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Abstract

The degradation of articular cartilage is the hallmark in the pathogenesis of
osteoarthritis (OA). It still remains largely unknown which precise mechanisms initiate
cartilage degradation. However, risks factors include traumatic joint injury that results in
immediate upregulation of inflammatory cytokines within the joint, as well as direct
mechanical damage to the cartilage, factors known to contribute to the onset of OA and

its progression.
The first aim of this thesis focused on elucidating the importance of post-injury

mechanical loading of cartilage. An in vitro model was used to simulate aspects of joint
injury: mechanically damaged cartilage was co-cultured in the presence of inflammatory
cytokines (TNF-Q and IL-6). Intermittent dynamic compression was then applied to

simulate different strain levels known to exist in vivo after joint injury. Strain-dependent
modulation of aggrecan biosynthesis and degradation, aggrecanase cleavage of aggrecan,
chondrocyte gene expression profiles and changes in cell viability (apoptosis) were

observed. Results imply that appropriate biomechanical stimuli can be beneficial during
rehabilitation for post traumatic OA (PTOA) treatment.

In the second aim, a combination therapy of insulin-like growth factor-1 (IGF-1)
and the glucocorticoid dexamethasone (Dex) was tested as a potential therapeutic for

PTOA. The effects of this combination were examined at the transcriptional and protein
levels in the presence of IL-i a. Our results showed that the combination of IGF- 1 and
Dex significantly improved aggrecan biosynthesis, blocked aggrecan and collagen
proteolysis and loss, and rescued cell viability. These dramatic results could not be

achieved by using either IGF-1 or Dex alone, thus providing strong support for the
concept and use of a combination therapy for PTOA treatment.

Dex is used to relieve inflammation and pain for short term OA treatment;
however, it has not been studied as a potential disease-modifying drug for OA. In the last

aim, the pro-survival role of Dex was investigated at the signaling, gene expression, and
protein levels. Results suggest that Dex inhibits caspase-dependent apoptosis pathways,
possibly through suppression of the phosphorylation of JNK and NF-kB/ixB signaling
pathways. Taken together, these studies support the use of glucocorticoid treatment for

inflammation-related cartilage cell death such as that found in PTOA.

Thesis Supervisor: Alan J. Grodzinsky.
Title: Professor of Biological, Electrical, and Mechanical Engineering
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1.1 CARTILAGE BIOLOGY AND DISEASE

Articular cartilage functions as a critical load-absorbing material and provides the

lubricating surface between two contacting joints. The load-bearing property of cartilage

comes from its poroelastic structure that composed of abundance extracellular matrix

(ECM) proteins, together account for -15-40% by wet weight and the rest is water (60-

85%) (1). Aggrecan, one of the most important structural ECM proteins, is a large

proteoglycan with a core protein backbone attached with abundant sulfated

glycosaminoglycan (sGAG) side chains of chondroitin sulfate (CS) and keratan sulfate

(KS). The highly negatively charged sGAG chains of aggrecan provide the compressive

stiffness under tissue deformation. The tensile strength of cartilage is mainly a result of

the collagen network, which is formed by the predominant type II collagen along with

type IX and XI collagens incorporated into the heteropolymers. Other matrix proteins

such as COMP, biglycan, matrillin, fibromodulin, and fibronetin also play important roles

in cartilage matrix assembly and function. Chondrocyte is the only cell type found in

cartilage and is responsible for the regulation of cartilage matrix protein synthesis and

degradation under the homeostatic condition.

Osteoarthritis (OA) is the most prevalent musculoskeletal disease, with more than

27 million Americans affected (2). Traditionally, OA was believed to be a disease of

"wear-and-tear", which is the consequence of sole mechanical factors with articular

cartilage as the diseased tissue. However, it is now well-accepted that OA is a complex

disease involving the entire joint, including the cartilage, meniscus, subchondral bone,

ligament and joint capsule. Multiple risk factors for OA have been identified such as age,

gender, obesity, genetic factors, and mechanical injury. Among them, injury occurred
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from abnormal loading can predispose the injured joints to the development of early OA

at a much younger age. The resulting post-injury OA (PTOA) represents a significant

portion of the disease population with major economic burden to the society, and is

therefore in urgent need for effective treatments.

1.2 IN VITRO INJURY MODELS

In vivo, articular cartilage is subjected to a complex combination of shear,

compressive, and tensile stress under normal loading conditions such as walking, running,

and climbing. There have been in vivo studies trying to examine cartilage biomechanics

under varies loading regime using 3-dimensional imaging techniques such as magnetic

resonance imaging (3, 4). For example, Van de velde (5) reported the use of dual

fluoroscopic and magnetic resonance imaging technique to quantify tibiofemoral joint

kinematics, i.e. contact deformation, of both normal and ACL-deficient human patients.

Their results showed that ACL-deficiency altered both cartilage contact location and

contact deformation compared to the healthy contralateral knee. Other studies have

characterized the change in cartilage composition, mechanical properties, and metabolism

upon varies loading conditions (6, 7). These in vivo studies provided valuable information

on cartilage responds to physiological loads; however, these mechanical stimuli are often

too complex to study in vivo. In addition, the need to quantify the response of

chondrocyte-mediated biosynthesis, degradation, and repair of cartilage matrix to varying

mechanical stimuli in a more systematic and controlled manner, as well as to understand

the specific mechanotransduction pathways leading to these events, requires the
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examination of individual biomechanical stimulation with defined parameters in an in

vitro setting.

1.3 MATRIX BIOSYNTHESIS

During the past decades, numerous studies have focused on the effects of

mechanical loading on cell-mediated ECM biosynthesis and degradation using varies in

vitro model systems. These include explants studies with human, bovine, canine, and

other animal tissue samples, both immature and mature (8-10), as well as 3-dimensional

tissue-engineered cartilage with chondrocytes cultured in agarose (11, 12), alginate (13)

gels, and other systems (14, 15). In addition, chondrocyte cultured as monolayer is also

used to decouple cell responses to direct mechanical stimulation from the complex cell-

matrix interactions under loading (10, 16). Each model system covers certain aspects of

the complex involvement of mechanical stimulation in cartilage with inherent advantages

and disadvantages, and therefore, caution should be taken when interpreting the

physiological relevance of each system and comparing the results between different

systems.

It is now well-accepted that the biomechanical effects on cartilage matrix

synthesis depends not only on the model system in which they are studied, but also on the

nature of the applied mechanical stimulation, whether it is static or dynamic compression,

shear, or tensile, as well as the loading parameters used such as frequency, strain/stress,

and time (17-19). Likewise, the precise biomechanical, physiochemical, or electrical

transduction mechanism by which chondrocyte responds to physical stimuli depends on

the form and kinetics of the loading. Static compression can cause equilibrium cell
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deformation (20) and physiochemical changes such as water loss, change in local ion

concentration and pH (21), as well as concomitant increase in osmotic pressure (8). In

contrast, dynamic loading can additionally produce interstitial fluid flow and the resulting

fluid pressurization and streaming currents (22, 23).

1.4 STATIC COMPRESSION

Static compression has been consistently shown to reduce biosynthesis of PGs

and other matrix components with increasing compressive stress or strain, and this

inhibition is at least partially reversible upon removal of the applied load, although

variations exist on the magnitude of response to a particular stress/strain (8, 9, 18, 21, 24,

25). In addition, it has been shown that static compression can alter specific post-

translational modifications of aggrecan (26, 27). To elucidate the specific transduction

mechanism induced by static loading, Gray et al. (21) found that depressed sulfate and

proline biosynthesis in bovine explants depend on the interstitial pH, but not the local

concentration of certain ions such as sulfate and potassium. This pH effect on

chondrocyte biosynthesis was confirmed by using human chondrocyte cultured in

monolayer (28). Other studies have suggested that hydrostatic pressure can have

stimulatory or suppressive effect on cartilage matrix biosynthesis, and the direction

depends on the magnitude of pressure, as well as the method being applied (10, 29, 30).

Of note, response variations to the same loading treatment could be seen within a given

study and between different studies, and this is at least partly due to topographical and

animal-to-animal variations, young versus adult animals, and cell and matrix

heterogeneity within the tissue (8, 10). Additionally, compression-induced alteration in

9



cell conformation (20), nucleus volume and height (31, 32), and intracellular organelles

morphology (33) have been documented and proposed as possible mechanotransduction

mechanisms. It is still unclear, however, whether these changes are consequences of

chondrocyte's adaptation to mechanical environment or causal events that lead to the

resulting cellular responses such as change in matrix biosynthesis. One important

mechanism that attracted much attention is through mechanically-induced interactions

between extracellular matrix and cytoskeleton via integrin binding (34, 35), leading to

downstream intracellular signaling.

1.5 DYNAMIC COMPRESSION

In contrast to the overall inhibitory effect of static compression on cartilage

matrix biosynthesis, compression applied in dynamic or cyclic manner often has anabolic

effects on matrix production, although the response depends on the compression

frequency and amplitude (17, 18, 24, 36). Sah et al. (17) reported a threshold frequency

of -0.001 Hz under which biosynthesis was not affected by unconfined compression on

bovine cartilage explants with low strain amplitude (-1-5%). In contrast, higher

frequency regime (0.01-1 Hz) significantly stimulated both sulfate and proline synthesis

at the same strain amplitude. It was proposed that the very low frequency (<0.001 Hz)

dynamic compression acts equivalently as static compression (18) in that fluid exudation

can occur in concomitant with changes in physicochemical parameters, while higher

frequency dynamic compression induces fluid flow, hydrostatic pressure gradients, and

streaming potential and current (23). Therefore, finding correlations between these

physical stimuli and spatial variation in biosynthesis could provide clues as to which
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mechanisms are critical for cell-mediated response in matrix metabolism. This has

motivated a series of studies that examined tissue- and cell-level matrix synthesis and

distribution using quantitative autoradiography for static, dynamic, and shear

compression (32, 37-39). On the other hand, finite element method has been implemented

in varies forms of poroelastic models to couple mechanical, chemical and electrical

constitute laws and apply them in characterizing load-induced biophysical and

physiochemical phenomena within a defined tissue geometry (37, 40-43), and results

were compared with the biosynthesis distribution data.

As an example, Buschmann et al. (37) quantified the radial distribution of newly

synthesized aggrecan within 3-mm diameter bovine cartilage explant, under unconfined

uniaxial dynamic compression at different frequencies. The results indicated that at lower

frequency (0.01 Hz), aggrecan biosynthesis was uniformly stimulated throughout the

tissue compared to the static-offset control, with no radial or axial dependence. When

compression frequency increased to 0.1 Hz, however, significant stimulation was found

at the peripheral radial positions while central regions showed no or little increase in

biosynthesis. Combining these data with the previous study that reported a lack of

response at very low frequency of 0.001 Hz (18), clear patterns of frequency- and spatial-

dependent biosynthesis were established. By using a fibril-reinforced poroelastic model

developed by Soulhat (43), the biosynthesis results can be closely matched with model-

predicted interstitial fluid velocity profiles, but not with fluid pressure and radial strain.

Quinn et al. (38) further elaborated this approach to examine spatial distribution of

biosynthesis at the cell level with a length scale of 1 pm. Most newly synthesized PGs

were deposited at the pericellular region and the radial and directional dependence of
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biosynthesis in this region were affected by the type, magnitude, and frequency of

loading.

1.6 INJURIOUS LOADING

Joint injury such as ACL tear has been suggested to be a major risk factor for OA

development later in life. The initial joint trauma can be a single disruption of the

ligament, or accompanies by damages to the articular cartilage, meniscus, synovium, and

subchondral bone. Trauma-induced joint instability alters contact mechanics between

articular surfaces and induces inflammatory response within the joint (44-46).

Biochemical changes associated with inflammation are now well-documented by

evaluating the synovial fluid content post-injury, which contains increased levels of

inflammatory cytokines such as TNF-c, IL-1, and IL-6, elevated concentrations of MMPs,

as well as degradation products of matrix proteins (47-50). This inflammatory response,

which can sustain for years after the initial injury, is believed to work in conjunction with

abnormal mechanical loading to accelerate cartilage degeneration that eventually leads to

OA. Indeed, studies comparing OA patients with or without prior joint injury provided

strong evidence that ACL tear can significantly increase the risk for early OA (51-53).

Currently, no surgical interventions, i.e. ACL reconstruction, have been shown to be

capable of preventing OA progression (47, 52, 54). Hence, the development of effective

treatment to posttraumatic OA requires significant understanding of its pathological

events, including the onset, progression, and late-stage of the disease, as well as the

mechanistic pathways within each stage.
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Over the last two decades, extensive efforts have been invested in characterizing the

effects of joint injury with in vitro explants and in vivo animal models. Using methods

such as ACL transection, morphologic and biochemical changes have been monitored

over long-term course in experimental OA (55-57). On the other hand, explants studies

circumvent the complex mechanical environment inherent in vivo and are used to explore

the specific mechanism of mechanical stimuli and the subsequent effects. A series of

studies simulating controlled impact load have determined the threshold peak stress,

strain, or strain rate that constitute an in vitro injury model (58-61). Specifically, Chen et

al. (58) reported a minimum of 2.5 MPa peak stress applied with 30 MPa/s stress rate was

sufficient to induce immediate loss of matrix molecules and increase tissue water content.

As a comparison, Loening et al. (62) showed that peak stress of 4.5 MPa with 1 mm/s

strain rate resulted in significant increase in cell apoptosis while compromised tissue

mechanical properties appeared beyond 7 MPa. These differences in threshold values

were attributed to the distinct loading protocols as well as the types of tissue used.

Following the initial impact load, an immediate increase in PGs loss was accompanied by

rise in tissue water content (61, 63). Significant decrease in unconfined compression

equilibrium modulus was also measured while confined compression equilibrium

modulus was not affected to the same extent (62, 64). These data suggested that

mechanical disruption of the collagen fibrils occurred, which compromised collagen

network's ability to counteract the PG-induced swelling pressure. Indeed,

immunohistochemical staining showed more denatured collagen in injured cartilage,

although collagenase-cleaved collagen fragments could also be detected, suggesting the

presence of cell-mediated matrix degradation (58, 65). Additionally, studies on the
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kinetics of proteoglycan release following injury revealed an sharp increase in sGAG loss,

which was not due to increase in newly synthesized matrix nor to aggrecanase or MMP

activity, consistent with mechanical damage (66). Consequently, the mechanically

damaged network is likely to have an increased effective pore size that contributes to the

elevated matrix loss, as supported by an increased amount of intact aggrecan detected in

the culture medium (62).

Matrix biosynthesis was also affected by injury (59, 60, 63), either by reducing viable

cell number or modulating metabolic activity of live cells. Kurz et al. (60) showed

reduction in biosynthesis on a per viable cell basis, while others reported opposite effect

(58, 63). This inconsistency is likely caused by the different injury protocols (cyclic

versus one-time) and cell viability evaluation methods used in these studies. Quinn et al.

(64) also examined the effect of injurious compression on matrix turnover at cell-level

using quantitative autoradiography. Marked increase in cell death was noticed as these

cells failed to metabolize pericellular matrix compared to the control, and the remaining

viable cells exhibited a more rapid matrix turnover rate, reflecting upregulation of cell-

mediated enzymatic activity. In addition, Kurz et al. (60) assessed the biosynthetic

activity of injured bovine cartilage explants respond to moderate dynamic compression,

which has been demonstrated to promote matrix synthesis in normal cartilage (17). The

lack of response of injured cartilage to dynamic stimulation implicated impaired

chondrocyte function and capacity to repair.

1.7 CHONDROCYTE VIABILITY AND APOPTOSIS
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D'Lima (67) used both bovine and human cartilage explants and showed

significantly increased apoptosis induced by injury, and depends on the loading stress.

Compression-induced apoptosis seems to be linked to reactive oxygen species, and one

study showed oxidant preconditioning at low concentration may improve the resistance

of chondrocyte to injurious mechanical stress (68). Chen et al. (65) investigated

chondrocyte cell death in bovine explants under confined dynamic compression and cell

death is load stress-dependent and mainly localized in the superficial zone.

The exact pathways for apoptosis induction is unknown but many hypothesis were

proposed, such as binding of CD95, nitric oxide involvement, and loss of survival signals

induced by extracellular matrix loss. Apoptosis involves with reactive oxygen species and

Healy et al. (69) examined the involvement of COX-2 and antioxidant proteins in shear-

induced apoptosis of human chondrocytes. Results showed high shear stress-induced

COX-2 can inhibit phosphatidylinositol 3-kinase (PI3-K) activity, which leads to

antioxidant response element (ARE) and NF-E2 related factor 2 (Nrf2)-mediated

suppression of phase 2 and antioxidant proteins expression. This decrease in antioxidant

capacity disrupts the inhibition on caspase-9 activation and induces mitochondrial

depolarization, leading to apoptosis. The same response was not observed with low shear

stress, however, indicating the importance of the magnitude of mechanical stimulation.

1.8 DEXAMETHASONE
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Dexamethasone (Dex) is a potent synthetic glucocorticoid (GC) that has been

widely used intra-articularly to relieve inflammation for the treatment of OA and other

types of arthritis (70). Long-term use of Dex has been considered as a potential treatment

for chronic OA (71) but negative side-effects such as osteoporosis have been noticed,

which may be resulted from high dose usage (72) or ineffective local delivery method

(73). In vitro, Dex has been shown to significantly block cytokine-induced cartilage

degradation and alleviate suppressed matrix biosynthesis via glucocorticoid receptor

(GR)-dependent pathways (74). Once diffused into the the cytoplasm, Dex binds to the

intracellular GRs and they together serve as nuclear transcriptional factors.

