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ABSTRACT

The next generation of spaceborne telescopes, including NASA's Space Interferometry
Mission and Next Generation Space Telescope, are being designed to replace and improve
upon the Hubble Space Telescope. A common trait of these space observatories, which
aim to have maximum aperture size with minimal weight, is that they are lightweight,
flexible structures whose dynamic characteristics can strongly influence their ability to
achieve scientific goals. The largest vibrational disturbance source onboard most space
observatories is the reaction wheel assembly (RWA), a spinning disk used for attitude
control and pointing at scientific targets. RWA-induced vibrational disturbances have
often been measured and characterized; the measured disturbances are typically combined
with information from a finite element model of the spacecraft before it is launched in
order to predict the spacecraft's resulting dynamic behavior. This traditional disturbance
analysis method is flawed in one main aspect: the RWA disturbances are measured in iso-
lation and do not account for the structural dynamic coupling effects between the RWA
and the spacecraft to which it will eventually be mounted.

This thesis suggests a new coupled disturbance analysis method that accounts for space-
craft-RWA structural dynamic coupling effects by including two additional terms, the
dynamic mass transfer function matrices of the spacecraft and the RWA, in the analysis
equations. Both experimental and model-based methods for obtaining all the terms neces-
sary for a coupled analysis are clearly outlined. Experiments performed to validate this
coupled disturbance analysis method are described in detail, and the results are presented.
Suggestions are made for eliminating errors that corrupt the results, and recommendations
for future work are provided.

Thesis Supervisor: David W. Miller
Title: Associate Professor
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Chapter 1

INTRODUCTION

Modem-day space-based telescopes pose a new level of design challenge to structural

dynamicists and control engineers. They involve two opposing requirements: the first is

that the aperture of the telescope be large enough to observe the intended science targets,

such as distant stars and planets. The second is that the telescope mass and volume be

within the constraints of a given launch vehicle. The result of these two requirements is

that space telescopes are generally large, lightweight, flexible, and often deployable struc-

tures. The Hubble Space Telescope, for instance, launched in 1990 as the first major

infrared-optical-ultraviolet spacebome telescope, is 13.3 meters long with 5.3 meter light-

weight supporting truss structure [STSCI].

A likely future for space telescopes lies with interferometry, which, rather than utilizing

one large aperture to collect light, combines light from multiple, smaller apertures spread

at a large distance from one another. Hence the quality of interferometric observation

depends not on the size of a monolithic aperture, but on the distance between multiple

apertures. For this reason, future space interferometers, such as NASA's forthcoming

Space Interferometry Mission, are larger and more flexible than ever. Further, their ability

to precisely interfere light from multiple apertures depends greatly on the vibratory behav-

ior of the structure. For this reason, strict tolerances are placed on the magnitudes and fre-

quencies of vibration of such spacecraft, and detailed disturbance analyses and control

15



16 INTRODUCTION

design are required to ensure that deflections and vibrations are limited to acceptable lev-

els for scientific observation.

Reaction Wheel Assemblies (RWAs), which are used for attitude control aboard many

spacecraft and are proposed for use on future space telescopes such as NASA's forthcom-

ing Space Interferometry Mission, are never manufactured perfectly, and induce certain

disturbances while spinning. Although disturbances can also be induced by on-board

equipment such as tape recorders or centrifuges, RWAs are anticipated to be the largest

vibrational disturbance source aboard future space telescopes, so various methods have

been developed to characterize and measure their disturbances and to use these measure-

ments to predict the spacecraft's resulting dynamic behavior.

1.1 Reaction Wheel Applications

Reaction wheel assemblies have been used for attitude control aboard numerous space-

craft to date, including the Hubble Space Telescope, and are anticipated for use in future

scientific missions, such as NASA's Space Interferometry Mission (SIM) and Next Gen-

eration Space Telescope (NGST), which are both elements of NASA's Origins Program.

The Origins Program, which consists of several closely-spaced missions over the next two

decades, was created by NASA to study the origins of our universe. It will investigate

everything from the birth of distant galaxies to the characteristics of nearby stars, some of

which may harbor Earth-like planets capable of sustaining life. This program seeks to

answer fundamental questions about the development of the universe and the possibility

that life may exist beyond Earth. SIM and NGST are two of several space-based observa-

tories that comprise the Origins Program.

The Space Interferometry Mission, depicted in Figure 1.1, is scheduled for launch in 2006,

and will be the first spacecraft to demonstrate optical interferometry. SIM will combine

light collected from seven apertures spread along its ten-meter flexible support structure to

form three optical interferometers. With optical requirements translating to positional sta-
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Figure 1.1 Proposed Design for NASA's Space Interferometry Mission
(SIM) [NASA]

bility tolerances on the order of nanometers, the structural dynamics of this flexible space-

craft are of great concern, especially in the presence of vibrational disturbance sources

such as spinning reaction wheels. Detailed analyses have already demonstrated that the

positional stability requirements would not be met with Hubble-quality reaction wheels,

which induce smaller disturbances than any other wheels flown to date [Uebelhart, 2001].

The Next Generation Space Telescope, depicted in Figure 1.2, is the follow-up mission to

the Hubble Space Telescope, and is scheduled to launch in 2009. Like SIM, NGST will

study the origins of the universe by observing distant stars, galaxies, and earth-like plan-

ets. NGST will provide views of reaches of the universe never observed before.

NGST is a large, flexible structure with an -8 meter diameter primary mirror. Like SIM,

NGST will depend on reaction wheels for attitude control and precision pointing at tar-

gets. Hence the ability of NGST to successfully accomplish scientific goals will also

depend greatly on the magnitude of its reaction wheel disturbances.



18 INTRODUCTION

r

Figure 1.2 Proposed Design for NASA's Next Generation
Space Telescope (NGST) [NASA]

1.2 Reaction Wheels for Attitude Control

Reaction wheels are momentum exchange devices that control a spacecraft's attitude by

"exchanging" momentum with the spacecraft. They operate on the principle of conserva-

tion of angular momentum of a closed system; by accelerating about one axis, reaction

wheels force a spacecraft to rotate in the opposite direction about the same axis, thus con-

serving the total angular momentum of the system. Reaction wheels are used in this man-

ner to orient spacecraft for scientific observation and data collection and to counter-

balance small external disturbance torques caused by factors such as residual atmospheric

drag, gravity gradients, and interaction with the earth's magnetic field.

Figure 1.3(a) shows the exterior view of an Ithaco Type E reaction wheel assembly, and

Figure 1.3(b) shows the corresponding cross-sectional view. The primary components

include the housing, shown in Figure 1.3(a), and the flywheel and electric motor, depicted

in Figure 1.3(b). By producing a variable torque, the motor controls the spin rate of the

flywheel, causing it to accelerate or decelerate as necessary. Notice that the flywheel's

mass is concentrated at the outer edge of its diameter, maximizing its mass moment of

inertia about the spin axis and thus its torque authority over the spacecraft.
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(a)
PLOATIN3 BEARING

PAIR

(b)
Figure 1.3 Ithaco Type E Reaction Wheel: (a) Exte-
rior Photograph and (b) Cross-Sectional View [Ithaco]

1.3 Thesis Overview

Because RWAs may induce detrimental vibrational disturbances on-board future precision

space structures, their disturbances must be carefully measured and characterized during

the mission design phase; a disturbance analysis can then be performed on the structure,

whereby measured wheel disturbance data are combined with outputs from a spacecraft

structural model in order to predict the structure's resulting dynamic behavior. For an

optical interferometer such as SIM, the structural dynamics can then be mapped to optical

performance metrics in order to assess whether the wheel disturbances will inhibit the

spacecraft's ability to achieve scientific goals.

This thesis presents the usual method of disturbance analysis and investigates an approxi-

mation made in this method that neglects the effect of structural dynamic coupling
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between the flexible space structure and its disturbance-inducing reaction wheel. An

amended coupled disturbance analysis method is then presented and validated using rep-

resentative hardware.

An organizational overview of this thesis is shown in Figure 1.4. Background information

Chapter 2: Chapter 4:
- Nature of RWA Disturbances - Detailed Description of

Laboratory Experiments
- Laboratory Techniques for Validating and Comparing

Disturbance Measurement Decoupled (Ch. 2) and
Coupled (Ch. 3) Analysis

- Disturbance Data Processing 1 Methods:
Techniques

Traditional Decoupled 1) RWA Disturbance Tests Chapter 6:
2) RWA Dynamic Mass Tests

Disturbance Analysis Method 3) Structurally Coupled Tests
- Summary

- Conclusions

- Recommendations for
Chapter 3: Chapter 5: Future Work

- Derivation of Theory for
Coupled Disturbance - Experimental Results
Analysis Method

- Suggested Laboratory - Comparison of Decoupled
Experiments and Coupled Analysis

Methods

Figure 1.4 Thesis Overview

on the nature of reaction wheel vibrational disturbances and the usual method of measur-

ing and characterizing them is presented in Chapter 2, along with the traditional decoupled

disturbance analysis method.

In Chapter 3, the theory for the new disturbance analysis method that accounts for the

structural dynamic coupling between a flexible body and its disturbance source is intro-

duced. Laboratory experiments are then recommended to validate this method.



Thesis Overview 21

In Chapter 4, the hardware and experimental configurations used to validate the decoupled

and coupled disturbance analysis methods are described in detail. The experimental

results are presented in Chapter 5 with a comparison of the two methods, and finally a

summary, conclusions, and recommendations for future work are presented in Chapter 6.
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Chapter 2

REACTION WHEEL DISTURBANCE
TESTING

While playing a vital role in the attitude control of most spacecraft, reaction wheels are

anticipated to cause the largest on-board vibrational disturbances. This is of especially

great concern for large, flexible spacecraft, and specifically for spaceborne telescopes and

interferometers that have extremely precise positional and vibratory tolerances imposed

on them in order to achieve scientific goals.

In order to predict the effect of reaction wheel assembly (RWA) disturbances on future

spacecraft being designed or built, it is necessary to understand and characterize the reac-

tion wheels and the disturbances they induce.

The nature of RWA disturbances is discussed in Section 2.1, followed by a commonly

accepted method of measuring the disturbances in Section 2.2. Then the traditional

method of applying the measured disturbances to a spacecraft model in order to predict the

spacecraft's behavior is introduced in Section 2.3. Finally, a summary of this chapter is

presented in Section 2.4.

2.1 Nature of Reaction Wheel Disturbances

Reaction wheel disturbances are generally sinusoidal and tonal in nature, occurring at a set

of distinct frequencies. Generally the most significant disturbance, known as the primary

23



REACTION WHEEL DISTURBANCE TESTING

harmonic of the RWA, occurs at the same frequency as the wheel's spin rate, and is

caused by imbalances of the flywheel due to manufacturing imperfections.

Flywheel imbalance is generally characterized by the sum of a static imbalance and a

dynamic imbalance. Static imbalance occurs when the wheel's center of gravity is mis-

aligned with the spin axis. This is best visualized as a small lumped mass m attached to an

otherwise perfectly balanced, axially symmetric flywheel, as shown in Figure 2.1. The

f

Figure 2.1 Static Imbalance of a Flywheel

resulting disturbance is a radial force exerted on the wheel, caused by the centripetal force

acting on the spinning imbalance. The magnitude of this force is:

2f =mro , (2.1)

where r is the imbalance radius and o is the wheel's spin rate. Because the imbalance is

fixed to the rotating frame of the wheel, the force appears sinusoidal in a fixed reference

frame. For example, if the orthogonal xyz coordinate system shown in Figure 2.1 is fixed

in the inertial frame, with the x and y axes in the plane of the flywheel and the z axis

24



Nature of Reaction Wheel Disturbances

aligned with the flywheel's spin axis, then the disturbance forcesf, andfy occurring along

the x and y axes, respectively, are sinusoidal in time with frequency equal to the wheel's

spin rate, o, and are separated from each other in phase by 90 degrees.

The dynamic imbalance is caused by angular misalignment of the wheel's principal inertia

axis with its spin axis. This can be visualized as two lumped masses placed opposite each

other radially and at an offset from each other axially by a distance d, as shown in

Figure 2.2. The resulting disturbance occurs at the wheel's spin rate and induces a cou-

d

f

m

r

6)

m

F f
Figure 2.2 Dynamic Imbalance of a Flywheel

pling moment on the wheel with magnitude:

M = mrdo 2 (2.2)

Just like the force caused by a static imbalance, the moment caused by a dynamic imbal-

ance appears sinusoidal from a fixed reference frame.

25



REACTION WHEEL DISTURBANCE TESTING

The superharmonics and subharmonics of a RWA are tonal disturbances occurring at

multiples and fractions of the wheel spin rate, respectively. These disturbances are often

attributed to bearing disturbances, motor disturbances, and motor driver errors [Bialke,

1997].

A third contributor to reaction wheel-induced disturbances is the flexibility of the wheel

itself. The wheel can be modeled as a one-degree-of-freedom (DOF) system in the axial

direction and a 2-DOF system in the radial direction, yielding three dominant flexible

modes: the axial translation mode, the radial translation mode, and the radial rocking

mode, all demonstrated in Figure 2.3 [Bialke, 1997].

'*- Spin Axis

Flywheel

I I 
/

Axial Translation Radial Translation Radial Rocking

Figure 2.3 Three Dominant Vibrational Modes of a Reaction Wheel

When a wheel's spin rate induces harmonics at the same frequency as a structural mode of

the wheel, large amplifications to the harmonic disturbances occur. This is discussed fur-

ther in Chapter 5, where some measured disturbance data showing this phenomenon are

presented.

