths of the window functions are selected, the shape and size of the time-

frequency window does not change as w or t changes. However, when low frequencies are

to be analyzed, a wide window in time is desired while windows that are sharper in time

are preferred when dealing with high frequencies. The rigidity of the STFT time-frequency

window becomes a disadvantage when the signal to be analyzed contains both high and low

frequencies. When dealing with such broadband signals, a flexible time-frequency window

which widens and narrows with changing frequency is more advantageous. With wavelets,

this flexibility comes automatically.

3.3 The Wavelet Transform

The most basic wavelet, the Haar wavelet, was invented in 1910 [38, 39]. The development of

wavelet analysis was led by Meyer, Morlet and Grossman, but it wasn't until the innovations

of Daubechies and Mallat when an explosion of interest and activity in wavelet theory and

applications occurred [36]. Since then, wavelets have found applications in signal processing,

image analysis data compression, and many other fields.
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3.3.1 The Continuous Wavelet Transform

In the early 1980s, Morlet introduced a 'wavelet' which was dilated and translated to form

a family of analyzing functions. These functions are normalized as [38]

V~a~b 1 (1 -) b312

which is a dilation (denoted by a) and translation (denoted by b) of the mother wavelet 2

0(t). The continuous wavelet transform (CWT) is defined as

W(a, b) f f(t)/a,dt, (3.13)

where the bar denotes complex conjugation. The wavelet transform computes the correla-

tion between the signal and the dilation and translation of the wavelet 0(t). The coefficients

are therefore a measure of the similarity between the wavelet and the function f(t).

3.3.2 Admissibility Condition

If the wavelet 0(t) satisfies the admissibility condition

CV = 2rf 1M 2 dw < oo, (3.14)

then the inverse transform can be computed with the reconstruction formula

f(t) = f W(a, b)@a,b(t) da . (3.15)
CP f fa2

The admissibility condition requires [38, 39]

j0) = (t)dt = 0. (3.16)

2 The mother wavelet "gives birth" to a family of wavelets through the operations of dyadic dilation and
integer translation [36].
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3.3.3 Fast Wavelet Transform

In the late 1980s Mallat proposed a fast algorithm for the computation of wavelet coefficients

based on the concept of multiresolution analysis. This multiresolution analysis is generated

by the scaling function #(t), sometimes called the father wavelet, which satisfies the two-

scale relation [38]

#(t) = 2 1 hn#(2t - n) (3.17)

for given coefficients h,. The associated wavelet is then generated by

(t) = 2 E(-1)"hi n#(2t - n). (3.18)

The concept of multiresolution states that lower level scaling function and wavelet coeffi-

cients can be computed from given scaling function coefficients at a higher level [36], leading

to a Fast Wavelet Transform (FWT) 3.

3.3.4 The Morlet Wavelet

The wavelet used in this study is the Morlet wavelet, defined as [3]

(3.19)

Traditionally, the parameters a and wo are defined as [39]

(3.20)

(3.21)O 7r in 2

The corresponding wavelet is plotted in Fig. 3-3. But these parameters may be varied in

order to get more accurate results, as will be shown in Chapter 5.

The Morlet wavelet is simply a Gaussian modulated harmonic function whose Fourier

3For a detailed discussion, see for instance Cohen (1995) or Strang (1997).
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transform, uM, can be deduced from using Eqns. (3.8)-(3.9),

- [a (Wwo) 
2

= v/ae 2 . (3.22)

The Morlet wavelet qualifies as a window function in both time and frequency, but it does

not satisfy Eqn. (3.16) exactly. However, the actual value is very small and is negligible.

Despite this, the Morlet wavelet has some very good characteristics. Since the Morlet is

essentially a Gaussian, the area of the time-frequency window is at the minimum possible

value allowed by the Heisenberg Uncertainty Principle [Eqn. (3.7)]. In particular, the widths

of OM and hm are the same as in Eqns. (3.10)-(3.11).

2A = a, (3.23)

2A - 2 (3.24),M a

The disadvantage of using the Morlet wavelet is that it does not have a scaling function

associated with it [40]. It cannot, therefore, be implemented by a Fast Wavelet Transform.

3.3.5 Remarks

There are many other wavelets aside from the Morlet that one may choose from, and many

more that are being designed. Some of the more well known are the Meyer and Daubechies

wavelets [39]. The optimality of a particular wavelet largely depends on the particular

application and the objectives of the analysis. Generally, the Morlet wavelet transform

is computationally more expensive compared to other wavelet transforms in that there is

no fast algorithm that can implement it. Using other wavelets may be more attractive

computationally, but there is a necessary compromise in resolution.

