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Abstract 

Oxy-fuel combustion of solid fuels, often performed in a mixture of oxygen and wet or dry 

recycled carbon dioxide, has gained significant interest in the last two decades as one of the 

leading carbon capture technologies in power generation. The new combustion characteristics in 

a high-O2 environment raise challenges for furnace design and operation, and should be modeled 

appropriately in CFD simulation. Based on a comprehensive literature review of the state-of-the-

art research on the fundamentals of oxy-coal combustion, sub-models for the critical physical 

processes, such as radiation and char combustion, have been properly modified for the CO2-rich 

environment, and the overall performance of CFD simulation on oxy-coal combustion has been 

validated using Large-Eddy Simulation (LES) and Reynolds-averaged Navier-Stokes (RANS) 

approaches. The predicted distributions on velocity, species, and temperature were compared 

with experimental results from the literature in order to validate the CFD simulation. Results 

show that although agreeing reasonably with the measured mean axial and tangential velocity, all 

the RANS turbulence models used in this study underestimate the internal recirculation zone size 

and the turbulence mixing intensity in the char combustion zone, while LES improves the 

predictions of internal recirculation zone size, the entrainment of oxygen from the staging stream, 

and the overall flame length than the RANS approaches. Special attention was given to the CO2’s 

chemical effects on CO formation in oxy-fuel combustion, and its modeling approaches in CFD 
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simulations. Detailed reaction mechanism (GRI-Mech 3.0) identifies that the reaction 

 enhances the CO formation in the fuel-rich side of the diffusion flame due 

to the high CO2 concentration, leading to a significantly higher CO concentration. Reasonable 

CO predictions can only be obtained using finite-rate mechanisms combining with reaction 

mechanisms considering the above-mentioned reaction in CFD simulations. 

2H+CO OH+CO

The validated CFD approach was used to investigate the pressure’s effects in a pressurized 

oxy-coal combustion system. The results show that, given a fixed reactor geometry and burner 

velocity, the particle residence time does not change with operating pressure due to its small 

Stokes number; on the other hand, the coal conversion time decreases significantly because of 

the enhanced reaction rates at elevated pressures. Therefore, the burner can be operated at a 

higher burner velocity at elevated operating pressure, which results in a much higher coal 

throughput using the same reactor size. For instance, the thermal load can be increased from 3 

MWth to 60 MWth using a pressurized oxy-coal reactor, when the operating pressure increases 

from 4 bar to 40 bar. In order to investigate the slag behaviors in the pressurized oxy-coal 

combustor, a first-of-its-kind three-dimensional slag model has been developed, which can be 

applied in slagging coal combustion/gasification with any geometry. The method couples Volume 

of Fluid (VOF) model and Discrete Phase Model (DPM), and fully resolves the slag’s behaviors 

such as the slag layer buildup, multiphase flow, as well as heat transfer. The results are in good 

agreement with experimental observations, and can be taken as a design tool for coal 

furnace/gasifier development. 

 
Thesis Supervisor: Ahmed F. Ghoniem 

Title: Ronald C. Crane Professor 
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Chapter 1 Introduction to Oxy-Coal Combustion 

1.1. Carbon Capture Technologies for Coal-fired Power Plants 

Reliable, affordable and clean energy supply is one of the basic needs of humankind. Today, 

our energy supply system is undergoing a long-term transition from its conventional form to a 

more sustainable and low carbon style, especially addressing greenhouse gas (water, carbon 

dioxide, methane, nitrous oxide, chlorofluorocarbons and aerosols) emissions into the 

atmosphere. Strong evidence suggests that both the average global temperature and the 

atmospheric CO2 concentration have significantly increased since the onset of the industrial 

evolution, and they are well correlated [1]. Concerns over climate change have led to mounting 

efforts on developing technologies to reduce carbon dioxide emissions from human activities [2, 

3]. Technological solutions to this problem ought to include a substantial improvement in energy 

conversion and utilization efficiencies, carbon capture and sequestration (CCS), and expanding 

the use of nuclear energy and renewable sources such as biomass, hydro-, solar, wind and 

geothermal energy [2]. 

Coal has been and will continue to be one of the major energy resources in the long term 

because of its abundant reserves and competitively low prices, especially for the use of base-load 

power generation. For instance, the share of coal in world energy consumption was 29.4% in 

2009, as opposed to 34.8% for oil and 23.8% for natural gas [4]. In terms of power generation, 

coal continues to be the dominant fuel, contributing about 45% of the total electricity in the US 

in 2009 [5], and about 80% in China. Several technologies have been proposed for reducing CO2 

emission from coal-fired power generation, namely post-combustion capture, pre-combustion 

capture and oxy-fuel combustion capture [6]: 
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 Pre-combustion capture: Fuel is either gasified or reformed to syngas, a mixture of carbon 

monoxide and hydrogen, which is then shifted via steam reforming. CO2 is then separated 

from the syngas by shifting carbon monoxide with steam, yielding pure hydrogen (water gas 

shift reaction). The Integrated Gasification Combined Cycles (IGCC) for coal is an example 

of pre-combustion capture system. 

 Post-combustion capture: CO2 is separated from the flue gases using chemical solvents [7], 

sorbents (such as calcium oxide [8] or carbon fibers [9]) and membranes [10] without 

changing the combustion process. However, the addition of a post-combustion capture unit 

may change the steam cycle because large quantity of low pressure steam must be extracted 

from the steam cycle for the solvent regeneration process. 

 Oxy-fuel combustion: Instead of using air as oxidizer, pure oxygen (O2) or a mixture of O2 

and recycled flue gas is used to generate high CO2 concentration product gas; therefore, the 

combustion process is significantly changed. Chemical-Looping Combustion (CLC) is 

another combustion process that belongs to the oxy-fuel combustion category, in which pure 

oxygen rather than air is supplied by metal oxides for combustion, such that the mixing 

between CO2 and N2 is inherently avoided. This technology is not the primary focus of this 

paper, and, the reader is referred to [11-13] for more details on CLC. 

In general, the technologies described above can be applied to generate energy from natural 

gas and coal with the exemption of some low rank coals due to unresolved engineering 

challenges, however, because of the important role of pulverized coal in base load electricity 

generation and its contribution to CO2 emission, this study is primarily concerned with the 

combustion of pulverized coal, although some mention is made of other fuels as well. 
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Table 1-1. Representative performance and economics data for the three main capture technologies, 

from [14]. 

Supercritical PCa SCb PC-Oxyfuel IGCCc 
Performance 

w/o capture w/ capture w/ capture w/o capture w/ capture

Generating efficiency 38.5% 29.3% 30.6% 38.4% 31.2% 

Efficiency penalty CO2 recovery (heat): -5% Boiler/FGD: 3% Water/Gas shift: -4.2% 

 CO2 compression: -3.5% ASU: -6.4% CO2 compression: -2.1% 

 CO2 recovery (power): -0.7% CO2 compression: -3.5% CO2 recovery: -0.9% 

   Other: -1%   

Capital Cost ($/kWe)e 1330 2140 (1314)d 1900 (867)d 1430 1890 

COE (c/kWh)e 4.78 7.69 6.98 5.13 6.52 

Cost of CO2 ($/t)e 40.4 30.3 24.0 

a PC: pulverized coal; b SC: supercritical; c IGCC: Integrated gasification combined cycle; d Figures in parenthesis 

are the expected capital cost for retrofits; e Based on design studies done between 2000 & 2004, a period of cost 

stability, updated to 2005$ using CPI inflation rate. 

 

These three major carbon capture technologies for coal-fired power plants have been 

studied in terms of power generation efficiency, capital costs and costs of electricity (COE) [14-

16]. Representative energy efficiency and economic performance of these technology options are 

compared in Table 1-1. All of these estimates are based on 90% CO2 capture in rebuilt and 

retrofitted scenarios. The cost of CO2 indicates the cost that is incurred to capture 1 metric ton 

carbon dioxide without transportation and storage. Although the absolute numbers vary by few 

percentage points in these studies, all reports show the same trends. In general, all three capture 

technologies result in an efficiency penalty, while oxy-fuel capture and pre- capture or IGCC 

show advantages over post-combustion capture in terms of COE and cost of CO2. The IGCC 

technology yields a higher generation efficiency and a slightly lower cost than oxy-fuel 

combustion technology. However, all these technologies are in their early stages of development 
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and still have great potential for improvement.  

In particular, these studies have a common conclusion that oxy-fuel combustion is the most 

competitive technology option for retrofitting existing coal-fired power plants, which at the 

moment have the largest potential for CCS. Although the number of newly-built coal power 

generation units declined since 1990s’, there is a resurgence of new coal power plants in recent 

years. Moreover, about 98.7 GW or 29% of all the existing coal-fired power capacity were built 

after 1980 [17]. This situation is even more prominent in developing countries such as China and 

India, where the coal power generation capacity has been booming in the last two decades. It can 

safely be assumed that a sizable reduction of CO2 emission from existing plants would come 

from retrofits. Oxy-fuel combustion systems have a natural advantage in retrofitting existing PC 

power plants because they can reuse most of the existing plant equipment. The advantages of 

oxy-fuel combustion as a retrofit technology are also indicated in Table 1-1. The capital cost for 

supercritical PC retrofits with oxy-fuel is $867/kWe, which is significantly lower than the capital 

cost of post-combustion retrofit ($1314/kWe) and of newly-built IGCC plants ($1890/kWe).  

Considering the advantages of a relatively moderate efficiency penalty and the lowest 

retrofit capital expenditure, atmospheric oxy-fuel combustion systems have been widely 

accepted as a competitive carbon capture technology. More recently, it has been adopted to 

substitute the original IGCC plan in the U.S. DOE FutureGen 2.0 program [18]. Previous studies 

have reviewed its fundamentals and characteristics [6, 19-22], as well as recent developments in 

pilot-scale and commercial-scale demonstration plants [23]. While successful, the technology 

still faces many challenges, such as air leakage into the flue gas system, the relatively low energy 

efficiency, the need for efficient air separation and better plant integration and flue gas cleanup, 

among others. In particular, significant challenges are expected in the combustion process itself, 
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including stability and emissions, burner design and scaling, as well as determining of optimal 

operating conditions. 

1.2. Oxy-Fuel Combustion for CCS 

1.2.1. Development of the Oxy-Fuel Technology for CCS 

The idea of applying oxy-fuel processes with flue gas recycle in coal-fired plants to control 

the CO2 emission [24, 25] and/or produce high concentration CO2 for enhanced oil recovery 

(EOR) was first proposed in 1982 [24, 26]. Following these proposals, Argonne National 

Laboratory (ANL) pioneered the investigation of this process in the mid and late 1980s, focusing 

on the system and its combustion characteristics [27-29]. Soon after, more and more researchers 

agreed that this system complements the two other major approaches for carbon dioxide capture, 

which led to a renewed interest in this technology in the 1990s. Research conducted by the 

International Flame Research Foundation (IFRF), CANMET, IHI, as well as other institutes and 

industrial parties has made considerable contributions in understanding of this process. 

Along with the research and development on the air-like oxy-coal technology, pilot and 

large scale demonstration plants are being built around the world. Wall et al. [23] surveyed 

research on oxy-fuel technology, from pilot-scale tests, to industry-scale tests and full-scale 

demonstrations, and compiled the historical development of this technology worldwide. The year 

2008 marks an important milestone with the commissioning of the world’s first 30 MWth 

demonstration plant in Germany. More large-scale demonstrations in industry-scale coal-fired 

boilers have been planned or are already underway, as shown in Table 1-2 based on the work of 

Wall et al. [23] and Herzog [30]. Success in these demonstrations is expected to lead to wider 

commercial deployment. 
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Recent research has also focused on extending the range of operating conditions of oxy-coal 

combustion to improve energy efficiency, environmental performance and economics of this 

technology. For instance, pressurized systems have been proposed for both oxy-coal combustion 

with recycled flue gases [31-36] and oxy-syngas combustion in combination with solid fuel 

gasification technology [37]. These approaches are described in greater detail in the following 

sections. 

1.2.2. Atmospheric Oxy-Coal Combustion Systems with Flue Gas Recycle 

The atmospheric oxy-coal combustion system shown in Figure 1-1 was first introduced as a 

short-term solution to retrofit existing coal-fired power plant to include the option of CCS. In 

most oxy-coal system studies, recycled flue gases at various recycle ratios are used to control the 

flame temperature in the combustor and as a result, the flue gas consists primarily of steam 

which is later removed through condensation, and carbon dioxide which is purified before being 

sent for compression and sequestration. The additional equipment required, when compared with 

air-fired systems, is described below: 

 

Figure 1-1. Atmospheric oxy-coal combustion system with flue gas recycle proposed for carbon ca

pture in coal power plants, figures are revised based on the work in [19-21].  
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Table 1-2. List of ongoing and proposed large scale oxy-coal combustion demonstration projects, modified from Wall et al. [23], the CCS project 

database of MIT Energy Initiative [30] with current updates of these projects. 

Project name Leader Location Scale
Technology

MWe 
New/ 
Retrofit

Power
Gen 

CO2 
Seq 

Start-up 

Jupiter Pearl Plant Jupiter USA Pilot  22(MWth) R N NAc 2007 
B&W pilot plant B&W USA Pilot PCa 30(MWth) R N N 2008 
OxyCoal-UK Doosan Babcock UK Pilot PCa 40(MWth) R N N 2009 
Alstom Windsor Facility Alstom USA Pilot PCa 15(MWth) R N N 2009 
Schwarze Pumpe Vattenfall Germany Pilot PCa 10 N N Seq 

d 
2008 

Callide-A CS Energy, IHI etc. Australia Pilot PCa 30 R Y Seq 

d  
2011 

Compostilla (OXY-CFB-
300)  
Phase I 

ENDESA, CIUDEN and Foster 
Wheeler 

Spain Pilot CFBb 17 N Y Seq 

d 
2011-
2012 

Jamestown Jamestown BPU USA Demo CFB 43 N N Seq 

d 
2013 

Janschwalde Vattenfall Germany Demo PCa 250 N Y Seq 

d 
2015 

FutureGen FutureGen Alliance USA Demo PCa 200 R Y Seq 

d 
2015 

Compostilla (OXY-CFB-
300)  
Phase II 

ENDESA, CIUDEN and Foster 
Wheeler 

Spain Demo CFBb 300 N Y Seq 

d 
2015 

Youngdong KEPCO S. Korea Demo PCa 100 R Y Seq 

d  
2016 

Black Hills Power Black Hills Corporation USA Demo PCa 100 N Y NAc 2016 
a PC: Pulverized Coal; b CFB: Circulated Fluid Bed; c NA: Data Not Available; d Seq: Sequestration 
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Air Separation Unit (ASU): When retrofitting existing PC power plants, the system 

primarily uses existing equipment with the exception of an ASU used to produce an oxygen 

rich stream for combustion. Currently, the only ASU technology that can meet the volume 

and purity demand of a large scale coal-fired utility boiler is based on cryogenic distillation. 