2.2 Current Disturbance Testing Techniques

In this section, the primary method of measuring reaction wheel disturbances is presented,

along with techniques for processing the disturbance data and using it to predict a space-

craft's resulting dynamic behavior.

26



Current Disturbance Testing Techniques

2.2.1 Hard-Mounted Testing

Hard-mounted testing is the most common method of characterizing reaction wheel dis-

turbances. In this method, the RWA is mounted to a rigid surface and spun at various

speeds. The resulting disturbances are then measured and eventually used to predict the

vibrational response of the structure to which the wheel will be mounted.

The RWA is first fixed to the top face of a load transducer, which measures the relative

forces and moments across its two faces. The bottom face of the transducer is then fixed

to a rigid surface, as shown in Figure 2.4. Hence the transducer measures disturbances

RWA

Rigid
Surface

Figure 2.4 Typical Hard-Mounted RWA Testing Configuration

caused by the spinning wheel withfixed boundary conditions, since the wheel's interface

at the transducer is constrained to have zero motion.

Load
~ Transducer

27



REACTION WHEEL DISTURBANCE TESTING

The wheel can either be spun at a set of distinct speeds, or it can be swept continuously

through a range of speeds. In either case, the RWA disturbances are measured by the load

transducer as forces along three axes and moments about three axes. These disturbance

loads are generally recorded in the time domain and then processed to obtain useful fre-

quency domain data. This data processing is described in the next section.

2.2.2 Data Processing Techniques

The three disturbance forces and three disturbance moments measured by a six-axis load

transducer in hard-mounted RWA tests are generally recorded as voltage time histories.

These time histories are converted to physical units using a calibration factor specific to

the load transducer, and are then processed in both the time and frequency domains.

Time Domain Techniques

In the time domain, the expected value of a signal f(t) is the same as the signal's mean

value, p/1 t):

t) = E[f(t)] (2.3)

where E[.] is the expectation operator. The variance, af(t), of the signal is then:

2 2
cTf (t) = E[{f(t) - p/t)} ] (2.4)

and its square root, af/t), is known as the standard deviation.

The mean square, rf (t), is the expected value of the square of the signal:

2 t2]
rf (t) = E[f(t)2] (2.5)

and the root mean square (RMS), r/t), is the square root of this value.

With these definitions, it is important to notice that for a zero-mean signal, with pg = 0,

the variance and the mean square are equal, and hence the standard deviation and the RMS

are equal.
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Current Disturbance Testing Techniques

Finally, the autocorrelation function, which measures the correlation of a signal f(t) with

itself at two different times, is defined as:

Rjt, t2) = E[f(tl)f(t2)] (2.6)

and the cross-correlation function, which measures the correlation between two different

signalsf,(t) andfy(t), is defined as:

Rfj(tl, t2) = E[fx(tl)fy(t2)] (2.7)

A weakly stationary process is one whose mean and variance are constant with time and

whose autocorrelation and cross-correlation functions depend only on the difference t

between times t1 and t2 , so that:

Rfr) = Rt, t +t) E[f(t)f(t +)] (2.8)

and

Rf (r) Rf (t, t + -) E [fx(t)f (t + -)] (2.9)

All the signals in this thesis are considered weakly stationary, zero-mean sinusoidal dis-

turbances, so the auto- and cross-correlation functions will be written as Equations 2.8

and 2.9, the variance will be considered constant, and the RMS and standard deviation will

be used interchangeably.

Frequency Domain Techniques

The Fourier transform is a well-known method of decomposing time signals into their fre-

quency content. The forward Fourier transform of a time domain signal, f(t), is defined

as:

F(co) - Jf(t)e dt (2.10)
27t

-0o
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where F(o) is complex. The inverse Fourier transform, which yields a time history from

a Fourier signal, is:

f(t) = F(o)eiotdo (2.11)
-oo

1
Note that the factor in the Fourier transform definition is often omitted from Equation

27r

2.10 and included instead in inverse Fourier transform definition in Equation 2.11. Either

method is fine, so long as the two definitions are consistent with each other.

A limitation of Equation 2.10 is that it integrates over infinite time, and thus does not hold

for stationary signals, since they are not absolutely integrable [Wirsching, 1995]. Further,

it is impossible to actually measure an infinitely-long signalf(t). In this case, it is useful to

define thefinite Fourier transform off(t) over the interval (0, T) as:

T

F(o, T) = J(t)e-iodt (2.12)

0

This differs from Equation 2.10 in both the finite integration limits and the absence of a
1- factor.

2n

Notice that the magnitude of the finite Fourier transform in Equation 2.12 is dependent on

the length T of the time history being integrated. To estimate the amplitude of the signal

f(t) as a function of frequency, the finite Fourier transform can be normalized by T to

obtain the amplitude spectrum of the signal:

T

AF(O I (tje iowtdt (2.13)
0

1
where we have accounted for the factor lost in the step from the forward to the finite

2 7

Fourier transform. Unlike the Fourier transform, the amplitude spectrum is a real-valued

function.
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We now define the power spectral densityfunction (PSD) of a time signal, which is a fre-

quency domain variable often employed in disturbance analyses. The PSD, #F(o), of a

signalf(t) has two equivalent definitions. The first is based directly on the time history of

the signal, and is defined as the Fourier transform of the signal's autocorrelation function:

#F(o) = RYc)e 'TA (2.14)

where the autocorrelation function can be recovered from the PSD as:

00

R/T) = #F(o ) " do (2.15)
-00

The second is perhaps a more useful definition for signal processing purposes, and is

based upon the finite Fourier transform of the signal:

F(o) = lim - E[F(o, T) 2] (2.16)
T- co 2 7 T

[Wirsching, 1995] has shown that these two definitions are equivalent.

Similarly, the cross spectral density function (CSD) of two time signals, f/(t) and fy(t), is

defined first as:

00

F,F, o)) = RF (1jei[ dA (2.17)

where the cross-correlation function can be recovered from the CSD as:

Re
RFFy~r) fJ FXF(o)e iOo (2.18)

-00
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and second as:

(2.19)

Again, the latter definition is often more practical. Note that while the power spectral den-

sity is a real-valued function, the cross-spectral density is complex and Hermitian, so that:

FF(O) F, (2.20)

where [.]* denotes a complex conjugate value. Often the power and cross spectral densi-

ties of a set of signals are grouped together in a spectral density matrix, (D, where each

diagonal entry is the PSD of a signal, and each off-diagonal entry is the CSD between two

signals. For instance, the six-axis set of disturbances obtained in a hard-mounted RWA

test can be placed in a 6 x 6 spectral density matrix, DFF(o), where the six diagonal

entries are PSDs of the six disturbance signals, and the off-diagonal entries are the corre-

sponding CSDs between disturbance signals:

F(o)=

4'Fx
OF F

F, X

FF, 

0M,F,

OMYFX,

OPMZFX

FF

4FY

MFY

PMZFY

F

OMFz
OMXFZ,

PMF

FMX

F M,

0MYMX

'PMZmx

FM,

FMy

MXMY

FM^

PMM

(2.21)

From Equation 2.20, we know that this spectral density matrix is Hermitian:

( F FH 
T *

FF()= (DFF(C') ==qFF (oz) (2.22)

In other words, OFF is equal to its Hermitian value, or its complex conjugate transpose.
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With these definitions, we can now write a relation between the RMS and the PSD of a

stationary, zero-mean signal. Combining Equations 2.4, 2.8, and 2.15 yields:

a = Ejf(t)2] = Rip = 0) = J,(o)e"Udo = #F(o)do (2.23)

so that the RMS, rf, equivalent to the standard deviation, af, of a zero-mean signalf(t),

can be written as the square root of the integrated PSD function:

rf= f (o)do (2.24)

Hence for any stationary, zero-mean signal, the RMS can be computed as the square root

of the area under the PSD curve.

A useful extension of this result is the cumulative RMSfunction:

rum (o)) = 2 [$h(Fo)d o (2.25)
rf0 -

where the factor of 2 arises from the fact that we have shifted from a two-sided integration

in Equation 2.24 to a one-sided integration in 2.25. Notice that for infinitely large fre-

quencies, the cumulative RMS recovers the total RMS of a signal:

cumlim r u(oi) = rf
o) -_+0

(2.26)

The cumulative RMS function represents a cumulative contribution to the total RMS of a

signal as a function of frequency. Since the cumulative RMS "integrates" a PSD along the

frequency axis, large steps in its value occur at frequencies where #F(o) "spikes" to large

33



REACTION WHEEL DISTURBANCE TESTING

values. Hence the cumulative RMS is a useful tool in structural dynamic applications

because it allows one to visualize the frequencies of vibrational modes that contribute

most to the RMS of a vibratory response.

Figure 2.5 shows the PSD of a typical reaction wheel disturbance force, along with its

cumulative RMS function. The PSD, #F (o)), represents the power density of a wheel's

Typical RWA Disturbance Spectrum and Cumulative RMS
4

2

E

0

102

E

0.

50 100 150 200

0 50 100 150 200
Frequency (Hz)

250

250

Figure 2.5 Typical Reaction Wheel Disturbance Spectrum and Cumulative RMS Function

x-axis disturbance force as a function of frequency. The largest spike occurs at 44 Hz,

representing the primary harmonic. This spike in 4F (o) maps to a large step in the

cumulative RMS function at the same frequency, indicating a significant contribution to

the energy of the disturbance signal. This technique of identifying key disturbance fre-
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quencies from steps in the cumulative RMS function is an important result that will be

employed throughout this thesis.

It is important to remember that the fidelity of all these frequency domain variables is

dependent, in the end, on the quality of data acquisition in the time domain. The key rule

in this matter is that the digital sampling frequency must be greater than twice the band-

width of interest, known as the Nyquist or "folding" frequency, in order to avoid aliasing

of the data. Thus if the desired bandwidth is 500 Hz, the data must be sampled at a fre-

quency greater than f, = 1000 Hz, or a time step smaller than At = 10-3 s.

2.3 Disturbance Analysis Methodology

After obtaining the disturbance spectral density matrix, <DFF, from RWA hard-mounted

tests as described in Section 2.2, one can use these measurements to predict the dynamic

behavior of the structure that will eventually be coupled with the wheel. Generally, the

structure is not readily available, so an accurate finite element model of the structure is

created and used to represent the structure's dynamic behavior.

The structure's dynamic behavior is generally expressed in the form of a transfer function,

GYF, relating the disturbance inputs, F, on the structure to the measured outputs, Y. In the

case of a structure coupled with a spinning reaction wheel, the disturbance inputs, F, are

three disturbance forces and three disturbance moments, as described in Section 2.2.

When measured outputs can be mapped algebraically or via integration or differentiation

to performance metrics of interest, Z, the transfer function may be expressed as GZF, relat-

ing disturbance inputs to performance metrics.

A common method in frequency domain disturbance analysis, which will be derived in

Chapter 3, relates the spectral densities of the disturbances and performance metrics as:
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*zz(o) = GZF(u)'DFF(o)GZF(o) (2.27)

H

where [-] denotes a Hermitian value, as defined by Equation 2.22. Hence by obtaining

the RWA disturbance spectral density matrix, IFF(o), from hard-mounted tests and the

structure's disturbance-to-performance transfer function, GZF(o), from an accurate finite

element model (FEM), one can predict the spectral density matrix of the performance met-

rics of the structure using Equation 2.27. This method is the basis for most frequency

domain disturbance analyses.

Once the performance metrics are obtained in spectral density matrix form, Ozz(o), the

RMS values and cumulative RMS functions of the performance metrics can be calculated

by applying the relations derived in Section 2.2.2 to the diagonal elements of the perfor-

mance spectral density matrix.

The key item to note here is that Equation 2.27, when applied to a spacecraft-RWA sys-

tem, does not account for the structural dynamic coupling between the spacecraft and the

RWA. When the RWA is actually mounted on the spacecraft, its disturbances excite the

spacecraft, which in turn excites the wheel, and so forth, producing a dynamic coupling

effect between the two bodies. However, the disturbance spectra, QDFF(o), in Equation

2.27 are obtained from hard-mounted tests of an isolated RWA, withfixed boundary con-

ditions that do not accurately represent the coupled boundary conditions of the RWA

mounted to the spacecraft. These isolated spectra are then propagated directly through the

spacecraft transfer function, GZF(o), in Equation 2.27, without accounting for any cou-

pled dynamic effects. The approximation invoked in this decoupled disturbance analysis

method is the focus of this thesis, and an amended coupled disturbance analysis method,

which accounts for the structural dynamic coupling between a spacecraft and its RWA,

will be introduced in the next chapter.
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Finally, note that when Equation 2.27 is applied to a system driven by a unit-intensity

white noise disturbance, the performance PSD becomes:

DZZ(o) = GZF(o)GZF(o) (2.28)

In this case, the cumulative RMS function, defined in Section 2.2.2, can be calculated by

substituting the square of the transfer function GZF(0o) in place of the output PSD. This

result will be employed in Chapter 3.

2.4 Summary

In this chapter, the nature of RWA disturbances was discussed in Section 2.1, the typical

hard-mounted testing method of RWAs was described in Section 2.2, including a discus-

sion of techniques in data processing in the time and frequency domains, and a popular

method of spacecraft-RWA frequency domain disturbance analysis was presented in

Section 2.3, along with a discussion on the limitations of this method.