1.9 THESIS OUTLINE

The objective of this thesis was to explore the role of biomechanical stimulation

on the cartilage biosynthesis and degradation in an inflammatory environment, and to

study the drug potential of IGF-1 and Dex combination in counteracting the damaging

effects of pro-inflammatory cytokines.

In Chapter 2, the effects of dynamic strain were examined on TNF-a and IL-

6/sIL-6R-treated cartilage with/without mechanical injury. Matrix biosynthesis, aggrecan

degradation, chondrocyte apoptosis, as well as gene expression profiles were studied.

In Chapter 3, the combination therapy with IGF-1 and Dex was compared with

other growth factor-based therapies using an IL- 1 a-based in vitro cartilage degradation
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model, and the beneficial roles of the IGF- 1 and Dex were examined at gene, protein, and

cell level

In Chapter 4, the anti-apoptotic effects of Dex were explored using IL-i la as the

apoptosis-inducing model.

Finally, in Chapter 5, major findings are presented and conclusions are discussed.
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ABSTRACT

Objective: Traumatic joint injury can initiate early cartilage degeneration in the presence

of elevated inflammatory cytokines (e.g., TNF-a and IL-6). The positive/negative effects

of post-injury dynamic loading on cartilage degradation and repair in vivo is not well-

understood. This study examined the effects of dynamic strain on bovine and human

cartilage in vitro challenged with TNF-a + IL-6 and its soluble receptor (sIL-6R)

with/without initial mechanical injury.

Methods: Groups of mechanically injured or non-injured explants were cultured in TNF-

a + IL-6/sIL-6R for 8 days. Intermittent dynamic compression was applied concurrently

at 10%, 20%, or 30% strain amplitude. Outcome measures included sGAG loss (DMMB),

aggrecan biosynthesis (3 5S-incorporation), aggrecanase activity (Western blot),

chondrocyte viability (fluorescence staining) and apoptosis (nuclear blebbing via light

microscopy), and gene expression (qPCR).

Results: In bovine explants, injury-plus-cytokine treatment markedly increased sGAG

loss and aggrecanase activity, and induced chondrocyte apoptosis. These effects were

abolished by moderate 10% and 20% strains. However, 30% strain-amplitude greatly

increased apoptosis and had no inhibitory effect on aggrecanase activity. TNF+IL-6/sIL-

6R downregulated matrix gene expression and upregulated expression of inflammatory

genes, effects that were rescued by moderate dynamic strains but not by 30% strain. In

human ankle and knee cartilage explants, only 10% strain-amplitude inhibited cytokine-

induced increases in sGAG loss, aggrecanase activity, and cell death.
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Conclusions: Moderate dynamic compression inhibits the pro-catabolic response of

cartilage to mechanical injury and cytokine challenge, but there is a threshold strain-

amplitude above which loading becomes detrimental to cartilage. Our findings support

the concept of appropriate loading for post-injury rehabilitation.

2.1 INTRODUCTION

Joint injuries such as the anterior cruciate ligament (ACL) tear are a major risk

factor for osteoarthritis (OA) later in life. The initial joint trauma can be a single

disruption of the ligament, or accompanied by damage to cartilage, meniscus, synovium,

and subchondral bone. Post-injury evaluation of the synovial fluid from ACL-deficient

patients has revealed inflammation-associated biochemical changes including increased

levels of pro-inflammatory cytokines (e.g., TNF-a, IL-1, and IL-6) as well as matrix

protein degradation products generated by matrix metalloproteinases (MMPs) and

ADAMTS aggrecanases (A Disintegrin And Metalloproteinase with Thrombospondin

Motifs)[1-4]. This inflammatory response, which can be prolonged after the initial injury,

is believed to act in conjunction with abnormal mechanical loading to accelerate cartilage

degeneration that eventually leads to OA. Indeed, studies comparing OA patients with or

without prior joint injury provided strong evidence that ACL tears can significantly

increase the risk for early OA[5-7].

In vivo, articular cartilage is subjected to a complex combination of shear,

compressive, and tensile stress under normal loading conditions. After joint injury, in

addition to the inflammatory response, trauma-induced joint instability also alters the

contact mechanics between articular surfaces[8]. In particular, Van de Velde[9,10] used
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dual fluoroscopic and MR imaging techniques to quantify tibiofemoral joint kinematics

in both normal and ACL-deficient human patients. Their results showed that cartilage

contact deformation increased significantly to -20-30% in the ACL-deficient knee from

-15-20% in the contralateral healthy knee during lunge motion with 0-30' flexion[10];

while surgical reconstruction restored some of the in vivo contact biomechanics, the

increased cartilage deformation was not ameliorated[11]. These studies raise the question

of whether post-injury joint loading can cause additional damage to cartilage, and

whether there exists a range of motion within which rehabilitative loading can be

beneficial in maintaining cartilage structure and function.

Over the last two decades, in vitro injury models have been developed to facilitate

understanding of cartilage mechanical injury on the onset and progression of OA[12-14].

Consistently, injurious loading has been shown to result in loss of proteoglycans[15],

tissue swelling[14], collagen network damage[12], and reduced tissue stiffness[13]. In

addition, significantly increased chondrocyte apoptosis was observed[ 16,17], especially

in the superficial zone[ 18], and the degree of cell damage was age-dependent[19]. Matrix

biosynthesis by remaining live cells was also suppressed by injury[13]. Furthermore,

injury potentiates proteoglycan catabolism induced by exogenous cytokines TNF-a and

IL-6[20], which were introduced to simulate the inflammatory environment seen in vivo

after joint injury. These studies have furthered our understanding of the immediate effects

of mechanical injury; however, the interplay between cytokines and post-injury

mechanical signals is less understood.

Dynamic compression can induce anabolic responses in normal cartilage which

promote matrix biosynthesis with a strong dependence on compression frequency and
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amplitude[21-23]. The spatial profiles of cell-mediated matrix biosynthesis have been

correlated with compression-induced interstitial fluid flow[24-26], and the mechano-

transduction pathways involve MAPK activation, intracellular calcium and cyclic

AMP[27,28]. Additionally, dynamic compression can mitigate the catabolic responses of

chondrocytes to cytokines in tissue-engineered cultures[29]. However, little is known

about the effects of follow-on dynamic compression after injury/cytokine-challenge in

intact cartilage.

In the present study, we implemented a previously-characterized in vitro injury

model involving cytokines TNF-a and IL-6/sIL-6R with or without initial mechanical

injury, and investigated the effects of intermittent unconfined dynamic compression

(10%-30% strain amplitude) on both immature bovine and mature human cartilage. We

hypothesized that (1) dynamic compression maintains anabolic effects in an

inflammatory environment by rescuing matrix biosynthesis suppressed by cytokines[30];

(2) dynamic compression has an additional anti-catabolic role in reducing cytokine-

mediated cartilage degradation; (3) there is a range of strain amplitudes within which

dynamic compression is beneficial, and (4) dynamic compression will have differential

effects on young bovine vs. adult human cartilage due to their known differences in

biomechanical properties [31,32].

2.2 MATERIALS AND METHODS

Bovine articular cartilage harvest and culture. Articular cartilage disks were

harvested from the femoropatellar grooves of 1-2-week-old calves, obtained on the day of
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slaughter (Research '87, Boylston, MA). A total of 17 joints from 13 different animals

and 2 humans were used. Full-thickness cartilage cylinders were cored using a 3-mm

dermal punch, and the top 1-mm disk containing intact superficial zone was harvested

with a blade. Disks were incubated in serum-free medium (low-glucose Dulbecco's

Modified Eagle's Medium [DMEM; lg/L]) supplemented with 1% insulin-transferrin-

selenium (ITS, 10 g/ml, 5.5 g/ml, and 5 g/ml, respectively, Sigma, St. Louis, MO), 10

mM HEPES buffer, 0.1 mM nonessential amino acids, 0.4 mM proline, 20 g/ml ascorbic

acid, 100 units/ml penicillin G, 100 g/ml streptomycin, and 0.25 g/ml amphotericin B for

2-3 days (5% CO2 ; 37'C). Disks for each test were match for anatomic location on the

joint surface, and the thickness variation for those receiving dynamic compression was

limited to <5%.

Adult human cartilage. Cartilage from adult human knee and ankle joints was

obtained postmortem from the Gift of Hope Organ and Tissue Donor Network (Itasca,

IL). All procedures were approved by the Rush University Medical Center Institutional

Review Board (ORA Number: 08082803-IRB01-AM01) and the Committee on the Use

of Humans as Experimental Subjects at MIT. Cartilage explants with intact superficial

zone were harvested from the talar domes of both ankle joints of a 71-old-male (joint

surfaces scored as modified Collins grade 0 [33]) and the tibial plateau from one knee

joint of a 52-old-male (Collins grade 1), using the same procedure as for bovine joints.

Ankle disks were cored full thickness (- 1.0 mm); for tibial plateau disks, only un-

fibrillated cartilage with full thickness greater than 1.0 mm was used and sliced to 1-mm

disks. Explants were equilibrated for 2-3 days in high-glucose DMEM (4.5 g/L)
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containing the same supplements as the bovine culture medium with the addition of 1

mM pyruvate.

Injurious compression and exogenous cytokines. After equilibration, groups of

cartilage disks were injuriously compressed in a custom-designed, incubator-housed

loading apparatus (Figure 1A)[34]. As described previously[35], each bovine disk was

placed in a polysulfone chamber and subjected to radially unconfined compression to 50%

final strain at a strain rate of 100%/s, followed by immediate release at the same rate

(Figure 1B). After injury, disks were immediately placed in treatment medium in the

presence or absence of rhTNF-a (25 ng/ml), rhIL-6 (50 ng/ml), and sIL-6R (250 ng/ml)

(R&D Systems, Minneapolis, MN). Previous studies showed that this combination of

cytokines caused significantly greater sulfated glycosaminoglycan (sGAG) loss than

either cytokine alone[20,36].

Dynamic compression. On Day 0 (Figure IB), one disk was placed (with

superficial surface facing upward) in each well of a 12-well polysulfone loading chamber,

with 0.3 ml treatment medium. The chamber was then inserted into the loading apparatus

(Figure 1A). Disks were statically compressed to 10% strain to ensure contact, and

unconfined dynamic compression was then superimposed using a displacement-

controlled haversine waveform (0.5 Hz, 40% duty cycle) continuously for 1 hour,

followed by 5 hours rest with the applied static and dynamic load removed. This [1-hour

load]-[5-hour-rest] cycle was repeated 4 times per day (Figure 1B). Dynamic

compression at three different strain amplitudes (10%, 20%, and 30%) was applied to 3

different groups of 12 explants simultaneously using three identical loading instruments.

Medium was changed every 2 days for bovine, and every 3 days for human explants.
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sGAG biosynthesis and biochemical analysis. Two days prior to termination,

culture medium was supplemented with 5 [iCi/ml [3 5S]-sulfate (Perkin-Elmer, Norwalk,

CT). Upon termination, disks were washed, weighed, and digested with proteinase K

(Roche, Indianapolis, MN). The amount of radiolabel was measured using a liquid

scintillation counter[21]. The sGAG content in the medium and digested explants was

quantified using the dimethylmethylene blue assay[37]. Radiolabel concentration was

normalized to DNA (measured via Hoechst 33258 dye-binding)[38] for bovine explants,

and to wet weight for human explants.

Histologic analysis. After 4 days of treatments, disks (N = 4 from each group)

were fixed in 4% paraformaldehyde overnight at 4*C. Next day, disks were cut in half

and one of the halves was embedded in paraffin. Serial cross-sections (3 mm-long x 1

mm-wide x 5 im-thick) were microtomed, immobilized on glass slides, and stained with

Mayer's hematoxylin. To quantify cell apoptosis, 1-2 slices from each cross-section were

evaluated by light microscopy with a 40x objective. To exclude artifacts of cutting-

induced cell death at specimen edges, only cells 100 jim inward from the cut-edges were

examined (the superficial-most cells were examined). Nine optical fields (each 0.2 mm x

0.2 mm) were examined for each slice, distributed evenly between left, central, and right

positions of the superficial, middle, and deep zones of the tissue. Chondrocytes with

condensed and blebbed nuclei were counted as apoptotic cells based on previously

published methods and analyses[19], and the rest were counted as normal cells (30-70

total cells/field).

Cell viability. To further study the effect of dynamic compression on chondrocyte

viability, tested bovine and human disks were cut into 100-200 jm-thick slices (3 mm-
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long x 1 mm-wide cross-sections from superficial surface to 1-mm deep). Fluorescein

diacetate (FDA; 4 gg/ml in PBS) was used to stain viable cells green while propidium

iodide (PI; 40 pg/ml in PBS) (both from Sigma) stained non-viable cells red. Two slices

from each explant were stained for 2-3 minutes in the dark and then washed with PBS.

Two separate images were taken for each slice using a Nikon fluorescence microscope

with a 4x objective. Cell viability quantification was performed by using the imaging

software FIJI (ImageJ). The numbers of viable and non-viable cells were counted via the

Image-based Tool for Counting Nuclei (ITCN version 1.6) plug-in.

Gene expression analyses. Bovine cartilage explants from 4 different animals (6

disks per condition per animal) were treated for 48 hours and stored in -80'C after flash-

freezing. On the extraction day, the 6 disks from each condition were pooled, pulverized,

and lysed in TRIzol reagent (Invitrogen, Carlsbad, CA) with a homogenizer. The extract

was then separated using phase-gel tubes (Eppendorf, Hamburg, Germany), and the

supernatant was purified following the Qiagen RNeasy mini kit protocol (Qiagen,

Chatsworth, CA). Reverse transcription was performed with equal amounts of RNA from

each condition using the AmpliTaq-Gold Reverse Transcription kit (Applied Biosystems,

Foster City, CA). Primer pairs used were previously reported [27,39] except for the

newly designed primer: NF-KB (p65 unit; forward 5'-CGGGTGAATCGGAACTCTGG-

3', reverse 5'-TCGATGTCCTCTTTCTGCACC-3'). Real-time qPCR was performed via

384-well plate format using the Applied Biosystems 7700HT instrument with SYBR

Green Master Mix (Applied Biosystems) and analyzed as described in detail

previously[27]. Gene expression levels were normalized to the housekeeping gene 18S.
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Aggrecan degradation by western analysis. Explants were diced and extracted

in 4M Guanidine for 48 hours at 4*C. The extracted aggrecan was precipitated overnight

at -20*C in 100% ethanol with 5 mM sodium acetate, and then deglycosylated using

chondroitinase ABC, keratanase II, and endo-p-galactosidases (all from Seikagaku

America, Rockville, MD). Equal amounts of sGAG were loaded on a 4-12% Bis-Tris

gradient gel (Invitrogen), and proteins were separated by electrophoresis. Western blot

analysis was performed using the monoclonal antibody anti-NITEGE (kindly provided by

Dr. Carl Flannery), which is specific to aggrecanase-generated NITEGE neoepitope

(Glu3"-Ala 3 74)[40].

Statistical analysis. To analyze the effects of dynamic compression on sGAG

loss and biosynthesis in bovine explants, a linear mixed effects model was used with

animal as a random factor, followed by Tukey's post hoc comparison. Bovine

chondrocyte apoptosis data from histological images were analyzed using three-way

analysis of variance (ANOVA), followed by Tukey's post hoc comparison. Bovine

chondrocyte gene expression was log-transformed and analyzed by the linear mixed

effect model with animal as a random factor, followed by Bonferroni's test for pair-wise

comparisons. Human explant studies were all evaluated using two-way ANOVA with

Tukey's post hoc comparison. Statistical analysis was performed using Systat 12 software

(Richmond, CA).

2.3 RESULTS
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Effects of dynamic compression on sGAG loss, sGAG biosynthesis, and

aggrecanase activity in injury/cytokine-treated bovine explants. The initial injurious

compression produced peak stresses of 18.5 ± 0.2 MPa (mean ± SEM, n = 96 disks from

4 different animals). Without dynamic compression, the combined injury plus 8-day-

cytokine treatment induced 51.4 ±4.5% sGAG loss (Figure 2A) which was significantly

greater than the 7.8 ± 0.1% sGAG loss from untreated controls (p <0.0001), consistent

with previous findings[20]. However, the addition of moderate dynamic compression at

10% and 20% strain amplitude reduced this 51.4 ± 4.5% sGAG loss to 39.4 ± 2.8% (p =

0.007) and 35.1 ± 3.0% (p <0.0001), respectively (Figure 2A). The largest inhibitory

effect of dynamic compression was at 30% strain amplitude (22.9 ± 1.3%), which was a

significant decrease even from the 20% strain amplitude (p = 0.003).

35S-sulfate incorporation during the last 2 days of culture was used to assess sGAG

biosynthesis. Compared to controls (114.0 ± 4.1 pmoles/hour/tg DNA), injury-plus-

cytokine treatment significantly reduced biosynthesis (p < 0.0001, Figure 2B). Addition

of 10% and 20% dynamic compressive strains did not alter this result (p = 0.946 and p =

0.434, respectively); however, 30% dynamic strain caused a further decrease in

biosynthesis rate compared to 20% strain amplitude (p = 0.015).