Air is compressed, cooled and cleaned prior to being introduced into the distillation column 

to separate air into an oxygen-rich stream and a nitrogen-rich stream. Cryogenic air 

separation is energy intensive, consuming about 0.24 kWh/kg O2 with 95% oxygen purity 

[15, 38]. Although the oxygen purity requirement for oxy-coal combustion (85~98%) is 

lower than that needed in the process industry (99.5~99.6%) [39], these cryogenic 

separation processes can consume more than 15% of the gross power output [15, 40-42].  

Carbon Dioxide Purification Unit (CPU): CPU consists of gas cleanup units to remove 

water, particulate matter and other pollutant gases from the flue gas before being 

compressed for sequestration. Because oxy-combustion is compatible with retrofits, 

selective catalytic reduction (SCR), electrostatic precipitator (ESP) and flue gas 

desulphurization (FGD) are typically retained as means of NOx, particulate matter and SOx 

removal from the flue gases. This method is also suitable for use in conjunction with 

amine-type absorbents for post-combustion capture plants.  

It has been widely accepted that the non-condensable impurities, such as O2, may cause 

corrosion in the pipeline during transportation, and this has raised doubts about the safety 

of the storage sites. Therefore, after the removal of acid gases such as SOx and NOx, non-

condensable N2, O2, and Ar should also be purged using a non-condensable gas purification 

unit. This unit is made of multi-stage compression units with inter-stage cooling in order to 
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separate out the inert gases. Up to the time of this review, there are still no agreed upon 

standards regarding the required purity of CO2 for storage and sequestration. However, it 

should be noted that the acceptable degree of purity of the storage-ready CO2 results from a 

trade-off between efficiency losses and operational costs during purification and the safety 

demands of transportation and storage. For a detailed discussion of this topic, the reader is 

referred to [19]. 

Flue Gas Recycle (FGR) System: Recycled flue gas is required to moderate the combustion 

temperature. Considering system efficiency and operation practices, flue gases can be 

recycled at different locations downstream of the economizer in the form of wet or dry 

recycles. In the early stages of oxy-coal system studies, the requirement on CO2 purity was 

not stringent and the desulfurization and de-NOx equipment were regarded as unnecessary 

[43, 44]. Therefore, all the flue gas was proposed to be extracted from a single location 

downstream of the ESP in wet or dry forms [43]. Later on, Dillon et al. [44] proposed flue 

gas recycling at different locations for the primary (used for transporting coal) and 

secondary streams for the sake of energy efficiency: while the primary recycle has to be 

dried and reheated to 250-300 oC to take up moisture from the coal feed, the secondary 

stream can be recycled at higher temperatures without drying to eliminate thermodynamic 

losses caused by cooling and re-heating [44].  

Today, with a stricter requirement on CO2 purity for pipeline transportation and 

storage, pollution control equipment have been again taken into account in the flue gas 

recycle configurations. Moreover, since SO2 concentration in the flue gas may accumulate 

due to flue gas recycle, resulting in 2 or 3 times higher concentration than in conventional 
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air-firing systems, the primary recycle has to be at least partially desulphurized for medium 

and high sulphur coal, to avid corrosion in the coal mill and flue gas pipes. 

 

Figure 1-2. Pressurized oxy-coal combustion systems proposed for carbon capture in coal power plants, 

figures are revised based on the work in [35, 36, 45, 46]. (a) Schematic of the ThermoEnergy Integrated 

Power System (TIPS), (b) System proposed by ENEL based on a combustion process patented by ITEA, 

and analyzed in recent studies by MIT. 

 

1.2.3. Pressurized Oxy-Coal Combustion Systems 

Pressurized oxy-fuel combustion systems have been proposed recently, with the 

objective of improving the energy efficiency by recovering the latent heat of steam in the 

flue gas. The flue gas volume is reduced under elevated pressure, which results in smaller 
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components and possible reductions in capital cost for the same power output. Several 

studies have reported on the technical and economic feasibility of this process [31-36, 47, 

48], all concluding that the overall process efficiency improves with increasing operating 

pressure. This is mainly because latent heat recovery from the flue gases becomes possible 

at higher temperatures. Other potential advantages of pressurized oxy-fuel systems are the 

reduction of the auxiliary power consumption such as the recycle fan work, and the 

elimination of air ingress into the system. However, there are challenges associated with 

combustion and heat transfer characteristics at elevated pressures, and hence the burners, 

steam/gas heat exchangers and condensing heat exchangers must be redesigned [49]. 

Figure 1-2 illustrates two different pressurized oxy-coal combustion systems proposed 

in the literature. One of the first designs is the ThermoEnergy Integrated Power System 

(TIPS) proposed and studied by CANMET [31, 45] and Babcock power [36]. This system 

(Figure 1-2a) uses a pressurized combustion unit and heat exchangers, as well as a flue gas 

condenser (FGC). Downstream of the radiative boiler and convective heat exchangers, 

steam in the flue gases is condensed in the FGC, where most of the latent heat in the flue 

gas is recovered by the feedwater in the steam cycle. The rest of the flue gas, which is 

essentially CO2, is purified and compressed to the sequestration specifications. In contrast, 

in the pressurized system proposed by ENEL based on a combustion process patented by 

ITEA [50-52], and analyzed by MIT (Figure 1-2b) [34, 35], the hot flue gases from the 

pressurized combustor is quenched to about 800 ºC by the recycled cold flue gas, 

eliminating the need for a radiant heat exchanger and thus incurring a lower capital cost. It 

should be noted that in these pressurized oxy-coal systems coal is fed in the form of coal-
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water slurry (CWS). Since the pressurized system takes advantage of the latent heat 

recovery from the steam in the flue gas, using a coal-water slurry does not significantly 

decrease the overall energy efficiency. 

For the pressurized oxy-fuel power plants with CO2 enriched flue gas streams, 

desulphurization and NOx removal solutions have been proposed with potentially lower 

cost and higher energy efficiency, using lead chamber chemistry and nitric acid chemistry 

at elevated pressures. For instance, Air Products [53, 54] proposed utilizing two high 

pressure countercurrent reactive absorption columns (see Figure 1-2 (b)) while Iloeje et al. 

[55] combines them into a single high pressure column to remove SOx as H2SO4 and NOx 

as HNO3. Both solutions claim to have significantly reduced the cost of CO2 purification 

with the latter having an advantage in terms of reduced power consumption and capital cost. 

1.2.4. Energy Efficiency Performance of the Oxy-Coal Combustion Systems 

An important question to address at this juncture is the comparative performance of 

the atmospheric and pressurized oxy-fuel combustion systems described above. Figure 1-3 

shows the capital expenditure ($/kWe) and efficiency (HHV%) of these systems for newly-

built power plants, compared to the performance of supercritical pulverized coal systems 

without capture and with post-combustion capture. Data are summarized from independent 

studies carried out by NETL [15], MIT [14, 34, 35], CANMET [45, 56], ThermoEnergy [32, 

46, 57], and Kanniche et al [16]. It is noteworthy that estimates in the open literature vary 

according to their assumptions and approximations. For instance, fuel type, size and 

configuration of the power plants, percentage of CO2 captured, and parameters of the steam 

turbine, etc. Allowing for differences in modeling assumptions, the results from these 
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studies are averaged in Figure 1-3, with the minimum and maximum values shown as error 

bars; and they should only be compared qualitatively.  
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Figure 1-3. Comparison of plant generating efficiency and capital expenditure [14-16, 34, 46, 56, 57] of 

CO2 capture technologies. PC: conventional PC system without capture, Post: PC with post capture, A-

Oxyf: atmospheric oxy-coal with flue gas recycle, P-Oxyf: pressurized oxy-coal with flue gas recycle. 

 

System efficiency estimates showed a loss of about 10-15% percentage points when 

post-combustion capture is added to the base case PC power plant. On the other hand, the 

atmospheric oxy-fuel combustion shows an advantage of 1-5 percentage points when 

compared with post-combustion capture; while the pressurized system gains a further 3 

percentage points efficiency. The main advantage of pressurized oxy-fuel system is the 

higher saturation temperature of water at elevated pressures, which enables more thermal 
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energy recovery and the recuperation of latent enthalpy, as stated previously. Although the 

power consumption of the ASU is higher in the pressurized combustion system, the power 

savings in the CO2 compression unit and in the recycled flue gas compressor is even higher, 

culminating in a better overall efficiency [34].  

There are significant variations in capital costs estimates in these studies due to 

inflation since 2004. The MIT study [14] showed lower cost estimates for the PC without 

capture, post-combustion, and atmospheric oxy-fuel systems, because it was based on the 

cost of 2000-2004; while Pomalis et al. [56] estimated higher costs. The economic studies 

may only be viewed as relatively comparable values, but not absolute values before they 

are evaluated from commercial scale deployments, especially for the pressurized oxyfuel 

systems. It should be noted that these data are for newly-built power plants, in fact, the 

capital cost estimates for retrofitted atmospheric oxy-coal power plants are significantly 

lower than any of these options as discussed in section 1.1. 

1.3. Fundamentals of Oxy-Fuel Combustion 

This section reviews the thermodynamics, transport and chemistry processes that take 

place during oxy-fuel combustion of coal [22]. Experimental and numerical studies of 

single coal particles or a group of coal particles are reviewed with emphasis on the impact 

of a CO2-rich environment. We start with a discussion on the heat transfer characteristics in 

oxy-fuel combustion and how to match the heat flux with that in the conventional air-fuel 

combustion, followed by a description of the stages and processes that a coal particle 

undergoes as it is entrained into the furnace: transportation, heating and moisture 
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evaporation, devolatilization, ignition and burning of the volatile matter, flame propagation, 

char combustion, and the CO2’s chemical effects on gas reactions. The physical properties 

of N2 and CO2 relevant to oxy-fuel combustion are summarized in Table 1-3. The effects of 

these properties will be discussed in greater detail in each of the following sub-sections. 

Table 1-3. Comparison of selected physical properties of CO2 and N2 at 1 atm and 1000 K. Data 

are cited from [58-61]. 

Physical process Physical property Unit CO2 N2 CO2/N2 

Thermodynamic Density 3kg m  0.5362 0.3413 1.57 

 Specific heat capacity kJ kgK  1.2343 1.1674 1.06 

 Volumetric heat capacity 3kJ m K  0.662 0.398 1.66 

 Gas-water interfacial tensiona N m  71.03 71.98 0.987 

Momentum transfer Kinematic viscosity 2m s  7.69e-5 1.2e-4 0.631 

Heat transfer Thermal conductivity W mK  7.057e-2 6.599e-2 1.07 

 Thermal diffusivity 2m s  1.1e-4 1.7e-4 0.644 

 Absorptivity /emissivity  0.1478 ~0 - 

Mass transfer Mass diffusivityb 2m s  9.8e-5 1.3e-4 0.778 
a Water gas interfacial tensions are evaluated for CO2/water and air/water interfaces at 298.15 K. 

b Mass diffusivity refers to the binary diffusion of O2 in CO2 and nitrogen. 

 

1.3.1. Heat Transfer 

Extensive studies have been conducted on retrofitting existing coal-fired power plants 

for oxy-fuel combustion. Most studies agree that the first priority in the retrofit effort is to 

maintain the same heat transfer characteristics in the furnace as in air-fired combustion. 

Matching the heat transfer in the furnace can lead to combustion stability, carbon burnout, 

and slagging and fouling tendencies [29].  
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1.3.1.1. Radiation Heat Transfer 

Radiative heat transfer plays an important role in boilers and furnaces. The 

characteristics of radiative heat transfer in oxy-combustion are distinct from conventional 

air-coal combustion because the flue gas compositions are different. A simplified scaling 

analysis can be used to estimate the radiative heat transfer rate from an oxy-fuel 

combustion flame. The entire flame is considered to be a uniform source of radiation, and 

its total radiative energy release rate can be approximated as: 

 4
rad f fq A T   (1.1) 

where   is the average emissivity for the flame, and fA  and fT  are the flame surface 

and temperature, respectively. The flame temperature is the overwhelming factor because of 

its 4th order dependence [62]. Therefore, to match the radiative heat flux between air and 

oxy combustion, one must achieve gas temperatures in the latter that are close to those 

found in the former.  

On the other hand, for the same flame temperature, radiation heat transfer is enhanced 

when the emissivity is higher. Unlike symmetric diatomic gases such as N2, triatomic gases 

such as CO2 and H2O are not transparent to radiation. Their partial pressures are 

significantly higher in oxy-fuel combustion flue gas than those in air-fuel combustion, and 

correspondingly, the absorptivity and emissivity of the flue gas substantially increases. 

When a radiation beam of specific wavelength   travels through a gas, a portion of 

the radiation intensity,  , is absorbed by the gas. The change in the spectral radiation 

intensity, dI  within an infinitesimal beam length  is: ds
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 dI I ds     (1.2) 

where   is the spectral absorption coefficient, which is a function of the wavelength, gas 

composition, gas temperature and pressure [63]. The spectral absorptivity and emissivity 

can be derived by integrating the above equation (1.2) over the beam length, : s

  1 exp s        (1.3) 
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Figure 1-4. Spectral absorptivity as a function of wavenumber for water vapor, carbon dioxide and 

methane, reproduced from reference [64].  