In summary, RWA disturbances are composed of a primary harmonic and sub- and super-

harmonics of the wheel's spin rate. The dominant flexible modes of a reaction wheel are

the axial translation, radial translation, and radial rocking modes. The disturbances are

usually measured in six-axes, as three forces and three moments, in a hard-mounted con-

figuration. Data processing techniques are used to convert the six load time histories to

useful data, including the 6 x 6 spectral density matrix, OFF(o). A frequency domain

disturbance analysis method then combines this disturbance matrix DFF(o) with a struc-

tural transfer function, GZFo), obtained from a finite element model of the structure, to

predict the resulting performance metrics using Equation 2.27. Tools such as the RMS

and cumulative RMS can then be used to assess the performance.

An amended disturbance analysis method, which accounts for the structural dynamic cou-

pling between a spacecraft and RWA, will now be discussed in Chapter 3.
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Chapter 3

STRUCTURAL COUPLING THEORY

Traditional testing of reaction wheel assemblies (RWAs) is performed with the wheel

hard-mounted to a rigid surface, and isolated from the structure on which it will eventually

be mounted. This is necessary because the structure is often a spacecraft in the process of

being designed or built, and is generally not available for coupled boundary condition dis-

turbance tests with the wheel.

In this traditional method of RWA disturbance testing, the fixed boundary conditions of

the wheel do not accurately represent the eventual boundary conditions of the wheel inter-

faced with the spacecraft. Since most space-based telescopes that use reaction wheels for

attitude control are large, flexible structures, the spacecraft-RWA interface will connect

two flexible systems, rather than a flexible and a fixed, rigid system. While the traditional

hard-mounted testing method is commonly accepted, this thesis investigates whether it is

an accurate approximation, and it derives a method for augmenting the isolated test results

in order to account for structural coupling between the spacecraft and RWA.

In Section 3.1, a sample problem is presented to motivate a coupled approach to distur-

bance analysis. The theory behind the proposed coupled method is then presented in

Section 3.2 and applied to a spacecraft-RWA system in Section 3.3. Finally, a summary

of the proposed method is presented in Section 3.4.
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3.1 Two Degree-Of-Freedom Sample Problem

In order to motivate this structural coupling study, the following two-degree-of-freedom

(DOF) sample problem is presented, based on similar work by Masterson [Masterson,

1999]. Consider the two-DOF system shown in Figure 3.1(a), where ks and ms represent a

simplified one-DOF flexible spacecraft and kw and m, represent a one-DOF flexible reac-

tion wheel. This figure represents a coupled spacecraft-RWA system, while Figure 3.1(b)

demonstrates a simplified analogy to hard-mounted disturbance testing.

/
/
/
/
/
/

x s x

-s

(a)

/
/
/
/
/
/

xw

fHM

(b)
Figure 3.1 (a) Two-DOF Analogy to Coupled Spacecraft-RWA System

(b) Two-DOF Analogy to Decoupled Approximation

In the coupled system analogy shown in Figure 3.1(a), f" represents the disturbance force

imparted on the reaction wheel due to its spinning. This disturbance is propagated through

the coupled system to cause displacements x, and x, of the spacecraft and RWA, respec-

tively. The performance metric of the system is the spacecraft displacement, xs.
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In the hard-mounted testing analogy shown in Figure 3.1(b), the wheel is represented as a

one-DOF spring-mass system fixed to a rigid surface. The same disturbancef, is applied

to the wheel, and the resulting hard-mounted interface force fHM is measured at the fixed

end. This interface force, analogous to a multi-DOF set of interface forces (fk,fy, andfz)

and moments (ms, my, and mz) typically measured in hard-mounted RWA disturbance

tests, is then applied to the spacecraft model as f, = fHM in order to predict the resulting

performance, x,. Note that the decoupled spacecraft model includes the mass, m,, and

flexibility, ks, of the spacecraft, as well as the mass, mw, of the reaction wheel; this follows

the method often employed in multi-DOF decoupled disturbance analyses, where the

spacecraft finite element model includes the RWA mass and inertia, but doesn't account

for its flexibility.

In the coupled case shown in Figure 3.1(a), the net force exerted on m, is:

Em. = f. - k.(x - xS) (3.1)

so that the wheel's equation of motion is:

mWxw = Zfm = fw - kw(x,-xs) (3.2)

Taking the Laplace transform of 3.2 and solving for Xw(s) = Z[xw(t)] yields:

X, = 2 (3.3)
m~s + kw

where Xs(s) = Zxs(t)], F,(s) = Zjf(t)], and s = c- +jco is the Laplace variable.

Similarly, the net force exerted on ms is:

Zfm = k,(x- xs) - (3.4)

so that the spacecraft's equation of motion is:

msx, = fm, = k((x3-x)5-k)xs

41
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Taking the Laplace transform of 3.5 and solving for Xs yields:

kXw
Xs 2

mss + kW+ k

If Equation 3.3 is now substituted into 3.6 for Xw:

XS
kw(F F+ kwXs)

2 2
(mss +k±+k,)(m~s + k,)

then Equation 3.7 can

between the disturbing

metric, X:

be solved for Xs, to yield the coupled input-output relationship

force, F, applied to the wheel and the spacecraft performance

(3.8)Xs= GXFF

where:

(3.9)

Coupled Input-Output Relation

A similar analysis can now be performed for the decoupled case depicted in 3.1(b). The

hard-mounted wheel's equation of motion no longer depends on the relative displacement

of the wheel and spacecraft, but rather on the absolute displacement of the wheel:

(3.10)

Taking the Laplace transform of 3.10 and solving for X,,

(3.6)

(3.7)

GXF 4 2
m mss + [kw(ms + mw) + ksmw]s + kkw

42
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X = 2(3.11)
m~s + kW

The force, FHM, applied at the wheel mount is thus:

FHM=kV7 kWF (3.12)
mWs + k

The decoupled spacecraft's equation of motion is:

(mS + mw)xs = f, - ksxs (3.13)

so that taking the Laplace transform and solving for Xs yields:

X - 2 (3.14)
(S m+ mW)s + ks

In traditional decoupled disturbance analyses, the measured hard-mounted forces are

applied directly to the spacecraft model in order to predict its performance metrics. Thus

in this case, the force, Fs, applied to the spacecraft must be equated to the hard-mounted

force, FHM. Substituting Equation 3.12 for FHM = Fs into 3.14 and simplifying leads to

the decoupled input-output relationship between the disturbing force, F, and the space-

craft performance metric, X:

Xs= GXFFw (3.15)

where:

G4 k2 (3.16)
mW( m+ m,)s + [kw(ms + mw) + ksmw]s + kskw
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Decoupled Input-Output Relation

In comparing the coupled and decoupled input-output relationships, Equations 3.9 and

3.16, respectively, we see there is only one discrepancy between the two, which lies in the

denominator of the transfer function GXFw . The decoupled transfer function, 3.16, con-

tains an additional m 2 term multiplying s4, which suggests that the decoupled analysis

over-accounts for the wheel mass by including it in both components of the analysis.

Notice that for a spacecraft that is much more massive than the wheel, ms m,, that these

relationships approach one another!

The coupled and decoupled transfer function magnitudes are plotted in Figure 3.2(a) with

m = mW = l and ks = kw = 1, and they prove to be substantially different. In Figure

Figure 3.2(b), they are plotted again for a more realistic mass ratio, with ms = 2000 and

mW = 10. As expected, the transfer functions approach one another as the spacecraft and

wheel masses approach a realistic ratio.

These results indicate that the traditional decoupled disturbance analysis method does not

always provide a reliable representation of a coupled system's behavior. In this two-DOF

sample problem, we found that for a realistic spacecraft-to-RWA mass ratio, with the

spacecraft mass significantly larger than the reaction wheel assembly mass, the decoupled

approximation tends toward the coupled solution.

However, one must be cautious in extending this conclusion to more complex, multi-DOF

systems. For example, while the ratio of force exerted on a one-DOF body to the acceler-

ation of that body is a constant mass value, the analogous ratio for a flexible, multi-DOF

body, with a force applied in one location and acceleration measured in another, is a fre-

quency-dependent value known as the dynamic mass or apparent mass of the body. So

while the two-DOF sample problem suggests that the accuracy of a decoupled disturbance

analysis depends on the mass ratio of the two bodies, the same conclusion can not neces-

sarily be drawn for multi-DOF systems. This study thus motivates a more detailed inves-

tigation into coupled methods of disturbance analysis for multi-DOF systems.
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Figure 3.2 Two Degree-of-Freedom Sample Problem: Coupled
and Decoupled Transfer Functions

3.2 Structural Equations of Motion

We have demonstrated that the traditional method of testing reaction wheels in isolation,

and applying these isolated disturbance spectra to a structural model, is not completely
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accurate in that it neglects the coupling between the flexible reaction wheel and the struc-

ture on which it is mounted. In this section, we introduce the equations of motion of a

multi-DOF system in the frequency domain, so that in Section 3.3 we may apply them to a

spacecraft-RWA system in order to investigate the approximation being made in the tradi-

tional method of disturbance analysis. We will then introduce a method of correction that

accounts for spacecraft-RWA structural coupling.

First consider that the equation of motion for a point mass m is:

f = mX (3.17)

where f is a three-dimensional vector of external forces acting on the mass and x is the

three-dimensional vector of resulting accelerations.

The corresponding equation of motion for aflexible body withfinite volume, discretized

into a finite number of degrees of freedom, and subjected to external forces and moments

is:

Mx + Cx+Kx (3.18)

where M is the mass matrix, C is the damping matrix, K is the stiffness matrix, x is a vec-

tor of generalized degrees of freedom, including displacements and rotations, and f1 is a

vector of generalized loads, including forces and moments.

If we shift to the frequency domain by taking the Laplace transform of Equation 3.18, we

find:

s 2MX(s) + s CX(s) + KX(s) = (S) (3.19)

where:

S = ( +j3

46
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Z[x(t)] = X(s)

Z[x(t)] = sX(s)-x( )

2
Z4X(t)] = S X(S) sx(O )-x(O)

and zero initial conditions are assumed, so that x(0) 0 and x(0~) 0.

From Equation 3.23,

Z[Ix(t)] (s)
X~s) 2 2

S S

and substituting into 3.19:

MX(s) + CX(s)
S

KX(s)
2

S
= F(s)

Equation 3.26 can now be written in the same form as Equation 3.17:

JFj(s) = GFk(s)X(s)

where GFX, the transfer function matrix relating applied loads Fi to accelerations X, is

defined as:

G C K
GF1(s) = M+ - + - (3.28)

Note that while Equation 3.17 applies to a point mass, and forces and accelerations are

functions of time, Equation 3.27 applies to a flexible body, and Fi, X, and GF1 are all fre-

quency-dependent.

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)

Z[fi(t)] = Fi(s)
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3.3 Application to Reaction Wheel Disturbance Testing

One may now attempt to apply Equation 3.27, the frequency-domain equation of motion

for a flexible body, to a reaction wheel in order to assess the problem of spacecraft-RWA

structural coupling.

3.3.1 Reaction Wheel Equations of Motion

For a spinning reaction wheel attached to a flexible body such as a spacecraft, the loads

acting on the wheel can be broken down into two categories:

- disturbance forces and moments, W, caused by the imperfect wheel's spin-
ning motion, and

- reaction forces and moments, F, which occur at the interface between the
reaction wheel and the spacecraft.

Thus the equation of motion 3.27 can be written for a reaction wheel as:

F(s) = GDI W(s) + GD2 (s) (3.29)

where F is a six-dimensional vector of reaction forces and moments at the spacecraft-

RWA interface, W is a six-dimensional vector of disturbance forces and torques induced

by the spinning wheel, and I is a six-dimensional vector of linear and angular accelera-

tions at the interface. GDI is the transfer function relating F to W, and GD2 relates F to X.

3.3.2 Coupled Spacecraft-RWA Equations of Motion

If we now consider the coupled spacecraft-RWA system, we can draw a free-body dia-

gram for each component. Since the bodies are connected, their interface forces and

moments, F, must be equal in magnitude but opposite in direction, and their linear and

angular accelerations, 1, must be equal in both magnitude and direction, as depicted in

Figure 3.3. Here the spacecraft is considered the plant, and the RWA is considered the

disturbance to the plant. Z is a vector of performance metrics for the coupled system that

typically includes spacecraft displacements, velocities, or accelerations. Vhen the struc-
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PLANT: Spacecraft DISTURBANCE: R WA

P - F F D
Gp, GP2  X X GDI, GD2

z
Figure 3.3 Free-Body Diagrams of the Spacecraft and RWA

ture is a space telescope or interferometer, these structural performance metrics may be

mapped to optical performance metrics.

Ideally to perform a disturbance analysis for this coupled system, we'd like to find a trans-

fer function that maps disturbances, W, induced by the wheel's spinning, to performance

metrics, Z, of the spacecraft. Since this would be the "total" transfer function relating the

initial disturbance to the ultimate performance metric, and would include the coupling

effect between the RWA and the spacecraft, we will refer to it as GT.

In Equation 3.29, we defined two transfer functions, GD1 and GD2, for the disturbance-

inducing RWA, thus relating F, W, and X. We now define similar relations for the space-

craft, or the "plant":

Z = GPIF (3.30)

k = GP2F (3.31)

so that Gp; relates F to the performance metrics Z, and GP2 relates F to the interface accel-

erations k.

