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ABSTRACT

As public transit agencies install new technology systems they are gaining increasing amounts
of data. This data has the potential to change how they operate by generating better
information for decision-making. Deriving value from this data and applying it to improve
service requires changing the institutional processes that developed when agencies had little
reliable information about their systems and customers. With automated systems producing
large quantities of high quality data, it becomes the impetus for, rather than simply the input
to, measurement. Captuting more value from automated data thus involves rethinking what
agencies can know about service.

This research uses the Massachusetts Bay Transportation Authority (MBTA) as a case study.
It first assesses how the MBTA currently uses real-time and historical data. Based on this
assessment, it redesigns and advances the agency’s daily performance repotts for rapid transit
through a collaborative and iterative process with the Operations Control Center. These
reports are then used to identify poor petformance, implement pilot projects to address its
causes, and evaluate the effects of these pilots.

Through this case study, this tesearch finds that service controllers’ trust and interpretation
of performance information determines its impact on operations. It concludes that new data
will be most effective in producing service improvements if measurements accurately reflect
human experience and are developed in conjunction with their eventual users. It also finds
that developing pilot projects during this collaborative process enables new performance
information to result in service improvements. Based on these findings, this work produces a
set of recommendations for generating useful performance information from transit data, as
well as a specific set of recommendations for expanding the use of data at the MBTA.
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Introduction

The wortld is being flooded with data. According to IBM, 2.5 tullion gigabytes of data are
generated each day, from weather forecasts to credit card transactions to social media posts
(IBM 2013). These tecotds, often referred to as big data, permit an understanding of the
wotld that is both more detailed and more accurate than previously possible. While public
agencies ate becoming data-rich as they upgrade their technological systems, many of their
institational processes and behaviors developed when they had little reliable information
about their customers or their performance. This is particularly true of public transit agencies,
who until recently relied on sutveys and manual sampling to determine how many
passengers they served, where these people were going, how long vehicles took to run routes,
or how often service was on time. Big data has the potential to change the way public transit
agencies operate by providing them with better information on which to base decisions. The
presence of good information, howevet, is a necessary but insufficient condition for physical
imptrovements to service. Improving an agency’s operations also requires understanding how
to make this information meaningful to those in control of service and how to make old

institutional processes responsive to new information.

This research focuses on Boston’s Massachusetts Bay Transportation Authority (MBTA) as a
case study of a data-rich agency that has not fully integrated new information into its
operations. In the past decade the MBTA has installed new systems that produce detailed
data about where vehicles are (Automatic Vehicle Location, or AVL) and whete customers
enter the system (Automated Fare Collection, or AFC). The primary use of AVL data has
been to facilitate real-time service management, while AFC has been aimed at improving
revenue management. More tecently, vehicle locations and arrival times have also been
released publicly (NECN 2010). The general customer satisfaction with this information has

generated enthusiasm from the state Secretary of Transportation. His desire to do more with
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the MBTA’s data was the genesis of this wotk. The MBTA knows more about performance
in the moment than performance in the past; its use of logged data has been limited. The
agency could use its data to better understand trends, leamm from them, and make
improvements. But the agency is a bureaucratic organization that relies on human action,
human perception, and existing institutional processes, which constrains the use of such data.
The MBTA provides an opportunity to explore how to make data useful within the existing

constraints faced by a U.S. public transit agency.

This tesearch assesses the MBTA’s current use of both real-time and historical data. Based
on this assessment, it redesigns the agency’s daily performance reports for rapid transit. By
collaborating with MBTA personnel, it attempts to determine how MBTA employees
interpret information and what they need to impact decisions about setvice. These reports
are used to identify poor performance and develop pilot projects to address its causes.
Because both the performance reports and pilot projects are developed within the
institutional constraints of service management, these projects have been successfully
implemented. Their positive impact on service has led them to be extended beyond their

initial phase.

This research shows that when a system is run by humans, the interpretation and use
performance information is influenced by (1) how data is translated into performance
metrics and (2) the process of choosing the metrics. This in turn affects how the information
is incorporated into the management of the system and thus how it can ultimately impact an
agency’s operations. Through its case study of the MBTA, this work concludes that big
transit data will be most effective if the measurements developed from it accurately reflect
human experience and are developed in conjunction with their eventual users. Based on
these findings, it produces a general set of recommendations for creating useful performance
information from big transit data, as well as a specific set of recommendations for expanding

the use of data at the MBTA.

1.1 The Age of Big Data and the Public Sector

Over the past several decades the introduction of information and communications
technology (ICT) into many parts of society has exponentially increased the amount of data

collected about the world. These technologies are logging information that has the power to
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change how human beings undetstand the systems, processes, and events that impact their
existence. The increasingly common presence of sensors and electronic transactions is
creating a frequent record of the systems that people use in their daily lives. This in turn 1s
making it easier to learn more about the wortld we live in and make more informed decisions
about how to influence it. Urban planners (Evans-Cowley 2011) and ICT experts (Falconer
and Mitchell 2012) have posited that this wealth of new information has the potential to

transform how cities are managed and how their denizens interact with them.

Analyzing, interpreting, and applying knowledge from big data has been a key to success for
many different organizations. Hedge funds and other new investment entities analyze market
data along with other trends to predict and take advantage of market fluctuations. The
Internet giant Google frequently tests new strategies through randomized trials where
different users see slightly different content. The company then analyzes the results for
patterns, trends, and correlations, which informs the final design or product (Christian 2012).
The Obama campaigns in both 2008 and 2012 analyzed voter data in great detail, which
allowed morte targeted and effective campaigning (Issenberg 2012). In all of these examples,
the ability to analyze and draw conclusions from big data produces a competitive advantage

that contributes to the success of the organization.

Public agencies have not been left out of this trend. They are also getting more data about
customers and their behavior, particularly in the transportation sector. However, the nature
of the data varies by mode. The auto system, which is dominated by local roads, has a
limited — though growing — amount of information. Traffic monitoring data from loop
detectors, satellites, and roadside sensors provide detailed information about road use and
congestion in real-time to both managers and drivers. However, these systems only provide
aggregate information; they do not track individual behavior. Electronic tolling, by contrast,
produces detailed information about where individual vehicles enter and exit toll facilities,
whereas they previously only knew aggregate entries and exits at each interchange. Most
information on how people are traveling in cars, however, is based on household travel
surveys, which are costly and disaggregate analysis often limited by a small sample size. Real-
time location data from GPS both in vehicles and smartphones has the potential to provide
more detailed information on individual travel behavior. Transportation agencies have begun

to obtain detailed location data through GPS-based household travel survey devices and
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research is advancing in using GPS signals for other devices to observe travel behaviot
(Chen, et al. 2010). However, these are still samples that require participant consent. The
New York Police Department is implementing a project to record the license plate number
of every vehicle entering and exiting Manhattan (Sledge 2013), a technology that has the
potential to provide public agencies with more detailed vehicle travel pattemns. However,
comprehensive data from license plate data on auto origins and destinations would require a

more expansive installation, which may face privacy concerns.

Bike share systems, which came into existence in the digital age, are the opposite case. Their
operations are dependent on the provision and analysis of big data. Customers ate uniquely
identified so individual behavior can be tracked. Bike availability and station capacity are
electronically monitored and provided to customers via mobile applications. Real-time data
on station capacity is combined with historical information about demand at different times

of day to determine when and where bikes need to be moved by rebalancing trucks.

Public transit agencies are between these two extremes in terms of what they know about
their customers. Electronic fare collection technologies record the boarding station (off-
board fare collection) or vehicle (on-board fare collection) for each customer. Systems that
require exit validation (like London’s Underground or Washington D.C.’s Metro Rail) also
recotd data on where customers exit. New dispatching technologies display vehicle positions
at all times, and also log and archive them. This data can be used to inform management
decisions in real time, such as holding or re-routing service due to delays. Real-time
information can be also provided to customers to give them more information before and

during their trips (Wilson 2012).

Public agencies have not been as thorough in analyzing historical data and applying it to
improve their operations as private companies. They do not know as much about their
customers, and their customers do not know much about them. This may be because they
ate not subject to competition like private sector companies or politicians. Many transit
agencies existed prior to the availability of comprehensive data. They developed planning
procedures and operating behavior in a context without good information about the service
they were providing or the customers they were serving. Knowing the distribution of trip

times to schedule a route required analyzing manual records of terminal departures and
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arrivals. These were expensive and time-consuming to collect, and subject to human error.
With automatic vehicle location, running times are calculated automatically for each trip and
can be easily analyzed. Knowing how many passengers were on a bus or train required
manual sampling with ride checkers. Now automated systems count boardings on every trip,
providing census rather than sample data and allowing for more detailed and reliable analyses.
Agencies can thus substitute automated data into their existing analysis processes (Wilson
2012). Despite vast increases in the quantity and quality of data, however, they may not go
beyond this to use data any differently than when it was limited. Customers, on the other
hand, are getting more information about many other goods and services they purchase, and

thus may expect it from transit as well.

Getting more information out of this data and applying this information to impact service
requires changing the institutional processes of data analysis and use. Data was previously a
limitation on analysis. It was often time consuming and costly to collect. With automated
systems and their large quantities of high quality data, it can be an impetus for rather than
simply an input to analysis. In addition to “What data do 1 need to answer this question?”
automated data allows agencies to ask, “What can 1 do with the data that I already have?”
Capturing mote value from automated data goes beyond replacing the inputs to existing
analyses. It involves rethinking what can be analyzed and where data can be applied to

improve operations.

Big transit data has the potential to improve agencies’ setvice provision and customer
satisfaction. The data advantage that transit has over the auto system could be leveraged to
streamline operations and tailor setvice to attract more riders, potentially bolstering transit’s

share of the market.

1.2 The MBTA: A Case Study of Big Data in Public Transit
'The MBTA is one of the fortunate transit agencies for which the age of big data has arrived.

Substantial investments in new technological systems such as AVL, Automatic Train
Operation (ATO) provide information about the system to dispatchets in real-time. Despite
these “automated” and “automatic” systems, the service is still run by humans. This means

that to influence physical outcomes, information must be interpreted and applied by people.
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The MBTA’s current use of the data from these systems has focused on real-time
management, but they are also continuously archiving detailed information about the transit
network. Providing bus and rail dispatchers with vehicle locations in real-time gives MBTA
personnel an understanding of their network at a point in time. This enables more informed
decisions about operations control — holding a train to space out service or advancing a
departure from the terminal to free up a platform for an incoming train. More recently, the
agency has also begun providing real-time information to customers, who previously had
little information beyond the published schedule and what they can see or hear at the stop or
station. In 2010, the MBTA opened a real-time feed of bus and train locations to developers
(NECN 2010), who have created dozens of bus and train arrival apps. In 2012, the agency
began providing real-time train arrival predictions in many of its heavy rail transit stations
(on what are commonly called countdown signs). It also makes commuter rail vehicle
locations and predicted arrival times available online and to developers. In this way, the
MBTA’s data systems have substantially increased the amount of information available to
both setvice controllers and customers. These inform both sets of users” decisions and

change the way they interact with the transit system.