 

Figure 1-4 shows the spectral absorptivity,  , of the different gas components 

produced in a combustion process [64]. Since triatomic gases (CO2 and H2O) have much 

higher partial pressures when flue gases are used as the diluent instead of nitrogen, the 

absorption and radiation in oxy-combustion are stronger than in conventional air-fuel 

combustion with identical gas temperatures. A close look at Figure 1-4 shows that 
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absorption is not continuous over the entire spectrum; instead it is concentrated in a number 

of moderately wide spectral bands. The effective absorptivity and emissivity of a gas 

mixture can be obtained by integrating the above equation over the full spectrum. However, 

direct computation of the gas absorptivity is difficult, and gray gas or band models are 

widely used in the CFD modeling, which will be discussed later. 
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Figure 1-5. Comparison of total intensity measurements (symbols) and gas radiation modeling (lines) at 

384 mm away from the burner inlet. Data cited from Andersson et al. [65]. 

 

Soot and particle (coal, char and fly ash) radiative emission and absorption play as 

important a role as the triatomic gases in coal combustion [66, 67]. Experimental studies in 

oxyfuel combustion have confirmed this trend. Andersson and coworkers [65, 68-70] 

investigated the radiation intensity of propane-fired and lignite coal-fired oxy-fuel flames in 
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the Chalmers’100 kW test facility. The total radiation intensity was measured using a 

narrow angle radiometer, and the gas radiation was estimated using Malkmus Statistical 

Narrow Band Model (SNBM). Results of the calculated gas and the measured total 

radiation intensities at the flame zone are shown in Figure 1-5. It can be seen that the 

portion of the gas radiation in the total radiation intensities under OF25 condition (OF25 

denotes oxy-fuel combustion with O2 concentration of 25% in the burner gas) is 

significantly higher than in air-combustion. Measurements shows that the temperature 

distribution in the flame zone under OF25 condition is very close to that under the air-firing 

condition, and that the H2O partial pressure increases only slightly from air to OF25 

condition, therefore, the higher gas radiation in oxy-fuel combustion is attributed to its 5 

times higher partial pressures of CO2. However, as another important radiation source, the 

particle radiation contributes about 60-70% of the total radiation in both air-fired and oxy-

fired cases, which does not change much in oxy-fuel combustion. This study suggests that 

in lignite oxy-fuel combustion, if the gas temperature is maintained the same as in air 

combustion by increasing the O2 concentration to 25% (OF25), the measured total radiation 

intensities are similar (OF25-total and Air-total) although gas radiation is enhanced. This is 

because a large fraction of radiation is emitted by particles, which have similar contribution 

in both combustion environments.  

1.3.1.2. Convective Heat Transfer 

The convective heat flux of the flue gas, convq , can be approximated as follows: 

 convq h T    (1.4) 

where h is the convective heat transfer coefficient, and T  is the temperature difference 
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between the bulk gas and the heated object. The convective heat transfer coefficient is 

influenced by the flow velocity and gas properties such as viscosity, thermal conductivity, 

heat capacity and density, which are also functions of temperature. The ratio of convective 

heat transfer coefficients of the flue gas in oxy-fuel combustion ( ) to that in air-fuel 

combustion ( ) can be expressed in terms of dimensionless numbers - the Reynolds 

number and the Prandtl number - and the fluid thermal conductivity [

oxyh

airh

29]: 

 
Re Pr

Re Pr

m n

oxy oxy oxy oxy

air air air air

h k

h k

     
      
     

 (1.5) 

where m and n are empirical factors that vary for different geometries. The slightly higher 

thermal conductivity of CO2 does not significantly change the conductive heat transfer 

when compared with air-combustion. However, for convective heat transfer at identical 

velocity, its lower kinematic viscosity results in a larger Reynolds number and thus a higher 

convective heat transfer coefficient. 

Woycenko et al. [71, 72] studied convective heat transfer coefficients in oxy-coal and 

air-coal combustion. They found that the  ratio increases with increasing recycle 

ratio because of the changes in the thermal properties of the flue gas and the increase in the 

gas velocity. Moreover, this value is ~1.15 when the wet recycle ratio is 70%, at which the 

adiabatic flame temperatures are approximately the same. 

/oxy airh h

Recall that in Equation (1.4), the convective heat flux is a function of the temperature 

difference ( ), which on average decreases with increasing recycle ratio. Therefore, an 

acceptable operational range of the flue gas recycle ratio exists in which one can 

approximately match the convective heat transfer in oxy-coal combustion to that of air 

T
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combustion [19, 73]. Thus the existing coal-fired power plant can be retrofitted to function 

as an oxy-coal plant without replacing the boiler or heat exchangers. 

1.3.1.3. Matching the Heat Transfer in Oxy-Fuel Boilers 

There are several constraints that need to be considered when retrofitting a 

conventional air-fired power plant to oxyfuel combustion, including the combustion 

temperature, the furnace outlet temperature, and the heat transfer in radiative and 

convective heat exchangers. Based on the above analyses, it appears that matching the gas 

temperature profiles in the boiler is a starting point in the effort to maintain similar heat 

transfer characteristics in oxy-coal combustion. A good indication that the temperature 

profiles are matched is when a similar adiabatic flame temperature (AFT) is achieved. Wall 

et al. [21] calculated the theoretical O2 mole fraction (or flue gas recycle ratio) necessary to 

maintain the same AFT under air-coal and oxy-coal combustion conditions using the 

equilibrium approximation. Approximately 20% excess air in air-coal combustion and 3-

5% excess O2 in oxy-coal combustion are used to ensure that all the calculations are done 

on the same basis of about 3.3% (v/v) residual O2 in the flue gas. Figure 1-6 shows the 

computational results of the AFT in air-fired and oxy-fired conditions with increasing 

oxygen fractions for both wet and dry flue gas recycle. The results suggest a temperature 

drop of about 400 K and 800 K, respectively, in wet and dry recycling oxy-fuel combustion 

with oxygen concentration of 21% by volume when compared with that of the air-fired 

condition. The authors did not indicate the coal type in their calculation; it should be noted 

that the results are depend on the approximate and ultimate analysis of coal. 
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Figure 1-6. The O2 partial pressure (fraction) required at burner inlet (to achieve similar adiabatic flame 

temperature as the air-fired case) for wet and dry flue gas recycle (residual O2 mole fraction in the flue 

gas fixed at 3.3%) [21]. The symbol ￭ indicates the AFT of air-coal combustion, the red solid line — 

and blue dash line --- indicate the AFT of oxy-coal combustion with dry and wet flue gas recycle, 

respectively. 

 

Considering that the radiative and convective heat transfer characteristics in oxy-fuel 

combustion are rather different from those in air-fuel combustion, a matched gas 

temperature might be close to, but not precisely, the optimum operating condition in order 

to obtain a matched distribution of heat fluxes in different heat exchanger components. 

Hence, studies have also been conducted in order to find the optimum recycle ratios for a 

matched heat transfer distribution in the furnace (radiative section) and in the convective 
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section. Table 1-4 summarizes the experimental studies on the heat transfer characteristics in 

oxy-fuel combustion. Based on the discussion earlier, depending on the furnace geometry, 

fuel type, and other operating conditions, there is an optimal flue gas recycle ratio that 

matches the heat transfer distribution between radiative heat exchangers for phase change 

and convective heat exchangers for superheat. Lower recycle ratios result in higher 

combustion temperatures and excess heat extraction in the radiative section, especially in 

the water-cooling membrane section. In this case, the required superheat and reheat 

temperatures of the steam cannot be attained. Conversely, higher recycle ratios result in a 

lower combustion temperature and a reduced steam mass flow rate that is overheated. In 

this case, considerable attemperation (a measure controlling the overheated steam 

temperature) with feedwater injection is required to reduce the steam superheat temperature, 

and this would reduce the boiler efficiency [29]. 



Table 1-4. Bench and pilot scale experimental studies on gas temperature and heat transfer in atmospheric oxy-coal combustion. 

Organization Fuel Facility Recycle mode Experiment findings 

Argonne 
National 
Lab/EERCa [27, 
29] 

Black Thunder 
Sub-bituminous 
Coal fro
Wyoming 

m 

3 MWth, vertical tower 
furnace 

Wet/Dry FGR Flue gas recycle ratios ((CO2+H2O)/O2 in the oxidant) of 3.25 and 
2.6, in wet and dry recycle respectively, matches the overall heat 
transfer of the air-fired furnace 

Argonne 
National 
Lab/BCL [28, 29, 
74] 

Wage coal from 
Colorado 

117 kWth, bench scale 
furnace, i.d. 0.6 m 

CO2/O2 
mixture 

Dry recycling with a CO2/O2 molar ratio of 2.23 yields a furnace 
temperature distribution similar to that of air combustion. 

IFRF [71, 72] Coal 2.5 MW, 2*2 m 
internal square cross-
section 

Wet FGR 58-61% of the flue gas is recycled for stable combustion and 
matched convective heat transfer coefficient and radiative heat flux 

University of 
Leeds [75, 76] 

Bituminous coals 
from UK and 
international 
sources 

Down-fired 20 kWth 
combustor 

CO2/O2 
mixture 

When air is used as the primary stream, an O2 concentration of 30% 
in the secondary stream produces matching gas temperature 
profiles. When an oxygen concentration of 30% is used in both 
primary and secondary stream, the resulting gas temperature is 
higher than air-coal combustion. 

Chalmers 
University of 
Technology [65, 
68-70] 

Propane and 
lignite coal 

100 kWth Dry FGR Oxy-Propane combustion: With an O2 mole fraction of 25%, the 
temperature profiles in the furnace can be matched with that of air-
propane combustion. Soot formation also plays an important role in 
the radiation intensity in air and oxy-combustion of propane. 
Calculated gas radiation is higher in oxy-combustion than in air 
combustion, but contributes only 30%-50% of the total radiation 
intensity. 

Oxy-Lignite coal combustion: With an O2 mole fraction of 25%, the 
temperature distribution can be matched with that of air-fuel 
combustion; the flue gas temperatures at the furnace outlet are lower 
in all the oxy-fuel cases than in air-fuel case.  

IHI [77] Low- and 
medium-volatile 

1.2 MWth horizontal 
combustion test facility

Wet/Dry FGR When using a secondary gas stream with an oxygen mole fraction of 
30%, and dry recycled flue gas as the primary gas, the gas 
temperature near the burner is lower in oxy-fuel combustion; the gas 
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bituminous Coal temperature is greatly increased with direct oxygen injection; drying 
the primary gas increases the gas temperature by 150 ºC near the 
burner. 

RWEn power 
[73] 

Russian and 
South African 
coals 

0.5 MWth, RWEn 
combustion test facility

Simulated Dry 
FGR 

Peak radiative heat flux values are inversely related to the recycle 
ratio. Conversely, the convective heat transfer values increase with 
increasing recycle ratio. A matched radiative heat transfer is 
established at recycle ratio between 68% and 72% for Russian coal, 
and between 72% and 75% for South African coal, respectively. 

The experimental data show that matched heat transfer 
characteristics can be established with about 74% dry recycle ratio 
for Russian coal. 

CCSD/IHI [21] Three Australian 
coals 

1.2 MWth pilot scale 
vertical test facility 

Wet FGR When using an average oxygen mole fraction of 27% in the burner 
streams, the maximum flame temperature in oxy-fuel combustion is 
100-150 ºC lower than the air-fuel flame temperature. The gas 
temperatures downstream of the burner are almost matched with 
that of air-fuel combustion. 

E.ON 
UK/Hitachi [78] 

Tselentis coal 1 MWth, horizontal 
firing  

Dry FGR Gas temperatures of the oxy-fuel flame with a dry recycle ratio of 
76%  (21.3% O2 in the burner gas) are lower than the temperatures 
in air-fired flame. 

IVD/Hitachi [78] Lausitz lignite 
coal from 
Germany 

500 kWth, down-shot 
firing 

Wet FGR Gas temperatures of the oxy-fuel flame with a  wet recycle ratio of 
53% (39.3% O2 in the burner gas) are lower before the level 3 
measurement port, and higher at all following levels. 

CANMET [79, 
80] 

Bituminous, sub-
bituminous, and 
lignite coals 

0.3 MWth, vertical 
combustor research 
facility (VCRF), 
cylinder down-flow, 
0.6 m inner diameter 

CO2/O2 
mixture, or 
Partial FGR 
with make-up 
CO2 

With an O2 mole fraction of 28%-35%, the gas temperatures and 
heat fluxes can be matched with those of the air-coal combustion. 

a Energy and Environment Research Corporation in Irvine, CA 

 



1.3.2. Heating and Moisture Evaporation of Coal Particles 

Grinded pulverized coal particles are heated up and partially dried by the primary air or recycled 

flue gas in the coal mill in order to avoid blockage of the primary pipe. To ensure drying capacity, the 

primary air or recycled flue gas should be reheated to above 250 oC, and maintained around 60-90 oC at 

the mill exit [44]. The remaining moisture content of the coal particle, or the water content in the case 

of CWS fuel, is evaporated in the furnace before heating, devolatilization and burning take place. 

Considering the different heat transfer characteristics in oxy-fuel combustion, heating and moisture 

evaporation processes of a single coal particle might be different, which in turn may influence the 

heating rate, devolatilization rate and yield, as well as the standoff distance of the flame (also denoted 

as lift-off distance, which is defined as the distance between the burner tip and the visible ignition of 

the flame). 

 

Figure 1-7. Schematic diagram of heat transfer to a single particle in coal combustion. 