The relations in Equations 3.29, 3.30, and 3.31 can now be combined to write an expres-

sion for GT. From 3.29 and 3.31:

F = GD1W+GD2 X = GD1W+GD 2 GP 2 F

49
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Collecting terms and inverting to solve for F,

F = [I-GD2 GP2 ] GD1W (3.33)

We can now relate Z to W using 3.33 and 3.30:

Z = GPIF = Gph[I-GD2GP 2] GD1W = GTW (3.34)

yielding the coupled spacecraft-RWA equation of motion. The "total" transfer function is

then:

GT=Gyj[I-GD2 GP2] GD1 (3.35)

If we can find a way to determine each term in Equation 3.35, we will be able to perform a

coupled disturbance analysis, mapping RWA disturbances, W, to spacecraft performance

metrics, Z.

Note that in traditional, decoupled spacecraft-RWA disturbance analyses, hard-mounted

RWA disturbance tests are performed, in which the wheel is fixed to a rigid surface and

spun, and a load transducer between the wheel and the rigid surface is used to measure dis-

turbance loads, F, at the interface. This testing method, which constrains the RWA's

acceleration at the interface, corresponds to zeroing X in Equation 3.29 and the right-hand

block of Figure 3.3, spinning the wheel to create a disturbance, W, and measuring the

resulting reaction loads, F. These measured loads, F, are then applied to the plant using

Equation 3.30 to predict the plant performance.

When the wheel is in its coupled configuration, however, the interface acceleration is non-

zero and depends upon the RWA's own mass and stiffness properties, as well as those of

the spacecraft. This is the effect of structural coupling that is neglected in hard-mounted
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testing, but is accounted for in Equation 3.34. Thus the error in the traditional decoupled

method of disturbance analysis lies in the hard-mounted measurement of F, where X is

erroneously constrained to zero by the rigid boundary conditions. This fixed boundary

condition in vibration tests is often referred to as the "overtest" condition [Scharton,

1995].

3.3.3 Determination of Terms in Coupled Equations of Motion

Equations 3.34 and 3.35 yield spacecraft performances, Z, from RWA disturbances, W,

and include spacecraft-RWA structural coupling effects. Hence the determination of all

the terms in Equation 3.35 should yield a new, coupled method of spacecraft-RWA distur-

bance analysis.

The two disturbance terms, GD] and GD2, may be determined experimentally from the

reaction wheel to be used on the spacecraft, while the two plant terms, Gp1 and GP2, may

be derived from a model of the spacecraft. In this manner, a coupled analysis requires no

more than a traditional decoupled analysis: an RWA for experimental testing and a space-

craft model; that is, a coupled analysis can be performed without experimental testing of

the spacecraft!

Determination of Plant Terms Gp1 and GP2

We begin by investigating how to determine the spacecraft transfer functions, Gp1 and

GP2. Using a finite element model of the spacecraft, we can obtain these multi-DOF

transfer functions by simply specifying an appropriate set of inputs and outputs in each

case.

From Equation 3.30, we see that Gp1 relates a six-axis load vector, F, comprised of three

forces, Fx, F , and Fz, and three moments, M., M , and Mz, all applied at the spacecraft-

RWA interface node, to a vector of select spacecraft performance metrics, Z. Hence in the

structural finite element model, we specify a six-axis load vector applied at the interface

node as the input, and a corresponding vector of desired performance metrics, such as the
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displacements of certain nodes, as the output. Thus the first dimension of Gp1 is equal to

the number of output performance metrics in the vector Z, and the second dimension is

six, equal to the length of the input vector, F.

From Equation 3.31, we see that GP2 relates the same six-axis load vector F, applied at the

spacecraft-RWA interface node, to a six-axis vector of accelerations, X, comprised of

three linear accelerations, x, y, and z, and three angular accelerations, 0x, O, and Oz, all

at the spacecraft-RWA interface node. Hence in the structural finite element model, we

again specify a six-axis load vector applied at the interface node as the input, but we now

specify a corresponding six-axis acceleration vector at the interface node as the output.

Thus the first dimension of GP2 is six, equal to the length of the output vector, X, and the

second dimension is also six, equal to the length of the input vector, F.

Note that many finite element programs will only yield nodal displacements, and not

accelerations, as outputs. In this case, one may use the following relation to convert

between a transfer function, GXF, yielding displacements to one, GXF, yielding accelera-

tions:

GXF(S) s 2GxFs) (3.36)

This relation is simple to derive. From the definitions of GXF and GXF

X(s) = GXF(s)F(s) (3.37)

X(s) = GXF(s)F(s) (3.38)

we can substitute Equation 3.9 for Xinto 3.37 to find:

X(S)G()F() (3.39)
S
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Multiplying through by s2 and substituting Equation 3.38 for X(s) yields:

Z(s) = s2 GXF(s)F(s) = GXF(s)F(s) (3.40)

which is equivalent to Equation 3.36.

Also, note that if a displacement response is given by Equation 3.37, the power spectral

density of that response, defined in Section 2.2.2, is:

$X(s) = lim I E [X(s)XH(s)]
T -+>oo T

1 H
= lim 2 E[GXF(s)F(s)F"(s)GxF(S)]

T -+> oo 2x T (3.41)

GXF(s) lim E[F(s)FH(s)] GHF(s)

H
= GX(s)#F(s)GXF(S)

Hence from Equations 3.36 and 3.41, we can write a similar equation relating an output

displacement PSD to an output acceleration PSD:

H XH

4x(S) GXFS) F(S)GF(S)4 4 (3.42)
S S

or simply:

#g(s) = s4#x(s) (3.43)

Determination of RWA Term GDJ

We now investigate how to experimentally determine the RWA transfer function GD], and

in the next section, GD2. From Equation 3.29, it seems one could determine GD1 by per-

forming a hard-mounted RWA test, in which X is constrained to zero, the wheel is spun to

create disturbance W, and interface reaction forces F W are measured. Here, the notation
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FI indicates that F is measured with only disturbance W present, and interface accelera-

tions X are constrained to zero:

FIW = GD1 W (3.44)

In this case, GD] could be extracted from knowledge of Fl | and W. The difficulty in this

approach, however, is that one generally cannot determine the disturbance, W, acting on

the wheel, but can only measure the resulting interface loads, FI .

In practice, reaction loads in hard-mounted tests are actually measured in the time-domain

as f(t) I and are then transferred to the frequency domain using the Fourier transform to

obtain F(o)|,. If instead, we convert the time histories to spectral density matrix form,

OFF I , as described in detail in Section 2.2.1, we obtain the following relation using

Equation 3.44 and a derivation similar to 3.41:

FF W = GD WWG H (3.45)

We can thus write the coupled Equations 3.34 and 3.35 in spectral density form as:

*zz = GrDWWGT
S-HWW1 H (3.46)

GPl[I-GD2GP2] GD1IWWGD1[I-GD2 GP2] GP1

and substitute Equation 3.45 for GD WWGD1 , to find:

-1 -H H
zz = GpI[I-GD2 GP2] FF W[I-GD2GP2] G 1  (3.47)

or:

~zz ~H
(Dzz = Gr*DFF WGr (3.48)

where:

54



Application to Reaction Wheel Disturbance Testing 55

GT Gpl[I- GD2 GP2
1  (3.49)

Thus Equations 3.48 and 3.49 are an equivalent form of the coupled Equations 3.34 and

3.35, but they eliminate the terms GD] and W, which are difficult to determine, and instead

express the performance of the coupled spacecraft-RWA system only in terms of known

values, GPI, GP2, and GD2, and DFF ,, which is measured in the hard-mounted RWA

tests. We have left only to determine GD2-

Determination of RWA Term GD2, "Coupling Correction Term"

Recall that by constraining the wheel to a rigid surface, hard-mounted RWA disturbance

tests account only for the GDJW term in Equation 3.29 and neglect the effect of GD2X.

Since these hard-mounted test results are applied directly to a spacecraft model in order to

predict performance in traditional disturbance analyses, they yield only a decoupled

approximation to the coupled response. Hence our determination of GD 2 here will serve

as a "coupling correction" to the traditional decoupled method.

In order to determine GD2 experimentally for a RWA, the vector of disturbance forces and

torques, W, induced by the spinning wheel, must first vanish from Equation 3.29; this

occurs whenever the wheel is not spinning. Then a relation must be formed between the

vector of interface forces and moments, F, and the vector of linear and angular interface

accelerations, X, while the wheel is not spinning.

Perhaps the most obvious method of measuring GD2 would then be to apply a set of

known loads to the wheel interface and measure the resulting interface accelerations.

Conversely, known accelerations could be applied, and resulting forces could be mea-

sured. For example, the wheel interface could be constrained to a platform moving with

known accelerations, and a load transducer could be used to measure the resulting inter-

face loads.
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In reality, a combination of these two methods proves best for measuring GD2. The

method suggested here is to suspend the RWA in a "free-free" configuration, free of both

geometric boundary conditions (displacement constraints) and natural boundary condi-

tions (boundary reaction forces). A white noise disturbance is then applied at the RWA

interface, and the resulting six-axis set of interface accelerations and the six-axis set of

interface loads are measured by accelerometers and a load transducer, respectively. The

1 x 1 disturbance, 6 x 1 interface accelerations, and 6 x 1 interface loads are all recorded

by a data acquisition system and are used to determine both the 6 x 1 transfer function

from the applied disturbance to the interface accelerations and the 6 x 1 transfer function

from the applied disturbance to the interface loads.

Now consider that this test is performed six times, each time applying and measuring a

white noise disturbance force or moment in a different direction, and each time measuring

the resulting interface accelerations and loads to determine the two 6 x 1 transfer func-

tions of interest. Then for each test, we can write:

X(s) = G (s)wi(s) (3.50)

and

F,(s) = GF (S)wi(s) (3.51)

where i = 1, 2, ... , 6, corresponding to the six tests performed, wg is the 1 x 1 white

noise disturbance applied in test i, 1i is the 6 x 1 frequency-dependent vector of interface

accelerations measured in test i, Fi is the 6 x 1 frequency-dependent vector of interface

loads measured in test i:
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and X =
2

x
(3.52)

and G and GFj are the 6 x 1 transfer functions relating

test i to the interface accelerations and loads, respectively.

the white noise disturbance in

The white noise disturbance, wi, by definition has a unity value as a function of frequency,

but is applied in a different direction for each test, so that w = w for i = 1, 2, ... , 6. This

allows us to combine the information from the six tests and write Equations 3.50 and 3.51

as:

[Xj = Gw (3.53)

and

[Fj] = GFw (3.54)

where:

I[ l = 2 $k3 t4 k5 6

-=C G G2 G X GX G X GX6
X IX I2 I I I IK

(3.55)

(3.56)
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[Fi] = F F 2 F3 F 4 F5 F6 (3.57)

and

GF = GF, GF2 GF3 GF4 G; 5 GFj (3.58)

Solving Equation 3.53 for w and substituting into 3.54 yields:

[Fi] = GFw = GFG [1 ] (3.59)

Since our goal is to determine GD2, the 6 x 6 matrix relating the three linear and three

angular interface accelerations to the three forces and three moments at the interface, we

find from Equation 3.59:

GD 2 GFG I (3.60)

Hence the 6 x 6 frequency-dependent GD2 matrix can be determined by performing six

free-free tests on the RWA as described above, determining the 6 x 1 transfer functions

G and GF, for each disturbance test (i = 1, 2, ... , 6), and combining these transfer

functions to solve for GD2, using Equations 3.56, 3.58, and 3.60.

Table 3.1 lists the generalized relationships between force and displacement, velocity, and

acceleration. From this table, we see that GD2 is the dynamic mass, also known as the

apparent mass, of the RWA, since it represents the 6 x 6 "ratio" of forces to accelerations

at the RWA interface.
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TABLE 3.1 Generalized Relationships Between Force and Displacement,
Velocity, and Acceleration.

X(O)Compliance F(o) Stiffness
F(o) X(o)

ZMo) F(o)) Mechanical
X(ow) Mobility Fo) Impedance
F(o) X~o)

A(O) F(o) Dynamic
F(so) Accelerance (Apparent)

F ) A(O) Mass

The method proposed here for determining the dynamic mass, GD2, was validated using a

representative RWA in the Space Systems Laboratory at the Massachusetts Institute of

Technology. The experiment will be described in Chapter 4, and the results will be pre-

sented and incorporated into a coupled disturbance analysis in Chapter 5.

3.4 Summary

In Section 3.1, a sample problem was presented to motivate a coupled disturbance analysis

method for flexible spacecraft-RWA systems. This spring-mass problem demonstrates

that the traditional decoupled disturbance analysis method, when applied to a two-DOF

coupled system, is only an approximation of a coupled disturbance analysis, but that this

approximation is quite accurate if the spacecraft mass is significantly larger than the RWA

mass. The limitation here is that the study was performed on a simple, two-DOF system,

and the results can not necessarily be extended to complex, multi-DOF systems.

Similarly, the traditional method of spacecraft-RWA disturbance analysis, which applies

hard-mounted RWA disturbance spectra to a spacecraft model (that includes the mass of

the RWA) in order to predict its performance, is a decoupled approximation of a coupled

system. The objective is to investigate the accuracy of this approximation by comparing it

to a fully coupled analysis method and to coupled experimental results.
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In this chapter, the theory for a coupled disturbance analysis technique has been presented.

The suggested method requires both an RWA for experimental testing and a finite element

model of the spacecraft, as in the traditional method; however, it improves upon the tradi-

tional method by including the RWA's dynamic mass, GD2, as a coupling correction term

in the spacecraft's "total" transfer function, GT, which relates the hard-mounted RWA

test results, OFF I,, to the spacecraft performance metrics, hzz *

In summary, a coupled disturbance analysis involves the following steps:

- Determine the spacecraft transfer functions Gp; and GP2 from the spacecraft
finite element model.