3.4 Comparison between the Wavelet and Fourier Transform

The key distinction between the wavelet and the short-time Fourier transform lies in the

dimensions of the time-frequency window. While the widths of the time-frequency window

in the STFT is constant or rigid, those in the WT vary with the scaling parameter a. In
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Figure 3-3: (a) The Morlet wavelet, OM(t) and (b) the magnitude of its Fourier transform,

| M I(t)|.

particular, the time window width at scale a is

a = aAVm, (3.25)

and the frequency window width is

'A - A M(3.26)
Va,b a

At high frequencies (low a), the width of the time window decreases, giving better

resolution in the time domain. At low frequencies (high a), the width increases adapting

to longer periods. In other words, the size of the time-frequency window in STFT is rigid,

whereas in the WT, the widths change according to frequency variations. Since the periods

at high frequencies is smaller and vice versa, this characteristic makes the wavelet transform

more suitable for analyzing signals containing a wide range of frequencies. Furthermore, a

comparison between the Morlet wavelet transform and the Fourier transform reveals that the

Morlet WT is equivalent to a Gaussian-windowed Fourier transform with varying window

widths.
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3.5 Wavelet Transform and Dispersion

To illustrate the use of the wavelet transform in the analysis of dispersion, we consider

once again the sum of two propagating harmonic waves with equal and unit amplitudes but

slightly different angular frequencies,

f (x, t) = ei(klx-wit) + ei(k2x-w2t) (3.27)

Taking the Morlet wavelet transform of f at scale a and translation b,

W(a, b) = -f- ei(kix-wit) + ei(k2x-2t)

Letting y = L, Eqn. (3.28) can be expressed as

I -( e) io )dt.

W(a, b) = vae i(kx-xwb)
-'e e-ik w dy

+ /-ei(k2X-W2b) j000 [e-(!)2 iooy iW2aydy
0

Simplifying, we obtain

W(a, b) = /ai [ei(kjx-Ibn)im(awi) + ei(k2x-W2b) m(aw2 )]

Taking the modulus of W(a, b), we obtain

IW(a, b)I = v/7 { (awi) + [#M(aw2)12 + 2-/(awi)-/(aw2 ) cos [2Akx - 2Awbl

(3.31)

where

1
w=-g(wi - 2)

1
Ak = 1(ki - k2 )2

and uM(w) is given by Eqn. (3.22). If Aw is sufficiently small so that

0(awi) # O(aw2) ~ (aw),
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(3.28)

(3.29)

(3.30)

1
2

(3.32)

(3.33)



then

1 c(aw-wo)
2

IW(a, b)~ 2irae- 2 [1 + cos (2Akx - 2Awb)] . (3.34)

For fixed x, 11 W(a, b)I has a maximum at

a -

while for fixed frequency w, the maximum occurs at

xAk x
b == --

Ao c9

(3.35)

(3.36)

Hence, the wavelet transform coefficients W(a, b) yield a maximum value corresponding to

the time of arrival b of a wave of frequency w = wO/a.
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Chapter 4

Numerical Implementation

4.1 Introduction

To evaluate the method proposed in the previous chapters, a numerical study is performed.

In the first part of the study, single mode signals are simulated and analyzed. The results

are used to determine the optimal values of the parameters in the Morlet wavelet. The

second part of the study deals with the refinement of the algorithm for the purpose of

analyzing multimode signals. The results show that the wavelet transform is a potentially

effective tool in analyzing the time-frequency characteristics of multimode signals.

4.2 General Procedure

The simulations shown in this chapter follow a common procedure shown schematically in

Fig. 4-1. First, a magnitude response of unity is assumed and the phase response # is defined

as a function of frequency w. Then, by definition, the group delay r(w) is also known. The

simulated system transfer function is then

H(w) = A(w)e*(w) = eie(w). (4.1)

The impulse response, h(t) is

h(t) = e2O(wje'do. (4.2)
27 _0
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The time-frequency characteristics of h(t) are analyzed by calculating the wavelet transform

coefficients W(a, b). This yields the group delay T as a function of frequency. The calculated

group delay is be denoted by T to distinguish it from the actual group delay T. The results

are compared with the actual group delay, and the algorithm is refined as needed.

4.2.1 Implementation of the Wavelet Transform

The following algorithm by Misiti et al. [40] was used to implement the Morlet wavelet

transform in MATLAB 1 .

The wavelet transform coefficients of a discrete signal s(t) are given by

W(a,b) =
/-o 0

s(t b) dt.
(a)

(4.3)

Since s(t) is a discrete signal, a piecewise constant interpolation is used,

s(t) = s(k) for t E [k, k + 1]. (4.4)

Equation (4.3) can then be written as

1 M-1
W(a,b) = ( s(k)

k=0

where M is the total number of samples in the discrete signal. Rewriting,

- k+ t - jk (t -b)dt

$0 a dt - @ a dt.
1 M-1

W(a,b) - E s(k)
k =0

(4.5)

(4.6)

At any scale a, W(a, b) can be obtained by convolving s

version of the integral

_tk $k0(t) dt.