The use of historic data to learn about trends and issues over longer periods of time,
however, has been limited. The agency cutrently creates on-time performance (OTP) repotts
for bus and rail on a daily basis for internal use, and publishes a monthly performance report
for the public. It does not, however, regulatly use this data to further assess the causes or
potential remedies for poor performance, despite having internal reporting systems capable
of doing so. A notable exception is the recent detailed analysis of vehicle running times to
revise vehicle schedules based on mote accurate information. University students and
consultants have analyzed the MBTA’s data and provided constructive recommendations
about service in past research. This work has produced some operational changes, though

fewer than what have been proposed.

The MBTA provides a case where big data is available, but has not yet been harnessed to
feed back into setvice provision. While the data has been analyzed, the fact that few changes

have resulted from such analyses suggests that the problem is not solely analytical. It thus

1 All heavy rail and bus vehicles. The Green Line and Mattapan line light rail do not have real-time vehicle
locations at the time of this writing, though a project to implement this is underway.
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provides an opportunity to explore the other factors influencing the ability of big data to

impact public transit operations, and how to overcome current limitations.

1.3 Role of This Research

Working with the MBTA as a case study, this research explores how to make data analysis
morte influential in transit operations. It rethinks not only the analytical methods but also
where and how information is created and applied within the organization. This work turns
to the Data-Information-Knowledge-Wisdom (DIKW) continuum for thinking about how
transit data can become knowledge for management. Described in more detail in Chapter 2,
the DIKW continuum is a conceptual framework for understanding how data — unorganized
observations or facts about the world — become meaningful and useful knowledge (and
eventually wisdom) that humans can apply to make decisions and influence their
environment. It also looks at past work on innovation in the public sector to understand the

constraints and opportunities for introducing change in a public agency like the MBTA.

Translating data into information that is understandable to people has been one focus of
past rescarch, and many quantitative methods have been developed to accomplish this.
Because people take information as an input into their actions, the effect of better
information depends on their interpretation of its value and meaning. After assessing the
MBTA’s current use of big data, this research finds that real-time information has changed
the way service is managed. Historical reporting based on this data, however does not have a
significant impact on operations. In evaluating the MBTA’s current OTP reports, this
research finds that the reports for rail are neffective because they do not accurately measure
service. The reports for buses measure service more accurately, but are too numerous and
lengthy. This hinders interpretation and limits the ability of staff to identify problems and
opportunities. Past attempts to produce service changes by analyzing data have not been

implemented due in part to insufficient attention to institutional constraints and processes.

One implicit assumption in past research has been that conducting an analysis and
presenting the results to those in control of service provides sufficient motivation to change
service. This work takes a different approach: performing data analysis in conjunction with
service controllers through a collaborative and iterative process. It solicits their response to

information and incorporates their input. Through this process, this work revises the
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measurements and their presentation. It reorients performance metrics for rapid transit
around passengers by combining data from two sources: vehicle location and fare collection.
Close attention is paid to making information clear and legible, while still retamning
appropriate detail to underliec management decisions. This process reveals the institutional
limitations to applying information, which include poor interdepartmental communication, a
lack of time and staff to do analysis and look for solutions, and a distrust of information
with unclear origins. It does not, however, bring this data “full-circle” by releasing it to

customers so they can see a quantification of their experience on the MBTA.

The original intent of this work was to produce information for passengers that provides
more insight into MBTA setvice than their everyday experience. New performance teports
were developed with public viewers in mind. These reports were mote detailed than the
MBTA’s internal reporting tools, and were shown to operations staff so that they would
understand and have input into what the public sees. Providing better information internally
then became the priority for this research, so that operations staff could manage service to
the measures being made public. As the detailed reports evolved, some areas of poor service
became apparent. The research then expanded to from performance reporting to using the

repotts to produce service improvements.

Having established a relationship with the operations control center while developing new
petformance tepotts, this research proposed two service improvement projects that were
successfully piloted and eventually implemented. These include (1) rescheduling the MBTA’s
busiest line, the Red Line to better coordinate northbound service and (2) statfing addition
personnel at its northern terminus to speed turnarounds and reduce delays in the PM peak.
This research hypothesizes that three factors enabled the data to be translated nto service
improvements: (1) changing the way setvice was measured, (2) changing how these
measurements were presented, and (3) developing them in close coordination with the their

eventual users.

1.4 Implications

This research looks at the human and institutional dimensions of making big data matter for
transit agencies. It has successfully redesigned heavy rail performance reports for the MBTA

and has piloted two service improvements that were initially successful and have been
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extended (and may become permanent). It provides the MBTA and other transit agencies
with suggestions about how to turn their big data into information and how to apply it to
change service. It finds that competent data analysis is not sufficient to lead to operational
changes, and that the human interpretation of and reaction to information must be

considered.

"This work concludes that performance information should be developed not only based on
the input of upper management but also those actually in charge of service. To have an
impact, information needs to be meaningful to and trusted by those in direct control of
service. Incorporating their feedback helps to ensure this. Design and presentation also play
key roles in enabling setvice controllers to draw useful conclusions from performance

mformation.

This research also finds that developing pilot projects during the collaborative information
design process can be a successful strategy to produce changes in service. Pilot projects and
performance reports reinforce one another: the reports make an initial case for a pilot
project, and implementing the pilot shows how performance information can be used to

impact and improve operations.

1.5 Organization of This Research

Chapter 2 will discuss the DIKW framework along with examples of how past work on
transit performance measurement fit into it. It will also discuss past research on successful

innovation in public sector bureaucracies, moving beyond knowledge to action.

Chapter 3 introduces the MBTA and assesses its current applications of automated data. It
identifies the successes and shortcomings of the existing practice, which form a basis for

redesigning the MBTA’s performance reports for heavy rail.

Chapter 4 describes the process of developing new performance reports for the MBTA’s
heavy rail services. It focuses not only on changing how service is measured, but also how
these measurements are presented. It emphasizes the benefits of collaborating with the
MBTA’s Operations Control Center (OCC) and how their input has improved the end

product.
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Chapter 5 details how this performance information has been applied to modify service
through two pilot projects conceived and implemented in coordination with the OCC. It
discusses both the institutional process of designing and implementing the pilots — how

institutional resistance to change has been overcome — and the resulting impact on service.

Finally, Chapter 6 draws lessons from the experiences related in the previous chapters and
provides a set of tecommendations about applying the findings of this research to additional

operations within the MBTA and at other transit agencies.

20



Theoretical Framework and
Previous Research

Automated Data Collection Systems (ADCS) accumulate millions of records every day, but
these alone do not provide much value to transit operators. This research employs the Data-
Information-Knowledge-Wisdom (DIKW) hierarchy as a framework for thinking about the
use of data in public transit agencies. This chapter explains the DIKW concepts and then
reviews past work on ADCS and transit performance within this framework. The literature
on transit performance has developed a variety of tools and methods for extracting meaning
from ADCS data. In some cases, the application of these methods to analyze ADCS data has

resulted in changes at transit agencies, while in others it has not.

To gain msight mto what contributes to some performance information being successful in
generating change and some not, this research turns to work on performance management
and innovation in the public sector. This literature discusses how public agencies have been
able to modify their operations despite institutional resistance to change. The literature also
proposes several charactetistics of successful innovation that help explain why this research
was successful in making changes at the MBTA. These include: alleviating widely-recognized
problems, finding support at multiple levels of the institution, being close to those in charge

of service, and being open to feedback.

There 1s little research linking these two bodies of literature, exploring how to leverage data
to make institutional progress. None of the literature reviewed examines how the process,
design, and institutional context of performance measurements influence the capacity for

and effectiveness of performance management. This research to begins to address this gap.

2.1 The Data-Information-Knowledge-Wisdom Hierarchy

Though the terms data and information or knowledge and wisdom are synonyms for one

another in common patlance, in information science and knowledge management each of

21



these four words represents a distinct concept. These concepts are often arranged in a
hierarchy intended to represent how humans come to understand the world. A study by
(Rowley 2007) reviews the information science and knowledge management literature and
summatizes definitions of the four concepts in the DIKW hierarchy. This chapter draws on
Rowley’s review to define the concepts data, information, knowledge, and wisdom in the

public transit context.

Data is the base of the hierarchy, the foundation on which information, knowledge, and
wisdom are built. Data are defined as events, observations, or other facts that are discerned
and/or recorded eithet by people or machines (Rowley 2007). Data are usually described as
unotganized and unprocessed, having little meaning because they lack context and relation
to one another. Examples of data in the transit context are records of a vehicle locations in
the time and other identifying information from the AVL system. This data tells an agency
where a vehicle was at a given point in time. Without organizing the records and relating
them to one another, there is no further detail about a vehicle’s path, how long it took to get

between two points (running time), or the spacing of vehicle arrivals at a stop (headway).

These latter concepts are information that can be created from transit data. Information is
generally described as data that have been formatted, organized, processed, aggregated,
calculated, and otherwise manipulated, and which then take on meaning, value, ot usefulness
(Rowley 2007). The fundamental concepts defining information are structure and meaning,
which the raw factual signals or obscrvations lack. Human action is required to manipulate
data so it describes something beyond what the initial observations and signals show.
Continuing with the AVL example above, the path, travel time, and headway are all
information that tesults from relating AVL data points. This information is useful for
describing the characteristics of a bus trip, for example. Combining multiple pieces of
information produces information, such as the average running time for a route or the
distribution of headways. Both a single headway and the distribution of headways are
information. They both relate data and have value, but describe different aspects of service.

What the information describes influences what knowledge can be derived from it.
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DATA

Signals/Observations/Records

Computation

INFORMATION

Understanding facts & context
(who/what/where/when)

Interpretation

KNOWLEDGE

Understanding relationships & interactions
(how/why)

Accumulation

WISDOM

Understanding potential outcomes,
consequences

Figure 1: Summary of the DIKW Framework

The distinction between information and Anowledge is more subjective than that between data
and information. Rowley found that definitions of knowledge are more complex and various
than those of either data or information. Many sources portray knowledge as personal and
subjective. One of the texts she reviewed notes that “While data is a property of things,
knowledge is a property of people that predisposes them to act in a particular way” (Boddy,
Boonstra and Kennedy 2005). Rowley’s review suggests that information is transformed mto
new knowledge through understanding its relation to other information and existing
knowledge (Rowley 2007). A synthesis of the various definitions of knowledge is
understanding relationships and interactions among different pieces of mformation in a way
that permits one to take action. It is understanding what the problem is, what can be done
about it, and how an action will address it. This action-oriented definition of knowledge will
be employed in this research. For example, knowing the headway or the distribution of
headways for a particular route and relating it to the scheduled headway provides
information about whether the route is running well. Combining this with information about
on-time departures, traffic, and incidents creates knowledge about what may be causing

unscheduled vatiation in headways, allowing one to propose potential solutions.