" Determine the RWA dynamic mass transfer function, GD2, from free-free
testing of the RWA and Equations 3.56, 3.58, and 3.60.

* Determine the RWA disturbance spectra OFF from hard-mounted testing
of the RWA.

- Calculate the coupled spacecraft-RWA performance Dzz by substituting
GPI, GP2 , GD2, and OFFI into Equations 3.48 and 3.49.

The laboratory experiments performed to validate this method are described in Chapter 4,

and the results are presented in Chapter 5.
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Chapter 4

EXPERIMENTAL SETUP

In Chapter 3, a new method of disturbance analysis for structurally coupled systems was

introduced. Equations 3.48 and 3.49 were presented for analysis of a flexible structure

coupled to a disturbance-inducing reaction wheel assembly (RWA). In order to validate

this method, and to determine all the necessary terms as described in Section 3.3.3, three

types of laboratory experiments must be performed on the RWA and flexible structure:

1. First the RWA is hard-mounted to an optical bench and spun, and a six-axis
load transducer is used to measure the disturbance forces and moments at the
rigid bench-RWA interface. This is the traditional method of RWA distur-
bance testing that yields the disturbance spectra <FF I'

2. The RWA is then suspended in a free-free configuration, white noise distur-
bances are applied to its interface location, and the resulting six-axis inter-
face accelerations and six-axis interface loads are measured. This is a new
testing method introduced in Section 3.3.3 of this thesis; the goal is to pro-
vide a coupling correction term, GD2, to the traditional hard-mounted test
results obtained in test 1.

3. Finally, the wheel is mounted to a test structure and spun in order to disturb
the structure, and measurements of the structure's performance are made.
This test is used to validate and compare the decoupled and coupled analysis
results.

These three experiments were performed using a representative reaction wheel assembly

and a flexible test structure in the Space Systems Laboratory at the Massachusetts Institute

of Technology. This chapter describes the three test configurations in detail.
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In the next chapter, the results of these tests will be provided. The hard-mounted distur-

bance spectra obtained in test 1 will first be applied to a finite element model (FEM) of the

test structure in order to predict its performance. Next, the structural coupling correction

term obtained in test 2 will be appended to the results of test 1, and a coupled analysis will

be done to obtain the same performance metrics. Finally, these two analyses will be com-

pared with the performance results from test 3, where the RWA and test structure are

physically coupled to one another.

The aim is to show that the addition of the correction term to the RWA disturbance model,

when applied to the structural FEM, yields a predicted response of the structure that more

accurately represents the true coupled response than the current method of applying only

the hard-mounted disturbance spectra. Thus test 3, which requires the actual structure for

testing, is used only to validate the coupling correction method.

4.1 Reaction Wheel Hard-Mounted Disturbance Tests

The first test performed on the RWA is the traditional hard-mounted test, where the wheel

is attached to a rigid surface and spun at a series of discrete speeds. At each speed, the

resulting interface forces and moments are measured to yield disturbance spectra (DFF '

4.1.1 Hardware Description

Figure 4.1 shows the representative RWA used in this study in its hard-mounted configu-

ration. The assembly is composed of an aluminum flywheel, a brushless DC motor with a

built-in digital tachometer, and two attachment plates. In flight, the RWA would gener-

ally be attached to a spacecraft at its bottom surface, so the bottom surface is referred to as

the "interface" of the RWA, and the attachment plates are the "interface plates." Some

mass and geometric properties of the assembly are listed in Table 4.1.

The RWA interface plates are attached to a load transducer, which is in turn connected by

stiff aluminum plates to an optical bench, as shown in Figure 4.1. The load transducer is a
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Figure 4.1 Representative Reaction Wheel Assembly in its Hard-Mounted Testing
Configuration in the MIT Space Systems Laboratory.

TABLE 4.1 Geometric and Mass Properties of RWA and Supports

Geometric Properties Mass
Parts (cm) (kg)

Flywheel Diameter: 17.15 2.93 Including Flywheel,
Rim Thickness: 2.54 Motor, Tachometer, and
Inner Thickness: 0.64 Top Interface Plate

Motor and Tachometer Diameter: 5.72
Height: 19.84

Interface Plates Thickness: 1.91
Side Length: 11.59

Load Transducer Diameter: 7.62 2.70, Including Load
Height: 3.02 Transducer, Bottom Inter-

face Plate, Small Alumi-
num Piece, Screws, Nuts,

and Bolts

Aluminum Plates Total Thickness: 3.81 0.70 for Remaining Alumi-
num Pieces
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six-axis JR3 Universal Force-Moment Sensor System, which measures forces in three

axes,f,fy, andf, and moments in three axes, mx, my, and mz. Mass and geometric proper-

ties of the load transducer and aluminum plates are listed in Table 4.1. This configuration

provides a hard-mounted wheel, with the ability to measure its interface forces and

moments.

Figure 4.2 demonstrates how the wheel is spun. First a dual signal generator and data

Tachometer

Reference r Crown RWA _ ina

Signal + Amplifier --o.Motor
Generator -,Vt 

t)

Low-Pass
Filter

Figure 4.2 Feedback Controller Used to Track the Flywheel's Spin Rate to a Reference Speed.

acquisition unit, called dSpace, is used to produce a reference voltage, Vr(t), correspond-

ing to the desired spin rate. This reference signal is fed into a circuit board controller,

along with the tachometer output voltage, V(t). The tachometer voltage is passed through

a low-pass filter to attenuate high-frequency noise, and then the two signals are compared.

The controller output is then the difference between the reference and tachometer volt-

ages, and this output is fed through a Crown DC-200 Series II amplifier to the RWA

motor. Note that the flywheel could simply be spun without the controller, by passing the

reference voltage, Vr(t), directly through the amplifier to the motor, but this method of rate

feedback proves much better in tracking the wheel's spin rate to the reference voltage.

The wheel is spun in this manner for a set of speeds ranging from zero rotations per

minute (RPM) to 2590 RPM, in increments of -54 RPM.
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4.1.2 Data Collection and Processing

Once the flywheel is rotating at the desired spin rate, the dSpace data acquisition system

(DAQ) is used to record the desired data. Figure 4.3 demonstrates the data collection pro-

cess. The six-axis load transducer unit outputs six channels of data, in the form of voltage

RWxAi v (t), V2(t), ..., Iv6(t) -inl 0) V2(0, -. --, 6(t)dOc
Sixoisd Condtoner dpace

Transducer

Figure 4.3 Hard-Mounted Disturbance Testing Data Collection Process

time histories. These signals are passed through a signal conditioning unit and into the

dSpace data acquisition unit, where they are recorded at a sampling frequency equal to at

least twice the bandwidth of interest in order to avoid aliasing, as described in

Section 2.2.1. For example, to provide reliable data within a 250 Hz bandwidth, a sam-

pling frequency f, = 500 Hz is used.

Once the six-channel time histories are recorded by the dSpace unit, they must be pro-

cessed to obtain useful information in the frequency domain. First, the voltage time histo-

ries for channels one, two, and three are converted to pounds, and those for channels four,

five, and six are converted to inch-pounds using a 6 x 6 calibration matrix, T, provided by

the load transducer manufacturer:
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fx(t) v 1(t)

f,(t) v2(t)

fz(t) vAOt

mn (t) = T ~v(t (4.1)X~ V4 (t)

MY(t) (6 x 6)
m,(t) V5 (t)

m(t)- _ 6 (t)

(6 x 1) (6 x 1)

Note that the calibration matrix, T, is fully populated due to the cross-axis coupling of the

load transducer channels. Hence implementation of Equation 4.1 not only converts the six

output channels to physical units, but it also decouples them from one another.

The six load histories, f/(t), fy(t), fz(t), mx(t), my(t), and mz(t), are then converted from

English to metric units: the three forces to Newtons, [N], and the three moments to New-

ton-meters, [N-m].

Finally, the load histories are processed to yield frequency domain information, as

described in Section 2.2.1, both in the form of Fourier transforms, Fx(o), FY(o), Fz(o),

Mj(o), M,(o), and Mz(o), with units [N] and [N-m], and spectral densities with units

[N2/Hz] and [N2m2/Hz]. Table 4.2 summarizes the forms of time and frequency domain

data obtained from these hard-mounted disturbance tests. As explained in Chapter 3, the

TABLE 4.2 Useful Time and Frequency Domain Forms of RWA Disturbance Data

Data Variables Description Domain

f (t), ... , mz(t) 3 Force and 3 Moment Time
Time Histories

Fx(o), F,(o), ... , Mz(o) 3 Force and 3 Moment Frequency
Fourier Transforms

OFF (o) 6 x 6 Matrix of Force and Frequency
Moment Spectral Densities
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notation, I,, used with the spectral density matrix, OFF , indicates that the distur-

bances were recorded with the wheel hard-mounted and were due only to the wheel's

spinning. This spectral density matrix, OFF I,, collected for each wheel speed, is the final

product of RWA hard-mounted testing that will be used in the disturbance analysis pre-

sented in Chapter 5.

4.2 Reaction Wheel Free-Free Dynamic Mass Tests

The second test performed on the RWA is a "free-free" test, in which the RWA is sus-

pended, free of both geometric (displacement) and natural (force) boundary conditions.

This is a new type of test proposed in Chapter 3 of this thesis to supplement the traditional

hard-mounted tests in order to account for dynamic coupling between the RWA and its

mounting structure.

As described in Section 3.3.1, the goal of this test is to determine the 6 x 6 dynamic mass

transfer function matrix, GD2, relating the three forces and three moments at the RWA

interface to the three linear and three angular accelerations at the interface, with no other

forces applied and the wheel not spinning. Recall from Chapter 3:

F(s) = GD I W(s) + GD2X(s) (3.29)

where W(s) is the disturbance on the wheel due to its spinning motion; F(s) is the vector of

three forces, F, FY, and Fz, and three moments, M., MY, and Mz, at the RWA interface;

and t(s) is the vector of three linear and three angular accelerations at the RWA inter-

face. Since the wheel is not spinning in these free-free tests, GD2 relates F(s) to X(s) with

W(s) = 0. The testing configuration used to determine GD2 will now be presented.

4.2.1 Hardware Description

In order to achieve the best approximation to free-free boundary conditions in a 1-g envi-

ronment, the wheel assembly is suspended, as shown in Figure 4.4, by a soft spring and a

string looped through a hole in the flywheel's axis. The spring is soft enough to ensure
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- Soft Spring

- String

- RWA

- Shaker

Figure 4.4 Dynamic Mass Testing Free-Free Suspension

that the spring-RWA system's axial and torsional vibration modes are below 1 Hz, and

therefore occur at low enough frequency that they will not be detected by the accelerome-

ters used in this experiment. The spring-RWA system's rocking mode is under 3 Hz,

which is fortunately still below our frequency range of interest, as will be demonstrated in

Chapter 5

A Bruel & Kjaer Type 4800 Electromagnetic Vibration Exciter, also called a shaker, is

used to excite the system, and a thin rod, or "stinger," transmits disturbances from the

shaker to the RWA, as shown in Figure 4.5. A white noise signal is fed from a Tektronix

Fourier Analyzer through a Crown DC-200 Series II amplifier to the shaker, which then

disturbs the RWA with an approximately uniform broadband signal.

To measure forces and moments applied at the RWA interface, the same JR3 load trans-

ducer used in the hard-mounted tests is used in this case. It is attached to the RWA in the

same manner as before, and is shown in Figure 4.5.
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Figure 4.5 Dynamic Mass Testing Excitation Configuration

To measure accelerations at the interface, a set of six Kistler 8630B5 Piezobeam acceler-

ometers is configured at various locations around the interface, as shown in Figure 4.6.

In Section 3.3.3, we discussed that six different loading scenarios are necessary to obtain

the desired information from these free-free tests. The six different configurations used in

this study are shown in Figure 4.7.

In configuration (a), the stinger is attached to the small plate directly below the load trans-

ducer and applies a white noise input in the RWA's +x direction. While this load is prima-

rily anfx force, it is not applied perfectly along the x axis, and it is not applied exactly at

the RWA interface, the load transducer's top surface. Therefore it includes elements of

force in three axes and moment in three axes. The load transducer is used to measure the

forces and moments at the RWA interface.

Configuration (b) is essentially the same as (a), except that it is rotated by 90 degrees to

inject disturbance along the RWA's +y axis. Hencefy dominates this loading scenario, but

finite forces and moments in the other five axes are measured by the load transducer at the

RWA interface.
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Figure 4.6 Dynamic Mass Testing Accelerometer Configuration

In configurations (c), (d), and (e), a lever arm is used to inject disturbances largely com-

posed of moments at the RWA interface. This lever arm was carefully designed to be stiff

enough that its first natural frequency would be beyond the bandwidth of interest, and yet

to be light enough that its mass would not significantly alter the dynamic characteristics of

the entire assembly. Essentially, this component would be invisible to the test results.

