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Abstract

The motion of biological systems in fluids is inherently complex, even for the simplest
organisms. In this thesis, we develop methods of analyzing locomotion of both me-
chanical and biological systems with the aim of rationalizing biology and informing
robotic design. We begin by building on existing visualization framework by studying
an idealized swimmer: Purcell’s three-link swimmer, at low Reynolds number. This
framework allows us to illustrate the complete dynamics of the system, design gaits
for motion planning and identify optimal gaits in terms of efficiency and speed.

We extend the three-link swimmer case to include effects such as the interaction
between the links. By studying several systems, we broaden the applicability of our
framework. These systems include a two-link swimmer at low Reynolds number with
offset centers of buoyancy and mass and a swimmer with a continuously deformable
shape, the serpenoid swimmer.

Drawing on the principles behind the serpenoid swimmer, we develop the kine-
matic decomposition, a method using a singular value decomposition (SVD) that
describes the motion of complex systems in a low order manner. We show that with
only two degrees of freedom, one can adequately describe an animal’s motion. We
apply this method to species in both high and low Reynolds number environments
to elucidate different phenomena, including chemotaxing and species comparison in
spermatozoa, gait changes in eels (steady versus accelerating), kinematic responses
to viscosity and viscoelasticity in C. elegans (nematodes), and the Karman gait in
trout. Combined with our visualization framework, we successfully illustrate the gen-
eralized utility of the kinematic decomposition method to explore and understand
fundamental kinematics of a wide range of both natural and man-made systems.
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Biological organisms outperform man-made systems (circled) in terms
of agility and maneuverability. Agility is the turning speed of a system
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Connection vector fields for the three-link swimmer are the rows of
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through shape vector b both translates the body in z and rotates it
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Connection vector fields (top) and constraint curvature functions (bot-
tom) for the three-link swimmer. The volume enclosed by a closed
curve is an indication of net motion. These fields and functions are
for the system’s motion in the minimum-perturbation coordinates de-
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a) Optimal displacement per cycle (dashed line) and efficiency (solid
line) strokes on the z curvature functions for a three-link swimmer.
b) Locally and globally optimal efficiency strokes for ¢ motion (solid
lines) and maximum displacement per cycle stroke (dashed line). c)
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Small concentric strokes are optimal for quantized rotations to be used
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space represent configurations of the three-link swimmer where the

links overlap. . . . . . . . . . .

Curvature functions for the three-link swimmer using SBT with slen-
derness ratio 3 ~ 10~%. The largest discrepancies from curvature func-
tions found using RFT (figure 2-5) are in the corners of the shape space,
at extreme «; and - values. In these regions, the links become close

and their fluid flows interact. . . . . . . . . . . . . . ..o

Comparison of optimal a) distance and b) efficiency strokes using RF'T
(dashed line) and SBT for several slenderness ratios (solid lines). Slen-
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a) Distance per cycle calculated using the RFT model evaluated with
the optimal SBT strokes (*) and RFT strokes (+). b) Efficiency calcu-
lated using the RFT model evaluated with the optimal SBT strokes (*)
and RFT strokes (+). For slenderness ratios » < 1073, this method
can be used with very close quantitative agreement between the two
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Visualization of the components of the equations of motion in (3.5)
for v = 1. Left: Connection vector fields for A, (e, 6), along with
their curvature functions, capture the contribution to translation from
changes in shape. Right: Cy (a, ), represents the contribution to rota-
tion from the buoyant moment. The dashed line indicates the equilib-

rium orientation. . . . .. . ... . ...

Comparison of exact stroke limit cycles with the shape predicted by
the linearized model, for vy = 1/6 and 1.2 < oy < 3.1. Dashed lines
indicate trajectories from the linearized solutions, solid lines indicate

exact trajectories. . . . .. . . .. . ... .

Contours: efficiency, £, (in percent) of the system as a function of
stroke amplitude o and time scale parameter . Gradient background:
dimensionless mean speed, §. Top and side panels: qualitative compar-
ison of the efficiency with the mean speed $ of the system relative to the
flapping frequency. The mean speed corresponds to the area integral
of the curvature functions over the region of the («, ) space enclosed
by the stroke; the top panel additionally presents the dependence of

the enclosed area on 7y for the linearized stroke. . . . . ... ... ..

a) A shape described by a function y(x), where every x corresponds to
a unique value of y(z). b) A shape that cannot be described by y(x)

because for some x values, there exist multiple values of . . . . . . .

Basis functions in the curvature space along the length of the swimmer
allow an extensive range of shapes. The resulting shapes of a swimmer
using (from left to right) Dirac delta, Heaviside (step), polynomial,

and sinusoidal functions. Courtesy of Ross Hatton. . . ... ... ..
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a) The shape space for the serpenoid swimmer, using sinusoidal basis
modes in the curvature space to parameterize the system. b) Con-
straint curvature functions and optimal efficiency strokes for the ser-
penoid swimmer in the z, y and rotational directions. The three maxi-
mum efficiency strokes are all centered at the origin of the shape space
and take advantage of the two-fold rotational symmetry in each con-
straint curvature function. The strokes in y and 6 are figure eight
shaped due to the odd rotational symmetry present for those curva-

ture functions. . . . . . . . . e e e e e e e e e e e e e e e e e e e

a) The shape of the sea urchin sperm flagella and the trajectory are
tracked from high-speed microscopy images [50]. b) The kinematics of
the sea urchin sperm are illustrated by a time-lapse of the flagella shape
in time. c¢) A typical visualization of flagella kinematics is created
by directly plotting the curvature matrix. Each column represents
the curvature of the flagella at that time step. General trends and
periodicity are easily obtained from plotting the curvature matrix, but

more detailed analysis and comparison is difficult. . . . . ... .. ..

a) Fourier basis functions (dashed black line) fail to capture the fea-
tures present in the actual curvature (solid red line) in representing
the curvature of the flagella. b) Using the basis functions from the
kinematic decomposition to represent the curvature gives the smallest
mean absolute error, when compared to Fourier or polynomial basis
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a) The matrix M is populated with the curvature at each time step,
k[s,t]. Performing an SVD on M separates the time dynamics and
the spatial dynamics of the kinematics. U is a matrix of curvature
basis functions. b) The first two basis functions account for the most
variance, U[s] and Us[s], and are illustrated here. ¢) The dynamics
associated with the first two basis functions are visualized by a stroke
in the shape space, a,[t] and az[t]. d) Together, the first two curvature
basis functions resulting from the SVD, U; and U,, form a shape space
to represent the achievable shapes from some combination of those ba-
sis functions. e) The variance accounted for by each basis function is
calculated as Vy in (5.4). The first two basis functions are responsi-
ble for over 60% of the variability, while the third (and higher) basis
function contributes far less energy than the each of the first two basis

functions. . . . . . . ...

The constraint curvature functions for sea urchin (Arbacia punctulata)
sperm reveal two-fold rotational symmetries in the z, y, and rotational
directions. The empirical stroke (solid red line) is slightly broader than
the maximum efficiency stroke for = (dashed red line), but lies almost
entirely within the zero contours of . The maximum efficiency stroke

is just 17% more efficient than stroke observed in situ. . . ... ...

Considering the corresponding constraint curvature functions in Fig. 5-
4, we can predict the net motion that results from a variety of strokes
for sea urchin sperm. a) A centered, circular stroke encompasses non-
zero net volume of the curvature constraint functions (Fig. 5-4) in the
z direction only, therefore this stroke moves the system forward. b)
Shifting the stroke along the a; axis increases turning and c¢) shifting
the stroke vertically along the a; axis increases motion in y and 6. d)
Increasing the amplitude of the centered stroke moves the sea urchin

sperm farther per stroke in the z direction. . . . . . .. ... .. ...
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S-7

6-1

a) Curvature of the sperm’s path. Alaverez et al. [2] demonstrated that
path curvature and propagation of Ca*? along the flagella, a response
to sensing attractant, are correlated. b) The stroke offset shown is
left-right offset along the a; axis. When the sperm travels straight,
towards the attractant, the stroke offset is small, while a large offset
results in turning, or higher path curvature. c) Stroke amplitude is
calculated as the widest dimension of the stroke over one tail beat. As
the sperm senses a gradient of attractant, the stroke grows in size and
it moves more quickly toward the higher concentration of attractant.
d) Beat frequency clearly demonstrates the onset of chemotaxis. Once
the sperm senses the gradient of attractant, beat frequency increases
by about 30%. These trends are consistent with what is observed in

the curvature functions: to turn, the stroke must be offset and large.

To move forward, the stroke need not be large, but should be centered. 94

The first, second, and third basis functions are calculated from all
chemotaxing data (denoted in red), all non-chemotaxing data (denoted
in green), and a random sample of three tail beats (denoted in black).
By comparing the sample basis functions to the chemotaxing and non-
chemotaxing basis functions through metrics M and My, we classify

the sample as chemotaxing or non-chemotaxing. . . . . ... ... ..

a) We compare sample basis function calculated from the flagellar kine-
matics of just three tail beats to the basis functions found from all
chemotaxing (red) and non-chemotaxing (green) data. Using inner
product based metrics, M¢ and My, we classify the sample as chemo-
taxing if M¢ > My and non-chemotaxing if My > M. With these

metrics, our misclassification rate is just 4.2%. b) Including an optimal

linear spatial weighting reduces the misclassification rate to just 2.5%.

Ciona intestinalis is an external fertilizer, like the sea urchins pictured

on the left, but is genetically more similar to the bull on the right. . .
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6-3

The first, second, and third basis functions for the sperm of four sea
urchins (Arbacia punctulata, L. pictus, L. variegatus and S. purpu-
tus), Cliona intestinalis, and bull. The first and second basis functions,
Uy and U, for all four sea urchins and Ciona intestinalis—all exter-
nal fertilizers—can successfully be represented by a single set of basis

functions, as shown in Fig. 6-4a. . . . . . . .. .. ... ........

The fraction of variability accounted for by N basis functions (Vy)
shows that two basis functions covers a majority of the variability for
all organisms (Arbacia punctulata, L. pictus, L. variegatus and S. pur-
putus, Cliona intestinalis, and bull sperm). . . . ... ... .. ... .
a) We find a set of basis functions for multiple organisms by combining
the data for all sea urchins (Arbacia punctulata, L. pictus, L. variegatus
and S. purputus), and Ciona intestinalis. b) A majority of the variance
of motion for five different organisms is accounted for by just two basis
functions. ¢) With a single set of basis functions, we can compare the
strokes for all five organisms. All four sea urchin strokes and the stroke
for Cliona are representative of each other. Most strokes are centered
around the peak of the & constraint curvature function in Fig. 6-5 and
within the zero contours. . . . . .. . ... ... ... ... .. ... .
Constraint curvature functions for a single set of basis functions, cre-
ated by combining the curvature data for the sea urchin sperm and
Ciona intestinalis sperm. Two-fold rotational symmetry is observed
in all three graphs, with odd symmetry in the y and 6 fields. The
observed stroke and maximum efficiency stroke are both centered in
the shape space and stay within the zero count ours of the z curvature

function, though the maximum efficiency stroke is more compact.

Constraint curvature functions for bull sperm also exhibits the two-
fold rotational symmetry present in the previous curvature functions.
For the bull sperm, the maximum efficiency stroke is larger than the

observed stroke. . . . . .. . .. ...
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6-7

6-8

6-9

a) The basis functions for all viscosity levels are overlaid, with the
mean (over all of the individuals at that viscosity level) shown by a
solid colored line, and two standard errors above and below the mean
denoted by the gray shaded regions. There is excellent consistency
over both basis functions, signifying that the fundamental kinemat-
ics for C. elegans is the same for swimming in a range of viscosities.
The data ranges from low viscosity (30ppm in blue) to high viscosity
(3000ppm in yellow). b) The strokes for the eight levels of viscosity are
projected onto a single set of basis functions for comparison. While the
lowest viscosity strokes (30ppm and 100ppm) are slightly larger than
the higher viscosity strokes, no distinct stroke pattern emerges as a
function of viscosity level. The shape space for these basis functions is

shown in the background. . . ... ... ... ... ..........

The top row shows the first and second basis functions for C. elegans
swimming in a buffer solution (water). The solid black line is the mean
of the basis functions for the ten individuals and the shaded gray re-
gions are two standard errors above and below the mean. Comparing
these basis functions to those found for swimming in a viscoelastic me-
dia (bottom row) shows that the motion in the buffer solution is much
more consistent, but the mean basis functions in each environment are
similar, when comparing the primary basis function of one system to

the secondary basis function of another. . . . ... . ... ... ...

a) The fraction of variance accounted for by each basis function shows
that the first two basis functions encompass approximately the same
energy in both water and viscoelastic media. b) Comparing the strokes
in both environments reveals that while they are approximately the
same amplitude, the strokes through viscoelastic media are more irreg-

WAL, . . o . e e e e e e e e e e e e e e e e e e
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6-10

6-11

6-12

6-13

The first three basis functions for three gaits in trout (steady, Karmaén,
and passive in a vortex street) reveal the similarities between Kdrman
and passive gaits. The following three basis functions show excellent
agreement between all three motions and exhibit higher spatial fre-

quencies than observed in the first three basis functions. . . ... . .

a) The first two basis function account for over 70% of the motion and
the six basis function in Fig. 6-10 encompass at least 98% of the motion.
b) The correlation between basis functions measure how similar any
two basis functions are to each other. The Kdrmén and passive gaits
are highly correlated for the first several basis functions, indicating
similarities in those gaits, though the steady and K4rmdan gaits (the
two “active” gaits) outperform other combinations for basis functions
4, 5, and 6. c) The basis function amplitudes for the passive gait

are larger than the Kdrméan gait amplitudes, revealing that the shape

changes in the passive are more highly curved than in the Kérman gait. 116

The mean a) primary and b) secondary basis functions found for steady
(solid line) and accelerating (dashed line) strokes for six eels are highly
correlated. The gray shaded regions show two standard errors above
and below the mean and almost completely overlap for the two sets
of basis functions. c) Aggregating all of the data to get a single set
of basis functions, we achieve approximately 78% of the variance with

just two basis functions. . . . ... ... oL L.

a) In all cases, the amplitude of the second basis function, or the height
of the stroke in the shape space, is greater when accelerating. b) Ex-
amining the characteristic amplitudes of the strokes in the shape space
reveals that accelerating gaits are larger than steady strokes for an
individual eel for five of the six eels. A larger stroke in the shape
space corresponds to a shape with higher curvature, and higher tail

amplitude, as previously reported by Tytell [149]. . . . ... ... ..
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Performing the kinematic decomposition on multiple systems allows
one to compare the basis functions and strokes, leading to one of three

possible conclusions. . . . . . ... ... Lo

a) Two-dimensional geometry of the hinged two-plate configuration.
Two plates, each of length b, thickness ¢, and density p, are connected
by a torsion spring with spring constant K,. The outer plate edges
are a distance h below the undisturbed interface. Flexure causes the
plates to lie at an angle @ with respect to the horizontal. The density
of the liquid is p and the surface tension is ¢. b) Dark shaded regions
show fluid displaced above the meniscus, whose weight is equal to the
vertical component of surface tension, while the light shaded region

shows the volume of fluid displaced above the plate. . . . . . ... ..

a) Plate hinge angle o and plate edge depth H that maximize load as
a function of plate size § = b/f,. Small plates maximize the surface
tension force by sinking to a depth H=1/2 while large plates maximize
fluid displaced by assuming a plate tilt angle @ = 7/4. The shaded
area represents the region where bending allows the plate to support a
greater load than a flat plate of the same size. b) Maximum load as a

function of dimensionless plate size, 3=0b/¢.. . ... ... ... ...

Optimal stiffness k? (specifically, that which bears the most weight)
as a function of plate size. The optimal stiffness for large plates de-
pends on size because the dominant terms in the force and torque
balances are due to hydrostatic pressure and increase with plate size.
The weight of small plates is supported primarily by surface tension,

thus the independence of k% on plate size for B 1. . . . . . . .. ..
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B-4

B-6

The dependence on plate size. Horizontal striped regions represent
fluid displaced by the bent plate only. Diagonal striped regions in-
dicate where only the flat plate displaces fluid. a) For plates much
smaller than a capillary length, the plate edge depth H determines
the amount of fluid displaced (accurate to O(5/H)), and therefore the
maximum plate load. Bending such small plates decreases the total
fluid displaced by narrowing the column of fluid displaced above the
plate thereby diminishing its weight-bearing characteristics. b) Bend-
ing is advantageous for plates on the order of the capillary length if
more fluid is displaced by bending than is lost by narrowing the fluid
column above the plate. ¢) Large plates displace significantly more

fluid by bending: flexibility thus enables them to bear greater loads. .

a) Schematic of the continuous plate configuration discretized into 2N
segments, where L, is the horizontal projection of the plate. b) Max-
imum load, Dyax/B, determined by numerical optimization of a plate
comprised of 2N segments. The theoretically predicted maximum load
(corresponding to the optimal shape of a semicircle) and the numerical

solution are within 0.03% by N =25. . . . . ... ... .. ......

a) Plate shapes that maximize load for various stiffnesses at large Bo.
b) The maximum load decreases monotonically with increasing spring
stiffness, k;, for the continuous plate. The most flexible plate displaces
the most fluid, and so supports the greatest load. Thus, the optimal

stiffness is zero, k; = 0 in this large plate limit. . ... ... ... ..

The semi-aquatic insect Microvelia releases a surface-active lipid in its
wake, resulting in a surface tension gradient that propels it forward
via Marangoni propulsion. The Microvelia is approximately 2 mm in

length [20]. . . .. .. ... ... ...
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C-3 a) A fleet of cocktail boats with varying shape and slit size were tested,
fueled by different liquors. We found that the alcohol content of the
fuel was the most important design factor for performance, with higher
proof alcohol leading to faster and more vigorous boat motion. b) A
cocktail boat propels itself, fueled by Bacardi 151 (75% alcohol). Boat
lengths are approximately 1.5 cm. . . . . ... ... ... ...
C-4 Flowers that float at the air-water interface are supported by hydro-
static, elastic and capillary forces. The flower’s petals close in the
presence of high water levels to protect their genetic material ([71],
www.wikipedia.org). . ... ... ... . Lo o
C-5 When submerged, artificial flowers made of polymer elastic sheets mimic
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Chapter 1

Introduction

Biology and nature are an increasingly popular source of inspiration for engineered
materials and devices. For example, Velcro originated from mimicking burrs and
superhydrophobic materials were inspired from the Lotus plant [8]. Many robots
have biological counterparts, including ones that crawl like snakes [25, 65], burrow
like razor clams [167, 168] or sandfish lizards [35, 97|, walk on water like water striders
[67], and climb walls like geckos [78, 128] and snails [23]. Swimming robots comprise
a large part of the bio-inspired robot population, with machines that mimic snakes
[65], jellyfish {27, 110], tuna [148], and a host of other fish [31, 37, 94, 95, 98, 146, 153].

Evolutionary pressures over millions of years have driven biological systems to
their current state, which is likely to be locally, if not globally, optimal. Many an-
imals far outperform man-made systems, as shown in Fig. 1-1. In this figure, we
measure performance by agility, or turning speed, in units of angular frequency and
maneuverability, defined as the turning radius, normalized by body length. The cir-
cled systems in the figure are man-made and are both less agile and less maneuverable
than most of the animals surveyed. To improve man-made robots using bio-inspired
principles, we must identify and understand the elements responsible for an animal’s
performance. These elements are likely a combination of structure, material, kine-
matics, and sensory systems.

Modeling and measuring living systems is inherently difficult. Tn most cases, we

cannot control an animal’s muscles or neurons to prescribe an input and measure the
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Figure 1-1: Biological organisms outperform man-made systems (circled) in terms of
agility and maneuverability. Agility is the turning speed of a system and maneuver-
ability is the inverse of the turning radius, normalized by body length. Courtesy of
Audrey Sedal.
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behavior or motion that results, as we would with a robotic system. When control or
measurement of muscle activity is possible, it typically requires invasive procedures,
like anesthetization and surgery [87]. A more easily attainable method of measure-
ment is by observation, typically through recording video of an animal swimming in
different environments or conditions. Images from these videos are then analyzed and
data points along the animal, and sometimes within the flow, are tracked. From this
data, many researchers use multiple kinematic metrics, such as velocity, tail beat fre-
quency, amplitude of several points along the body and wavelength and wave speed of
traveling waves down the body [83]. Another approach is to represent the kinematics
by fitting the body shape in time to known functions, such as sines and cosines [116].
The number of parameters required for these methods typically vary between 8 and
30. From a modeling and control perspective, many parameters hinder our ability to

quickly and efficiently visualize and understand the system.

The difficulty in modeling kinematics is not unique to biological systems. Recent
advancements in soft and deformable robotics have spawned new device technologies
such as muscle-like actuators {110, 127], which are increasingly more biological in
nature. Standard methods to model and incorporate these technologies into robotic
systems do not exist. Further, motion planning for more traditional robots with
many discrete actuators, such as snake robots, is time consuming and difficult to
optimize due to the high dimensionality of the parameter space and inability to vi-
sualize the system dynamics. Studying the kinematics of animals may give rise to
lower dimensional control methods for efficient motions in robots: by coupling actu-
ators in a manner that allows the robot to form biological patterns, roboticists can
execute intricate, but effective motions with fewer parameters. Thus, improvements
in understanding the biomechanics and locomotion of complex systems are impera-
tive for informed robotic design and to understand the compromise between discrete

mechanical components and biological motion.

Representing and comparing biological kinematics is essential, for instance, to
examine the effects of an environment on an animal, kinematic changes during devel-

opment, escape response versus cruising motions in fish, or swimming versus crawling
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in snakes and nematodes. In this thesis, we address the need for a straightforward,
non-invasive, quick representation of kinematics and dynamics of biological systems
with two primary contributions. First, we present a novel framework to visualize the
dynamics of a system swimming at low Reynolds number (and therefore in a drag-
dominated environment) and exploit this framework to predict a system’s motion and
identify globally optimal strokes. Second, we develop the kinematic decomposition
method, which draws out the dominant features of a system and effectively reduces
the number of parameters needed to describe complex motion. Using this method as
a comparative analysis tool, we study biological systems and demonstrate the decom-
position’s utility through examples that include determining the kinematic response

of animals to environment, genetics, and the presence of an attractant.

This thesis is organized into two parts. In Part I, we focus on optimization and
visualization of idealized swimming systems, beginning with Chapter 2, where we
explore the dynamics and kinematics of the three-link, or “Purcell,” swimmer at low
Reynolds number. We review and expand upon recent geometric mechanics-based
work in developing visualization tools, namely connection vector fields and curvature
constraint functions. We utilize this framework and take advantage of the inher-
ently kinematic nature of swimming at low Reynolds number to discover optimal
strokes in terms of efficiency and displacement, and explore the limits of our fluids
model. Drawing on these results, we extend the theory developed in Chapter 2 to
study a two-link swimmer with offset centers of mass and buoyancy in Chapter 3.
We compare the resulting dynamics visualizations and models to those found for the
three-link swimmer and discuss the consequences of introducing an unactuated degree
of freedom. In Chapter 4, we employ models common in snake robotics to develop
a ‘serpenoid’ swimmer, a continuously deformable snake-like swimmer [65]. We pre-
scribe its motion using sinusoidal basis functions in the curvature space, measured
along the arclength of the swimmer. The visualizations and system dynamics are now
parameterized using the amplitudes of the basis functions. We compare the optimal

serpenoid motions to those found for the three-link swimmer.