Aggrecan core protein neoepitope NITEGE3 7 3 -A generated by aggrecanases

(ADAMTS-4/5) was assessed on Days 2, 4, and 8 after treatments. No detectable

NITEGE fragments were found in any conditions on Day 2 or Day 4 (data not shown),

consistent with a previous study[41]. However, by Day 8, NITEGE-positive fragments

were detected following injury-plus-cytokine treatment. The abundance of NITEGE

neoepitopes was markedly reduced by 10% dynamic strain amplitude, essentially
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abolished by 20%, but unaffected by 30% (Figure 2C). This experiment was repeated

using two additional animals with similar results (data not shown).

Effects of dynamic compression on cytokine-induced apoptosis in bovine

cartilage. Chondrocyte apoptosis was assessed 4 days after treatments. Compared to

normal cells (Figure 3A), apoptotic chondrocytes exhibited condensed cytoplasm and

chromatin, as well as nuclear blebbing (Figure 3B). Treatment with cytokines alone

significantly increased cell apoptosis compared to untreated controls (p = 0.011, Figure

3C), consistent with the consensus that TNF-a signals through apoptotic pathways[42].

Interestingly, 20% dynamic strain reduced apoptosis to levels not different than controls

(p = 0.879). But at 30% strain amplitude, apoptosis dramatically increased (p <0.0001

compared to cytokines-alone), reaching levels not different from treatment by injurious

compression plus cytokines (p = 0.232), which is significant from cytokines-alone

treatment (p = 0.002).

Chondrocyte viability in bovine cartilage. Cell viability in the explants after 2,

4, and 8 days treatments was further assessed via live-dead fluorescence. Representative

images (Figure 4) showed minimal cell death in control samples over 8 days. In contrast,

injury-plus-cytokines caused marked cell death throughout tissue cross-sections,

especially in the superficial zone (cell death in the radial periphery was caused by

cutting-induced damage). Qualitatively, dynamic compression at 10% or 20% strain

amplitude had little or no additional effect, consistent with the absence of additional

apoptosis (Figure 3C). However, 30% dynamic strain resulted in marked loss of cell

viability by Day 4, and more so by Day 8.
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Bovine chondrocyte gene expression. Aggrecan gene expression was markedly

suppressed by cytokines-alone (p < 0.0001, Figure 5), consistent with previous

findings[36]. Dynamic compression partially rescued this decrease regardless of the

strain amplitude (p <0.0001 for all 3 strains). Collagen II expression showed a similar

overall response, except that 30% dynamic strain did not rescue the cytokine-induced

decrease in collagen II expression (p = 0.21). Cytokine treatment markedly upregulated

expression of ADAMTS-4 and -5 compared to controls (p <0.0001 for both). While

dynamic compression had no effect on ADAMTS-4 expression (p > 0.1), 30% dynamic

strain amplitude increased ADAMTS-5 expression by more than two fold (p = 0.012)

compared to cytokine treatment alone. Cytokine treatment increased IL-6 mRNA levels

(p < 0.0001) but dynamic compression reduced this response to control levels (p = 0.001

for 10% and p < 0.0001 for both 20% and 30% amplitude). Dynamic strain also

significantly countered the increase in NF-xB expression caused by cytokines alone (p =

0.027 for 10%, p = 0.02 for 20%, and p = 0.002 for 30%). While cytokine-plus-dynamic

compression at 10% or 20% strain increased COX-2 expression by 3-4 fold compared to

cytokines-alone (p = 0.01 and p = 0.002, respectively), 30% strain caused a further

increase to >40 fold compared to cytokines alone (p < 0.0001). Cytokines increased

iNOS mRNA levels by more than 200 fold (p < 0.0001), but 30% strain significantly

suppressed this increase in expression (p = 0.001).

Effects of dynamic compression on cytokine-treated adult human explants. In

an 8-day experiment, human ankle explants were treated similarly to bovine disks but

without the initial injurious compression. sGAG release to the medium over 8 days was

significantly higher in disks treated with cytokines compared to controls (19.4 ± 3.86%
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versus 6.87 ± 0.29%, respectively, p = 0.003, Figure 6A). 10% dynamic strain reduced

sGAG loss to levels not different than controls (p = 0.659). sGAG loss increased further

with increasing strain amplitude and was highest at 30% strain (21.95 ± 2.26%), which

was not different from cytokine-alone treatment (p = 0.926). Biosynthesis rates were

decreased by cytokine-treatment (7.70 ± 1.97 pmoles/hour/mg wet weight) compared to

control levels (20.37 ± 0.94 to, p < 0.0001), and not further affected by dynamic

compression (Figure 6B). 2-way ANOVA revealed no differences among all four

cytokine ± dynamic compression treatment groups (p > 0.5).

Unlike bovine explants, adult human ankle control cartilage showed detectable

NITEGE neoepitopes, suggesting the presence of aggrecanase activity even without

treatment (Figure 6C). The abundance of NITEGE fragments increased moderately upon

cytokine treatment, in the presence and absence of 10% and particularly 20% dynamic

strain, but the effect of loading was less at 30% strain. An additional 12-day study was

performed using cartilage disks from the tibial plateau of a 52-year-old male donor

(Collins grade 1). The pattern of NITEGE abundance (Figure 6D) was similar to that of

Figure 6C, though the decrease at 10% dynamic strain, increase at 20% and then decrease

at 30% was even more apparent.

Influence of dynamic compression on human ankle chondrocyte viability.

Live-dead fluorescence staining showed that the majority of cells in the middle and deep

zones of control disks were viable (Figure 7A), though a thin layer of red-stained cells

was observed in the superficial zone (possibly the result of previous in vivo loading and

aging[43]). In contrast, significant cell death throughout the entire thickness of disks was

observed for specimens challenged with cytokines plus 30% dynamic compression
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(Figure 7B). Imaging analysis (ImageJ software) showed that cytokine treatment alone

significantly increased cell death compared to untreated controls (p = 0.004, Figure 7C),

and 10% dynamic compression abolished this increase to a level not different than

controls (p = 0.522). 30% strain amplitude significantly increased cell death compared to

10% strain (p = 0.006)

2.4 DISCUSSION

Using in vitro models of joint injury, we demonstrated that moderate, intermittent

dynamic compression (i.e., 10%-20% strain amplitude with immature bovine and 10%

with adult human cartilage) has significant anti-catabolic effects on cartilage homeostasis.

Moderate dynamic compression of bovine cartilage rescued cell apoptosis caused by

cytokine challenge and upregulated cytokine-suppressed matrix gene expression. In

contrast, high compression amplitude (30%) caused severe loss of cell viability and

increased matrix degradation in both bovine and human cartilage, and decreased matrix

gene expression and biosynthesis in bovine tissue. Consistent with these results,

Torzilli[44] reported that load-controlled confined cyclic compression (0.5 Hz) with 0.5

MPa (but not 0.2) peak stress counteracted IL-Iha-induced sGAG loss in mature bovine

explants. While their loading configuration was different than that of Fig. 1B, their

reported inhibitory effect of cyclic loading on sGAG loss is consistent with that

demonstrated here for moderate dynamic compression in immature bovine, which

sustained a comparable peak stress of 0.55 ± 0.10 MPa at 10% strain amplitude (mean

SEM, 4 animals).
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Interestingly, high (30%) dynamic strain resulted in the greatest inhibition of sGAG loss

compared to moderate strains in immature cartilage (Figure 2A). However, high dynamic

strain caused significant apoptosis (Figure 3C, as high as injurious compression), and loss

of cell viability (Figure 4). Such nonviable cells cannot respond to catabolic cytokines

and upregulate aggrecanases that cause sGAG loss. Consistent with this interpretation, 30%

dynamic strain also suppressed chondrocyte biosynthesis (Figure 2B). In contrast, 20%

strain inhibited apoptosis (Figure 3C), further suggesting that moderate dynamic

compression may transduce anti-apoptotic signals, though the mechano-transduction

pathways remain to be elucidated. In addition, the increased abundance in NITEGE

neoepitope at 30% strain (Figure 2C) indicated elevated aggrecanase activity in the tissue,

again contrary to the anti-catabolic effects of moderate dynamic compression. Together,

these results lead to our hypothesis that high-magnitude dynamic compression is pro-

inflammatory, and the suppression of sGAG loss by 30% strain resulted from load-

induced reduction in cell viability, resulting in a slower rate of live-cell-dependent matrix

degradation mediated by cytokines.

Adult human cartilage exhibited somewhat different responses to loading. 30%

dynamic strain increased sGAG loss compared to 10% strain (Figure 6A), and lower

NITEGE abundance was seen at 30% strain compared to 20% (Figure 6C,D). Moderate

dynamic at 10% appeared to exert beneficial effects, rather than 20% in immature bovine

cartilage. These differences are likely age-related, associated with differences in matrix

composition and distribution[45], matrix maturity[19], mechanical properties[31], and

cell density[46,47]. The immature bovine tissue is likely more vulnerable, especially the

soft superficial zone, which receives the most local strain during compression[32], likely
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causing more cell damage at higher strain amplitudes than in human cartilage (Figure 2A

vs. 5A). Thus, there appears to be a different threshold in strain amplitude for loss of cell

viability and increased matrix degradation in adult human versus immature bovine

cartilage and, potentially, a different optimal range of loading amplitude for induction of

beneficial effects.

Certain mechanisms by which dynamic compression may regulate cytokine-

induced cartilage degradation and biosynthesis were revealed at the gene transcription

level. Consistent with previous reports that moderate dynamic compression is an anabolic

stimulus for cartilage matrix biosynthesis[21], we observed that 10% and 20% strain

amplitude significantly upregulated aggrecan and type II collagen mRNA levels even in

the presence of cytokines. This suggests that the anabolic nature of moderate dynamic

compression is preserved in an inflammatory environment. Although moderate dynamic

compression did not significantly suppress cytokine-induced upregulation of ADAMTS-4

and -5 genes, Western analyses showed strong reduction in aggrecanase activity (Figure

2C). This differences between signals at the gene and protein levels may be due to (1) the

time-dependence of gene activation, which we evaluated only at the 48-hour time point,

and/or (2) the effects of dynamic compression on post-transcriptional processes such as

aggrecanase activation by proprotein convertases[48].

Inflammatory genes cyclo-oxygenase (COX-2) and inducible nitric oxide

synthase (iNOS) were activated by cytokines at 48-hour; however, moderate dynamic

compression had no inhibitory effects on either gene. Consistent with these results,

Chowdhury[29] showed significant inhibition of IL-1$-induced COX-2 and iNOS

expression by 15% dynamic compression (1 Hz) at 6 and 12 hours but not 48 hours using
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chondrocyte-seeded agarose gels, further emphasizing the time-dependence of gene

transcription of mechanical signals. Dynamic compression of bovine explants suppressed

cytokine-induced upregulation of IL-6 and NF-iB transcription (Figure 5). Interestingly,

Agarwal[49] reported a magnitude-dependent mechanism through which cyclic tensile

strain transduced signals via the NF-xB pathway in isolated chondrocytes. Lastly, 30%

strain significantly increased ADAMTS-5 and COX-2 expression and had no stimulatory

effect on type 1I collagen expression, further strengthening our hypothesis that high-

magnitude dynamic compression is pro-inflammatory.

In the present study, we demonstrated the anti-catabolic effects of moderate

dynamic compression on injury/TNF + IL-6/sIL-6R-challenged immature bovine and

adult human cartilage. Importantly, we discovered that there exists a threshold strain

amplitude above which dynamic compression becomes detrimental to cell viability as

well as upregulation of inflammatory genes and aggrecanase activity in the remaining

viable cells. Together, these results provide evidence to support the concept that

appropriate loading-rehabilitation post-joint injury can be beneficial at the cell level, but

above threshold dynamic loading may further contribute to loss of cell and tissue function.

Further studies exploring the effects of frequency and loading type (e.g., continuous vs.

intermittent) are suggested to optimize the beneficial effects of dynamic loading.
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Compression Apparatus
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Loading Chamber

Cartilage Explants

Dynamic Compression:
10-30% strain, 0.5 Hz (40% duty cycle), 1 hr on/5 hrs off
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Figure 2.1 A, Schematic of custom-designed, incubator-housed loading apparatus [32]
used to perform injurious and dynamic compression. B, Experimental design: Injurious
compression was applied to cartilage explants on Day 0, followed by immediate
incubation in TNF-a + IL-6/sIL-6R. Intermittent dynamic compression started on Day 0
(10%, 20% or 30% applied strain amplitude) and continued up through Day 8.
Representative waveforms shown for a 10% dynamic strain amplitude applied to a group
of 12 disks within the loading chamber, and the corresponding measured total
compressive load.
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Figure 2.2 A, Cumulative sGAG loss from bovine cartilage to the medium in response
to 8-day treatments. The total sGAG content in the untreated control group was 439.0
±12.3 pg sGAG/disk. N = 4 animals (4-6 disks/animal). B, Bovine chondrocyte
biosynthesis measured during day 6-8 as 35S-sulfate incorporation rate for the same
cartilage disks as in A. C, Western analysis of aggrecan fragments using the antibody to
the aggrecanase-generated neoepitope, NITEGE, with aggrecan extracted from the
bovine explants 8 days after treatments. Values in A and B are mean ± SEM; * = P < 0.05.
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Figure 2.3 Bovine chondrocyte apoptosis within the explants in response to 4-day
treatments. A, Representative image (40X objective) of histological sections from
untreated control disks using hematoxylin staining for the nucleus. The superficial-most
surface is visualized in the upper right corner (arrow). B, Histological section from
explant treated with the combination of cytokines (TNF-a + IL-6/sIL-6R) plus
intermittent 30% dynamic strain amplitude. Image (40X objective) was taken from
middle zone cartilage: apoptotic cells displayed nuclear blebbing, a morphological
marker of apoptosis [17]. Insert: Higher magnification of nuclear blebbing. C, Percentage
of chondrocytes in histological sections that underwent apoptosis, quantified as the ratio
of cells showing nuclear blebbing to total cell count; n = 4 disks per condition (see
Methods). Values are mean ± SEM; * = P < 0.05.
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Figure 2.4 Fluorescently stained bovine explants after treatments for 2, 4, and 8 days.
A single injurious compression was applied on Day 0, followed by culture in exogenous
cytokines. Intermittent dynamic compression (10%, 20%, or 30% strain amplitude) was
applied and continued throughout the entire 2-8 day culture period (Figure 1B). Cartilage
disks were stained immediately upon termination of culture with fluorescein diacetate
(FDA, green) for viable cells and propidium iodide (PI, red) for non-viable cells. Images
were taken with a 4X objective. The superficial-most surface is at the top of each image
(arrow), while a cut at the middle/deep zone is at the bottom. The left edge of each disk
was created when a dermal punch was used to harvest the cartilage disks, each having
dimensions 3 mm diameter by 1 mm thick. Inj: injurious compression; Cyt: cytokines
TNF-a + IL-6/sIL-6R; Dyn: dynamic compression. Bar = 400 tm.
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Figure 2.5 The effects of dynamic compression on bovine chondrocyte gene
expression after 48 hours of treatment with exogenous cytokines. For each condition, 6
cartilage disks from the same animal were pooled for mRNA extraction; n = 4 animals.
Gene expression levels were normalized to that of the 18S gene and then normalized to
the no-cytokine, no-compression control condition which had an expression level = 1.
Data are presented as mean ± SEM, * = P < 0.05 compared with untreated control; # = P
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Figure 2.6 A, Cumulative sGAG loss from adult human ankle cartilage disks to the
medium in response to 8-day treatments. The total sGAG content in the untreated control
group was 205.5 ±34.0 pg sGAG/disk, n = 6 disks. B, Human chondrocyte biosynthesis
measured during day 6-8 as "S-sulfate incorporation rate for the same cartilage disks as
in A during days 6-8. C, Western analysis of aggrecan fragments using the antibody to
the aggrecanase-generated neoepitope, NITEGE, with aggrecan extracted from the
human ankle cartilage 8 days after treatments. D, Western analysis using aggrecan
extracted from human knee cartilage 12 days after treatments. Values in A and B are
mean SEM, *=P<0.05.
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Figure 2.7 Human chondrocyte cell viability in adult human ankle cartilage in
response to 8-day treatments. A, Representative image (4X objective) from untreated
control disks stained with FDA (green, viable cells) and PI (red, non-viable cells). A thin
layer of red-stained cells can be seen in the superficial zone at the top (arrow). B,
Cartilage disks treated with the combination of exogenous cytokines (TNF-a + IL-6/sIL-
6R) plus intermittent 30% dynamic compression, with superficial zone at the top of the
image (arrow). C, Percentage of cell death quantified using the image processing
software FIJI (ImageJ). Values are mean ± SEM, * = P < 0.05.
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2.8 SUPPLEMENTAL DATA
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Figure 2S.1 A, Peak stress of injury applied on bovine cartilage with or without the
superficial zone. Injurious compression was applied at 100%/s to the indicated final strain.
Values are mean ± SEM, N = 5 disks. B, Fluorescently stained bovine explants after
treatments for 12 hour, 2, and 6 days. White arrow indicates the superficial surface.
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Figure 2S.2 Percent sGAG loss to the medium of bovine cartilage explants without the
superficial zone in respond to 8-day treatments. Cytokines: TNF-a (10 ng/ml), IL-6 (20
ng/ml), sIL-6R (100 ng/ml). Values are mean ± SEM, N = 6 disks; * = P < 0.05.
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ABSTRACT

Objective. The inflammatory cytokine interleukin- 1 is elevated after traumatic joint

injury and plays a critical role in mediating cartilage tissue degradation, suppressing

matrix biosynthesis, and inducing chondrocyte apoptosis, events associated with

progression to posttraumatic osteoarthritis (PTOA). This study explored the effects of a

combination therapy involving insulin-like growth factor 1 (IGF-1) and dexamethasone

(Dex) to block these multiple degradative effects of IL-I challenge to articular cartilage.