While moving from data to information is computational, moving from nformation to

knowledge is interpretational. The knowledge that one can gain depends on what
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information is available and how it is presented. This transition is more of an art than a
science —meaning hinges on the response of the viewer. While turning data into information
relies primarily on mathematics and programming, creating knowledge from mformation
relies on human perception. Two people can interpret the same information differently,
which is why knowledge generation is described as subjective. In an institutional setting, this
process may be circumscribed both by the decisions about what information to supply and
instructions on how to interpret it. Developing new knowledge may thus require changing

institutional norms around information.

In many of the texts reviewed in Rowley’s study, knowledge was the pinnacle of the
hierarchy, the highest level of understanding. Only three of the 16 textbooks in Rowley’s
review included wisdom in their hierarchy. These three definitions all focus on the generalized
nature of wisdom, which allows one to react and apply knowledge to new situations. The
texts do not provide much insight into the generation of wisdom, except that it is
accumulated knowledge. While knowledge is understanding a specific situation and being
able to influence it, wisdom is being able to apply knowledge generated in one context to a
new situation. In the transit context, wisdom is what enables dispatchers to manage service.
From their experience they derive knowledge of the causes of poor performance and the
effects of their actions. The accumulation of this knowledge constitutes wisdom about the
performance of the system and their ability to influence it. This wisdom allows dispatchers

to react to new situations as they arise.
Figure 2, from (Rowley 2007), is a representation of the DIKW hierarchy. Rowley adds two

High Low

Meaning
Applicability
Transferability
Value
Human Input
Structure

Computer Input
Programmability

e } i, % e S e : High

Figure 2: Pyramid representation of the DIKW hierarchy, from Rowley (2007)
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continua to the pyramid: the continuum on the left shows charactetistics that increase in the
transition from data to wisdom while the continuum on the right show characteristics that
decrease. This conceptualization reinforces the idea that data are raw representations of the
wortld around us, which through structure and interpretation become intelligence that allows
humans to understand and influence the world. Additionally, as human input, value, and
applicability increase, programmability and computer input decrease. It is fairly easy to create
automated processes for creating information from data; it is more difficult to automate the

creation of knowledge.”

2.2 Past Work on ADCS in the Transit Context

The introduction of ADCS in the transit industry has been accompanied by a wealth of
research on how the data can be used to gain insight mto service, a small fraction of which
will be reviewed in this chapter. Wilson (2012) provides a general overview of the

information that can be generated from AVL and AFC data:

*  Detailed characterizations of route segments and running times;
* Detailed characterizations of stop activity;

*  Detailed characterizations of passenger activity.

In providing guidance on developing performance management plans for transit agencies,
Transit Cooperate Reseatch Program (TCRP) Report 88 (2003) provides a comprehensive
list of performance measurements for public transit systems and how to calculate them.
While these could be calculated with manual data, automated data allows system
performance to be measured in much finer detail and at much lower marginal cost (Wilson
2012). TCRP Report 88 includes hundreds of possible performance metrics. The most

pertinent that can be calculated readily from AV L’ and AFC data are listed in Table 1 below.

2 This, however, is the objective of artificial intelligence
3 In this table, AVL is used to describe any system showing vehicle location, not just GPS-based bus tracking.
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Measurement Definition/Calculation Data System

Frequency / Headway Number of vehicles or time between vehicles  AVL

On-time Performance / Departure/arrival of a vehicle relative to its AVL

Schedule Adherence schedule

Service Regularity Percentage of trips that operate within a AVL
specified range of the scheduled headway

Missed Trips Scheduled trips not run AVL

Running time Time for vehicle to move between two points ~ AVL

Run-Time Ratio Ratio of observed to scheduled run time AVL

Passenger Load Number of people on a vehicle AFC

Travel Time (passenger) Time for a passenger to go from origin to AVL & AFC
destination

Travel Time variability Variability in travel time, measured as AVL & AFC
standard deviation, coefficient of variation, or
other distribution statistics

Reliability factor Percent of trips that are within a specified AVL & AFC
percentage of the average travel time

Delay Actual run-time minus scheduled run time AVL

Excess wait time Number of passenger-minutes of wait time AVL & AFC
greater than expected wait time

Big Gaps Headways over a specified threshold AVL

Table 1: Performance Measurements That Can Be Calculated From ADCS

2.2.1 Use of ADCS for Performance Metrics in Transit Agencies

New York City Transit calculates a “wait assessment” metric that 1s a measure of service

regularity. It is defined as the number of headways that are less than 125% of the scheduled

headway (MTA 2013), which is the inverse of a big gap metric. The agency sets targets for

wait assessment in addition to terminal on-time performance (OTP) to manage service. The

London Underground uses travel time and its variability to judge service quality. Its Journey

Time Metric (JTM) calculates customers’ time between entering the system to leaving (since
g Y g

they must validate on both entry and exit). To captute variability, the J'TM is compared to a

scheduled value for that trip, based on scheduled headways and running times for the trains

plus assumed access, egtess, and interchange time (Uniman, et al. 2010). The difference is

the Excess Journey Time (EJT), which the Underground managers use to evaluate service.
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2.2.2  Work Focusing on Translating ADCS Data into Performance Information

Automated data is still relatively new, so research is still developing new analytical and
computational methods for drawing useful information out of it. Barry et al. (2002) use AFC
data for the New York City Subway, where passengers are only recorded on entry, and mfer
destinations based on the sequence of entries over the course of a day. Building on this,
Gordon combines AVL and AFC data to infer origins, destinations, and transfers for
passengers in London’s entire public transport network (Gordon 2012). This provides
Transport for L.ondon with much more detailed demand information, which enables them to

improve setvice planning, market research, and other functions.

In addition to developing analytical methods to get more value out of automated data, other
research has built on the standard measurements to create more complex metrics that
capture multiple dimensions of service. Uniman (2010) uses Transport for London’s AFC
data to create a reliability buffer ime (RBT) metric. Uniman defines RBT as the “amount of
extra time that passengers must budget above the typical journey time in order to arrive on
time at their destination with a specified level of certainty.” It is calculated as the 95"
petrcentile minus the median running time for a segment or O-D pair. Schil (2012) looks at
excess RBT by compating the RBT for a typical day to the RBT for the disrupted day. He

uses this to measure the severity of service disruptions.

Generally, the transition from data to information is conceptually straightforward, involving
computations that can be done by any spreadsheet, statistics, or database software. A
substantial number of methods for translating ADCS data into information have been
developed that effectively characterize many dimensions of public transport service. While
new information may not result in setvice changes, the use of ADCS is not limited by a lack

of understanding of how to translate data into information.

2.2.3 Information, Knowledge, and Wisdom

Though past work with transit ADCS has not been discussed within the DIKW framework,
many past studies have analyzed large datasets and then applied this information to answer
specific questions. In doing so, this research has generated new knowledge about transit

service based on more detailed information.
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Shireman (2011) uses MBTA AVL data to explore opportunities for more productive vehicle
scheduling. Shitreman’s analysis first generates more detailed information about bus running
times. It then explores how changing certain operating assumptions and constraints in the
MBTA’s scheduling software could produce a more efficient schedule. Shireman codifies
this knowledge in his thesis, but his specific findings have not yet been applied by the MBTA
to modify its vehicle schedules. The MBTA has, however, begun to use the software and

approach from Shireman’s wotk to reschedule its routes.

Other work has attempted to identify and tesolve issues on the MBTA’s Green Line, a light
rail line with a downtown subway and four surface branches. Malikova (2012) uses vehicle
location records for the MBTA to assess the impact of introducing three-car trains on the
line. Her analysis produces information on running time and headway performance before
and after three-car trains began running. From this information, Malikova shows that current
implementation of three-car trains had increased headways and bunching in the downtown
subway. Based on this knowledge, she proposes alternate implementation schemes that

could avoid this 1ssue.

Automated data from other agencies has also been analyzed and applied to improve service.
Frumin (2010) analyzes Transport for London’s AFC records to chatacterize both passenger
behavior and service quality on the London Overground. This new information generates
knowledge of how uneven scheduling on the North and West London lines influences
passenger behavior and travel experience. London Overground has applied this knowledge
to create a new vehicle schedule that provides more regular service. Frumin uses the metrics
developed in his work to evaluate the change and concludes that the new schedule has a

positive impact on customers and service quality.

San Francisco’s Municipal Transportation Agency (Muni) analyzes ADCS data to develop
knowledge about problems and propose changes that address poor performance. Analyzing
train tutn times has led to a revised turning procedure that reduced turn times. Evaluating
bus schedule adherence and supervisor placement led to relocating some supervisors, which

has improved depattute adhetence (Pangilinan 2013).
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In Montréal, Tétreault and El-Geneidy (2010) use AVL and AFC data for a route (67 Saint-
Michel) to evaluate proposals for new limited-stop setvices along the same corridor. Their
work quantifies the change in travel time for customers on both the limited-stop and existing
services and finds savings for both groups. They report their findings to Société de
Transport de Montréal (STM), the public transport operator sponsoring the work, who then
implemented the setvice. In an ex-post analysis, the researchers evaluate running times after
the implementation of the new route and determine that their estimates were acceptably
close to the implemented reality. In this case, two types of knowledge were generate from
analyzing travel time information: (1) the most effective stopping pattern for the new service,
and (2) the accuracy of the model. This validated the model for future use. This work also
implies that the operating agency trusted the researchers and their work, since they
implemented their suggestions. The work does not describe how this trust was gained,

however.

All of this past work has focused on addressing specific issues, where an analyst interprets
the information and their knowledge is then codified and communicated in a repott, along
with recommended actions. This represents a centralized knowledge generation paradigm.
This is in contrast to a distributed paradigm where information is presented and viewers
create their own knowledge. Under this paradigm, information design and visualization play

an important role in aiding viewers in interpreting the information.

Kennedy (2012) explores and evaluates different techniques for visualizing transportation
information for a variety of audiences. He concludes that dynamic information visualizations
that allow users to interact with the data and change what information is presented provide

the best opportunity for creating knowledge among diversified groups of stakeholdets.

Many transit agencies have begun distributing real-time information to customers either via
the Internet, mobile apps, or signs at stops and stations. This is a distributed knowledge-
generation platform that enables customers to combine the real-time information with
information about other routes, traffic, and other factors. Based on their prior experience
this may allow a tider to know when to leave, how fast to walk, what route to take, or
whether to take a taxi. Over time passengers may develop wisdom such as what path to take

in certain situations. If customers had access to detailed, quantitative information about the
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MBTA that allowed them to see performance as it relates to their trip, this would provide
additional information beyond what they gather from their experiences. Such information is

not cutrently available publicly.

