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ABSTRACT
The Massachusetts Military Reservation is located in the western portion of Cape Cod.
World War II and the period immediately afterward saw the most intense military activity
on the base. During this time, chemicals leached into the groundwater and contaminated
the aquifer. One of the larger regions, or plumes, of groundwater contamination is the
Chemical Spill 10 (CS- 10) plume, a region in which maximum contaminant levels of
trichloroethene and perchloroethene are exceeded. The treatment system that is in place
at the CS-10 site consists of pump-and-treat technology. The newest component of the
system is known as the Southern Southwest Remedial Design (SSRD). It includes three
extraction wells, one in the in-plume section, and two along leading edges, and a
lengthening of two existing infiltration trenches.

For the current analysis, a MODFLOW model of the system developed by the Jacobs
Engineering Group Inc. was modified in order to facilitate display and manipulation
within the preprocessor Visual MODFLOW. This simplified version of the model was
calibrated to the pre-pumping steady state water table elevations at the site. It served as a
more manageable representation of the CS-10 system.

With this model as a basis, the software MODOFC was implemented to perform an
optimization of groundwater extraction rates. The results of the optimization procedure
led to the recommendation to activate only the most centrally located of the three SSRD
wells. The results were subjected to a drawdown analysis, which confirmed that their
effects are within an acceptable threshold of impact to the aquifer. Consequently, it is
recommended that contaminant transport analysis be performed with the wells
performing at the rates optimized in this study for comparison with the Jacobs
Engineering Group's final SSRD design.

Thesis Supervisor: Peter Shanahan, Ph.D.
Lecturer, Department of Civil and Environmental Engineering
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1 Site Background and Description

1.1 Massachusetts Military Reservation

The Massachusetts Military Reservation is located in Barnstable County, Massachusetts,

in the western portion of Cape Cod known as the "upper Cape." It is comprised of about

22,000 acres, within the towns of Bourne, Falmouth, Mashpee, and Sandwich. (Jacobs

Engineering Group Inc., 1999g, B-10).

The MMR site has played host to several branches of the United States Military since its

beginning as a training ground for the Massachusetts National Guard in 1911. In the

1920s and early 30s, the reservation had private owners, but was bought by the

government and transformed into a National Guard training camp in 1935. World War II

marked the peak in military activity at MMR. The war effort spawned tremendous growtha,

within the facility as over 1,400 buildings were built, and over 50,000 people were

assigned to the training camp at that time in preparation for war. (Rolbein, 1995)

Following World War II, the MMR lease was reorganized several times among its

occupants, primarily the Air Force, the Army, and the Coast Guard. The current lease of

the MMR property from the Commonwealth of Massachusetts is partitioned among these

parties. The 5,000-acre cantonment in the southern portion of the base has seen the most

activity over the past century. It has been used by all three military branches and contains

aircraft runways, roads, housing, and maintenance facilities for both air and land vehicles.

(Massachusetts Military Reservation (MMR) Installation Restoration Program (IRP),

1996).

During and after World War II extensive contamination occurred throughout the base,

stemming from equipment maintenance, wastewater disposal, fire training, and fuel

transport and storage. Volatile organic compounds (VOCs), fuels, and chlorinated

solvents such as TCE and PCE are among the contaminants that were utilized and

disposed of on the base. During the 1960's the base began to receive fuel via an
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underground pipeline. Throughout its operation, several ruptures and fuel spills occurred,

including the largest of over 2,000 gallons in 1972. (Rolbein, 1995).

As a result of these activities, contaminants spread throughout much of the reservation's

subsurface. In the late 1970's, the Town of Falmouth discovered detergents within the

drinking water supply during a groundwater monitoring test. The spills were immediately

considered a threat to neighboring communities because they had moved via the

groundwater off of the reservation grounds. By 1982 Congress required that the

Department of Defense create the Installation Restoration Program (IRP). The IRP's

objectives were to identify, investigate, and clean up hazardous wastes from the areas

under military control ("Base History," 1996; MMR IRP, 1996).

By 1986, 73 Study Areas, locations suspected to be contaminated, had been identified.

Following Phase II site inspections, additional investigation was determined necessary at

43 such locations. MMR was placed on the National Priorities List in 1989. Extensive

study was undertaken to delineate zones, or "plumes," of groundwater contamination.

Propagation occurred relatively rapidly because of the high conductivity of the sandy

soil, and resulted in plumes that were found to extend several miles in some cases. A

map of these plumes and the MMR can be found in Figure 1.1.

Numerous studies continue to be conducted on the plumes and the effects that they are

having on the community outside of the base. Remediation techniques such as pump and

treat, and low temperature thermal desorption have been employed, but a great deal of

work and study must be done on the reservation before the IRP's work is complete.

(Rolbein, 1995)

1.2 Chemical Spill 10 Background and History

The Chemical Spill 10 (CS-10) plume is located in the southeastern portion of the

Massachusetts Military Reservation. The northern end of the site was the location of the

38-acre Boeing Michigan Aerospace Research Center (BOMARC) Missile Site from

1960 to 1973. During this period, as many as 56 ground to air missiles were housed and
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maintained at the site. Since 1978 the Unit Training Equipment Site (UTES) has occupied

this area. These operations contributed spills and releases of chemicals to the CS-10

plume. In addition, eleven other sites are suspected to have been sources of pollution. The

primary contaminants are the solvents trichloroethene (TCE) and perchloroethene (PCE).

Ethylene dibromide (EDB), which was used in gasoline to prevent lead from

accumulating in engines, has also been detected ("CS-10 Groundwater Plume,

Community Guide," 1998).

The CS- 10 plume is located predominately within the Mashpee Pitted Plain (MPP), one

of three geological formations which are prevalent over the western portion of Cape Cod;

the other two are known as the Buzzards Bay Moraine (BBM) and the Sandwich Moraine

(SM). All three types of sediments are of glacial origin. The MPP is comprised mostly of

unsorted coarse and fine-grained sand and some gravel. Within the sand are clay and silt

deposits, generally in the form of lenses rather than continuous layers. (Jacobs

Engineering, Inc., 1999f, 4-2).

The aquifer is bounded on the north, south, and western sides by the ocean, and on the

east by the Bass River in Yarmouth. It is the source of water for the western portion of

Cape Cod. Groundwater flow in the aquifer is generally horizontal, driven by an average

gradient of around 0.0011 ft/ft. Vertical flow does exist at the local level, mostly within

discharge areas. The depth from ground surface to the low permeability underlying

bedrock ranges from about 150 feet to 400 feet. Hydraulic conductivities in the region of

the CS- 10 plume vary from approximately 27 to 340 ft/day, and decrease with depth.

Runoff in the vicinity is limited due to the high permeability of the ground, and recharge

comprises a relatively large percentage of yearly precipitation. (Jacobs Engineering, Inc.,

1999h, 2-3).

The plume's footprint (Figure 1.1) delineates the region in which the maximum

contaminant level (MCL) of 5 parts per billion (ppb) for TCE and PCE are exceeded.
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Although EDB has also been located in the region of the plume, it does not consistently

exceed its MCL. The plume extends over a length of about 17, 000 ft, and is about 4,000

feet wide and 150 feet thick at its respective maxima. The plume consists of three

sections: the central, or "in-plume" portion, the lobe that extends southward toward

Sandwich Road and Ashumet Pond, and the southwestern lobe (Jacobs Engineering, Inc.,

1999f, 2-1).

Figure 1.1 The CS-10 plume is located in the southeast corner of MMR,

in an area of high contaminant density. (Source: "Plume and Source Area

Map," January, 2000).

The total mass of contaminants in the aquifer has been estimated as the sum of mass in

the aqueous phase and that which is sorbed onto the aquifer materials. The total mass of

TCE in the aquifer has been estimated by Jacobs Engineering as 5,028 kg, 3,225 kg of

which are present in the aqueous phase, while that of PCE is approximated at 466 kg,

with 213 kg dissolved in the ground water (Jacobs Engineering, Inc., 1999g, 4-7).
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In 1997, after a public comment period, the Air Force Center for Environmental

Excellence (AFCEE), the U.S. Environmental Protection Agency (EPA), and the

Massachusetts Department of Environmental Protection (DEP) engaged in considerable

discussion regarding CS-10. The result was a mutual decision to employ extraction,

treatment, and reinjection (ETR), or "pump-and-treat", technology, to remedy the

contamination. This type of technology was selected for CS- 10 with a number of goals in

mind, the ultimate objective being to protect the drinking water supply of Upper Cape

Cod. Others include "maximizing the capture and treatment of contaminants, minimizing

hydrological and ecological impacts and risk, and minimizing the impacts of construction

and operation on affected neighborhoods" ("Chemical Spill 10 Plume Response

Decision," 1997).
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2 Extraction, Treatment, and Reinjection Technology

2.1 Background

Extraction, treatment, and reinjection (ETR) technology, or "pump-and-treat", is one of

the most commonly employed strategies for groundwater remediation. It is implemented

at about 75% of Superfund sites at which groundwater is contaminated. In addition, this

method is employed at a majority of the sites where the Resource Conservation and

Recovery Act (RCRA) and/or state laws require cleanup (U.S. EPA, 1996).