Whereas MATLAB defines the Morlet wavelet as

with a dilated and translated

(4.7)

t2

')M (t) = 2 cos 5t,

1 MATLAB is a trademark of The Mathworks Inc. MATLAB v. 5.2 was used in this study.
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Define magnitude and
phase response

A (w) = 1, 0>(w) =: r (W)

Algorithm
for measuring
group delay

Calculate wavelet
transform coefficients

W(a, b)

Measure

group delay
from W (a, b)

.. ...... . .... ......). ....

4,
Compare actual and

measured group delay
T and T

Figure 4-1: General procedure used in numerical simulations. Measurement of the group

delay, T(w), are determined from the wavelet transform coefficients and compared with the
actual group delay r(w).
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the definition in Eqn. (3.19) is used in this study. Using the complex valued function

preserves the Gaussian shape of the wavelet amplitude, making it easier to locate the peaks

in the coefficients. As mentioned in Section 3.3.4, using this definition allows us to vary the

parameters a and w, in order to get more accurate results. The group delay may then be

calculated from the wavelet coefficients (see Section 3.5).

The accuracy of the calculated group delay depends partly on how the parameters of

the Morlet wavelet are defined. The Morlet wavelet transform as defined in Section 3.3.4

exhibits two degrees of freedom: a and wo. Theoretically, the wavelet transform coefficients

(times a factor -) exhibit maxima corresponding to the time of arrival and frequency

of the wave packet. The results of Section 3.5 were arrived upon without regard to the

values of a and w,. However, the values of these two parameters affect the detectability of

these maxima. If the wavelet bandwidth is too wide or too narrow, the group delay will

not be detected accurately. For instance, if the bandwidth is much too narrow, then the

WT becomes very similar to the Fourier transform, and local time information cannot be

obtained. For the purposes of time-frequency analysis, a good balance between the time

and frequency widths must be achieved.

All of the signals considered in this thesis will be analyzed from frequencies of approxi-

mately 0 to the Nyquist frequency which, for a sampling period of 1, is 7r. Although a more

thorough parametric study may be performed, the center frequency w, is arbitrarily chosen

to be half the Nyquist frequency or 7r/2. The value of a will then be varied to obtain the

most accurate results.

4.3 Single Mode Signals

4.3.1 Test Signals

Table 4.1 summarizes the characteristics of the responses h(t) considered in the simulations.

A sampling period of 1 was assumed to facilitate the application of the method to signals

with arbitrary sampling periods, for which the time axis only needs to be rescaled by At.

The value for N, the number of samples, was chosen to match with the actual length of the

experimental signals to be analyzed in Chapter 6.

The phase response and corresponding group delay of each test signal are given in

Table 4.2. Signals 1 and 2 have group delays varying linearly with frequency, while signals
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3 and 4 have sinusoidally varying group delays. The group delay T(w) and the resulting

impulse response h(t) for Signals 1 and 3 are shown in Figs. 4-2 and 4-3, respectively.

2500

1

Number of samples

Sampling period

Nyquist frequency

Nyquist frequency (angular)

Table 4.1: Characteristics of the simulated response functions.

Delay Shape Symbol Phase response, <O(w) Group delay, T(w)

Signal 1 Linear hi(t) - jN gN

Signal 2 Linear h2 (t) - -w N (1 - g) N

Signal 3 Sinusoidal h3 (t) -i (w - cos 2w) } (1 + sin 2w) N

Signal 4 Sinusoidal h4 (t) - 1 (w + 1 cos 2w) j (1 - sin 2w) N

Table 4.2: The phase response and corresponding group delay of each of the four test signals.
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(a)

500 1000 1500 2000
Time, t

(b)

2500

2500500 1000 1500 2000
Group delay,c

Figure 4-2: Signal 1: (a) Impulse response, hi(t) and (b) actual group delay, T(w).
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Figure 4-3: Signal 3: (a) Impulse response, h2 (t) and (b) actual group delay, T2(w).
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4.3.2 Group delay measurement algorithm

Figure 4-4(a) shows the magnitude of the wavelet transform coefficients, W(a, b) evaluated

at w =7r/2 for Signal 1. The shift or translation parameter b is varied to cover the entire

time axis. The actual group delay,

r - - 1250 (4.9)
- 2 2

is indicated in the figure. The correspondence between the group delay and peaks in the

wavelet transform coefficients (as described in Section 3.5) is evident. In theory, only one

mode is present in the signal. However, the calculated coefficients exhibit some noise in the

form of ghost peaks. These ghost peaks may cause problems when dealing with multimode

signals since they may be mistaken for actual modes. These observations also hold for

Fig. 4-4(b), which shows similar results for Signal 3.

Figure 4-5 shows the measurement algorithm used to analyze the single mode signals.