The study of the serpenoid swimmer leads us to biological motions in Part II,
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starting with sea urchin sperm. In Chapter 5, we develop a novel method of repre-
senting complex biological kinematics in a low-dimensional parameter space, allowing
us to take advantage of the visualization framework exploited in the previous chap-
ters. We incorporate the kinematic representation with a low Reynolds number fluid
model to obtain the optimal strokes. For one species of sea urchin sperm (Arbacia
punctulata), we analyze the kinematic differences during chemotaxis, or motion due
to the presence of an attractant. Using a classification metric, we determine whether
or not the sperm is chemotaxing, given the kinematics alone. In Chapter 6, we gen-
eralize our dynamics and kinematics tools to study the flagellar kinematics of six
different sperm and examine the effect of diversity in terms of natural environment
and genetics, the effect of viscosity and viscoelasticity in swimming C. elegans, steady
versus accelerating gaits in eels, and passive and active gaits in rainbow trout. Best
practices for performing kinematic decomposition are presented in Appendix A. We
conclude in Chapter 7 with a discussion of future directions and expansions.

The work presented in Chapter 2 and 4 is submitted to the Journal of Fluid
Mechanics. Chapter 3 appears in Physics of Fluids [19]. The research in Chapters
5 and 6 is in preparation to be submitted to the Journal of Experimental Biology.
In Appendices B and C, we address two problems of interfacial phenomena: the
role of flexibility in floating at an interface and two bioculinary devices that depend
on surface tension. The work in Appendix B appears in Physics of Fluids [18] and

Appendix C is submitted to Bioinspiration & Biomimetics.
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Optimization and visualization of

low Reynolds number swimming
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Chapter 2

The three-link swimmer

A growing interest in natural and artificial microswimming has led to a variety of
recent studies that address the unique challenges associated with swimming at small
scales. A microswimmer’s inertia is negligible compared to the effects of viscosity of
the surrounding fluid (i.e., the Reynolds number is small); as such, these swimmers
must employ strokes that do not depend on momentum to achieve a net translation.
A well recognized consequence of this constraint is Purcell’s scallop theorem [120],
which states that in low Reynolds number flows, a system with a single internal
degree of freedom cannot locomote. This theorem has led to several investigations
of minimal swimming that examine the smallest increase in complexity needed to
generate a system capable of locomotion.

Many of these investigations focused on breaking the symmetry of the swimmer by
adding internal degrees of freedom, either through actively controlled joints [108, 144],
or passive flexible members [170]. Other approaches have been to change the environ-
ment by using temporally and/or spatially varying magnetic fields to actuate or pull
a passive swimmer [36], posing the swimming problem in a viscoelastic fluid [42], or
adding inertia to the body only, so that the inertia of the fluid is still negligible [46].

The three-link swimmer has been well studied over several decades, though the
relationship between strokes (especially those with large amplitudes) and net displace-
ment of the system has presented unresolved challenges. In this chapter, we review

a geometric framework for analyzing the three-link system at low Reynolds number
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that uses tools from geometric mechanics, connection vector fields and constraint cur-
vature functions, to visualize the complete system dynamics and the net displacement
per stroke. By adopting a minimum perturbation coordinate representation of the
system, the framework achieves greater accuracy in the face of nonlinearities than
previous similar efforts. Using these novel geometric mechanics-based visualization
tools, we highlight optimal translational and rotational gaits (in terms of displace-
ment per stroke and efficiency) for the three-link swimmer and find optimal motions
for a swimmer with continuous curvature. We then use these results to discuss the im-
portance of including fluid interactions between the links by comparing resistive force
theory to slender body theory. Further, we explore basis functions for parameterizing

different systems to represent an extensive range of motions and shapes.

2.1 Background

Understanding the underlying mechanisms of locomotion in low Reynolds number
swimming is key to advancing technologies across several disciplines, including us-
ing microrobots that move through the body for local drug delivery, observation or
minimally invasive surgery. The challenge of designing such systems arises from the
distinctive fluid-structure interaction that occurs at low Reynolds number, where
the viscous drag from the fluid dominates inertial forces. In this environment, the
act of gliding does not exist; that is, if the system ceases to change it shape, it in-
stantly stops locomoting. Therefore, swimming strategies effective in moderately high
Reynolds number environments, where inertia dominates and movements may rely
on gliding, may not be effective at low Reynolds number.

The study of low Reynolds number locomotion spans several decades. A fun-
damental lecture by E.M. Purcell is often cited as the starting point for the topic
[120]. In this lecture, Purcell proposed a minimalist model for low Reynolds number
swimming: an infinitely slender three-link swimmer that moves its two joints in an
alternating pattern. Using simple symmetry arguments, he demonstrated that any

further reduction (such as to a two-link swimmer) would leave the system unable

36



to generate net motion over a stroke cycle. Purcell also identified that, in the low
Reynolds number regime, the net motion produced by a stroke is geometric—i.e. it
depends only on the series of shapes that the system moves through, and not on the
rate with which it changes shape. This swimmer has since been adopted as a canoni-
cal model in low Reynolds number swimming, serving as an example of a wide range
of analyses [6, 7, 54, 56, 59, 81, 144]. Becker et al. [7] employed a conventional fluid
dynamics approach to analyze the direction and distance of net motion produced by
Purcell strokes of different amplitudes (a question that had been left open since Pur-
cell’s original lecture), then optimized geometric parameters such as the link lengths
to maximize the efficiency of the strokes. Tam & Hosoi [144] expanded and improved
this optimization of morphology by additionally considering the kinematics as well as

the geometry, allowing the joints to move simultaneously in coordinated patterns.

Another set of studies examined locomotion from a more geometric approach.
Shapere & Wilczek [135] formalized Purcell’s observations on the geometric nature
of low Reynolds number swimming by drawing on tools from gauge theory in elec-
tromagnetism. Avron & Raz [6] applied an extension of this approach (similar to
that used by Melli et al. [101] for high Reynolds systems) to determine net trans-
lation over various strokes and relate the displacement to an area integral in the
space of joint angles. These geometric methods lose accuracy when the swimmer
rotates significantly (which introduces non-commutative terms into the equations of
motion), and so were historically most accurate when applied to small-amplitude
strokes or to symmetric swimmers that do not undergo significant instantaneous ro-
tation. Hatton et al. [56, 58, 61], however, demonstrated that appropriate coordinate
transformations could mitigate the effect of the rotations, allowing geometric analysis

of high-amplitude strokes.

Here we combine both of these approaches, merging the rigorous fluid dynamics
models used by Becker et al. [7] and Tam & Hosoi [144] with the organizational
structure and visualization framework in Shapere & Wilczek [135], Avron & Raz [6],
and Hatton & Choset [56, 61]. We specifically review identifying cyclic shape changes,

i.e., strokes or gaits, that efficiently displace the system over each cycle, and which
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serve as the basic building blocks for motion over longer distances.

Starting in §2.2, we demonstrate the use of geometric mechanics tools in visu-
alizing and understanding locomotion, and review key results from their previous
application to swimming at low Reynolds numbers. In §2.3, we review the use of
geometric tools to identify optimal strokes under a simplified model of low Reynolds
number swimming (resistive force theory) and compare them to strokes found by the
parametric optimization methods reported in existing literature. In §2.4, we build
upon previous work to incorporate a more accurate fluid dynamics model (slender
body theory) that includes hydrodynamic coupling between the links, and use the
geometric tools to characterize the difference in output between it and the simpler

model.

2.2 Kinematics of low Reynolds number swimming

A key feature of swimming at low Reynolds number is that it is kinematic: the
sequence of positions the swimmer moves through in the world depends only on the
sequence of shapes it assumes, and is independent of the rate of shape changes. This
kinematic structure was recognized in Purcell’s lecture and formalized by Shapere &
Wilczek [135] in a differential-geometric framework adapted from the gauge mechanics
of particle physics. Further work in the robotics community [55, 58, 61, 77, 107, 113,
114, 115] has developed Shapere & Wilczek’s geometric mechanics formulation into a
powerful set of tools for representing the motion of swimmers and other locomoting
systems. These tools have formed the basis for a range of swimming studies on
systems including anguilliform robots [98], fish [104], the three-link swimmer [6, 54,
56, 59|, a two-link swimmer with offset centers of mass and buoyancy [19], and general
deformable surfaces [59, 77], and are at the heart of the analysis in this thesis.

The three-link swimmer is commonly studied because of its simplicity and the
amount of existing literature focused on this topic. Analytical tools are largely suf-
ficient for solving the physics of this system, making it an accessible problem over

many decades. We primarily use the three-link swimmer to develop our model and
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Figure 2-1: (a) The three-link swimmer is parameterized by the joint angles a; and
ay. (b) The motion of the system can described in terms of body velocity v? or global
velocity g. (c¢) The shape space of the three-link swimmer.

geometric framework, though it can be applied, in the present form, to any system
whose shape is described by two parameters. The framework for systems requiring
more than two parameters uses the same high level structure, though some of the
visualization tools are less developed for these higher dimensions.

As an illustration of how this geometric formulation works, we first consider the
motion of a basic three-link swimmer, shown in Fig. 2-1a, using a simplified model of
fluid dynamics. This fluids model (resistive force theory) serves as an introduction to
the more complete models we employ in §2.4, sharing key mathematical structure but
with a more intuitively tractable derivation. Similarly, the swimmer is an elementary
system for locomotion in a uniform fluid [120], and captures the important features
of the swimmers we examine later in this chapter while adding as few complicating

details as possible.

2.2.1 Dynamics at low Reynolds number

The physics of swimming systems are characterized by the Reynolds number, defined

as Re = puL/p where p is the fluid density, p is the dynamic viscosity and u and
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L are the characteristic velocity and length scales. At low Reynolds number, where
Re < 1, the hydrodynamics of the system are governed by the Stokes equations.
These equations are simplified from the Navier-Stokes equations and represent the
conservation of mass, V - u = 0, and the momentum balance between the pressure
gradient and the contribution from viscous drag, Vp = uV>u, where u and p are
the velocity and pressure in the fluid. The boundary conditions for the swimming
problem are found by matching the velocity of the swimmer at the boundary, and
assuming the fluid velocity vanishes far from the swimmer, u — 0 at oco. Physically,
these equations reflect that momentum is instantly diffused at low Reynolds number
and inertia of the system is negligible. In this case, the total hydrodynamic force on
the system can be modeled as zero at every instant [24]. For swimming problems, we
take advantage of this property and find the translation resulting from a given shape

change as that which keeps the forces in balance over the whole motion.

Stokes equations are difficult to solve generally, commonly because the boundary
conditions are prescribed on the moving boundary of the system and are time de-
pendent. Though analytical solutions are difficult to find, certain methods have been
developed to approximate these solutions. One method, used for long, slender bodies,
Is to express the force along the system as a convergent series, linear in local body
velocity [30]. In cases where fluid flow around portions of the body interacts weakly
with other portions of the body or surrounding objects, the local hydrodynamic drag
can be modeled using resistive force theory (RFT), which considers just the first term

in the series.

RFT for an elongated body (such as a link of our swimmer) takes the fluid forces
on the body as linearly related to its velocity [47], and the longitudinal drag coeffi-
cient (along the link) as related by a known proportion to the lateral drag coefficient
(perpendicular to the link). The drag coefficient ratio is dependent on the slenderness
ratio s, or body width divided by body length. In the limit of infinite slenderness
(3 — 0), the ratio of longitudinal to lateral drag approaches two [47], so that the
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dimensionless forces on a rigid link of length 2L are expressed as:

Fi,z - Lw L 1

Fiz = uL2w h pwl2w J_p QCOWU* xde za: (2.1a)

Fi = HL,;,W B uL2 / oy Al = 2covf, (2.1b)
M;

= ,—Lng 'uLaw Co,ue(ﬁ'v, e)de = -?—,cofuze (21C)

where cop is the viscous drag coefficient, F;; and F;, are the dimensionless longitu-
dinal and lateral forces of the ith link, respectively, and M; is the moment of that
link. The body velocity, v®, is the world velocity, §, as expressed in the basis of the
instantaneous body frame, illustrated in Fig. 2-1b. All quantities are dimensionless,

normalized by length L, dynamic viscosity y, and frequency of motion w.

2.2.2 Shape, position, and velocity

The force equations in (2.1) are given in terms of individual link velocities. To find
the forces acting on a swimmer, we must relate these individual link velocities to
a set of generalized coordinates and velocities that describe the state of the whole
swimmer. As a first step in finding these relationships, we decompose the swimmer’s
configuration into a shape and position.

The shape of the three-link swimmer is the relative position of points on the
body, captured by the joint angles @ = (a;,as). The shape space for this system
is a two-dimensional space defined by the limits of the joint angles, as shown in
Fig. 2-1c. Each point in this space corresponds to a specific shape of the three-link
swimmer. Trajectories through the shape space represent time-varying deformations
of the system and if cyclic, are referred to as gaits or strokes. To fully describe the
system’s configuration, we combine the joint angle vector a with a position g that
describes the location and orientation of a body frame attached to some point on the
system (for example, the middle link or center of mass).

Following these definitions, the rate of change of the swimmer’s configuration (its
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generalized velocity) can be represented as the combination of the shape velocity &
together with either the world velocity, g, or the body velocity, v°.

Once the configuration coordinates are chosen for the system, the velocity of every
point on the body can be determined in terms of the shape «, shape velocity & and
body velocity v®. Here, we are interested in the body velocities of the three links at

their centers, which resolve under basic kinematics as

vg,l cosay —sinoy sin aq 'vz 0
b . .
vi= |vb,| = |siny cosa; —(cosay+1)| |WB]| + | & (2.2a)
b b .
Vg1 0 0 1 Ug -0y
A
P
Vg = ’Uy (22b)
b
Yo
v} cosay sino sina v} 0
z,3 2 2 2 z
b . .
U3 = ’0573 = |—sinas cosas cosap+1 'UZ + |asf - (2.2¢)
b ' b .
Vg3 0 0 1 Ug Go

2.2.3 Forces on a swimmer

By taking the link velocity kinematics in (2.2) together with the force laws in (2.1),
we can find the forces acting on the swimmer as a function of its configuration and

velocity. These forces can then be summed together to find the net force on the

system as
S F, COoSs (g sin oy 0] 1 Fig oy cosag —sinay 0| |F3,
Y Fy| = |—sinm cos a1 O | Fiy| + [Foy| + [sinoe  cosan  Of [Fayls
M sine; —(l+4cosey) 1| | M M, sinag 1+cosap 1} | Ms
) link 1 to 2 (bod;'r) frame rotation ’ ;ink 3to2 (bod;) frame rotatiorlx
(2.3)

where the matrices serve to rotate the forces on the links into the system body frame

and to encode the moment that forces applied to the outer links exert on the body
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frame.

Evaluating (2.1) through (2.3) reveals a useful structure to the relationship be-
tween the swimmer’s configuration, velocity, and forces: the net forces are linear in
the generalized velocities, nonlinear in the shape, and independent of the swimmer’s
position,

SF .

S F,| = Caxs(a) e (2.4)

Su ;
where C(ax) is a matrix of the coefficients of velocity resulting from combining (2.1)-
(2.3). The structure of (2.4) is of key importance in forming our swimming model,
and highlights the usefulness of working with forces and velocities in the basis of the
body frame, rather than the world frame. In this treatment, the local dynamics are
expressed independently of the system’s position, whereas a world-frame representa-

tion would need to explicitly include the orientation of the body.

2.2.4 Swimming model

As the final step in building our locomotion model (which relates specified shape
velocities to the position velocities that they induce), we combine the net forces
in (2.3) with the previously noted condition (§2.2.1) that the net forces on a swimmer
at low Reynolds number are in quasi-static equilibrium [24]. This condition acts as a
constraint on the system’s velocities, such that any physically admissible combination
of shape and body velocities on the right of (2.4) must map through the matrix C(c)
to produce a vector of zeros on the left. Applying this constraint and separating the

C(a) matrix as

b

v
[O]3x1 = Csxs(ax) = Cr,3xa(c) v’ + Craxa(er) & (2.5)
&
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allows us to bring the v terms to the left of the equation as
Cala)v® = —C;(a) &, (2.6)

and then invert Cp,

v’ = —CzHa)Cs(a) &, (2.7

to create a mapping between the shape and position components of any velocity.

2.2.5 Reconstruction equation and local connection

Grouping the reconstituted C{cx) terms in (2.7) reduces that equation into a kinematic

reconstruction equation [13, 77, 135] of the form
v’ = —A(a) &, (2.8)

in which A(cx) is the local connection, a Jacobian-like matrix relating the shape
velocity, ¢, to the body velocity, v®. This derivation originates from those described
in [56, 59].

The local connection can be visually represented by its rows as a set of connection
vector fields that illustrate the local change in position induced by a change in the
swimimer’s shape, as described by Hatton & Choset [55, 56, 58, 61]. Fig. 2-2 shows
the connection vector fields for the three-link swimmer, in z, y, and rotation 6 in the
body frame (note that a similar figure first appeared in [56]). The body velocity for a
given shape velocity vector ¢ is found by taking the dot product of the shape velocity
vector and vector of A; at the current shape, or equivalently, the angle between these
two vectors and their magnitudes. Therefore, the body velocity component v? is
positive, negative, or zero when these two vectors are aligned (respectively) positively,
negatively or orthogonally and is scaled by the magnitudes of A; and .

The shape vector a shown in Fig. 2-2 corresponds to a system initially at (0,0),
the fully extended configuration, and moving both outside links away from each other

downward. The resultant motion is purely in the positive y direction, or perpendicular
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Figure 2-2: Connection vector fields for the three-link swimmer are the rows of the
local connection matrix A(a) [56]. The a shape vector moves the swimmer purely
in the positive y direction as both outside links sweep away from each other, as
illustrated in the left subfigure. Moving through shape vector b both translates the
body in z and rotates it positively.

to the center link, as the shape vector is aligned with the connection vector field. This
shape vector moves through a null point in z and is orthogonal to the connection
vector field locally in #. The shape vector b is aligned with the z and 6 fields and
orthogonal to the y field, thus moving the system in the positive z direction while

rotating positively.

2.2.6 Net displacement

The connection vector fields illustrate the structure of the local connection matrix
and give insight into how shape changes move a system differentially. When studying
swimming, however, we are primarily concerned with the net displacement that the

system can achieve over longer time periods T,

’ - | Co8 6(t) —sinf(t) 0
mﬂ=£9®&=£ sinf(t) cosf(t) 0] v°(t)dt, (2.9)
0 0 1

where we take the system as starting at the origin of the space. The matrix in the
rightmost expression rotates the body velocity into the global frame for integration.

Substituting in the relationship between shape and body velocity in (2.8) finds the
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net displacement over a given change in shape (a trajectory a(t) through the shape

space with an associated velocity function c(t)),

cosf(t) —sinf(t) 0
9(T) =— s coso(t) 0 Ale) éedt. (2.10)
0 0 1

Because the local dynamics, and therefore (2.10), are linear in the shape velocity,
increasing the rate at which the shape trajectory is followed proportionally increases
the rate at which the swimmer moves along the corresponding position trajectory.
Therefore, the time integral in (2.10) can be converted into a line integral over the

shape space,

) |08 f(a) —sinf(a) 0
9(a(T)) = —/(o) sinf(a) cosb(a) 0| Ala) da, (2.11)
0 0 1

in which the time-scaling of the motion drops out [57]. This conversion embodies
Purcell’s principle that swimming at low Re is kinematic—the resulting displacement
is a function only of the path through the shape space, a(t), and is independent of

the pacing with which it is followed.

Equation (2.11) maps changes in the swimmer’s shape to the displacements they
induce. When considering the motion of locomoting systems we are often concerned
with the inverse of this mapping: finding shape changes that produce desired net
displacements. In general, such an inversion requires either a parametric “shooting
method” optimization of the a(t) trajectory [144] or a closed-form solution to the
integral in (2.11). For most combinations of systems and shape inputs, such a closed
form solution does not exist—the 6 in the integrand’s rotation matrix is itself a
component of the integrated displacement g. A useful approximation of a closed
form does exist, however, for an important class of shape changes: strokes or gaits

that form closed curves in the shape space.
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Strokes are interesting for system analysis because they capture a swimmer’s abil-
ity to transform internal shape changes into net displacement over large scales. Swim-
mers’ available shape spaces are bound by limits on the extent to which they can bend,
but a finite ratio generally exists between the amount the system changes shape and
the distance it travels (this ratio is explicitly encoded here by the local connection A,
but the principle holds even if the system has a dissipative “drifting” or “coasting”
term in its equations of motion). To fit arbitrarily-long changes in shape into the
bounded shape spaces, therefore, swimmers and other locomoting systems tend to
move in cyclic patterns, which can then be characterized by the motion over a single

cycle.

Strokes’ cyclic nature also makes them easier to analyze than open-ended shape
changes, in that they allow us to apply a family of tools called curvature methods [6,
13, 56, 77, 101, 135] to find the displacements they induce. These methods are
based on the principle that to find the net displacement over a cycle, we do not
have to explicitly calculate the intermediate displacements, but only their failure to
cancel themselves out over the course of a cycle. In general, this failure to self-cancel
corresponds to the change in the system dynamics across the gait. If the dynamics
remain the same as the swimmer moves away from and then returns to the starting
shape, then the translations induced by the return will “undo” the effects of the
outbound motion. If, however, the return is executed with different dynamics, then
there will be a residual net displacement commensurate with the change in dynamics.
For kinematic systems like the low Reynolds number swimmer, the change in system
dynamics is measured by the curvature of the system constraints encoded in the local

connection [55].

The swimmer’s net displacement over a gait can be represented as the transfor-
mation g(7T) between its position at the start and end of the gait cycle, or via the
exponential coordinates z(t) of this transformation. The exponential coordinates of
a transformation are a vector that describes the constant body velocity required to
achieve that transformation in unit time; an average effective body velocity. If the

system is spinning while moving forward, it will not move in a straight line. The
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pure-translation and pure-rotation motion we consider in this paper correspond di-
rectly to the components of z(¢), the net displacement over a gait ¢, related to the

global position through the exponential map, g(T') = g(0) exp(z(¢)) [122]:

z(¢) = // V x Ai(ay, o2) dagdos + // [A1, A2] dajdas + higher order terms
¢a ba
(2.12)
where [A;, A2] is the local Lie bracket of the vectors A; (a1, a2) and Ax(a, a2).

The first two terms on the right hand side of (2.12) are both area integrals over
the region of the shape space enclosed by the gait. The first term is the body velocity
wntegral, or BVL. The BVI is a “forward minus backwards” definition of net motion
measuring total distance traveled (where moving backwards is negative distance) and
rotation. The BVI gives an approximate estimate of displacement in the global frame
but the accuracy depends heavily on the system and the gait. In special cases, Stokes’
theorem is used to find the net motion after one cycle [77, 105, 161]. If the shape
change is a gait ¢, Green’s form of Stokes’ theorem converts this line integral into an

area integral matching the first term of (2.12),

T
¢(T) = / vi(7) dr = / V x Ai(oq, ap) dondas (2.13)
0 a
_ A2 A
= /qba aal 80{2 daldag (214)

where ¢, is the area enclosed by the gait.

Changes in the local connection over the shape space determine the value of the
BVI. Taking the curl of the local connection is a measure of how nonconservative
the connection vector fields are. As such, Hatton & Choset [60] termed the BVI the
“nonconservative contribution” to the net motion.