Pump-and-treat involves using extraction wells to bring contaminated water to the

surface, where it is treated and returned to the aquifer. Contaminated water must first be

able to reach the extraction wells in order to be affected by treatment. There are systems

in which the applicability of pump and treat is restricted by the local hydrogeology and/or

the properties of the contaminant of concern. For example, low conductivity zones in a

heterogeneous aquifer will restrict the flow of contaminants to extraction wells. Also,

strong sorption of contaminants to soil particles reduce the contaminant concentration in

solution and thus limit the amount of mass that can be removed with pumping. Often,

additional remediation technologies, such as bioremediation or vacuum extraction, are

applied to mitigate these difficulties.

There are additional complications associated with the removal of non-aqueous phase

liquids (NAPLs) such as TCE and PCE. These substances can become stuck in pore

spaces by capillary forces and remain in the subsurface when water is removed. As a

result, the speed with which the NAPLs dissolve becomes crucial in determining the rate

at which the system can perform (Cheremisinoff, 1997).
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A pump-and-treat system is generally comprised of four components: pumping wells, a

pipeline for transport, treatment plant(s), and a reinjection system (Gorelick et al., 1993).

The pumping wells must be screened at different depths in order to capture the vertical

extent of the plume. Extraction wells are usually placed adjacent to one another, either in

regions of high pollutant concentration, or such that they intercept the flow path of the

affected groundwater. Reinjection tends to occur at or near the plume's leading edge

("Groundwater Treatment Technologies", 1997).

The implementation of pumping wells as part of a remedial strategy usually aims at one

of two objectives: cleanup of the contaminant or retardation of its transport through the

aquifer, or a combination of both. A cleanup strategy generally requires that contaminants

are no longer being released into the aquifer from the source (Cohen et al., 1997) For

removal, extraction wells are generally placed within the zones of highest concentration.

It is usually infeasible to try to completely remove pollutants from the groundwater. The

pump-and-treat process is sustained until concentrations are found to fall below some

target level. One drawback of this method is that once concentration goals are reached,

and pumping wells are shut off, concentrations may again rise above the target level. At

this point, those involved are faced with choosing between allowing concentrations to

exceed standards, or pumping large amounts of water to remove relatively little

contaminant (Gorelick et al., 1993).

Containment often represents a more realistic goal, especially in cases where the source

of contamination cannot be eliminated, as in the case of a landfill (Cohen et al., 1997).

Pumping and reinjection of groundwater facilitates the manipulation of hydraulic head

gradients to prevent the plume from spreading to unaffected portions of the aquifer. The

reinjection of water can serve as an important component in the control of the flow

regime, in addition to mitigating the drawdown effects caused by extraction. Containment

and cleanup strategies are combined in situations where it is appropriate to implement

containment in the vicinity of an active or high concentration source, and remediation of

more dilute concentrations further down gradient (Cohen et al., 1997).
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2.2 CS-10 Treatment System

The current treatment system in place for the CS-10 plume employs a combined strategy

and consists of several components in various stages of development. A map of the

treatment system is displayed in Figure 2.1. The Sandwich Road remedial system, near

the southernmost, or down gradient portion of the plume, consists of a fence of eight

extraction wells flanked on each side by three re-infiltration trenches. The Sandwich

Road system extracts at a rate of 820 gallons per minutes (gpm), and was brought on line

on May 18, 1999. The in-plume remediation system is comprised of five extraction wells

within the central portion of the plume (wells 03EW2102-2106), a southern infiltration

trench bordering the edge of the plume, and an infiltration trench at the tip of the

southwestern lobe. The in-plume system start-up took place on June 24, 1999. The

extraction rate for this system is currently 1,200 gpm. Both systems operate on-base

water treatment plants. (Jacobs Engineering Group Inc., 1999g, 2-1).

Both the in-plume and the Sandwich Road treatment plants employ activated carbon

systems. As the contaminated water passes through a carbon filter, the carbon adsorbs

organic molecules, removing them from the water. Eventually, the carbon becomes

saturated and must be replaced, and the used carbon is sent off-site to be recycled

("Groundwater Treatment Technologies," 1997).

The latest design innovation is known as the Southwest/Southern Remedial Design

(SSRD). It includes three additional extraction wells within the CS-10 plume (wells

03EW2107, 03EW2109, 03EW21 10). The extracted water will be pumped to two new

treatment plants near the plant corresponding to the in-plume system. Granular activated

carbon will once again be utilized to filter the contaminants from the water. Water will be

returned to the aquifer via the existing infiltration trenches. To accommodate the

additional load from the SSRD, the trenches corresponding to the in-plume system are

being extended to a total length of 2,400 feet.
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Figure 2.1 The final CS-10 treatment system consists of three components: the Sandwich Road, In-

Plume, and Southwest/Southern systems. (Source: "CS-10 Plume Treatment System," January, 2000;

Well ID's added.)
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There is considerable motivation for the development of adaptive pumping schedules for

the implementation of the SSRD. Adaptive pumping is a strategy by which the extraction

wells within a remediation system are strategically shut off when contaminant levels fall

below maximum contaminant levels (MCLs). Achievement of these threshold

concentrations can be verified either by evaluation of water pumped from the extraction

wells, or by the use of local monitoring wells (Jacobs Engineering Group Inc., 1999g, B-

33). Jacobs Engineering Group Inc., which is heavily involved in remediation activities

over the entire base, conducted simulation studies in which both adaptive and continuous

pumping strategies were assessed as treatment strategies for the CS-10 plume.

The Draft CS-10 Southwest/Southern Wellfield Design Report prepared by Jacobs

Engineering, approximates the total volume of water extracted by the CS-10 system over

a 50-year period to be 92.5 billion gallons without adaptive pumping. The report

estimates that an adaptive pumping scheme may facilitate the reduction of this volume to

around 45 billion gallons (Jacobs Engineering Group Inc., 1999g, B-3). Clearly, this

represents considerable savings; specifically in terms of electricity, water treatment

sampling, and long-term operations and maintenance.

The flow and transport modeling performed by Jacobs Engineering led to further

conclusions as to the benefits of adaptive pumping. To summarize, continuous pumping

requires a much higher volume-to-mass removal of contaminant. Also, the model results

revealed that the spread of the plume is actually increased when pumping is continued at

very low contaminant concentrations. Furthermore, to reach the target MCLs, the overall

system will be required to remain in operation longer if the wells are pumped

continuously. It is therefore anticipated that an adaptive pumping strategy will eventually

be integrated into the latest CS-10 remedial design (Jacobs Engineering Group Inc.,

1999g, B-3).
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3 Modeling the CS-10 System

3.1 Structure and Methodology

The groundwater modeling program MODFLOW was used in representing the CS-10

system. MODFLOW is a three-dimensional finite-difference model written in Fortran 77.

Developed by the U.S. Geological Survey in the early 1980s, it is the software most

commonly employed for groundwater modeling (Leake, 1997). The program is designed

to simulate saturated groundwater flow governed by Darcy's Law. The MODFLOW

program is composed of a number of modules, or packages, each of which deals with an

individual aspect of a groundwater flow system. For example, individual components

handle factors such as river flow, recharge, well effects, and evapotranspiration

(Rumbaugh and Rumbaugh, 1996).

The MODFLOW representation of the CS-10 site employed in the present analysis was

adapted from the Jacobs Engineering Run 95 model, which was the final of 57 model

runs in the southwest/southern wellfield design (Jacobs Engineering Group Inc., 1999g).

Jacobs' representation of the CS-10 system consists of a grid composed of 161 rows, 159

columns, and 21 layers. Grid spacing ranges between 110 and 660 feet. The Run 95

representation was developed from the CS-10 Zoom Model (CSZM) built for the five

well in-plume system design in the spring of 1999.