Methods. Young bovine and adult human articular cartilage were treated with IL-la in

the presence or absence of IGF-1, Dex, or their combination. Loss of sulfated

glycosaminoglycans (sGAG) and collagen were evaluated by the DMMB and

hydroxyproline assay, respectively. Matrix biosynthesis was measured via radiolabel

incorporation, chondrocyte gene expression was studied using qRT-PCR, and cell

viability was examined by fluorescence staining.

Results. The combination of IGF-1 and Dex significantly inhibited IL-la induced sGAG

and collagen loss, rescued the suppressed matrix biosynthesis, and inhibited the loss of

chondrocyte viability caused by IL-Ica treatment of young bovine cartilage. In adult

human cartilage, only IGF-1 rescued matrix biosynthesis and only Dex inhibited sGAG

loss and improved cell viability; however, IGF- 1 + Dex together showed combined

beneficial effects.

Conclusions. Our findings suggest that the combination of IGF-1 and Dex has greater

beneficial effects than either molecule alone on preventing cytokine-mediated cartilage
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degradation in both young bovine and adult human cartilage. Our results support the use

of this combination therapy as a potential treatment option to ameliorate cartilage

degradation associated with PTOA.

3.1 INTRODUCTION

Osteoarthritis (OA) is a chronic joint disease characterized by articular cartilage

degradation, along with synovial membrane inflammation, subchondral bone remodeling,

and severe joint pain. Among the many known risk factors of OA, traumatic injury

greatly predisposes the damaged joint to OA development at a younger age, and the

resulting post-traumatic OA (PTOA) is a major sub-category of the total OA population.

The impact mechanical loading can cause direct damage on the cartilage itself and/or

rupture the surrounding soft tissue such as the anterior cruciate ligament (ACL).

Immediately and weeks after the injury, synovial fluid concentrations of pro-

inflammatory cytokines such as interleukin-1 (IL-1), tumor necrosis factor-a (TNF-a),

and IL-6 are highly upregulated (1, 2), during which time increased cartilage matrix

fragments and chondrocyte apoptosis have also been detected (3, 4). These pro-

inflammatory cytokines eventually drop to the levels found in chronic OA (5) but

continue to distort the delicate balance between anabolic and catabolic processes in

normal cartilage homeostasis. Therefore, one of the main objectives in the treatment of

OA is to restore this imbalance and halt the disease progression.

Even though significant efforts have been invested in developing potential

therapeutics to achieve the above goal, currently there is no disease modifying OA drug
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(DMOAD) capable of altering the course of the disease with structural and clinical

benefits. Given the critical role of pro-inflammatory cytokines in OA development, IL-I

receptor antagonists (IL- lRA) and TNF-a blockers, as well as inhibitors that target

cytokine-mediated matrix metalloproteinases (MMPs) or ADAMTSs (a disintegrin-like

and metalloproteinase with thrombospondin motif) have been developed (6). Another

category of potential DMOADs raised increasing attention is the anabolic growth factor

family that regulates cartilage matrix production and cell proliferation and counteracts the

catabolic processes induced by cytokines. For example, bone morphogenetic protein 7

(BMP-7) and fibroblast growth factor 18 (FGF- 18) have been studied in clinical trials

based on their strong anabolic potential in cartilage tissue repair (7).

Insulin-like growth factor 1 (IGF-1) is one of the most well-known anabolic

growth factors for its powerful induction of cartilage matrix synthesis, as well as its

capacity to abolish cartilage catabolism stimulated by cytokines (8, 9). In chondrocyte,

IGF-1 binds to the IGF-1 receptor and transduces signal via the IRS-1/PI3K/Akt pathway,

which regulates protein synthesis (10). In addition, IGF-1 provides pro-survival signals

and was shown in vitro to rescue chondrocyte apoptosis (11) and after mechanical injury

(12).

Dexamethasone (Dex) is a potent synthetic glucocorticoid (GC) that has been

widely used intra-articularly to relieve inflammation for the treatment of OA and other

types of arthritis (13). Long-term use of Dex has been considered as a potential treatment

for chronic OA (14) but negative side-effects such as osteoporosis have been noticed,

which may be resulted from high dose usage (15) or ineffective local delivery method

(16). In vitro, Dex has been shown to significantly block cytokine-induced cartilage
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degradation and alleviate suppressed matrix biosynthesis via GC receptor-dependent

pathways (17). However, the ability of Dex to modulate cytokine-mediated cartilage

degeneration in the presence of an anabolic growth factor such as IGF- 1 is still largely

unknown. Furthermore, whether this combination therapy can provide additional

beneficial effects than the mono therapy remains to be elucidated, and the answer to this

question may have significant clinical implications.

In this study, we propose to take advantage of the pro-anabolic and anti-catabolic

potential of IGF- 1 and Dex with a combination treatment and explore their effects on IL-

1 a-challenged adult human and young bovine cartilage in vitro. We hypothesize that this

combination therapy can help to regain the lost balance between cartilage anabolism and

catabolism in the presence of the inflammatory cytokine. In additional to matrix

biosynthesis and degradation, we hypothesize the cytokine-induced chondrocyte cell

death can be rescued by this combination therapy. Furthermore, we propose to examine

the hypothesis that the effects of IGF- 1 and Dex were consequences of their direct

transcriptional regulation by comparing changes at the protein level to their effects on the

transcriptional level.

3.2 MATERIALS AND METHODS

Bovine cartilage harvest and culture. Cartilage disks were harvested from the

femoropatellar grooves of 1-2-week-old calves (obtained from Research '87, Boylston,

MA). A total of 15 joints from 14 animals were used. Briefly, a 3-mm dermal punch was

used to core full-thickness cartilage cylinders, and the top 1-mm disk containing intact
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superficial zone was obtained with a blade. For each experiment, disks from different

treatment groups were matched for anatomic location along the joint surface. Then, disks

were equilibrated in serum-free medium (low-glucose DMEM; lg/L) supplemented with

10 mM HEPES buffer, 0.1 mM nonessential amino acids, 0.4 mM proline, 20 g/ml

ascorbic acid, 100 units/ml penicillin G, 100 g/ml streptomycin, and 0.25 g/ml

amphotericin B for 2-3 days (5% C0 2; 37'C).

Adult human cartilage tissue. Cartilage from adult human knee and ankle joints

was obtained postmortem from the Gift of Hope Organ and Tissue Donor Network

(Itasca, IL). All procedures were approved by the Rush University Medical Center

Institutional Review Board (ORA Number: 08082803-IRBO1-AM01) and the Committee

on the Use of Humans as Experimental Subjects at MIT. A total of 11 joints from 7

humans were used. Eight ankle joints (Collin's grade 1/2) were from 5 different donors,

age between 64 and 74 year old. Three knee joints were from 3 different donors (19-year-

old: Grade 0; 54-year-old: Grade 2; 66-year-old: Grade 1). One donor provided an

ankle/knee pair. Full-thickness (-1-2 mm) cartilage disks cored with a 3-mm punch were

harvested from the talar domes of ankles and the tibial plateau of knees, only unfibrillated

cartilage were used. Explants were equilibrated for 2-3 days in high-glucose DMEM (4.5

g/L) containing the same supplements as the bovine culture medium with the addition of

1 mM pyruvate.

Selection study with IL-1a. A preliminary IL-la dose study (with 1, 2, 5, and 10

ng/ml IL-la) showed that IGF-1 was most effective in rescuing IL-la-induced sGAG

loss and suppressing biosynthesis at the lowest concentration of IL- 1 a (data not shown),

and therefore, 1 ng/ml of IL-la was used from hereafter. To select the best combination
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of potential therapeutics, bovine disks (from 2 joints of the same animal) were treated

with or without 1 ng/ml of IL-l for 8 days, and with a single or a combination of two of

the followings: IGF-1, BMP (Bone morphogenetic protein)-2, BMP-4, BMP-7, FGF-2

(all at 100 ng/ml), and Dex (100 nM).

Biosynthesis, sGAG, and biochemical analysis. Cartilage disks were

radiolabeled with 5 pCi/ml 3S-sulfate (Perkin-Elmer, Norwalk, CT) for 36-48 hours.

When terminated, disks were washed in PBS, weighted, and digested with proteinase K

(Roche, Indianapolis, MN). Radiolabel incorporation was measured using a liquid

scintillation counter, and normalized to DNA (measured via Hoechst 33258 dye-binding

assay (18) for bovine explants, and to wet weight for human explants. The

dimethylmethylene blue assay (19) was used to determine the sGAG content in the

digested cartilage explants and medium.

Collagen degradation. Medium and proteinase K digested cartilage samples

were analyzed for collagen content using the hydroxyproline assay (20). Briefly, 50-200

1, depends on the time-point or treatment, of media or cartilage digests were reacted

with 200 1 12N HCl ovemight at 1100 C. The hydrolysate was then dried on a heating

plate and the residue was re-suspended in the assay buffer (375 1, 23.8 mM citric acid,

88.2 mM sodium acetate, 85 mM sodium hydroxide, and 0.12 v/v% glacial acetic acid,

pH 6.0), transferred in duplicate (150 W) along with the hydroxyproline standards to a

96-well plate. 75 1 of chloramine T reagent (0.57 g chloramine T, 13.0 ml n-propanol,

26.6 ml loX assay buffer, 10.4 ml DI walter) was then added and allowed to react for 20

min at room temperature. 75 1 of DMBA reagent (1.2 g dimethylaminobenzaldehyde,

4.8 ml n-propanol, and 2.1 ml perchloric acid) was added and the plate was heated at
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60'C for 15 min. After the plate was cooled to room temperature, absorbance was

determined at 560 nm with a microplate reader. The collagen content in each sample was

calculated using the hydroxyproline standard curve (0-40 pg/ml) and data were expressed

as percent of total collagen.

Cell viability. After termination in culture, cartilage disks were cut into 100-200

pm-thick slices (3 mm-long x 1 mm-wide cross-sections from superficial surface to 1-

mm deep) with a scalpel blade. The slices were incubated for 2-3 min in the dark in PBS

containing fluorescein diacetate (FDA; 4 pg/ml) and propidium iodide (PI; 40 gg/ml)

(both from Sigma), for viable and non-viable cell staining, respectively. Then the slices

were washed twice with PBS and imaged with a Nikon fluorescence microscope with a

4x objective. 1-2 slices were imaged (2 images/slice) for each sample. For human

cartilage disks, cell viability was quantified using the imaging software FIJI (ImageJ).

The numbers of viable and non-viable cells were counted over each entire slice via the

Image-based Tool for Counting Nuclei (ITCN version 1.6) plug-in, and data were

expressed as percent of total viable cells.

Gene expression analyses. Bovine cartilage disks from 5 animals (6 disks per

condition per animal) were treated for 4 days and stored in -80'C after flash-freezing.

The 6 disks from each condition were pooled and pulverized using a custom pulverizer

cooled with liquid nitrogen. Each sample was homogenized in TRIzol reagent, and then

separated using phase-gel tubes (Eppendorf, Hamburg, Germany). The supernatant was

purified following the Qiagen RNeasy mini kit protocol (Qiagen, Chatsworth, CA). Equal

amounts of mRNA from each condition were reverse transcribed using the AmpliTaq-

Gold Reverse Transcription kit (Applied Biosystems, Foster City, CA). Primer pairs used
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were previously reported (21, 22) except for caspase-3: forward 5'-

GAAGTCTGACTGGAAAACCC-3', reverse 5'- GAAGTCTGCCTCAACTGGTA-3'.

Real-time PCR were performed using the Applied Biosystems 7700HT instrument with

SYBR Green Master Mix (Applied Biosystems). As described previously (21), the

expression data for each gene were calculated from the threshold cycle (Ct) value, and

normalized to the internal housekeeping gene 18S.

Statistical analysis. Student's t test was used to examine the differences between

any two treatment groups in the growth factor/Dex selection study. Bovine and human

sGAG loss and biosynthesis data, bovine collagen loss data, as well as bovine gene

expression data were log-transformed and analyzed by the linear mixed effect model with

animal as a random factor, followed by Tukey's test for pair-wise comparisons. Human

viability data were analyzed by the linear mixed effect model with the joint type as a

fixed variable and donor as a random factor, followed by Tukey's test for pair-wise

comparisons. P values less than 0.05 were considered statistically significant.

3.3 RESULTS

Combination therapy selection. The effects of each mono-therapy or

combination therapy were evaluated in an 8-day study using bovine explants (Figure

1A&B). Compared to untreated controls (Figure 1A), IL-l c (1 ng/ml) significantly

increased sGAG loss (p = 0.0048), which was reduced by the mono-therapy with IGF-1

(p = 0.0215) or Dex (p = 0.0269). As a comparison, mono-therapy with IGF-1 (p =
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0.0287) or pFGF (p = 0.0008) was able to rescue IL-la-suppressed 35S sulfate

incorporation (Figure 1B). Among the combination therapies, only BMP-7 + pFGF failed

to reduce IL-la-induced sGAG loss (p = 0.0732). The combination of IGF-1 and Dex

showed the strongest reduction in sGAG loss as well as rescued 35S sulfate that is higher

(p = 0.036) than BMP-7 + 0FGF but not significantly different from the other

combination therapies. Therefore, the combination therapy of IGF- 1 + Dex was selected

to be the target of interest for the rest of this study.

The beneficial effects of this combination therapy was further confirmed with 3

independent 8-day experiments (3 different bovine animals) using IL-I a in the presence

or absence of IGF-1, Dex, or both. As shown in Figure 1C&D, either IGF or Dex was

able to reduce IL-la-induced sGAG loss or rescue suppressed 35S sulfate incorporation,

even though Dex showed less rescuing effect on 35S sulfate incorporation than IGF-1 (p <

0.0001). However, the IGF-1 + Dex combination showed significant further reduction in

sGAG loss (p < 0.0001 vs. either IGF-1 or Dex) and higher 3S sulfate (p = 0.001 vs.

IGF-1, p < 0.0001 vs. Dex).

The effects of IGF-1 and Dex on Collagen Degradation. Bovine explants were

cultured in IL-l a medium for 25 days to study the kinetics of sGAG and collagen release.

As shown in Figure 2A, IL-la induced significantly more sGAG loss than the untreated

controls (77.0% vs. 8.6%, p < 0.000 1) for the first 10 days, during which collagen release

is negligible in both control and IL-la treatments. On Day 12, when 84.5% sGAG was

depleted from the IL-l a-treated disks, the same disks released significantly more

collagen than the untreated controls (6.9% vs. 1.1%, p = 0.0378). By Day 25, the collagen

loss reached 68.8% for IL-la treatment vs. 2.1% for controls (p < 0.0001).
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Next, we examined the effects of IGF- 1 and Dex on IL-i a-induced collagen

release after sGAG depletion during a 24-day study (3 independent experiments with 3

bovine animals). Except for the control, only IL-la was added to the treatment medium

for the first 12 days, resulting in 74.1% sGAG loss (Figure 2B). On Day 12, IGF-1, Dex,

or both were introduced to the treatment medium in the presence of IL-la. By Day 24,

IGF-1 + Dex treatment significantly reduced sGAG loss compared to IL-l a alone (p <

0.0001), IGF-1 treatment (p < 0.0001), or Dex treatment (p = 0.0004).

The accumulated collagen release during Day 12-24 showed that IL-la alone

induced 58.0% vs. 1.1% in the untreated controls (p < 0.0001) (Figure 2C). This increase

in collagen loss was markedly attenuated by IGF-1 to 23.8% (p < 0.0001), and was

further reduced by Dex to 14.2% (p = 0.008 vs. IL-Ia + IGF-1). The combination

treatment showed the lowest collagen loss of 7.9% (p = 0.028 vs. IL-la + Dex). Collagen

release kinetics revealed that the effects of IGF-1 or Dex became significantly different

from IL-la on Day 18 (Figure 2D), while IGF-1 + Dex treatment showed earlier effects

on Day 15. Furthermore, the combination treatment completely arrested collagen release

between Day 15-24 compared to the untreated controls (p = 0.0447).

IGF-1 and Dex rescued bovine chondrocyte viability in the presence of IL-1a.

Bovine disks were cultured in IL-la medium with or without Dex for 8, 16, and 24 days

(Figure 3A). Significant increase in cell death (red-stained cells) can be observed as early

as 8 days after IL-la treatment, and by Day 24, disks had undergone serious degeneration

and significant shrinkage in tissue dimensions (Figure 3A, bottom-middle column). In

contrast, the addition of Dex completely prevented IL-i la-induced cell death and its

effects sustained over 24 days. In a separate experiment (Figure 3B), IGF-1, Dex, or both
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successfully rescued IL-la-induced cell death when they were introduced on Day 0, but

no rescuing effects were observed when added on Day 8.