 

In this work, the impact of the gas composition on single coal particle drying and heating 
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processes is analyzed using a simplified heat transfer model, and the evaporation time and heating rate 

in air-fuel and oxy-fuel conditions are estimated. Figure 1-7 shows an illustration of a quasi-steady 

model that considers heat transfer between a single coal particle, the surrounding gases and the 

luminous flame. The energy conservation of a coal particle can be expressed as the balance of the 

particle internal energy and convective/radiative heat transfer: 

   3 2 2 44
4 4

3
p

p p p p p p f f p p

dT
r c r h T T r T T

dt
          4  (1.6) 

where  is the temperature of the surrounding hot gas, and T fT  is the flame temperature. The 

heating rate is strongly determined by the temperatures of the gas and the flame. If the oxygen 

concentration is kept the same, the flame temperature for oxy-combustion is comparatively lower than 

that of the air-fuel combustion, resulting in a lower heating rate. This effect is considered in the 

estimation by assigning different surrounding gas tempeatures. On the other hand, the convective heat 

transfer coefficient of the flue gas, , may be different, which also may result in a different heating 

rate and evaporation time in oxy-fuel combustion. 

h

Water evaporation from the coal particle is a process that couples heat and mass transfer. Using the 

quasi-steady model of droplet evaporation [81] and the model of coal-water slurry evaporation 

proposed by Cen et al.[82], evaporation times for different particle sizes under both air and CO2 

conditions are calculated. The reader is referred to [22] for detailed assumptions and derivations. The 

drying process in the mill and the furnace, and the heating process after evaporation under both air- and 

oxy-combustion conditions are investigated using the model, and the parameters and properties use in 

the calculation are summarized in Table 1-5.  
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Table 1-5. Parameters used in estimation of the heating and drying processes of single coal particle. 

 Temperature (oC) Gas properties Coal properties 
 T  fT  boilT   

Drying in 
mill 

105 - 100

Drying in 
furnace 

1000 1800 100

Heating in 
furnace 

1000, 900, 
800 

1800, 1700, 
1600 

- 

, , ,pgc k   for pure substances are cited from 

[58] at  1

2g boilT T T   

2pg H Oc c  

2
0.6 0.4g H Ok k k   [83] 

0.8  ,  
1500pc J k gK  

2442fgh kJ kg  

Moisture 
content=10% 

 

Figure 1-8 shows the required time for drying a coal particle under typical conditions in the mill 

and the furnace. The drying time of a 100 μm  coal particles is about 1 s in the primary gas stream, 

and about 2.5 ms in the furnace, respectively, and it grows with increasing particle diameter. An 

interesting observation is that the drying times are similar in both air and CO2 environment. For the 

typical size of a pulverized coal particle, the Reynolds number is small at the terminal velocity, such 

that the Nusselt number is close to 2, and the convective heat transfer is similar to conductive heat 

transfer under stagnant condition. Therefore, the thermal conductivity dominates the heat transfer rate. 

Given identical primary stream and combustion temperatures, the evaporation time is only slightly 

longer in the mill, and shorter in the furnace under CO2-rich environment than in air. The reason is that 

the thermal diffusivity of CO2 is slightly lower than air at the mill temperature, and slightly higher than 

air at the furnace temperature. However, the difference is negligible if the primary stream temperature 

in the mill, or surrounding gas and flame temperature in the furnace are identical in the two 

environments. Similarly, Figure 1-9 shows that the particle heating rate under CO2-rich condition is 

only slightly higher than that in air. 
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Figure 1-8. Predicted coal particle drying time as a function of particle size in air and CO2 gas 

atmospheres. Drying processes in the primary duct during fuel transportation and in the furnace before 

combustion are estimated. The primary gas stream is set at 105 oC, and the gas and flame temperatures in 

the furnace are set to 1000 oC and 1800 oC, respectively. 

The gas temperature and flame temperature are generally lower in oxy-coal combustion with 

similar oxygen concentrations. In order to investigate the impact of the potentially lower temperatures 

on the evaporation time, additional calculations were performed in which the temperatures in the CO2 

gas were reduced by 100 and 200 degrees from their original values, corresponding to =900 ºC and T

fT =1700 ºC, and =800 ºC and T fT =1600 ºC, respectively. The results of the new calculation are 

also shown in Figure 1-9. The heating rate of a 100 μm coal particle decreases in the cases where the 

gas and flame temperatures are 100 and 200 K lower than their original values. These results indicate 

that the particle heating rate is more significantly influenced by combustion temperatures than by gas 

compositions.  

 

 50 



0 2 4 6 8 10 12 14
500

600

700

800

900

1000

1100

T
p

 (
K

)

Time (ms)

 N2
 CO2
 CO2-100 K lower
 CO2-200 K lower

 

Figure 1-9. Predicted coal particle heating history in N2 and CO2 gas atmospheres. The gas temperature is set to 1000 

oC and the flame temperature 1800 oC, respectively. The gas and flame temperature drops of 100 oC and 200 oC 

accounts for the possible lower temperatures under oxyfuel condition. 

 

The analysis in this section indicate that employing a similar reheated recycled flue gas 

temperature will result in similar coal particle drying performance to that of air-combustion, and the 

evaporation time and heating rate does not change much if the combustion temperature is maintained in 

oxy-fuel combustion. It should also be noted that this analysis is based on isolated single 

particle/droplet, the more likely phenomenon of group drying may show other dependencies, and 

should be studied in the future. 

1.3.3. Coal Devolatilization and Char Formation 

During heating of the coal particles, volatile matter, including tar, light gases, and pyrolysis water, 

are released into the gas phase at a temperature above 300 ºC. Devolatilization is an endothermic 

process and its kinetics and yields are strongly governed by the temperature history (heating rate, peak 
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temperature, and holding time), ambient gas compositions and pressure [84-91]. Devolatilization 

kinetics and yields are usually investigated in inert gases, such as N2 and helium, to avoid the 

interaction with ambient gases. Devolatilization in a hydrogen environment (a.k.a. hydrogasification) is 

also of interest for the methanation process [86, 92]. Similarly, the devolatilization characteristics in a 

high CO2 concentration environment, which is typical of oxy-fuel combustion, are important and 

require more research.  

Table 1-6. Lab/Bench scale experiments on coal devolatilization in atmospheric N2 and CO2 environments. 

Author Facility Coal sample Coal 
mass 
flow 
rate 

Size Carrier 
gas flow 
rate 

Main 
gas 
flow 
rate 

Nominal 
temperature 

Residence 
time 

   (g/h) (μm) (L/h) (L/h) (ºC) (s) 
Rathnam [21, 
93]  

TGA Coal A,B,C and 
D 

NA 63-
90 

NA NA <1200 2400 

 Drop tube 
furnace 

Coal A,B,C and 
D 

4-5 63-
90 

48 312 1400 0.62 

Borrego et al. 
[94] 

Drop tube 
reactor 

High/Low 
volatile 
bituminous 

60 36-
75 

300 600 1300 0.3 

Al-
Makhadmeh et 
al. [95] 

Entrained 
flow reactor 

Bituminous 
(KK) and lignite 
(LA) 

500-
2500 

- 400 9200 700-1150 1 

Brix et al. [96] Entrained 
flow reactor 

South American 
bituminous 

50 90-
106 

18% 82% 900-1400 0.15-0.297

 

Experimental studies on the volatile yields at different heating rates using thermogravimetric 

analysis (TGA) and drop tube furnaces (DTF) are summarized in Table 1-6. The volatile yields 

reported by different researchers vary considerably. Some researchers observed higher volatile yields in 

CO2 at high temperatures, and attributed this to the char-CO2 gasification reaction, while others observe 

similar volatile yields. For example, when comparing the weight loss curves of a pulverized bituminous 

coal in N2 and CO2 atmospheres using TGA, Rathnam et al. [93] observed that coal devolatilization 

started at about 573 K and the weight loss history is similar for both atmospheres below 1030 K. 

However, the weight loss in CO2 is significantly higher when the temperature is higher than 1030 K 

due to the char-CO2 gasification reaction. They also measured the volatile yields of four coals in a DTF 
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with N2 and CO2 atmospheres at a nominal wall temperature of 1673 K. Once again, the volatile yields 

in CO2 are about 5-25% higher than those in the N2 atmosphere. Al-Makhadmeh et al. [95] have 

reached the same conclusion in their pyrolysis experiments on a medium volatile bituminous coal and a 

lignite coal using an entrained flow reactor in CO2 and N2 environments. To the contrary, Borrego and 

Alvarez [94] conducted coal pyrolysis experiments using a drop tube reactor at 1300 ºC, and reported a 

lower mass release in a CO2 pyrolysis environment for both Colombian vitrinite-rich high volatile 

bituminous coal and Western Canadian low volatile bituminous coal. Recently, Brix et al. [96] carried 

out pyrolysis experiments on a South American bituminous coal using an electrically heated entrained 

flow reactor in N2 and CO2 environments. In contrast to the observations reported in the previous 

paragraph, they found no difference in char morphology, char N2-BET surface area, or volatile yields in 

the N2 and CO2 environments. Brix et. al. reviewed the discrepancies from the previous experiments 

and suggested that the operating conditions used during these experiments, such as the mixing between 

cold and hot gas streams, the particle heating rate and the total particle residence times as summarized 

in Table 1-6, inevitably affected the results. These factors must be taken into consideration when the 

data are compared. They concluded that the char-CO2 gasification reaction does increase the volatile 

yield during devolatilization at high gas temperature and with long residence times (0.62 s and 1 s) as 

reported by Rathnam et al. [93] and Al-Makhadmeh et al. [95], respectively; whereas the lower mass 

release in CO2 environment reported by Borrego et al. [94] might be due to the high amount of cold 

entrainment gas (~1/3) and short residence time (0.3 s). 

Correspondingly, the char morphology and specific surface area measurements (BET) showed 

different trends in these above mentioned experiments. Larger surface areas were observed for coals 

pyrolyzed under CO2 devolatilization conditions in [93] and [95] to different extents. This was 

attributed to the char-CO2 gasification reaction and, as mentioned before, no significant differences 

were detected in the char sample in [96]. 



1.3.4. Ignition of Coal Particles 

Ignition and combustion behaviors of pulverized coal particle depend on the coal rank, particle 

size, heating rate and oxygen concentration in the environment. In general, two types of ignition 

mechanism have been observed for pulverized coal combustion: homogeneous ignition and 

heterogeneous ignition [97-99]. Homogeneous ignition is usually observed during high volatile 

bituminous coal combustion when volatile matter and O2 are heated to the mixture auto-ignition 

temperature. The high surface flux of volatile products forces the reaction zone away from the solid 

surface, thereby preventing the solid material from oxygen attack [98]. On the other hand, sub-

bituminous coal and lignite may experience heterogeneous ignition, in which ignition occurs via the 

oxidation of the coal surface [100], with or without fragmentation [101].  

For the same coal type and operating conditions, ignition delay of single coal particles in both 

O2/N2 and O2/CO2 environments has been experimentally studied. A series of experiments were 

conducted by Molina, Shaddix and coworkers in Sandia National Lab to study the ignition behavior of 

an individual coal particle [102, 103] and of groups of particles [104] under O2/CO2 and O2/N2 

conditions. The devolatilization time of Pittsburgh bituminous coal in different O2 concentrations in a 

laminar entrained flow reactor were measured, using CCD and interference filter technology for image 

capture and CH* chemiluminescence measurements. The results show that the ignition delay time ( i ) 

is longer in an O2/CO2 environment than in an O2/N2 environment with similar bath gas temperature 

profiles along the reactor. It is also observed that under both conditions, the ignition delay time 

decreases with increasing oxygen concentration. Shaddix and Molina [102, 103] analyzed the trends of 

longer ignition delay in O2/CO2, and discussed several possible effects at the presence of CO2, such as 

heating rate (heat transfer), homogeneous autoignition delay (heat capacity), CO2 thermal dissociation 

(equilibrium), as well as chemical effect of CO2 on the radical formation. They suggested that the 

longer ignition delay in O2/CO2 mixtures is mainly due to the higher heat capacity of CO2, its tendency 
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to suppress radical formation, or a combination of both [103]. 

Similarly, Stivers and Levendis [105] measured the ignition delay times of four North American 

coals, including two lignite coals, a sub-bituminous coal and a bituminous coal, in a drop tube furnace 

with O2/N2 and O2/CO2 atmospheres. In their experiments, the longer ignition delay in O2/CO2 

environment was observed not only for homogeneous ignitions of high volatile Pittsburgh bituminous 

coal, but also in heterogeneous ignition circumstances of lignite coals. 

1.3.5. Oxy-Char Combustion 

The effects of CO2 on char combustion/gasification have been extensively discussed for air-fired 

coal combustion [106-109], and more recently, for oxy-fired coal combustion [93, 110-112] . CO2 is not 

an inert diluent in combustion; thus, it may influence char combustion via several possible mechanisms: 

(a) the reduced oxygen mass transfer in CO2, (b) the lower temperature due to the higher heat capacity 

of CO2, and (c) the char-CO2 gasification reaction [111].  

Many experimental studies have been performed in recent years to investigate the effect of a CO2-

rich environment on the combustion rate of coal char. Care should be taken when interpreting these 

studies because experimental results are strongly dependent on the operating conditions. For instance, 

char oxidation may take place in different regimes, either kinetic-controlled (Zone I), diffusion-

controlled (Zone III), or controlled by both (Zone II), depending on the experimental temperature range, 

the coal rank and particle size used in the experiments, as well as the oxygen level in the ambient gas, 

among other factors. As a result, the char conversion rate under oxy-fuel conditions may become higher 

or lower than that in air-fuel mixtures.  

 



 

Figure 1-10. Char oxidation/gasification experiments in oxy-fuel conditions. The diagram shows three regions where 

the experiments were conducted. A: At low temperatures, reactions rates are the same in both O2/N2 and O2/CO2 

conditions; B: At high oxygen level and high temperatures, reaction rates are lower in oxy-fuel conditions; and C: At 

low oxygen level and high temperatures, reaction rates are higher in oxy-fuel conditions. The error bars show the 

range of operating conditions, colors show unchanged (black), decreased (blue), or increased (red) char consumption 

rate. 