The CSZM covers the area overlying and immediately surrounding the CS- 10 plume, a

total of 22.3 square miles (Jacobs Engineering Group Inc., 1999j, A-13). A detailed

account of the development of this model can be found in the Draft CS-10 In-Plume

Remedial System Design Groundwater Modeling Report (Jacobs Engineering Group Inc.,

1999i). The CSZM is actually a more finely discretized portion of a broader regional

model, which was developed to cover the entire western portion of Cape Cod (Jacobs

Engineering Group Inc., 1999g, B-22). A thorough account of the construction of this

model can be found in the Final Plume Response Groundwater Modeling Report (Jacobs
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ngineering Group Inc., 1999j). A snapshot of the CSZM model as displayed by Visual

MODFLOW (see section 3.3) is displayed in Figure 3.1. The MMR boundary is shown,

as well as the local airfield, ponds and roads. The Sandwich Road well fence can easily

be seen along the roadway near the southeastern border of the base. The construction of

this model required the interpolation of conductivity, concentration, and transport

measurements over a numerical grid.

++

+

Figure 3.1. The CSZM model covers the area overlying and

immediately surrounding the CS-10 plume.

3.2 Data Collection

Extensive data collection activities were performed to characterize the CS- 10 site for the

update of CS-10 Zoom Model. The field tests and sampling procedures are fully logged

in the Draft CS-10 Comprehensive Technical Memorandum (Jacobs Engineering Group

Inc., 1999f). This publication consists of eight volumes. Included are water sampling

logs, soil boring logs, and concentration data. The data most pertinent to the present
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analysis is documented in Volume V of the Technical Memorandum. This consists of

slug tests that were performed at 41 monitoring wells in the vicinity of the CS-10 plume.

Slug tests were carried out by inserting a pressure transducer into each well at

approximately 10 feet below the static water level. The pressure transducer was

connected to a data logger. To perform the test, a cylindrical slug with a length of 5 feet

and a diameter of 1.5 inches was lowered to about six feet below the water level. The

data logger recorded the water level in the well with time elapsed, or the rate of decline of

the water surface. This test was also performed in the reverse direction, with the slug

removed from the well, and the water level recovery measured with time. The time/water

level data was converted to time/displacement data and input into software which, using

some additional well and hydrogeologic data, calculated values of hydraulic conductivity

(K, ft/day). The mean of these 41 conductivity measurements was 87 ft/day, with 55 and

45% above and below the mean, respectively (Jacobs Engineering Group Inc., 1999f, F-

2, F-5).

The hydrogeology of the system was further characterized through several tests. Pumping

tests were performed at extraction well 03EW2102, in the northern in-plume area, and

03EW2103 in the southern in-plume area. This procedure consisted of pumping at a

constant rate for a given amount of time, and using drawdown to estimate transmissivity

and hydraulic conductivity. Additional slug tests were also performed at the 41

aforementioned monitoring wells. These tests provided information on deeper

conductivity values amid silt and clay lenses. The data gleaned from these analyses were

generally consistent with those implemented in the CS-10 Zoom model. Therefore,

reevaluation of the conductivity field within this model was deemed unnecessary. (Jacobs

Engineering Group Inc., 1999g, 3-5-6).
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3.3 Modeling Activities

The model was thoroughly tested and analyzed as it evolved throughout the SSRD design

process. The CSZM accounted for both flow and solute transport through the aquifer.

Flow and transport parameters were varied to evaluate the sensitivity of the model.

Different well locations, screening depths and infiltration trench settings were assessed.

Behaviors particular to the contaminants TCE and PCE were represented in terms of

dispersion, retardation and degradation and the effects of these mechanisms on

concentrations. (Jacobs Engineering Group Inc., 1999g).

The final SSRD design developed by Jacobs Engineering integrated the modeling project

performed by their own group with two independent projects, completed by Dr. Richard

Peralta of HydroGeoSystems Group and Utah State University, and Dr. Chunmiao Zheng

of Groundwater Systems Research Limited and the University of Alabama. While the

Jacobs group used a more traditional modeling approach, both Peralta and Zheng

experimented with numerical optimization techniques. (Jacobs Engineering Group Inc.,

1999g, 4-10). The SSRD design process implemented both hydraulic and solute transport

analyses to simulate the combined effects of advection, dispersion, degradation, and

retardation on the flow volume and contaminant mass recovery at the extraction wells

(Jacobs Engineering Group Inc., 1999g, B-1). Some of the hydrogeological and

contaminant transport parameters used to represent the CS-10 system are shown in Table

3.1. These values were varied to test the sensitivity of the model to their uncertainty

(Jacobs Engineering Group Inc., 1999g, B-26).
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Table 3.1. Hydrogeological and contaminant transport parameters were varied to

test the sensitivity of the model to their uncertainty (Source: Jacobs Engineering

Group Inc., 1999g, B26-7).

Parameter Symbol Value Units

Total Porosity N 0.36 Unitless

Effective Porosity neW 0.30 Unitless

Soil Bulk Density Pb 1.68 g/cm3

Longitudinal Dispersivity XL 35 Ft

Transverse Dispersivity aT 3.5 Ft

Vertical Dispersivity cv 0.35 Ft

Fraction of soil organic carbon foe 0.08 Unitless

TCE Partition Coefficient Kd 0.075 mIjg

PCE Partition Coefficient Kd [ 0.21 mUg

For each of the model runs that comprised the SSRD design process, a number of factors

were assessed. Key components included the total recovery of contaminant mass, mass

recovery at each well, and the time at which contaminant concentration falls below

5pg/L at each well. Also considered were hydrologic effects such as drawdown and

mounding at local ponds.

The final SSRD design, represented by Jacobs Engineering's Run 95, was developed to

maintain all these variables within acceptable thresholds. The total extraction rate for the

five pre-existing in-plume wells is increased to about 1,922 gpm. The three new

southern/southwest wells pump a combined 778 gpm, for a total of 2,700 gpm among the

eight wells. One of the SSRD wells, 03EW21 10, is located in the internal portion of the

plume in a region of high contaminant concentration. The other two are situated at

leading-edge locations; well 03EW2109 is in the southern lobe just north of the Sandwich

Road system, and well 03EW2107 is in the southwestern lobe. (Refer to Figure 2.1.)

The well locations for the SSRD and in-plume extraction wells in Massachusetts State

Plane (MSP) coordinates and the corresponding MODFLOW grid coordinates are

displayed in Table 3.2. The conversion was performed by rotating the MSP points -11*
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about a base point at (852413 ft, 222347 ft) and then translating them from this base point

to (0 ft, 0 ft) (Black, 2000). The infiltration trenches corresponding to the in-plume

system will be extended to accommodate the additional load. This system is scheduled to

begin running on April 30, 2000, with an anticipated lifetime of 30 years (Jacobs

Engineering Group Inc., 1999g, 2-1).

Table 3.2. The SSRD and in-plume well locations were converted from Massachusetts State Plane

coordinates to MODFLOW coordinates.

Well ID System Easting Nortliing MODFLOWx MODFLOWy
(ft) (ft) (ft) (ft)

03EW2102 In-Plume 858951.93 242822.77 10325.75 18851.89

03EW2103 In-Plume 859806.32 239178.86 10469.15 15111.90

03EW2104 In-Plume 857771.00 241881.00 8986.82 18152.75

03EW2105 In-Plume 859752.00 241291.00 10818.85 17195.60

03EW2106 In-Plume 860383.00 240985.00 11379.87 16774.82

03EW2107 SSRD 856765.00 241178.00 7865.17 17654.62 -

03EW2109 SSRD 861789.00 236664.00 11935.55 12264.93

03EW2110 SSRD 860059.00 243836.00 11605.82 19635.26

The SSRD design was found to comply with ecological standards, as well as thresholds

for impact upon neighboring contaminant plumes. The model indicated that the 2,700

gpm required by the combined in-plume and SSRD systems would not create excessive

drawdown in the aquifer due to its relatively high transmissivity. Furthermore, pond

surface mounding due to reinfiltration was within the design criterion of 0.5 feet. (Jacobs

Engineering Group Inc., 1999g, 5-3,5-6). Furthermore, model performance in terms of

product mass recovery was found to be sufficient. Long-term monitoring will ensure that

standards continue to be met throughout the life of the system.