While the latter goal was achieved, the former was not, but the assembly was still deemed

acceptable. This will be explained further when the results are presented in Section 5.3
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(a) Stinger at Interface: fx

(c) Stinger at Lever Arm Center: f, my

(e) Stinger at Lever Arm Center: fy m

(b) Stinger at Interface:fy

(d) Stinger at Lever Arm End:fx, my, mz

(f) Stinger at Interface:fz

Figure 4.7 Six Loading Configurations Used for Dynamic Mass Testing of RWA
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In configuration (c), a +x force is applied with a moment arm in z, creating a load domi-

nated byfL and my at the interface. In (d), the same force is applied, but with an additional

moment arm along y, creating a load composed primarily off, my, and mz. Configuration

(e) is essentially the same as (c), but rotated by 90 degrees, so that the primary distur-

bances lie infy and m,.

Finally, configuration (f) provides a primary disturbance f4. Hence between the six load-

ing scenarios, all three force and all three moment axes are excited.

4.2.2 Data Collection and Processing

In each of the six loading scenarios shown in Figure 4.7, we are concerned with measuring

the white noise disturbance signal being applied to the RWA, the 6 x 1 vector of linear

and angular interface accelerations, and the 6 x 1 vector of interface forces and moments.

Computing G and GF,, the 6 x l transfer functions from the white noise input to the

interface accelerations and loads, respectively, for each of the six tests (i = 1, 2, ... , 6)

will then allow us to determine the RWA's dynamic mass matrix, GD2, as described in

detail in Section 3.3.3.

A primary difference between these dynamic mass tests and the RWA disturbance tests

described in Section 4.1 is that the dynamic mass tests seek to determine transfer func-

tions, or input-output ratios, of the RWA, while the disturbance tests seek to measure time

histories of the RWA disturbances, which are eventually transformed to spectral density

functions.

In the disturbance tests, the dSpace DAQ is used to record the disturbance time histories,

as described in Section 4.1. However, in these dynamic mass tests, a Tektronix Fourier

Analyzer was chosen as a preferable data acquisition system because of its ability to com-

pute transfer functions in real-time. Rather than recording long time histories of the white

noise disturbance and the resulting interface accelerations and loads in each test, storing

these time histories in large data files, and then calculating the desired transfer functions
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from the time histories, we can instead use the Tektronix DAQ to compute several aver-

ages of the desired transfer functions in real-time, ensuring high-quality data that can be

stored in much smaller data files.

Hence in each of the six tests, the Tektronix DAQ records the white noise signal used to

excite the RWA, the six accelerometer voltage outputs, and the six load transducer voltage

outputs. It then computes the 6 x 1 transfer functions G , and GF, which are scaled,

"state-transformed" precursors to the desired transfer functions, G and GF,, for each

test.

Recall from the hard-mounted disturbance tests that the six load transducer channels are

passed through a signal conditioning unit before being recorded by the data acquisition

system; then a 6 x 6 calibration matrix, T, is used to decouple the signals from one

another and to convert from voltages to English units, yielding the three forces and three

moments at the RWA interface. Finally, the interface loads are converted to metric units.

The same operations must occur in this case to convert GF,, the transfer function com-

puted by the Tektronix analyzer that relates the disturbance voltage to the six conditioned,

coupled load transducer voltages, to GF,, the transfer function relating the disturbance

voltage to the actual six-axis interface loads. From Equation 4.1, it can be easily shown

that:

GF TGE (4.2)

where GF is then scaled to metric units, [N/V] and [N-m/V].

Similarly, G.. is only a precursor to the desired transfer function, GI, because the six

signals output by the accelerometers are simply six voltages, corresponding to the linear

accelerations of the six accelerometers. The six voltages are passed through a Kistler

Piezotron Coupler 5128A signal conditioning unit before being recorded by the data

acquisition system. The Tektronix analyzer then computes Gk, the transfer function

relating the disturbance voltage to the six accelerometer voltages. G is then converted
Xi

73



74 EXPERIMENTAL SETUP

from units [V/V] to physical units [g/V] using an average accelerometer calibration of

0.984 g/V, specific to the Kistler 8630B5 Piezobeam accelerometers used in this experi-

ment, and is finally converted to metric units, [(m/s 2)/V], for consistency with the load

transducer data.

The resulting transfer function, which we call G , relates the disturbance voltage to the

six linear accelerations in metric units. G must then undergo a state transformation to

yield Gk, which relates the disturbance voltage to the desired six-axis set of linear and

angular accelerations at the RWA interface.

From Figure 4.6, one can see that the linear accelerations, x, y, and z, at the interface are

determined from:

x = (a,+ a2) (4.3)
2

y = a6  (4.4)

z - -(a 3 +a 4 + a5) (4.5)

and the angular accelerations, 6x, O, and 5z, are determined from:

Ox = d-(a3 - a4) (4.6)
34

6 = (a5 - a3) (4.7)
53

Oz = d-(a2 -a 1 ) (4.8)
21

where d1 is the distance between accelerometers i andj:

d34 = 6.5 cm, d5 3 = 6.5 cm, d21 = 4.0 cm
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This coordinate transformation can be written in a matrix form similar to Equation 4.1:

x(t)

y(t)

z(t)

9x(t)

O,(t)

(6 x

[Ta]

(6 x 6)

ai(t)

a2(t)

a3(t)

a4(t)

a5 (t)

a6(t)

(4.9)

(6 x 1)1)

where:

1
2

1
2

0 0 0 0

0 0 0 0 0 1

o 1
0 0 -

0 0
d 34

0 0 d 1
53

1 1 0
d21 d21

1
3

d34

1
3

0

0 d1
53

0

0

0

0 0 0

From Equation 4.9, it is easy to see that G.. can be obtained by a similar state transforma-
Xi

tion of G :

G, = Ta G X (4.11)

yielding the desired transfer function from the disturbance voltage to the six-axis set of

linear and angular accelerations at the RWA interface.

[Ti (4.10)
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Once GF, and G have been determined for each of the six test configurations

(i = 1, 2, ..., 6), GD2 is calculated as shown in Section 3.3.3. These results will be pre-

sented in Chapter 5.

4.3 Structure-Reaction Wheel Coupled Tests

In order to validate the decoupled and coupled disturbance analysis methods, it is neces-

sary to physically couple the RWA with a flexible test structure and determine the coupled

performance.

4.3.1 Hardware Description

The structure used in this study, shown in Figure 4.8, is a three-longeron, six-bay cantile-

ver-like truss structure originally designed and built for disturbance and sensitivity analy-

sis studies. It is composed primarily of truss members connected at the nodes by balls

RWA Interface
Location

Flexible Appendage

Node

Figure 4.8 Flexible Truss Test Structure used for Validation of Coupled Disturbance Analysis.

with threaded holes, and it is fixed to a rigid optical bench by four nodes at the root. At its

tip, supported by a stiff spring, lies an aluminum plate and a flexible appendage. A

___ - - "I - . - _ =ft:Xe_ -IqeL - - Q%. - A-ML44 - . - . I
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detailed description of this test bed, including photographs and a list of parts, can be found

in [Gutierrez, 1999].

A few modifications were made to the structure, including the addition of the RWA and its

support plate on the third bay from the tip, as shown in Figure 4.9. A finite element model

Figure 4.9 RWA in Coupled Configuration with Test Structure.

of the structure was inherited from the previous configuration and was updated to account

for these changes. In the model, the RWA was modeled as a lumped mass, with mass esti-

mated from a weight measurement and rotary inertia properties estimated from geometry

measurements. The RWA support plate had been modeled in a previous configuration as

attached at a different bay location, so this plate was simply shifted in the model to its new

location.

Finite Element Model and System Identification

In order to validate the updated finite element model, a system identification laboratory

experiment was performed on the structure in its new configuration. The input is a distur-

bance force in z, applied by a Bruel & Kjaer Type 4810 Mini Shaker at the node shown in

Figure 4.8, and the performance metrics are displacements in three locations: one in z at

the appendage tip and two at the spring node, in z and y, respectively. (Note that the per-
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formances are actually measured by accelerometers in each location, but Equation 3.36

allows us to move between acceleration and displacement transfer functions.)

Figure 4.10 shows the three disturbance-to-performance transfer functions, both as pre-

dicted by the updated finite element model and as measured in the system identification

test, and Table 4.3 lists the four dominant resonant frequencies, as predicted and mea-

sured. From Table 4.3, we see that the model captures the first two resonances quite well,

with only a ~0.6 % error, but that it strays from the measured data at higher frequencies.

Much insight can be gained by studying the cumulative RMS values of the transfer func-

tions, plotted above their respective transfer functions in Figure 4.10. (See Section 2.3 for

a definition of the cumulative RMS function.) Notice that the cumulative RMS functions

gain most of their magnitude from the first two modes, and are hardly effected by the

higher modes. This suggests that the accuracy of the first two modes is the primary con-

cern in validating this finite element model, and that the discrepancy in the higher modes

is acceptable.

Also note that the test structure's two most influential modes lie at 21.7 Hz and 28.4 Hz,

and since the representative RWA used in this study can be spun up to 2590 RPM, or 43

Hz, we will be able to excite these structural modes by spinning the wheel at certain

speeds. Also, since the wheel itself is flexible, it will in turn be excited by the resonances

of the structure. Hence this structure is quite suitable for a coupled study, since it will

encounter dynamic coupling with the RWA.

Coupled Validation Test

In the coupled validation test, the wheel, mounted as shown in Figure 4.9, is spun in order

to disturb the structure, and three accelerometers are used to measure the same perfor-

mance metrics as in the system identification test. These are the "truly" coupled perfor-

mance metrics which will be used to validate both the decoupled and coupled disturbance

analysis methods presented in Chapter 5.
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TABLE 4.3 Test Structure Resonant Frequencies

Frequency Model Prediction Measured Data Model Error
Number (Hz) (Hz) (%)

1 21.6 21.7 -0.6

2 28.3 28.4 -0.5

3 68.9 63.8 +8.0

4 87.1 88.6 -1.7

The wheel is spun just as in the hard-mounted disturbance tests, as diagrammed in

Figure 4.2, with the only exception being the change in boundary conditions. It is spun at

each of the speeds used in the hard-mounted tests, and at each speed, three of the same

Kistler 8630B5 Piezobeam accelerometers used in the free-free dynamic mass tests are

used to measure the structure's performance metrics.

4.3.2 Data Collection and Processing

Since the only data recorded in these coupled tests are three accelerometer outputs for

each wheel speed, the data collection and processing proves to be fairly simple. The

accelerometer signals are passed through the same signal conditioning unit used in the

dynamic mass tests and are recorded by the dSpace DAQ as voltage time histories. The

same conversion factors used in the dynamic mass tests are then used to convert the accel-

erations from volts to metric units, [m/s2]. Finally, the time histories are processed to

yield power spectral densities of the accelerations, which are then converted to power

spectral densities of displacements using Equation 3.43.

4.4 Summary

In this chapter, three different types of laboratory experiments have been described:

1. the RWA hard-mounted tests, which yield a 6 x 6 spectral density matrix,
OFF I , for each wheel speed.

2. the RWA free-free dynamic mass tests, which yield the 6 x 6 coupling cor-
rection matrix, GD2, and
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3. the coupled validation tests, which yield three performance metrics for each
wheel speed.

In Chapter 5, the experimental results will be presented. Test 1 results will be applied to

the structural finite element model to predict its performance, as done in a traditional

decoupled disturbance analysis. Test 2 results will then be appended to those of test 1 and

will be reapplied to the model in order to perform a coupled disturbance analysis. Finally,

test 3 results will be presented and compared to the decoupled and coupled disturbance

analyses in order to determine which better predicts the true coupled performance.
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Chapter 5

EXPERIMENTAL RESULTS

In Chapter 3, the theory for a new method of disturbance analysis that accounts for the

structural dynamic coupling of a flexible structure and a disturbance-inducing reaction

wheel assembly (RWA) was presented. This method utilizes free-free dynamic mass tests

of the RWA to supplement the hard-mounted disturbance test data typically applied to a

structural model in order to predict the coupled system's behavior. The proposed experi-

ments were performed using a representative RWA and a flexible test structure in the

Space Systems Laboratory at the Massachusetts Institute of Technology, as described in

detail in Chapter 4.

This chapter presents the RWA hard-mounted and free-free test data and combines these

results with outputs from the test structure finite element model (FEM) in order to perform

two analyses: a traditional decoupled disturbance analysis and the proposed coupled anal-

ysis. The coupled experimental results are also presented for validation of the two analy-

sis methods.

5.1 Reaction Wheel Disturbance Test Results

Hard-mounted tests of the reaction wheel, described in Section 4.1, were performed for a

set of discrete wheel speeds ranging from zero revolutions per minute (RPM) to 2590

RPM, in increments of ~54 RPM, resulting in a spectral density matrix, QDFFj W , for each

wheel speed. In addition, coupled disturbance tests with the wheel mounted to the test
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structure described in Section 4.3.1 were performed to investigate the difference in mea-

sured interface forces and moments between the hard-mounted and coupled configura-

tions. The results of both tests are presented here.

5.1.1 Hard-Mounted Disturbance Spectra

These hard-mounted RWA disturbance tests were described in great detail in Section 4.1.

The results are presented in Figure 5.1, where the disturbance spectra collected for all the

wheel speeds are combined into six three-dimensional plots, one for each axis of distur-

bance. Plots (a) - (f), respectively, represent the disturbance power spectral densities

(PSDs) #F,' F,' M' M,' F,, and 4 M, which are the diagonal components of the

spectral density matrix (FF W, plotted against frequency (x-axis) for each wheel speed (y-

axis). These plots are known as "waterfall plots," since for each discrete wheel speed at

which disturbances are measured, the frequency information seems to "flow" continu-

ously in a spectrum parallel to the x-axis.