The net displacement of the system depends on the ordering of translation and
rotation during the gait and the second term contains this information, capturing
the effect of turning. To move laterally, or “parallel park,” a car moves back while
turning, then forward while turning. The net forward minus back motion may be

zero, but net displacement is laterally nonzero and highly dependent on the order
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of turning and forward versus back motion. The second term of (2.12) includes a
local Lie bracket. In general, the local Lie bracket of two vectors m; and my in an
SE(2) system finds the result of moving differentially in the m, my, —my, —ma body

directions and is calculated as:

z T 0,,Y 0,,Y

mi m3 memi — mims3
Y Y — 6., 00T

my || ma = | mim¥ —-mimi |. (2.15)
6 0

my ms 0

This second term is referred to as the “primary noncommutative” contribution, as it
is found using only the noncommutativity of the columns of 4 in the shape space.
Together, the first two terms of (2.12) yield the corrected body velocity or ¢cBVI. The
¢BVI is “corrected” because it includes information from the noncommutativity to

improve the estimate of net displacement.

The two leading order terms in the series (2.12) are both area integrals, and
thus we can visualize them as the volumes enclosed under a set of surfaces that
are the components of the integrands in (2.13). For historical reasons related to
their differential geometric derivation, these functions are referred to as constraint
curvature functions and are the scalar representations of H' = V x A;(oq, a2) +
[A1, As);, the integrand of the first two terms in (2.12). Physically, the volume of
the curvature function enclosed under the gait is the displacement from the ¢BVI,
therefore plotting the curvature function allows ecasy identification of gaits which
produce desired displacements and rotations. For example, in the bottom row of
Fig. 2-3, the gait encloses negative volume in z, and in both y and 6, the positive and

negative volumes enclosed cancel, so that net motion is purely in the x direction.

2.2.7 Constraint curvature function analysis

Visually plotting the constraint curvature functions offers significant intuition into
the swimmer’s system dynamics [6, 56, 101, 133]. The constraint curvature functions

for the three-link swimmer in z, y, and @ are shown in Fig. 2-3. The circular stroke
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Figure 2-3: Connection vector fields (top) and constraint curvature functions (bot-
tom) for the three-link swimmer. The volume enclosed by a closed curve is an indi-
cation of net motion. These fields and functions are for the system’s motion in the
minimum-perturbation coordinates described in §2.2.8 [58].

plotted on the three subfigures represents a system’s shape changes over one cycle.
The volumes enclosed by this gait on the three functions are the components of the
cBVI approximation of the net displacement over a cycle, in the respective directions.
The stroke encloses a non-zero volume on the function associated with A, and so the
three-link swimmer moves in = over each cycle; on the z and y plots, it encloses
balanced positive and negative regions, and so produces no net displacement in these
directions. This volume enclosure is a direct visual interpretation of the ¢cBVI from
(2.12) and demonstrates the power of these tools: the constraint curvature functions
visually represent all of the system dynamics. With these plots, one can quickly

estimate a system’s motion resulting from any gait and identify optimal gaits.
¥ Y

There are two key, quickly identifiable features of the constraint curvature func-
tions. The first is the zero contour that separates sign-definite regions. These contours
enclose purely positive or negative regions, and so represent local maxima or minima
in terms of net displacement per cycle. Any gait larger than this contour will enclose

regions of the opposite sign, and will therefore move less distance per cycle. Gaits
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smaller than the contour will enclose a subset of the sign-definite region, and therefore
will also achieve less net displacement. The second easily identifiable feature is sets
of symmetric axes on each constraint curvature function. The three curvature func-
tions in Fig. 2-3 exhibit symmetry across the &3 = a2 and @; = —a; axes. The odd
symmetries present in the curvature functions associated with A, and A4 account for
the net zero sum enclosed by the path in those figures. Symmetries of the curvature
function in the shape space also simplify motion planning. Once one desired stroke is
selected, a reflection across an axis of symmetry will give an identical magnitude of
net motion. Further, our analysis generalizes comparisons between two systems; sim-
ply plot their constraint curvature functions to identify similarities and differences, as

we will in §2.4 to compare two models of fluid forces acting on the swimmer’s links.

2.2.8 Minimum perturbation coordinates

Error introduced by truncating the expression for translation in (2.12) is related to
intermediate rotation and is dependent on the choice of coordinates used. While
the dynamics of the system are coordinate-system invariant, the estimation of net
displacement depends strongly on the choice of coordinates [57]. The error will remain
small if the orientation of the system remains fairly constant during a stroke.

Orientation is preserved in general when gaits have a small amplitude, as previous
works on Lie algebra analysis have shown [101, 135]. From a locomotion point of view,
these small amplitude gaits are often very inefficient gaits, resulting in a strong need
to investigate a range of higher amplitude gaits when searching for optimal strokes.
Further details on the calculation of the minimum perturbation coordinate frame and
reference points are discussed in [56] and [57].

Avron & Raz [6] and Melli et al. [100] both used link-attached frames that ro-
tated significantly during locomotion to design gaits for swimming robots, with gait
amplitudes proportional to the joint angle amplitudes. This system rotation limited
their results to net rotation or the translation induced by very small strokes. Hat-
ton & Choset [57] recognized that the body-frame rotation is coordinate-dependent;

for instance, the mean orientation line can be used for the orientation component of
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position, and rotates considerably less than any individual link and so is a preferred
coordinate choice to a link-attached frame. Building on this observation, Hatton &
Choset identified the optimal choice of coordinates for curvature analysis as the min-
tmum perturbation body frame, that is, the weighted average of the link positions and
orientations that differentially moves the least in response to changes in shape. This
coordinate choice is the one for which the magnitudes of the rows of the local con-
nection A are smallest, and can be found by applying a modified Hodge-Helmholtz
decomposition to the vector fields from the original coordinates [57]. Fig. 2-3 shows
the connection vector fields and constraint curvature functions in these minimum
perturbation coordinates. Note that changing to minimum perturbation coordinates
does not reduce the net motion of the system. Instead, it is essentially finding the
point on the swimmer that moves in the “straightest line” between beginning and
ending configurations, and so has the shortest pathlength traveled during the motion

out of all points on the swimmer.

Using minimum perturbation coordinates, how reliably can we use the ¢BVI to
measure the net displacement? Fig. 2-4 shows the exact displacement and displace-
ment from the ¢cBVI in original and minimum perturbation coordinates for circular
strokes with increasing amplitude. The error will vary with different strokes: in areas
of the shape space that are relatively small in Ay, the displacement from the cBVI will
be a very close approximation of actual displacement. For the three-link swimmer,
we observe a large divergence between using minimum perturbation versus original
coordinates to calculate the ¢cBVI for stroke amplitudes greater than one. While both
c¢BVI measurements increase initially, the ¢cBVI in minimum perturbation coordinates
reveals an optimal stroke amplitude at approximately 1.6. Larger amplitude strokes
begin to enclose volume of the opposite sign, decreasing the net displacement of the
system. The exact displacement and ¢BVI in minimum perturbation coordinates are

in good agreement for all stroke amplitudes [53].

To review, we first model the system in a convenient coordinate frame (the body
frame of the center link) and then perform a simple change of coordinates to a frame

that minimizes error, allowing us to use the more geometric, visually represented body

92



0.12,
cBVI, original .
0.1l coordmates\ PO
exact s
0.08 displacement o
0.06
cBVI,
0.04 minimum
perturbation
0.02 coordinates
% 0.5 1 1.5 2

stroke amplitude

Figure 2-4: Displacements calculated from the ¢BVI in original coordinates and min-
imum perturbation coordinates, compared to the exact displacement for the circular
strokes shown to the left, with increasing amplitude.

velocity and its components to draw out useful gaits and details about the system’s

dynamics.

2.3 Optimal strokes

To compare systems and identify the morphology best suited for, say, speed or effi-
ciency, it is essential to first identify each system’s most effective motion. Therefore,
determining optimal strokes is an important part of ensuring fair comparisons and
allows us to draw meaningful conclusions about systems and gaits. To find “good”
swimming gaits, it is common to begin by selecting known stroke patterns from nature

or intuition and comparing the resulting forces and displacements.

2.3.1 Maximum displacement

Maximum distance per cycle strokes are easy to find with our methods and are useful
benchmarks in finding maximum efficiency strokes. Previous work, such as [144], has
found the maximal displacement stroke in x by direct parameterized optimization.
However, using the constraint curvature functions, we can directly identify maximal

displacement strokes by looking for the zero contour to identify sign-definitive regions
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Figure 2-5: a) Optimal displacement per cycle (dashed line) and efficiency (solid line)
strokes on the x curvature functions for a three-link swimmer. b) Locally and globally
optimal efficiency strokes for y motion (solid lines) and maximum displacement per
cycle stroke (dashed line). ¢) The largest amplitude stroke is the optimal efficiency
rotation stroke. Small concentric strokes are optimal for quantized rotations to be
used in motion planning. The shaded regions in the corners of each shape space
represent configurations of the three-link swimmer where the links overlap.

of the constraint curvature function, as discussed in §2.2.7. Comparing these strokes
against parameter-optimized strokes shows that this result is intuitively satisfying.
If the stroke were any larger or smaller, it would enclose less volume on the curva-
ture function and the system would have smaller net displacement, thus the stroke
maximizes the displacement integral. The resulting x stroke is shown in Fig. 2-5a
(originally from [56, 59]) and, as expected, agrees with previous results from Tam &
Hosoi [144]. The maximum displacement stroke for y is in Fig. 2-5b. Avron & Raz
[6] made a similar observation using their curvature analysis, but the error in their
methods resulted in only qualitative agreement with the “pinched” feature on the z
stroke. The actual stroke they predicted was significantly different quantitatively and

produces almost no displacement.

2.3.2 Maximum efficiency

The maximum displacement per cycle assumes that any cycle has the same cost.

However in many cases, cycles have different effort costs, so that comparisons of
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displacement per effort, or efficiency, are more informative measures of system per-
formance. Definitions of hydrodynamic efficiency have evolved in the past several
decades. Many early definitions were based on the Froude efficiency of a propellor, or
the useful power output over the total power input. Lighthill [91] defined efficiency
as the ratio of the power that an external force would spend to translate the system
at the average speed to the average power expended by the swimmer during a stroke.
Many definitions focus on forward translational motion, such as the definition by
Wiggins & Goldstein [166], who defined hydrodynamic efficiency as the comparison
of power for longitudinal propulsion to the power dissipated in transverse motions.
More generally, Tam & Hosoi [144] defined efficiency as the fraction of the total energy
spent to propel the swimmer in a useful direction and Lauga & Powers [85] use the
minimum work required to pull the system through the fluid over the work actually
done. Another metric commonly used in animal locomotion is the cost of transport,
C, defined as the energy needed to move a fixed distance divided by the total mass.
Efficiency is indirectly related to the cost of transport (non-dimensionalized by swim-

1 = ¢P/P,, where P is the time-averaged power generated

ming speed) by C? = ¢~
during swimming and P, ~ %2 is the power required to drag the swimmer at low
Reynolds number. Therefore, choosing the best efficiency is identical to choosing the

best cost of transport.

The aforementioned metrics involve time integrals and so cannot be directly in-
corporated into the geometric framework we outline. However, various researchers in
the geometric mechanics community [6, 59] have developed a geometric formulation
that is based on the idea that large joint angle motions cost more than small joint
angle motions, so the cost of a given motion is related to its arclength in the shape
space. The differential cost of executing joint motions is not uniform across the shape
space, so this geometric formulation weights the arclength measurement accordingly.
The form of this weighting also conveniently non-dimensionalizes the cost, so that we

can avoid explicitly considering pacing when comparing strokes.

Following the derivation of the cost metric given in Hatton & Choset [59], we

first identify that the differential work required to make a differential shape change
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is equivalent to the power required to move with a given shape velocity. The power
dissipated by the joints is the dot product of shape velocity with torque acting on the
joints:

P=¢6& -T(v &) (2.16)

The torque on the joints is calculated by applying the forces and moments from RFT
to the links, and is a linear function of the body and shape velocities. Using the linear
dependency of ¥® on ¢ defined in the local connection, we can express torque as a
linear function of shape velocity only, so that T(A¢, &) = f (a)dT, resulting in an

expression for power dissipation that depends only on shape and shape velocity:
P =af(a)a” (2.17)
Further, we can express shape velocity as & = da/dt and separate da and dt,

da1

dS?y =Pdt? = [dal daz] L(gl (218)

do
Mp 2

In this formulation, dsp = v/P dt is a differential arclength through the shape space,
weighted by f(ar), that accounts for the effort required to change shape by (day, day).
The cost for a longer motion corresponds to the integral of this arclength over the
shape trajectory. The relationship between this arclength, the power dissipated by
the swimmer, and the time required to make the shape change encapsulates previous
definitions in defining hydrodynamic efficiency as the work required to move the
system at a certain speed over the power dissipated to move the swimmer at that

speed.

At low Reynolds number, the cost of a motion depends on both the path the
system takes through the shape space and the speed at which the motion is executed.
Using our metric has the convenient effect of removing the need to consider pacing
from the effort evaluation. Pacing, or the speed with which the system traces out the

stroke in the shape space, was examined by Beckter et al. [7]. They found that the
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optimal pacing is achieved when power dissipation is constant in time. Other previous
literature took the position that to find the optimal efficiency stroke, it was necessary
to fix the swimming speed for a given distance or, equivalently, a fixed time [6]. Our
approach has equivalent results but eliminates the need to consider pacing within a
stroke in optimization, as the time and power terms are collected into a single metric.
The appropriate treatment of efficiency is therefore to use the distance through the
shape space, as measured by the power dissipation metric for normalization [59]. In
general, a trade off between speed and power exists, so that moving very quickly

draws more power.

The stroke for maximum efficiency per cycle in the z direction is shown in Fig. 2-5a,
originally from [59]. The geometric interpretation of the maximum efficiency stroke
is roughly the curve that encloses the most volume while minimizing the perimeter,
weighted by the local “effort” to move to different configurations. The weighting
reflects a penalty associated with changing shape along the symmetric axis. The
maximum efficiency stroke is more compact than the maximum displacement stroke
and encloses the main peak of the curvature function. It is more efficient to execute
multiple high-efficiency cycles than to significantly increase the cost of each cycle for
little gain. The maximum efficiency stroke forgoes the more extreme areas of the
shape space enclosed by the maximum displacement stroke, and even overlaps into
the positive region of the curvature function. The cost of including a small part of the
positive region is not great enough to incur the cost of extra pathlength and curvature

to exclude it.

For optimal motion planning, we are also interested in identifying the optimal
strokes in the direction orthogonal to x and for rotation. Fig. 2-5b and c show
these strokes, respectively, overlaid onto the curvature functions in those directions
in minimum perturbation coordinates. For optimal motion in y (ignoring any motion
in ), the curvature constraint function indicated two potential regions for optimal
strokes. One is a figure eight stroke in the upper right-hand corner. The other possible
optimal stroke is the rounded gait in the lower right corner of Fig. 2-5b. Comparing

the efficiencies for these two strokes revealed that the figure eight stroke was more
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Figure 2-6: Curvature functions for the three-link swimmer using SBT with slender-
ness ratio sz o~ 1074, The largest discrepancies from curvature functions found using
RFT (figure 2-5) are in the corners of the shape space, at extreme oy and oy values.
In these regions, the links become close and their fluid flows interact.

efficient, but crossed into the region of the shape space where the links of the swimmer
self-intersect, leaving the stroke towards the center as the optimal efficiency stroke
within the physically achievable regime of the shape space. For either of these strokes,
taking advantage of symmetry across the even a; = ay and odd o = —a axes allows
us to quickly transfer these results to the two domains in the left corners, identifying
additional strokes that give identical net displacements. The maximum efficiency
rotation stroke is the largest stroke in Fig. 2-5c. Smaller, quantized rotations are
also shown in Fig. 2-5¢ so that the swimmer may reorient itself by a fixed angle,
presumably to then move optimally along a straight line in that direction. These
strokes were found by requiring that the system undergo a fixed net rotation and

identifying the stroke that achieved that rotation with the least amount of power.

2.4 Slender body theory (SBT) versus resistive force
theory (RFT)

As discussed in §2.2.1, resistive force theory [47] considers only the first term in the

solution to the Stokes equations, the force on each link due to its motion through the
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surrounding fluid. In some cases, such as when designing a new swimming system,
we may require higher accuracy in our estimate of net displacement. Slender body
theory uses the next highest order term to include the coupled forces acting on the
link arising from the motion of the other links. SBT, therefore, is a more accurate
solution to the Stokes equation. As a link becomes infinitely slender, the effect of its
motion on other links by moving nearby fluid becomes negligible and results from SBT
approach those from RFT. As an example, Fig. 2-6 shows the curvature functions
in minimum perturbation coordinates using SBT for slenderness ratio 3 ~ 1074,
where RFT is considered valid because the links are very slender. Typically, making
broad comparisons of using these two theories to model the system’s motion can be
difficult, as examining specific strokes or motions is easier and more accessible but is
fairly restrictive. However, examining the height of curvature constraint functions for
each theory allows a clear comparison. For instance, identifying the approximate net
motion from any stroke for each theory provides a general idea of error between them,
and indicates where in the shape space this error is the greatest. For the three-link
swimmer, the differences between the two theories are most prevalent in the corners
of the shape space, at extreme «a; and s values, or where the links become close and
the coupled forces are important. Ignoring these regions of self-intersection between
the links avoids the regions with the largest differences without compromising the
main region of interest, the center of the shape space, where the optimal distance and

efficiency strokes were found.

Whereas comparing Figs. 2-5 and 2-6 highlights the differences between the two
theories for a single slenderness ratio, the real value of our approach is the ability to
show how well RFT performs against SBT over a range of slenderness ratios. Fig. 2-
7 shows the optimal strokes for distance and efficiency in x for several slenderness
ratios. These strokes qualitatively agree with the stroke found using RFT and be-
come more and more similar as the slenderness ratio decreases. Fig. 2-8 shows the
(a) distance and (b) efficiency evaluated using the SBT model for both the optimal
strokes from RFT and SBT, at several slenderness ratios. If those values agree, it

is appropriate to use the stroke from RFT to evaluate the distance or efliciency for
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Figure 2-7: Comparison of optimal a) distance and b) efficiency strokes using RFT
(dashed line) and SBT for several slenderness ratios (solid lines). Slenderness ratio
decreases as the stroke size increases.

three-link swimmer with any slenderness ratio and doing so saves considerable com-
putation time. Although calculating the curvature constraint function using SBT for
different systems is computationally very fast, directly finding the optimal stroke for
those same systems is not. Evaluating a metric for a set of points in the shape space
is straightforward; considering the higher dimensional space of all paths through that
space is significantly more complex. From Fig. 2-8a, we see that distances measured
using the optimal RFT stroke and the optimal SBT stroke are a close match for very
slender links, and this agreement diverges as the links become less slender. Mea-
surements of efficiency, on the other hand, are in close agreement for all slenderness
ratios (Fig. 2-8b). There are two conclusions we can draw from these results. First,
the dynamics at the center of the shape space (where the efficiency strokes are fo-
cused) are less affected by including the SBT terms because in these configurations,
interaction between the links is minimal, making the higher order SBT terms less sig-
nificant. Second, characterizing a system using RFT strokes gives meaningful results

for three-link systems with approximately s < 1073,

In this chapter we applied a geometric mechanics-based framework and accompa-
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Figure 2-8: a) Distance per cycle calculated using the RFT model evaluated with
the optimal SBT strokes (*) and RFT strokes (+). b) Efficiency calculated using the
RFT model evaluated with the optimal SBT strokes (*) and RFT strokes (+). For
slenderness ratios 2 < 1072, this method can be used with very close quantitative
agreement between the two methods.

nying visualization tools, the connection vector fields and constraint curvature func-
tions, to further understanding of the complete dynamics of a system, specifically the
three-link swimmer. Using these techniques, we found globally optimal strokes for
both maximum distance per cycle and maximum efficiency for translation and rota-
tion. While previous research was limited to using geometric tools for only rotational
or small amplitude strokes, our methods took advantage of recent developments us-
ing minimum perturbation coordinates, allowing those tools to be applied to a wider

range of motion and systems.

We compared resistive force theory (RFT) to the higher order slender body theory
(SBT) to determine the effects of the presence of links on each other. We found that
for swimmers with slenderness ratios less than approximately 1073, it is appropriate
to use RFT to find an optimal stroke whose value (either distance or efficiency) can

be calculated using SBT to save considerable computation time.

Together, the framework and tools will serve as the basis to study systems swim-
ming at low Reynolds number in the upcoming chapters, namely a two-link swimmer

with offset centers of mass and buoyancy (Chapter 3), serpenoid swimmer (Chapter
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4) and spermatozoa (Chapter 5 and 6). However, this framework and tools extend
to a wider class of systems. For instance, the three-link kinematic snake at high
Reynolds number systems [56] and a three-link snake in granular media (shown to
obey a type of resistive force theory) [34] have been studied. In the following chapter,
we address unactuated degrees of freedom by considering a two-link swimmer with
offset centers of buoyancy and mass at low Reynolds number [19]. In this case, there
is less freedom to choose gaits based on the curvature function. Instead, there is only
one prescribed degree of freedom and the other is determined by the dynamics of the

system.
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Chapter 3

The two-link swimmer

In this chapter, we explore an unactuated degree of freedom by building upon the
framework established in Chapter 2 and adding a static separation of the system’s
centers of mass and buoyancy. This separation gives the neutrally buoyant system
an equilibrium orientation to which it passively returns. As the two-link swimmer
deforms its body, it changes the orientation of the line between its centers of mass and
buoyancy. This rotation is countered by gravity that acts to restore the swimmer to
its equilibrium orientation with the center of buoyancy above the center of mass, an
effect observed in live microorganisms [118]. If the time scales for these two effects are
comparable, the swimmer can translate. We visualize this conclusion by extending the
geometric mechanics-based framework introduced in Chapter 2. This model allows

for both simple computation and optimization in motion planning.

3.1 System description

The two-link swimmer model is illustrated in Fig. 3-1. Both links are assumed to be
rigid and slender with length L and radius R. The swimmer is neutrally buoyant.
The drag arm is massless, while the buoyant arm has mass m. This arm’s mass is
distributed such that the center of buoyancy is a distance [ further than the center of
mass from the joint, producing a buoyant moment on that arm. The system’s shape

is described by the angle « between the buoyant arm and the drag arm; its position
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Figure 3-1: Schematic of the neutrally-buoyant, two-link swimmer with centers of
mass and buoyancy separated by a distance [.
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in the inertial reference frame is given by (z,y), the location of the joint axis, and the

orientation € of the medial line bisecting the swimmer, measured from the vertical.

If the centers of gravity and buoyancy were collocated, opening or closing the
joint would only serve to propel the swimmer back and forth along its medial line.
Separating the centers gives the system a tendency to return the buoyant arm to a
vertical configuration and thus allows it to passively reorient between the opening
and closing motions, producing a net displacement. The attractive feature of this
mechanism lies in its simplicity which manifests as a passive response to a stationary

field. Note that the swimmer can translate upwards against gravity.

3.2 Fluid dynamics and kinematics model

At the low Reynolds numbers we are considering, viscous drag forces dominate and
inertial effects are negligible. As in Chapter 2, this has several key consequences
we can exploit to represent the equations of motion in a concise manner. First, the
net force on the swimmer is zero. Second, the drag forces acting on the system are
linear in the velocities of the links, which are in turn liﬁear in the system’s shape and
position velocities and independent of the location (but not the orientation) of the

system in the inertial frame. Taken together, these properties form the force-balance
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equation

T T T
[Fé‘ K Fﬂ =- [F; F} F,f,’] = > [v:; W o a] (3.1)
where F; denotes the net generalized forces applied by gravity, F; denotes the drag

forces that balance these external forces, and f(a, 6) is a linear map relating these

forces to the system velocities.

Separating # into two sub-blocks as 8 = [3*® 82*!] allows us to rearrange (3.1)
into a form
T
o=k v o] =Ae,0)d+Cla6), (3.2)

where A(a, ) = B 'S, linearly maps an input shape velocity & to the resultant v°
position velocities, and C(«,8) = 8] ng is an additional position velocity induced
by the buoyant forces. Equation (3.2) is the reconstruction equation {13] and A the
local connection for this system, similar to those presented for three-link systems in
Chapter 2.