While the SSRD design determined the wellfield layout, it did not conclusively address

the distribution of pumping rates among the eight wells of the in-plume and SSRD

systems, which are located at relatively close proximity to one another. The addition of

the SSRD wells, as well as the augmented pumping of the in-plume wells, represent an

increased level of stress to the aquifer. Therefore, it is necessary to determine the
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pumping scheme for this updated well configuration. The third component of the CS- 10

system, Sandwich Road, will continue according to its original design. None of the SSRD

designs simulated in the 57 model runs was found to have more than a 1% effect on the

performance of the Sandwich Road system (Jacobs Engineering Group Inc., 1999g, B36-

7). As a result, the Sandwich Road configuration is not considered in the present analysis.

3.3 Adaptation of MODFLOW Model

For the purposes of this analysis, the numerical model of the CS- 10 site was displayed

and manipulated using Visual MODFLOW, a three-dimensional graphical user interface

developed by Nilson Guiguer and Thomas Franz of Waterloo Hydrogeologic, Inc

(Delaney, 2000). Visual MODFLOW allows the user to build a subsurface model without

a detailed knowledge of the actual Fortran MODFLOW program. The program displays

the system graphically as a three-dimensional grid. Within this grid, the user can view

any layer in plan, and any row or column in cross section. Features such as layers, rows,

and columns, in addition to constant head zones, recharge areas, and wells can be input

graphically. Ground surface and aquifer bottom elevations can be simulated either by

hand or via input files. Visual MODFLOW also allows the user to import an externally

generated base map of the site in the form of a '.dxf or '.bmp' file. The base map

underlies the grid and displays site characteristics, providing a visual frame of reference.

Crucial aquifer characteristics, such as whether the unit is confined or unconfined, are

generally assigned by pointing and clicking. The user can select between several

numerical solvers and determine the parameters within which the chosen solver will

operate. Visual MODFLOW displays the results of steady state groundwater flow

systems in the form of three-dimensional hydraulic head contours. It also has the capacity

to display velocity vectors, as well as particle-tracking paths for contaminant transport

simulations.
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The set of files that comprised the original Run 95 model from Jacobs Engineering is too

large to be run in Visual MODFLOW on a personal computer. As a result, it was

necessary to condense the Jacobs model so that it would be able to be both displayed and

run through Visual MODFLOW, as well as implemented within optimization software.

The goal of the modification was to reduce the size of the model while retaining

sufficient detail to adequately represent the system. To maintain the validity of the

representation, steady state output from the pared down model was compared with Figure

B5-3 in the Draft CS-10 Southwest/Southern Wellfield Design Report, which is a map of

water table elevations within the CS-10 systerh (Jacobs Engineering Group Inc., 1999g).

A match between this output and that of the refined model would indicate that the newer

model is sufficient to represent the behavior of the system when subjected to the

additional stresses of the SSRD. The final pared down model consists of 85 rows, 96

columns, and 8 layers. The original and modified MODFLOW grids are displayed in plan

view in Figures 3.2a and b.

Figure 3.2a. The original CSZM model developed by Jacobs

Engineering Group Inc. consists of 161 rows, 159 columns, and

21 layers.
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Figure 3.2b. The modified CSZM grid consists of 85 rows, 96

columns, and 8 layers.

The result of this calibration is the field of water table elevations shown in Figure 3.3 that

closely matches the pre-pumping elevations in the CS-10 Zoom Model. This match

confirms that accuracy is not sacrificed in condensing the model into a more manageable

form. This exercise calls into question the merit of the more complex model. The greater

detail in the original CSZM model does not seem to affect the steady state output of the

system, at least in terms of groundwater flow. However, the bulkier input files

corresponding to this model increase computational time, and make it difficult to

implement a visual pre-processor. Whether or not such a graphical user interface can be

employed has a great impact on the ease with which the model can be manipulated, and

therefore affects its fundamental efficacy as a modeling tool.
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Figure 3.3. The modified version of the CSZM produces steady-state

water table elevations that closely match the output of the original
CSZM model (Jacobs Engineering Group Inc., 1999g, Figure B5-3).
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4 Optimization Background

4.1 Applicability to Current System

The practical implementation of optimization procedures in groundwater remediation

design is fairly new and still in a developmental stage. The methods that are used by

practicing hydrologists are quite simple, dealing with linear optimization, an advection-

based contaminant transfer model, and uniform density miscible contaminants (Gorelick

et al., 1993). Molecular diffusion and mechanical dispersion, two additional contaminant

transport mechanisms, are generally ignored in practical applications, as they introduce

nonlinearities to the transport equation, which in turn cause the optimization problem to

become nonlinear. Nonlinear optimization methods have not yet been integrated into

practical software applications (Gorelick et al., 1993).

However, such limited conditions are compatible with a considerable percentage of

contamination problems. The alternative approach generally consists of trial and error

and subsequent model analysis. Optimization methodology introduces "a rigorous and

objective measure of efficiency to the design process," (Gorelick et al., 1993). It allows

for the coordination of both financial and technical analysis in the selection and design of

a remedial alternative (Freeze and Gorelick, 1999).

In 1999 the Technology Innovation Office and the Office of Research and Development

of the U.S. EPA joined with HSI GeoTrans to conduct an analysis of pump-and-treat

optimization and its effect on the costs of operation and maintenance. Hydraulic

optimization was performed at three distinct locations. The result was a cost saving of as

much as $550,000 per year. In response, EPA wrote guidelines for the implementation of

hydraulic optimization and has planned workshops dedicated to this strategy (Yager and

Greenwald, 1999).

The MMR site, particularly the CS-10 plume, is especially conducive to analysis within

the limitations of practical remedial optimization. Flow is predominantly horizontal

through a relatively conductive, sandy medium. The contaminants of concern are
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dissolved organic solvents. The distribution and dispersion terms do not significantly

affect the modeled contaminant recovery, so an advection-dominated flow model is

appropriate. Furthermore, while optimization techniques can theoretically be applied to a

number of remediation technologies, they are generally implemented within a pump-and-

treat framework. The reason for this is twofold. First, the mathematical representation of

a pump-and-treat system is far simpler than what would be necessary for vapor

extraction, or permeable treatment wall technology, for example. Second, the widespread

use of pump-and-treat technology in remedial practice makes this type of analysis

immediately relevant. (Freeze and Gorelick, 1999).

4.2 Theory and Methodology

The optimization procedure consists of defining an objective function, which is a

mathematical representation of costs or benefits. The goal is to set the arguments of this

function such that benefits are maximized and costs are minimized. A typical objective

function for groundwater capture optimization is the net present value of the combined

costs of the remediation, discounted at the market interest rate, over a specified time

period. There may be several components contributing to the total cost, such as data

collection, well installation, pumping costs, and treatment plant construction and

operational costs (Gorelick et al., 1993).

The factors that are adjusted are known as the "decision variables," which are

"engineered features that we would like to manage optimally" (Freeze and Gorelick,

1999). In the design of a pump-and-treat system the decision variables may consist of the

number and location of wells, in addition to pumping rates. The assignment of values to

the decision variables impacts the "state variables," which define the physical

environment of the system. In a groundwater system these include hydraulic head

contours and gradients. Contaminant concentration may also be considered as a state

variable. Finally, auxiliary variables are additional calculated parameters that may be

useful, such as groundwater velocity, travel time, or well capture zone area (Gorelick et

al., 1993)
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The restrictions imposed upon the state variables, by either regulations or design goals,

are "constraints". Constraints can be set to limit any of the three types of variable:

decision, state or auxiliary. For example, a constraint on a pump-and-treat system may be

to limit drawdown over a given area to a maximum of one foot.

The objective function encapsulates the relationship between the costs and/or benefits

and the decision variables. The constraints place restrictions on certain aspects of the

system that are also influenced by the decision variables. Thus in terms of environmental

reclamation projects, optimization attempts to'balance the aims of the project with

environmental, regulatory, and technical limitations. It operates within the framework of

a model that represents the system. In this case, the system is the subsurface flow regime.

The optimization method that is usually applied to groundwater systems is known as

linear programming. For this technique, a linear objective function, as well as linear

constraint and groundwater flow equations are necessary (Gorelick et al., 1993).

The strategy employed in the current study is, in reality, a hybrid of optimization and a

technique known as decision analysis. While both methods have the same general aims,

there are a few fundamental differences in procedure. In optimization, one remediation

technology is considered at a time. The analysis seeks the best possible design

considering within this framework alone. Decision analysis determines the best among a

detailed set of specific remediation designs, which may include multiple technological

alternatives (Freeze and Gorelick, 1999).