Notice that the Fx and FY spectra are very similar in magnitude and frequency, due to the

near axial symmetry of the RWA. The same is true for the Mx and My spectra. Note also

that the Fz spectrum has much larger primary-harmonic and peak magnitudes than the Fx

and Fy spectra, indicating that axial disturbance forces caused by the spinning RWA are

significant compared to radial disturbance forces, and therefore should never be neglected

when performing a disturbance analysis on the mounting structure.

Figure 5.1 also demonstrates that 4 M is generally over two orders of magnitude smaller

than *M or #g,. This is due to the fact that the flywheel is free to rotate about its z-axis

and thus causes very little disturbance moment about z. For this reason, Mz spectra are

often neglected in disturbance analyses.

In all of the plots shown in Figure 5.1, the primary harmonic is clearly present. (A discus-

sion of primary and higher harmonics was presented in Section 2.1.) At the fastest spin

rate, 2590 RPM, the primary harmonic occurs at an equivalent 43 Hz, as seen in each of
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the plots. Perhaps the most interesting feature of these hard-mounted spectra, however, is

the fact that the peak disturbance magnitudes are not due to the primary harmonic, but

rather to amplifications within the higher harmonics. The magnitudes of the higher har-

monics are generally smaller than that of the primary, but when a harmonic "crosses" a

structural resonance of the RWA, amplifications or "spikes" of this type occur. Clearly

the peak magnitudes are caused by the interaction of the wheel flexibility with the higher

harmonics of disturbance. In the next section, we will find this is not the case when the

wheel is mounted to the structure, and we will discuss the implications of this.

5.1.2 Coupled Disturbance Spectra

While only hard-mounted RWA disturbance tests are necessary to perform either a tradi-

tional decoupled disturbance analysis or the proposed coupled analysis, disturbance tests

were also performed with the RWA mounted to the test structure described in Section 4.3.

The sole purpose of these coupled disturbance tests is to compare the hard-mounted spec-

tra with the actual disturbances induced when the wheel is mounted on the structure.

Finding that the hard-mounted and coupled spectra are, in fact, different will further moti-

vate the development of a coupled disturbance analysis approach.

The coupled disturbance spectra are shown in Figure 5.2. Unlike the hard-mounted spec-

tra in Figure 5.1, the peak disturbance magnitudes of the coupled spectra are not domi-

nated by amplifications of the higher harmonics, but rather by the primary harmonic and

its interaction with structural resonances of the wheel and test structure. Also notice that

the F, and FY spectra in Figures 5.2 (a) and (b), respectively, are no longer similar due to

the asymmetry of the test structure; the same holds true for the M, and My spectra in Fig-

ures 5.2 (c) and (d), respectively.

Perhaps better insight into the differences between the hard-mounted and coupled spectra

can be gained by viewing surface plots of the spectra from a -z perspective, looking down

upon the data "surfaces." Figure 5.3 shows the six hard-mounted and six coupled spectra

from this perspective, where the lighter areas indicate larger disturbance magnitudes.
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From this perspective, the primary and several higher harmonics are visible as lines ema-

nating from the origin, and the structural resonances of both the wheel and the test struc-

ture can be seen as lines of constant frequency or wheel speed. These plots offer the

additional benefit that they allow easy detection of the frequencies and wheel speeds at

which structural resonances cross the wheel harmonics.

In Section 4.3.1, we found that the test structure has resonances at 21.7, 28.4, 63.8, and

88.6 Hz, with the 21.7 Hz mode being dominant. These test structure modes are clearly

visible as both vertical and horizontal lines at the corresponding frequencies in the cou-

pled test spectra displayed in Figure 5.3. As expected, they do not appear in the hard-

mounted spectra.

Conversely, the hard-mounted spectra contain lines that appear only faintly, if at all, in the

coupled disturbance spectra. These lines correspond to RWA structural resonances. (The

three dominant vibrational modes of a reaction wheel were introduced in Section 2.1.) For

example, the line emanating from ~75 Hz, almost constantly for all wheel speeds, has

been identified as the axial translation mode of this wheel. Also, the V-shaped pair of

lines emanating from -120 Hz represent the positive and negative whirl components of

the rocking mode. (The rocking mode splits into these two distinct natural frequencies at

finite wheel speeds due to gyroscopic effects. The negative whirl opposes the rotation,

while the positive whirl agrees with it.) There is an additional mode, also emanating from

-75 Hz but decreasing in frequency with increased wheel speed, that has not been posi-

tively identified.

Clearly the hard-mounted disturbance spectra that are typically measured in isolation and

applied to spacecraft models are different from the actual disturbances induced in the cou-

pled system. A closer look at Figures 5.1, 5.2, and 5.3 demonstrates that the hard-

mounted spectra have enormous amplifications where the harmonics cross the wheel

modes, whereas the coupled spectra have enormous amplifications where the harmonics

cross the mounting structure's modes.
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Further, the hard-mounted spectra appear to have a higher frequency content, or a stronger

representation of the higher harmonics, than the coupled spectra. And aside from the res-

onant amplifications, the hard-mounted harmonic amplitudes are generally larger. This

trend of higher harmonic frequencies and larger harmonic amplitudes is due to the infinite

mechanical impedance of the hard-mounted test interface, which is fixed to have zero

motion. For this reason, hard-mounted vibration testing is often referred to as an "overt-

est" condition [Scharton, 1995].

5.2 Reaction Wheel Free-Free Dynamic Mass Test Results

Free-free dynamic mass tests of the reaction wheel, described in detail in Section 4.2,

were performed with the wheel suspended and not spinning, resulting in a dynamic mass

matrix, GD 2 (o), for the RWA. As described in Section 3.3, this 6 x 6 frequency-depen-

dent matrix relates the six interface loads, Fx, FY, Fz, M,, MY, and Mz, to the six interface

accelerations, X, Y Z, OZ , b,, and OZ, of the RWA.

Select components of the dynamic mass matrix, GD2, are plotted in Figure 5.4. The small

resonance appearing at ~53 Hz in each component is due to the lever arm that was

appended to the RWA for testing purposes. The arm was designed to be low in mass and

high in fundamental frequency so it would not affect the test data. However, as mentioned

in Section 4.2.1, the fundamental frequency was not high enough to be outside the band-

width of these tests.

In order to determine the effect of this mode on the data, the cumulative RMS functions of

the components of GD2 were computed, and a select few are plotted above the correspond-

ing magnitudes in Figure 5.4. (See Section 2.3 for a definition of the cumulative RMS

function.) From the cumulative RMS plots, we see that the lever arm mode does not visi-

bly contribute to the total RMS; hence we do not expect this mode to corrupt the final

results of the coupled analysis.
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The dynamic mass matrix, GD2, will be incorporated into a coupled disturbance analysis

in the following section.

5.3 Coupled Analysis Results

As derived in Chapter 3, a coupled analysis of a flexible structure and disturbance-induc-

ing RWA spinning at a discrete speed yields the system performance in spectral density

form as:

(3.48)(D Z 
~F H

Czz =-" Gr*FF Gr
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where <DFF I is the matrix of hard-mounted disturbance spectra measured at a discrete

wheel speed, and:

G7 Gpl[I- GD2 GP2  (3.49)

is the coupled or "total" transfer function relating hard-mounted disturbance spectra to

coupled system performance spectra. Recall that Gp1 is the transfer function relating the

test structure's interface forces to its performance metrics, and GP2 relates its interface

forces to its interface accelerations. Hence GP2 is the dynamic mass matrix of the test

structure, with all inputs and outputs defined at the structure-RWA interface location.

Finally, GD2 is the dynamic mass matrix of the RWA, measured in free-free laboratory

tests described in Section 4.2.

In comparison, a traditional decoupled analysis is performed by using only the plant trans-

fer function, Gp1 , in place of the coupled transfer function, GT, in Equation 3.48, and thus

neglecting the remaining "coupling-correction" terms in 3.49: the plant dynamic mass

matrix, GP 2, and the RWA dynamic mass matrix, GD2-

In Section 4.3.1, we defined three performance metrics of the structure to be the append-

age +z tip displacement and the spring node +z and -y displacements. These performance

metrics, obtained by the traditional decoupled analysis method in Equation 2.27, the cou-

pled analysis method in Equation 3.48, and the coupled validation experiment described in

Section 4.3, are all plotted for the maximum wheel speed, 2590 RPM, in Figure 5.5. In

Figure 5.5(a), the power spectral density and corresponding cumulative RMS of the first

performance metric are plotted. (See Section 2.3 for a definition of the cumulative RMS

function.) Both the decoupled and coupled analysis methods are overlaid with the experi-

mental data for comparison. Similar plots are presented in Figure 5.5(b) for the second

performance metric, and in Figure 5.5(c) for the third performance metric. Since the plots

in Figure 5.5 correspond only to the maximum wheel speed, similar results are presented

for three other wheel speeds: 2536 RPM in Figure 5.6; 1401 RPM, which would tend to
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excite the -22 Hz mode of the test structure, in Figure 5.7; and 1022 RPM, one of the low-

est practical spin rates of interest, in Figure 5.8.

Based on the coupled analysis theory presented in Chapter 3, we expect the coupled

method to generally match the cumulative RMS of the measured performance metrics

more closely than the traditional analysis method. Unfortunately, this trend does not

appear in the performance data presented here.

Looking more carefully at the cumulative RMS plots in Figures 5.5, 5.6, 5.7, and 5.8, it is

difficult to draw any conclusions when comparing the accuracy of the coupled and decou-

pled analysis methods. At some wheel speeds, both methods underpredict the measured

RMS, and at other speeds they both overpredict. At some wheel speeds, the coupled anal-

ysis gives a closer prediction, and at other speeds, the decoupled analysis does. It is diffi-

cult to find any general trend when comparing the two methods' abilities to accurately

predict the system's performance.
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Since we have faith in the derivation of the coupled disturbance analysis method presented

in Chapter 3, and in its potential improvement over the traditional disturbance analysis

methodology discussed in Chapter 2, we must explain the discrepancies in the results pre-

sented here. Errors have been largely attributed to three main sources:

a prohibitively coarse frequency resolution.

accelerometers with an inadequate signal-to-noise ratio (SNR).

the conversion process for measured performance metricsfrom acceleration
PSDs to displacement PSDs using Equation 3.43.

First consider thefrequency resolution issue. In Figures 5.5, 5.6, 5.7, and 5.8, we see from

the cumulative RMS functions that the total RMS in each case is due almost entirely to a

single mode that consistently lies below 50 Hz. (This mode is due to the wheel's primary

harmonic disturbance and changes linearly as a function of wheel speed, occurring at a

maximum frequency of -44 Hz, corresponding to the maximum spin rate of 2590 RPM.)

Occasionally a secondary mode at -130 Hz also contributes significantly to the RMS.
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Figure 5.7 Predicted vs. Measured Performances: 1401 RPM Wheel Speed

Clearly the frequency resolution at these two resonances has a large impact on the quality

of the cumulative RMS that is computed by integrating the performance PSD curve, since

the resonances essentially define the "step sizes" in the cumulative RMS. However, upon

"zooming into" any of the performance PSD plots shown here, one can see that the fre-

quency resolution is quite poor, with resonant peaks that appear digitized and unsmooth

and likely do not capture the true resonant maxima. A close-up view of the first perfor-

mance metric at 2590 RPM, magnified at the ~44 Hz resonance as shown in Figure 5.9,

demonstrates that the frequency resolution used here may indeed be too coarse to accu-

rately integrate the performance PSD, yielding an unreliable RMS value.

All of the transfer functions used in the coupled disturbance analysis equations, 3.48 and

3.49, were measured (for the RWA) or produced from a finite element model (for the test

structure) with a 250 Hz bandwidth and a -0. 12 Hz frequency resolution. Hence the per-

formances computed using Equation 3.48 have the same frequency resolution, which
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proves too coarse for our purposes. Now knowing that the frequency range of interest is

much smaller than 250 Hz (with the highest influential resonance occurring at ~130 Hz),

we could reperform all of these tests at a lower sampling frequency, concentrating the

excitation energy to a smaller bandwidth, and thus refining the frequency resolution, giv-

ing us more confidence in the quality of the resonant peaks and the computed RMS values.

Next consider the accelerometer SNR issue. In Figure 5.10, the PSD of the third perfor-

mance metric with the wheel spinning at 1401 RPM is overlaid with the same metric at

zero RPM; in other words, it is overlaid with the metric resulting from an accelerometer

measuring only noise. We see that the accelerometer noise floor lies significantly (-1-2

orders of magnitude!) above the "backbone" of the performances predicted by the decou-

pled and coupled methods. Further, the integrated accelerometer noise is significant

enough to cause a non-zero cumulative RMS. Figure 5.10 demonstrates for the third per-

formance metric that the RMS error due to noise integration can be over 25% of the total
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RMS value at 1401 RPM. With this poor SNR, we cannot have great confidence in our

accelerometer measurements and must be weary of measuring and integrating (via the

cumulative RMS) accelerometer noise. Hence the results may be improved by exchang-

ing the current accelerometers for sensors with a lower noise floor relative to the signal of

interest.

Also notice that some of the cumulative RMS plots of the measured performances display

gradual gains with increasing frequency, rather than the distinct "steps" at resonant fre-

quencies that usually indicate the contribution of distinct vibrational modes to the RMS.

This is further evidence of the integration of noise due to the low SNR of the accelerome-

ter data, resulting from the use of accelerometers that are not sensitive enough to capture

the small-magnitude structural vibrations induced here.