The maxima in the coefficients can be found by detecting changes in the slope of the

coefficients. For increasing b, a shift from positive slope to negative slope indicates the

presence of a local maxima. Once the maxima have been located, the peak with the highest

amplitude is chosen and taken to represent the group delay T.

To illustrate, consider the coefficients shown in Fig. 4-6. A single dominant mode is

shown, with some low magnitude peaks representing noise. The locations and magnitude

of the local maxima are also known and indicated. The values of T at W = r/2 for the four

test signals hi(t) to h4 (t) are also given in Table (4.3).

4.3.3 Error measures

In comparing the actual and calculated group delays, T and T, two measures of error are

considered. We define the cumulative error as

N ]2 { [1/2

Ec (a) = II1 = .] / (4.10)
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T 0.15-
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Time, t

Figure 4-4:
(b) Signal 3.

Wavelet transform coefficients evaluated at w = r/2 for (a) Signal 1 and
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Calculate wavelet
transform coefficients
W(a, b) with a = w/wo

10

Repeat for entire
frequency range

Figure 4-5: Group delay measurement algorithm used in analyzing single-mode signals.

Actual group delay, T Calculated group delay, T

Signal 1 1250 1252

Signal 2 1250 1252

Signal 3 1250 1254

Signal 4 1250 1251

Table 4.3: The actual and calculated group delays for Signals 1 to 4 at w
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ti t2 t3 t4 t5 t6 t7 t8 t9 t10 tl1 t12 t13 t14
Time t

Location t7 t6 t5 t9 .--

Magnitude 10 2 2 1 ...

Figure 4-6: Measuring the group delay for a single mode signal.

are sorted according to the magnitude of the WT coefficients.

This error measure will be used to evaluate the overall error

define the absolute error as

The locations of the maxima

for a given value of a. We

Ea (a, W) = IT (W) - T(a, W) I (4.11)

This error measure is useful in determining the dependence of error on frequency.

4.3.4 Results: Cumulative error

The cumulative error in the measured group delay for each test signal is plotted in Figs. 4-7

to 4-8. These results reveal a consistent pattern in the dependence of the error on a.

One common feature is the rapid increase in Ec as a is decreased from approximately

a = 4. This is expected since, by the definition of window width in Eqn. (3.6), the Morlet

wavelet spans approximately one period at a = 4. Choosing a smaller value would cause

problems in time resolution and therefore yield greater errors. To illustrate, the Morlet

mother wavelet is plotted in Fig. 4-9 for several values of a. The corresponding frequency

transform is plotted next to the wavelet.
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To understand the significance of the plots, it is important to note that the relevant

frequency range - from 0 to the Nyquist frequency - corresponds to the region from 0 to

1 on the x-axis of the Fourier transform plots. For a = 1, the bandwidth of the wavelet is

much too large. The frequency bandwidth decreases for a = 4, and becomes even sharper

for a = 8.

For a > 4, the cumulative error tends to oscillate while slightly rising as a is increased.

In this region, it is best to evaluate the error in terms of its variation with respect to

frequency.

4.3.5 Results: Absolute Error

The results for a = 4, 20 and 50 are shown in Figs. 4-10 to 4-15 to illustrate the dependence

of error on frequency for a given value of a. To avoid repetition, only the results for Signals

1 (linear group delay) and 3 (sinusoidal group delay) are shown.

First, the images of the wavelet coefficients are presented. These images are formed by

mapping the amplitude of the WT coefficients at each frequency to the corresponding dark-

ness of the image pixels. Hence, pixel values along a vertical line in the images correspond

to WT coefficient plots such as those in Fig. 4-4.

Next, the results of the group delay measurement algorithm - the dispersion curves -

are given. Finally, the absolute error averaged over all four test signals is shown.

Results for a = 4

The magnitude of the wavelet coefficients for a = 4 are shown in Fig. 4-10. The resulting

dispersion curves are in Fig. 4-11. For low frequencies this choice of a yields good results.

However, the accuracy deteriorates greatly for high frequencies. This is more evident in

Fig. 4-11(b), which shows the results for Signal 3.

Results for a = 20

The magnitude of the WT coefficients for a = 20 are shown in Fig. 4-12 and the dispersion

curves are in Fig. 4-13. These results show a great improvement in accuracy. The dispersion

pattern is very evident from the images, and the calculated group delays display excellent

accuracy except for the extreme low and high frequencies.
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Figure 4-8: Cumulative error as a function of a with wo = 7r/2 for (a) Signal 3 and (b)
Signal 4.
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Figure 4-9: Morlet mother wavelet for V' and its Fourier transform 4 for (a)-(b) a
(c)-(d) a = 4, and (e)-(f) a = 8.
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Figure 4-10: Image of wavelet coefficients for (a) Signal 1, a = 4 and (b) Signal 3, a = 4.
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Figure 4-12: Image of wavelet coefficients for (a) Signal 1, a = 20 and (b) Signal 3, a = 20.
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Results for a = 50

As a is increased further, the results exhibit better accuracy in the high frequency range

but deteriorates for lower frequencies. The images of the WT coefficients in Fig. 4-14 show

sharper patterns, but a greater amount of noise is also present. The decrease in accuracy

for lower frequencies is more evident in the group delay plots in Fig. 4-15.