The Toyota Production Model, which is often lauded by business scholars, provides an
example of a distributed knowledge generation model that influences organizational
practices. The Toyota Model empowers those in most direct contact with the manufacturing
process to address problems at that level. All parts of the production process are specified to
a minute degree. If an employee is not meeting goals, she or he works with a supervisor to
discuss a remedy. In some cases, this involves changing the way the employee is approaching
the task. In others, it is changing the specification of the process (Spear and Bowen 1999).
'The point is that Toyota’s performance management incorporates a distributed, bottom-up
process to generate knowledge. Employees are taking in data about their adherence to
standards and generating information about their performance and the circumstances
influencing it. Knowledge about how to improve a failing process is generated from those

involved in it, rather than requiring an analyst to gather information and find a solution.

Both the centralized and distributed paradigms have had success in generating knowledge
and making changes in organizational practice. This research generally follows a centralized
model, with MIT researchers performing the data analysis and leading the development of
the performance reports and pilot projects. However, its intention is to create performance
information that enables a distributed knowledge generation platform, allowing the MBTA
to continue to make setvice improvements after the conclusion of this work. For this reason,
it solicited the input of MBTA operations personnel as to what information was meaningful

to them and would enable them to better manage service.

2.3 Innovation and Change in the Public Sector Context

Innovation generally aims to change the way things are done. In the DIKW framework, this
implies improving knowledge and wisdom because these underhie action. It may also involve
generating new information to create an improved understanding of the situation, which
allows for innovation. This section reviews literature on innovation in the public sector to

understand how information becomes knowledge in this context.
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In general, public sector organizations are characterized as bureaucracy. While bureaucracy
often has been associated with inefficiency and frustration, Max Weber argues that it
developed due to its technical advantages of mechanizing and routinizing the process of
administration, just as industrial processes had done to production. He notes that
bureauctacy’s strict hierarchical form removes ambiguity and enables tasks to be completed
more quickly because they are fully prescribed by the superior to the subordinate. Weber
also argues that bureaucracy in its purest form eschews nepotism and uses a meritocratic
process for advancing within its hierarchy, providing an incentive to perform well
Individuals functioning in a bureaucracy develop specialized knowledge of their tasks, and
thus perform them morte efficiently over time. While bureaucracy is sometimes misconstrued
as a government phenomenon, Weber observes that it is fully aligned with the ideals of
capitalism: efficiency, specialization, and competition. It is the organizational structure of

most matute corporations and government agencies (Weber 1946).

Many of the characteristics of innovation may conflict with the highly structured and
methodical nature of bureaucracy. Innovation is often experimental. It may result in failure
as often as success. Robert Behn argues that this creates inherent dilemmas for those
attempting to make changes in government agencies. Innovation 1s not routine. In many
cases it involves changing procedure (Behn 1997). This may disrupt the mechanized
bureaucratic process. Alan Altshuler writes that the high degree of scrutiny placed on public
agencies makes managers tisk-averse. They are inclined to prioritize avoiding incidents over
trying new things to optimize performance. Altshuler also notes that much mnovation
originates from the lower ranks of an organization that are closer to service provision
(Altshuler and Zegans 1997). This may conflict with the hierarchical, top-down nature of

bureaucratic organizations.

In a case study of two government agencies, however, Peter Blau shows that employees 1n
government agencies do welcome changes to procedures. He finds this to be true
particularly when the changes address existing problems or make their jobs easier. His study
also finds that agencies will welcome change that increase their workload if they see it as

enabling the agency to better accomplish its core mussion (Blau 1963).
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Altshuler and Zegans outline several broad strategies that they have found to be common in

successful cases of public sector innovation:
1. Proceeding incrementally;

2. Alleviating problems widely-recognized as urgent and explaining how the innovation
addresses the problem;

3. Being close to clients and relying on them to convey positive messages to political
authotities that support the innovation;

4. Casting a wide net in search of support and aligning existing institutional resources
with the work;

5. Building and sustaining a coalition that supports the innovation and has the power to
authorize and implement it;

6. Being open to feedback, which allows continuous learning and adaptation;

7. Being tenacious, dedicated, and optimistic in order to overcome major setbacks
(Altshuler and Zegans 1997, 78).

Altshuler and Zegans’ observations also suggest that new information is more likely to
produce innovative knowledge if it makes a clear case for change and addresses existing
problems. This provides an argument for producing information in close collaboration with
its eventual end users in order to gain a better understanding of what information would
help improve current practice. Because individuals in government agencies can be protective
of their domains, working closely with them may help produce a sense of ownership and

break down territorial barriers to innovation and embracing new information.

These characteristics of bureaucracy provide an important framework for researching how
information can be disseminated within a government institution to produce knowledge and
wisdom. Because bureaucracies are hierarchical and employees have specialized knowledge
of their tasks, the same information presented to different people will likely result in
different knowledge, and potentially different applications. This suggests that a critical aspect
of innovation and performance management in bureaucracy is identifying employees whose
knowledge impacts performance. If the intent is to change a process, those with the power

to affect that process must obtain new knowledge about it. The ideal candidates will be those
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whose actions impact what is being measured. Because their actions are represented by the

information, this establishes a feedback loop between action and performance quality.

2.4 Purpose and Need for this Research
The existing literature on translating data into information has successfully developed

methods of applying ADCS data to measute transit service. It is not a lack of good
information that is restricting the application of knowledge to improve transit services.
While previous work has created new knowledge from ADCS-based information, there has
been little research as to how information is used within an organization, what cffect that it

has, and what influences its effectiveness.

Past work has also been successful in translating information into knowledge under a
centralized paradigm where analysts take data, developing knowledge, and communicating
this knowledge in a report or memorandum to the agency. There has been little research mnto
the effectiveness of this strategy. ‘There is also a lack of research into the effectiveness of the
current performance reporting tegime, which follows a distributed knowledge generation
paradigm. Performance reports are made available to managers, who develop their own

knowledge about managing the system and strategies to address issues.

'This work seeks to begin filling in the gap in literature between how to measure service and
how to make changes in a public organization. To this end, it focuses on how the
measurements chosen, the design of the repotts, and the process of creating them influence

the impact information has on service delivery.
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The MBTA Context and Its Use
of Automated Data

The MBTA is one of the largest and oldest transit systems in the country. It has installed
ADCS on many of its modes and is cutrently using the information for real-time service
control and some petformance reporting. This chapter describes the MBTA context in more
detail. It discusses its current automated systems and how the data is used. It also evaluates

the influence of these data applications on service delivery.

3.1 The MBTA

The MBTA is the fifth-largest transit system in the U.S. by total ndership, serving 356
million unlinked passenger trips in 2012 (APTA 2012). It operates all major modes of transt,
including three rapid transit lines (Red, Orange, and Blue Lines), two light rail lines (Green
Linc and Mattapan Trolley), two BRT lines (Silver Line Waterfront and Washington Street),

200 bus & trolleybus routes, 12 Commuter Rail lines, and four ferries.

According to the MBTA’s most recent setvice statistics from 2010, the Red Line has the
highest average weekday boardings with over 190,000, followed by the Green Line with over
180,000 (MBTA 2010). Table 2 displays average weekday boardings for most MBTA modes

(excluding commuter rail and ferry).

Service Boardings
Red 192,513
Green 181,434
Orange 141,052
Blue 44,233
Silver 29,649
Mattapan 4,586
Bus 357,482
Total 950,949

Table 2: MBTA boardings by Service
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Figure 3: MBTA System Diagram showing Rapid Transit and Key Bus Routes

The MBTA is headed by a General Manager (GM), who directs the overall policy and
strategy of the organization. The Massachusetts Secretary of Transportation sits on the
MBTA board and also influences policy. The Chief Operation Officer (COO) is primarily
responsible for the day-to-day operation of the system. The Operations Control Center
(OCC) is in charge of many departments that currently produce and use data from the
MBTA’s automated systems. Dispatchers see train and bus positions from the ATO and
AVL systems in real-time. Plans and Schedules uses running time data to plan service.
Operations Technology maintains these systems. See Figure 4 for an organizational chart of

MBTA staff and departments relevant to this work. Additionally, during the course of this
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Figure 4: Organization Chart of Relevant MBTA Employees

research the MBTA had a Ditector of Innovation who reported directly to the GM. He was
primarily responsible for creating visible changes that improved the customer experience,
particularly through the application of new technologies. His projects were thus reliant upon
ADCS data. They included releasing a real-time bus and train arrival feed for mobile
applications, displaying real-time arrivals in tail stations, and introducing mobile ticketing on

the Commuter Rail.

The MBTA currently has the following ADCS for rail rapid transit, light rail, BR'T, and bus.

* Automated Fare Collection (AFC): transaction records for magnetic stripe
CharlieTickets and RFID CharlieCards, including time of transaction, rapid transit
station or bus route, and fare type, among other pieces of data.

e Automated Vehicle Location (AVL): records of bus position based on GPS and bus
odometers, including time of attivals and departures from key points along the route.

* Automatic Train Operation (ATO): records of heavy rail train positions based on
the track circuit from which the train is currently drawing power. Records include
time, train direction, destination, and other information.

e Automated Vehicle Identification (AVI): records of light rail (Green Line only)
vehicles passing key points along their routes, usually junctions. Records include
time, train route, and direction.
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While the MBTA’s heavy rail, light rail’, and buses all currently generate data on both vehicle
locations and passengers, there are important differences between the modes. For heavy,
ATO gives precise train locations and AFC gives precise passenger boarding stations.
However, because the fare gate is separate from the train, the time a person enters the
station is not the time they board the train. For light rail (Green Line), AVI provides
imprecise train locations because AVI points are several stations apart. On the surface
branches of the Green Line, thete may be as little as one AVI point for the entire surface
segment, so location is effectively unknown until the train reaches the end of the route.
Because the Green Line runs partly in a subway with gated stations and partly on the surface
with open stations, AFC provides two kinds of data. In the subway, the data is similar to
heavy rail: precise location but imprecise time. On the surface passengers pay on the vehicle,
so the AFC transaction records the precise time they board but only contains the line, not
the stop. This is similar to the passenger information available for buses. The AVL system,
however, provides precise bus positions. The Silver Line bus rapid transit has the same
characteristics as other buses for its vehicle information, but the passenger information
characteristics of the Green Line. Table 3 summarizes these differences in the characteristics
of ADCS across modes. Transfers between services where passengers board on the vehicle
record the subsequent boarding. Transfers within interchange stations are not recorded, but

can be inferred, as shown in Barry et al. (2002).

Mode Vehicle Position Passenger Entrance  Passenger Entrance
and Time Location Time

Heavy Rail (Red, Blue  Precise Precise Approximate

Orange)

Light Rail (Green) Imprecise Precise (subway) Approximate (subway)
Line only (surface) Precise (surface)

Light Rail (Mattapan)  None Line only Precise

BRT (Silver) Precise Precise (subway) Approximate {subway)
Line only (surface) Precise (surface)

Bus Precise Line only Precise

Table 3: ADCS Characteristics for Different Modes of the MBTA

4 With the exception of the Mattapan High Speed Line, which does not currently have vehicle location data
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3.2 The MBTA's Use of Automated Data
In the past decade the MBTA has begun utilizing the data collected from ADCS. The

current applications of automated data can be categorized along two dimensions: scope
(internal versus external) and timeframe (real-time versus historical). This implies four broad
categories of applications, which are depicted in Figure 5 along with the MBTA’s cutrent

data uses.