For example, an optimization problem might consist of determining the number,

locations, and pumping rates of wells within a wellfield, which will meet flow recovery

requirements at the lowest possible cost. Decision analysis, on the other hand, might

determine whether a given wellfield alignment would meet requirements at a cost lower

than either a certain permeable treatment wall design or specific vapor-extraction system.

The current analysis is actually a combination of the two methods. As in optimization, the

remediation strategy, pump-and-treat, has been previously established. However, the
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wellfield layout is also specified beforehand, as in a decision analysis, and is therefore

not a variable, as would usually be the case in an optimization. There is, however, more

resemblance to a traditional optimization procedure, in that pumping rates are not

selected from among several fixed alternatives, but from a continuous range within upper

and lower limits.

A prerequisite of any optimization or decision analysis procedure is the development of a

model that simulates the groundwater flow regime. This serves as the link between the

optimization algorithm and the physical behavior of the system. Gorelick et al. (1993)

describe the synthesis of modeling and optimization as an "organized and methodical

trial-and-error" technique. Ideally, it results in a number of solutions, each corresponding

to a particular set of design parameters and constraints. Yet it is more formal than the

typical trial-and-error approach in that the steps are well defined and the "best" solution

for a given set of conditions can be identified quantitatively.

4.3 Prior Applications

As previously mentioned, optimization was employed in the design for the SSRD. Under

the auspices of the Air Force Center for Environmental Excellence (AFCEE), the

Environmental Technology Center used groundwater modeling in optimization of the CS-

10 wellfield layout. Dr. Richard Peralta of HydroGeo Systems Group and Utah State

University and Dr. Chunmiao Zheng of Groundwater Systems Research Limited and the

University of Alabama each performed independent numerical optimization studies

(Smith, 1999). The objectives of both of these efforts were to maximize mass removal

and to minimize costs.

These studies sought the optimal number and placement of SSRD extraction wells. The

five in-plume wells were included, but the Sandwich Road fence was neglected in the

model. A fixed pumping rate was used and only TCE contamination was addressed. Both

studies sought to maximize the mass of TCE removed. While the same magnitude of total

flow was implemented, the two studies yielded somewhat different results. Peralta's work

resulted in an addition of four SSRD wells, for a total of nine extraction wells. Zheng's
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recommendation consisted of the addition of one SSRD well, and the removal of one of

the in-plume wells, for a total of five wells (Jacobs Engineering Group Inc., 1999g, B-38-

9).

The optimization studies made several valuable contributions to the final design of the

system. For example, Peralta's analysis found the planned placement of an extraction

well in the southwest lobe to be inefficient. Conclusions drawn from these investigations

were implemented into the final design produced by Jacobs Engineering Group Inc.

(1999g). In particular, the optimization procedures helped to pinpoint low-efficiency

wells that tended to inflate costs (Jacobs Engineering Group Inc., 1999g, B-39).

4.4 Optimization Software

For the purposes of the current analysis, the optimization software MODOFC was

selected. David Ahlfeld, who was previously at the University of Connecticut and is

currently at the University of Massachusetts, wrote the original version of this software.

R. Guy Riefler of the University of Connecticut expanded the capabilities of MODOFC

(Ahlfeld, 1998). Riefler's work enabled the program to determine solutions for

unconfined aquifers and transient systems. It also provided for the inclusion of

constraints on extraction and injection, wells screened over several intervals, and well

construction expenses ("Contact the Creators of MODOFC," 2000).

MODOFC utilizes the groundwater modeling application MODFLOW in combination

with optimization algorithms ("How Does MODOFC Work?" 2000). Given a set of

candidate well locations and constraints, MODOFC searches for the least costly

remediation scheme. The user specifies potential well locations, as well as pumping and

injection costs. Other variables that can be constrained include total extraction or

injection and head values at given locations, which may be utilized to simulate physical

pumping capacity or limits on allowable drawdown, respectively. Head difference

constraints make it possible to restrict the direction of groundwater flow. Also, the user
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can define capture zones in terms of a set of line segments ("How Does MODOFC

Work?" 2000).

MODOFC has the capability to solve either a linear program using the simplex algorithm,

or a mixed binary program using the branch and bound algorithm. To analyze confined

aquifers or unconfined aquifers within systems where anticipated drawdown is minimal,

the program assumes a linear relationship between pumping and hydraulic head. For

unconfined aquifers in which drawdown is a factor, this relationship is nonlinear ("How

Does MODOFC Work?" 2000).

The program allows for two possible objective function formulations. The simpler of the

two is a minimization of total well operating cost, which is a linear function of the

pumping rates. The other option involves minimization of total costs, including well

construction costs. This is a linear function of the number of candidate wells that are

actually utilized, and thus involves binary variables. (Ahlfeld, 1998).

MODOFC accepts its input via a file entitled opt. in. This file is the key to all MODOFC

input and establishes the link between MODOFC and MODFLOW. It is composed of

seven sections. The main section establishes the basic parameters of the optimization

problem. Included in this segment are the number of wells that is allowable in the final

solution, the number of each type of constraint that is imposed upon the system, and the

program's pointer to the corresponding MODFLOW model. As a consequence of this

link with MODFLOW, all values read into MODOFC, such as extraction rates, must be

given in the same units with which they are represented in MODFLOW.

The opt. in file directs MODOFC to the MODFLOW model by pointing to a names file,

in which all of the relevant MODFLOW files are referenced. These files must be present

within the same directory. The subsequent six sections in the opt. in file deal with

candidate wells, recharge balance constraints, total pumping constraints, head bound
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constraints, head difference constraints, and capture zone constraints, respectively. They

fill in the relevant details, such as the specific locations of candidate wells, minimum or

maximum pumping rates at each of those wells, total extraction and injection rates and/or

upper and lower limits on head at particular locations ("How Does MODOFC Work?"

2000).

The main output generated by MODOFC is a selection of wells from among the

candidates and corresponding pumping rates that satisfy the constraints imposed by the

user, if such a solution is feasible. Output generated by MODOFC also includes as many

as five files. The three primary output files are solution, setup, and iterate. A listing file

and a response file are also generated (Ahlfeld, 1998).

Upon a successful run of MODOFC, the main output file of concern is the solution file.

This file lists which wells will be activated, and at what rates they will extract or inject.

(The minimum and maximum extraction rates set for each well in the opt. in file only

constrain pumping when the well is active. MODOFC always retains the option of

shutting the well off.) The file displays the total pumping rate, as well as the value of the

objective function. Also displayed are the pumping costs associated with each individual

well. The file indicates which of the imposed constraints was binding in the optimization

procedure. Another feature of the solution file is the display of shadow prices. This

variable is indicative of "the local sensitivity of the objective function value to changes

in the right-hand side of a particular constraint" (Ahlfeld, 1998).

The setup and iterate files provide information related to the response of MODOFC to

the input files. The setup file is basically a log of MODOFC's interpretation of the opt.in

file. The iterate file contains details on the progress of MODOFC, such as the optimal

pumping rates at the conclusion of each iteration, and whether each constraint is violated

or satisfied at that point. The listing file records the output generated by MODFLOW

and the response file keeps track of the MODFLOW response matrix. This can be reused
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in subsequent MODOFC runs to save computational time if the MODFLOW

configuration is to remain the same (Ahlfeld, 1998).
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5 Optimization Analysis

5.1 Problem Basis and Setup

The current optimization analysis seeks to build upon the foundation laid during the

SSRD design process. The physical design of the wellfield is assumed to be identical to

that described briefly in the preceding chapters and more extensively in Jacobs

Engineering's Draft CS-10 Southwest/Southern Weilfield Design Report. (Jacobs

Engineering Group Inc., 1999g). The decision variables consist of the pumping rates at

each of the three SSRD wells, in addition to the five in-plume wells. In contrast to the

original design, this analysis does not consider contaminant mass capture, but deals with

flow only. It is assumed that the total pumping rates determined in the Jacobs

Engineering Group's analysis adequately account for mass recovery.

The program was run as a steady-state problem, meaning that MODOFC results were

determined for a single stress period. A single total pumping constraint was imposed.

The entire eight-well system was restricted to operate at an extraction rate of between

2,700 gal/min and 2,800 gal/min. The lower limit is the target rate for the system, based

on mass recovery goals over a 15-20 year time horizon. The maximum is based on the

projected water treatment capacity of the SSRD plant. (Jacobs Engineering Group Inc.,

1999g, 4-11, 7-5). No head difference or capture zone constraints were imposed.