The two-link model has two notable differences from those previously developed
[57, 73, 101]. We now include the buoyant function C, which has not appeared previ-
ously and whose closest antecedent is the momentum terms included in works such as
Ostrowski & Burdick [113] and Shammas, et al. [134]. We have chosen to express the
reconstruction equation in terms of inertial-frame velocities, rather than the body-
frame velocities used in the previous work. This choice, prompted by the dependence
of C on 0 regardless of the frame chosen, avoids any problems posed by integrating in
a body frame to find the swimmer’s trajectory {57]. Unfortunately, it also results in
the unactuated orientation € appearing on the right-hand side of the reconstruction
equation, preventing the direct specification of the right-hand side input trajecto-
ries. In this chapter, we address these problems with a combination of analytical and
numerical limit cycle analyses in the («, ) phase space of the swimmer.

As a prelude to this limit cycle analysis, it is useful to briefly review the physics of
low Reynolds number swimming that give rise to Eq. (3.2), and to expand techniques

we have previously developed for visualizing locomoting system dynamics [57] to
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encompass the present system. In general, the S matrix that produces the drag
forces in Eq. (3.1) can be found by solving Stokes equations around the links. For
this analysis we once again assume a small aspect ratio, R/L <« 1, and use resistive
force theory [47] to approximate the drag forces acting on the links. As a reminder,
with this model the lateral and longitudinal drag forces on each link are proportional

to the lateral and longitudinal velocities by drag coefficients x and «/2, respectively.

Standard kinematic techniques [106] relate these velocities to the generalized co-
ordinate velocities in Eq. (3.1) and also provide the rotations to bring them into a
common frame for summation into F7 and F. The drag moments are handled simi-
larly, with the note that F? is the sum not only of the rotational drag moments, but
also of the moments resulting from the drag forces acting normal to the link. Resis-
tive force theory does not capture long-range hydrodynamic interactions between the
links or any viscous effects that arise from bringing the links close to each other, but
it is useful for this initial investigation as it allows an analytical representation of the
drag forces. Including the lowest-order long-range interactions by using slender body
theory [30] was addressed in Chapter 2 and shown to have minimal effect when links

maintain sufficient distance between them.

The gravitationally generated forces in Eq. (3.1) are similarly derived from the
system geometry. Because the swimmer is neutrally buoyant, F7 and FY are zero.
The moment exerted on the system by the separated gravitational and buoyant forces

is given by F{ = mglsin(a/2 — 6).

Rescaling the equations of motion, we take the characteristic translational ve-
locity of the system as wL and the characteristic angular velocity as w, where w™!
is the characteristic time scale of our input “fHapping” motions corresponding to a
dimensionless time # = wt. Combining these velocities in a dimensionless parame-

ter v = (mgl)/(kwL?), corresponding to the ratio of gravitational and drag forces,
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Figure 3-2: Visualization of the components of the equations of motion in (3.5) for
v = 1. Left: Connection vector fields for Ay, (a,8), along with their curvature
functions, capture the contribution to translation from changes in shape. Right:
Co (a,8), represents the contribution to rotation from the buoyant moment. The
dashed line indicates the equilibrium orientation.

Eq. (3.2) becomes

o2 —sinf (sin (v — @) — sin @) cos 0

5 sin(a/2) 2 3y : ; -

’UAE = oma | ©E f|a + 3 cosor (sin (o — @) —sin @) sin@ | , (3.3)
v} 0 (3 + cos a) sin (a/2 — 6)

revealing the characteristic trajectory of the system to be a function only of the chosen
flapping motion ¢ and the parameter . The dimensionless parameter 7 has a second
interpretation, relating the settling time of the swimmer to the characteristic time

scale of flapping.

3.2.1 Optimal coordinates

Our choice of the medial line as the swimmer’s orientation has a convenient effect on
the form of Eq. (3.3). In these coordinates, the two links open and close symmetri-
cally around the orientation line, which consequently does not rotate in response to
changes in the joint angle; this symmetry leads to the third row of A being zero. The
swimmer also has a second, less intuitive, symmetry that allows further reduction
of the reconstruction equation. Because the gravitational forces are a pure moment
applied to the system, they induce a rigid rotation of the swimmer about a shape-
dependent center of rotation defined by the interactions of the drag forces on the

links. By symmetry, this center of rotation is on the medial line, and we can most
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easily calculate its distance r from the joint by recognizing that the moment-induced

motion of the joint is along an arc around the center of rotation, and thus

F=r/L=—C;/(Cocos) = 2cos(a/2)/(3 + cos ). (3.4)

Changing the reference location of the system from the joint to the center of rotation
by selecting (', §') = (&—7sin 6, §++ cos 6) is a form of optimal coordinate choice [57],

and has the effect of reducing C, and C, to zero, producing a new reconstruction

equation,
W Ay —sinf (% + %) &
v;‘jl = Ay/& = cos @ (% + %) & (3.5)
o Co 22— (34 cosa)sin (a/2 — 6)

in which the translational velocity is generated entirely by the local connection, and

the rotational velocity is dictated exclusively by the buoyant terms.

3.2.2 Visualizing system dynamics and strokes

The components of the reconstruction equation in Eq. (3.5) are displayed graphically
for v = 1 in Fig. 3-2. The two leftmost plots represent the rows of the local connection
(Ay, Ay ) using the connection vector field metaphor previously described in Chapter
2. The dot products of an input & with the vector fields produce the contribution of
the shape velocity to the position velocity, as per the first line in Eq. (3.5). The curls
of the rows of A capture all the information about the net contribution of this opening
and closing action over a full cycle. By Stokes’ theorem, line integrals along closed
loops, which represent cyclical body deformations, are equal to the area integrals of
the fields’ curls over the region enclosed by the loops. At the right of the figure, the
contour plot illustrates Cy and can be interpreted as the prescribed rotational velocity
imposed on the system by the buoyant moment.

The chief weakness of this form of the reconstruction equation is the presence of
6 as an unactuated configuration component on the right-hand side. The first step

in analyzing strokes for the swimmer, then, is to identify the limit-cycle behavior of
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# in response to given cyclic a inputs; once this behavior is found, the translatory
component of the motion can be found by evaluating Eq. (3.5) for the corresponding
(o, 8) trajectory.

To find this limit cycle, we take advantage of the structure of Eq. (3.5), specifi-
cally the property that the orientation trajectory is entirely defined by the buoyant
moment, é(f) = Cy(a, ). For strokes covering large ranges of «, Cy is sufficiently
nonlinear that we take recourse to numerical methods when solving for §. For small
strokes, however, we can find an analytical expression for this trajectory by linearizing
the buoyant moment as Cy = k(6,(a) — 6), where k = 67 acts as a linear restoring
spring driving 6 towards its equilibrium value of 8, = o/2, indicated by the dashed
line in the Cy plot in Fig. 3-2. This linearization then allows é(f) to be rewritten as

the ordinary differential equation
0(i) + k6(f) = ka(f)/2. (3.6)

We now select an input shape trajectory o(f) = ag/2+apsin(£)/2, i.e., a sinusoidal
opening and closing motion with frequency determined by the characteristic time
scale. Substituting this input into Eq. (3.6) and solving the differential equation

produces the limit cycle for the € trajectory corresponding to this input,

. % Ot()k?

—Tkz)(k sin(f) — cos(t)), (3.7)

which depends only on the amplitude of the input oy and the parameter .
Together, a(t) and Eq. (3.7) form elliptical trajectories in the («, 6) space, sheared
such that the # components of the tangent vectors are zero where the trajectory
crosses the equilibrium line, and enclosing areas a = (wadk)/(8(1 + k?)) in the («, 6)
plane. Comparing these ellipses to exact integrals of Eq. (3.3) for the input in a(f),
as in Fig. 3-3, shows the approximate trajectories to be a reasonable representation
of the system behavior for input amplitudes of g < 1.5. At larger amplitudes,
the nonlinearities in Cy start to play a significant role, with their first effect being a

reduction in the restoring force below the equilibrium line. This reduction pulls the
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Figure 3-3: Comparison of exact stroke limit cycles with the shape predicted by the
linearized model, for v = 1/6 and 1.2 < «a < 3.1. Dashed lines indicate trajectories
from the linearized solutions, solid lines indicate exact trajectories.

max tips of the trajectories down to lower values of f.

With the (a, ) limit cycles in hand, we can now consider the efficiencies £ of
strokes at different amplitudes and frequencies, which we take as the ratio of the
power required to pull the swimmer at its nondimensionalized mean speed § (relative
to the flapping frequency) to the time averaged mechanical power applied through
the joint to generate the system’s motion [7]. Calculating this efficiency numerically
is straightforward, generating the contour surface in Fig. 3-4. Note that § can be
calculated either by integrating (3.5) or by using the area integrals of the curvature
functions over the regions enclosed by the strokes to find the net displacement per
cycle. The dominating features of this plot are the three peaks in efficiency for v values
between 10! and 10°, when the time scales of flapping and settling are comparable.
Mean speed, represented as a gradient surface behind the contours in Fig. 3-4, is
closely correlated to the efficiency. This correspondence is explained by recognizing
that § can alternately be taken as a measure of displacement per stroke, and thus as

a kind of efficiency measure in its own right.

Independently, these peaks highlight the best choices of input amplitude and fre-
quency to generate efficient motion. Combining them with information from the
curvature functions in Fig. 3-2 provides further insight into several key features of the
system dynamics. Physically, the curvature functions measure the extent to which

reorienting the system breaks the time symmetry. By observing the interactions of
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Figure 3-4: Contours: efficiency, £, (in percent) of the system as a function of stroke
amplitude ay and time scale parameter . Gradient background: dimensionless mean
speed, 5. Top and side panels: qualitative comparison of the efficiency with the mean
speed § of the system relative to the flapping frequency. The mean speed corresponds
to the area integral of the curvature functions over the region of the (a,6) space
enclosed by the stroke; the top panel additionally presents the dependence of the
enclosed area on  for the linearized stroke.
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the strokes with the curvature functions, we can elucidate the system behaviors that

give rise to the peaks.

Starting at ap = 0 and moving up the plot, the first peak represents optimal
system behavior for ap < m. For these amplitudes, the optimal ~ values are very
close to the values that maximize the area a enclosed by the (o, B) trajectory, as
illustrated in the top panel of Fig. 3-4. Returning to the curvature functions in
Fig. 3-2, we see that for small strokes both curvature functions are positive-definite,
and thus maximizing the area enclosed by the stroke maximizes the net displacement
achieved over the control effort. The drift of the optimal efficiency towards larger
v values (i.e., strokes that are slower or settle more quickly) is largely explained by
the differences between the true and linearized strokes noted in Fig. 3-3. Reducing
the flapping frequency allows the system more time to reorient itself during the part
of the cycle that passes through the low-magnitude region of Cp, thus reducing the

pinching effect on the larger trajectories.

The second peak’s origins lie in the dependence of the curvature functions on o
and 6. As the amplitude increases, the enclosed regions of the curvature function
are no longer positive-definite. The newly-added negative regions (especially present
for the y component) first cancel out the positive contributions, causing a dip in
efficiency, and then grow to dominate the solution at the second peak. Strokes near
this peak spend the majority of their cycle in the low-magnitude region of Cp, pushing

the peak’s 7 value significantly above the optimum for the linearized strokes.

Finally, the third peak reflects a similar dip and increase in the area integral
magnitudes, with very large strokes enclosing a significant negative region of the y
curvature function. This final increase in amplitude also places the stroke back in
larger-magnitude regions of Cy, pulling the peak’s maximum efficiency back down to
lower values of 7y (i.e., strokes that are faster or settle more slowly). As compared to
the first peak, strokes near this peak have greater displacement over each cycle (and
thus a greater mean speed §), but this increased displacement is not enough to offset
the increased control effort, leaving the first peak as representing the most efficient

motion.
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3.3 Comparison to the three-link swimmer

While the same basic framework was applied to the three-link swimmer (Chapter 2)
and the two-link swimmer, a fundamental difference appeared to treat the unactuated
degree of freedom. Unlike in the case of the three-link swimmer, we were not given
the freedom of choosing a stroke exactly for the two-link swimmer. Instead, we
prescribed the actuated degree of freedom (the joint angle) and solved for the resulting
unactuated degree of freedom, the orientation. Further, at low Reynolds number,
timing on strokes can often be ignored. Executing a stroke for the three-link swimmer
" at one speed and at twice that speed will result in the same net displacement. The
same is not true for our two-link swimmer, which fundamentally depends on timing
due to the gravitational reorientation that is responsible for achieving any non-zero

net displacement.
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Chapter 4

Curvature and the serpenoid

swimmer

The theory and framework presented in Part I are applicable to any system that may
be described by shape parameters and whose equations of motion may be written in
the form of the reconstruction equation (2.8). However, visualizations of the system
dynamics, such as the connection vector fields and constraint curvature functions in-
troduced in Chapter 2, are limited to systems with a two-element parameterization
of the sﬁape. As we will demonstrate in this and the following chapters, with just
two parameters we can describe a wide range of continuously deformable (flexible)
systems. Here we explore the serpenoid swimmer at low Reynolds number, a system
that has a shape comprised of sinusoids in the curvature space. We find the visualiza-
tions of the system dynamics for this swimmer and compare its optimal performance

to that of the three-link swimmer.

4.1 The curvature space

For flexible systems, it is convenient to work in the curvature space of the system’s
shape, x(s), where s is the arclength along the swimmer. Curvature is related to
the system’s shape through the spatial rate of change of the unit tangent vector,

T(s,t), along the length of the system or x(s,t) = dT(s,t)/ds. The shape resulting

75



l“\
y(z) N y
/ \ Ll N
/ \ " ~~\ ‘~ !
[ ~
X Il A ) ~‘~__—"l)
\Y U4
\ 4
A4

Y Y

Figure 4-1: a) A shape described by a function y(z), where every x corresponds to a
unique value of y(z). b) A shape that cannot be described by y(z) because for some
x values, there exist multiple values of y.

from curvature is found by solving the following set of coupled ordinary differential

equations:
df(s,t)
—— = K(s,t)
ds
%ﬁ;’t—)— = sin (s, t) (4.1)
dy_((i‘i’_ﬂ = cosf(s,t).

Examining curvature along the length of the system offers several advantages over
describing the shape as a function such as y(z) in Fig. 4-1. Limiting the representation
of the swimmer to a function restricts the shape of the swimmer, eliminating the
possibility of highly curved shapes like that in Fig. 4-1b, and requires additional
constraints to preserve the length of the swimmer for all shapes in time. Moving to
the curvature space allows us to model flexible systems such as flagella and highly-

articulated systems with coupled joint angles.

To represent a system’s kinematics—its shape moving in time—we will use the
curvature x(s, t), a function of both space (along the system’s body length) and time.

This curvature can be decomposed into N spatial and temporal components, or the
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Figure 4-2: Basis functions in the curvature space along the length of the swimmer
allow an extensive range of shapes. The resulting shapes of a swimmer using (from left
to right) Dirac delta, Heaviside (step), polynomial, and sinusoidal functions. Courtesy
of Ross Hatton.

curvature basis functions, U;(s), and their amplitudes, a;(t), respectively:

’{(Sat) = Zai(t)Ui(5)1 (42)

where the set of a;(t) are the dimensionless shape parameters. The curvature basis
functions U;(s) have units of curvature, are predetermined, and stay constant in time.

For a system with two degrees of freedom, N = 2 and Eq. (4.2) becomes
k(s,t) = ar(t)Ui(s) + az(t)Us(s), (4.3)

where a;(t) and as(t) are comparable to the joint angles a; and a; for the three-
link swimmer. In that case, the basis functions to represent two discrete bends in
the curvature space along the swimmer correspond to two Dirac delta functions, one
at each joint of the system (Fig. 4-2). The amplitude of the Dirac delta function
in time determines the joint angle [59]. These shape parameters define the shape
space and together, they describe shape changes for the system. If a,(t) and a(t)
are periodic, the shape change they define is a gait. Fig. 4-2 illustrates a variety

of curvature basis functions for N = 2 and corresponding mode shapes including
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Heaviside (step), polynomial, and sinusoid functions, where the free parameters are
typically the amplitudes of the basis functions.

Shapes created by sinusoidally varying curvature (Fig. 4-2) are termed ‘serpenoid’
curves and are commonly considered in the snake robot literature [152]. The corre-
sponding shape space for a serpenoid swimmer, a swimming system represented by
serpenoid curvatures, is illustrated in Fig. 4-3a. These shapes are somewhat biologi-
cal in nature, representative of typical ‘snake-like’ shapes. For the remainder of this
chapter, we will model and visualize the dynamics of the serpenoid swimmer using

the framework introduced in Chapter 2.

4.2 Dynamics visualization and optimal strokes

Comparing two systems, such as the three-link swimmer and the continuously de-
formable serpenoid swimmer, is typically done by focusing on the optimal strokes of
each. Applying the framework presented here, we can perform a more global compar-
ison. A complete visualization of the dynamics is straightforward to obtain in both
cases. To form the kinematic reconstruction equation (2.8), we assume the serpenoid
swimmer can be approximated (locally) as a circular cylinder and again use resistive
force theory (§2.2.1) for low Reynolds number motion to find the hydrodynamic forces
and torques on the swimmer. As in §2.2.3-§2.2.4 for the three-link swimmer, we find
the net force and torque on the system, set those expressions to zero, and solve for
the body velocity v® to find:

v’ = —A(a) da. (4.4)

Fig. 4-3b shows the curvature constraint functions of the serpenoid swimmer in min-
imum perturbation coordinates (§2.2.8) and the corresponding optimal stroke in the
z, y and rotation directions. The maximum efficiency stroke is compact, round, and is
centered around the peak. The y and € optimal maximum efficiency strokes are figure
eight strokes, taking advantage of the symmetry readily apparent from the curvature
functions by reflecting across the axis of symmetry to double the distance traveled per

cycle. The performance of the continuously deformable swimmer is noticeably higher
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Figure 4-3: a) The shape space for the serpenoid swimmer, using sinusoidal basis
modes in the curvature space to parameterize the system. b) Constraint curvature
functions and optimal efficiency strokes for the serpenoid swimmer in the z, y and
rotational directions. The three maximum efficiency strokes are all centered at the
origin of the shape space and take advantage of the two-fold rotational symmetry in
each constraint curvature function. The strokes in y and 6 are figure eight shaped
due to the odd rotational symmetry present for those curvature functions.

than the three-link swimmer: the optimal translational efficiency for the serpenoid

swimmer is 278% of the three-link swimmer’s maximum efficiency.

4.3 Beyond serpenoid curves

The straightforward application of our visualization framework and substantial im-
provement in efficiency of the serpenoid swimmer over the three-link swimmer is
encouraging and naturally leads to several questions, including: What are optimal
basis functions? Can we extend this analysis to biological systems? Do biological
systems perform optimally, given their morphology? How can we represent biological
motion using just two parameters?

We begin to address these questions in Part II. We develop a general method of
determining the curvature basis functions that best mimic biological behavior and
apply this method to sea urchin spermatozoa. In Chapter 6, we narrow our focus on
the representation of biological kinematics and what we can infer by examining the
curvature basis functions for systems in changing environments and during different

biological processes.
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Part 11

Kinematic analysis of biological

systems
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Chapter 5

Kinematic decomposition

Swimming strategies exhibited by animals consistently outperform man-made under-
water vehicles, as illustrated by Fig. 1-1. While many bio-inspired underwater robots
are modeled after these animals (e.g., [27, 31, 37, 65, 94, 95, 98, 110, 146, 148, 153]),
it remains a challenge to reconcile the inherently discrete nature of mechanical com-
ponents used in robots with the continuously deformable shape of biological systems.
Snake robots, for instance, may have several joints and actuators to enable smooth
‘snake-like’ motion, but we still desire low-dimensional representations of the kine-
matics to allow fast and effective motion planning and gait optimization. One solution
is to couple the joint motion and reduce the degrees of freedom in the system consid-
erably (as in [62]), allowing these tasks to become manageable in finite time.

The state-of-the-art for describing biological kinematic motion includes measuring
an animal’s motion and extracting a number of kinematic parameters (e.g., velocity,
tail beat frequency, wavelength and wave speed of traveling waves down the body,
and amplitude of several points along the body [83]), fitting the kinematics to sines
and cosines [116], or plotting the kinematics (as illustrated in Fig. 5-1b and c, ei-
ther through a time lapse image of the éhanging body shape in time or through the
curvature matrix directly). These methods require anywhere from 8 to 30 parame-
ters. Here we consider complex biological systems and ask: How can we represent
the system’s shape using only a few parameters in time?

In this chapter, we develop the kinematic decomposition, a novel method to de-
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scribe the kinematics of inherently complex systems with generalized curvature de-
composition. We apply this method to sperm of the sea urchin Arbacia punctulata, a
model organism shown in Fig. 5-1a, to explore chemotazis (the directed movement in
the presence of an attractant gradient) and identify the flagellar mechanics and gait
modulation that leads to turning. Further, we develop a metric to identify whether

or not the sperm is chemotaxing using kinematics alone.

" trajectory

™ fracked
flagella

Figure 5-1: a) The shape of the sea urchin sperm flagella and the trajectory are tracked
from high-speed microscopy images [50]. b) The kinematics of the sea urchin sperm
are illustrated by a time-lapse of the flagella shape in time. ¢) A typical visualization
of flagella kinematics is created by directly plotting the curvature matrix. Each
column represents the curvature of the flagella at that time step. General trends and
periodicity are easily obtained from plotting the curvature matrix, but more detailed
analysis and comparison is difficult.

5.1 Spatial curvature

The initial step in our analysis is to calculate, filter, and normalize (by body length)
the spatial curvature of the sea urchin sperm flagella at every time step, or x(s,t) as
in Chapter 4. Working in the curvature space automatically simplifies our analysis, as
we now analyze kinematics along the body and can ignore the orientation and distance
of the body from the origin. The curvature space also allows us to accurately describe
highly curved shapes like those in Fig. 4-1b.

We describe the flagella curvature with S points along the body that change in

time for T" time steps. The S spatial points always correspond to the same distance
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along the body, such that the first point is at the base of the head and the last is at
the end of the flagella. We express this curvature as a discretized form of the previous

curvature equation (4.2),

kls,t) = > ailtlUils], (5.1)

i=1

where the square brackets indicate that space and time are now discrete and N is the
number of basis functions and terms included. The spatial basis functions U;[s] are
multiplied by the coefficients a;[t] at each time step to represent the contribution of
that basis function to the motion of the sea urchin sperm. If N = S, the number of
basis functions equals the number of spatial points and we have sufficient degrees of
freedom to describe the curvature exactly. We have the freedom to choose U;[s] and
by selecting optimal basis functions (those that best describe the motion), we can
minimize N and use fewer parameters to accurately capture the kinematics. We aim
to use just two parameters, N = 2, so that we may take advantage of the visualization
framework and tools developed in Part 1.

A common choice for spatial basis functions are Fourier modes, or sines and
cosines. Fourier modes are orthogonal, successfully create snake-like shapes (as seen
in Chapter 4 for the serpenoid swimmer) and therefore may also represent the mo-
tion of sea urchin sperm well. Fig. 5-2b illustrates the mean absolute error induced
by using N Fourier modes to capture the curvature of the sea urchin sperm. Over-
all, Fourier basis functions reproduce the dominant features of the sea urchin sperm.
However, when limited to a small number of basis functions, or small N, the Fourier
modes fail to represent more extreme motions, such as when the curvature at the
head of the sperm is small while the tail’s curvature is very large, as in Fig. 5-2a. In

this example, N = 2 so that U;[s] = sin[s] and U,[s] = cos]s].