Average error vs. frequency

To further illustrate the dependence of errors on frequency, the absolute error for each test

is calculated and averaged over all four test signals. The results for a = 4, 20 and 50 are

shown in Fig. 4-16.

4.3.6 Remarks

In this section, the overall or cumulative error was investigated for a wide range of values of

a with w held constant at 7r/2. The results seem to reveal that there is only a certain range

of a for which the group delay can be calculated with an acceptable degree of accuracy.

Extremely low values of a lead to wavelets whose bandwidth is much too wide and to

results with very poor accuracy. Although higher values of a yield sharper peaks in the

WT coefficients, they also incur a greater computational expense.

Furthermore, plots of the calculated group delay for a certain value of a show that the

errors are not uniformly distributed over frequency. It seems that for a certain value of a,

there is a finite frequency band in which the wavelet yields accurate results. It was also

found that at approximately a = 20, the accuracy is poor only for extreme low and extreme

high frequencies, and is very good otherwise. Since, for most experimental signals, the

extremely low (f a 0) and extremely high (f ~ Nyquist frequency) are of little significance,

the value of a to be used in the following simulations as well as in analyzing the experimental

results is 20.
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Figure 4-14: Image of wavelet coefficients for (a) Signal 1, a
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= 50 and (b) Signal 3, a = 50.
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Figure 4-15: Comparison between the actual and calculated group delay for (a) Signal 1,
a = 50 and (b) Signal 3, a = 50.
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Figure 4-16: Average absolute error in the calculated group delay plotted as a function of
frequency w for (a) a = 4, (b) a = 20 and (c) a = 50.
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4.4 Multimode Signals

4.4.1 Test Signals

As stated previously, only the results for a = 20 will be presented. Just as for the single

mode signals, the multimode signals to be considered in the following simulations have the

characteristics put forth in Table (4.1). The two multimode signals are obtained from the

four test signals used previously. In particular, Signals 5 and 6, both containing two modes,

are defined as

h5 (t) = hi(t) + h2 (t) (4.12)

h6 (t) = h3(t) + h4 (t) (4.13)

where ha(t) denotes the impulse response corresponding to Signal n. Hence, Signal 5 is

the superposition of two signals with linear group delay, while Signal 6 is the superposition

of two signals with sinusoidal group delay. The phase response and group delay for h (t),

with n 1 ... 4 were given previously in Table (4.2). Signals 5, 6 and their corresponding

two-mode dispersion curves are shown in Figs. 4-17 and 4-18 respectively.

4.4.2 Group Delay Measurement Algorithm

Figure 4-19(a) and Fig. 4-19(b) show the magnitude of the wavelet transform coefficients

W(a, b) evaluated at w = r/3 for Signals 5 and 6 respectively. The presence of two dominant

modes is evident, but the ghost peaks observed in previous simulations still occur. It is also

important to note the presence of local oscillations in the coefficients. Since the algorithm

searches for the maxima in the coefficients, these local maxima may also be interpreted

erroneously as modes.

An obvious extension of the extraction algorithm in Fig. 4-5 is to take the M highest

peaks when M modes are being sought. However, a way must be found so as not to mistake

the local peaks for actual modes. One option would be to de-noise the WT coefficients in

order to be rid of the local oscillations. Another option, and one which will be explored

further in this study, is to use a thresholding scheme.

This thresholding scheme is based on the observation that there exists a minimum

separation between two modes that the algorithm can detect. As an example, the wavelet
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Figure 4-17: Signal 5: (a) Impulse response and (b) actual group delays, r(w).
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Figure 4-18: Signal 6: (a) Impulse response and (b) actual group delays, T(W).
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coefficients at w = 0.477r for Signals 5 and 6 are shown in Fig. 4-20. This frequency was

chosen for its close proximity to w =-7r/2, which corresponds to the crossing point in the

dispersion curves (Figs. 4-17 and 4-18).

Consider for instance the sample coefficients shown in Fig. 4-21. The local maxima

have been detected and are also shown . The coefficients exhibit one dominant mode at

t3 and another lower magnitude mode at t9 with some noise around each one. An obvious

extension of the method for single mode signals would simply be to choose the highest M

peaks to correspond to M modes (in this case 2). We could sort the array according to the

magnitude of the coefficients, also shown in Fig. 4-21. The group delay for M modes can

then be determined by choosing the first M maxima. In this example we would choose t 4

and tin.