 

With careful investigation of the experimental conditions used in the studies, the results can be 

classified into three regions, as illustrated in Figure 1-10, based on the oxygen concentrations and 

nominal temperatures in these experiments. Note that the nominal temperatures of the TGA and WMR 

experiments are the measured particle temperature; while in DTF and EFR experiments, because the 

char particle temperatures are not available in some of the studies, the nominal temperatures are the gas 

temperatures, which are hundreds degree lower than the burning char particle temperature, depending 

on the oxygen mole fraction and coal rank. For instance, the temperature difference between the char 

particle and the gas is 100-600 K in the Sandia EFR with an oxygen mole fraction between 12%-36% 
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[111], and is 400-1600 K in the Northeastern University DTF with an oxygen mole fraction between 

20%-100% [110]. 

 Region A- Low temperatures at any oxygen concentration: The char oxidation reaction dominates 

the char consumption, which is kinetically controlled at these low operating temperatures. Most 

TGA experiments [113-116] fall in this region, and the experimental results show similar reaction 

rates in O2/N2 and O2/CO2 environments. Clearly, when the oxygen concentration approaches 

100%, the difference between the two environments becomes negligible and the char consumption 

rate is the same even at high temperatures, as shown in the small narrow region in the top right of 

Figure 1-10. 

 Region B- High oxygen concentrations, high temperatures: The char oxidation reaction dominates 

the char consumption, but char consumption is either in Zone II (internal diffusion controlled) or 

Zone III (external diffusion controlled). DTF and EFR experiments [95, 96, 103, 110, 111] are 

typically conducted in this region, and the results show lower char consumption rates in O2/CO2 

conditions because of the lower oxygen diffusion rate in CO2. 

 Region C- Low oxygen concentrations, high temperatures: Char gasification reactions become 

significant at high temperatures and low oxygen concentrations. Experiments and numerical 

studies [117] have shown higher char consumption rates due to the gasification reactions. Similar 

to the exemption in Region A, the gasification reactions may also become dominant at low 

temperatures when the oxygen concentration approaches zero, as shown in the bottom left of 

Figure 1-10. 

The partitioning in Figure 1-10 is only qualitative and the boundaries of different regions may 

differ due to the differences in apparent char combustion behavior and reactor architecture. It should be 

noted that the above conclusions are based on analysis using simplified models. Other mechanisms 



might also affect oxy-char combustion, such as the interactions of the heterogeneous and homogeneous 

reactions, the multi-component diffusion within and around the porous char particle, as well as the 

catalytic effects of coal ash minerals. Comprehensive models are needed for a better understanding. 

1.3.6. Chemical Effects of CO2 in Gas Phase Reactions 

Experimental and simulation studies have shown that CO2 is not inert in gas phase reaction, but 

participates in the chemical reactions, and changes the reaction rates and species concentrations. For 

instance, the burning velocity of methane have been found to be significantly slower in CO2 diluent gas 

than in N2 [118]. Similarly, lower flame propagation velocity of pulverized coal in CO2 has been 

reported by Kiga et al. [119] and Suda et al. [120] using the microgravity drop shaft facility in the 

Japan Microgravity Center (JAMIC). 

Liu et al. [121] numerically investigated the burning velocities of methane and hydrogen under 

air-fired and oxy-fired conditions using a CHEMKIN-based model and GRI-Mech 3.0 mechanism. In 

their study, the kinetic effect of CO2 was isolated by implementing a fictitious specious FCO2 that had 

identical thermal and transport properties as CO2 but was not chemical active. The results for the 

laminar burning velocities of CH4 and H2 with diluent gases of N2, CO2 and FCO2 are shown in Figure 

1-11. Burning velocities in three cases were calculated: fuel/O2/N2, fuel/O2/CO2 and fuel/O2/N2/CO2 in 

which 30% N2 in air was replaced by CO2. Since the FCO2 is “inert” chemically, the difference 

between fuel/air and fuel/O2/FCO2 shows the effect of the physical properties on the burning velocity, 

while the difference between fuel/O2/FCO2 and fuel/O2/CO2 indicates the chemical effect of CO2. 

Further analysis found that the dominant reaction pathway for the chemical role of CO2 is as follows: 

 2CO+OH CO +H  (1.7) 

CO2 competes for the H radicals through the reverse reaction in Equation (1.7) with the most important 

chain branching reaction: 
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 2H+O O+OH  (1.8) 

Thus, the presence of CO2 significantly reduces the concentrations of important radicals, i.e. O and H 

radicals, leading to a reduction of the fuel burning rate [121]. Figure 1-11 indicates that CO2’s chemical 

effects play some role in reducing the burning velocity when replacing N2 with CO2. However, its 

physical properties have a more significant contribution.  
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Figure 1-11. Burning velocities of methane and hydrogen mixtures at increasing equivalence ratios. Oxygen mole 

fraction in the oxidizer is kept at 21% in all cases. Also plotted are the experimental data of Zhu et al. [118] in 

methane mixture and Westbrook [122] in hydrogen mixtures as filled symbols [121]. The symbol -⃝- indicates results 

using CO2, -∆- indicates results using FCO2. 

 

Moreover, higher CO has been observed in oxy-fuel combustion than that in traditional air 

combustion. CO is produced from devolatilization, the oxidation of volatile matter in the near-burner 

regions and char gasification reactions in the char combustion zone. From a thermodynamics point of 

view, the equilibrium CO concentration is governed by the following reversible reaction: 
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1
CO+ O CO

2
 2  (1.9) 

Equilibrium of this reaction is shifted towards CO2 dissociation under high temperatures and fuel rich 

conditions. Hence, CO concentration is expected to be higher in the flame zone of oxy-fuel combustion 

because of the higher CO2 partial pressure at the same temperature.  

Zheng and Furimsky [123] calculated the CO mole fraction in the equilibrium state in oxy-coal 

combustion and found that the CO concentration is 316 ppm at 1700 K when burning with 10% excess 

oxygen. This is substantially higher than that of air combustion, which has an equilibrium CO 

concentration of about 64 ppm at the same stoichiometric ratio. Glarborg and Bentzen [124] 

experimentally investigated CO concentrations during methane combustion in highly diluted 

environments with either N2 or CO2 as the diluent, in a plug-flow reactor with well-defined temperature 

profiles. Figure 1-12 shows the CO concentration in the product gas at the exit of the reactor under lean, 

stoichiometric and rich conditions in O2/N2 and O2/CO2 atmospheres. Substantially higher CO 

concentrations in the CO2 diluted environment than in the N2 diluted environment were observed in all 

cases. Moreover, that the CO concentration increases from fuel-lean to fuel-rich conditions in both 

diluent gases agrees with the trends of the equilibrium calculations in [123]. An accurate prediction of 

the CO concentration in the flame zone in oxy-fuel combustion becomes challenging and will be 

discussed in greater detail in section 2.6. 
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Figure 1-12. Experimental data of CO concentration in the methane combustion product gas at the outlet of a 

flow reactor as function of temperature and stoichiometry, with N2 or CO2 as bulk gas. From the top, the 

graphs show the CO mole fraction under lean, stoichiometric, and fuel-rich conditions [124].  The symbol ⃟ 

indicates burning in N2 diluent gas, while ∆ and ∇ indicate burning in CO2 diluent gas. 

 

Higher CO concentrations in the furnace have also been reported under oxy-coal conditions. 

Hjartstam et al. [70] observed that CO concentrations in the combustion zone near the burner, where 

the gas temperature is high and fuel-rich conditions prevail, are higher under the OF27 (OF27 means 
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27% O2/73% CO2) and OF29 oxy-fuel conditions than under air-fired condition. Higher CO 

concentrations in the furnace were also reported in CANMET’s tests at similar or higher combustion 

temperatures [79, 80]. Likewise, Rehfeldt et al. [78] found a significantly higher CO concentration in 

the oxygen lean flame region of oxy-Lausitz lignite combustion using a 0.5 MW pilot scale test facility.  

However, the high CO concentration in the combustion zone does not necessarily result in higher 

CO emissions because of its nearly complete oxidation downstream at lower temperatures. For instance, 

different trends on CO emission in oxy-fuel and air-fuel modes were reported in pilot scale tests: A 

lower CO emission intensity (mg/MJ) in oxy-fuel mode was reported in the experiments conducted by 

Hjartstam et al. [70], whereas Rehfeldt [78] reported a generally higher CO concentration and emission 

intensity in oxy-fuel flue gas independent of the firing system, the coal rank and minor deviations in the 

overall stoichiometry under the operating conditions in their experiments. In general, CO emission 

mainly depends on the burn-out of the fuel, which is determined by the burner performance and 

operating conditions such as stoichiometry. Managing CO emission in oxy-coal combustion would not 

be a major issue if the combustion is well controlled and complete. 

1.3.7. Summary 

In this section, the physics and chemistry of oxy-coal combustion have been discussed in the order 

of the sub-processes that take place when a coal particle is burned in a CO2 rich environment. In 

addition to reviewing experimental findings, simplified models were applied to identify the impact of 

the distinct physical properties and chemical effects of CO2 on the combustion characteristics. The 

causes and effects are summarized as follows: 

 Heat transfer: Emissivity and absorptivity of oxy-fuel combustion flue gases are enhanced due to 

the higher partial pressure of the triatomic gases, which results in different radiative heat transfer 

characteristics. Convective heat transfer coefficients are also changed due to the different flue gas 
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compositions. Flue gas recycle ratio is varied in the pilot scale oxy-combustion facilities to obtain 

matched gas temperature profiles and/or heat fluxes. The optimized recycle ratio is dependent on 

the wet/dry recycle strategy, the fuel type and the heat exchanger arrangement. A matched 

distribution of the radiative and convective heat transfer can be achieved at a slightly lower flame 

temperature in oxy-coal combustion than in air-coal combustion. 

 Particle heating and moisture evaporation: Calculations using a heat transfer model show that the 

heating and moisture evaporation rates in CO2-rich atmosphere in the mill and combustion zone 

are similar to those in air-coal combustion, given similar surrounding gases and flame temperatures. 

Considering the possibly lower combustion temperature in oxy-coal combustion, the heating time 

may be longer and ignition can be delayed. 

 Coal devolatilization: Lab scale TGA and drop tube furnace tests under different operating 

conditions indicate that the weight loss might be higher or lower in a CO2 environment than those 

under the N2 conditions, depending on the gas temperature and residence time. It is believed that 

the higher weight loss at temperatures above 1000 K in CO2 is due to the contribution of 

gasification reactions, however, there is no evident influence of the oxy-fuel environment on the 

devolatilization process. 

 Ignition delay: Lab scale experiments show that ignition delay is longer in O2/CO2 environments 

than in O2/N2 environments for several coal types. Results from a simplified simulation on 

methane ignition delay with detailed reaction mechanism indicated that the high volumetric heat 

capacity of CO2 is the main cause of the homogenous ignition delay.  

 Oxy-char combustion: The effects of CO2 on char consumption rate are two-fold. At high 

temperatures and sufficiently high O2 mole fractions where reactions are diffusion controlled, the 

char consumption rate is lower due to the lower binary diffusivity of O2 in CO2; whereas at high 
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temperatures and deficient O2 mole fractions, the char-CO2 gasification reaction can increase the 

char consumption rate. The effect of pressure on the oxidation and gasification reactions are 

discussed based on the knowledge acquired in coal gasification studies. 

 Pollutant formation: Experimental studies showed less sub-micron particulate matter in the fly ash 

distribution under oxy-coal combustion conditions when burning coal with an air-like oxygen mole 

fraction. Significantly lower NOx emission per unit energy was reported in the literature, although 

NOx concentrations in the flue gas may be comparable with [70, 78, 125], or 2 times higher than in 

the air-coal combustion due to flue gas recycle [79, 126]. The lower NOx emission intensity is a 

result of the NOx reduction during flue gas recycle, the lower rate of thermal and prompt NO 

formation, as well as the higher CO concentrations. Given similar combustion temperatures, CO 

concentration is significantly higher in oxy-coal combustion than in air-coal combustion due to the 

thermal dissociation of CO2. 

It should be noted that there are a few studies on pressurized oxy-coal combustion. However, the 

fundamentals derived from studies on atmospheric oxy-coal combustion can help bridge the knowledge 

gap and aid in the development of pressurized systems.  

1.4. Thesis outline 

In this study, CFD approach is used to model and investigate the oxy-coal combustion. Based on 

the literature review on its fundamentals in this chapter, the CFD modeling approaches, challenges, and 

relevant progress under the new oxy-fuel conditions will be discussed in Chapter 2. In Chapter 3, the 

performance of different turbulence models, i.e., the Large Eddy Simulation (LES) approach and the 

turbulence-viscosity models in Reynolds Average Navier-Stokes (RANS) approach, will be compared 

and validated in modeling a swirling flow oxy-coal burner. Chapter 4 will discuss the modeling of 

CO2’s chemical effects, in particular, the CO formation using appropriate reduced mechanisms.  
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Starting from Chapter 5, the validated CFD approach is applied to investigate the pressure’s 

effects on oxy-coal combustion, taking the pressure’s effect on the sub-processes of coal combustion 

into account. Slagging is an important phenomenon in pressurized coal combustion and gasification, 

Chapter 6 will introduce the development of a three-dimensional slag model, which is first of its kind 

and can be widely used for coal slagging studies with any reactor geometry.  

Chapter 7 summarizes the key conclusions and findings in this study, and provides an overview of 

the future research needs in the CFD modeling of oxy-coal combustion. 
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Chapter 2 CFD Modeling of Pulverized Coal 

Combustion and the Challenges under Oxy-Fuel 

Conditions 

2.1. Overview 

CFD techniques have become the third dimension in fluid dynamics and combustion studies 

alongside analytical modeling and experimental diagnostics [127]. CFD provides a relatively 

inexpensive (when submodels are used in connection with Reynolds-averaged Navier-Stokes (RANS) 

or when using coarse grain large-eddy simulation (LES) models) and indispensable tool to perform 

comprehensive studies on the fluid flow, heat transfer and chemical reactions in combustion. Currently, 

CFD modeling of oxy-coal combustion utilize approaches and sub-models that are similar to those 

developed under air-fired conditions. With the accumulated knowledge on the fundamental differences 

between air-fuel and oxy-fuel combustion, some effort has gone into developing and validating sub-

models for the new combustion environment. 