5.2 Singular value decomposition (SVD)

Rather than selecting known functions like sines and cosines for basis functions, we

wish to find optimal basis functions, those functions that account for the greatest
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Figure 5-2: a) Fourier basis functions (dashed black line) fail to capture the features
present in the actual curvature (solid red line) in representing the curvature of the
flagella. b) Using the basis functions from the kinematic decomposition to represent
the curvature gives the smallest mean absolute error, when compared to Fourier or
polynomial basis functions.

amount of variability in curvature. The singular value decomposition (SVD) does
precisely this operation. By applying an SVD to our data, we can identify the optimal

bases, Uj[s], and the corresponding amplitudes in time, a,[t].

In general, the SVD factors an m x n matrix M into three matrices:

M(m‘n) = br(m,m)E(m,ﬂ)VE.= (52)

n,n)

where Ugn m) are the left s_ingular vectors, a set of orthonormal basis vectors, Xy )
is a diagonalized matrix of singular values (o;;) in decreasing order, Vinn) are the
right singular vectors and * denotes the conjugate transpose. Uynm) and Vi) are
both unitary matrices, so that UU* = U*U = I and VV* = V*V = I. This sets the
scaling of U, V, and o, ;.

Mis ) 1s a matrix populated by the spatial curvature at each time step, filled
column-wise, so that S is the number of spatial points and T is the number of time
steps, as shown schematically in Fig. 5-3a. (Note that this matrix is exactly the
matrix illustrated in Fig. 5-1c). For all of our tracked biological data, there are

more time steps than spatial points along the body (S < T'). We will assume this
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relationship holds when considering the details of our analysis, though the analysis
is general for any matrix size. The matrices that result from the SVD are very
powerful: the columns of U are directly the optimal curvature basis functions,
the diagonal elements of gy indicate the variability accounted for by each basis
function, and E(S,T)V(}’T) gives the corresponding amplitudes of the basis functions
at each time step. Including all S basis functions guarantees that the curvature is

exactly reproduced.

We are interested in representing kinematics using only a few parameters in time
and will therefore limit the number of basis functions. For now, we set that limit to
N = 2, but our method is general for any N up to S. In most cases, including just
a few of the basis functions associated with the largest singular values will capture a
bulk of the original motion. With two functions, the discretized curvature equation

(5.1) becomes
2

Kls, ] = Y alt)Uils] = ay[tUs [s] + as[t]Us[s]. (5.3)

i=1
We can quantify how well using N basis functions represents the exact kinematics

by computing the fraction of variance represented, Vy, with the singular values:

=== (5.4)

where o; is the ith singular value or the (4,%)th entry of the ¥(57) matrix. Again,
the singular values are sorted such that o; > 02 > ... > 0g and the basis functions
representing the largest variance are first. When all of the basis functions are utilized,

Vn=s = 1, or all of the system’s motion is described.

Fig. 5-3 illustrates the output of applying an SVD to spatial curvature data in
time. The basis functions Uy [s] and Us[s] (Fig. 5-3b) represent the spatial component
of the kinematics, while the basis function amplitudes, a;[t] = £17V7r and azt] =
Yo V7 represent the temporal kinematic component (Fig. 5-3c). The shape space
corresponds to the U; and U, basis functions and illustrates the family of possible

shapes achievable, as in Fig. 5-3d. Overlaying the strokes onto the shape space is
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10 15 20 25 30

N, number of basis functions

Figure 5-3: a) The matrix M is populated with the curvature at each time step, ks, t].
Performing an SVD on M separates the time dynamics and the spatial dynamics of
the kinematics. U is a matrix of curvature basis functions. b) The first two basis
functions account for the most variance, Uy[s] and Us[s], and are illustrated here. c)
The dynamics associated with the first two basis functions are visualized by a stroke
in the shape space, a,[t| and a,[t]. d) Together, the first two curvature basis functions
resulting from the SVD, U, and U,, form a shape space to represent the achievable
shapes from some combination of those basis functions. e) The variance accounted for
by each basis function is calculated as Vi in (5.4). The first two basis functions are
responsible for over 60% of the variability, while the third (and higher) basis function
contributes far less energy than the each of the first two basis functions.
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a convenient method of visualizing the kinematics of the system, as we see through
several examples in Chapter 6. Fig. 5-3e shows the variance accounted for by including
additional basis functions. With only two basis functions, over 60% of the variability
is represented, while higher basis functions contribute significantly less to the overall
motion. The mean absolute error incurred by using SVD basis functions is illustrated
in Fig. 5-2b. Basis functions from the SVD outperform Fourier and polynomial basis
functions in representing flagellar curvature for any N. For large N, the difference
becomes negligible, but for N = 2, the error associated with SVD basis functions is
approximately half the error of Fourier basis functions.

Given a set of basis functions, we can project the motion of any system onto those
basis functions. This calculation is convenient when comparing the strokes of several
systems, as we require the strokes to be in the same shape space for a meaningful
comparison. If the curvature data for system 1 at one time step is a vector @ of
length S and the basis functions from system 2 are described by a subspace R, an
orthonormal basis of vectors S in length, then the projection of Q onto R is described

as

projp(@) = R(R*R)™'R*Q. (5.5)

The result of this operation is a vector of coefficients (one element for each basis
function) included in the subspace. Repeating this operation for each time step

results in the strokes of system 1 projected onto the basis functions of system 2.

5.2.1 Comparison to existing methods

The process of performing an SVD on a data matrix is related to other tools, such as
Proper Orthogonal Decomposition (POD) or Principal Component Analysis (PCA).
These methods are used to determine the principal components of a signal via or-
thogonal transformation [68, 84]. Empirical Orthogonal Functions (EOF) is another
closely related method, often used in geophysics to track scalar variables such as
temperature or pressure, in both space and time. Depending on the application, the

decomposition may be performed on mean-centered data or a data covariance matrix
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[12, 84]. For a kinematic decomposition of curvature, the mean of the curvature data
is significant. A non-zero mean curvature contributes to the overall shape through the
non-linear transformation between curvature and body shape, a relationship described
in Eq. (4.1). Mean-centering our data would result in a loss of useful information.

With a data covariance matrix, the matrix is square and an eigenvalue decompo-
sition factors the matrix. Recall that the SVD of a matrix yields M = UXZV*. The
eigenvalue decomposition of the covariance matrix from M is eig{MM7T) = UX2U*
while eig{MT M) = VE2V*. Together, both eigenvalue decompositions of the covari-
ance matrices M*M and M M* give identical results to the kinematic decomposition
(that is, the matrices U, X, and V'), though the SVD offers a more compact analysis,
as only one decomposition is needed to recover all three matrices [84]. Taking advan-
tage of “economic” SVDs, or SVDs that only compute the largest singular values and
their associated vectors, tremendously reduces the computational cost of this opera-
tion. In MATLAB, these efficient decompositions are accessed through svd(M,0) and
svds (M), respectively.! Best practices for implementing the kinematic decomposition
are detailed in Appendix A.

The application of decompositions to biological kinematic analysis is novel. The
closest antecedent is work by Stephens, et al. [139], who examined the shape of C.
elegans crawling on agar gel. The authors of this study used mean-centered curva-
tures and performed an eigenvalue decomposition on the covariance matrix with the
goal of representing kinematics in reduced dimensions. They focused on the four
“eigenworms,” or spatial basis functions, that result from the eigenvalue decomposi-
tion. These four functions account for 95% of the variance for crawling C. elegans.
Further, Stephens et al. considered the time dynamics of kinematics by examining the
probability density function of the amplitudes for the first two basis functions. For
a physical locomotion model, they related the time derivative of body curvature (the
“phase velocity” ) to the crawling speed through a Brownian motion model. The major

distinction in our work is through our analysis and process—we consider swimming

INote that Vi in (5.4), the variance account for by N basis functions, cannot be calculated if
only the largest singular values and their associated vectors are computed. Instead, singular values
can be compared to each other to gauge the relative importance of their basis function vectors.
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(rather than crawling) organisms, avoid mean-centering the curvature, apply an SVD
to the data directly, and are able to study the physics through the resistive force the-
ory model described in Chapter 2. Several studies utilize POD and PCA to perform
analysis on complex structures, such as the work by Bozkurttas et al. [15] where the
authors tracked approximately 280 points on a pectoral fin of a sunfish for 20 frames
and were able to reconstruct the motion using just five basis functions. Other studies
identify dominant frequencies within a parameterized gait. Gong et al. [45] employed
the two-dimensional Fast Fourier Transform (FFT) to examine the frequencies of
a wave surface comprised of joint angles along the snake robot’s body and identi-
fied the dominant temporal and spatial frequencies of a parameterized sidewinding
gait. Reducing the dimensionality of the model enables identification of a tunable
parameter used to successfully control the turning radius of the snake robot. Kine-
matic decomposition is conceptually similar to the idea in legged locomotion from
Full & Koditschek [43] of “templates,” simple, low-dimensional representations of
a locomoting system to enable easier modeling and optimization, though kinematic

decomposition finds the best “template” based on the motion of an existing system.

Kinematic decomposition, or the method of applying an SVD to a matrix describ-
ing kinematics in time, is a powerful and general method that can be applied to a
number of systems. In this thesis, we will apply kinematic decomposition to sperm,
eel, trout, and C. elegans. These methods are also straightforward to apply to sys-
tems with discrete bending, such as terrestrial locomotion like human walking, where
the columns of the data matrix are filled with the joint angles of the ankle, knee, hip,

shoulder, elbow, wrist, etc. rather than calculated curvature.

5.3 Visualization of sea urchin spermatozoa dy-

namics

Arbacia punctulata sperm are approximately 50um in length and swim at an average

speed of 200um /s in water or at a Reynolds number of approximately 1072, Therefore,
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if we can successfully represent the kinematics with just two parameters, the low
Reynolds number fluid dynamics models and visualization framework developed in
Part I are appropriate to apply here. Tracked midline data of swimming Arbacia
punctulata sperm were provided by J.S. Guasto from high speed (750 fps) microscopy
video. A still image is shown in Fig. 5-1a. These experimental methods are detailed

by Guasto et al. in [50].
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Figure 5-4: The constraint curvature functions for sea urchin (Arbacia punctulata)
sperm reveal two-fold rotational symmetries in the z, y, and rotational directions.
The empirical stroke (solid red line) is slightly broader than the maximum efficiency
stroke for z (dashed red line), but lies almost entirely within the zero contours of
x. The maximum efficiency stroke is just 17% more efficient than stroke observed in
situ.

Again, we approximate the flagella locally as a circular cylinder and use resistive
force theory to model the relative lateral and longitudinal forces acting on the swim-
mer [47]. The constraint curvature functions for the Arbacia punctulata sperm in the
z and y translational directions and @ rotational direction are illustrated in Fig. 5-4.
We can quickly learn about the system dynamics from these three plots. First, each
of the three directions possess two-fold rotational symmetry. Therefore, we can pre-
dict the net motion resulting from any two-fold rotational symmetric stroke centered
at (ai,az) = (0,0): this stroke would move the system in the positive z direction
because the x curvature function is evenly symmetric and encloses a non-zero net
volume. The y and # curvature functions possess odd rotational symmetry, so the net

volume enclosed by a stroke is zero and there is no net motion in the y or 8 directions.
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Figure 5-5: Considering the corresponding constraint curvature functions in Fig. 5-4,
we can predict the net motion that results from a variety of strokes for sea urchin
sperm. a) A centered, circular stroke encompasses non-zero net volume of the cur-
vature constraint functions (Fig. 5-4) in the z direction only, therefore this stroke
moves the system forward. b) Shifting the stroke along the a; axis increases turning
and c) shifting the stroke vertically along the a, axis increases motion in y and 6. d)
Increasing the amplitude of the centered stroke moves the sea urchin sperm farther
per stroke in the z direction.
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Considering perturbations from this basic stroke and the constraint curvature
functions in Fig. 5-4, we can extract information about how the system will behave
for a wide range of strokes. For simplicity, we will compare motions to a circular
stroke centered at the origin, illustrated in Fig. 5-5a. If this stroke is perturbed by
a positive offset along the a; axis (as in Fig. 5-5b)—we expect a slight reduction in
x motion, a slight increase in y, and a small, positive rotational net motion, as the
changes in the net motion of sea urchin sperm are reflected by the change in volume
enclosed by the stroke on the curvature functions in Fig. 5-4. If, instead, the stroke
is offset positively along the a, axis (as in Fig. 5-5¢), the net motion will be less in
T, negative in y, and slightly positive in §. We can glean from this analysis that
moving the stroke along the a, axis has an impact on both net rotation and vertical
displacement and moving the stroke along the a; axis has a larger impact on net
rotation than vertical displacement. Therefore, if we could control the stroke of a
sea urchin sperm and desired net rotation over each stroke, we would introduce a

constant offset to a;[t] to enclose more net volume in the 6 curvature function.

Now we consider the effect of changing the amplitude of our circular, centered
stroke (Fig. 5-5d). Increasing the amplitude of the stroke increases net motion in z
until the stroke crosses the zero contour. At that point, the net volume enclosed by
the stroke begins to decrease. Net motion in y and 6 remains at zero due to the odd

two-fold rotational symmetries in the y and 8 constraint curvature functions.

As in Chapters 2-4, we find the o, [t] that results in the maximum efficiency stroke
for the Uj[s] basis functions, using the efficiency definition described in §2.3.2. For the
first time, we can compare this stroke to an empirical stroke. The strokes overlaid onto
Fig. 5-4 are the observed stroke (projected onto the U;[s] and Us[s] basis functions)
and the optimal efficiency stroke. We find that the maximum efficiency stroke is
slightly more compact and just 17% more efficient than the stroke observed. The
observed stroke is slightly off-centered along the ay axis, signifying that some of the
energy the sea urchin sperm puts into this stroke results in net rotation. Net rotation
does not contribute to ‘useful work’ (the numerator in our translational efficiency

metric).
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5.4 Chemotaxing

During fertilization, a sperm must identify and locate an egg to succeed in transferring
genetic material. Sperm have the ability to sense chemical attractants released from
eggs, thereby initiating oriented behavioral movement towards the attractant source,
termed chemotazis. Chemotaxis and fertilization have both been well studied (e.g.,
[1, 44, 63, 75, 102, 162, 171]), however the relationship between the internal response
of the organism and locomotion is still not well understood. Motility of sperm has
been of interest in the fluid dynamics and biology literature for several decades [14,

17, 47, 49, 85, 144, 145).

When a cell encounters a chemoattractant plume, the attractant binds to a re-
ceptor on the cell surface initiating an intracellular transduction cascade involving
calcium (Ca'?) signaling that propagates throughout the flagella. As a result, dynein
motors in the flagella generate internal stresses, deforming the flagellum. The inter-
nal stresses are balanced by elastic restoring forces in the flagella and hydrodynamic
drag from the fluid. These stresses are indicative of the local flagellar curvature.
Changes in curvature lead to the organism’s net displacement and turning towards

the attractant gradient [2, 85, 125].

Recently, several studies have focused on the role of Ca'? during chemotaxis
in various organisms [28, 29, 51, 169]. Alvarez et al. [2] found that the curvature
of the sperm’s trajectory is modulated by the time rate of change of Ca™ within
the cell. Therefore, the gradient of attractant initiates intracellular signaling and
this leads to directed motion towards high concentrations of attractant. However,
the biomechanics in this process remains unclear: How do the flagella respond to
the intracellular signaling? How is this response related to the locomotion? These
questions are ultimately questions of kinematics and are answered using kinematic

decomposition.
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5.4.1 The mechanics of turning

By applying the kinematic decomposition to the Arbarcia puntulata data, we con-
veniently decouple the spatial and temporal characteristics of the kinematics and
can now visualize the time dynamics alone. We examine q;[t], the coefficients of
the basis functions. The amplitudes for the first few basis functions are periodic
and regular. They are well represented by a first-order Fourier series approximation,
ai[t] = aio + a; cos[t] + b;; sin[t]. These parameters (a;¢,a;; and bi1) control the

stroke offset and size, respectively.
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Figure 5-6: a) Curvature of the sperm’s path. Alaverez et al. [2] demonstrated that
path curvature and propagation of Ca*? along the flagella, a response to sensing
attractant, are correlated. b) The stroke offset shown is left-right offset along the
a; axis. When the sperm travels straight, towards the attractant, the stroke offset
is small, while a large offset results in turning, or higher path curvature. c) Stroke
amplitude is calculated as the widest dimension of the stroke over one tail beat. As
the sperm senses a gradient of attractant, the stroke grows in size and it moves more
quickly toward the higher concentration of attractant. d) Beat frequency clearly
demonstrates the onset of chemotaxis. Once the sperm senses the gradient of attrac-
tant, beat frequency increases by about 30%. These trends are consistent with what
is observed in the curvature functions: to turn, the stroke must be offset and large.
To move forward, the stroke need not be large, but should be centered.

Fig. 5-6 illustrates the stroke parameters with reference to the trajectory of the
sea urchin sperm. Left-right stroke offset is calculated as a; o in Fig. 5-6b and stroke

amplitude (Fig. 5-6¢) is measured as the widest dimension of the stroke over one tail
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beat. As predicted from the curvature functions in Fig. 5-4 and model strokes in Fig.5-
5, the greater the stroke offset, the more tightly the sea urchin sperm turns. This
observation offers a biomechanical explanation to Alvarez et al. [2] who demonstrated
that path curvature and rate of Ca*? were correlated. As the sperm senses a gradient
of attractant, Ca™ propagates along the flagella, causing it to execute gaits that
are off-centered and larger in our shape space. Off-centered strokes, as discussed
previously, lead to turning toward the attractant, and thus chemotaxis.

The stroke amplitude shows that gaits are smaller going into a turn and grow as
the sea urchin sperm’s motion is directed toward the attractant. This corresponds
nicely to chemotaxis and moving at a higher speed when the sperm faces the desired
direction. Examining the tail beat frequency in Fig. 5-6d gives us a clear indication
of the onset of chemotaxis, which may also be verified by measuring Ca*? along the
flagella, a measurement not gathered simultaneously with high-speed images of the
flagella due to experimental limitations. While chemotaxing, the beat frequency is

approximately 30% higher than when non-chemotaxing.

5.4.2 Classifying chemotaxis

Data for chemotaxing and non-chemotaxing sea urchin (Arbacia punctulata) sperm
was gathered via high speed microscopy by J.S. Guasto [50]. To capture chemotaxing,
the egg-derived attractant Resact was introduced into the top of a micro-channel and
allowed to diffuse across the channel. The right panel of Fig. 5-7 displays a typical
chemotaxing path: the sperm initially swims in a circular trajectory and when a
chemical gradient is identified, the sperm moves toward the higher concentration of
attractant.?

We first separate the flagellar curvature data into two sets: chemotaxing and non-
chemotaxing. The primary and secondary spatial basis functions resulting from the
kinematic decomposition differ slightly between chemotaxing and non-chemotaxing,

as shown by the red and green curves in Fig. 5-7, while the third basis function shows

2Turning is partially due to the sperm’s proximity to the glass slide during the experiment, as
boundaries are known to increase the tendency to turn in low Reynolds number locomotion [38].
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Figure 5-7: The first, second, and third basis functions are calculated from all chemo-
taxing data (denoted in red), all non-chemotaxing data (denoted in green), and a
random sample of three tail beats (denoted in black). By comparing the sample basis
functions to the chemotaxing and non-chemotaxing basis functions through metrics
M¢ and My, we classify the sample as chemotaxing or non-chemotaxing.

remarkably more variation for the chemotaxing case when compared to the non-
chemotaxing case. We develop a metric to classify if a sperm is chemotaxing based
solely on the kinematics, without any information of the environment. First, we
calculate the basis functions for three periods of curvature data, selected randomly
along the trajectory, as indicated in Fig. 5-7. We then compare the sample basis
functions (U;) to the basis functions for chemotaxing (Uc;) and the basis functions

for non-chemotaxing (Uy;). Using metrics based on the inner products of the first

three basis functions, we quantify this comparison,

Mc = |(Uc1, 0h) - (Uca, Us) - (Ucs, Us)| and 5

My = |<UN,17[}1> - (UN,2:[AJ2) . (UN,3,03>|>

so that M and My vary from 0 (basis functions are orthogonal) to 1 (basis functions
are collinear). For a given set of sample basis functions l;’i, if M > My, the
sample is classified as chemotaxing and if My < My, the sample is classified as

non-chemotaxing. We apply these metrics to many random samples, illustrated in
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Fig. 5-8a, and find a misclassification rate of just 4.2% for our data, meaning that
just 4.2% of the samples were classified as chemotaxing when their true state was
non-chemotaxing, or vice versa. Including an optimal spatial linear weight so that
the basis function metric is weighted toward the head, we obtain a misclassification

rate of just 2.5% (Fig. 5-8b).
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Figure 5-8: a) We compare sample basis function calculated from the flagellar kine-
matics of just three tail beats to the basis functions found from all chemotaxing (red)
and non-chemotaxing (green) data. Using inner product based metrics, M and
My, we classify the sample as chemotaxing if Mc > My and non-chemotaxing if
My > Mc. With these metrics, our misclassification rate is just 4.2%. b) Including
an optimal linear spatial weighting reduces the misclassification rate to just 2.5%.

In this section, we applied the kinematic decomposition to solve two problems.
First, we described the sea urchin sperm’s motion using basis functions from kinematic

decomposition and projected the stroke during a single trajectory onto that basis
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function set. Parameterizing and examining the stroke and corresponding curvature
functions allowed us to, for the first time, visualize and rationalize the kinematics
during chemotaxis and connect flagellar kinematics and the sensory system of the sea
urchin sperm. Second, we compared the basis functions for chemotaxing and non-
chemotaxing sperm to successfully create a classification metric based solely on the

kinematics.

5.5 Three dimensional curves

The methods presented here are generalizable to three dimensional curves, like those
formed by sidewinding snakes. When describing a curve in three dimensions, torsion,
7, in addition to curvature, x, must be considered. Torsion describes the twisting
component of a curve in three dimensions. These quantities are calculated using the

Frenet-Serret equations.

dT

2 — kN

ds &

N =—-xkT+ 7B (5.7)
ds

dB

2= — 4rN

s +7

where T is the tangent unit vector, N is the normal unit vector, and B is the binormal
unit vector, calculated as B = T x N. The addition of torsion may be handled in
multiple ways, inspired by those methods used in other fields like turbulence in fluid
dynamics. One method is to create two matrices, M, and M., one for curvature and
another for torsion. Each of these is treated separately in the kinematic decomposition
and the three-dimensional curve is reconstructed by combining the basis functions and
amplitudes from each. Here we can treat the torsion and curvature separately and
independently choose the number of basis functions needed to accurately represent the
system. This is advantageous if, for example, most of the torsion can be accounted
for by a single basis function while three basis functions are needed to represent

curvature.
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The second method combines the data into one matrix, M, , by creating one
column for each time step, with the curvature vector stacked on top of the torsion
vector. The SVD of M, , results in basis functions that must be split before the shape
resulting from those basis functions can be calculated. This approach more closely ties
together the torsion and curvature, but prevents us from selecting different degrees

of freedom for each.