Generally however, the calculated coefficients will not be as smooth as those shown in

the previous examples and may exhibit some high frequency, low magnitude oscillations.

These oscillations may result in erroneous measurements. One option in addressing the

problem is to use thresholding, i.e. requiring that the distance between 2 modes must

be greater than a certain value. This is equivalent to assuming that there is a minimum

separation which the algorithm can detect.

4.4.3 Results

The images of the WT coefficients for Signals 5 and 6 are shown in Fig. 4-22. The dispersion

patterns of the two modes can be clearly seen in these images. Next, the results of the

extraction algorithm without thresholding are shown in Figs. 4-23(a) and 4-24(a). The

large errors resulting from the presence of local maxima may be seen in these plots, and

are even more evident in Figs. 4-25 and 4-26. In the region of co = r/2, the minimum

separation Tmin that the algorithm is able to detect is also evident. The average values of

Tmin for the two signals are summarized in Table (4.4).

Using the average minimum separation Tmin as the threshold in the algorithm, leads

to a large improvement in accuracy. Figs. 4-23(b) and 4-24(b) show the results of the

extraction algorithm with thresholding. The absolute error plots in Figs. 4-25 and 4-26

exhibit a great decrease in the error compared to the results without thresholding.

79



(a)
0.5

0.4-

-o
0.3-

c. 0.2-
E

0.1 -

0
0 500 1000 1500 2000 2500

Time, t

(b)
1.0

0.9-

0.8-

0.7-

0.6-

0.5-

0.4-
E

0.3-

0.2-

0.1

0
0 500 1000 1500 2000 2500

Time, t

Figure 4-19: Sample coefficients at w = 7r/3 showing two distinct peaks for (a) Signal 5 and
(b) Signal 6.
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Figure 4-20: Sample
sponding to the two

coefficients at w = 0.471r showing the merging of the two peaks corre-
modes for (a) Signal 5 and (b) Signal 6.
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Figure 4-21: Measuring the group delay for a two-mode signal. The locations of the maxima
are sorted according to the magnitude of the WT coefficients.

Minimum separation, Tmin

Signal 5 118

Signal 6 133

Table 4.4: Minimum separation detectable by the algorithm.
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Figure 4-22: Image of wavelet coefficients for (a) Signal 5, a = 20 and (b) Signal 6, a = 20.
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Figure 4-23: Comparison between the actual and calculated group delay for Signal 5 (a)
without thresholding and (b) with thresholding.
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Figure 4-24: Comparison between the actual and calculated group delay for Signal 6 (a)

without thresholding and (b) with thresholding.
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Figure 4-25: Absolute error, Ea, for Signal 5 (a) without thresholding and
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4.4.4 Remarks

Several problems were encountered in attempting to measure the group delay of several

modes from the WT coefficients. One problem is the presence of local peaks, especially

those in the vicinity of a main peak corresponding to an actual mode arrival. These local

peaks may be erroneously interpreted as mode arrivals. Another problem is the existence

of crossing points in the dispersion curves. These crossing points represent modes which

arrive at the same time. It was very difficult to separate two modes in the vicinity of a

crossing point.

It was observed that there is a minimum separation, i.e., a minimum time interval

between the arrival of any two modes, that the method is able to detect. Using this fact,

a revised algorithm was made which addresses the problem of the presence of local peaks.

This algorithm detected the two modes in the simulated signals with good accuracy except

for the extremely low and high frequencies.

In the next chapter, this algorithm will be applied to experimental signals.
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Chapter 5

Experimental Results

5.1 Introduction

In Chapter 4, the method was applied to simulated signals. An algorithm was developed

which analyzes multimode signals and constructs the dispersion curves with good accuracy.

In this chapter, the method will be used to analyze experimental signals.

5.2 Experimental Set-up

The actual experimental set-up used to generate and measure Lamb waves is shown in

Fig. 5-1. A pulsed Nd:YAG laser was used to generate ultrasound in an aluminum plate at

a distance dL from the receiver (Fig. 5-2). To increase the intensity of the laser generated

source, a focusing lens was placed in the beam path and the plate was positioned at the

focal point of the lens. Transducers made of polyvinylidene fluoride (PVDF) were coupled

to the plate to receive the Lamb wave signals. The elastic properties and dimensions of the

aluminum plate are summarized in Table (5.1). The received signals were amplified and

then recorded for analysis. More detailed specifications for the laser, PVDF transducer,

amplifier, and data acquisition equipment may be found in Appendix A.
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Figure 5-1: Diagram of the experimental set-up.
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Figure 5-2: Dimensions of the aluminum plate and positioning of the transducers.
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Property Value Units

Young's Modulus 70 GPa

Density 2700 kg/m3

Poisson's ratio 0.35

dE 39 cm

w 46 cm

92 cm

t 0.065 mm

Table 5.1: Dimensions of the aluminum plate used in experiments, and the elastic properties

used in making theoretical predictions.