Although Jacobs Engineering Group performed previous work to determine allowable

levels of drawdown and mounding, these results were not implemented into head bound

constraints within the current analysis. Such constraints were not set because the

drawdown found to occur within the allowable range of pumping was well enough within

the threshold values to be deemed insignificant.
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In the candidate wells section, the minimum and maximum number of pumping wells

were 0 and 8, respectively. This would allow MODOFC to select the most favorable from

all possible combinations of in-plume and SSRD wells. Specifications for the candidate

wells consist of several components. As mentioned in the previous chapter, MODOFC

allows for the possibility of well installation costs to be accounted for in the optimization,

using binary variables. This method was not employed here, however, because the in-

plume wells are already in place. The SSRD wellfield design had been confirmed and

construction was well under way at the time of this study.

Well locations are given in terms of the corresponding row, column, and layer(s) in the

MODFLOW grid. When wells are screened in several layers, as were all of the

candidates in this instance, the input file must provide the ratio of flow in each screened

layer to total flow entering the well. As suggested within the MODOFC documentation,

this was set to equal the product of screen length within a given layer and the hydraulic

conductivity of the corresponding layer. The candidate wells, along with the number of

model layers over which each well is screened and corresponding screen lengths are

displayed in Table 5.1.

Table 5.1. The in-plume and SSRD wells are each screened over multiple layers

within the model.

Well ID System Layers Total Screen

Screened Length (ft)
03EW2102 In-Plume 5 -8 108.78
03EW2103 In-Plume 5-6 54.14
03EW2104 In-Plume 3-8 178.87
03EW2105 In-Plume 4-6 62.47
03EW2106 In-Plume 3 -6 76.56
03EW2107 SSRD 4-6 62.99
03EW2109 SSRD 4-8 138.23
03EW2110 SSRD 4-6 67.94

Each of the candidate wells was restricted to perform extraction only. It was assumed that

the cost per unit volume of water pumped is the same over the eight candidate wells.

35



Therefore, the magnitude of the corresponding input parameter, PCST, was irrelevant as

long as it was identical for all the wells. The sign of this variable, however, is important

in that it determines the objective function. Positive values of PCST direct MODOFC to

minimize the total pumping cost, while a negative sign tells the program to maximize the

weighted value of total extraction (Ahlfeld, 1998). The PCST parameter was assigned a

positive value, as one of the goals established by Jacobs Engineering is to minimize the

total volume of water extracted (Jacobs Engineering Group Inc., 1999g).

5.2 Approximation of Aquifer Characteristics

A key issue that arose was the question of whether to model the CS-10 system as a

confined or an unconfined aquifer. In reality, a water table aquifer exists at the site. While

the representation of unconfined conditions does not cause any difficulties in

MODFLOW, it greatly complicates the performance of MODOFC.

In MODOFC, when an aquifer is confined, the relationship between pumping and head is

linear. The relationship between pumping and head is described via a first-order Taylor

series with higher order terms disregarded. MODOFC uses perturbation to determine the

response of the system to pumping. Through MODOFC, a "base value", is passed to

MODFLOW (Ahlfeld, 1998). This value represents the magnitude of pumping that is

simulated. The response of the aquifer is determined once, and then a linear relationship

is used to predict further results as a function of extraction rates (Ahlfeld, 1998).

However, when the aquifer is unconfined, the higher order terms in the Taylor series are

no longer insignificant. Thus the problem becomes nonlinear (Ahlfeld, 1998).

The nonlinearity of the function complicates the solution procedure in MODOFC. The

response of the aquifer to an initial pumping rate can no longer be used to completely

characterize its reaction to pumping. Therefore, iterations must be implemented.

MODFLOW simulates each pumping perturbation, determines the response of the

aquifer, and then use that response as the basis for the next perturbation. This process is
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repeated until the change in heads from one perturbation to another is within a specified

limit. The difference between successive pumping perturbations decreases as the

resulting heads fall closer together (Ahlfeld, 1998).

The performance of a nonlinear optimization is quite sensitive to the perturbation

increment, which is entered by the user via the opt. in file. The perturbation value must be

large enough such that the response of the aquifer is precise to several significant digits,

but small enough so that a given pumping perturbation will not dewater the aquifer. An

inadequate choice of perturbation increment can lead MODOFC to conclude that a

problem is infeasible when, in fact, it does have an optimal solution. The probability of

such a result increases with the complexity of the model. MODOFC documentation

explicitly warns, "If MODOFC cannot find a solution to an unconfined problem, it may

still be possible that the problem is feasible." (Ahlfeld, 1998).

The outcome of the initial round of optimization attempts was consistent with this caveat.

Attempts to optimize the unconfined system caused MODOFC to either exceed the

maximum number of iterations or to deem the problem infeasible. A wide range of

perturbation increments was tested, from 100 ft3/day to 1,000,000 ft3/day (MODOFC

documentation recommends that the perturbation be set at approximately the magnitude

of the expected solution), to no avail (Ahlfeld, 1998).

As described in the preceding sections, the subsurface system on Cape Cod is highly

transmissive and areally extensive. As a result of this, it was reasonable to presume that

the water table would not respond to pumping with excessive drawdown. Limited

drawdown would allow the system to be modeled as confined without significant damage

to the accuracy of the representation. To test the viability of this assumption, two distinct

MODFLOW runs were executed. In one, all eight layers of the model were set to be Type

0 in MODFLOW. This parameter indicates that within the layer, both the transmissivity

and the storage coefficient are constant for the entire simulation. In other words, the
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aquifer behaves as a confined unit. In the second run, all eight layers were set to be Type

3. Type 3 is used to simulate unconfined conditions. The transmissivity of the layer varies

with the saturated thickness of the layer. The storage coefficient may also vary

(Rumbaugh and Rumbaugh, 1996).

Both runs were executed using the same solver package (Strongly Implicit Procedure),

with the solver parameters set to identical values. In both runs, the steady-state system

was modeled prior to the activation of any of the eight in-plume or SSRD wells.

Following each run, head elevations at thirteen grid points in Layer 1 were recorded.

Some of these were selected at random, and others were chosen on the basis of their close

proximity to operating extraction or injection wells. The results of this comparison are

shown in Table 5.2.

Table 5.2. MODFLOW results vary little between the unconfined and

confined simulations.

Model Model Unconfined Confined Difference
Row Column Head (ft) Head (ft) (ft)

5 90 64.56 64.54 0.02
7 12 48.00 47.89 0.11
10 80 62.46 62.43 0.03
17 11 48.30 48.26 0.04
19 75 59.42 59.45 -0.03
24 34 54.78 54.75 0.03
42 43 52.17 52.15 0.02
51 44 51.05 50.77 0.28
52 48 50.11 50.09 0.02
54 26 46.43 46.40 0.03
57 66 48.78 48.65 0.13
73 68 43.25 43.24 0.01
74 6 33.43 33.48 -0.05

From the table it can be seen that even the largest of the thirteen observed differences,

0.28 ft is less than 0.002% of 150 ft, the approximate minimum aquifer thickness. This
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comparison confirms that a confined model is capable of producing an adequate

representation of the system's response to pumping.

5.3 Optimization Activities

The target rates given by Jacobs Engineering Group Inc. for the total extraction rates of

the in-plume and SSRD systems are 1,922 gpm and 778 gpm, respectively (Jacobs

Engineering Group Inc., 1999g, 2-1). An obstacle was created by the fact that MODOFC

offers no mechanism to place extraction bounds upon groups of wells. As mentioned

previously, both total pumping and extraction at each individual well can be constrained.

Initially, when the optimization was run, the maximum extraction rate at each of the in-

plume wells was set to the total target rate for the in-plume system, and the maximum

rate at each SSRD well was set to the total target rate for the SSRD. The optimal solution

that corresponds to this scenario consists of only two of the eight wells being utilized,

both of which are in-plume wells. This scenario arises for two different objective

functions: minimization of total cost and maximization of weighted total pumping. Since

the SSRD wells have already been constructed, and are expected to extract around 778

gpm upon their activation, this result is not likely to be implemented.

The final Jacobs Engineering SSRD wellfield simulation was the result of the

aforementioned model Run 95. As part of the model run, extraction rates were estimated

at all of the wells within the CS- 10 system, including the eight wells of concern in the

current analysis. Since these pumping rates were derived from a simulation that

considered TCE removal from the aquifer as well as hydraulic yield, they were

implemented as a guideline in imposing restrictions on the eight wells of concern in the

current study. New upper and lower bounds were set for all eight wells, requiring the

extraction rate at each of the wells to be within 15% of its Run 95 value, given in Table

B6-1 of the Draft CS-10 Southwest/Southern Wellfield Design Report (Jacobs

Engineering Group Inc., 1999g). These values, along with the minima and maxima
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corresponding

corresponding

to the 15% criterion, are displayed in Table 5.3. A printout of the

input file, opt. in, is shown on page 50 in the Appendix.