5.6 A powerful kinematic tool

The methods of applying kinematic decomposition via an SVD to a matrix of curva-
tures for each time step are powerful tools for a range of analyses. From the decom-
position, we extract optimal spatial basis functions and their associated strokes in the
shape space. The decomposition separates the kinematics into spatial and temporal
components. Further, reducing the dimension of the kinematics lends itself to easier
visualizations of the system and its dynamics, as in Fig. 5-3. With these visualiza-
tions, we can calculate optimal strokes (Fig. 5-4), understand the gait modulations
that lead to turning (Fig. 5-6), and classify whether or not an individual is chemotax-
ing (Fig. 5-8). Our kinematic decomposition is robust, leading to meaningful results
even with missing data in time or coarse spatial resolution along the body. In the next
chapter, we continue to explore the value of these kinematic methods by quickly and
effectively comparing the motion of Arbacia punctulata to other species. We expand
to study the the effect of viscoelasticity on swimming C. elegans and gaits of high

Reynolds number swimmers (trout and eel).
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Chapter 6

Applications of the kinematic

decomposition

In this chapter, we demonstrate the utility of the kinematic decomposition developed
in Chapter 5. We begin by applying our decomposition methods to compare the
kinematics for the sperm of several sea urchin species, namely Arbacia punctulata,
Lytechinus variegatus, Lycaon pictus, and Strongylocentrotus purpuratus. We then
expand our analysis to include the sperm of two very different organisms, Cliona
intestinalis, a sea squirt and one of the closest invertebrate relatives to vertebrates,
and a bull, an internal fertilizer and a vertebrate. We then move to examine C.
elegans, an organism that swims at a slightly higher Reynolds number than sea urchin
sperm in water. Here we gauge the effect of environment on swimming gaits by
studying C. elegans at a range of viscosities, in water and in a viscoelastic fluid.
This study is followed by another of gait change-namely, the trout’s gait in uniform
flow compared to the gaits that result when swimming (both actively and passively)
in a vortex stream. Lastly, we apply our kinematic decomposition tools to find the
differences between steady and accelerating gaits in eels and compare these results to
previous research. These examples demonstrate that the kinematic decomposition is
robust, easy to apply, and leads to effective visualization and a wealth of information
about the system. We summarize the characteristics of the organisms studied in this

chapter in Table 6.1.
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| Organism | Length | Speed | Re |

Arbacia punctulata sperm | 46pm | 207um/s 1.4-1072
L. variegatus sperm 50pm | 250pum/s 1.8-1072
L. pictus sperm 50pm | 248um/s 1.8-1072
S. purpuratus sperm 50um | 192um/s 1.4-1072
Cliona intestinalis sperm | 50pm | 315um/s 2.2-1072
Bull sperm 56pm | 117um/s 9.4-1073
C. elegans (buffer) 103m |3.5-107*m/s | 3.4-107T
C. elegans (viscoelastic) | lmm | 25-10"*m/s | 510~
Trout 10cm 0.5m/s 5-10%
Eel 20cm | lm/s 2-10°

Table 6.1: Organisms included the kinematic curvature decomposition analysis.
Length is the body length of the organism, speed is the translational speed and
Re is the Reynolds number.

6.1 Interspecies comparison in sperm

Comparing kinematics between species is inherently difficult. In this section, we
will exploit the tools developed in Chapter 5 to effectively analyze and compare the
kinematics of swimming in water for six types of sperm: Arbacia punctulata, Lytechi-
nus variegatus, Lycaon pictus, Strongylocentrotus purpuratus (all sea urchins), Ciona
intestinalis, and bull. Sperm are unicellular and therefore have extremely simple sen-
sory, control and biomechanical systems. Understanding how such simple organisms
work is an important first step to understanding larger, more complex systems. A
comparison of the body length, speed and Reynolds numbers for these organisms
is summarized in Table 6.1. As illustrated in Fig. 6-1, we investigate whether the
kinematics of Ciona intestinalis sperm are more representative of the genetically sim-
ilar bull sperm (and therefore dominated by nature), the environmentally similar sea

urchins (and therefore dominated by nurture), or some combination of the two.

For all of these samples (excluding the bull sperm), data was again gathered by J.S.
Guasto via high speed microscopy while swimming in water in a micro-channel [48].
The bull sperm video is supplementary material for a paper by Friedrich et al. [41].
All videos were digitized using MATLAB and body curvature was calculated and
filtered from (z,y) data of the head and flagella.
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environmentally similar genetically similar

Figure 6-1: Cliona intestinalis is an external fertilizer, like the sea urchins pictured
on the left, but is genetically more similar to the bull on the right.

The kinematic decomposition was applied to each set of data separately, so that
basis functions U;[s| were found for each species independently. The primary and sec-
ondary basis functions are illustrated in Fig. 6-2 and show several intriguing results.
First, the basis functions for the sea urchin sperm are remarkably similar, indicating
that the flagellar mechanics among sea urchin sperm are extremely consistent and
perhaps fundamental to these systems. The bull sperm, the only internal fertilizer of
the six organisms, is noticeably distinct from the other basis functions. As an internal
fertilizer, bull sperm evolved to use swimming strategies effective in viscous biological
fluids, a strikingly distinct environment from open water. Fig. 6-3 shows vy, the
fraction of variance account for by N basis functions (5.4) for all six organisms. With
just two basis functions, the basis functions account for between 50% and 70% of the

variance of motion.

Ciona intestinalis offers interesting insight to the connection between sea urchin

sperm and bull sperm. Ciona intestinalis, a sea squirt, is genetically very similar to
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Figure 6-2: The first, second, and third basis functions for the sperm of four sea
urchins (Arbacia punctulata, L. pictus, L. variegatus and S. purputus), Ciona intesti-
nalis, and bull. The first and second basis functions, U; and U,, for all four sea
urchins and Ciona intestinalis-all external fertilizers—can successfully be represented
by a single set of basis functions, as shown in Fig. 6-4a.
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Figure 6-3: The fraction of variability accounted for by N basis functions (Vy) shows
that two basis functions covers a majority of the variability for all organisms (Arbacia
punctulata, L. pictus, L. variegatus and S. purputus, Ciona intestinalis, and bull
sperm).
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vertebrates. Though Ciona intestinalis has far fewer genes than vertebrates, those
gene families it does have are very closely matched to vertebrate gene families [33].
However, Ciona intestinalis externally fertilizes, like the sea urchin sperm. We see
from Fig. 6-2 that its basis functions are notably close to (and highly correlated with)
the sea urchin basis functions. Therefore, the kinematics of sperm appear to be a

result of the environment through which it swims, rather than its genetic makeup.
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Figure 6-4: a) We find a set of basis functions for multiple organisms by combining the
data for all sea urchins (Arbacia punctulata, L. pictus, L. variegatus and S. purputus),
and Ciona intestinalis. b) A majority of the variance of motion for five different
organisms is accounted for by just two basis functions. c¢) With a single set of basis
functions, we can compare the strokes for all five organisms. All four sea urchin
strokes and the stroke for Ciona are representative of each other. Most strokes are
centered around the peak of the x constraint curvature function in Fig. 6-5 and within
the zero contours.

The similarity between all four sea urchin basis functions and the Ciona intestinalis
basis functions (Fig. 6-2) suggests that by combining the curvature data for these five
organisms, a single set of basis functions may represent the motion for all five organ-

isms. Not surprisingly, from Fig. 6-4a, we see that the basis functions that result from
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combining the curvature data are similar to those in Fig. 6-2 for Arbacia punctulata
alone. Thus, we find that the basis functions from the combined data form constraint
curvature functions (Fig. 6-5) containing two-fold rotational symmetry and differ only
slightly from those in Fig. 5-4 for Arbacia punctulata. As such, the optimal efficiency
stroke is again compact and centered around the origin of the shape space. With a
single set of basis functions, two basis functions account for approximately 55% of

the variance (Fig. 6-4b).

max efficiency *
stroke _a
40

Figure 6-5: Constraint curvature functions for a single set of basis functions, created
by combining the curvature data for the sea urchin sperm and Ciona intestinalis
sperm. Two-fold rotational symmetry is observed in all three graphs, with odd sym-
metry in the y and 6 fields. The observed stroke and maximum efficiency stroke
are both centered in the shape space and stay within the zero count ours of the z
curvature function, though the maximum efficiency stroke is more compact.

Projecting the motion of each of the five organisms onto this set of basis functions
allows us to easily compare strokes. From Fig. 6-4c, we see that the strokes for the
four types of sea urchin sperm and Ciona intestinalis are comparable in size and
shape, though S. purpuratus is slightly off-centered from the others.

Lastly, we create constraint curvature functions for the bull sperm from its primary
and secondary basis functions. From Fig. 6-6, the two-fold symmetry is again readily
apparent in all three subfigures. The maximum efficiency stroke is larger than the
observed stroke in this instance, though the data for the bull sperm was more limited
in both temporal and spatial resolution when compared to the other data sets, which

may account for the discrepancy.
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Figure 6-6: Constraint curvature functions for bull sperm also exhibits the two-fold
rotational symmetry present in the previous curvature functions. For the bull sperm,
the maximum efficiency stroke is larger than the observed stroke.

6.2 The effect of viscoelasticity on C. elegans

Caenorhabditis elegans is a nematode approximately 1 mm in length that exhibits
highly periodic undulatory swimming behavior. C. elegans is a model organism with
only 302 neurons and 95 muscle cells lining its dorsal and ventral sides [165]. For lo-
comotion, approximately 200 neurons are involved, about 50 of which are responsible
for undulations [26]. Studies on C. elegans cover a wide range of topics, including
the relationship between the nervous system and kinematics [22, 74, 82, 111, 112],
determining the biomechanical properties (Young’s modulus and tissue viscosity) of
the nematode [140, 141, 142] and the influence of many environmental changes on
kinematics, including movement through saturated soil [69, 70], viscoelastic media
9, 136], viscous fluids [82, 136], agar gel [116], wet surfaces [138], and lattice struc-
tures [96]. A majority of these studies use wavelength, frequency, wave speed and
other parameters as kinematic descriptions of the gait. Krajacic et al. [83] developed
a method of describing gaits with 18 kinematic and biomechanical features to compare
different mutations of C. elegans. Padmanabhan et al. [116] used piecewise harmonic
curvature with six parameters to describe the shape of C. elegans and its path as it
crawls on agar, with excellent agreement. Stephens et al. [139] represented the kine-

matics of a crawling C. elegans with an eigenvalue decomposition of a mean-centered
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covariance matrix.

Our kinematic decomposition is distinct from these methods in that our analysis
extracts the spatial basis functions from the original, rather than the mean-centered
curvature, and we gather significant temporal information from a single decomposi-
tion. Taking the mean-centered curvature fails to account for any curvature bias the
system may have, such as in the case of a turning C. elegans when the body main-
tains curvature throughout the turn. Further, our analysis requires as few as two
parameters to describe the kinematics at each time step and allows straightforward
incorporation into our swimming model using resistive force theory.

Here we apply kinematic decomposition methods to address the role of viscosity
in kinematics and whether or not the gait in viscoelastic fluid versus a water (buffer)
solution are unique. Pierce-Shimomura et al. [119] found that the swimming gait
and crawling gaits for C. elegans were fundamentally distinct and described the gaits
as “C-shaped” and “S-shaped,” respectively, suggesting that the choice of gait was
determined by the animal’s sensory response to the environment. The motions were
compared through an examination of the amplitude and frequency of curvature at
different points along the body.

Conversely, Berri et al. [9] found that C. elegans uses a single gait and performs a
continuous modulation according to the environmental properties. Their analysis was
based on measures of beat frequency, and the wavelength and amplitude of curvature.
Similarly, Shen et al. [136] compared kinematics in viscoelastic media and a buffer
solution and discovered that elasticity leads to slower propulsion due to the enhanced
resistance to fluid flow. Also, the beat frequency and wave speed of the traveling
wave along the body decrease with increasing viscoelastic effects, suggesting that
viscoelasticity affects the speed of motion rather than the swimming kinematics (the
shape of the stroke).

The kinematic decomposition allows us to visualize whether or not distinct gaits
are observed in different environments. If the gaits are the same, the basis functions
resulting from each environment and the corresponding strokes in the shape space

will be similar, as we observed with the sea urchin sperm and Ciona intestinalis in

108



Fig. 6-4. Rather than being forced to select a few points along the body to track
in time or summarizing the kinematics with limited parameters like amplitude and

wavelength, we are able to completely visualize the kinematics during locomotion.

a basis function 1 basis function 2

head tail head tail

high
viscosity

Figure 6-7: a) The basis functions for all viscosity levels are overlaid, with the mean
(over all of the individuals at that viscosity level) shown by a solid colored line,
and two standard errors above and below the mean denoted by the gray shaded
regions. There is excellent consistency over both basis functions, signifying that
the fundamental kinematics for C. elegans is the same for swimming in a range of
viscosities. The data ranges from low viscosity (30ppm in blue) to high viscosity
(3000ppm in yellow). b) The strokes for the eight levels of viscosity are projected
onto a single set of basis functions for comparison. While the lowest viscosity strokes
(30ppm and 100ppm) are slightly larger than the higher viscosity strokes, no distinct
stroke pattern emerges as a function of viscosity level. The shape space for these
basis functions is shown in the background.

We begin our analysis with curvature data provided by Shen and Arratia [137]:
eight sets of data for C. elegans in different viscosities (30ppm, 100ppm, 300ppm,
500ppm, 1000ppm, 1500ppm, 2000ppm, and 3000ppm of carboxymethyl cellulose
where salt ions in the buffer solution eliminate viscoelastic effects) and two sets of

data to examine viscoelasticity, one for C. elegans swimming in water and one for C.
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elegans swimming in a viscoelastic fluid (3000 ppm of carboxymethyl cellulose). For
each environmental condition, data for 10-25 individuals is included. Data collection

details can be found in [136].

Examining the spatial basis functions in Fig. 6-7a for swimming at eight distinct
viscosities reveals that the fundamental kinematics across all viscosity levels are con-
sistent. For both the first and second basis functions, the mean basis functions (over
all individuals at that viscosity levels, denoted by a solid line) are similar and the gray
shaded regions, which represent two standard errors above and below the mean basis
functions, almost overlap entirely. The motion at each viscosity level is projected
onto a single set of basis functions and these strokes are shown in Fig. 6-7b, over the
shape space of body shapes achievable by the single set of basis functions. While the
lowest viscosity strokes (30ppm and 100ppm) are slightly larger than higher viscosity
strokes, there is no clear pattern that suggests distinct gaits are executed based on
viscosity level. The larger strokes correspond to executing more highly curved shapes

while swimming, as reflected in the shape space shown in the background of Fig. 6-7b.

Performing a kinematic decomposition on the water (buffer) versus viscoelastic
data sets results in the basis functions in Fig. 6-8. Most noticeably, the basis functions
for motion in the buffer solution are much more consistent across the ten individuals
than the basis functions found for swimming in a viscoelastic media. However, the
means of each basis function set (denoted by the black lines in Fig. 6-8) are similar,
though the primary basis function for motion in buffer solution corresponds to the
secondary basis function in viscoelastic media and vice versa. This swapping of basis
functions is not physically significant, as the variance plots in Fig. 6-9a reveals that
the first two functions of both basis functions sets account for approximately the
same amount of variance (~35%), so that the basis functions are interchangeable.
The shaded regions of Fig. 6-8 show two standard errors above and below the mean.
The second row of Fig. 6-9 shows that the stroke amplitudes in the shape space are
comparable for each, though the strokes in the viscoelastic solution are noisier. Our
findings here are in agreement with Berri ef al. and Shen et al., who indicated that

changing the environmental properties does not result in a distinct gait change, as
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Figure 6-8: The top row shows the first and second basis functions for C. elegans
swimming in a buffer solution (water). The solid black line is the mean of the basis
functions for the ten individuals and the shaded gray regions are two standard errors
above and below the mean. Comparing these basis functions to those found for
swimming in a viscoelastic media (bottom row) shows that the motion in the buffer
solution is much more consistent, but the mean basis functions in each environment
are similar, when comparing the primary basis function of one system to the secondary
basis function of another.
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previously suggested in [119]. Instead, moving from a buffer solution to a viscoelastic
media affects the beat frequency. For our data, the time for one beat is 23% longer in
viscoelastic media. The similar basis functions resulting from both cases also agrees
with previous studies where the authors found no significant change in wavelength
9, 136].

Our approach greatly simplifies the analysis. Rather than considering many pa-
rameters, we are able to separate the spatial and temporal components of kinematics
and optimally represent the motion in a low-dimensional manner. We determined
that the fundamental swimming kinematics of C. elegans is the same across many
levels of viscosity. Additionally, we found that viscoelasticity is responsible for more
variation in gaits from individual to individual. This suggests that while C. elegans
may use a single control mechanism and gait for motion in any environment, vis-
coelasticity introduces larger perturbations to that base gait. Our conclusion is in
agreement with results reported by Berri et al. [9] that outside forces play a small
role in locomotion.

The more meaningful result of this study lies in the basic process we have intro-
duced to model C. elegans locomotion and its potential impact. Recent advancements
enable real-time targeting of single motor neurons via laser to manipulate C. ele-
gans behavior (i.e., to move forward or backwards) [86] and interneurons to elucidate
chemotaxing and the neural circuit function [52, 80]. These studies enable identifi-
cation of the coupling behavior of excitatory and inhibitory motor neurons that give
rise to locomotion. Incorporating our kinematic decomposition into these systems
would enhance the understanding and control of the C. elegans neural system and
motor circuit. Together, this research is an important breakthrough in neurobiology

that will lead to improved understanding of more complex systems, like humans.

6.3 The Karman gait in rainbow trout

Fish are subjected to complex three-dimensional flows in nature. The relationship

between perturbations to the free stream and a fish’s behavior has been studied
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Figure 6-9: a) The fraction of variance accounted for by each basis function shows that
the first two basis functions encompass approximately the same energy in both water
and viscoelastic media. b) Comparing the strokes in both environments reveals that
while they are approximately the same amplitude, the strokes through viscoelastic
media are more irregular.
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for many fluid processes, including the influence of turbulence [117, 163], fish in
schools (which exploit regions of reduced flows and vortex capture) [40, 163, 164],
and perturbations due to an obstacle in the flow [16, 64, 159]. These studies consider
the physiological costs, along with the kinematic and sensory responses of the fish
when subjected to altered flows [89].

One commonly studied flow perturbation is flow around a cylinder. If the Reynolds
number is between 300 and 150,000, the flow behind the cylinder is unsteady and
generates a Karman vortex street, or regularly shed and alternating vortices. Rainbow
trout have been observed to synchronize their body motion to the vortex shedding
frequency [90]. This motion, termed the “Kérmdn gait,” is recognized by larger body
amplitudes in the lateral direction and lower beat frequencies when compared to
motion in free stream flow of comparable velocity. Liao et al. [87, 88] showed that
steady swimming kinematics and the Kdrmén gait are distinct. During the Kérméan
gait, a trout weaves between vortices and the lateral (mostly passive) displacement is

dependent on the lateral component of flow resulting from the previous vortex [90].
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Figure 6-10: The first three basis functions for three gaits in trout (steady, Kérman,
and passive in a vortex street) reveal the similarities between Kdrman and passive
gaits. The following three basis functions show excellent agreement between all three

motions and exhibit higher spatial frequencies than observed in the first three basis
functions.

From videos, we extract midline data of trout in three states: actively swimming in

steady flow, actively swimming in a Kdrman vortex street, and passively swimming
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(dead) in a vortex street [87]. We apply our kinematic decomposition methods to
distinguish the difference in gaits and conjecture as to whether or not the Kdarman
gait is primarily passive. Fig. 6-10 illustrates the first six basis functions for each of
the three gaits (steady, Kérmén, and passive). Basis functions 1-3 (from the figure)
indicate that the Karmén and passive basis functions are highly correlated, while the
steady basis functions are approximately the same wavelength but differ in shape.
Basis functions 4-6 show an excellent match between all three sets of basis functions,
and show increasing spatial frequencies (shorter wavelengths). The variance captured
by these first six basis functions is over 98%, as illustrated in Fig. 6-11a. The first
two basis functions are responsible for over 70% of the variance. Fig. 6-11b shows the
correlation (a measure of the similarity between two basis functions) for each pair of
basis functions and confirms that the Kdrméan and passive states are highly correlated
for the first several basis functions. The two active motions, steady and Karman, have
the highest correlation for basis functions 4-7. The consistency of the higher basis
functions suggests that the motion related to these basis functions is inherent to
the structure of the trout, as they are present in the dead trout that responds only
passively to the flow. Examining the time dynamics of the steady stroke reveals lower
beat frequencies for the Kdrman and passive gaits when compared to the steady gait,

as previously reported by Liao [87].

Because the Kérman and passive gaits share basis functions, we can examine their
strokes in a single shape space. Fig. 6-11c illustrates that the amplitude of the passive
stroke is larger than the Kérmén stroke for all basis functions. Higher amplitudes
result in more highly curved shapes executed throughout the passive gait. These
results suggest that the muscles activated while in a Karman vortex street act to
stiffen the body and reduce the lateral motion that would be present for the dead fish

n a vortex street.

Liao [87] directly measured the muscle activity through electromyography by surgi-
cally implanting electrodes into six muscles. He observed that there was substantially
less muscle activity during the Kdrmén gait than the steady gait and conjectured that

this muscle activity was primarily for stability and control. While directly measur-
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ing the muscle activity and flow field provide a more detailed view, our approach
leads to similar results—that is, that the Kdrmsn gait is more similar to the passive
gait but with more constrained motions, likely for stability and control—and is an
excellent initial step to investigate this system. In general, the results from the kine-
matic decomposition may guide the next steps of research so that invasive or costly

measurements are performed only when necessary.
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Figure 6-11: a) The first two basis function account for over 70% of the motion and
the six basis function in Fig. 6-10 encompass at least 98% of the motion. b) The
correlation between basis functions measure how similar any two basis functions are
to each other. The Kédrmén and passive gaits are highly correlated for the first several
basis functions, indicating similarities in those gaits, though the steady and Kérman
gaits (the two “active” gaits) outperform other combinations for basis functions 4,
5, and 6. c) The basis function amplitudes for the passive gait are larger than the
Kérmén gait amplitudes, revealing that the shape changes in the passive are more
highly curved than in the Kdarmén gait.

While the details of how the trout interacts with the vortices requires a simultane-

ous study of flow visualization and the kinematics, we are able to quickly understand
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and compare three different gaits using our kinematic decomposition. The basis func-
tions (Fig. 6-10) and their pairwise correlation (Fig. 6-11b) give an informative static
comparison to the motions observed for each gait, without requiring a synchroniza-
tion of video or flow data. In the next section, we examine another high Reynolds

number swimming animal, the eel, to compare accelerating and steady motions.

6.4 Steady versus accelerating gaits in eels

While eels undulate a larger portion of their body than other fishes, they maintain
only small lateral motions in their head [151]. These kinematics are poorly described
by predetermined functions like sines and cosines in the curvature space and therefore
are an excellent candidate for kinematic decomposition. In this section we separate
the effects of acceleration from the steady motion to classify when an eel (Anguilla
rostrata) is accelerating.

Previously, Tytell [149] examined both the kinematics and the hydrodynamics, or
the wakes produced by accelerating and steady-moving eels, to determine the conse-
quences of accelerating. He found that during acceleration, eels primarily change their
tail-tip velocity. In steady swimming, the Strouhal number remains fairly constant
(St = 0.32) and the body wave speed is the best kinematic predictor of velocity. The
Strouhal number is the ratio of tail velocity to swimming velocity, St = fA/u, where
f is the tail beat frequency, A is the tail amplitude, and v is the swimming speed.
Tytell noted that changes in the axial fluid momentum in the wake were indicative
of gait changes between steady and accelerating strokes. Further, lateral jets in the
wake have more axial momentum during acceleration. An increase in momentum is
expected for an accelerating eel because the overall momentum must change, unlike
the steady swimming case, where the fish’s momentum remains constant [149, 151].