5.3 Data and Analysis

5.3.1 Results for dL = 25 cm

The laser beam was first directed at a point on the aluminum plate a distance dL = 25 cm

from the receiving transducer. The received signal (Fig. 5-3) was sampled at a frequency of

10MHz, averaged 64 times, amplified, then recorded for analysis. Fig. 5-4 shows the wavelet

coefficients for the frequency range 0.1 MHz to the Nyquist rate of 5 MHz. The image of

wavelet coefficients reveal the presence of approximately six dispersion curves present in

the signal. The upper three curves are shifted versions of the lower three, indicating that

they may correspond to secondary arrivals of the same Lamb modes. The low frequency,

nondispersive components in the frequency range 0.5-2 MHz are dominant, i.e., the wavelet

coefficients are highest in this range.

The group delay determined from the wavelet transform coefficients are plotted in Fig. 5-

5 and show very good agreement with the theoretical predictions. For f = 0.1-1.0 MHz, the

AO is dominant. For f = 1.0 - 2.5 MHz, both the AO and So are easily distinguishable, and

the dispersion curves constructed from the calculated group delay agree very well with the

theoretical values. The results for f = 2.5 - 3.5 MHz illustrate the difficulties encountered
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Figure 5-3: Received signal with the laser generated source located at a distance dL = 25
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Figure 5-4: Wavelet coefficients of the received signal for 0.1 to 5 MHz.
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when the dispersion curves intersect. Finally, for f = 3.5-5 MHz, the A 1 and A' modes were

constructed with reasonably good accuracy. The Ao mode, although not easily observable

in the image of wavelet coefficients (Fig. 5-4), was also determined to good accuracy. A

pattern which vaguely resembles that of the So mode may also be observed, however it is

not entirely distinct.

To further illustrate how the data in Fig. 5-5 was obtained, the wavelet transform

coefficients at several frequencies is plotted. Figure 5-6 shows the coefficients at f = 1.25

MHz. The first two arrivals marked So and Ao correspond to the direct arrival from the

laser generated source. The second two arrivals marked SO and A' correspond to the waves

reflected from the edge of the plate. Note that although the SO mode has a lower magnitude

than the direct arrival, the A' mode has a slightly higher magnitude than the Ao mode.

This seems to go against the expectation that the reflected waves would have attenuated

much more than the direct waves. However, it is likely that this phenomenon is due to

the mode conversion which occurred when the waves were reflected from the edge [24].

The mode conversion would result in the exchange of energies between the symmetric and

antisymmetric mode, making the magnitude of the A' mode greater.

The wavelet transform coefficients at f = 4.0 MHz are also plotted in Fig. 5-7. Although

much weaker than the fundamental antisymmetric and symmetric modes, the direct and

reflected antisymmetric modes (A1 and A' respectively) are also observable.

Using the group delay of the direct and reflected waves, the distance between the re-

ceiving transducer and the plate edge may be determined. The distance traveled by the

reflected waves is

x = 2dE - dL. (5.1)

Denoting the group delay corresponding to the direct and reflected waves by rL(w) and

TE(w) respectively, the distance between the receiver and the plate edge is given by

1 ^ TE(W) 1
dE =-dL I +1 . (5.2)

2 .TL(W)

Using the results for 1.0 - 1.5 MHz for which the dispersion curves are well defined, the

distance dE was calculated and plotted in Fig. 5-8. The values plotted are the average

between the results for the symmetric and antisymmetric modes.
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5.3.2 Other Results

Figures Fig. 5-9 to Fig. 5-18 show the results for dL = 15 - 24 cm. These results are

consistent with those for dL = 25 cm, and the distance between the transducer and the

edge is determined with good accuracy in all trials.

5.4 Remarks

The results presented in this chapter confirm the difficulties in dealing with crossing points

in the dispersion curves. Furthermore, the algorithm used still required a subjective decision

as to how many modes are to be measured from the signal. Nevertheless, the method is

relatively good in that the dispersion curves were constructed by measuring the group delay

for a wide range of frequencies from a single signal. This characteristic makes this method

particularly suitable for quick tests, where some reduction in accuracy may be tolerated.
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Figure 5-9: Experimental results for dL = 15 cm.
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Figure 5-10: Experimental results for dL = 16 cm.
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Figure 5-14: Experimental results for dL = 20 cm.
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Figure 5-15: Experimental results for dL = 21 cm.
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Figure 5-16: Experimental results for dL = 22 cm.
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Figure 5-17: Experimental results for dL = 23 cm.
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Figure 5-18: Experimental results for dL = 24 cm.
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Chapter 6

Conclusion

6.1 Summary

In this study, we sought to construct Rayleigh-Lamb wave dispersion curves from a single

multimode, broadband signal using time-frequency analysis. The dispersion characteristics

were measured using the Morlet wavelet transform, which yielded the group delay as a

function of frequency. Both numerical and experimental investigations were performed.