Bovine chondrocyte gene expression. Chondrocyte gene expression in bovine

explants was evaluated by qPCR after 4-day treatments and was shown in Figure 4. The

matrix genes aggrecan and collagen II were severely suppressed by IL-la (p < 0.0001 for

both genes). The addition of IGF-1, Dex, or both significantly rescued aggrecan

expression compared to IL-l a alone, and the effect of Dex was greater than that of IGF-1

(p < 0.0001). In contrast, only the combination treatment rescued collagen II expression

(p = 0.01). ADAMTS-4 expression was upregulated by IL-la (p <0.0001 vs. control),

and was suppressed by IGF-1, Dex, or both. IL-la also increased ADAMTS-5 expression

by more than 200 fold, which was then downregulated by IGF-1 or Dex, and their

combination showed a further reduction from either treatment (p = 0.015 vs. IGF-1, and p

< 0.0001 vs. Dex). The elevated proprotein convertase PACE-4 and Furin mRNA levels

under IL-la treatment were significantly suppressed by IGF-1 and Dex, respectively

(data not shown). The matrix metalloproteinases MMP-3 and MMP-13 were similarly

upregulated by a few hundreds fold by IL-la (p < 0.000 1 vs. control for both genes).

IGF-1 had no significant effect on either gene (p = 0.103 for MMP-3, p = 0.057 for

MMP-13), whereas Dex or the combination markedly reduced both genes (p < 0.000 1 for

both genes). The mRNA of COX-2 was upregulated by IL-la (p < 0.0001 vs. control),

but then suppressed by IGF- 1 (p = 0.04 vs. IL-l a), and further reduced by Dex (p <

0.0001 vs. IGF-1). IL-la significantly increased the expression of iNOS (p < 0.0001 vs.

control), but IGF-1, Dex, or their combination had no additional effect. Dex completely

blocked the effect of IL-i a on IL-6 expression, whereas IGF-1 showed no effect at all.
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The apoptosis executioner gene caspase-3 was increased upon IL-la treatment, but was

significantly reduced by Dex or Dex + IGF- 1; however, IGF- 1 by itself had no

suppressive effect.

Effects of IGF-1/Dex on human cartilage degradation and biosynthesis.

Cartilage disks were obtained from 8 human ankle joints of 5 donors and 3 knee joints of

3 donors. Accumulated sGAG losses were evaluated in a 17-day study (8 independent

experiments, 5 for ankle and 3 for knee) along with 35S sulfate incorporation rates

measured during Day 15-17. For both ankle and knee cartilage, IL-la treatment increased

sGAG loss compared to the untreated control (Figure 5A&C, p <0.0001 for both). The

addition of IGF-1, however, had no impact on reducing the elevated sGAG release. In

contrast, Dex completely blocked sGAG loss compared to IL-la alone (p <0.0001 for

both ankle and knee) to a level not significantly different from the untreated control (p =

0.0762 for ankle and p = 0.5418 for knee). The combination treatment showed similar

effects as Dex.

Compared to the untreated control, 35S Sulfate incorporation was also suppressed

by IL-I a treatment in both ankle and knee cartilage (Figure 5 B&D, p < 0.000 1 for both).

IGF-1 rescued 3 5S incorporation in the ankle (p < 0.0001) and knee (p = 0.0196), whereas

Dex showed no rescuing effects. The combination of IGF- 1 and Dex significantly

increased biosynthesis but the effect was similar to the IGF-1 treatment (p = 0.3936) in

the ankle. However, IGF-1 + Dex had no impact on biosynthesis in the knee compared to

the IL-la treatment (p = 0.3194) but its effect is also not significantly different from the

IGF-1 treatment (p = 0.7764).
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Only Dex rescued chondrocyte viability in human cartilage. Chondrocyte

viability in human ankle and knee cartilage explants were evaluated 17 days after

treatments. Two ankle joints (Collin's grade 1) from a 64-yr-old female donor, and an

ankle (Collin's grade 1)/knee (Collin's grade 2) pair from a 66-yr-old female donor were

used. As shown in Figure 6A, representative images indicated significant cell death

occurred under IL-la treatment, especially in the superficial zone, and only Dex

treatment rescued cell death. Quantitative results in Figure 6B revealed similar trends for

both ankle and knee cartilage disks. Specially, IL-I a induced significant cell death

compared to the untreated control (p = 0.0007 for ankle, p < 0.0001 for knee). The

addition of IGF-1 showed no improvement on overall viability for both types 'f joints. In

ankle cartilage, Dex rescued majority of cells to the level of the untreated control (p =

0.9244). As a comparison, Dex had no effect compared to IL-la treatment in knee

cartilage but significant over IGF-1 treatment (p = 0.0027). The combination of IGF-1

and Dex, however, showed significant reduction from Dex treatment to values similar as

the corresponding IGF- 1 treatment for both ankle and knee cartilage. A closer look at the

depth-dependent cell viability in ankle cartilage revealed that majority of cell death

occurred in the superficial and middle zones when challenged with IL-la (Figure 6C).

Again, only the addition of Dex rescued cell death throughout the entire depth of the

cartilage disks.

3.4 DISCUSSION
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The objective of this study was to explore the effects of the IGF-1 + Dex

combination on IL-la-challenged articular cartilage in vitro. Our results demonstrated

that IGF-1 and Dex complemented each other in adult human cartilage, specifically IGF-

1 promoted matrix biosynthesis while Dex blocked matrix loss, and the resulting

beneficial effects cannot be achieved by either molecule alone. In young bovine cartilage,

both IGF-1 and Dex provided pro-anabolic and anti-catabolic effects but the

combinational effects were additive or synergistic. Furthermore, Dex prevented IL-la-

induced chondrocyte cell death in both adult human and young bovine cartilage, while

IGF-1 only offered protection in young bovine cartilage. Lastly, the changes at the

protein level were consequences of direct transcriptional upregulation by IGF- 1 and Dex

on aggrecan and collagen II gene expression, and suppression on MMPs, aggrecanases

ADAMTS-4 and -5 mRNA, as well as proprotein convertase Furin and PACE 4.

Besides their inhibitory effects on aggrecanase transcription, the mechanisms by

which IGF-1 + Dex prevent proteoglycan degradation in the presence of IL-I a may

involve inflammatory mediators such as COX-2 and iNOS. COX-2 catalyzes the

synthesis of prostaglandin E2 (PGE2) and is inducible upon IL-I stimulation. Our results

showed that the elevated COX-2 mRNA was markedly suppressed by IGF-1 + Dex. This

COX-2 dependent mechanism may contribute to the overall reduction in cartilage

degradation achieved by the combination therapy. In fact, Hardy et al (23) demonstrated

that COX-2 is partially responsible for IL-1p-mediated human OA cartilage degradation,

and Dex attenuated both COX-2 activity and proteoglycan loss. In contrast to their effects

on COX-2, IGF-1 + Dex had no significant effects on iNOS expression. This is consistent

with previous studies that showed NO release was strongly suppressed by Dex in both
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primary human chondrocytes and bovine explants (17, 24), even though the mRNA

express+ion level of iNOS was not blocked by Dex.

The sGAG and collagen loss kinetics study revealed that aggrecan protects the

collagen network from IL-Ica mediated proteolysis, as shown previously (25). IGF-1 was

known to partially suppress MMPs mRNA (26) and collagenase activation, and block

collagen release when co-incubate with IL- Ia (27). Here, we have shown that IGF- 1 is

capable of blocking collagen loss even after the majority of sGAG was depleted by IL-la,

suggesting direct suppressive effects of IGF-1 on collagenases. Furthermore, we have

shown that Dex had even more pronounced protective effects on collagen by significantly

abrogating MMP-3 and MMP-13 expression, consistent with previous studies (28, 29).

When combined with IGF-1, they together provide complete protection for collagen that

cannot be achieved by either one alone.

The strong IL-6 mRNA induction by IL-la suggests that the effects of IL-la were

augmented by IL-6, which is strongly suppressed by Dex. Guerne et al (24) showed that

Dex (100 nM) rescued the inhibition of PG synthesis by IL-6/sIL-6 or IL-6 in primary

human chondrocyte. However, the effect of Dex is more likely to counteract the

suppressive effect of cytokine on matrix biosynthesis instead of directly promoting

matrix synthesis, since Dex by itself inhibits aggrecan synthesis (data not shown).

One of the surprise findings of this study is that Dex prevented IL-l a-induced

chondrocyte cell death in both young bovine and adult human cartilage. To date, there is

no report on the effects of Dex on chondrocyte apoptosis induced by inflammatory

cytokines. In the absence of inflammatory cytokines, however, Dex is known to induce

apoptosis in proliferative chondrocytes cell lines (30, 31), primary chondrocytes (32), as
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well as terminally differentiated hypertrophic chondrocytes (33). In contrast, Dex was

shown to prevent apoptosis in terminally differentiated cell line (34) and did not

compromise cell viability in long-term culture of young bovine cartilage explants (35).

The complexity of Dex signaling on cell apoptosis was further evident by studies that

showed strong pro-apoptotic effects of Dex in hematological cells, osteoblasts (36), while

Dex offers anti-apoptotic effects in epithelial (37), fibroblasts (38), and in carcinoma cells

when inflammatory cytokines or anticancer drugs are present (39, 40). Dex can even

transduce pro- and anti-apoptotic signals in the same cell type, depending on the stress

environment (41, 42). These findings suggest that the pro-apoptotic or anti-apoptotic

nature of Dex is cell type-, cell differentiation stage-, dose-, as well as stimulus-

dependent. Therefore, when cartilage is challenged with IL-i a, one can speculate that

Dex interferes with cytokine-induced apoptotic signaling network, as supported by the

downregulated caspase-3 mRNA expression by Dex in the current study. Our preliminary

data further corroborate the anti-apoptotic role of Dex in the presence of IL-la by

showing blocked caspase-3 activity at the protein level (data not shown), and the anti-

apoptotic mechanisms of Dex are investigated in the ongoing studies.

Compared to the young bovine cartilage, the anti-catabolic and pro-survival

potential of IGF- 1 were lost when examined in adult human ankle and knee cartilage.

Substantial evidences in the literature showed that OA and aging chondrocytes response

poorly to IGF-1 (43, 44), while the exact mechanisms are still unknown, possible

explanations that have been suggested include the presence of extracellular IGF- 1

binding proteins (45, 46), as well as altered intracellular signaling by mediators such as

reactive oxygen species (47). Yin et al (10) demonstrated that oxidative stress is
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responsible for inhibiting Akt phosphorylation and stimulating MEK-ERK MAPK

signaling in human OA chondrocytes, and as a result, IGF-1 signaling was blocked along

with proteoglycan synthesis. In the current study, however, the fact that IGF-1 was

capable of significantly rescuing IL-l Ia-suppressed proteoglycan biosynthesis in human

cartilage without affecting proteoglycan degradation may suggest that: 1) the

extracellular IGF-1 binding proteins did not prevent IGF-1 signaling (48); 2) the Akt

signaling pathway can be activated by IGF-1; 3) Akt-independent signaling pathways

responsible for regulating proteoglycan degradation and chondrocyte survival are altered

in human chondrocytes. Whether the aberrant survival signaling pathway in response to

IGF- 1 has compromised the anti-apoptotic effect of Dex is still inconclusive, since our

results also showed that IGF-1 did not interfere with the anti-apoptotic potential of Dex

when human ankle and knee cartilage were stimulated with TNFa and IL-6 (data not

shown).

In this study, we examined a potential combination therapy with IGF-1 and Dex

and demonstrated their beneficial effects in reversing IL-l a-suppressed biosynthesis and

blocking cytokine-induced proteoglycan and collagen degradation in young bovine

explants. Furthermore, IGF- 1 + Dex strongly inhibit cell death induced in an

inflammatory environment. Importantly, we have shown that each therapeutic has its

unique role in cytokine-challenged adult human cartilage: IGF-1 offers stimulation on

proteoglycan biosynthesis while Dex modulates cartilage catabolism. Consequently, this

combination is required to restore the imbalance between anabolic and catabolic

processes in OA. The advantageous effects of this combination therapy can be further

expanded with improved IGF-1 function (49) as well as appropriate in vivo delivery
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method, i.e. intra-articular injection with nanoparticles, and thus may stimulate interests

for clinical studies to target the treatment of early stage PTOA.
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Figure 3.1 A, Percent sGAG loss from immature bovine cartilage in an 8-day
experiment. Disks were subject to either mono or dual therapy in the presence of IL-l a (1
ng/ml); N = 6 disks. B, Normalized sulfate incorporation rate measured during Day6-8 of
the same disks in A. C, Percent sGAG loss in response to 8-day treatements; N = 18 disks
from 3 independent experiments. D, Normalized sulfate incorporation rate measured
during Day6-8 of the same disks in C. Values are mean and SEM, * vs. IL-la alone; # vs.
IL-la + IGF-1; $ vs. IL-la + Dex, P <0.05.
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from immature bovine cartilage in response to 24-day treatments. IL-l a (1 ng/ml) was
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Figure 3.3 A, Bovine chondrocyte viability in cartilage disks in response to 8, 16, or
24-day treatments. Cells were fluorecently labeled with fluorescein diacetate (green,
viable) and propidium iodide (red, non-viable). B, Bovine chondrocyte viability
evaluated on Day 16 after treatments. Disks were treated with IL-l a (1 ng/ml) for the first
8 days, and switched to 1 pg/ml IL-la between Day 8 and Day 16. IGF-1, Dex, or both
were added either on Day 8 (middle panel) or Day 0 (bottom panel). White arrow:
superficial surface. Scale bar = 200 pm.
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Figure 3.6 A, Representative images of fluorescently stained adult human ankle
cartilage on Day 17 after treatments. Cells were labeled with fluorescein diacetate (green,
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bar = 200 tm. B, Quantified percent viability from red/green images of 2 adult human
ankles and 1 human knee cartilage. Blue circle: 64-yr-old female ankle (N = 6 disks, 1-2
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control; # vs. IL-1a alone; $: comparisons between IGF-1, Dex, and IGF-1+Dex,
statistical significance was separately indicated for the ankles (above circles) and knee
(below triangles). C, Depth-dependent cell viability in the 64-yr-old female ankle
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zone. The deepest 5% depth was discarded due to cutting-induced cell death.
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3.8 SUPPLEMENTAL DATA
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Figure 3S.1 A, Percent sGAG loss from immature bovine cartilage in a 4-day
experiment. Disks were subject to mono growth factor therapy with or without initial
injury in the presence of IL-l a (10 ng/ml). Concentration used: IGF- 1 (100 ng/ml), FGF-
2 (10 ng/ml), EGF (10 ng/ml), TGF-pl (10 ng/ml), BMP-2, -4, -7 (all 100 ng/ml); N = 6
disks. B, Normalized sulfate incorporation rate measured during Day2-4 of the same
disks in A.
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initial injury. N = 4 disks. B, Normalized sulfate incorporation rate measured during
Day2-4 of the same disks in A. *p < 0.05.
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Figure 3S.3 A, Percent sGAG loss from immature bovine cartilage in a 4-day
experiment. Disks were subject to mono growth factor therapy with or without initial
injury in the presence of IL-la (1 ng/ml). Concentration used: IGF-1 (100 ng/ml), FGF-2
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4.1 INTRODUCTION

Apoptosis is a process of programmed cell death (PCD) with distinct

characteristics such as membrane blebbing, cell shrinkage, chromatin condensation, and

DNA fragmentation. Generally, the mechanisms of apoptosis are classified into two

distinct pathways: the extrinsic or death receptor pathway and the intrinsic or

mitochondrial pathway (1). In both pathways, caspases (Cysteine-dependent aspartate-

directed proteases) are the essential players involved in the initiation and execution

phases of apoptosis. Caspases are expressed as zymogens (procaspases) in the cytoplasm

and upon activation can cleave cellular substrates, leading to downstream biochemical

and morphological changes that are characteristic of apoptosis. Even though distinct in

features, the two apoptosis pathways are often interconnected and can influence each

other (2). Caspase-dependent apoptosis pathways are considered one of the main

mechanisms leading to PCD, however, caspase-independent apoptosis pathways (3) and

other forms of PCD (4, 5) contribute to the complex cell fate determination process.

The extrinsic pathway was activated when death-inducing signals such as TNF-a

and Fas ligand bind to their membrane receptors, which trigger the recruitment of adapter

proteins TRADD or FADD and form the death-inducing signaling complex (DISC) (6).

The inactive initiator caspases procaspase-8 and procaspase-10 are then activated at the

DISC site. The active caspase-8 can initiate apoptosis directly but it can also cleave the

BID (BH3 interacting-domain death agonist, a Bcl-2 family protein) , which translocates

to the mitochondria membrane and participates in the intrinsic pathway to amplify the

pro-apoptotic signals. The intrinsic pathway can also be initiated by negative cellular

stress such as accumulation of free radicals, lack of nutrients or hormones, radiation, and
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others, which result in the loss of mitochondrial trans-membrane potential and release of

cytochrome c into the cytosol. Cytochrome c binds and activates Apaf-1 as well as

procaspase-9. The mitochondrial pathway was regulated by a complex, dynamic network

of the Bcl-2 family proteins (7), include pro-apoptotic proteins Bax, Bak, Bad, Bik, Bid,

Bim, Noxa, and pro-survival proteins Bcl-2, Bcl-xL, Mcl-1 and others. How a cell

decides whether or not to initiate apoptosis through the interplay between Bcl-2 proteins

in response to apoptotic signals is still not well understood.