The primary kinematic parameters used in the analysis in [149] were tail ampli-
tude, head amplitude, average tail velocity, body wave speed, and body wavelength.
Tail beat frequency, body wavelength, and body wave speed increased significantly

with increasing wave speed for steady swimming. During acceleration, an increase
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in body amplitude was observed, most noticeably at the head. Deviation of the tail
velocity from steady swimming was the best predictor of acceleration.

Tytell determined that the kinematic parameters most indicative of swimming
speed and acceleration were body wave speed and tail-tip velocity. Eels vary wave
speed during steady swimming to maintain a constant Strouhal number (presumably
for efficiency), while during acceleration, they vary their tail tip velocity to increase
or decrease thrust [149, 150]. For more details of the experimental materials and

methods, see [149].
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Figure 6-12: The mean a) primary and b) secondary basis functions found for steady
(solid line) and accelerating (dashed line) strokes for six eels are highly correlated.
The gray shaded regions show two standard errors above and below the mean and
almost completely overlap for the two sets of basis functions. c¢) Aggregating all of
the data to get a single set of basis functions, we achieve approximately 78% of the
variance with just two basis functions.

In this section, we perform our kinematic decomposition on the data of swimming
eels in [149] to verify our method as a way to examine kinematic changes and explore
the distinction between steady and accelerating gaits. Fig. 6-12a and b illustrate
the primary and secondary basis functions for the body curvature during all steady
motions (solid line) and accelerating motions (dashed line) for six eels. The shaded
regions around the basis functions are two standard errors above and below the mean
basis functions. These regions almost entirely overlap, indicating that the basis func-
tions for the two gaits are similar. We combine the steady and accelerating curvature
data results in a single set of basis functions, which describe approximately 78% of

the variance with just the primary and secondary basis functions (Fig. 6-12¢). Of the
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animals studied in this thesis, this is highest variation accounted for with only two

basis functions.
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Figure 6-13: a) In all cases, the amplitude of the second basis function, or the height
of the stroke in the shape space, is greater when accelerating. b) Examining the
characteristic amplitudes of the strokes in the shape space reveals that accelerating
gaits are larger than steady strokes for an individual eel for five of the six eels. A
larger stroke in the shape space corresponds to a shape with higher curvature, and
higher tail amplitude, as previously reported by Tytell [149].

Using a single set of basis functions allows us to create a single shape space of
body shapes (Fig. 6-13a) and to overlay the strokes onto this shape space for the
steady and accelerating gaits. Fig. 6-13 reveals that the strokes for steady motion
are in general smaller in amplitude than their accelerating counterparts. For the
eel, larger amplitude strokes correspond to higher curved shapes, as shown in the
shape space. The conclusions drawn in the previous study [149] are in agreement
with the results from the kinematic decomposition. The larger strokes in the shape
space for accelerating motions have higher amplitude motions and give rise to larger
deviation in tail velocity, as the tail must move further per stroke. Examining the
tail tip velocity and the head motion can be considered more generally here as the
speed at which the eel moves through the shape space, or d; and ds and the stroke
size. Though we do not have a reconstruction equation for this system, we know that
velocity is directly scales with the shape velocity, as discussed in Chapter 2 in Eq.

(2.8). In the case where both drag and inertia are important, we expect this general
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relationship to hold.

Applying the kinematic decomposition allowed us to verify our methods using
known results and uncover new distinctions and phenomena in other systems. By
studying the kinematic decompositions for four sea urchin species, Ciona intestinalis,
and bull, we concluded that the environment is most indicative of similar kinematics
rather than genetics. While Ciona intestinalis and bulls are genetically more sim-
ilar (than Ciona intestinalis is to any of the sea urchins), the kinematics of Ciona
intestinalis and the sea urchins are indistinguishable. For C. elegans, we used the
kinematic decomposition to demonstrate that the gaits in a buffer solution (water),
at several viscosity levels and a viscoelastic media are actually the same, and the beat
frequency is responsible for the change in speed. The viscoelasticity also led to more
variability from individual to individual. In trout, we found that the Kdrm&n basis
functions match the passive basis functions in a vortex stream, though the stroke is
much smaller, signifying that the muscles engaged in trout during the Kdrman gait
minimize the curvature along the body, likely to stabilize the fish. Lastly, we showed
that to accelerate, eels execute higher amplitude, more curved motions, but employ

the same basis functions used for steady swimming.
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Chapter 7

Conclusion

The work presented in this thesis advances the current standard for visualizing and
understanding locomoting systems, for the benefit of both robotic systems (through
improved motion planning and modeling) and biological systems (by creating an
effective method of analyzing and comparing systems). We developed methods of
examining the dynamics and kinematics of a swimming system and applied these
results to both idealized systems and to organisms with Reynolds numbers that span
seven orders of magnitudes and vary greatly in terms of environment, genetics and

complexity.

7.1 Visualization of low Reynolds number swim-
ming dynamics

In Chapter 2, we developed a geometric mechanics-based visualization framework
using the three-link swimmer at low Reynolds number. In this framework, we took
advantage of the kinematic nature of motion at low Reynolds number (that the ex-
ternal velocity can be exactly described by the system’s shape changes) and resistive
force theory to express the equations of motion in the form of a kinematic recon-
struction equation. The reconstruction equation (2.8) contains the local connection

matrix, a Jacobian-like matrix that contains all of the system dynamics, from which
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we produce three constraint curvature function plots (Fig. 3-2) that allow us to com-
pletely visualize all of the dynamics inherent to the system. The volume enclosed by
any stroke on the curvature functions is an approximation of the net displacement in
z, y, and @ (the rotational direction) a result that employs Stokes’ theorem. With
this result, we can estimate the net displacement of any stroke in the shape space
and identify globally optimal strokes, in terms of maximum displacement per stroke
and maximum efficiency per stroke (Fig. 2-5). Using minimum perturbation coordi-
nates ensures that the net displacement approximations are close to the actual net
displacement (Fig. 2-4). Further, we examined the effect of interaction between the
links on the three-link swimmer using slender body theory. We found that only for
large joint angles (when the links become close), do slender body theory and resistive

force theory differ significantly.

With the visualization tools developed in Chapter 2, we explore a neutrally buoy-
ant two-link swimmer with offset centers of mass and buoyancy in Chapter 3 (Fig. 3-
1). The tendency to rotate toward its stable equilibrium introduces an unactuated
degree of freedom for the two-link swimmer, which we manage by including a buoyant
function term to the reconstruction equation (3.2). As before, we identify the opti-
mal strokes (Fig. 3-4), now in terms of the single joint angle and the dimensionless

parameter 7y that describes the ratio of time scales for reorienting and flapping.

In Chapter 4, we broaden the scope of our visualization framework by studying
a swimmer whose shape is described by sines and cosines in the curvature space,
the serpenoid swimmer (Fig. 4-2). The shape space for the serpenocid swimmer re-
veals ‘snake-like’ shapes and demonstrates the ability to describe highly curved and
continuous shapes with only two parameters. We calculate the constraint curvature
functions and optimal strokes in z, y, and 6 (Fig. 4-3), noting that the odd two-fold
rotational symmetry in the y and 6 plots leads to figure eight shaped optimal strokes.
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7.2 Kinematic decomposition

In Part II, we focused on developing and demonstrating the utility of the kine-
matic decomposition. The kinematic decomposition is a straightforward and robust
method that separates the time and spatial dynamics of a locomoting system, enabling
straightforward comparison between different systems or a single system under vary-
ing conditions. This method offers an alternative to current standards like choosing
several parameters to represent the kinematics or fitting the body shape in time to

predefined functions.

In Chapter 5, we described how to perform a kinematic decomposition, beginning
with creating a curvature matrix from tracked midline data of a system. An SVD
of the curvature matrix yields three matrices that describe the spatial and temporal
characteristics of the locomoting system. One matrix, denoted as U, encompasses
an orthogonal set of basis functions that define the set of shapes achievable by that
system, which we visualize using a shape space as in Figure 5-2b. A second matrix, X,
indicates the amount of variance accounted for by each basis function. For all systems
studied, just two basis functions described over 50% of the variance. Combining two
of the matrices (EV*) results in the strokes and time dynamics of the system. Plot-
ting these strokes onto the shape space allows a clear comparison between systems or
conditions within a system. Basis functions, strokes, and the associated variability are
calculated for Arbacia puntulata (sea urchin) sperm (Fig. 5-3). With the reconstruc-
tion equation from Part I and the first two basis functions, we found the constraint

curvature functions and optimal gaits for the sea urchin sperm in Fig. 5-4.

The second part of Chapter 5 is dedicated to exploring chemotaxis in sea urchin
sperm, using the kinematic decomposition. First, we combined results from the kine-
matic decomposition and constraint curvature functions to demonstrate the connec-
tion between flagellar mechanics, strokes, and turning. We then developed a metric
to predict whether or not an individual was chemotaxing, based solely on a sample

of the kinematics with a misclassification rate of just 2.5% (Fig. 5-8b).

We continued analysis using the kinematic decomposition in Chapter 6, starting
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with a comparison between the flagellar kinematics of four types of sea urchin, Ciona
intestinalis (a sea squirt), and a bull. Though the bull and Ciona intestinalis are
genetically more similar than Ciona intestinalis is to any of the sea urchins, we found
that the basis functions and strokes for Ciona intestinalis sperm were indistinguish-
able from the sea urchins. We concluded that these organisms likely have evolved to

execute similar swimming strategies because they locomote in the same environment.

Kinematic decompositions of C. elegans data confirmed previously published re-
sults that motion in different environments are not distinct gaits (as reported by
[119]), but rather modulations of the same gait. Analyzing motion of trout gaits in
free stream and in a Kdrmén vortex street revealed that the gait observed in a Kdrmén
vortex street is primarily passive, and that the muscles used in this gait minimize the
lateral displacement that would occur otherwise. Lastly, we identified the gait mod-
ulation in eels to move from steady swimming to accelerating. More generally, we
found greater variation between individuals of the same species for more complex or-
ganisms, i.e., the variation was smallest in the single-celled sperm and largest in the
eels. As the animal’s control system increases in complexity, we expect that finding a
globally optimal locomotion solution in this high dimensional space to be increasingly
difficult. Instead, it is likely that these organisms have robust control systems and
find near optimal motions that are sufficient. The varied motions we observe may

well fall into this class of near optimal strokes and thus explain the variation.

The kinematic decomposition best practices are described in Appendix A. In
Fig. 7-1, we outline the possible conclusions from the results of performing kinematic
decomposition for comparison. First, find and compare the basis functions for each
system. If they are not similar, then the systems are fundamentally different. Plotting
the shape spaces, strokes, and constraint curvature functions (if possible) will provide
static visualizations of the individual system dynamics and kinematics. If the basis
functions are similar, compare the strokes. If the strokes are also similar, then the
gaits for the two systems are the same. If the strokes are dissimilar, then the systems

share a basic biomechanical structure or control system, but the gaits are different.
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Figure 7-1: Performing the kinematic decomposition on multiple systems allows one to
compare the basis functions and strokes, leading to one of three possible conclusions.
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7.3 Future work

The development of visualization and kinematic decomposition tools leads to the pos-
sibility of answering some intriguing research questions, many of which build directly
from work presented in this thesis. For example, expanding the set of basis functions
and strokes (by including more organisms) for the comparison of flagellar kinematics
in §6.1 would aid in verifying our hypothesis that nature, rather than nurture, is
dominant in determining kinematics. If a more accurate physical model is required,
including the drag effects due to the sperm’s head and interaction between the links
is straightforward [143]. For C. elegans, examining the kinematics of intermediate
viscosities will help us explain the gait modulation that is apparent when observing
the more extreme cases studied here. The work on trout and eels may be expanded
to predict swimming speed and acceleration based on the kinematics alone. Further,
combining this analysis with a high Reynolds number model would nicely connect the

kinematics and dynamics of the systems.

A starting point for developing an equivalent to the framework in Part I for
high Reynolds number swimmers in the potential flow limit begins with work by
Melli et al. [101], Kanso et al. [73] and Shammas [132]. Though all of our systems
were accurately described with two parameters, some systems may require higher di-
mension descriptions. Our geometric framework in Part I is generalizable to higher
dimensions, though we lose the ability to visualize the results as we do in two dimen-
sions.

More generally, applying these tools to other biological systems provides a straight-
forward method of comparison and may be used to identify the effects of environment
(particularly in complex environments like granular media [34, 72, 97] or wet soil
[69, 70]), secondary evolution (such as a snake that crawls and swims, or a fish that
swims and flies), or a number of biological processes. With increasingly sophisti-
cated measurement techniques, we now have more and more data on neural activity.
The kinematic decomposition can aid in linking the sensory systems with locomotion,

similar to our study on chemotaxis in sperm. Further, these tools lend themselves to
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reconcile the differences between man-made systems and biological systems, leading
to effective control and design of new soft robotic components and identification of
biological characteristics that may be incorporated into robotic design. Motion plan-
ning and gait optimization are commonly time consuming and at best locally optimal.
Kinematic decomposition offers the possibility of quick, globally optimal solutions.

The kinematic decomposition can be extended to three-dimensional motions like
sidewinding, as described in Chapter 4, and for surfaces like fins and rays, similar
to the study by Bozkurttas et al. [15]. Incorporating the identification of dominant
temporal frequencies may be achieved through combining the kinematic decomposi-
tion with a method like dynamic mode decomposition (DMD) as described by Row-
ley et al., [84, 126, 130]. Though the examples studied in this thesis did not require
DMD, broadening the scope of our analysis to other applications and types of biolo-
comotion (including terrestrial, digging, or aerial locomotion) may benefit from this
method.

Once kinematic decomposition is applied to a number of diverse systems, clusters
by similar basis functions and strokes may be formed, elucidating similarities between
organisms that have possibly remained unobserved. We also expect for heuristic
classifications, like those for types of swimming (i.e., anguilliform, carangiform, sub-

carangiform, thunniform, etc.) to emerge from similar analysis.
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Appendix A

Kinematic decomposition best

practices

The applications presented in this thesis (turning and chemotaxis in sea urchin sperm,
the effect of environment on C. elegans, the study of accelerating versus steady gait
in eels, and trout kinematics in free stream versus in a vortex street) follow the same
general procedures. These procedures can be modeled as a general means to approach

many problems and are outlined here.

e Gather data. Midline data (that is, (x,y) points along a body) was used for
the examples in Chapters 5 and 6, but any measurable quantity that remains
at a fixed location on the body is appropriate. This data may be measured

directly or gathered from digitized images.

e Clean, filter and transform data. Find and remove any erroneous data and
filter if necessary. Decide how to manage missing data. Omitting occasional
time steps should not affect the results, assuming several periods of motion are
included and that the data omitted is not a significant portion of the data set.

Normalize all data by body length.

e Calculate curvature. Calculate the curvature along the body at each time

step. Discretized derivatives can introduce noisy signals and some filtering may
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be required. Whenever filtering, avoid over smoothing and erasing meaningful
features present in the data. In this thesis, we used one-dimensional Gaussian

filters in MATLAB.

Populate the M matrix. Using the curvature at S points along the body at

each of T' time steps as columns, create the Mg matrix.

Take the SVD. Performing the singular value decomposition on M will give
three matrices: U, ¥ and V. Scientific computing software will have a built in
function for this, e.g., svd(M) in MATLAB. svds(M) returns only the vectors
associated with the first six singular values and is considerably faster if M is

large.

Examine the first few columns of U. The first columns of U are the primary
spatial basis functions for the system. If comparing multiple sets of data (either
multiple individuals, gaits, or organisms), compare the basis functions of each

to identify possible similarities.

Examine 3. For each set of data, calculate the fraction of variance accounted
for by N basis functions, Vi (Eq. 5.4) from the singular values o; in X. If Vy is
above a predetermined threshold set by the project’s end goal (e.g. 50%, 95%),
then N basis functions are appropriate to use for the project. Note that using
svds (M) to perform the SVD prevents the ability to calculate Vy, as only the
first six singular values are found. Instead, the singular values can be compared

to each other to gauge their relative importance.

Examine XV*. Study the amplitude of the basis functions to understand the
time dynamics of the system’s motion. If comparing multiple systems with
similar basis functions, project the motion of each system onto a single set of

basis functions by employing Eq. (5.5).

Perform the analysis. Fig. 7-1 illustrates some of the possible conclusions one
can draw from kinematic decomposition results. If the basis functions are differ-

ent, the systems are fundamentally different. If the basis functions and strokes
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are similar (similarity can be quantified with correlation), then the gaits for the
two systems are the same. If the basis functions are similar but the strokes
are different, then the systems share a fundamental biomechanical structure or

control system, but the gaits are different.

Limitations and combining data. If the curvature matrix is very large,
taking the SVD is computationally expensive. A simple solution to this problem
is to randomly sample curvatures to create a smaller matrix. The kinematic
decomposition is robust and does not require that the curvatures be in sequential
order. Taking a representative sample will yield basis functions that are highly

correlated to the true basis functions.

A large curvature matrix may result from either recording data for many time
steps, recording data at high spatial or temporal resolution, or by combining
the data for several individuals. If combining the data for several individuals,
first perform the kinematic decomposition on each individual and plot both
basis function sets with mean and standard errors. If the standard error regions
overlap and/or the means are similar enough (as defined before the experiment
begins), sample from each individual equally, so that the final curvature matrix

for, say, 10 individuals has 1/10th the data from each individual.
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Appendix B

Can flexibility help you float?

B.1 Introduction

In his treatise On Floating Bodies {5], Archimedes examined the stability of objects
wholly or partially submerged in a fluid. He surmised that if an object is less dense
than the suspending fluid, it will partially project above the surface, displacing a
volume of fluid with a weight equal to its own. This proposition, commonly known
as Archimedes’ Principle, is true for large objects, but neglects capillary effects that
arise at small scales, specifically, at scales small relative to the capillary length. Keller
[76] generalized Archimedes’ Principle to small floating bodies by showing that the
vertical force from surface tension is equal to the weight of liquid displaced by the
meniscus. We here extend this class of problems by elucidating the role of flexibility
in interfacial flotation.

Many biological organisms that float, like hydrophytes (e.g., water lilies) and water
walking insects [20], are not entirely rigid. There are several reasons for organisms
to be flexible, including decreased weight and increased robustness when subjected
to external forces [99]. Hydrophytics are aquatic plants rooted in the soil. During
times of flood, their petals bend and close, thereby protecting their genetic material
in response to increasing hydrostatic pressure [124]. Flexibility is exploited by several
creatures that reside at the water surface, both individually and collectively. The

insect Anurida attracts others of its kind by bending its back and deforming the
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interface, so that a colony can behave like a self-assembling raft [20]. Other such living
rafts may form from assemblages of mosquito eggs [155] or whirligig beetles [160].
Though individual ants flounder at the interface, ant rafts, comprised of thousands
of individuals, are able to stay afloat for months in the flood-prone rain forests of
Brazil [103]. Might such interfacial organisms, as individuals or a collective, exploit

flexibility to support a greater load?

The role of flexibility in interfacial flotation has only recently been considered.
Vella et al.[158] examined the weight-bearing characteristics of a raft composed of
thin rigid strips. As a model of the leg of a water-walking insect, Vella [156] examined
the flexure of a floating cylindrical rod forced at one end. Floating hydrophobic rods
of various cross-sectional shapes were studied by Liu et al. [93]. Reis et al. [124]
computed the shape of a floating two-dimensional strip subjected to a point force
at its center. For floating plates, one expects surface tension forces to dominate
forces resulting from hydrostatic pressure for plates much smaller than the capillary
length. The equilibrium shape of such small plates will thus have little influence on
the maximum load the plate can support, which will be prescribed by its edge length.
Conversely, large plates will be supported predominantly by hydrostatic pressure on
the plate; consequently, maximum loads will be supported by plates that displace the

most fluid.

In §B.2, we consider a two-dimensional hinged plate with a torsion spring, so that
bending is permitted only at a single point. To determine whether flexibility is advan-
tageous, we derive the maximum load (specifically, the maximum plate density) that
can be supported. The effect of increasing spring stiffness on the equilibrium plate
shape is determined. These results are useful in developing intuition for §B.3, where
we generalize our model to the case of continuously deformable plates. The limiting
cases of small and large plates are considered, and plate configurations and approx-
imations for the optimal spring stiffness (those capable of supporting the greatest
load) are derived. Our results are reviewed in §B.4, where their bearing on the form

of some aquatic plants is discussed.
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Figure B-1: a) Two-dimensional geometry of the hinged two-plate configuration. Two
plates, each of length b, thickness ¢, and density p; are connected by a torsion spring
with spring constant K,. The outer plate edges are a distance h below the undisturbed
interface. Flexure causes the plates to lie at an angle o with respect to the horizontal.
The density of the liquid is p and the surface tension is ¢. b) Dark shaded regions show
fluid displaced above the meniscus, whose weight is equal to the vertical component
of surface tension, while the light shaded region shows the volume of fluid displaced
above the plate.

B.2 Flotation of hinged plates

Here we examine the simplified case of two rigid plates connected by a torsion spring.
Consider the two-dimensional geometry in which two infinitely long rigid plates of
width b and thickness ¢ (such that b > t) are connected by a torsion spring with
spring constant K, (Fig. B-1a). The air density is assumed to be negligible relative
to that of the liquid, p, and the solid plate, ps. The plate edge depth, h, is the
distance from the undisturbed interface to the plate’s outer edge and must be less
than or equal to two capillary lengths; otherwise, the meniscus will collapse. The
capillary length is defined as £2 = o/pg where o is surface tension and g is gravity.
The hinge angle is « and the contact angle ¢ is related to the plate edge depth by
h = €../2 —2cos ¢. There is some freedom in ¢ due to the possibility of pinning at
the plate edge but we henceforth assume that ¢ > m/2. To increase the load on the
plate uniformly, its density p, is increased. As the load increases, the plate will sink
and, depending on the magnitude of K, bend. Beyond some maximum load (to be
determined), the plate will sink. Our approach extends the work of Vella et al. [158]
through consideration of the torsion spring, which imposes an energetic penalty to

flexure.
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B.2.1 Energetics

We seek to identify the configuration parameters (@, h) that minimize the total system
energy. The potential energy associated with the work done on the system by external
forces is V. We express V as the combination of work done by: hydrostatic pressure
on the interface, G P Ey interface, hydrostatic pressure on the plate, GPEy plate, gravity

on the plate, GPEp e, and surface tension on the plate, E, .
V= GPEH,interface + CTVP-EH,plaute + GPEpIate + Es.t. (Bl)

We define U to be the combination of surface or “free” energy, SE, and the potential

energy stored in the torsion spring, Egpring.

U= SE+ Eupring (B.2)

A body will deform to the configuration that minimizes the system’s total potential
energy, II = U —V. We thus identify the configuration parameters that result in zero
variation in total potential energy, 0II = 06U — 6V = 0, or that correspond to a

stationary point in the energy landscape [123]. The variation in the energy terms is:

3
V= pg / n(z)dxde + pg ((2bh cos a + b% cos asin a) oh + (%— sin o + bzh) 5a>

—psgt (2b6h + b cos ada) + 20 (sin ¢Sk + b (sin ¢ cos a — cos ¢ sin @) Sar) (B.3)
U= o0l +2K;a0a=0 / V - fidzée + K ada, (B.4)

where z = 7(z) is the known equation of the interface and de is the incremental
displacement of the interface. The outward vector normal to the interface is 7 and
0¢ is the incremental change in arc length along the meniscus. We describe the

plate configuration by parameters & and h and set the variation in energy with each
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Table B.1: Relevant dimensionless groups for a flexible floating plate

Plate Half-Length b B = % Spring constant ks = %ﬁg

Plate Thickness t T = tc Load D= Dr = ps_p—gT
Plate Edge Depth A H= % Bond number Bo = gf-‘l = 372 = [3?
Density ps—p D= ps_;g

parameter to zero. Two equations must be satisfied for static equilibrium:

611

ST= P9 (2bhcos & + b” cos arsin @) + 2bp,gt — ohvV4d —h2=0  (B.5)
ol v 2 2

3o = 2K, — pg 3 sina + b°h | + psgth® coso + ... (B.6)

ob (—-h\/4 — h2?cosa + (2 — h2) Sina) =0

These equations express, respectively, the force balance on the plate and the bal-
ance of torques about the torsion spring. The surface energy and the gravitational
potential energy associated with the interface cancel precisely, as follows from appli-
cation of the Young-Laplace equation at the interface, pgn(z) = oV - 7i: along the

meniscus, the curvature and hydrostatic pressures are in balance.