The upper-left quadrant, internal real-time uses, is why many agencies install ADCS. They
include displaying vehicle locations, estimating vehicle atrivals at terminals and if they will
make their next trips, and displaying schedule or headway adherence. Such information
enables more precise operations control because dispatchers have more accurate and detailed
information. The lower-left quadrant, external real-time uses, has followed internal real-time
uses at the MBTA. ADCS may not have been designed for customer information, but once
the data exists it can be disseminated to inform riders about current service. The same data

that underlies real-time information for dispatchers can be adapted to estimate bus and train
Internal
Vehicle Locations

Estimated Arrivals
Schedule Adherence (bus)

Cn-time Performance
Running Times for Scheduling

Real-time seesnn———— . smemen Historical
Bus Arrivals Performance Reports
Countdown Signs Blue Book
External

Figure 5: Categorization of ADCS Uses at the MBTA
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arrivals, which the MBTA releases to customers via the Intetnet, mobile apps, and station
signs.

Real-time ADCS applications represent new data applications that were driven by ADCS,
since there was previously no real-time information. Once the data is logged by the ADCS,
this also enables applications of historical data. These have mostly been replacing manually
collected data in existing functions. Internally (upper right quadrant), this includes calculating
OTP and running times based on automatic vehicle location rather than manual checks.
Externally (lower right quadrant), these statistics are summarized for various periods of time

and published in monthly and annual performance reports.

This chapter discusses what information the MBTA currently extracts from its automated
data as well as the limitations of its curtent practices. These findings form the basis of the
work discussed in the following chapters to create mote valuable information from the

agency’s data.

3.3 Internal Real-time Applications for Operations
At the MBTA, both heavy rail and bus have real-time information for dispatching, though

they differ in the information they display. Both the ATO and AVL systems provide real-
time vehicle location data to dispatchers, allowing them to see where vehicles are. The bus
Computer Aided Dispatching (CAD) system combines this with schedule and other bus
location data to give dispatchers information about schedule adherence and headways
(Figure 6). The technology suite is generally referred to CAD-AVL. The ATO system gives
heavy tail dispatchers train position in a graphic display (Figure 7), from which they can
interpret headways and speed, but it does not relate this information directly. The system
also provides estimated arrivals at the terminals along with the next schedule departure so
dispatchers can see if a train will be late. These visual displays allow both bus and rail
dispatchers to respond to delays or disruptions in near real-time, adjust vehicle and crew

schedules accordingly, and generally better manage daily operations.
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Figure 6: Real-time display of AVL information for bus routes 1 and 15.
Routes are abstracted to a single line for each direction, with timepoint stops marked. The line
connecting the pentagonal bus icons to the route indicates where the bus should be based on
its schedule. In this example, blue buses are early and green are within the on-time range.
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Figure 7: Real-time display of ATO information for the Red Line.
The two parallel lines represent the tracks, and a red section indicates that a train is currently
on that section of track.
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The ATO system includes Automated Train Dispatching (ATD), which rings a bell at
terminal stations at scheduled departure times, prompting drivers to depart. This effectively
automates everything but the driving of the Red, Blue, and Orange lines, so dispatchers’ use
of real-time location data focuses on maintaining good service. This includes ensuring that
operators actually leave when the bell rings, adjusting scheduled departures when trains are
going to miss their next trip, reassigning vehicles and drivers in the case of disabled trains,
and holding trains at intermediate stations to adjust headways or for other reasons. While
there is no departure bell for buses, all vehicles are equipped with screens that are linked to
the CAD-AVL system. These screens display their next departure time so that drivers know
when to leave, as well as their schedule adherence en route. Bus dispatch uses real-time
information in much the same way as their rail counterparts: adjusting departures,
reassigning vehicles and drivers to avoid missing trips, and expressing or holding buses to

break up bunches.

Both the ATO and CAD-AVL systems have their shortcomings. In both cases, there 1s no
immediate feedback about the effects of dispatching action (such as a running calculation of
OTP or another metric) other than the visual representation of vehicle locations on the
dispatchers’ monitors. Additionally, the rail ATO system does not display headways ot
arrival predictions for stations other than the terminal, which is problematic because
headways are fundamental to service quality. On the rail side, there ate no ndicators or
alarms that alert dispatchers to problems; dispatchers must observe them. For buses, the
marker on the map changes colots if the bus is early or late. Early and late can be calculated
either based on the schedule or on the headway to the previous and next buses, whichever

dispatchers select.

3.4 Internal Historical Applications
The ATO and AVL systems have historical teporting tools that produce on-time

performance repotts for any desired period, based on either terminal departure and artival
times or headway adherence. The AVL system has a more sophisticated reporting tool,
Smart Bus Mart, which allows a user to view performance information in different ways. The
most commonly used teport is the OTP report for the MBTA’s 15 most heavily used routes
(dubbed Key Routes — see Figure 9). Operations staff can access several other pre-made

reports, including on-time performance for any given petiod, schedule adherence down to
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the individual trip, and headway adherence. If they desire additional mformation, they can
specify additional reports through a Web interface (Figure 8). The metric of interest, level of
aggregation, time period, route(s) are customizable. Performance can be aggregated by driver,

garage, route, and other elements.

Current OTP is based on the MBTA’s service standards. These standards are developed and
revised through a public process that takes customer input into account (MBTA 2010). The
current service standard for rail transit is a train departing the terminal within 150% of the
scheduled headway. The standard for bus is two-pronged, differentiated based on the
frequency of service. Walk-up service — where customers are assumed to show up to a stop
ot station without looking at a schedule — is defined as service with a frequency of ten
minutes or less. Scheduled service is anything with a headway greater than ten minutes. The
on-time standard for walk-up service is a vehicle arriving on that route within 150% of the
scheduled headway. For scheduled service, on-time is defined as departing a timepoint
between one minute early and five minutes late. Bus OTP is measured at multiple pomts

along the route: the origin, several midpoints, and the destination. Overall OTP is calculated
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Figure 8: Excerpts from the MBTA's Smart Bus Mart Reporting Tool
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as a percentage: total timepoints the bus or route served on-time divided by its total number
of timepoints. Schedules for some routes employ different standards throughout the day.
The #1 bus, for example, is scheduled to arrive at 7-8 minute intervals in the peaks, so it
would be evaluated on the headway standard for those periods. In the midday, it is scheduled

at 13-minute intervals, so it is evaluated on the schedule standard. Table 4 summarizes these

standards.

Service On-Time Standard Measurement Point

Rail Headway < 1.5 times scheduled Departure point (1 per trip)
Walk-up Bus Headway < 1.5 times scheduled Key timepoints (5-10 per trip)
Scheduled Bus 1 minute early to 5 minutes late Key timepoints (5-10 per trip)

Table 4: Summary of MBTA Service Standards

In addition to performing its own analyses, the MBTA also provides data to local universities
for their research. Usually such research involves analyzing the data beyond what is possible
in the reporting system, and the findings are presented to the MBTA m a memo or report,
along with recommendations. These reports generate additional information for the MBTA,
and the researchers attempt to transfer the knowledge they gain by providing
recommendations. In some cases, like Malikova’s (2012) suggestions to adjust the headways
of three-car trains on the Green Line, this knowledge is applied to improve service. In other

cases, it remains unused.

The MBTA has also begun analyzing running times from the AVL system using Hastus ATP
(a module of their scheduling software, Hastus). Service planning has begun rescheduling
routes based on the results. ATP is an analysts tool that uses AVL data as an mput (GIRO
2011). It analyzes varations in the running times within each period of the day, as specified
by the user. Its output is a running time for each route in each period that will allow buses to
make their next trip a desired percentage of the time. This percentage must be defined by the
user. If it is set too high, the softwate will require mote buses to run the service; too low and
service will run late. ATP provides a mote accurate input that Hastus uses to allocate buses
to a route, which it then feeds into vehicle and crew schedules. More accurate running times
means that Hastus allocates a number of buses that should enable a route to run on time the
desired percent of the time. Underestimating running times means a bus may not make its

next trip, while overestimation results in less service than is possible.
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This represents a shift in the internal use of ADCS beyond generating information for
information’s sake. OTP is simply information, and there is not currently a systematic
process for applying that information to improve setvice. Poor performance is
acknowledged and dispatchers are sometimes questioned as to why service was poot, but
there is no institutional process of determining how to addtess recurring issues. Analyzing
running times with the goal of improving bus scheduling is the creation of mnformation

(running times) with the intention of generating knowledge (how to change the schedule).

With the recent exception of Hastus ATP, the MBTA’s regular use of historical data has
been lLimited to OTP reports: a single percentage for each route every day. These ate
individual reports on one dimension of service quality, and different views of OTP such as
by route or by timepoint are separated. This limits the amount of knowledge a viewer can
obtain. The burden is on the viewer to relate different performance information and identify
causes and trends. Showing only one dimension of service at a time, such as OTP or
dropped trips, does not provide a comprehensive view of service. Without relating different
dimensions of service quality, it 1s difficult to understand what is causing varations in OTP

(management, equipment, passengers, weather, etc.).

Though the MBTA’s internal reporting systems are flexible enough to allow staff to gather
information on other dimensions of setvice, they must be willing to take the time to
aggregate and analyze the information. Multiple reports can provide information like average
speeds, headways, incidents, labor shortages, and other factors that influence of OTP, but

seeking out these repotts is not part of the daily routine for operators and managers.

The Key Routes On-Time Performance report for buses, shown in Figure 9, 1s emailed to
dispatchers and OCC managers every moming, The report provides summary mnformation
about overall OTP on each route and how they compare. However, it provides no detail as
to which buses were eatly or late, how off schedule they were, whether they were judged
based on the headway or schedule standard, or how many passengers were affected. Thus
there is little knowledge that a viewer can develop from this report. There is nothing to help

explain why and how this performance occurred.
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The aggregate on-time performance number for a route does not allow operations personnel
to know what is the result of factors beyond their control like traffic, and what is due to
management. This information requires further investigation using the Smart Bus Mart
reporting system, which is time consuming and may still require further analytical work to
capture multiple dimensions of performance. Shared segments where passengers can take
multiple routes ate not judged based on a joint headway across routes, but on the headways
ot schedule adherence of each route individually. This is particularly problematic when the
individual routes are not frequent enough to be judged by the headway standard, but the
frequency of the combined service is. This is the case for the #116 and #117, which operate
at 20-30-minute frequencies for much of the day. They serve the same termini and share
much of their route, so most customers can take either service. Dispatchers can manage
service to maintain a combined headway between the two routes, but this may result in many

off-schedule departures and low OTP. From a customer perspective, such poorly rated
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service is good service.

Additional information is available from other reports that must currently be sought out. A

line report (available in Appendix A, page 121) provides detail on:

* 'The breakdown of not-on-time trips by reason (early, late, headway)
¢  OTP by hour and direction

*  OTP at each point along the route

* OTP for each run.