Table 5.3. The extraction rates were constrained to within 15% of

the values determined in the Run 95 simulation.

Well ID Run95 MODOFC MODOFC
Flow Rate Minimum Maximum

(gpm) (gpm) (gpm)
03EW2102 690.00 586.50 793.50
03EW2103 439.97 373.97 505.96
03EW2104 232.39 197.54 267.25
03EW2105 450.00 382.50 517.50
03EW2106 110.00 93.50 126.50
03EW2107 169.16 143.79 194.53
03EW2109 137.35 116.75 157.95
03EW2110 471.02 400.37 541.68
Total 2700

Predictably, the more stringent constraints lead to model results that resemble the Run 95

output much more closely. The results of this optimization recommend the activation of

six of the eight wells: all of the in-plume locations and one of the SSRD wells,

03EW2 110. The MODOFC results are shown in Table 5.4, juxtaposed with the Run 95

flow rates. A printout of the solution file can be found on page 52 in the Appendix.

Table 5.4. Restricting extraction rates to within 15% lead to activation

of six of the eight wells.

Well ID MODOFC MODOFC Run95 Difference
Flow Rate Flow Rate Flow Rate (%)

(ft 3/day) (gpm) (gpm)

03EW2102 1.43E+05 740.00 690.00 7.25

03EW2103 9.74E+04 505.96 439.97 15.00
03EW2104 5.15E+04 267.25 232.39 15.00
03EW2105 9.96E+04 517.50 450.00 15.00
03EW2106 2.44E+04 126.50 110.00 15.00
03EW2107 0.OOE+00 0.00 169.16 100.00
03EW2109 0.OOE+00 0.00 137.35 100.00
03EW2110 1.04E+05 541.68 471.02 15.00
Total 5.19E+05 2700.02 2700.0 0
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Since in this case the objective function is set to minimize cost rather than to maximize

pumping, the total extraction rate matches the Jacobs Engineering target rate of 2,700

gpm. The total pumping of the SSRD system, the entire burden of which is borne by well

03EW21 10, is 541.68 gpm, 236.32 gpm less than the target rate of 778 gpm. Conversely,

the total pumping of the in-plume system is 2158.32 gpm, 236.32 gpm above its target

rate. Four of the five in-plume wells are operating at their maximum extraction rates.

Of the three SSRD wells, the well that is pumping, 03EW21 10, is the most centrally

located within the plume. The location at which it was installed was selected "to address

an area of high contaminant concentrations and contaminant mass," (Jacobs Engineering

Group Inc., 1999g, 2-1). According to this analysis, this well is also the most

hydraulically efficient. Also for contaminant transport considerations, the Run 95 SSRD

design specifically set the extraction rate of 03EW2107 to be relatively low. Due to the

proximity of this to the Southwest infiltration trench, there is potential for some

recirculation of treated water (Jacobs Engineering Group Inc., 1999g, 4-13). This analysis

eliminates this possibility by allowing this well to remain inactive.

5.4 Water Table Response

MODFLOW analyses were employed to test the drawdown effects of these optimized

pumping rates upon the water table elevation. Prior to the SSRD design, several standards

were established to ensure that extraction from the aquifer would not result in damage to

the local ecology. One such guideline limits the change in water level of three of the local

ponds, Ashumet, Edmunds, and Osborne ponds, to 0.5 feet. As in the confined vs.

unconfined comparison, MODFLOW was run twice: once without the activity of the

eight in-plume and SSRD wells, and again with these wells pumping at the optimal rates

determined by MODOFC. Subsequent steady state water table elevations were then

compared at a number of given locations. A map of drawdown and mounding of the

water table derived from the Run 95 model was used as a guide in selecting regions that
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had the most potential to exhibit significant drawdown effects (Jacobs Engineering Group

Inc., 1999g, Figure B7-3). In addition, particular attention was given to locations in the

vicinity of the aforementioned ponds.

A comparison of pre- and post-pumping water table elevations at 36 model locations is

displayed in Table 5.5.

Table 5.5 Water table elevations were compared at pre- and post-

pumping conditions at 36 locations within the model grid. (Boldfaced

entries indicate pond locations.)

Model Model Pre-Pumping Post-Pumping Drawdown
Row Column Head (ft) Head (ft) (ft)

18 47 57.78 55.96 1.82
19 46 57.46 55.81 1.65

15 52 58.80 57.25 1.56

16 50 58.43 56.92 1.51

16 46 58.00 56.49 1.51

16 51 58.53 57.04 1.49

19 44 57.23 55.81 1.42

23 52 57.18 55.86 1.32

23 46 56.58 55.32 1.26

15 55 59.12 57.92 1.20

21 53 57.68 56.51 1.17

29 48 55.67 54.63 1.04

32 53 55.44 54.71 0.73

39 48 53.29 52.81 0.48

24 34 54.75 54.36 0.40

42 43 52.15 51.90 0.25

51 44 50.77 50.67 0.10

52 48 50.09 50.00 0.09

7 12 47.89 47.82 0.07
19 75 59.45 59.38 0.07
17 11 48.26 48.20 0.06

54 26 46.40 46.34 0.06

57 66 48.65 48.59 0.06

10 80 62.43 62.39 0.04

74 6 33.48 33.46 0.02

5 90 64.54 64.54 0.01

73 68 43.24 43.24 0.00

70 74 40.40 40.40 0.01

73 80 40.39 40.39 0.01

76 72 40.37 40.37 0.00

77 66 41.65 41.65 0.01

80 67 40.35 40.35 0.00

83 71 38.04 38.04 0.00

19 12 48.77 48.71 0.06

24 14 49.51 49.45 0.06

26 18 50.99 50.91 0.07
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Among these locations, a maximum drawdown of approximately 1.8 feet was found at

the intersection of row 18 and column 47 within the model grid. Not surprisingly, this

location lies between wells 03EW2102 and 03EW2 110, which pump at the highest and

second highest rates, respectively. However, this is less than the regional maximum

drawdown of 2.9 ft found in the wellfield design Run 95 model, which was determined to

lie within the threshold of permissible impact (Jacobs Engineering Group Inc., 1999g, B-

46).

For all of the test locations that are located in or adjacent to Ashumet, Edwards, or

Osborne ponds, the change in water table elevation is at least an order of magnitude

below the 0.5-foot threshold. Water table mounding, which was looked at in the Run 95

study was not considered in the current analysis because, unlike the pumping

configuration, the infiltration scheme did not vary from Run 95. Mounding in Run 95 did

not significantly affect any of the local ponds or violate any ecological threshold. (Jacobs

Engineering Group Inc., 1999g, B-46). These results lead to the conclusion that the

hydrologic impacts of the pumping scheme developed in this study are within acceptable

limits.

5.5 Summary and Conclusions

The analysis presented in the current study demonstrates the applicability of a much

simpler MODFLOW model than the one actually applied in the SSRD design process.

The modified representation of the CS- 10 system applied here reduces computational

time and logistical difficulty while maintaining the hydrologic integrity of the original

model. Therefore, the adaptation of the model developed herein, a grid comprised of 85

rows, 96 columns, and 8 layers, is proposed as an alternative tool for further investigation

into the behavior of the system.

In addition, the work described here shows that modeling this aquifer as a confined unit is

a feasible alternative. The size and hydrogeology of the system result in minimal
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variation in aquifer thickness in response to the range of extraction levels that are applied.

Use of the confined model confers the advantage of more rapid simulation, as well as

ease of implementation into an optimization algorithm, as is clearly demonstrated in this

case.

The crux of this analysis, the optimization study, led to the recommendation that the total

extraction of the combined SSRD and in-plume systems be distributed as is shown in

Table 5.6. Of the three SSRD wells, the only well that is activated, 03EW21 10, is located

in an in-plume region of high contaminant concentration. The other two SSRD wells,

which are to remain inactive, are situated at leading edge locations. Well 03EW2107 is in

the southwestern lobe, adjacent to the southwest infiltration trench. Well 03EW2109 is in

the southern lobe of the plume, just north of the Sandwich Road extraction fence.

Table 5.6. The final recommended pumping scheme for

the SSRD and in-plume systems enacts six of the eight wells

of concern.