In the numerical investigation, the method was applied to several simulated signals.

Both single mode and two-mode signals were considered. The signals were created by arbi-

trarily defining dispersion characteristics, and then calculating the corresponding impulse

response. The wavelet transform coefficients of each signal were then calculated from ap-

proximately zero to the Nyquist frequency. The group delays were then measured from the

transform coefficients and compared with the known dispersion characteristics. The results

were promising, but also indicated that the accuracy significantly depended on the chosen

parameters of the Morlet wavelet.

In the experimental investigation, Lamb waves were measured using a pulsed Nd:YAG

laser and PVDF transducers for generation and reception, respectively. The So, AO and A1

modes of the direct arrivals as well as the reflections from the edge of the plate were observed

from the wavelet transform coefficients of the signals. An analysis of the coefficients revealed

that the Ao and So modes, particularly in the nondispersive regions, are dominant under the

setup conditions. The group delay of these modes were therefore measured most accurately.
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6.2 Conclusion

The greatest advantage of broadband excitation and detection of Lamb waves is the ease

and speed with which the structure can be evaluated. The use of Lamb waves in itself has

advantages over conventional methods (such as C-scanning) in terms of the time required

to perform tests. The capability to excite, measure and analyze a wide range of frequencies

at one time further increases that advantage.

Narrowband methods, in which a single mode at a narrow range of frequency is excited,

provide greater ease and accuracy in the interpretation of the measured signals. However

they are at times prohibitive in the level of accuracy and amount of effort required in the

experimental setup. In this sense, broadband methods such as that explored in this study

are more advantageous; the ease with which they may be implemented experimentally is

surely something to be considered.

The greatest drawback of the method seems to be a lower level of accuracy as compared

with narrowband methods. For highly accurate measurements of group or phase velocity,

narrowband methods would still seem to be most attractive.

The level of computation required in the method might also be viewed as a weak point.

Nevertheless, the savings in time spent for experimentation far outweighs the increase in

computation, especially in this age of sky-rocketing computing power. Furthermore, the

use of other wavelets for which a fast transform exists will also significantly decrease the

amount of computation required.

In conclusion, we hold that the broadband generation and detection of Lamb waves,

along with methods for time-frequency analysis of the signals are most suitable for situations

requiring fast testing where a lower level of accuracy may be tolerated.

6.3 Future Work

Further work on this topic would most certainly involve the use of other wavelets. Types

of wavelets exist which would significantly decrease the amount of computation required,

making them more suitable for real time applications. There is also a great possibility that

other wavelets would lead to more accurate group delay measurements.

This method also has yet to be applied to other specimens with different thicknesses

and containing other types of defects. In this work only the detection of plate edges was
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explored, and other defects such as notches and cracks should also be considered.
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Appendix A

Equipment Specifications

A.1 PVDF Transducers

A.1.1 PVDF Film

The polyvinylidene fluoride (PVDF) or piezo film used in the experiments is 122 Pm thick.

It has silver ink metallization, which is best when mechanical stress is applied to the film

[41].

A.1.2 Transducer Assembly

The PVDF film was cut into strips 37 mm long and 14 mm wide. To make sure the

electrodes are not shorted, a ferric chloride etchant solution was applied to the sides of the

transducer. A strip of Ni-clad copper flat ribbon' is attached to both sides of the piezo film

using silver filled epoxy. A copper electrode is used to connect the other 2 ends of the flat

ribbon to a BNC cable. The PVDF film and electrodes are then placed betweem two sheets

of glass scrim cloth, and the assembly is laminated using clear epoxy.

A.2 Nd:YAG Laser

The laser used to generate ultrasound is a Q-switched, pulsed, Nd:YAG laser. Its charac-

teristics are summarized in Table (A.1)

'From Measurements Group, Inc. P.O. Box 27777, Rayleigh, NC 27611
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Wavelength 1064 nm

Pulse Width 6 - 8 ns

Energy > 90 mJ

Beam Diameter 3.75 mm

Beam Divergence < 4 mrad

Table A.1: Specifications of the Nd:YAG laser.

A.3 Focusing Lens

The laser beam was focused using a plano-convex lens which has one flat and one curved

surface as shown in Fig. A-1. Its specifications are summarized in Table (A.2).
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Figure A-1: Optical apparatus.

Property Symbol Value (mm)

Diameter D 50

Effective focal length EFL 100

Back focal length BFL 93.41

Center thickness CT 10

Edge thickness ET 3.55

Radius of curvature R 51.68

Table A.2: Dimensions and properties of the focusing lens.
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