Buckingham’s theorem indicates five dimensionless groups, defined in table B.1.
The Bond number, Bo = (b/£.)? = 32, is of particular interest. We focus on the two
extremes of plate size; henceforth, “small” and “large” plates correspond to the limits

of B < 1 and B> 1, respectively. Non-dimensionalizing (B.5) yields:

28D = 2BH cosa + f* cosasina + Hv4 — H? (B.7)
3
2k, + DB%cosa = %sina + 3%°H + fcosaHV4 — H2... (B.8)

+Asin (H2 - 2)

(B.7) expresses the dimensionless force balance, from which the generalization of
Archimedes’ Principle emerges [76]: the weight of the plate is equal to that of the
fluid displaced above both the meniscus and the plate (Fig. B-1b). (B.8) expresses
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the dimensionless torque balance: the torques resulting from hydrostatic pressure and
surface tension are resisted by the spring torque and that resulting from the weight

of the plate.
We proceed by determining the k, that can support the maximum load D for a
fixed 3. The problem is expressed as an optimization problem,

max  D(,o, H,k) st TF(B,a,H,D)=0, 5r(8,a,H,D,k)=0 (BY9)
a,il,ks

where the configuration («, H) and optimal stiffness (k%) completely describe the so-
lution. From the objective function and first constraint, the configuration parameters

and optimal load are determined analytically as a function of plate size:

Dmax= §+\/§+%, Omax D = arccos \/l 8+'82 (—2+\/§B)

2 16 4+ B4 (B-10)

0o 2(V2+8)
T VAt 2v2B + B

Figs. B-2a and b illustrate the dependence of the optimal configuration parameters

and density on the plate size. (B.9) is reduced to a torque balance: X7(8,k) = 0.
It is straightforward to solve this torque balance for the optimal stiffness, k?, as a
function of plate size. The relationship between plate size and optimal stiffness is

shown in Fig. B-3.

The behavior in the limits of large and small plates is deduced by considering the
dominant terms in (B.7) and (B.8). For small plates, the force and torque balances
become, respectively: 26D ~ Hv/4 — H? and 2k,a+DB%cosa =~ (3 cos aH/4 — H2 +
Bsina (H? — 2). The force and torque balances are prescribed by contributions from
the spring, the weight of the plate, and the surface tension. It is clear that H = /2
maximizes the vertical component of surface tension acting on the plate, in accord
~ with Fig. B-2a. This depth also maximizes the liquid displaced, consistent with the
generalization of Archimedes’ Principle [76]. We see from Fig. B-4a that for small
plates (8 < 1), bending only serves to reduce the column of fluid displaced above the
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Figure B-2: a) Plate hinge angle o and plate edge depth H that maximize load as a
function of plate size 3 = b/f.. Small plates maximize the surface tension force by
sinking to a depth H=1/2 while large plates maximize fluid displaced by assuming a
plate tilt angle a = m/4. The shaded area represents the region where bending allows
the plate to support a greater load than a flat plate of the same size. b) Maximum
load as a function of dimensionless plate size, 3 = b/{..

kX ~+/2/2

-3

107 10 10°
ﬁ = b/gc

Figure B-3: Optimal stiffness k? (specifically, that which bears the most weight) as a
function of plate size. The optimal stiffness for large plates depends on size because
the dominant terms in the force and torque balances are due to hydrostatic pressure
and increase with plate size. The weight of small plates is supported primarily by
surface tension, thus the independence of k} on plate size for § < 1.

10° 10°
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Figure B-4: The dependence on plate size. Horizontal striped regions represent fluid
displaced by the bent plate only. Diagonal striped regions indicate where only the
flat plate displaces fluid. a) For plates much smaller than a capillary length, the plate
edge depth H determines the amount of fluid displaced (accurate to O(8/H)), and
therefore the maximum plate load. Bending such small plates decreases the total
fluid displaced by narrowing the column of fluid displaced above the plate thereby
diminishing its weight-bearing characteristics. b) Bending is advantageous for plates
on the order of the capillary length if more fluid is displaced by bending than is lost
by narrowing the fluid column above the plate. c¢) Large plates displace significantly
more fluid by bending: flexibility thus enables them to bear greater loads.

plate, decreasing the load the plate can bear. In the limit of 3 — 0, the optimal hinge
angle is zero and k' = v/2, as may be deduced by considering higher order terms.
For these conditions, the maximum load is Dp,y ~ 1/3. Plates with ks, < k¥ are bent

and support slightly smaller loads, while stiffer plates remain flat.

For plates much larger than the capillary length, 5 > 1, the force and torque

82
3 S1n o

balances become, respectively: 28D ~ (3% cosasina, and 2k,a+D5% cos a =
The force and torque balances are now prescribed by the spring, the weight of the
plate and hydrostatic pressure. The configuration parameter H does not appear in the
leading order terms for the force and torque balances of large plates, indicating that
large plates are insensitive to surface tension. We return to Archimedes’ Principle:
the plate load is maximized when the most fluid is displaced, or o = 7 /4, as in Fig. B-
2a. From the torque balance, the optimal stiffness associated with this configuration
is k* = 3%/(6+/2m) (Fig. B-3), for which the load is Dyax ~ 8/4 (Fig. B-2b). When
the plate is much larger than the plate edge depth H, the bulk of the fluid displaced

is associated with the plate deformation rather than the meniscus, as shown in Fig.

B-4b.
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For any plate size, bending is advantageous if the plate size and tilt angle lies in
the shaded region in Fig. B-2a, allowing the plate to bear a greater load than a flat
plate. For plates on the order of a capillary length, 8 = O(1), both the hydrostatic
pressure and surface tension are important in the force and torque balances. For
these plates, the optimal bending angle is determined by the tradeoff between fluid
displaced by bending the plate and the narrowing of the fluid column displaced above
the plate. Thus, as shown in Fig. B-2a, the optimal plate tilt angle lies between 0 and

7/4, the optimal angles in the limiting cases of small and large plates, respectively.

B.3 Continuously deformable plates

We proceed by extending our results from a hinged to a continuously deformable
plate. For small plates, we expect flat plates, at a depth of V2¢,, to support the
greatest load since they displace the most fluid (as in Fig. B-4a). We anticipate
flexure to assist with bending for plates above a critical size. In the larger plate limit,
the optimal weight-bearing large plate shape to be that which displaces the most
fluid, specifically, a semicircle.

For a continuously deformable plate of a given size, we search for the plate shape
that minimizes the total energy while maximizing the plate load: max D s.t. 6II = 0.
Components of potential energy for continuously deformable plates are a generaliza-
tion of those developed in §B.2 and can be written in integral form. We discretize the
continuous plate into 2N segments of equal length and allow each segment’s orienta-
tion 6 = (61,05, ...0x) to vary (Fig. B-5a). Boundary conditions are specified in Fig.
B-5a. The principle of minimum potential energy results in a vertical force balance

and a torque balance about each hinge, reducing the optimization problem to:

max  D(B,6,H,k,) (B.11)
H.,0

st.  SF(8,0,H, k., D)=0, (8,6, H,ks,D) =0, i =1,2,..N

The problem is solved numerically using the MATLAB optimization toolbox. For
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Figure B-5: a) Schematic of the continuous plate configuration discretized into 2N
segments, where L, is the horizontal projection of the plate. b) Maximum load,
Dinax/ 3, determined by numerical optimization of a plate comprised of 2N segments.
The theoretically predicted maximum load (corresponding to the optimal shape of a
semicircle) and the numerical solution are within 0.03% by N = 25.

small plates, the equilibrium plate shape that minimizes energy and maximizes density
is a flat plate, and arises with any non-zero bending stiffness. As in §B.2, the surface
tension forces dominate and the flat plate supports the maximum load, Dyax ~ 1/,

in this small plate limit.

The large plate shape that displaces the most fluid above the plate and supports
the maximum density is necessarily a semicircle, an intuitively satisfying result con-
firmed by the numerical optimization. Fig. B-5b shows that for N > 25 the maximum
load for large plates determined numerically by the discrete shape is within 0.03% of

the theoretical value for the continuous optimal shape.

Increasing k, is equivalent to increasing the energetic cost of bending. As a result,
as k, is increased progressively, the optimal plate shape is gradually less bent and
displaces less liquid, as shown in Fig. B-6a in the case of large plates, Bo > 1.
For each of these shapes, the torque is balanced at every point along the plate. We
note that the most flexible plate is that which bears the greatest load and that this
load decreases with increasing k;, as illustrated in Fig. B-6b. In the absence of any
energetic penalty to bending (ks = 0), the plate assumes a semicircular form. The

torque resulting from hydrostatic pressure balances the torque from the weight of the
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Figure B-6: a) Plate shapes that maximize load for various stiffnesses at large Bo.
b) The maximum load decreases monotonically with increasing spring stiffness, £,
for the continuous plate. The most flexible plate displaces the most fluid, and so
supports the greatest load. Thus, the optimal stiffness is zero, k} = 0 in this large
plate limit.

plate at each point along the semicircle. The plate shapes in Fig. B-6a resemble those

presented by [124] for an elastic plate loaded at its midpoint.

B.4 Discussion

We have demonstrated that flexibility can assist in interfacial flotation for bodies on
the order of the capillary length and larger. Consideration of the minimum total
potential energy yielded force and torque balances whose form depended on body
size. For plates much smaller than the capillary length, flat, rigid plates bear the
most weight. Such small plates are supported predominately by capillary forces, thus
plate bending results in a diminution of fluid displaced above the plate, as illustrated
in Fig. B-4a, and so diminishes buoyancy.

A large plate supports a maximum load by deforming to a = 7/4 in the hinged
case and to a semicircle in the continuous case, thereby displacing the maximum fluid
volume, and minimizing the potential energy of the plate. Increasing plate stiffness
increases the energetic cost of bending, forcing the plate to flatten (Fig. B-6a), thus
decreasing its load-bearing capacity (Fig. B-6b). We can readily infer the optimal

shape for a large three-dimensional “plate” with no stiffness: for a fixed surface area,

143



a hemisphere maximizes the fluid displaced.

Many water-walking insects are flexible and have length scales on the order of a
capillary length [20]. At this scale, we have seen that bending allows an object to bear
a greater load than if flat. To model raft-like structures and plants found in nature,
we must generalize our theory to three dimensions. Nevertheless, our study does
provide some insight for three-dimensional objects such as capillary rafts. [157] noted
that capillary rafts comprised of many particles exhibit elastic behavior, and inferred
effective values of the Young’s modulus and Poisson ratio for rafts comprised of various
materials, Similarly, [103] inferred the effective constitutive properties of the ant raft.
Our study indicates the manner in which flexibility assists the flotation of these rafts.
Floating flexible biological organisms may deform in a variety of manners. Plants
such as lily pads may buckle or experience out-of-plane folding. Films or membrane-
like materials can stretch to withstand large loads, while flowers may avoid buckling
during submergence by having petals that overlap [124].

Modeling more complex rheology and geometry, e.g., variable stiffness distribution
along the plate, would be relatively straightforward using our approach. Comparison
with data on the distribution of material stiffnesses and typical load cycles in vari-
ous organisms would provide quantitative confirmation that water plants and floating

colonies of interfacial creatures use flexibility to improve flotation.
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Appendix C

Biomimicry and the culinary arts

Biomimicry has become a central theme in the engineering sciences, and can count
the glider, Velcro and Scotch tape among its successes [8]. Most recently, man has
looked to nature to inspire means of reducing drag and corrosion on rigid surfaces by
decorating the surface with microstructure, now possible owing to recent advances in
microfabrication and materials science [39]. Biocapillarity, the relatively new subject
at the border of interfacial science and biology, involves the elucidation of natural
mechanisms reliant on interfacial tension. We present here two devices developed for
use in the culinary arts, motivated by recent studies in biocapillarity.

Surface tension o is a tensile force per unit length that acts along fluid-fluid
or fluid-gas interfaces [32]. At the fluid-gas interface, the effects of surface tension
dominate those of gravity for fluid systems small relative to the capillary length
l. = \/a/—p , where p represents the fluid density and g gravity. For air-water systems,
the capillary length corresponds roughly to the size of a raindrop. Surface tension
is thus an important player in the lives of small creatures such as insects, for their
propulsion [20], fluid uptake [79], and many other critical functions [21]. Py et al. [121]
demonstrated that interfacial forces may fold flexible solid sheets, and so presented
the first examples of capillary origami. In their experiments, drops were placed on
flexible sheets which folded into 3D shapes in response to interfacial forces, provided
the sheet’s size, L, exceeded the elastocapillary length, L. = \/E/_a_, where B is the

sheet’s bending stiffness.

145



Just as scientists draw inspiration from nature, chefs may draw inspiration from
science to create novel processes and edible materials [154]. Our collaboration at the
interface of the culinary arts has led to the development of two dynamic edible devices
inspired by natural mechanisms reliant on, respectively, chemically induced surface

tension gradients and capillary origami.

C.1 The cocktail boat

Marangoni flows are those forced by surface tension gradients, as may result from
gradients in temperature or chemistry along an interface [131]. The most commonly
observed Marangoni flow is that responsible for the tears of wine [147]. Owing to the
dependence of surface tension on alcohol concentration, evaporation of alcohol from
the thin film on the side of a wine glass increases the local surface tension relative to
that of the bulk, and the resulting surface tension gradient pumps fluid up the thin
film. Fluid thus accumulates in a horizontal band at the top of the film that grows
until becoming gravitationally unstable and releasing the tears of wine. The tears,
whose form serves as an indicator of the sugar and alcohol content of the wine, fall
until there is insufficient alcohol to drive the system.

Surfactants, such as common soaps, are molecules that find it energetically fa-
vorable to reside at the free surface, and act to decrease the local surface tension.
The simplest demonstration of a Marangoni flow is the soap boat, a close cousin of
the cocktail boat. If a small floating object such as a toothpick of width w is placed
on a water surface after one end has been dipped in soap, the surface tension at
the clean end is greater than at the soapy end by an amount Ac; consequently, it
is propelled away from the soap by a Marangoni force of characteristic magnitude
Fy = wAo (e.g., [109]). The boat thus accelerates until the hydrodynamic drag
balances the propulsive Marangoni force. Most soaps decrease the surface tension
at an air-water surface, 0 = 70 dynes/cm, by a factor of two, resulting in the soap
boat achieving speeds of approximately 10 cm/s. Note that the soap boat’s journey

is relatively short (~10 sec) in a closed geometry as the interface soon becomes satu-
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rated in surfactant, which suppresses the propulsive surface tension gradient. Nakata
et al. [109] demonstrated that this limitation may be avoided by using volatile sur-

factants such as camphor, which evaporates rapidly from the surface, thus enabling

sustained Marangoni propulsion.

Figure C-1: The semi-aquatic insect Microvelia releases a surface-active lipid in its
wake, resulting in a surface tension gradient that propels it forward via Marangoni
propulsion. The Microvelia is approximately 2 mm in length [20].

Marangoni propulsion as a means of biolocomotion was first reported by Billard
and Bruylant[11] who observed its use by a terrestrial insect when it accidentally fell
onto the water surface. By releasing a surfactant, specifically a surface-active lipid,
it was able to propel itself toward and up the meniscus bordering land and so return
to its preferred terrestrial environment. Marangoni propulsion by the rove beetle
has been reported by Betz [10], and by semi-aquatic insects, for example Microvelia
(Fig. C-1) and Velia, by Linsenmair and Jander [92] and Andersen [3]. Schlidknecht
[129] found that the surfactant released by the rove beetle reduced the surface tension
from 72 to 49 dynes/cm. Peak speeds during Marangoni propulsion for Microvelia
are approximately 17 cm/s, or twice their peak walking speed [4]. In Fig. C-1, it is
apparent that the surfactant ejected by Microvelia not only gives rise to a propulsive
force, but clears the initially dyed surface layer in its wake. Marangoni propulsion by
such insects is precisely analogous to that of the soap boat: the chemically-induced
gradient in the surface tension generates a propulsive force [66].

The cocktail boat relies on precisely the same propulsive mechanism as the soap
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Figure C-2: a) Top and b) side view of the cocktail boat elucidates design consider-
ations and the propulsion mechanism. A lighter boat is desirable, so that the boat’s
intrusion depth d, and induced drag, are minimized.

boat and the Marangoni swimmers. The floating cocktail boat (Fig. C-2) is filled with
its fuel, alcohol, which spills into its wake by way of a small outlet on its aftward side.
Alcohol acts to reduce both the surface tension and the contact angle on the aftward
side, thus decreasing the horizontal force relative to that on the front (see Fig. C-
2b). Alcohol reduces the surface tension at an air-water interface from approximately
Tpuitk = 70 t0 0puey = 35 dynes/cm. In our system, the contact angle between water
and plastic is B ~ 80° and between an alcohol-water mixture and plastic is Ot 22
30°. Consequently, a cocktail boat of width w = 1 c¢m is subjected to a propulsive
force

Forop = (Obuik SIN Opuir — O fuer SinOpye) w =~ 51 dynes, (C.1)

owing to the fore-aft difference in surface tension and contact angles. The resulting
steady speed U may be computed from the horizontal force balance, according to
which Fj.qp is balanced by the drag force Fyq4y = pU?wd, where d is the intrusion

depth of the boat, so wd its submerged exposed area (see Fig. C-2). We thus obtain

U_ \/ (Tbutk sin Qb'utkp:i 0 fuet SN Ofuet) _ (C.2)

Observed peak speeds of the cocktail boat are approximately 10 em/s. Like the

camphor used by [109], alcohol is volatile and evaporates from the interface on a time

scale faster than the motion of the boat. Consequently, the cocktail boat exhibits
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sustained motion until it runs out of fuel.

Figure C-3: a) A fleet of cocktail boats with varying shape and slit size were tested,
fueled by different liquors. We found that the alcohol content of the fuel was the most
important design factor for performance, with higher proof alcohol leading to faster
and more vigorous boat motion. b) A cocktail boat propels itself, fueled by Bacardi
151 (75% alcohol). Boat lengths are approximately 1.5 cm.

Initial prototypes of the boats were first made of Acrylonitrile butadiene styrene
(ABS plastic) generated on a Stratasys Dimension 3D printer. Boat designs with
various slit sizes and shapes were tested, resulting in a range of speeds, stability,
and travel duration. The boat performance was most sensitive to the slit size and
alcohol concentration in the fuel rather than the shape of the boat’s footprint. The
longest runs achieved were two minutes. Subsequently, we cast edible cocktail boats
from silicone molds. The molds were created using a 3D-printed mold negative. A
number of different edible and semi-edible materials were used including gelatin, agar,
melted wax and various candies. Once we had verified the feasibility of creating edible
boats and optimized the mold design, ThinkFoodGroup refined the composition of

the edible boats, making them more pleasing to both the eye and the palate.

C.2 The floral pipette

A family of flowers, including the water lily, float at the surface of ponds or lakes
while remaining anchored to the underlying ground. When the water level rises, the

petals or leaves wrap up, capturing an air pocket in order to keep the flower’s genetic
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Figure C-4: Flowers that float at the air-water interface are supported by hydrostatic,
elastic and capillary forces. The flower’s petals close in the presence of high water
levels to protect their genetic material ([71], www.wikipedia.org).

material dry (Fig. C-4). Since most such flowers are on a scale much larger than
the capillary length, hydrostatic forces play the dominant role in prompting closure;
however, capillary forces are critical in preventing water from intruding between the
petals (Fig. C-5). Inspired by this class of floating flowers, [124] developed a technique
for grabbing water that they termed the elastocapillary pipette, in which the role of

gravity is reversed.

_i]

Figure C-5: When submerged, artificial flowers made of polymer elastic sheets mimic
the petal closure observed in nature by floating flowers. The undeformed flower
diameter is approximately 1.8 cm [71].
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Instead of forcing the flower to sink relative to the interface (Figs. C-4 and C-5),
an elastic sheet cut into the shape of a flower is drawn upwards, and grabs a volume
of fluid from the free surface (Fig. C-6). As the flower is withdrawn from the surface
it zips shut, giving rise to a fluid drop enclosed by an elastic shell. The hydrostatic
suction associated with the vertical fluid displacement prompts the closure of the
flower, while the leakage of fluid from the closing flower is prevented by surface tension.
While the elastocapillary designs of [121] were constrained to scales less than the
capillary length, for the pipette, hydrostatic pressure is causing rather than resisting
the folding. Consequently, fluid capture is possible on a significantly larger scale,
that of the the elastogravity length, Le, = \/W [124]. The synthetic flowers were
composed of vinylpolysiloxane of thickness 0.25 mm and Young’s modulus £ = 0.5
MPa, resulting in a bending stiffness of B ~ 107°Nm?. [124] computed the petal
shape that optimizes the fluid volume trapped in this manner, and so were able to

successfully grab water with elastocapillary pipettes of diameter 5 cm.

Figure C-6: The floral pipette is drawn up from the interface, enclosing a small volume
of fluid. An LED at the pipette’s center adds visual appeal.

The culinary application of the elastocapillary pipette is a device resembling a
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Figure C-7: The floral pipette features two resting positions: on a glass’s edge and
on a flat surface. Undeformed flowers are approximately 3.5 cm in diameter.

flower, constructed of edible géls and used as a means by which to imbibe fluid drop
by drop, after which the flower itself is to be consumed. It represents an intriguing
means by which to serve small fluid volumes, and is intended to be used in cleansing
the palate between courses in multicourse meals. Flower geometries were optimized
for the particular flower material according to the specifications detailed in (124], and
molds for casting them were printed on a high-resolution 3D printer. Members of
ThinkFoodGroup tested several edible gelling agents, such as gelatin and agar, in
order to match the elastic properties of the synthetic materials used at MIT. They
were thus able to ensure their robustness, and avoid damage to the petals during use.
ThinkFoodGroup then explored flavors for the edible design with a view to integrating

it into a dish.

Lastly, aesthetics motivated our incorporation of an LED into the center of the
flower (Figs. C-6 and C-7). The petal and stem configuration were 3D printed and
the LED was powered by a battery stored in the base, where a small switch controls
the light. The shape of the base allows two resting configurations: on the side of a

cocktail glass or on a flat surface, as illustrated in Fig. C-7.
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C.3 Discussion

We have described the inspiration, mechanics, design and development of two in-
stances of biomimicry in the culinary arts. Both involve striking examples of bio-
capillarity, in which nature exploits mechanisms that depend explicitly on interfacial
effects. The cocktail boat, inspired by a class of insects that use Marangoni propul-
sion, is propelled in a cocktail glass by alcohol-induced surface tension gradients.
The floral pipette is an example of capillary origami, an inversion of floating flow-
ers that enables the imbibition of droplets drawn from a fluid interface. While both
mechanisms may be of interest to the scientific and engineering communities, the
development into a device of interest to the culinary arts required an additional step:

the mimicry not only of nature’s function, but of her elegance.
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