While this report provides details that address many of the shortcomings of the single OTP
number, it is four pages long for each route. Additionally, it still examines each dimension
separately. OTP by time is separate from OTP by location, so the viewer can understand
that there are problems during specific hours (2:00 PM) or at specific places (Hynes Station),
but not a specific place and time (such as Central Square at 5:00 PM). This limits the amount

of knowledge that can be gleaned from the mformation.

Rail OTP reporting is similar, though more tabular and less visual, as shown m Figure 10.
The report summarizes OTP by period and direction (the Red Line has two branches, for a
total of four directions). As described earlier, OTP for rail is judged solely on the headway
departing the terminal. The 93% overall OTP for the Red Line on this day means that 93%
of trips left the terminal within 150% of their scheduled headway. This report only measures
service on the two branches individually. Thete is no measure of combined service on the
trunk portion, though 67% of trips are only on the trunk.” This means that the scheduled
headway that is the basis of on-time is the headway between two trains of the same branch.
Branch headways are 9 minutes in the peaks, so trains are on-time if they leave within 13.5
minutes of the priot trip on that branch. Two northbound trains that reach the merge point
at JFK/UMass 10 minutes apart are on-time, even though this separation is more than
double the expected joint headway of 4.5 minutes. Short headways (bunches) still count as

on-time.

5 Based on the O-D calculations descrbed in Sectioﬁ 41.3
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Moreover, this report is the first of 13 pages that present OTP for each trip run that day.
This is a great deal of information that results in little knowledge. Unlike the bus report,
which contains intermediate detail about petformance over the coutse of the day or route,
the rail report contains only highly aggregate and highly disaggregate information. This limits
the ability to gain knowledge of trends and patterns. Moreover, there is no context for the
OTP numbers other than time and direction, which inhibits the viewer from understanding
potential problem ateas. Furthermore, the laxness of the standard means that all three rail

lines are usually above 90% on-time, even when service may be perceived as lacking.
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Figure 10: Front Page of the Daily On-Time Performance Report for Rail

The current institutional applications that transform data from ADCS into information are
limited in the amount of knowledge they generate. This is a result both of what information
is produced (e.g. rail OTP does not reflect service quality) and how it is presented (e.g. bus
OTP is not aggregated in ways that can inform management decisions). While the work of
Shireman (2011) and Malikova (2012) has successfully generated knowledge from ADCS
data, and in the case of Malikova, even led to a change in Green Line headways, this
knowledge generation has been based on a single dedicated analyst addressing a specific
problem. Their work is not based on the MBTA’s standard reports and took weeks or

months of analysis. A public agency with limited resources and overburdened staff needs its
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performance reports to be able to generate similarly useful knowledge that it can apply every

day. Broadening the audience to include the public creates an additional set of stakeholders

to assess service and suggest improvements.

3.5 External Historical Applications
The MBTA has also developed public-facing information from ADCS data that riders can

incorporate into their own understanding of the system. The MBTA currently publishes
performance reports on a monthly basis (Figure 11), disaggregated to the individual subway

lines, which are complemented by an annual report on service statistics.

The information in the monthly scorecard is aggregated to the line level. The detail pages for
each line show the historical performance of each metric over the past 12 months. This 1s
enough information to understand general month-to-month trends and to draw correlations
among them. For example, seeing a drop in vehicle maintenance and system maintenance

along with poor OTP suggests that maintenance levels influence performance. However, the
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historical information is static and non-interactive, limiting the public’s ability to view service
performance as it relates to their use of the system. The understanding that can emerge from
this information is limited to “Is the T performing better or worse than usual?” and “How
does my line compare to the rest of the system?” This falls short of knowledge, however,
because the understanding of how and why performance is changing is speculative. The
interpretation of this information could be that the MBTA is pootly managed, or that it has
nsufficient resoutces, that it needs new equipment, among others. This ambiguity reduces

the value of this mformation to both the MBTA and to the public.

The annual report (known as the Bluebook) provides extensive amounts of information on
maintenance, ridership, equipment availability, and other characteristics. The information 1s
aggregated along multiple dimensions, among them month, route, and service area. There s
a wealth of information to sift through, which can be used by politicians, reporters, advocacy
groups, researchers, or riders to understand the state of service at the MBTA. However, it is
only produced once per year® and is in a relatively inaccessible format (a 100 page document).
Generating knowledge from information in the Bluebook thus requires searching through it
and relating pieces of information to one another. The knowledge 1s thus limited to people

who are willing to devote time to this research and by how they communicate their findings.

3.6 External Real-time Applications

The MBTA also makes real-time bus and train information available through an open data
feed, from which developers have created Internet and smartphone applications providing
customers with train and bus arrival times (Figure 12). In 2012, the MBTA also introduced
in-station train arrival predictions at most of its heavy rail stations, providing all customers
with an estimate of their wait without mobile Internet access (Figure 13). Silver Line BRT

stops on Washington Street and at Logan Airport also feature arrival predictions.

¢ Or is supposed to be, though the latest version is from 2010
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Figure 12: Mobile apps based on the MBTA's NextBus Information and developer feed.
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Figure 13: Real-time train and bus arrival displays
Left: a countdown sign on the Red Line. Right: arrival sign for the Washington St. Silver Line.
This has been a successful application of ADCS because it gives the users (customers) the
information that they need in order to make a decision. Providing real-time information
allows customers to know how long their wait will be and may inform their decision about
route or mode choice. A customer can see how many minutes remain until the train or bus
arrives, and can choose to take a taxi or walk or bike if it is too long. The real-time
information creates an immediate basis for a decision such as “I need to take a cab to make
it to the airport on time,” or “The 1 bus isn’t coming soon so I should take the Red Line.”
Additionally, seeing the countdown signs every trip establishes knowledge of normal
headways on the line, which may ultimately change riders’ expectations. This i turn may
also create external pressure on management as riders begin to get a quantitative view of

service.
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The countdown signs and real-time bus arrival apps provide users with a snapshot of service
that is relevant to them. While over time they accumulate multiple snapshots, which
represent multiple pieces of information, they still do not have a full picture of the system.
‘This means they can see problems with individual ttips — a long headway, a slow trip — but
do not have information on what is going on in the rest of the system that may be causing
these problems. The links between performance on different lines are not always evident.
For example, when a rail line has a failure that requires the MBTA to provide shuttles, 1t
pulls the buses from the most frequent routes because these can absorb the loss with less of
an impact on headways. Customers, howevet, do not have this piece of information and thus

may never relate a breakdown on the Orange Line with a long wait for the #28 bus.

3.7 Effectiveness of Current Data Usage at the MBTA

Real-time information derived from ADCS provides both dispatchers and passengers with a
depiction of curtent performance that allows them to evaluate the need for and effect of
action. It enables dispatchers to see in real-time how unscheduled variations in setvice
impact the system, as well as the effects of actions they take to adjust for these. In theory,
this should accumulate over time to form wisdom that allows them to predict the effect of a
problem and take action to mitigate it. Similarly, passengers with access to real-time

information can make more informed decisions about mode and route chotice.

The agency’s public information, however, is not comprehensive enough to generate
knowledge about causes of problems. The public can either get (1) a granular snapshot of
current system petformance from the real-time arrival information or (2) an aggregate

summary of performance by line over the course of a month or year.

These two extremes do not allow external users like advocacy groups, the press, and elected
officials to analyze petformance in detail to identify trends, problems, and potential solutions.
The historical information is also static and non-interactive, limiting the public’s ability to
view service performance as it relates to their use of the system. It is thus difficult for the
public to provide anything other than anecdotal evidence for complaints about service
quality. It is possible to archive the real-time data feed and use this for analysis, which was
undertaken by a group of MIT researchers in 2011 and 2012 (Gerstle 2012). Their research

successfully analyzes the data to produce useful information about running times, but they
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note that the data was imprecise due to the relatively infrequent nature of the feed (only

refreshed every 60 seconds).

The limitations of the current performance information restrict the amount of knowledge
that can be generated. Internally, the amount of work required to relate different pieces of
information and generate useful knowledge is time-prohibitive, thus information is rarely
translated into knowledge or action. The existing performance reports do not provide
enough detail to show the impacts of dispatchers’ reactions to real-time information. On the
rail system, headway adjustments mid-route to avoid bunching are not reflected in the
current OTP numbers because they only measure terminal departures. The same action
would be reflected in the OTP statistic for buses, but the aggregated reporting format makes
it difficult to draw direct connections between actions and OTP. Additionally, the cutrent
OTP numbers are route-specific, which does not capture joint service for a corridor where
customers can take multiple services. The Red Line is the primary example of this, where
current OTP evaluates Ashmont and Braintree trains independently. This also occuts on
several bus routes such as the #116 and #117, #71 and #73, and #70 and #70A. Not
measuring a joint headway (time between vehicles regardless of route) means that actions to
even out service between routes do not factor into O'TP. Table 5 in Chapter 4 explains this

limitation in more detail.

The MBTA’s repotting system could be improved by modifying the historical performance

information to eliminate some of the barriers to its use. Namely:
1. Changing the way service is measured to reflect how customers experience service;
2. Eliminating the need to search for detailed information;

3. Showing and relating multiple dimensions of setvice.

The following chapter will discuss the approach this research took to incorporating these
changes into a new petformance report, and how the process influenced the effectiveness of
the performance information. Chapter 6 will propose how this information can be made

accessible to other parts of the organization and to the public in the future.
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Enhancing the Utility of
Performance Information

Having assessed limitations in the MBTA’s cutrent use of its historical data, both for internal
and external audiences, this research attempts to address the issues that limit its usefulness,
particulatly for operations personnel. In doing so, it rethinks both the metrics themselves,
their presentation, and the process used to create them. This chapter describes the process
of developing new performance reports for the MBTA’s heavy rail system, as well as the
resulting changes to the metrics and reports themselves. It concludes that to be useful,
performance information must be both easily comprehensible and trusted by service
managers. Reotienting metrics around customers and using graphical techniques to display
information may improve comprehensibility. The effect of new communications techniques
can be tested via a collaborative process, which also helps to build trust in the reports and a

willingness to disttibute them beyond the operations team.

4.1 Approach and Objectives

The work was originally conceived to provide more frequent and detailed nformation to
customers about service quality that complements the performance “snapshots” produced
by the countdown signs. It started with reconceptualizing metrics, and engaged the MBTA’s
OCC eatly in the process. The rationale behind this was that if a quantitative assessment of
their work is to be made public, service controllers should first be given input into the
measurements. Moreover, they should be given the chance to see and address issues that
become evident with new measurement techniques. The initial discussions with the OCC
revealed that they were also interested in revised performance metrics, which shifted the
focus of this research to creating performance reports that contribute to dispatchers’
knowledge specifically. Though the intention of releasing information mote broadly within
the MBTA and publicly has been retained, this objective was not achieved in the course of

this research.
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41.1 Approach

While not initially planned, engaging the OCC mitiated a collaborative and iterative process
to incorporate feedback from operations personnel on what types of metrics would mpact
the way they managed service. This process has been crtical to the project’s acceptance by
the OCC and its ability to propose and implement service changes (described in Chapter 5).
It included multiple visits to the OCC to meet with dispatchers and managers and observe
their work. Operations staff have domain knowledge of operational problems and the merits
of different performance metrics. This has been combined with MIT’s technical expertise in
manipulating data and ability to review existing practice and literature to produce new

performance reports.