Chondrocyte apoptosis is one of the hallmarks of cartilage degeneration and is

believed to play a critical role in the pathogenesis of OA (8). Increased apoptotic

chondrocytes have been found in OA patients (9, 10) as well as after joint injury (11).

Significantly elevated concentrations of pro-inflammatory cytokines such as IL-1, TNF-a,

and IL-6 were also detected in the synovial fluid of patients with ACL injury (12-14). In

vitro, substantial evidences showed that IL-I can induce chondrocyte apoptosis, which

was shown to be mediated by the production of NO and PEG2 through activation of the

ERK1/2, p38 MAPK, and NF-B pathways and was caspase-dependent (15, 16).

Suppression of NO and PGE2 synthesis in turn inhibited IL-1p-induced apoptosis, likely

to be associated with mitochondria-mediated pathways (17-19). A recent study has also

shown the possibility of TNF-x induction by IL-1 drives apoptosis initiation via the

extrinsic pathway (20).

Dexamethasone (Dex) is a potent synthetic glucocorticoid (GC) that has been

widely used intra-articularly to relieve inflammation for the treatment of rheumatoid

arthritis (RA) and other types of arthritis (21). Dex suppresses many of the IL-1 induced

catabolic processes such as upregulation of ADAMTSs and MMPs, synthesis of
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inflammatory mediators COX-2, PGE2, and NO, and matrix degradation (22, 23) (also

see Chapter 3). However, the potential of Dex as an OA drug candidate has been

dampened by reports that suggest it can induce chondrocyte apoptosis, especially in

proliferative chondrocytes (24, 25). However, contradictory studies have shown that Dex

was able to prevent cell apoptosis (26) or maintain cell viability over long-term culture

(27). As discussed in Chapter 3.4, the pro-apoptotic or anti-apoptotic nature of Dex

largely depends on the cell type, stimuli, culture system, and dose. Moreover, what role

does Dex play on regulating chondrocyte apoptosis in the presence of pro-inflammatory

cytokines have not been studied.

The objectives of this study are 1). Examine whether Dex alone treatment induce

cell apoptosis in high-density cultured monolayer chondrocytes; 2). Study the effects of

Dex on chondrocyte cell viability/apoptosis in the presence of IL-l Ia; 3). Explore the

mechanisms of Dex-mediated cell survival/death.

4.2 MATERIALS AND METHODS

Bovine chondrocyte isolation and culture. Cartilage slices were harvested from

the chondyles of 1-2-week-old calves (obtained from Research '87, Boylston, MA).

Cartilage was digested in pronase for 1 hour at 37*C, followed by collagenase digestion

in serum-free medium overnight at 37'C. On the next day, isolated chondrocytes were

collected by filtering through a 40-pm cell strainer, and then pelleted at 800 g for 10 min.

Cells were washed twice with PBS and re-suspended in culture medium. The initial cell

viability was evaluated by Trypan-Blue staining to ensure >80% viable cells obtained.
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Chondrocytes were plated at a high density of 1X106 cells/cm 2 in 48-well or 6-well plates,

and equilibrated for 24 hours before treatments in serum-free medium (low-glucose

DMEM; lg/L) supplemented with 10 mM HEPES buffer, 0.1 mM nonessential amino

acids, 0.4 mM proline, 20 g/ml ascorbic acid, 100 units/ml penicillin G, 100 g/ml

streptomycin, and 0.25 g/ml amphotericin B for 2-3 days (5% C0 2 ; 37C).

Cell viability staining. Cultured chondrocytes in 48-well plates were incubated

with fluorescein diacetate (FDA; 4 ig/ml) and propidium iodide (PI; 40 pg/ml) (both

from Sigma), for viable and non-viable cell staining, respectively. After 2 min incubation,

cells were washed twice with PBS and imaged with a Nikon fluorescence microscope

with a 20x objective. Four fields were imaged for each sample well, and cell viability was

quantified using the imaging software FIJI (ImageJ). The numbers of viable and non-

viable cells were counted via the Image-based Tool for Counting Nuclei (ITCN version

1.6) plug-in, and data were expressed as percent of total viable cells.

Caspase-3 Activity Assay. Caspase-3 activity was determined using the EnzChek

Caspase-3 Assay kit #2 (Invitrogen), procedures follow manufacturer's protocol with

slight modifications. After treatments, medium was collected and the attached cells were

washed with cold PBS. Cell lysis buffer (RIPA buffer, Cell Signaling Technologies) was

added to each well and cells were scraped off and transferred to an eppendorf tube. Cells

were sonicated for 30 s/cycle for 5 cycles, and the lysed cells were centrifuged at 13,200

rpm for 10 min at 4'C to collect the supernatant. Total protein content was determined

using the BCA assay. 50 pl of the cell lysate or the collected medium was added to 50 [1

substrate solution containing 2.5 nmol of the Z-DEVD-R1 10 substrate into a 96-well

plate. Readings were taken kinetically every 5 min for 1 hour using a fluorometer
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(Perkin-Elmer). Caspase-3 activity in the cell lysate was expressed as the fluorescent unit

per min per [tg of protein, whereas the activity in the medium was reported as the

fluorescent unit per min.

Caspase-8 and -9 Activity Assays. Caspase-8 and caspase-9 activities were

measured in the same cell lysates using the Caspase-8 Colorimetric Assay (R&D systems)

and the Caspase-9 Colorimetric Assay Kit (Sigma), procedures follow manufacturer's

protocols. Briefly, chondrocytes in 6-well plates were grown for 48 hours, and the

attached cells were scraped off the plate into a 15-ml tube along with the culture medium.

Cells were collected after centrifuging for 2 min at 850g, and then the pellet was washed

with cold PBS. Cell lysis buffer was added to each sample and then transferred to an

eppendorf tube. Cells were sonicated for 30 s/cycle for 5 cycles, and the lysed cells were

centrifuged at 12,000 g for 15 min at 4*C. The supernatant was collected and the total

protein content was determined using the BCA assay (Thermo Scientific). 50 p1 of the

cell lysate was added to 50 V1 substrate solution containing 200 p.M of Ac-IETD-pNA

(caspase-8 substrate) or Ac-LEHD-pNA (Caspase-9 substrate) into a 96-well plate. The

initial absorbance was measured using a spectrophotometer at 405 nm. The plate was

incubated at 37'C for 1.5 hour, and the final reading was taken at 405 nm. To calculate

each caspase activity, the background absorbance was deducted from both the initial and

final readings, and the difference between the initial and final reading was converted to

pmol of pNA using a standard curve. Data were then normalized by protein content over

the time of incubation, and expressed as pmol of pNA per mg of protein per min.

Gene expression analyses. Chondrocytes were cultured for 6, 24, 48, and 96

hours, after removal of the culture medium, cells were washed with cold PBS, and stored
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in -80*C after flash-freezing. On the extraction day, cells were thawed on ice and lysed in

the TRIzol reagent with homogenization. Samples were added with chloroform, vertexed,

and centrifuged at 13,200 rpm for 10 min. The supernatant was further purified following

the Qiagen RNeasy mini kit protocol (Qiagen, Chatsworth, CA). Equal amounts of

mRNA from each condition were reverse transcribed using the AmpliTaq-Gold Reverse

Transcription kit (Applied Biosystems, Foster City, CA). Bovine primers were designed

using the PRIMER-BLAST tool. Caspase-3: forward 5'-

GAAGTCTGACTGGAAAACCC-3', reverse 5'-GAAGTCTGCCTCAACTGGTA-3',

caspase-8: forward 5'-GGATGATGACATGACTTTGC-3', reverse 5'

CCTGCTCACAGATTCTTTTC-3'; caspase-9: forward 5'-

CATGATCGAGGACATTCAGA-3', reverse 5'-CAAGCAGGAGATGAACAAAG-3';

Bax: forward 5'-CTTTTGCTTCAGGGTTTCAT-3', reverse 5'-

CCATGTTACTGTCCAATTCA-3'; Bakl: forward 5'-

GCCTATGAGTACTTCACCAA-3', reverse 5'-AATCTTCGTACCACAAACTG-3';

Bik: forward 5'-TACACCTTCCTACAAAACCA-3', reverse 5'-

TAGGGGAAAAACAAGCTGTA-3'. Real-time PCR were performed using the Applied

Biosystems 7700HT instrument with SYBR Green Master Mix (Applied Biosystems). As

described previously (28), the expression data for each gene were calculated from the

threshold cycle (Ct) value, and normalized to the internal housekeeping gene 18S.

Multiplex Luminex. To examine which of the upstream signaling pathways is responsible

for the anti-apoptotic effect of Dex, we studied the Akt, MAPK JNK, MAPK ERK1/2,

and NF-KB/iKB pathways using the Bio-Plex Prolm Magnetic Cell Signaling Assays

(Bio-Rad). All procedures and reagents used follow the manufacturer's instructions.
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Antibodies for phosph-Akt (Ser473), phospho-JNK (Thr 83/Tyrs18 2), phosphor-ERK1/2

(Trmo2/Tyr2 4, Thr18Ffyr18), phospho-IicB-a (Ser 2/Ser36) were purchased with the Bio-

Plex kit. Human cartilage harvested from both the knee and ankle joints (all Collin's

grade 1) of a 57-year-old female donor were digested in pronase for 1 hour at 37*C,

followed by collagenase digestion in 10% FBS high-glucose DMEM medium overnight

at 370 C. Chondrocytes were plated into 96-well plates at a density of 1XI0 cells/cm2 for

24 hours in 10% FBS medium, followed by 24-hour serum starvation. After treatments

for 10, 30, 60 min, or 6 hours, cells were washed twice with cold PBS and were stored at

-80*C after flash-freezing. On the next day, thawed samples were lysed on ice with the

provided cell lysis buffer supplemented with 2 mM PMSF. Cells were sonicated for 30

s/cycle for 5 cycles, and the lysed cells were centrifuged at 13,200 rpm for 10 min at 4*C

to collect the supernatant. Protein concentration was determined using the BCA assay and

then was adjusted to 200 gg/ml. Equal amount of total proteins (5 pg) and positive

control for each phosphor-protein were loaded into the 96-well assay plates containing

multiplexed magnetic beads coated with primary antibodies. The plates were incubated

overnight at room temperature with shaking. On the next day, the plates were washed and

incubated with detection antibodies for 30 min at RT, then incubated with streptavidin-

PE for 10 min, and the plates were read with a MAGPIX instrument (Luminex). Data are

expressed as the fluorescent intensity for each phosphor-protein.

Statistical analysis. Bovine gene expression data were log-transformed and

analyzed by the linear mixed effect model with animal as a random factor, followed by

Bonferroni's test for pair-wise comparisons. Bovine chondrocyte viability data were

analyzed by the linear mixed effect model with animal as a random factor, followed by
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Bonferroni's test for pair-wise comparisons. Bovine IL-la dose, Dex dose, and Human

luminex data were analyzed by two- or three-way ANOVA, followed by Tukey's test for

pair-wise comparisons. P values less than 0.05 were considered statistically significant.

4.3 RESULTS

Caspase-3 activation by IL-la, a dose and time course study. Bovine

chondrocyte treated with 1 or 10 ng/ml of IL-I a over 24-, 48-, and 96-hour time course

revealed a dose- and time-dependent caspase-3 activation mediated by IL-i a (Figure 1).

Initially, no significant caspase-3 activity was measured at either 24 or 48 hour time

points for both concentrations of IL-la. In comparison, the positive control

staurosporine-treated samples showed significant activation, measured both in the cell

lysates and medium, starting from 24 hour (p < 0.0001 vs. untreated control). By 96-hour,

significant caspase-3 activity was induced by 10 ng/ml IL-la (p = 0.0018 vs. untreated

control in the lysates) but not by 1 ng/ml (p = 0. 1413 vs. untreated control). The positive

control, however, showed decreased caspase-3 activity (p = 0.0001 vs 10 ng/ml IL-la) in

the lysates at 96-hour.

The effets of Dex dose on caspase-3 activation. The effects of Dex dose on

caspase-3 activation were evaluated in a 4-day study in the presence or absence of IL-l a.

As shown in Figure 2, Dex alone treatments did not induce caspase-3 activation in the

cell lysates nor found in the medium at any of dose tested. Consistent with Figure 1, IL-

la at 10 ng/ml significantly increased caspase-3 activity in the lysates (p <0.0001 vs.

untreated control) as well as in the medium (p < 0.0001 vs. untreated control). The
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addition of Dex significantly suppressed the activated caspase-3 activity by IL-la (p <

0.0001 vs. IL-l a for all Dex concentrations) in the lysates to the control level. Similarly,

IL-l a induced caspase-3 activity was largely abolished by Dex in the medium even

though significantly above the untreated control. Staurosporine-treated samples showed

active caspase-3mostly in the medium.

Dex rescued IL-la-induced cell death. Chondrocyte remained >80% viable

after 4-day treatment in the control medium (Figure 4). Dex alone treatment at either 10

nM or 100 IM did not induce significant cell death compared to the untreated control (p

= 1 for both Dex concentrations). IL-la at 10 ng/ml almost completely eliminated all

viable cells (p < 0.0001 vs. untreated control). When Dex was added at 10 nM, -34 ± 5.3%

(Mean ± 95% Confidence interval) cells remained viable, which was significantly larger

than the IL-la alone treatment (p < 0.0001). Moreover, 100 PM Dex showed

significantly greater cell rescuing effect than 10 nM (p < 0.0001), but still lower than the

untreated control (66.5 ± 2.6% vs. 85.6 6.8%, p < 0.0001). Staurosporine treatment

yielded an overall viability of 4.0 ±0.8%, which is not difference from the IL-la alone

treatment.

Dex suppressed caspase-depenent apoptotic pathways gene expression. Since

the elevated caspase-3 activity by IL-l a was significantly inhibited by Dex treatments

(Figure 2), we further explored which of the intrinsic or extrinsic apoptotic pathway was

regulated by Dex at the gene expression level. As shown in Figure 4, Dex alone

treatments at either 10 nM or 100 pM significantly suppressed the endogenously

expressed caspase-3 expression starting from 6 hour. IL-l a alone significantly

upregulated caspase-3 expression 6-16 folds over the 6-24 hour time course. Both the low

112



and high dose of Dex significantly reduced the caspase-3 upregulation. Similar to

caspase-3, caspase-8 expression was suppressed by Dex alone treatments. The caspase-8

upregulation by IL-la was partially blocked by Dex. Interestingly, caspase-9 was not

suppressed by Dex alone treatment (except for 10 nM at 6 hour). IL-la activation of

caspase-9 started at 24 hour, which was later than both caspase-3 and caspase-8. The

addition of Dex did not have significant suppressive effect on caspase-9 expression until

96 hour. A further look at the expression of pro-apoptotic proteins Bax and Bak, both are

upstream of caspase-9, revealed that Dex significantly repressed Bak at 6 and 24 hour in

the presence of IL-la. Dex at high dose also inhibited IL-la upregulated Bax expression

at 6 hour. However, the suppressive effects of Dex on Bax and Bak expression were lost

at the later time points, even though both genes remained elevated by IL-l a treatment. In

comparison, Dex alone treatment significantly reduced Bik expression, and completely

blocked the pro-apoptotic gene Bik from 6-24 hour in the presence of IL-la.

Dex regulated multiple signaling pathways in a time-dependent manner.

Multiple intracellular signaling pathways regulate cell apoptosis. Here we studied the

effects of Dex, in the presence or absence of IL-l Ia, on the phosphorylation of the JNK

MAPK, Akt, ERK MAPK, and iicB-a pathway in human chondrocytes. As shown in

Figure 5, JNK (Thris3 182) phosphorylation was significantly increased at 30 and 60

min after treatment with IL-la. Dex inhibited JNK activation back to the untreated

control level at 60 min. In general, Akt (Ser4 7 3 ) phosphorylation was not induced by IL-

1 a treatment (except for 60 min in knee cell), and Dex had no effects either by itself or in

the presence of IL-l a. ERK1/2 (Thr,2 0 /Tyra', Thr 85 /y'r18 7 ) was activated by IL-l a at 30

and 60 min for both ankle and knee cells, and the addition of Dex had suppressive effect
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at 60 min for the knee cells. IL-I a also triggered the activation of iicB-a (Ser32 /Ser36 ) as

early as 10 min after treatment, which was not inhibited by Dex. Interestingly, IL-la

stimulated iicB-a phosphorylation level dropped at 30 min, but then re-surged at 60 min.

The addition of Dex had significantly suppressive effect on iicB-a activation at 6 hour and

60 min for ankle and knee cells, respectively.

4.4 DISCUSSION

In the present study, we investigated the role of Dex on chondrocyte apoptosis in

the presence or absence of IL-la. Results indicated that Dex can significantly inhibit IL-

1 a-induced chondrocyte apoptosis and rescue decreased cell viability in a dose-dependent

manner, while Dex alone did not induce significant cell apoptosis or compromise overall

cell viability. The effects of Dex were mediated by inhibition on caspase-dependent

apoptosis pathways, and likely to be the result of regulation on the JNK MAPK and NF-

icB/iKB-a signaling pathways.