A selection of the CFD simulation studies on oxy-fuel combustion is summarized in Table 2-1, 

which includes the sub-models used for turbulence, radiation heat transfer, char combustion and 

homogenous reactions. Since the existing sub-models were developed for conventional air-coal 

combustion, their assumptions and approximations may not be valid in the CO2-rich environment. In 

the following sections, the development of CFD sub-model for an accurate prediction in oxy-coal 

combustion is reviewed, and the findings of these recent numerical studies are summarized. 

 



Table 2-1. Summary of CFD simulations and their sub-models for oxy-fuel combustion. 

Simulated object Modeling approaches Author 

Facility Fuel Code Turbulence Radiation Char 
Combustion

Homogeneous 
Reaction 
Mechanism 

Chemistry-
Turbulence 

Wang et al. 
[28] 

BCL Subscale combustor Wage coal 1-DICOG 
(1-D) 

N/A Zone Method 
[128], 
transparent gas

C+O2 
C+CO2 
C+H2O 

Vilatiles combustion Chemical 
Equilibrium 

Khare et al. 
[129] 

IHI 1.2 MWth vertical pilot 
scale test facility 

Coal A Fluent -k   P-1 
WSGG 

C+O2 Volatiles 
combustion 

Chemical 
Equilibrium 

Nozaki et al. 
[77] 

IHI 1.2 MWth horizontal 
combustion test facility 

Coal A/B VEGA-3 -k   Multi-flux 
Radiation 
model [130] 
Three-gray-
gas model 

C+O2 
C+CO2 
C+H2O 
[131] 

Volatiles 
combustion 

EBU 

Chui et al. 
[132] 

CANMET 0.3 MWth VCRF Western 
Canadian sub-
bituminous 
coal 

CFX-
TASCflow

Standard 
-k   

N/A C+O2 Volatiles 
combustion 

EBU 

Rehfeldt et al. 
[78] 

E.ON 1 MWth horizontal 
firing facility and IVD 500 
kWth down firing facility 

Tselentis coal 
and Lausitz 
lignite coal 

Fluent Standard 
-k   

DO C+O2 
C+CO2 

N/A N/A 

Toporov et al. 
[133] 

RWTH Aachen U test facility Rhenish 
lignite 

Fluent -k   DO 
WSGG 

C+O2 
C+CO2 
C+H2O 

Volatile breakup 
CO and H2 burning 
[134] 

Finite 
Rate/Eddy 
Dissipation 

Chen et al. 
[62] 

ISOTHERM PWR® 5 MWth 
pressurized test facility 

Bituminous 
coal 

Fluent Realizable 
-k  , 

-k   

DO WSGG C+O2 
C+CO2 
C+H2O 

Modified JL Finite 
Rate/Eddy 
Dissipation 

Andersen et 
al. [135] 

100 kW down-fired furnace 
[68]  

Propane Fluent Realizable 
-k   

P-1 N/A WD [136] and 
Modified WD [135], 
JL [137] and 
Modified JL [135] 

EDC 

Vascellari et 
al. [138] 

IFRF 2.4 MW furnace Gottelborn 
hvBp coal 

Fluent Standard 
-k   

P-1 C+O2 
C+CO2 
C+H2O 

Volatile 
decomposition, tar 
partially oxidation, 
Modified JL [139] 

EDC 

Muller et al. IFK 0.5 MWth test facility Lausitz lignite AIOLOS Standard DO C+O2 JL [137] EDC 
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[140] -k   Leckner’s 
model [141] 

C+CO2 
C+H2O 

Nikolopoulos 
et al. [142] 

330 MWe PC boiler in Meliti 
power plant, Greece 

Lignite from 
Achlada mine

Fluent Standard 
-k   

DO 
EWBM 

C+O2 
C+CO2 

Volatile combustion 
and CO burning 

Finite 
Rate/Eddy 
Dissipation 

Edge et al. 
[143] 

0.5 MWth Air- and oxy-fired 
combustion test facility with 
Doosan Babcock triple-staged 
low-NOx burner and IFRF 
Aerodynamically air-staged 
burner 

Coal A and B Fluent RNG -k   
and LES 

DO 
WSGG/FSK 

NA Volatile combustion 
and CO burning 

EDM 
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2.2. Governing Equations and Physical Properties 

Coal combustion is typically modeled as a dilute two-phase (solid-gas) reacting flow using an 

Eulerian-Lagrangian approach. The mass, momentum and energy interactions between the gas phase 

and the solid particles are calculated using the “particle-source-in-cell” method [144] while updating 

the particle state along a set of particle trajectories. For the gas phase, the equations governing mass, 

momentum, species and energy are written in conservative form:  

 
   j

j j j
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t x x x
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 (2.1) 

with , , ,  and  denoting Favre-averaged variables, time, velocity, diffusion coefficient, 

and source term, respectively [

 S

140]. These equations are the same in both air-coal combustion and oxy-

coal combustion. However, the thermodynamics and the transport properties of the gas mixture are 

different.  

In turbulent flows, the effects of turbulence on the transport properties, such as the turbulent 

viscosity, turbulent mass diffusivity, and turbulent thermal conductivity, generally dominate the laminar 

transport properties, resulting in a relatively insignificant contribution from the laminar properties. On 

the other hand, thermodynamic properties such as density and heat capacity are always important, 

regardless of whether it is a laminar or a turbulent flow. 

2.3. Turbulent Flow 

Some of the most important phenomena in a practical combustion process are dominated by 

turbulence, a fact that complicates the effort to predict their characteristics. Although direct numerical 

simulations (DNS) can resolve all the scales of the Navier-Stokes (NS) equations directly, because of 

its computational complexity, DNS can only be applied to simple and small geometries and at lower 
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Reynolds number. In situations where DNS is not feasible, turbulence models are used for 

approximating turbulent fluxes, turbulent dispersion and turbulent-combustion interactions. Several 

turbulence models have been developed; they are either based on the RANS or the LES approximations. 

In RANS-based models, dependent variables are decomposed into space-time averaged components 

and fluctuations. The resulting Reynolds fluxes are modeled by solving transport equations for the 

turbulent quantities, such as turbulent viscosity, turbulent kinetic energy, turbulent dissipation rate, etc., 

at all scales. On the other hand, LES resolves the large eddies directly, while the impact of the small 

eddies are modeled. In terms of the fraction of the resolved scales, LES falls between DNS and RANS 

[145]. CFD modeling of turbulent combustion, especially of coal or other solid fuels, is still largely 

based on RANS.  

As can be seen in Table 2-1, the two-equation k   model is widely used in oxy-coal combustion 

CFD simulations. These RANS simulations are reported to yield acceptable accuracy when compared 

with experimental data. Recently, Edge et al. [143] compared the performances of LES and RANS 

(RNG k  ) models in their simulation of air- and oxy-fired pulverized coal combustion in a 0.5 

MWth combustion test facility. The results show that LES predicts stronger recirculation zones than 

RANS simulations in all cases. It also yields a hotter flame edge because of its ability to resolve the 

large eddies of hot gas. In general, similar improvements are observed when using LES instead of 

RANS under air-fired and oxy-fired conditions. The study also showed that simulations using a 

combination of LES and a gray gas radiation sub-model overpredicts the incident radiation while the 

combination of RANS and a spectral gas radiation sub-model yields better comparisons. This finding 

further accentuates the importance of other physical sub-models. 

2.4. Radiation Heat Transfer 

2.4.1. Models for Radiative Properties 
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Radiation heat transfer is typically computed in CFD by solving the radiative transfer equation 

(RTE). The RTE at position  in the direction r 
s  is given by [146]: 
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where  is the path length,  is the absorption coefficient, s  is the scattering coefficient,  is 

the refractive index, and 

n

I  is the radiation intensity which is dependent on position and direction 

. In this section, only the gaseous radiative heat transfer will be discussed. The gas mixture is 

considered to be an absorbing and emitting medium without scattering. In this case, the RTE is 

simplified to: 
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Integrating the radiation intensity over the whole radiation spectrum yields: 
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The Planck-mean absorption coefficient, a , and the incident mean absorption coefficient, incidenta , are 

absorption coefficients averaged over the whole spectrum weighted by radiation intensity. Therefore, 

these properties are functions of gas composition, temperature and pressure; additionally, the incident 

mean absorption coefficient, incidenta , also depends on the incident radiation. An accurate calculation of 

the gas radiation property must consider the spectral absorption of CO2 and H2O, and also the overlap 

between these radiating gas components. As discussed in section 1.3.1.1, since direct prediction of the 

absorption coefficient is computationally complex, models for absorption properties, such as the gray 

gas or the band models, will have to be employed in the radiation heat transfer model.  
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Figure 2-1. Predicted total emissivity of gas mixture of carbon dioxide and water vapor at 1500 K for: (a) 

conventional air combustion and (b) oxy-fuel combustion using the EWBM and the WSGG models. Values in 

parentheses show the molar fraction of carbon dioxide / water vapor [147]. 

 

The most commonly used gray gas model in CFD is the weighted sum of gray gases (WSGG) 

model proposed by Smith et al. [148]. In this model, the gas is assumed to consist of a transparent gas 

and several gray gases without any wavelength dependence, and the model parameters are based on the 

radiation properties of air-fired flue gases. In contrast, when using the band models, spectral 

calculations are performed by dividing the entire wavelength spectrum into several bands and assuming 

that the absorption characteristics of each species remain either uniform or change smoothly according 

to a given functional form over these bands [149]. One example of this type of radiation models is the 

Exponential Wide Band model (EWBM) proposed by Edwards and Menard [150], which assumes 

exponential functions of the line intensity around a band center. Band models are believed to be 

applicable in oxy-fuel combustion because of their theoretical soundness in non-gray radiation. 
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However the use of band models is usually computational expensive, and the model is typically used to 

calibrate the gray gases model [147, 151]. 

2.4.2. Modification of the Gray-Gas Model 

In the WSGG model, the Planck-mean absorption coefficient of the gas mixture over a path length, 

, is determined by: s

  ln 1a    s  (2.5) 

where  is the radiation beam length, and s  , the gas emissivity. The latter is calculated from: 

  (2.6)    , 1 expi
i

a T p s    i i

where ,ia  is the emissivity weighting factor for gray gas , i i  and ip  are the pressure absorption 

coefficient (
1

m atm
) and partial pressure ( at ) of the absorbing gas , respectively. m i

The emissivity weighting factors used in the previous equation (2.6) are polynomial correlations 

that can be given as a function of the gas temperature: 

 1
, , ,

j
i i j

j

a b T 
  (2.7) 

The coefficients of the polynomial correlations, , and the absorption coefficients of the gray gas, 

, are derived from experimental data of oil and methane stoichiometric combustion, in which the 

CO2 partial pressure is around 0.1 atm, and the partial pressure ratio of H2O and CO2 is in the range of 

1 to 2, with a path length of less than 10 m [

, ,i jb

i

147]. It is worth noting that the CO2 and H2O partial 

pressures and their relative ratio in oxy-coal combustion are not within the applicable range.  

Rehfeldt et al. [147] compared the predicted emissivity of the flue gases in both air-fuel and oxy-

fuel combustion conditions at 1000 K and 1500 K using both the WSGG model and EWBM, and the 

results are shown in Figure 2-1. Both models predict similar gas emissivities for the air-fuel conditions. 
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However, the agreement between the two models is poor for oxy-fuel combustion conditions, 

especially at high CO2/H2O ratios. 

Therefore, when using the WSGG model, the coefficients of the polynomial correlations should be 

modified to reflect the conditions found in oxy-fuel combustion. Direct use of the gray gases model for 

the radiative properties in oxy-fuel combustion may cause errors and should be avoided [146]. In order 

to adapt the WSGG model to oxy-fuel conditions, Johansson et al. [151] modified its parameters by 

fitting the emissivity to a Statistical Narrow Band (SNB) model. The absorption coefficients are 

constant for each gas, while the weights are calculated from temperature-dependent relations. The two 

new parameter sets are applicable in oxy-fired conditions with dry or wet recycle, in a temperature 

range of 500-2500 K and for path lengths between 0.01 and 60 m. 

Likewise, Rehfeldt et al. [147] developed a four gray gases plus one clear gas approach. Instead of 

providing different parameters for specified H2O mole fractions as done in reference [151], the molar 

ratio of H2O to CO2 ( ) was considered as a variable in the emissivity weighting factor correlations: 

 1
, , , ,

m j
i i j m

j m

a c   1T    
    (2.8) 

where  is the coefficient of the correlation which is derived by curve fitting with the EWBM 

predictions in the range of 600 K to 2400 K and molar fractions of carbon dioxide in the range of 0.3 to 

0.9. A comparison between the predictions of radiative heat flux in a furnace using both the WSGG 

model with these new parameters and the EWBM shows good agreement.  

, , ,i j mc

2.5. Heterogeneous Reactions 

Oxy-char combustion characteristics have been reviewed in Section 1.3.5, which showed that the 

kinetics of char oxidation and gasification reactions are not significantly different from those in air-

combustion. However, the mathematical model used in CFD simulations should reflect the effects of 
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the slower oxygen diffusion and the contributions of gasification reactions in a CO2-rich atmosphere. 

2.5.1. Modeling the Diffusivity’s Effect 

When approaching higher combustion temperatures while maintaining a high oxygen 

concentration in oxy-fuel combustion, the operating conditions transit from kinetics control to diffusion 

control (also see Figure 1-10). In this region, the char-O2 oxidation reaction still dominates, however, 

char oxidation (char+O2) becomes progressively more diffusion controlled with increasing char particle 

temperatures, and for larger particle sizes. Therefore, oxygen diffusion turns out to be the controlling 

process in determining the char consumption rate in this region. 