Well ID Flow Rate Flow Rate System
(ft/day) (gpm)

03EW2102 1.43E+05 740.00 In-Plume
03EW2103 9.74E+04 505.96 In-Plume
03EW2104 5.15E+04 267.25 In-Plume
03EW2105 9.96E+04 517.50 In-Plume
03EW2106 2.44E+04 126.50 In-Plume
03EW2107 0.00E+00 0.00 SSRD
03EW2109 0.OOE+00 0.00 SSRD
03EW21 10 1.04E+05 541.68 SSRD
Total 5.19E+05 2700.021

In contrast to this outcome, the final SSRD design developed in 1999 resulted in the

construction of all three of the SSRD wells. Therefore, since construction activities have

already taken place, the likelihood is high that these wells will be active. In light of the

results found here, then, it is recommended that additional transport and mass capture

analysis be performed based on the pumping distribution given in Table 5.6. This will

provide further insight regarding the efficiency of these wells, and may ultimately lead to

an adjustment in their extraction rates, or even their long-term operation schedules.
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Appendix

Final MODOFC Input File (Opt.in)

MODOFC 2.1 Run95:CS-10 SSRD System

number of candidate wells

number of pumping constraints

number of head bounds

number of head difference constraints

number of capture zones

x,y coordinates of origin and angle of rotation of grid

Jacobian: 0= read existing, 1= compute & save, 2= compute only

maximum number of LP iterations

first, last, and scaling for perturbation (neg is extraction)

minimum thickness allowed in unconfined aquifers

convergence criteria for pump rates with unconfined iteration

print unconfined iterations? (O-no, 1-yes)

input echo? (1-yes, 0-no)

base run; input echo, convergence, head (>0 then print)

base iteration run; input echo, convergence, head (>0 then print)

response matrix; input echo, convergence, head (>0 then print)

final run; input echo, convergence, head (>0 then print)

MODFLOW names file

*** Wells and Point Recharge ***

include min/max # wells, inst cost or

print relaxed solutions (0-no, 1-yes)

min and max number of wells to use

Col L #L E/I Min Max PCst

47 0 4 e 112909.1 152759.3 5.0

.01 5

.53 6

.40 7

.06 8

48 0 2 e 71995 97405. 5.0

.67 5

.33 6

41 0 6 e 38028.15 51449.85 5.0

.09 3

.25 4

.28 5

min pump rate (1-y,0-n)

ICst StressPeriods

0. '1'

2000. '1'

2000. '1'

50

8

1

0

0

0

0 0 00

5

5000000

-1e4 -50

2

0.1

1

1

01 01

00 01

00 01

00 01

Run95.nam

0

0

Name

w-58

8

On Row

t 18

w-59 t 34

w-60 t 20

00

00

00

00



.24 6

.11 7

.03 8

50 0 3

.47 4

.53 5

.00 6

52 0 4

.19 3

.38 4

.43 5

.00 6

36 0 3

.52 4

.46 5

.01 6

55 0 5

.12 4

.46 5

.40 6

.01 7

.00 8

w-65 t 14 53 0 3 e 77076.64

.29 4

.52 5

.18 6

*** Forced Injection Constraint ***

104280.2 5.0 2000. '1'

0.0 a - (sum extraction) >= a * (sum injection)

0.0 b - (sum injection) >= b * (sum extraction)

* Total Extraction Constraints ***

Name On? SP Minimum Maximum

p01 t 1 519786. 539037.

*** Bounds on Heads ***

Name On? Row Col Lay </> Head StressPeriods

*** Generalized Head Differences; Low HD(ijk), High HD(ijk)

Name On? Rl Cl Ll R2 C2 L2 HeadD StressPeriods

*** Capture Zone lines ***
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w-61 t 24

w-62 t 27

w-63 f 22

w-64 f 48

e 73636.35 99625.65 5.0 2000. '1'

e 18000.03 24352.98 5.0 2000. '1'

e 27680.76 37450.44 5.0 2000. '1'

e 22475.28 30407.73 5.0 2000. '1'



Final MODOFC Solution File (Solution)

MODOFC VERSION 2.1 - SOLUTION OUTPUT FILE

MODOFC 2.1 Run95:CS-10 SSRD System

MODOFC Version 2.1 Optimization Results

Optimal Solution Found

PROBLEM SOLUTION

Objective Function Value 2.5989E+06

Pumping Rates Listed For Each Well

Name Stress periods Extraction Injection

1w-58

w-59

w-60

w-61

w-62

w-63

w-64

w-65

1.4267D+05

9.7405D+04

5. 1450D+04

9.9626D+04

2.4353D+04

o.OOOOD+00

o.OOOOD+00

1.0428D+05

Total Rates 5.1979D+05 0.OOOOD+00

Pumping Rates and Costs Listed For Each Stress Period

Name i j k Extraction Injection Cost
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--- Stress Period 1 --- 10.000E-01 days

w-58 18 47 m 1.4267E+05 7.1336E+05

w-59 34 48 m 9.7405E+04 4.8703E+05

w-60 20 41 m 5.1450E+04 2.5725E+05

w-61 24 50 m 9.9626E+04 4.9813E+05

w-62 27 52 m 2.4353E+04 1.2176E+05

w-65 14 53 m 1.0428E+05 5.2140E+05

Total Rates and Costs 5.1979E+05 0.0000E+00 2.5989E+06

Total Pumping Costs: 0.2599E+07

Total Installation Costs: 0.0000E+00

TOTAL COSTS: 0.2599E+07

BINDING CONSTRAINTS

Constraint type Name i j k t Shadow Price

min total extract p01 --- --- --- 1 5.0000E+00

RANGE ANALYSIS

CONSTRAINT INFORMATION - SLACKS, DUALS AND RANGES

Lower/Upper Bound are the values of the RHS beyond which

basis will change.

Leaving is the variable which will leave the basis.

Entering is the variable which will enter the basis.

If entering same as leaving a non-basic has hit its own bound -

no change in basis.
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Slack

Shadow

Price

Original Lower/Upper

RHS Bound

sv1 0.OOOD+00 5.OOOOOD+00 5.19786D+05 3.77114D+05

5.29873D+05

sv2 1.925D+04 0.OOOOOD+00 5.39037D+05 5.19786D+05

Infinity

Entering Leaving

dv8

NA

dvi

dvl

NA sv2

No Change

COST INFORMATION - REDUCED COST AND RANGES

Lower/Upper Bound are the values of the cost coefficient

beyond which basis will change

Leaving is the variable which will leave the basis

Entering is the variable which will enter the basis

If entering same as leaving a non-basic has hit its own bound

no change in basis

Reduced Original Lower/Upper

Name Cost Cost Bound

dvl

dv2

dv3

0.00000D+00

0.0000OD+00

0.OOOOOD+00

0.OOOOOD+00

0.00000D+00

dv4

dv5

dv6 0.OOOOOD+00

5.OOOOOD+00

5.OOOOOD+00

5.00000D+00

5.OOOOOD+00

5.OOOOOD+00

5.00000D+00

5.OOOOOD+00

Infinity

Infinity

5.OOOOOD+00

Infinity

5.OOOOOD+00

Infinity

5.OOOOOD+00

Infinity

5.OOOOOD+00

Infinity

Entering Leaving

dv8 dv8

No Change

No Change

dv2 dv2

No Change

dv3 dv3

No Change

dv4 dv4

No Change

dv5 dv5

No Change
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5.OOOOOD+00

Infinity

5.OOOOOD+00

Infinity

5.OOOOOD+00

-5.OOOOOD+00

Infinity

Infinity

5.OOOOOD+00

dv6 dv6

No Change

dv7 dv7

No Change

dv8 dv8

svl dvi

No Change

No Change

sv1 dvi

Key for Variable Name Relationships

Decision Variable/Candidate Well Relationship

Decision Variable

dvi

dv2

dv3

dv4

dv5

dv6

dv7

dv8

Well Name Stress Period

w-58

w-59

w-60

w-61

w-62

w-63

w-64

w-65

1

1

1

1

1

1

Slack Variable/Constraint Relatic

Slack Variable Constaint Type

sv1 min total extraction

sv2 max total extraction

nship

Name Stress Period

p
01

p01 1
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dv7

dv8

sv1

0.0000OD+00

0.0000OD+00

5.OOOOOD+00

0.OOOOOD+00

5.OOOOOD+00

5.OOOOOD+00

0.OOOOOD+00

0.OOOOOD+00sv2