The RMS error demonstrated in Figure 5.10 can also be attributed to the third error source,

the acceleration-to-displacement PSD conversion. The difficulty in this conversion lies in

the division by frequency of acceleration PSDs to yield displacement PSDs. We see from

Equation 3.43 that for very low frequencies, the displacement PSDs become infinite!

Although the accelerometers used in these experiments do not measure DC, they are accu-

rate to as low as -1 Hz. Theoretically this implies that the displacement PSDs obtained

from Equation 3.43 should be accurate to as low as ~1 Hz. However, conversion of the

acceleration PSDs obtained in these experiments leads to unusually large displacement

PSDs at frequencies above 1 Hz, even as high as ~10 Hz. This introduces the dilemma of

choosing a lower frequency limit for the integration of the displacement PSD to obtain its

cumulative RMS using Equation 2.25. It is a subjective trade between, on one hand,

beginning the integration at a sufficiently low frequency to capture all the dynamics of

interest, but accumulating the "conversion noise" at low frequencies, thus causing the

cumulative RMS to be erroneously large, and, on the other hand, beginning the integration

at a higher frequency in order to eliminate integrating the "conversion noise," but possibly

failing to capture some of the lower frequency dynamics. Because of the subjectivity of
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choosing an appropriate lower integration limit, one cannot have firm confidence in an

RMS value obtained by integrating a displacement PSD derived from an acceleration PSD

via Equation 3.43, unless the dynamics of interest are well beyond the low-frequency

range of the "conversion noise." This integration error and the uncertainty that arises from

the acceleration-to-displacement PSD conversion can be avoided in the future by using

displacement sensors to measure performance, rather than accelerometers.

In each of the performance plots presented in Figures 5.5, 5.6, 5.7, and 5.8, the decoupled

and coupled analytical performance predictions are shown in their original form, as dis-

placement PSDs, but the measured performance PSDs are obtained by converting acceler-

ation PSDs to displacement PSDs using Equation 3.43. For this reason, each measured

PSD is truncated at a lower limit immediately below its first major contributing mode, in

order to minimize conversion error while still capturing the influential dynamics. In most

cases, this lower limit was found to be between 15 and 20 Hz. Attempts to decrease this

lower limit confirmed an increase in noise accumulated by the cumulative RMS when

integrating over low-frequency values of the displacement PSDs.

5.4 Summary

In this chapter, experimental results were presented for hard-mounted and coupled RWA

disturbance tests, free-free RWA dynamic mass tests, and coupled structure-RWA tests.

Test results and FEM-based transfer functions were then combined to predict the system

performance from decoupled and coupled analyses, using the coupled experimental results

for comparison.

In Section 5.1, disturbance spectra from a representative reaction wheel, both in hard-

mounted and structurally-coupled configurations, were presented. These spectra prove to

be significantly different from one another, since the hard-mounted spectra display severe

amplifications where the disturbance harmonics interfere with flexible wheel modes, and

the coupled spectra display similar amplifications where the harmonics interfere with the

test structure's flexible modes. Further, the hard-mounted spectra generally contain
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higher frequency content and higher non-amplified harmonic magnitudes, as a result of

the "overtest" condition that occurs in the hard-mounted configuration. Finally, the sym-

metry that generally occurs in hard-mounted radial force and torque spectra was lost in the

coupled spectra, due to the asymmetry of the mounting structure.

In Section 5.2, some dynamic mass data obtained from the free-free tests on the RWA

were presented. The fundamental frequency of the lever arm that was appended to the

RWA in these tests was found to be -53 Hz, and it was determined that this mode does not

corrupt the data.

Finally, in Section 5.3, the results of the decoupled disturbance analysis, the coupled dis-

turbance analysis, and the coupled laboratory experiment were all presented. The power

spectral densities of the three performance metrics obtained from the two analyses and the

experiment, along with their cumulative RMS functions, were plotted for a selection of

wheel speeds.

While the performance plots did not confirm the benefits of the proposed coupled method

over the traditional decoupled disturbance analysis method, errors have been attributed to

three main sources:

" a prohibitively coarse frequency resolution.

e accelerometers with an inadequate signal-to-noise ratio (SNR).

- the conversion process for measured performance metrics from acceleration
PSDs to displacement PSDs using Equation 3.43.

Recommendations for more accurate results in the future include:

- use of a lower excitation bandwidth, resulting in a refined frequency resolu-
tion and higher-fidelity cumulative RMS calculations.

" use of sensors with an improved SNR, or conversely, a system with larger
magnitude excitations so that performances can be accurately measured
using the given sensors.

- use of displacement sensors, rather than accelerometers. If only acceleration
sensors are available, one must ensure that the dynamics of interest occur
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above the low-frequency range of acceleration-to-displacement PSD conver-
sion noise.
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Chapter 6

CONCLUSIONS

6.1 Summary

The future of space telescopes lies with large, lightweight, flexible structures whose

dynamic characteristics are a great factor in the telescopes' abilities to achieve scientific

goals. The primary vibrational disturbance source aboard most space telescopes is the

reaction wheel assembly (RWA) used for attitude control.

This thesis reviews the most commonly used method of frequency-domain disturbance

analysis of flexible structures with disturbance-inducing RWAs, investigates the simplify-

ing assumptions made in this type of analysis and the potential errors they may induce,

and proposes a new coupled disturbance analysis method for application to flexible space-

craft-RWA systems.

In Chapter 2, the nature of RWA disturbances and the typical hard-mounted testing

method of RWAs is introduced. RWA disturbances are composed of a primary harmonic

and sub- and superharmonics of the wheel's spin rate. The dominant flexible modes of a

reaction wheel are the axial translation, radial translation, and radial rocking modes. The

disturbances are usually measured in six-axes, as three forces and three moments, in a

hard-mounted configuration.
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Useful techniques in data processing in the time and frequency domains are then pre-

sented, including the Finite Fourier Transform, the Power Spectral Density, and the

Cumulative RMS. Most importantly, the process of converting hard-mounted RWA dis-

turbance data to a 6 x 6 spectral density matrix, JFF(o), is explained. A popular

method of spacecraft-RWA frequency domain disturbance analysis, which combines the

disturbance matrix 'DFF(o) with a structural transfer function, GZF(o), obtained from a

finite element model of the structure to predict the resulting performance metrics, is then

reviewed, along with a discussion on the limitations of this method.

An amended disturbance analysis method, which accounts for the structural dynamic cou-

pling between a spacecraft and its RWA, is presented in Chapter 3. First a sample prob-

lem is used to motivate the coupled disturbance analysis method for flexible spacecraft-

RWA systems. This spring-mass problem demonstrates that the traditional decoupled dis-

turbance analysis method, when applied to a two-DOF coupled system, is only an approx-

imation of a coupled disturbance analysis, but that this approximation may be accurate if

the spacecraft mass is significantly larger than the RWA mass. The limitation is that the

study is performed on a simple, two-DOF system, and the results can not necessarily be

extended to complex, multi-DOF systems.

The theory for a coupled disturbance analysis technique is then presented. The suggested

method requires both an RWA for experimental testing and a finite element model of the

spacecraft, as in the traditional method; however, it improves upon the traditional method

by including the RWA's dynamic mass, GD2, as a coupling correction term in the analysis.

In summary, a coupled disturbance analysis involves the following steps:

- Determine the spacecraft transfer functions Gpy and GP2 from the spacecraft
finite element model (Section 3.3.3).

- Determine the RWA dynamic mass transfer function, GD2, from free-free
testing of the RWA and Equations 3.56, 3.58, and 3.60.

. Determine the RWA disturbance spectra 'tFFj W from hard-mounted testing
of the RWA (Section 2.2.1).
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- Calculate the coupled spacecraft-RWA performance Dzz by substituting
GPI, GP2, GD2, and OFF W into Equations 3.48 and 3.49.

Chapter 4 describes three different types of laboratory experiments performed to validate

this coupled disturbance analysis method in the MIT Space Systems Laboratory:

1. RWA hard-mounted tests, which yield a 6 x 6 spectral density matrix,
OFF I, for each wheel speed.

2. RWA free-free dynamic mass tests, which yield a 6 x 6 coupling correction
matrix, GD2, and

3. coupled validation tests, which yield the three performance metrics of a rep-
resentative test structure for each wheel speed.

In Chapter 5, experimental results are presented for hard-mounted and coupled RWA dis-

turbance tests (test 1), free-free RWA dynamic mass tests (test 2), and coupled structure-

RWA tests (test 3).

First in Section 5.1, the disturbance spectra from a representative reaction wheel, both in

hard-mounted and structurally-coupled configurations, are presented. While test 1

requires only hard-mounted RWA disturbance tests, coupled disturbance tests with the

RWA mounted to a test structure are also performed, and the results prove quite different.

The hard-mounted spectra display severe amplifications where the disturbance harmonics

interfere with flexible wheel modes, and the coupled spectra display similar amplifications

where the harmonics interfere with the test structure's flexible modes. Further, the hard-

mounted spectra generally contain higher frequency content and higher non-amplified har-

monic magnitudes, as a result of the "overtest" condition that occurs in the hard-mounted

configuration. Finally, the symmetry that generally occurs in hard-mounted radial force

and torque spectra was lost in the coupled spectra, due to the asymmetry of the mounting

structure.

In Section 5.2, the dynamic mass data obtained from test 2, the free-free RWA test, are

presented.
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In Section 5.3, the results of the decoupled disturbance analysis, the coupled disturbance

analysis, and the coupled laboratory experiment are all presented. The traditional decou-

pled disturbance analysis applies test 1 results to the structural finite element model to pre-

dict its performance. The proposed coupled disturbance analysis appends the test 2 results

to those of test 1 in order to predict the structure's performance. Finally, the measured

results from test 3 are presented and compared to the decoupled and coupled disturbance

analyses in order to assess which better predicts the true coupled performance. The ana-

lytical and measured performances are plotted in spectral density and cumulative RMS

form for a variety of wheel speeds.

While the performance plots do not confirm the expected benefits of the proposed coupled

method over the traditional decoupled disturbance analysis method, errors are attributed to

three main sources:

" a prohibitively coarse frequency resolution.

* accelerometers with an inadequate signal-to-noise ratio (SNR).

- the conversion process for measured performance metrics from acceleration
PSDs to displacement PSDs.

6.2 Recommendations for Future Work

The theory for a coupled disturbance analysis method was presented in this thesis, but the

laboratory experiments performed to validate this method did not successfully demon-

strate the benefits of the coupled analysis method over the traditional, decoupled method.

In order to successfully validate the proposed method, one should reperform the experi-

ments and analysis attempted in this thesis, while eliminating the sources of error outlined

above. Recommendations for obtaining more accurate results include:

- use of a lower excitation bandwidth, yielding a refined frequency resolution
and higher-fidelity cumulative RMS calculations.

- use of sensors with an improved SNR, or conversely, a system with larger
magnitude excitations so that performances can be accurately measured
using the given sensors.
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- use of displacement sensors, rather than accelerometers. If only acceleration
sensors are available, one must ensure that the dynamics of interest occur
above the low-frequency range of acceleration-to-displacement PSD conver-
sion noise.

Once the coupled analysis method has been successfully validated, the work may be

extended to a variable-mass system. Recall the conclusion drawn from the two-DOF sam-

ple problem presented in Section 3.1: the traditional decoupled disturbance analysis

method, when applied to a two-DOF coupled system, may be an accurate approximation

of the coupled system if the spacecraft mass is significantly larger than the RWA mass.

We noted that this conclusion is valid for our simple, two-DOF system, but that the results

can not necessarily be extended to complex, multi-DOF systems. Hence the next logical

step after validating the coupled disturbance analysis method would be to investigate its

dependence on the mass ratio of the spacecraft and RWA.

If we rotate the two-DOF system on its side, as shown in Figure 6.1(a), it suggests a new

multi-DOF test structure that could be used to investigate this problem. Figure 6.1(b)

shows a new test structure designed and built in the Space Systems Laboratory at MIT for

the purposes of these proposed structure-RWA coupled tests, as well as for a separate

"isoperformance" study, which attempts to trade parameters of the disturbance and plant

in search of equal performances. The structure has two primary stages: an upper stage,

which provides a mounting location for the RWA, and a lower stage, which resembles a

plant with a variable mass. The weight bed on the bottom stage is capable of carrying

weights ranging from zero lb. to 200 lb. Since the RWA weighs ~19 lb., this results in a

structure-to-RWA mass ratio variable between roughly one and ten.

The following steps are recommended to perform a mass-dependent investigation of the

coupled disturbance analysis method:

- Select a set of desired performance metrics for this structure.

" Create a finite element model (FEM) of the structure.
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Figure 6.1 (a) Rotated Two-DOF Sample System (b) New Mass-Variable Test Struc-

ture for Structure-RWA Coupled Disturbance Analyses

e Validate the FEM by performing system identification tests, comparing the
measured and FEM-predicted performance metrics, and updating the model
to reflect the data.

- Obtain the plant transfer functions Gp1 and GP2 from the FEM, as was done
for the test structure used in this thesis.

- Perform both decoupled and coupled disturbance analyses, and obtain mea-
sured performances of the coupled system for various wheel speeds, as was
done for the test structure used in this thesis.

- Reperform both analyses and the experimental measurements for a variety of
structure-to-RWA mass ratios, and attempt to draw analogous conclusions to
those drawn for the two-DOF sample problem. It will be interesting to find
whether a higher mass ratio yields a better decoupled approximation of the
coupled system, as found in the sample problem.
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