Measurements of temperatures and burnout times of single char particles have been conducted in 

both N2 and CO2 diluent gases. Bejarano and Levendis [110] investigated the burning of bituminous 

coal, lignite coal, and a spherical synthetic char at increasing oxygen concentrations in both N2 and 

CO2 diluent gases. They conducted particle temperature and burnout time measurements in a 4.2 kW 

electrically heated laminar flow DTF using a three-color pyrometer at relatively high oxygen 

concentrations (20%-100%) and high temperatures (1400 K and 1600 K). The experimental results 

showed that the coal particle temperatures are lower, and the burnout times are longer, in O2/CO2 than 

in O2/N2. Similarly, Shaddix and Molina [103, 111] measured the char particle temperature of a 

Pittsburgh high-volatile bituminous coal and a Powder River Basin subbituminous coal in Sandia’s 

EFR at a gas temperature of 1700 K over an oxygen concentration range of 12-36% in N2 and CO2 

diluent gases. Lower char particle temperatures and burning rates were observed for both coals in the 

O2/CO2 environment. After accounting for the diffusion limitation of oxygen through the particle’s 

boundary layer, the deduced intrinsic kinetics of the char oxidation reactions were found to be the same 

for O2/N2 and O2/CO2 conditions.  

The carbon conversions of sampled char particles during oxy-char combustion in entrained flow 



reactors also show the same trend. Brix et al. [96] measured the char conversion profiles in an EFR 

under O2/N2 and O2/CO2 conditions with a coal feeding rate of 50 g/h. At the lower temperature range 

of 1173-1373 K and with an oxygen concentration of about 6%-28%, they observed no significant 

difference in the char conversion rate between the two environments, which confirms the trends in 

region A. When increasing the wall temperatures to 1673 K, where char oxidation is controlled by 

diffusion, the char conversion rates in CO2 were lower. 

A simplified model for char particle combustion is used to investigate the impact of mass transfer 

on char oxidation in both air-fired and oxy-fired environments. Studies on carbon or coal char 

combustion are voluminous, and various models, such as the Single Film Model (SFM) and Double 

Film Model (DFM), have been proposed to describe the mass and heat transfer in the boundary layer 

surrounding a combusting char particle. The difference between these models is mainly the 

approximation of CO burning locations [152]. Mitchell et al. [153] modeled the CO oxidation process 

in coal boundary layers and suggested that little CO2 is formed in the boundary layer when the char 

diameter is smaller than 100 μm , which warrants the applicability of SFM for the size range of 

pulverized coal combustion. Therefore, SFM is applied in this study to examine the fundamentals of 

single char particle combustion in O2/N2 and O2/CO2, and the experimental results in [110] are used to 

verify the calculations from this model.  

The char particle is described as a shrinking homogenous sphere particle surrounded by a 

chemically frozen boundary layer [154], and the burning process is considered to be quasi-steady in a 

stagnant gas environment (O2/N2 or O2/CO2 with increasing O2 mole fractions). Oxygen diffuses 

towards the char particle through the dilution gas (either N2 or CO2) and reacts at a finite rate with the 

char surface to produce CO and CO2. Based on their experimental findings, Tognotti et al. [155] 

suggested that the CO2/CO ratio formed by the heterogeneous reaction on the char surface is less than 

0.1 at normal combustion temperatures. Therefore, the simulation only considers CO as the combustion 
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product, which diffuses away from the char surface. Diffusion and reactions inside the char particle are 

neglected.  

Following the derivation in [81], the reaction heat release from char surface is balanced by thermal 

conductive and radiative heat transfer to the surrounding gas: 
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where the temperature gradient at the particle surface is given by: 
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The O2 mass transfer in the particle boundary layer follows Fick’s Law: 
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where 
2O  is the oxygen to fuel mass ratio. Char consumption rate is estimated using a first order 

surface reaction: 

  (2.12) 
2
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where the partial pressure of oxygen at the particle surface is 
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 , and the kinetics of 

char-O2 surface reaction rate, , is taken from the experimental results of Field [Ck 156]: 
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 (2.13) 

Note that the pre-exponential factor in  is different from the original reference due to unit 

conversion. The diffusivities used in the mass diffusion equations are for the binary diffusion of O2 in 

the N2 or CO2 bath gases (see 

Ck

Table 1-3). 
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The differential equation (2.9), (2.11) and (2.12) with appropriate boundary conditions are solved 

simultaneously to find the char consumption rate, , char surface temperature, m
C sT , and the char 

surface oxygen mass fraction,  for a fixed radius, 
2 ,O sY sr , in quasi-steady state. 
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Figure 2-2. Species (O2, N2, CO, and CO2) mole fraction profiles in the boundary layer around a 50 um 

burning char particle in the outward radial direction, predicted using the Single Film Model in air-fired 

and 21% O2/CO2 conditions. 
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Figure 2-3. Temperature profiles in the boundary layer around a 50 um diameter burning char particle with radial 

coordinate, predicted using the Single Film Model in air-fired and 21% O2/CO2 conditions. 
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Figure 2-4. Particle surface temperature of a 50 um char particle in O2/N2 and O2/CO2 mixtures at Tfurnace=1400 K. 

Lines show the predicted results using the Single Film Model, and markers show the experimental data in [110].  

Continuous lines — and broken lines --- correspond to O2/N2 and O2/CO2 conditions, respectively.   
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Figure 2-5. Burnout times of a 50 um char particle in O2/N2 and O2/CO2 mixtures at Tfurnace=1400 K. Lines show the 

predicted results using the Single Film Model, and markers show the experimental data in [110].  Continuous lines 

— and broken lines --- correspond to O2/N2 and O2/CO2 conditions, respectively. 

Figure 2-2 to Figure 2-5 show the experimental and simulation results using the SFM model, from 

which the effect of diffusivity in N2/O2 and O2/CO2 combustion can be seen. Figure 2-2 illustrates the 

simulation results for species mole fraction profiles under both environments with an O2 concentration 

of 21%. Oxygen diffuses towards the particle in the bath gas (N2 or CO2), as shown in the figure. 

Recalling that the O2 diffusivity in CO2 is 0.78 times that in N2 (see Table 1-3), the oxygen diffusion 

flux, and thus the carbon consumption rate is correspondingly lower in the CO2-rich environment. 

Figure 2-3 shows the predicted temperature profile in the boundary layer of the particle. Lower 

temperatures, especially at the particle surface (R/rp=1), is observed under oxy-fuel combustion 

condition when compared with the temperatures in air combustion. The char surface temperature in 

21% O2/CO2 is about 190 K lower than that in air-fired combustion. The temperature profile results 

from a balance between the reaction heat release and the conductive and radiation heat transfer at the 

particle surface during char burning process, and it reflects the extent of the char burning intensity. A 

lower O2 diffusion rate in oxy-fuel combustion translates into a lower char consumption and heat 
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release rate. Therefore, the particle surface temperatures are lower than in air combustion.  

Figure 2-4 and Figure 2-5 show the measured and predicted particle surface temperatures and 

burnout times, respectively, under O2/N2 and O2/CO2 conditions with increasing O2 mole fraction. Both 

the experimental results from Bejarano and Levendis [110] and the modeling results show lower 

particle temperatures and longer burnout times under O2/CO2 conditions. Similar trends have been 

reported by Shaddix and Molina [111] in their entrained flow reactor (EFR) experiments: the 

combusting char temperature is lower in CO2 than in N2 at the same gas temperature (1500-1750 K) 

and O2 concentrations (12%, 24% and 36%). The predicted particle surface temperatures under O2/N2 

conditions match well with the experimental data. However, the predictions overestimate the particle 

surface temperatures by about 200-400 K under O2 enriched conditions (oxygen mole fraction higher 

than 0.8). This discrepancy may be because the simulation did not consider the dissociation reactions 

and equilibrium at very high combustion temperatures. Moreover, the assumptions such as CO as the 

sole heterogeneous reaction product and ignoring its oxidation in the boundary layer may not be valid 

at high particle temperatures and high oxygen mole fractions [153, 155]. The gasification reactions may 

also become important at high char temperatures [112, 157]. A more comprehensive consideration of 

the physics and chemistry fundamentals in O2/CO2 conditions is needed. 

It should be noted that although the different diffusivity has significant impacts on the temperature 

and burnout time of char particles, its effect may not change the mean gas phase temperature 

distribution within the boiler in the same degree. For instance, Nikolopoulos et al. [142] have shown in 

their full scale 330 MWe PC boiler CFD modeling, that the mean temperature differences are less than 

5 K with considering the different diffusivity in the bulk diffusion. 

2.5.2. Modeling the Gasification Reactions 

Taking the gasification reactions into account improves the prediction of char consumption rate, 
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especially in the flame zone and the later stages of oxy-combustion. Therefore, in some CFD 

simulations [78, 142], the Boudouard reaction was considered. Kuhr et al. [158] simulated char 

combustion in both O2/N2 and O2/CO2 atmospheres in a vertical once-through 20 kW furnace at the 

Institute of Combustion and Power Plant Technology (IFK). The CFD study compared the performance 

of an intrinsic model based on Smith’s approach [159] against a surface reaction model. Figure 2-6 

shows the experimental and numerical simulation results of the O2 and CO mole fraction profiles along 

the reactor. It should be noted that the operating condition shown in Figure 2-6 is 5% O2 with a wall 

temperature of 1300 °C, which falls between Region B and C of Figure 1-10 where the Boudouard 

reaction contributes to the char consumption rate. As seen in Figure 2-6(a), the intrinsic char oxidation 

model, which only considers the oxidation reaction, can predict the gas species distribution well for the 

O2/N2 condition. However, when a surface reaction model that consists of only the oxidation reaction is 

used for the O2/CO2 condition, it underpredicts the char consumption rate and overpredicts the O2 mole 

fraction as shown in Figure 2-6(b). Adding the Boudouard reaction increases the char consumption rate 

and improves the O2 profile prediction. Additionally, since the partial pressure of H2O is substantially 

higher under wet recycle conditions, most other CFD simulation studies [62, 77, 133, 138, 140] 

implemented both the char-CO2 and char-H2O gasification reactions in the char consumption model, 

where the char-H2O gasification reaction is considered to take place in parallel with the oxidation 

reaction and Boudouard reaction. 
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Figure 2-6. Measured and calculated species volume fractions for the lignite-char burning with a wall temperature of 

1300 °C. (a) CFD predictions using intrinsic char oxidation model under 95% N2 and 5% O2 condition. (b) CFD 

predictions using surface reaction model under 95% CO2 and 5%O2 conditions [158].  

 

The reaction rates of the three heterogeneous reactions discussed above are determined by both 

surface reaction kinetics and external oxidizer diffusion. Based on the assumption that the global 

reaction kinetics do not change in oxy-fuel combustion [111], the kinetic parameters are usually taken 

from air-coal combustion kinetics for similar ranks. 

For computational simplicity, oxy-char combustion sub-models are usually simplified in CFD 

simulations. Important processes such as the internal diffusion and reactions within the porous char 

particles, the CO flame sheet around the char particles and the interactions of gas species diffusion in 

the boundary layer are usually ignored. Therefore, advanced sub-models that are accurate and yet 

computationally inexpensive need to be developed for the oxy-char combustion. 
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2.6. Gas Phase Reactions 

Gas phase reactions play an important role in coal combustion and gasification. Light gases, 

hydrocarbon gases (alkenes and alkyls) and tar are produced alongside CO2 and pyrolysis H2O during 

coal devolatilization [91]. CO and H2 produced from the char particle gasification reactions are also 

burned in the free stream outside the coal particle boundary layer for typical pulverized coal particle 

sizes [160]. In a CO2-rich environment, the global reaction rates might be different from the 

conventional air-fuel combustion due to the chemical effects of CO2. Therefore, the modeling of gas 

phase reactions should be modified as well. This includes both the reaction mechanism and the 

turbulence-chemistry interaction model.  

2.6.1. Reduced Reaction Mechanisms 

Detailed reaction mechanisms for hydrocarbon combustion such as the detailed chemical kinetic 

model (DCKM) presented by Glarborg and Bentzen [124], and the GRI-Mech 3.0 used previously in 

this work have been shown to be valid under oxy-fuel combustion conditions. However, it is 

computationally expensive to apply these detailed reaction mechanisms in CFD modeling of coal 

combustion. Alternatively, reduced hydrocarbon combustion mechanisms have been proposed. 

Reduced reaction mechanisms and models used in CFD studies of oxy-fuel combustion are 

summarized in Table 2-1. In early numerical simulations of oxy-coal combustion, volatile matter 

combustion was simplified to a one-step global reaction. For instance, Wang et al. [28] simulated the 

oxy-coal combustion in the Battelle Columbus Laboratory subscale combustor using an infinitely fast 

reaction rate and local chemical equilibrium. The simulation results showed similar trends to the 

experimental data for the temperature and major composition distributions. On the other hand, the 

model failed to predict the CO concentration because of the assumptions of one-dimensional well-

mixing and infinitely fast reactions.  



Toporov et al. [133] proposed a simplified reaction mechanism for volatile combustion in the CFD 

simulation of oxy-coal combustion, which consists of volatile decomposition and irreversible 

combustion of CO and H2: 

 x y l n m 2 2 2 2

x l y m
C H O S N + +n- O xCO+ H +nSO + N

2 2 2 2
   
 

 (2.14) 

  (2.15) 2CO+0.5O CO 2

  (2.16) 2 2 2H +0.5O H O

The simulation results showed agreement with experiments for the temperature and O2 species. 

The CO concentration measurement was not available, and hence the accuracy of the CO prediction 

using this mechanism was not verified. 