Activation of caspase-3 by IL-I have been widely reported and the use of

caspase-3 specific inhibitor has direct suppressive effect on the subsequent apoptosis (29-

31), suggesting the IL-1-mediated chondrocyte apoptosis is caspase-dependent. Our

results at both the gene and protein level agree well with the literature. However, even

though a near-complete caspase-3 inhibition was achieved by Dex treatment, the fact that

viability was not completely rescued suggested the presence of other active executioner
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caspases such as caspase 6 or 7. Caspase-independent apoptosis pathways cannot be ruled

out either.

Gene expression study showed that both caspase-8 and caspase-9 expression were

activated by IL-Ica with caspase-8 being upregulated first. A closer look at the Bcl-2

family proteins, which are upstream of caspase-8 activation, showed that the pro-

apoptotic genes Bax, Bak, and Bik were all upregulated at the early 6 hour, while

caspase-8 activation was found to be significant after 24 hour. Dex initially blocked Bax

and Bak expression but it effects were lost after 24 hour, which is consistent with the

elevated caspase-9 expression. Complete blockage of Bik expression by Dex had no

inhibitory effect on the downstream caspase-9 gene expression. Bik was shown to

interact with and inhibit the activity of the pro-survival Bcl-2 and Bcl-xL proteins and

result in the induction of Bax-dependent pathway (32). Our data showed that Bcl-2 and

Bcl-xL gene expression profiles were not upregulated by the addition treatment with Dex,

further studies are needed to examine the protein level regulation of these Bcl-2 family

proteins by Dex.

In our study, no serum or growth factors such as Insulin-like growth factor 1

(IGF-1) were used in our culture medium, and as a result, the Akt pathway was not

activated in the untreated control. Under this serum-free condition, IL-la had no

stimulatory or suppressive effect on Akt phosphorylation, which is in contrast to studies

that used serum as medium supplement where IL-1 was reported to suppress Akt

activation (33). Dex treatment in the presence or absence of IL- l a had no additional

effects, and therefore it is unlikely the downstream anti-apoptotic effect of Dex in the

presence of IL-l a was through pro-survival signal activation via the Akt pathway.
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It is likely that IL-l a directly activate caspases through receptor binding, but

rather the indirect consequence of induction of other mediators such as NO. NO is an

important mediator of chondrocyte apoptosis through the disruption of normal

mitochondria function (34). Previous studies as well as studies in Chapter 3 of this thesis

have shown that IL-la significantly upregulates iNOS gene expression and the

subsequent NO production. While Dex was unable to suppress the iNOS at the gene level,

it was shown that Dex was able to block NO production at the protein level (23). Further

studies with the use of NO inhibitor or adding NO directly to the culture in the presence

of IL-la and Dex could test the hypothesis that Dex inhibits NO-mediated apoptosis

pathways.

The present study examined the anti-apoptotic role of Dex in the presence of the

pro-inflammatory cytokine IL-la using high-density cultured monolayer bovine and

human chondrocyte. Our results showed that Dex alone treatment with high dose (100

pM) did not induce significant cell apoptosis or compromise cell viability. In the

presence of IL-l a, Dex was able to inhibit the caspase-dependent extrinsic and intrinsic

pathways both at the gene and protein levels, resulting in a significantly greater survival

rate. The anti-apoptotic effects of Dex is likely to be mediated by the inhibition on the

upstream JNK MAPK and NF-KB/ixB pathways but not the result of activation of the

pro-survival Akt pathway.
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Figure 4.3 The effects of Dex on bovine chondrocyte viability in the presence or
absence of IL-l a (10 ng/ml). Chondrocytes were fluorescently stained with fluorescein
diacetate (green, viable) and propidium iodide (red, non-viable) after 4-day treatments.
Images were taken with a Nikon fluorescence microscope with a 20X objective. The
numbers of viable and non-viable cells were quantified with ImageJ. N = 4 replicates
using chondrocytes from 2 different bovines. * vs. untreated control; # vs. IL- 1 a alone;
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CHAPTER 5

SUMMARY AND CONCLUSION
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In Chapter 2, we implemented a previously-characterized in vitro injury model

involving cytokines TNF-a and IL-6/sIL-6R with or without initial mechanical injury,

and investigated the effects of intermittent unconfined dynamic compression (10%-30%

strain amplitude) on both immature bovine and mature human cartilage. We

demonstrated the anti-catabolic effects of moderate dynamic compression on injury/TNF

+ IL-6/sIL-6R-challenged immature bovine and adult human cartilage. Importantly, we

discovered that there exists a threshold strain amplitude above which dynamic

compression becomes detrimental to cell viability as well as upregulation of

inflammatory genes and aggrecanase activity in the remaining viable cells. Together,

these results provide evidence to support the concept that appropriate loading-

rehabilitation post-joint injury can be beneficial at the cell level, but above threshold

dynamic loading may further contribute to loss of cell and tissue function. Further studies

exploring the effects of frequency and loading type (e.g., continuous vs. intermittent) are

suggested to optimize the beneficial effects of dynamic loading.

In Chapter 3, we examined a potential combination therapy with IGF-1 and Dex

and demonstrated their beneficial effects in reversing IL-l a-suppressed biosynthesis and

blocking cytokine-induced proteoglycan and collagen degradation in young bovine

explants. Furthermore, IGF-1 + Dex strongly inhibit cell death induced in an

inflammatory environment. Importantly, we have shown that each therapeutic has its

unique role in cytokine-challenged adult human cartilage: IGF-l offers stimulation on

proteoglycan biosynthesis while Dex modulates cartilage catabolism. Consequently, this

combination is required to restore the imbalance between anabolic and catabolic

processes in OA. The advantageous effects of this combination therapy can be further
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expanded with improved IGF-1 function (49) as well as appropriate in vivo delivery

method, i.e. intra-articular injection with nanoparticles, and thus may stimulate interests

for clinical studies to target the treatment of early stage PTOA.

In Chapter 4, we examined the anti-apoptotic role of Dex in the presence of the

pro-inflammatory cytokine IL-la using high-density cultured monolayer bovine and

human chondrocyte. Our results showed that Dex alone treatment with high dose (100

pM) did not induce significant cell apoptosis or compromise cell viability. In the

presence of IL-la, Dex was able to inhibit the caspase-dependent extrinsic and intrinsic

pathways both at the gene and protein levels, resulting in a significantly greater survival

rate. The anti-apoptotic effects of Dex is likely to be mediated by the inhibition on the

upstream JNK MAPK and NF-rB/irB pathways but not the result of activation of the

pro-survival Akt pathway.
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Al. Protocol for Running Western Blots

1. Have a plan
a. Volume of reagents to mix with sample volumes

i. 4-12% 15 well 1.5 mm thick Invitrogen mini-gel tolds 25 uL per
well max, usu do 20 uL

ii. Purple sample buffer above western bench is 4x, so total volume
per lane divided by 4.

iii. lOx reducing agent, so total volume/10.
iv. Volume of sample (5-10 ug seems standard, but can vary)
v. Water to make up rest of volume

b. Type of gel want to use (4-12% vs 10%) (smaller proteins get resolved
better on bigger % gels, thicker gels allow to load more volume, fewer
wells also leads to more volume)

c. Order of lanes to run (put ladders on edges so know where gel ends)
d. Antibody using, it's dilution, which animal to use for secondary
e. If doing a strip and re-probe need to plan which antibody to do first (ie do

NITEGE before G1 because G1 covers NITEGE).
2. Get a bucket of ice to keep samples and reducing agent cold.
3. Get NuPAGE Sample Reducing Agent (10x) off of Anna's shelf in the fridge in

the injury room and a Novex Sharp pre-stained protein standards vial from the
western shelf in the freezer in the injury room.

4. Set water to boil behind the shaker plate.
5. Make the running buffer: make 500 mL total, is 25 mL of 20x MOPS above

western bench, then add rest of volume in DI water. Mix by covering top of
graduated cylinder with parafilm and inverting. (If doing smaller proteins can use
MES instead of MOPS)

6. Aliquot the appropriate amount of sample into new labeled tubes.
7. Make the sample buffer stock of 4x sample buffer, lOx reducing agent, and water.

Add the appropriate volume to each sample. Vortex and spin down each sample
tube. Set to boil for 5 mins (denatures proteins).

8. Get a gel from the cold room (right inside the door on the right)
9. Put the electrophoresis machine together

a. The clear box with the gold post is the main unit
b. Put the squarish piece with the 2 gold posts in, the side with the post

facing down goes in the slot on the right.
c. The piece with the lever goes in the back
d. The blank plastic piece goes between the gold post piece and the lever

piece, or could run a second gel here.
e. The gel goes in the front of the gold post piece. **Take the white tape off

of the gel before you put it in.
f. Remove the comb from the gel, CAREFULLY.
g. Tighten the lever in the back so the gel is held tight.

10. Pour running buffer behind the gel in the middle compartment between the gel
and the back plate until the liquid level is over the white bar and covers all the
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wires. If the buffer leaks out of the middle compartment into the outer parts, you
did something wrong. Pour the rest on the buffer into the outer part of the box.

11. Use the special super-fine pipette tips (clear tips in a blue box) to squirt some
buffer over the top of the lanes to make sure there's no gunk blocking them.

12. Once samples are done boiling, vortex them and spin them down again.
13. Load the protein standards ladders and your samples with the super-fine tips. Set

the pipetter above the full volume you expect to pull up so you get everything. If
the tip gets clogged, you can throw it out or cut it to try and salvage the sample.
(Note: If running 2 gels at a time, you may want to run the gel in the cold room or
on ice and add more running buffer outside the gel. You would want to load the
samples in the cold room if you were going to run the gel there.)

14. Once all samples are loaded, put the top on the electrophoresis box (red to red,
black to black) and plug the cords into the power supply (red to red, black to
black). Run the gel at 200V for about 45 mins. If you don't see a bunch of
bubbles when you turn the power on, something is wrong. Make sure protein of
interest is going to be a bit away from the edge of the gel and separated well when
you stop running the gel.

15. While the gel is running, make up the transfer buffer (1000 mL total)
a. Measure out 3.03 g Tris base and 14.4 g glycine. (If have had problems

with transfer in past can add 0.5 g SDS.)
b. Add 800 mL water
c. pH the solution to 8.3
d. Add 200 mL methanol (stored under the waste fume hood).

16. After you're done running the gel (turn off the power supply and unplug it), you
need to transfer the separated proteins to a membrane. To do this, get the
aluminum tray and place a transfer cassette black side down, slide side up. Get 2
sponges and place 1 on the black part, one in the tray next to the cassette. Get 2
pieces of blotting paper from the top drawer on the left and put one on each
sponge. Pour transfer buffer over each blotting paper.

17. Remove the gel from the electrophoresis machine and remove it from the plastic
casing with the spackle applicator thing. You want the gel to stick to the side
with the black writing when you pull the plastic pieces apart. Cut the comb and
the two side pieces off the top of the gel with a razor blade.

18. Put the gel on top of the blotting paper and get the gel to come off the plastic and
stick to the blotting paper. You want to make sure that the part of the gel you care
about most (the top for full-length aggrecan) is fully on the blotting paper and not
right on the edge. Cut off the bottom ridge of the gel. Add additional transfer
buffer. Avoid any bubbles.

19. Assemble the transfer cell by placing the red and black plastic piece in the middle
of the clear plastic box. Also make sure you have a green lid for the box and a
small stir bar in the middle of the red and black piece.

20. Cut a piece of PVDF membrane (not nitrocellulose) to fit inside one of the little
lids the blot will go into. The paper also should not be bigger than the gel or it
messes up the voltage. Do not touch the white membrane, only the blue papers.

21. Saturate the white membrane only (not the blue papers) in methanol in a tip lid.
Rinse with DI water in another tip lid.
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22. Place the membrane on top of the gel, avoiding bubbles and avoiding moving the
membrane once it's been laid down.

23. Place the other piece of blotting paper on top of the membrane, then add the other
sponge. Roll over the sandwich with a 50 mL tube to squeeze out bubbles.

24. Maintain pressure on the stack while closing the cassette and sliding the top
closed. Place the cassette into the transfer cell (black to black). You may need to
jam it in a bit. Put an ice pack in the back of the transfer cell (from the top of the
freezer/fridge in the tissue engineering room). Pour in a bunch of the transfer
buffer (including the stuff in the aluminum tray), but not too full so you don't spill.

25. Take the transfer cell to the cold room. Add the rest of the transfer buffer, move
the cell on top of the stir plate, and set the level to 2.5 (or maybe a little above to
get the stir bar spinning). Put the top on the transfer cell (red to red, black to
black) and plug the cords into the power supply (red to red, black to black). If
one power supply doesn't work, try the other one. Other options are to switch lids
and add more buffer. Set the voltage to 75V and transfer for 60 minutes (or a bit
more if had problem before, can overtransfer small proteins).

26. To clean up the electrophoresis equipment, pour the MOPS buffer down the sink
and rinse off all of the machine parts.

27. While the proteins are transferring, make up the blocking solution. Can either do
milk or BSA in TBST or PBST. Usually do 5% milk in TBST. To make 50 mLs
weigh out 2.5 g Carnation instant non-fat dry milk and add TBST. There is a
volume effect, so don't add the full 50 mLs. Add some volume, mix it to break
up the clumps and then sonicate it. Add the rest of the volume of TBST
afterwards. (Note: TBST= Tris buffered saline + Tween, Tween is a detergent.
Rachel makes up lOx TBS because it takes a long time to dissolve and pH. Make
up 500 mL of lx TBST at a time. Tween and is viscous so use wide mouth
pipette tips. To make up 500 mL of TBST take 50 mL of lOx TBS and add 450
mL water. Then add 250 uL of Tween (is 0.5%).)

28. Once the transfer is complete, turn off the power supply and bring the transfer cell
back to the western bench. Remove the cassette from the machine and open it,
clear side up (?). Remove the PVDF membrane and place into one of the small
lids so that the protein side (the side facing the gel) is up. Rinse the membrane off
with TBST (about 8-10 mLs). Dump out the TBST and cover with 10 mL milk.

29. Place on stir table for 1 hour to block against non-specific binding.
30. To clean up the transfer materials, throw the gel into the big plastic jar (unless you

want to do a Coomassie stain), throw away the blotting paper, and just rinse out
everything else.

31. After the blocking is complete, make up the primary antibody solution. The total
volume will be 8 mL because that's the minimum volume to cover the membrane
in the small boxes. So, for a 1:1000 dilution add 8 uL of the antibody, or for a
1:2000 dilution add 4 uL of the antibody.

32. Put all 8 mL on the membrane and put it on a stir table in the cold room to
incubate overnight.

33. The next morning, do one quick rinse with TBST and then wash the membrane 3
times in TBST on a stir table in the lab for 10 minutes each.
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34. Make up the secondary antibody (1:2000 anti-rabbit for example) and incubate for
60 minutes at room temperature.

35. Do one quick rinse of the membrane with TBST to get the milk off. Wash the
membrane 3 times with TBST for 10 minutes each again.

36. Set up the gel dock for visualizing the gel: Open the FluorChem software and set
it to filter 1. Adjust so that you get all of the light coming in (top to 2.8) and
adjust the focus so you see the inner square (middle is rough focus, bottom is fine
focus).

37. Get the ECL kit from the fridge (chemiluminescence) and make up a 1:1 mix of
the two solutions in the box. Make up 5 mL total to cover the whole membrane.
**Only do this right before you're ready to use this solution!

38. Put the liquid directly on the membrane and let the ECL mix sit for 1 minute on
the membrane. After the one minute is up, pick up the membrane with tweezers
and dab one corner onto a paper towel.

39. Place the membrane on a plastic sheet, cover it without creating bubbles.
40. To image the membrane:

a. Do a 1 minute supersensitive picture first, then a 5-10 minute at normal
(longer if is grainy).

b. Take a white image to see the ladders. Set to normal/high, autoexpose,
expose preview, see the green light flash, and hit acquire image. Save.
Remove from computer with USB key.

41. Save membrane in plastic wrap and keep in fridge. Or, to strip and re-probe:
a. Rinse twice with TBST for 5 minutes each.
b. Strip for 15 minutes with the stripping buffer (brown bottle on bottom

shelf to left above western bench)
c. Rinse twice with TBST for 5 minutes each.
d. Block for 1 hour with milk.
e. Incubate overnight with primary antibody in cold room, so go from step

31 back to 40.
42. To analyze the pictures in Photoshop:

a. Image, adjust, invert
b. Image, adjust, brightness/contrast and slide the contrast around
c. You want the blot to be dark enough so you can tell where the gel is, not

underexposed.
d. Match up the MW standards with lane on end and put arrows where they

are.
e. To get the pictures into powerpoint:

i. Image, mode, 8 bit
ii. Save for web

iii. Save as jpeg
iv. Can import into powerpoint

Coomassie Staining (for the gel or the membrane):

- Coomassie dye is 1 g dye in 500 mL methanol, stir for 30 minutes (?think add
water).
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- Coomassie waste goes in the chemical hood.
- Dye goes on the gel on a stir plate for 30 mins, waste dye in container. Rinse gel

a few times with DI water.
- Destaining solution is 7.5% acetic acid and 1% methanol in water. Cover the gel

with destaining solution with a Kimwipe on one side. Rinse 2x with destaining
solution and new Kimwipes.