A central tenet of this apptroach is that performance management is not a technical problem
to be solved analytically, but a managerial problem to be addressed socially. This applies
motre to transit systems whose trains are driven and dispatched by humans than to
automated rail systems, where the only humans interacting with operations are passengers

(most of the time).

4.1.2 Objectives
Based on the concerns listed in Chapter 3 about the existing metrics, this research has

identified multiple objectives for revised performance reports. These include being:

1. Reflective of the customer experience, capturing the operating characteristics of
transit service that are salient to riders such as speed, frequency, and reliability;

2. Sensitive to variations in setvice that passengers are likely to perceive, like a long
headway or a dropped trip;

3. Limited to one page (either physical ot virtual) so that information is less likely to be
overlooked or ignored.

4. Easily understood by operations control staff, managers, other MBTA personnel,
and passengers alike;

5. Detailed enough for operations staff to identify problems underlying poor
performance and take corrective action;

6. Based on existing automatically collected data so that calculation can be automated
and done in real-time or for the past day;
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This work hypothesizes that these qualities enable petformance information to impact
service. This chapter discusses multiple iterations of new performance reports for the MBTA
and the rationale behind their evolution as they strove to meet these objectives. The
reactions and feedback from OCC managers and staff were the ptimary means of
determining how well the objectives four and five were being met. Their feedback provides

important lessons on how one of the intended audiences for the reports understands them.

The performance information and reports that result from this research are for a single
agency, based on the data and needs of the MBTA. Other agencies may face different
problems with their existing information and service or have management structures that
necessitate different solutions. The physical outputs of this research thus may not be
applicable to other agencies or even other lines within the MBTA, though the process and

principles may still be informative.

4.1.3 Technical methods

One of the initial drivers of this work was the introduction of real-time arrival signs on the
subway. This research uses the same data that underlies the prediction software. These are
records from the ATO system of a train occupying a specific circuit. The data are archived in
a Microsoft SQL Server database, where additional tables are created to calculate headways,
running times, and other statistics from them. Passenger information comes from archived
AFC transactions, which are stored in a separate SQL database. Because the system records
entries only, a process similar to that of Barry, et al. (2002) is used to infer destinations for
these transactions. This is part of ongoing MIT research for the MBTA. This results in an
origin-destination (O-D) matrix for the rail system for each day of data. An average daily
passenger volume is then calculated for each O-D pair. The passenger O-D data used in
developing these reports is an average for days in April 2012. In much of this work, the total
number of passengers for each O-D is converted into a rate (passengers per second) for each
period. This assumes constant arrivals over the period, which is consistent with the theory of

random arrivals used in most transit planning (Wilson and Attanucci 2011).

4.2 Initial Performance Report

‘The ultimate goal of performance measurement is to enable performance improvement. This

requites that managers are able to interpret the information and relate it to their knowledge
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about service. Choosing what information to produce from ACDS data began with
hypothesizing what knowledge about service would be most useful and applicable to MBTA
operations personnel and to riders. Discussions with OCC staff tevealed complaints that the
rail reports were meaningless because they were always above 90% on-time, even after
significant disruptions. They also criticized the existing reports for not considering joint
service, both on the Red Line and on the #116 and #117 bus routes that share a majority of
their stops. These concerns suggested that operations staff desired information that more
accurately represented service as passengers see it. Knowing that the reports judged these
services separately but most customers used them interchangeably invalidated the

performance information in their view.

Conversations also revealed that OCC staff did not seek out performance information, but
did respond to the Key Bus Routes report that was emailed to them every day. A frequent
ctitique of this report, however, was that it gave no context as to what was driving the OTP
numbers. This suggests that OCC staff desired information about specific problems with

service that they could influence without having to search for it.

‘Two elements of the customer experience on public transit can be easily measured by AVL
and AFC: waiting time and in-vehicle travel time. Other aspects of the customer experience
such as crowding, comfort, and convenience atre also important, but less readily measured
with these two data sources. To measure travel and wait time, this work began with two

basic units of analysis representing these parts of the expetience:

1. Headway as a measure of wait time, as expected passenger wait time is half of the
headway (Wilson and Attanucci 2011)

2. Station-to-station travel time

The intent of these reports is to measure instances of poot service to provide a customer
petspective, instead of the system-otriented OTP. This stems from the assumption that
customers expect a certain level of performance, so poor service receives more attention
than good service. Put differently, passengers do not give the MBTA credit when it is

running well to the same extent that they blame it when setvice is poor.
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Based on this, we have chosen to measure the big gaps for rail services but have excluded
counting bunches. The rationale is that for rail services, short headways are not a concern
except when they create big gaps behind them; consistently short headways are simply good
service. The definition used for big gaps is based on the MBTA’s existing headway metric,
1.5 times the scheduled headway, but this is limited to three minutes beyond the scheduled
headway in order to account for long headways that occur during off-peak hours. Under the
current standards, for example, with a 13 minute scheduled headway, 19.5 minutes is still
considered acceptable. From a passenger perspective 13 minutes is already a long headway,
so even a few minutes longer is poor service. With a three-minute cap, any headway over 16
minutes is unacceptable for a 13-minute frequency. Additionally, on the Red Line, which has
two branches, the current OTP metric measures trains on each branch individually but does
not measute the combined setvice on the shared portion, even though 67% of weekday
travel is only on the shared portion.” The result is that during the peak petiods, where branch
headways are scheduled at nine minutes, as long as a train leaves a terminal every 13.5
minutes or less service is on-time, even if service is bunched. Under the proposed metrics,
big gaps are counted separately for trunk and branch services. In the example shown in
Table 5 (below), where the headways should be 4.5 minutes on the trunk and 9 minutes on
the branches (peak hour service levels for the Red Line), the threshold for big gaps is 6.75

and 12 minutes, respectively.

Trunk Proposed Criteria Existing

(branch) Trunk Branch oTP
Time Branch Headway Service Service Criteria
8:26 Braintree Good Good On-time
8:30 Ashmont 4 Good Good On-time
8:37 Braintree 7(11) Big Gap Good On-time
8:43 Ashmont 6(13) Good Big Gap On-time
8:50 Braintree 7(13) Big Gap Big Gap On-time

Table 5: Example of Red Line Headway Performance under Proposed and Existing Criteria

The headway metric is able to be calculated at any station or intermediate point. An analysis
of headway variations along the line shows that headways generally remain consistent from
terminal to terminal. The median difference in headway for a train’s start and mid points is

zero ot near zero, and 80% of trains’ hecadways vary less than two minutes between different

7 Based on the O-D calculations described in Section 4.1.3
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points along a route. Measuring headways at one point in the system can thus provide an
accurate depiction of service along the entire line. This provides justification for measuring
headways at the terminals (the current practice), though it provides equal justification for
measuring at 2 midpoint. Managers know that there are more passengers at midpoint stations

b

therefore measurements at these points are likely to be more salient.

4.2.1 Presentation

As seen in Figure 14, the first draft of the performance repott revolves around the absolute
number of big gaps. This is similar to the OTP metric as it measures only one thing (in fact,
the opposite of OTP), but in more detail. In addition to the top-level total big gaps, the
report counts big gaps for service on each of the Red Line’s branches. These break down
further into subtotals for each period and direction, for both trunk and branch service. The
totals and subtotals are color-coded red, otange, and green to- good, mediocre, and poor
service.’ The chart in the upper right showing total big gaps over the past five days is meant
to give an indication of relative performance and an incentive to perform better than
previous days. Finally, graphs representing all headways over the day provide a disaggregate
view of service, with big gaps marked by red triangles. This is included because initial
analyses showed headway varying from one train to the next. Plotting the headway values
over the course of the day on a line chart emphasizes the change in headway from one train to
the next. Customers in theory would prefer as little variability in headways as possible, since
this makes their wait time more predictable. These graphs highlight headway variations in

addition to big gaps, as both negatively impact the customer experience.

While this report centers around big gaps, it also includes a count of long dwell times at each
station. This metric attempts to capture two things: (1) slow trips due to overcrowding,
which increases dwell times because more passengers enter and leave the train, and (2)
dispatchers holding for headway adjustments, which substitutes one passenger
inconvenience for another. This metric focuses on a different aspect of the customer

expetience that is not captured in headways or OTP.

8 The thresholds for these color codes were arbitrary at the time this report was produced, since it was 2 proof-
of-concept. The idea was later abandoned, so no formal methodology was developed.
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4.2.2 Reaction and Input of Operations Personnel

This draft of the report was presented to the director of the OCC, who was surprised by the
headway graphs. They clearly show irregularity in service, particulatly northbound whete the
two branches merge. He also noted that measuring only big gaps may be inadequate, as
dispatchers could hold or express trains to maintain headway, but these also negatively
impact the customer experience. This is a fact that is well known in the transportation
community, which the counts of long dwell times attempted to capture. In retrospect, the
dwell time metric does not provide useful information for dispatchers because it captures
two different problems that may require different actions. However, these could result from

heavy passenger loads or from dispatcher action.
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Figure 14: First Draft of Performance Report
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Objective Effectiveness

Capture speed * Long dwell metric attempts, but does not
capture trains slow in between stations
* Conflates holding and crowding

Capture frequency * Big Gaps measure instances of infrequency,
but no overall measure
» Headway charts provides some visualization
of frequency, but do not summarize

Capture reliability * Big Gaps capture unreliability
* Headway charts effectively visualize
reliability by highlighting variation in
headways

Sensitive to service variations that are * Big Gaps and dwells based on a threshold
perceptible to passengers that represents perceptibly bad headway

* Do not distinguish between bad and very
bad

Easily understood by OCC staff * Big Gap numbers are straightforward and
understood
* Headway charts are powerful visualization

Detailed enough to identify problems and « Headway charts provide detail to see
actions problems, and imply need to manage
headways

* Long dwell counts do not, since they may be
out of dispatch’s control

Table 6: Summary of First lteration of Performance Report

4.3 Modifications and Second Draft
Based on feedback from the OCC directot, the report was modified to include additional

metrics that complement the big gaps measure better than the counts of long dwells. Adding
the number of slow trains attempts to address the concern that dispatchers could hold trains
to maintain headway, similar to the previous dwell time metric. Dispatchers are strongly
discouraged from expressing trains, so in the MBTA case counting express trains does not
add much information. An analysis of the distribution of train running times, shown in
Figure 15, revealed that the distributions were fairly tight. Figure 15 shows the median
running times for each major segment of the Red Line by period. The error bars that extend
to the 10™ and 90" percentile values for the running time distribution. The length of the
error bar represents the variability in running times. Variability is significantly higher on the

trunk than the branches. However, the largest change between the median and the 90
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percentile was 23% (Alewife-JFK, Evening). A threshold for slow trains was set at 15%
longer than the median running time for the period. This first iteration of the slow trains
metric was based on end-to-end run times (from leaving the first stop to arriving at the
terminus), which includes dwell times at all intermediate stations. The slow trains metric
replaces the long dwell time metric from the first draft, as it captures both long dwell and
running times. It still does not differentiate between slowness due to holding and slowness
due to crowding, however. From a passenger perspective, a slow train is inconvenient

regardless of its cause, but this may reduce the usefulness of the metric for management.