- If taking pictures, let destain overnight. Flip down the white board in the imaging
machine and select transluminator in the software.
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A2. Protocol to Extract Aggrecan from Articulate Cartilage

1. Make up 4M guanidine HCl in 100 mM sodium acetate.
a. First, figure out the amount of guanidine HCl powder and sodium acetate

powder you need. Want to make about 1 mL of solution for every 1-2
plugs (assuming about 300 gg sGAG and 10 mg wet weight per plug).

b. Measure out the sodium acetate powder and dissolve it in water to get 100
mM sodium acetate.

c. Measure out the guanidine HCl powder IN THE FUME HOOD (it's a
chaotropic agent, bad news).

d. Add some volume of the 100 mM sodium acetate that is significantly less
than the final volume you want to the guanidine powder. This is because
the guanidine has a significant volume effect. The guanidine will dissolve
easily. (Can pour extra sodium acetate solution down the sink.)

e. pH the solution to 7.2
2. Add appropriate amount of protease complete tablet to inhibit proteases, add right

before use.
3. Dice up samples with a scalpel and put them back in their 2 mL tubes.
4. Add 1 mL solution with protease inhibitor per 1-2 plugs.
5. Place tubes on rotating machine at 4C for 48 hours to extract aggrecan.
6. Spin the tubes down in the microcentrifuge at 13,000 x g for 30 mins.
7. Remove the supernatant and put it in a new 2 mL tube. Discard the pellet.
8. Measure the sGAG content of each sample. Note: the standards you use for the

GAG assay must be made up in guanidine! If the amount of GAG is around 100,
you must dilute the sample to be sure the measurement is not above the standard
curve.

9. Make up 5 mM sodium acetate in absolute ethanol (200 proof=100%). Need
enough to add 3x the volume of each sample to the sample.

10. Ethanol precipitation: Add 3x the volume of each sample of 5mM sodium acetate
in 200 proof ethanol to each sample in a larger tube. Split up the sample mixed
with ethanol into 2mL tubes. Store these tubes in the -20C freezer overnight.

11. Centrifuge at 13,000 x g for 30 minutes to pellet the sGAG.
12. Remove and discard the supematant. *Dry is a Speedvac.* Or, if don't have, let

sit in fume hood until ethanol has evaporated. The evaporation route takes a very
long time.

13. Digest the sGAGs away, leaving the core protein exposed
a. Make up Chase buffer. Will need enough to resuspend 100 ug GAG in

100 uL Chase buffer. To make 10 mL of solution do:
i. 60 mg Tris base (MW 121.1), which is 0.05 M Tris
ii. 41 mg sodium acetate (MW 82.03), which is 0.05 M
iii. 37.2 mg EDTA (MW 372.2), which is 0.01 M
iv. pH to 7.6

b. Resuspend samples at 100 ug GAG in 100 uL Chase buffer. Mix well.
The resuspension won't go any better after the digestion. This part
generally seems to go horribly.
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c. Digest the resuspended samples with protease-free chondroitinase ABC
(30 mU/100 ug GAG) (Warner) for 3 hours in a water bath of 37C.

d. Add keratanase 11 (0.5 mU/100 ug GAG) and endobetagalactosidase (0.5
mU/100 ug GAG) (Seikagaku # 100455, #100812 respectively ... 1
mU/uL when rehydrated). Note: Dilute 2.5 uL into 20 uL water, gives 0.5
mU/5 uL. Incubate 2-3 hours at 37C.

The extracted the aggrecan can be frozen and stored at -80 until use for western blot

analysis.
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A3. Cartilage RNA Extraction Protocol

Tissue preparation

0) You should prepare/label all required tubes before starting. Also make up the DNase
used in step 6 of the RNA extraction protocol ahead of time and store in ice bath. All
steps for the RNA extraction are taken from the QIAGEN RNeasy MiniKit for animal
tissue. Pages 54-55. Obtain volumes of chloroform, 70% ethanol and RLT buffer
(with p-Me added). Add 20mls of DI water to two 50ml tubes for for cleaning the
homogenizer. Pre-spin Eppendorf phasegel tubes for 15 seconds.

1) Samples should be stored by either flash-freezing in liquid nitrogen and placing in a
-80C freezer, or placing in RNAlater solution and placing in -80C freezer. It is best
if cartilage has been dissected into multiple 3x3xlmm pieces.

2) Place pulverizer and pole in container and bathe in liquid nitrogen repeatedly to cool.
Remove two samples from the -80'C freezer and place in ice bath. Cool pulverizer
again with liquid nitrogen.

3) Remove puliverizer and bend its arms downwards. Add cartilage samples to top of
pulverizer (make sure metal stopper is in place). Place pole into top base. Hit pole
firmly 8-10 times with a hammer, while holding pole and top of pulverizer.

4) Lift top of pulverizer and gently tap pole to release metal stopper. Place a 5ml
polypropylene tube beneath pulverizer, turn pulverizer sideways and tap pole on side
of bench to release the smashed cartilage into tube. Place in ice bath. Add 540pl of
Trizol.**

5) Clean pulverizer with sterile gauss and if necessary re-cool with liquid nitrogen.
Repeat steps 2 to 5 with next sample.

6) All samples should now be pulvierzed and have Trizol added. Set up the homogenizer
so that the blade is flush with the sheath.

7) Place homogenizer in first 50ml water tube, turn on and rinse, turn off, remove and
shake dry. Repeat in second water tube. The second water tube should still look clean
at the end of the Tissue preparation protocol.

8) Place homogenizer into first sample, turn onto low speed, and slowly increase speed.
Sample should be homogenized in less than 20 seconds. Place sample back in ice bath.
Repeat steps 7 & 8 until finished.

9) Remove samples from ice bath and place onto 96 well frame. Remove lids and add
60p1 of chloroform (final 10%) to each tube. Mix (should turn cloudy pink) and
transfer sample to pre-spun phasegel tubes.

10) Spin phasegel tubes at maximum speed for 10 minutes at 4'C (room temperature also
works).

** If performing more than 6 extractions then; once every 2 samples are pulverized place

tubes in -80 0 C freezer (before adding Trizol). When all samples are done, remove all

from freezer and add Trizol and continue with step 6.
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RNA extraction

1) Make sure all QIAGEN reagents are ready. Buffer RPE should have ethanol added to
the bulk volume when the kit is first used. Each month a 10ml aliquot of Buffer RLT
mixed with 10OX p-Mercaptoethanol must be made. p-Me is highly toxic and must
remain in the chemical fume-hood.

2) The following steps are taken from the QIAGEN RNeasy Mini Protocol.
3) While the phasegel tubes are spinning add 250 1 of 100% ethanol to a set of RNase-

DNase free 1.5ml centrifuge tubes. Then add 350 1 of RLT buffer (which contains p-
Me).

4) Transfer the supernatant in a phasegel tube to the new centrifuge tube and
immediately mix the supernatant, ethanol and RLT buffer. Transfer half the solution
to the pink RNeasy spin column (less than 700[1). Repeat for each phasegel tube.
Centrifuge spin columns for 15sec at 10,000 rpm, allowing 5sec for ramping up, then
discard flow through. The RNA is now attached to the silica membrane in the pink
tubes. Add the remaining sample from the centrifuge tube to the spin columns and
spin again at 10,000rpm. Discard flow through.

Steps 5 to 8 are the for DNase digestion to remove genomic DNA, and can be found
in the QIAGEN RNeasy Mini Protocol (p98-99).

5) Pipette 350[d of Buffer RW1 into spin column and centrifuge for 15sec at 10,000rpm,
allowing 5sec for ramping up. Discard flow-through into separate bin and reuse
collection tube.

6) Prepare ahead: Make a mastermix of 10ld of DNase stock solution to 70p1 of RDD
Buffer per sample. Once dissolved DNase should be stored in the -20C freezer in
aliquots. Thawed DNase aliquots should not be re-frozen, instead store in the 4'C
fridge (generally choose aliquot size carefully).

7) Pipette 8 0 . 1 aliquots of DNase mix directly onto the spin column membrane, tap
gently to ensure the entire membrane is covered. Incubate on benchtop for 15 minutes
at room temperature.

8) Pipette 350W1 of Buffer RW1 into spin column and centrifuge for 15sec at 10,000rpm,
allowing 5sec for ramping up. Discard flow-through and collection tubes into
appropriate bins.

9) Place spin column into a new 2ml collection tube, add 500p1 of Buffer RPE (with
ethanol previously added), centrifuge for 15sec at 10,000rpm, allowing 5sec for
ramping up. Discard flow-through into separate bin and reuse collection tube.

10) Pipette 500p1 of Buffer RPE (with ethanol added) into spin column, centrifuge for 2
minutes at maximum speed. After spin remove spin column from collection tube and
wipe the outside gently with sterile gauze to remove any residual ethanol, which may
interfere with subsequent reactions (optional).

11) Place spin column into 1.5ml collection tube (supplied, rounded bottom). Add 501 of
Rnase-Dnase free dH20 from QIAGEN kit. Spin at 10,000rpm for 1 minute, and then
place immediately in ice bucket.

12) If proceeding directly to RT then keep in ice bath. If not then freeze RNA in -80*C
immediately to minimize degradation.
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A4. Reverse Transcription Protocol

1) If proceeding straight from a RNA extraction ensure that RNA is kept cold (but not
frozen) by placing vials in an ice bucket and then placing in the 4'C fridge as
calculation of RNA volumes can take some time. If RNA has been frozen and stored
in the -80*C freezer then thaw it immediately before use, and then mix by pipetting.

2) Make a RT master mix using the following guide. Total reaction volume will be 60pl
once RNA and H20 have been added.

}- Mix thoroughly

Keep cold, remove from freezer only when
needed, mix thoroughly by pipetting, (do not
vortex as enzymes are fragile).

3) Generally multiply all the above equations by the number of cartilage samples you

have to create a master mix. A total volume of 60ptl was chosen as this allow 60/1.5 = 40

aliquots to be taken from the same cDNA sample for PCR. Hence if you have less that 40

genes scale down the total volume.

4) Aliquot 45pl of the mastermix into X different tubes. Then add 15W1 of RNA (different

for each tube) to each one of the tubes and mix.

5) Load tubes into the thermocycler and follow these steps:

25 0 C 20 minutes
42'C 30 minutes
Hold 4'C

(hybridization)

(reverse transcription)
(wait for removal)

6) Although cDNA is significantly more stable than RNA and thus doesn't degrade
as fast as RNA, quantitative RT-PCR aims to avoid degradation as much as possible.
Hence, move cDNA into the -20'C as soon as possible after the thermocycler reaches

40C.
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lOx PCR buffer 6

MgCl2 6

dNTP 6

Random Hexamers 1.5

dIH20 22.5

Rnase Inhibitor 1.5

Multiscribe Reverse 1.5
Transcriptase



A5. Protocol to Prepare Samples for PCR

1. Before casting day, need to label 4 of the 2 mL cryovial tubes for day 0 samples.
2. On the casting day, fill a container with some liquid nitrogen. Take 4 aliquots of

0.5-1 million cells when the cells have been resuspended for counting and place
into the labeled tubes. If the volume that the cells are in is greater than 50 uL,
spin them down to remove the liquid.

3. Flash freeze the cells as soon as possible in liquid nitrogen.
4. Once the liquid nitrogen stops boiling, remove the vials and store them at -80

until ready to isolate the RNA.
5. To take down gels for PCR, have a labeled 1.5 mL flip top tube for each gel.

Place the gel into the tube and flash freeze it in liquid nitrogen. When all of the
gels have been flash frozen, store them in the -80 until ready to isolate RNA.
Ideally, this is done within 1 week of the take down.

Measuring RNA Levels on the Nanodrop Spectrophotometer

1. Bring the samples of RNA, 1 uL pipetter, pipet tips, RNase/DNase-free water,
EtOH over to the Zhang lab.

2. Open the software ND 1000. Click on the nucleic acid button.
3. Wipe off both sides of the tips of the machine with EtOH on a Kimwipe. Asks for

water to start. Use 1 uL. Clean off machine with EtOH between each sample.
4. Set the sample type to RNA-40.
5. The RNA is in water, so use water as the blank. Do another blank again. The

noise should be around 1 ng/mL.
6. The wavelength to read at is 260. Record the ratios and the ng/mL reading. The

260/280 ratio should be at 1.8 or above ideally (so is RNA and not other protein I
think) and the 260/230 ratio should be low (so no solvent left), but is often
between 2 and 3 I think. Clean off machine with EtOH between each sample.

Filling in the PCR plate, Putting it into the machine, and Getting the Data

1. Fill out the Excel template that calculates the amount of primer, water,
SyberGreen master mix, and cDNA you need.

2. Make the two 96 well plates up (They have rounded wells, NOT the ones for the
Maxy machine). One plate will have the Syber Green master mix (new boxes are
in the freezer, once you thaw one just keep it in the fridge), which you just add
straight from the bottle, and the cDNA. The other plate has the RNase/DNase-
free water and the primer.

a. To make primer aliquots take 10 uL of the forward primer, 10 uL of the
reverse primer, and 180 uL of RNase/DNase free water (because the
resuspended primers are at 20x). You can then split this stock up into 4-5
aliquots and freeze them in the -20.
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b. If you have to resuspend the lyophilized primers, you add water so that
they are at 100 uM, so add 10*(nmole) uL of water to the stock. Ex. If
there's 31.4 nmoles of primer, add 314 uL of water.

3. Once the 96 well plates are made, pipet the appropriate volumes into the 384 well
plate. Use the multichannel pipetter and the tips from the RED BOX, not the blue
box. They are much more accurate. Keep the 384 well plate on ice (Pyrex dish,
filled with ice, with plastic wrap over it) while you fill it out.

4. Put a plastic cover from the bottom drawer on the plate. These plastic covers are
different from other ones in the lab, (made for high temp and optically clear for
machine) do not use the others! Seal it well with the plastic squeegee thing. Tear
off the perforated edges

5. Centrifuge the plate in the centrifuge in the Zhang lab with the plate attachments.
Try 200 x g for 1 minute just to get all the bubbles out. Can go higher if needed.

6. Blow off the bottom of the plate with canned air. Dust can mess up the readings.
7. Open the SDS 2.3 software. (If the software is open, close it out and restart it.)
8. Click on the new document icon. The default setting is fine. The assay is

"Standard Curve" for a 384 well plate with a blank template.
9. Go to Instrument, Real Time, Open and the window will open and an arm will

swing out to put the plate into. Close the window to get the plate in the machine.
10. Under the Thermocycler setting you can see the protocol. The default is fine, it

should read 50/2, 95/10, 40 repeats of 95/.15 60/1.
11. Add a dissociation stage of 95/.15, 60/.15 and slowly go to 95/.15
12. Set the sample volume to 10 uL. It's unclear what happens if you don't do this.
13. Click on the Setup tab (next to the Instrument) tab and hit Add Detector (this is

the gene you're amplifying) and copy it to the plate document. All of the
detectors should be SYBR because we use SYBR green.

14. Draw on the plate which genes are where. For the water spots label the task as
"NTC" for no template control.

15. Mark the empty wells by clicking "Omit wells."
16. Set the passive reference to ROX.
17. Save the file to the place you want it to go. It will save as it runs and you can

save it at the end too.
18. Go to the Instrument tab, Real Time, Start.
19. Takes about 2 hours to run.
20. The data will save to a file automatically. To get it off the computer, use a USB

key.
21. Open the file in the SDS software on your computer. Export the spreadsheet of

data it creates. Open the txt file in Excel. You can then check that the cells are in
order (it automatically does A1, A10, A11, etc so you have to sort by well number
to get Al, A2, A3, etc) and copy over the Ct number and name of the condition
into the PCR data analysis template.

22. Find the efficiency correlation by taking 2 to the power of Ct times the slope of
the standard curve for that particular gene. Normalize to 18s by dividing by the
eff-corr number for that sample of a particular gene by the eff-corr number for
that sample in 18s. Then normalize to the day zero samples by dividing the 18s
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normalized value by the average of the day zero 18s normalization numbers for
that gene.

23. If you did duplicates, average together the day 0 normalized values for each
sample for each gene. Then average together the 4 day 0 normalized values for
each condition and find the standard error of the mean. Plot the mean ± SEM. If
there are order of magnitude differences between your conditions, plot on a log
scale, otherwise do linear. Run stats.
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A6. Mayer's Hematoxylin stain for Nuclear blebbing For Cartilage

Tissue

Material:

Mayer's Hematoxylin (Sigma #MHSl5-500ml)

Acid solution: 0.5% HCL in 80 % ETHOH (.5ml of conc. HC in 100ml of 80%ETHOH)

Permonat (Fisher #SP15-100)

Procedure:

Deparaffinize:

Xylene 5 minutes
Xylene 5 minutes
100% ETHOH 3 minutes
100% ETHOH 3 minutes
80% ETHOH 2 minutes
80% ETHOH 2 minutes

Washing in Tap water for 5 minutes

Hematoxylin solution (Filter before use) for 5 minutes

Washing in tap water for 5 minutes

Dip few times in Acid alcohol (0.5% HCL in 80 % ETHOH)

Washing in Tap water for 5 minutes

Dehydration:

80% ETHOH 2 minutes
80% ETHOH 2 minutes
100% ETHOH 3 minutes
100% ETHOH 3 minutes
Xylene 5 minutes
Xylene 5 minutes

Put cover slip on (permount Fisher #SP15-100)

143