Since big gaps describe the tails of the headway distribution, the second draft of the report
incorporates a measure of service regularity to capture the variation within the full
distribution. The objective is to measure the degree of variation in headways, as the graphs
on the initial report show headway deviations that do not create big gaps. Variations in
headway create uneven train loads, extending dwell time and potentially causing delays. The
MBTA’s real-time signs displaying the time until the next train add to the importance of

consistent service. Customers can now see the time until their train and the train behind it,

Median Running Times by Segment and Period, with
10th and 90th Percentile Error Bars

04500 I -- m Early Moming u AM Peak

] E f f ® Midchy PM Peak
Rl £ 1 S S ® Benng ®Late Night
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Figure 15: Median, 10", and 90" Percentile Running Times for the Red Line by Period and
Segment
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which can cause frustration if they have a long wait and see that the second tramn is just

behind the first.

The Level of Service (LOS) metric from TCRP Report 88 measures the standard deviation
of differences from the scheduled headway and maps it to an LOS grade, which mimics the
highway LOS grade (TCRP 2003). The calculation, as shown in Equation 1, first calculates
the difference between the actual and scheduled headway for all trains in a period (duting
which the scheduled headway is constant). It then takes the standard deviation of this
distribution, and divides this by the scheduled headway. This is effectively a normalized

standard deviation, relating variations in the headway to its scheduled value.

SD{h1 - hs, hz - hs, ...,hi - hS}
h.S‘
Equation 1: Transit LOS

h; = headway for tram /
hs = scheduled headway during a period of consistent headways

SD{...} denotes the standard deviation of the set of headway deviations

The tesult is a number usually between 0 and 1, with 0 indicating no deviation from the

scheduled headway. TCRP Report 88 maps this metric to letter grades as shown in Table 7.

Grade Range Points
A 0.00 - 0.21 4
B 0.21-0.30 3
C 0.30-0.39 2
D
E
F

0.39-0.52 1
0.52-0.74 1/3
>0.74 0

Table 7: LOS Grades

In this research, an aggregate grade for multiple periods with different scheduled headways 1s
calculated using a weighted grade point average (GPA). Each grade is assigned a pomt value,
as with academic grades (shown in Table 7), which are weighted by the duration of the
period as a fraction of the service day (i.e. the AM Peak is 3 of the 20 service hours so its

weight is .15). The total weighted GPA is the sum of the weighted GPAs for each period,
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which is then translated back into a grade (.e. 2 2.5 1s 2 C, 2 3.5 a B). The advantage of this is
that it provides a single grade for the entire day. The disadvantage is that it does not weight
by passenger levels, in fact the peak periods with the most passengers are shorter and thus
receive less weight. This was intentional, based on a judgment that regularity 1s more
important in the off-peak periods with longer scheduled headways. An alternative would be
to weight by passenger volume, to create a combined weight that takes multiple factors into

account, or to aggregate peak and off-peak service separately.

4.3.1 Presentation

As shown in Figure 16, in the second iteration of the performance report the big gaps
measurement 1s augmented by the LOS and slow trains totals. The report presents
nformation about multiple dimensions of service together. The intention 1s to emphasize
these as equally important and allow corzelations to be drawn between them. For example,
holding trains at stations to adjust for headways would likely result in a low number of big
gaps, but a higher number of slow trains. This research theorized that seeing such values for
a day when dispatchers recall holding a lot of trains would underscore both the positive and
negative consequences of holding for headway adjustments. The graph charting the
performance of the past five days’ performance was removed for technical production
reasons. At this stage in its development, the reports had moved from proof-of-concept to a
preliminary level of production. The algorithms were creating performance metrics on-
demand, but not storing them, so the data structure to produce historic comparisons did not
exist. The concept of comparing a day to historical performance is remntroduced in

subsequent drafts.

On this particularly day on the Blue Line, setvice was generally consistent, with very few big
headway gaps or slow trains. Values for each of the measurements are provided by period
and direction below. Providing information about which periods are performing pootly
allows dispatchers to focus theit management efforts. The headway graph provides detail to
substantiate the big gaps and LOS measutements. The legend at the bottom explains the
methodology behind each of the calculations. This allows people viewing the report to

understand what the numbers are based on and thus how to influence them.
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4.3.2 Reaction and Input of Operations Personnel

The incorporation of the additional measurements was received positively, though the letter
grade was viewed as somewhat harsh. One operations manager commented that it seemed
impossible for service to get above a C, even when everything else looked good. This was
discouraging to managers and dispatchers. Their reactions began a conversation about
whether to compare to a theoretical ideal (i.e. zero big gaps, no variation in headways, no
slow trains) ot to an observed achievable level of good service. The next draft of the repott

attempts to address this dilemma.

'These drafts of the reports were used to evaluate the effects of the pilot programs (discussed
in Chapter 5). Managers received these reports frequently for several weeks. In meetings
with them, we observed that managers paid attention to the top-level numbers and the
headway graphs. The breakdowns by period and direction were less important. Another
operations manager commented that the report gave him an easy way to investigate
customer or employee complaints of long headways because he could simply look at the
headway plot. This implies that the intermediate levels of aggregation to the line and
direction were not adding useful information for the managers. The combination of
summary numbers for the entire day and the detailed graphs showing every traiﬁ provided
enough information to understand how service was that day and what was driving the

numbers.
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Blue Line Big Gaps' Regularity? Slow Trains®

Daily Performance
Tuesday 1 0
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1. The standard for a big gap is either 1.5 times or 3 minutes greater than the scheduled headway, whichever is lower.

2. Headway regularity is calculated by taking the standard deviation of the differences from the scheduled headway (actual —
scheduled) and dividing by the scheduled headway. The ratio must be below .21 foran A, 3foraB, .39 fora C, 52foraD,
and .74 for an E.

Figure 16: Second Draft of Performance Report
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Objective

Effectiveness

Capture speed

Capture frequency

Capture reliability

Sensitive to service variations that are
perceptible to passengers

Easily understood by OCC staff

Detailed enough to identify problems and
actions

» Slow train metric captures trains delayed by
the end of their trip

* Still conflates holding and crowding, and
also bunching

» Big Gaps measure instances of infrequency,
but no overall metric

» Headway chart provides some visualization
of frequency, but does not summarize

* Big Gaps capture unreliability
« LOS grades provide quantitative measure of
overall regularity

Headway charts effectively visualize
reliability by highlighting variation in
headways

* Big Gaps based on a threshold that
represents perceptibly bad headway

» LOS grades represent noticeable change in
regularity from one to next

+ Big Gap numbers are straightforward and
understood

Headway charts are powerful visualization
that managers can actually use

LOS grades are opaque in their calculation;
improvements within one grade level are
not shown

* Headway charts provide detail to see
problems, and imply need to manage
headways

* LOS grades and big gap counts are too
aggregate to identify specific issues

* Slow trains are counted but detail is not
shown

Table 8: Summary of Second lteration of Performance Report

4.4 Third Draft: Refocusing the Reports on Passenger Impacts

While conducting pilot projects, passenger volumes were incorporated into estimates of

travel time to emphasize how many people experienced service improvements. These

numbers resonated with the operations managers, providing motivation to translate the

performance metric into units of customers or customer hours rather than trains.
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4.4.1 Passenger-Weighted Metrics

O-D data estimated from AFC data, as described by Gordon (2012) produces detailed
passenger demand information. These measures include customer boardings at a station and
total riders between any two stations during any given period. This enables the performance
of each train to be weighted by the expected number of customers experiencing that service.
For example, a nine-minute headway at rush hour affects more people than in the late night,
though both are big gaps. In the case of branched services, arrival rates for trunk-bound and
branch-bound customers can be calculated individually to account for the fact that not all
passengers can take every train. This embeds an additional piece of information in the
metrics: the impact of performance on passengers. Such information makes explicit the
relationship between the performance of trains and the experience of passengers, where it
was previously implied. Public transit 1s a service with the objective of moving people.
Measuring aspects of service that matter to customers enables operations personnel to

directly understand the impacts of their actions on achieving this objective.

These metrics employ historical passenger demand rather than real-time demand. The
MBTA’s AFC data on passengers is not processed every day, and is thus not available on the

same basts as ATO information on train locations.

Passengers Affected by Headway Variation and Big Gaps
Counting the number of passengers that wait more than the published headway, a big gap, or

a very big gap (twice the headway), provides an estimate of how many people likely
perceived service as poor because they waited longer than they expected. The number of
people waiting longer than the published headway can be calculated by multiplying the
passenger arrival rate by the difference between the actual headway and the published
headway, as shown in Equation 2. This is the expected number of people arriving during
that interval who wait longer than the published headway. Passengers arriving after this
interval do not actually expetience a long wait. Likewise, the number of passengers waiting
longer than a big gap ot twice the headway is calculated by multiplying the arrival rate by the
difference between the scheduled headway and the respective threshold (varying the value of
h). This gives the subset of those passengers with “extra” wait time who watted the longest.
These calculations can be done separately for passengers waiting for trunk and branch

services, using branch-specific atrival rates and headways.

70



Equation 2: Passengers Affected by Big Gaps

Where:
A, = passenger arrival rate for the period the headway occurs in
h; = headway for train
b, = headway threshold above which passengers are counted (scheduled

headway, big gap, etc.)

Summing over all periods and both trunk and branch services provides an estimate of the
total number of passengers who experienced a wait greater than what they should expect
based on the published schedule. This can also be expressed as a percentage — the

proportion of riders who wait too long — which is a salient figure for operations personnel.

Expected Total Passenger Wait Time
This metric is intended to capture the effect of service variability on passenger wait times.

Calculations of these metrics assume a constant passenger arrival rate. This rate is used fo
calculate the number of passengers waiting and the total wait time for each train, assuming
all customers board the first train. Because each passenger that arrives waits a different
amount of time, longer headways have more passengers who have been waiting for a larger
total amount of time. Assuming passengers atfive at a regular rate (ie. a random arrival
process), the average wait time is half the headway, and total wait is the total passengers

multiplied by the average wait. This formula is presented in Equation 3:

h
Average Wait = 5
Total Passengers = Axh
. hy Ah?
Total Wait Time = A+ h (E) ===

Equation 3: Total Passenger Wait Time for a Single Train

Where:

A = arrval rate of pas