Multi-step reaction mechanisms, such as the two-step mechanism proposed by Westbrook and 

Dryer (WD) [136] and the four-step mechanism proposed by Jones and Lindstedt (JL) [137], were 

suggested for the homogeneous reactions under conventional air-fired conditions, and have been 

successfully used in CFD modeling of coal combustion and gasification [161, 162]. Since the WD 

mechanism considers the reversible CO2 dissociation reaction, and the JL mechanism consists of the 

reversible water gas shift reaction, they are expected to yield a more accurate CO concentration 

prediction than the irreversible reaction mechanisms. However, since the kinetics of these global 

reactions were deduced from air-combustion experimental data, Andersen and coworkers [135] 

concluded that these mechanisms cannot be expected to work as well under oxy-fuel conditions as they 

do for conventional air-fuel combustion. Therefore, they further modified the two-step WD and four-

step JL mechanisms for methane combustion by calibrating their kinetics parameters with the ignition 

delay and the final product concentration results predicted by the DCKM reaction mechanism under 

oxy-fuel conditions. Both modified mechanisms are claimed to perform better than the original 

mechanisms for CO and flame temperature predictions in the CFD modeling of oxy-propane 

combustion. 
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Coal combustion involves complicated hydrocarbon species, including both tar and gases that 

depend on the rank and property of the fuel, resulting in a large range of gas compositions. Although 

the reduced mechanisms are reasonably well established for natural gas and other gas fuels, and have 

been applied in air-coal combustion, their accuracies in oxy-coal combustion simulation remain a 

subject of investigation. 

2.6.2. Turbulence-Chemistry Interactions 

For laminar flows, the reaction rates can be computed using the laminar finite-rate model. 

However, in the case of turbulent flames, turbulent fluctuations becomes important and chemistry-

turbulence interactions must be modeled while considering the effects of turbulent fluctuations on the 

source term of the species equation. The description of the interaction between turbulence and 

chemistry, therefore, becomes another concern in accurate modeling the gas phase reaction under oxy-

fuel conditions. 

The eddy dissipation model (EDM) [163] was used in some numerical studies of oxy-coal 

combustion [77, 132] in which the chemical reaction is governed by the large-eddy mixing time scale 

based on the eddy break-up (EBU) model proposed by Spaling [164]. As a further development, the 

finite rate/eddy dissipation model was proposed, in which the reaction rate is taken to be the lower of 

the Arrhenius reaction rate and eddy dissipation rate. In the flame zone, the eddy dissipation rate is 

generally smaller than the Arrhenius rate, and reactions are limited by the extent of mixing. Based on 

the assumption that the reaction rate is limited by both the mixing of the reactants and the heating of 

the reactants through the mixing with hot reaction products, the net rate of production of species i due 

to reaction r, ,i rR , is given by the smaller of the reactant mixing rate (first term) and product mixing 

rate (second term): 
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where A and B are model constants. Note that in oxy-fuel combustion, the CO2 and H2O partial 

pressures in the burner streams are already high before mixing with hot product gases. Therefore, using 

the same model constants A and B for air-fuel combustion may over-estimate the second term, and thus 

over-estimate the reaction rate of oxy-fuel combustion. 

Another drawback of eddy dissipation based models is that they cannot deal with multi-step 

chemical mechanisms and reversible reactions, such as CO2 dissociation. The reason is that multi-step 

mechanisms are based on reaction rates which occur at different time scales, whereas in these models, 

every reaction has the same turbulent rate, and therefore, the same reaction rate [145]. CFD modeling 

of an oxy-natural gas flame has shown that the mixed-is-burned nature of the eddy dissipation model 

results in a failure to predict CO accurately [165]. 

The eddy dissipation concept (EDC) model was developed as an extension to the eddy dissipation 

model to incorporate multi-step chemical mechanisms in turbulent flows [166], where the reactions are 

assumed to occur in a turbulence-characterized fine-scale reactor governed by Arrhenius rates. Multi-

step reaction mechanisms have been implemented in this model for air-methane combustion [139, 167] 

as well as air-coal combustion [168], and are believed to be more accurate than the eddy dissipation 

based models. Recently, Vascellari and Cau [138] applied this model with a modified JL mechanism 

which is taken from air-fuel combustion, to simulate oxy-coal combustion in the IFRF 2.4 MWth 

furnace. However they did not show a comparison with experimental data. Similarly, Muller et al. [140] 

also used the same approach for the gas phase reactions in their simulation of oxy-coal combustion in 

the IFK 0.5 MWth test facility, and the CO prediction agrees well with their experimental data. 

2.7. Summary 

 88 



 89

Based on the overview of the state-of-the-art development of CFD simulation on oxy-coal 

combustion, CFD approaches have been used in some studies to better understand the flowfield and 

combustion processes in oxy-coal combustion, and extensive applications of CFD are expected in the 

scale up and advanced design of oxy-coal combustion facilities. However, distinct characteristics in 

oxy-coal combustion necessitate modifications of CFD sub-models because the approximations and 

assumptions for air-fuel combustion may no longer be valid. Therefore, development and validation of 

more accurate sub-models are still needed. Several problems remain that need to be resolved to achieve 

a higher predictive accuracy of combustion characteristics in a CO2-rich environment, such as: 

 Turbulence models: While swirling flows and their impact on mixing via the establishment of inner 

recirculation zones near burners and injectors are important in all combustors, they take on a more 

significant role in the case of oxy-combustion. Better predictive models for rotating and swirling 

flows are thus needed, such as RANS and LES.  

 Radiation models: Radiation heat transfer plays a major role in the furnace, and it also governs the 

energy equation in combustion. Sub-models for the turbulence-radiation interaction and gas 

emittance/absorptance are needed to improve the simulation of the temperature field.  

 Oxy-char combustion sub-models: The models should take into account the effect of physical (heat 

capacity and mass transfer) and chemical (its interaction with heterogeneous and homogenous 

reactions) properties of CO2 and be able to predict the burning rate in the different operating 

condition regions (see section 1.3.5).  

 Gas phase reaction mechanisms: High-fidelity reduced gas combustion mechanism should capture 

the chemical effect of CO2 in oxy-combustion, and provide accurate predictions of minor species 

and pollutant formations.  

 Pressure’s effects: At higher operating pressure, the physical properties of sub-processes can be 
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changed significantly, such as the boiling point, transport phenomena, and surface kinetics. 

Appropriate modeling of the pressure’s effects is required in the pressurized oxy-coal combustion. 

 Slag flow models: Slagging combustion and gasification is widely used in combustors and gasifiers 

using coal as the feedstock, in particular for the pressurized systems because of its advantage in 

removing the ash from the flue gas or syngas. However advanced slag models are required to 

develop to describe the complicated multiphase flow problem. 

Therefore, this study will focus on the development and modification of key submodels, and their 

validation as a whole for oxy-coal combustion in a high-CO2 concentration environment. The validated 

CFD approach will be used to further investigate the oxy-coal combustion at elevated operating 

pressures, based on which a guideline for the optimal operating conditions will be proposed at high 

pressure. 
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Chapter 3 Validation of the Turbulence Models for 

Oxy-Coal Combustion 

Starting from this chapter, we will introduce the CFD simulations of oxy-fuel combustion: its 

submodel development, the validation using experimental measurements, and the analysis of the 

simulation results in order to gain insights into the combustion process. In this capture, we focus on the 

performances of turbulence models, including RANS turbulent-viscosity models and Large Eddy 

Simulations, in prediction of the combustion field with a swirl oxy-coal burner. 

3.1. Overview 

Turbulence is one of the most challenging and critical processes in turbulent combustion modeling, 

because of its role in establishing the flow, mixing, and combustion processes. RANS approaches, 

especially turbulent-viscosity models such as the k   model, the k   model and their variations 

[113, 169, 170], are widely applied in the modeling of turbulent combustion because of their low 

computational cost. Specifically in oxy-coal combustion computational fluid dynamics (CFD) 

simulations, the standard k   model has been extensively used [77, 78, 129, 133, 140, 142, 171, 

172]. For instance, Toporov et al. [133] chose the standard k   model in their CFD modeling of the 

100 kWth oxy-coal combustion test at RWTH Aachen University, and Al-Abbas et al. [172] used the 

same turbulence model to investigate air-fired and oxy-fuel coal combustion in a similar scale test 

facility at Chalmers University of Technology. CFD simulations of a full-scale (330 MWe) [142] 

pulverized coal-fired furnace have also been conducted using the standard k   model. Reasonably 

good agreements were observed when comparing the temperature and species distributions in these 

studies. However, the impact of turbulence models on the discrepancy between experimental and 

simulation results have not been fully assessed. 
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The k   model has been shown to perform rather poorly in shear layers with strong pressure 

gradients, while the k   model performs better for many flows [173]. Based on a literature review 

on the performance of the RANS models in coal gasification, Kumar and Ghoniem [174, 175]  

demonstrated that the shear-stress transport (SST) k   model performs better than the k   

models in swirling flows. They conducted simulation using the standard and the realizable k   

models, the SST k   model and LES to predict the flow in a sudden expansion, and showed that the 

SST k   model yields the most satisfactory predictions in swirling and nonswirling canonical flow 

cases. We note here that although swirling flows are widely used in coal burner designs, there are few 

applications of the k   model in oxy-coal combustion simulations. 

In recent years, LES has attracted more interests in CFD simulation. LES can capture the time-

dependent large-scale flow dynamics, and is less dependent on the assumed turbulence model. 

However, it is computationally more expensive. LES has been applied to model oxy-coal combustion, 

and results showed better agreement with experiments. For instance, Edge et al. [143] compared the 

performance of LES and RANS (renormalization-group (RNG) k  ) models in their simulations of 

air-fired and oxy-fuel pulverized coal combustion in a 0.5 MWth test facility. Gharebaghi et al. [176] 

modeled a 1 MWth industrial test facility using LES and RANS (standard k  ). Both studies suggest 

that LES improves the prediction of the recirculation zones and flame shape. It has also been realized 

that the radiation model needs to be modified in order to improve the prediction of the temperature 

field and the heat transfer characteristics. 

In this study, both RANS (standard k   model, RNG k   model, SST k   model) and 

LES approaches, along with improved sub-models for gas radiation properties and char consumption in 

a CO2-rich environment, are performed to investigate the oxy-fuel combustion of lignite coal in a pilot-

scale test facility at RWTH Aachen University. Velocity, species concentration, gas and particle 

temperature measurements are used to examine the accuracy of the CFD simulations. In particular, the 
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study focuses on assessing the performance of RANS turbulence models and LES approaches in a 

typical swirling flow burner equipped with multiple staging streams. Based on the simulation results, 

some of the mechanisms of oxy-combustion, such as the stabilization mechanism and the oxy-char 

combustion characteristics, are also discussed. 

3.2. Experimental Studies 

3.2.1. Furnace and Burner Geometry 

The geometry and operating conditions of the oxy-lignite coal combustion experiments in a 100 

kWth test facility [133, 177] at the Institute of Heat and Mass Transfer of RWTH Aachen University 

was used in this numerical study. The axial and tangential mean velocities, averaged oxygen and 

temperature distributions were measured at different locations downstream of the burner. These results 

are used to examine the accuracy of the CFD simulations. Figure 3-1(a) shows the geometry of the 

cylindrical furnace. The length of the combustion chamber is 2.1 m and its inner diameter is 0.4 m. The 

burner shown in Figure 3-1(b) is a swirl burner with an annular orifice through which the primary 

stream is supplied with coal particles. The secondary stream is swirled with a velocity ratio tan 1
axial

v

v
 , 

and it is injected into the combustion chamber through an annulus surrounding the primary stream inlet. 

According to a geometry-based correlation for the vane-type swirler in an axial tube proposed by Beer 

and Chigier [178], the swirl number of the secondary stream is close to 0.96. A more accurate 

calculation using the CFD simulation results shows that the swirl number of the secondary stream is 

1.06, which takes the pressure gradient into account. Moreover, the CFD calculated swirl number at the 

burner quarl outlet is 0.81 combining the non-swirled primary and the swirled secondary stream flow. A 

tertiary stream can be injected through an annulus enclosing the quarl. Another gas stream, the staging 

fluid, enters the furnace through an annulus at the outer diameter of the furnace. Its main purpose is to 
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reduce the amount of gas injected through the other inlet openings, thus reducing the axial velocities 

and maintaining local fuel-rich stoichiometry at the burner.  

(a)           (b) 
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Figure 3-1. The geometry of (a) RWTH Aachen University 100 kWth test facility and (b) swirl burner, in meter. The 

mass flow rate, composition and temperature of the burner streams are summarized in Table 3-1. 

 



 

Figure 3-2. The three-dimensional mesh for RWTH Aachen’ 100 kWth oxyfuel combustion test facility. Figure shows 

only the part in the vicinity of the burner. 

 

Based on the burner and the furnace geometry, a three-dimensional mesh was generated for one 

quadrant taking advantage of the axisymmetric character of the furnace and burner. Figure 3-2 shows 

part of the mesh where local refinement was used to improve the resolution near the burner. The mesh 

consists of 383,420 cells, and only hexahedron cells are used in order to minimize numerical diffusion. 

A mesh-independent study was performed by comparing the RANS simulation results with those 

obtained from a finer two-dimensional axisymmetric mesh consisting of 24,000 quadrangular cells, and 

those from another three-dimensional mesh consisting of 590,800 cells. The differences of the 

predicted velocity and species concentrations between these meshes were negligible. 

3.2.2. Operating Conditions and Measurement Techniques 

In the RWTH Aachen University oxyfuel combustion experiment, the oxidizer mixture was 

provided by a gas mixing unit instead of flue gas recycle. The compositions and mass flow rates of the 

four streams are shown in Table 3-1. The overall oxygen/fuel ratio described by the stoichiometry value 
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(
 st

oxygen fuel

oxygen fuel
) was 1.3 while the local stoichiometry value at the burner (with oxygen provided by 

primary, secondary and tertiary streams only) was set to 0.6, the remaining oxidizer mixture was 

injected through the staging stream. A pre-dried Rhenish lignite coal was used in the experiment, and 

its properties are shown in Table 3-2. The experimentally tested particle size distribution (PSD) of the 

pulverized lignite coal is shown in Figure 3-3. This PSD is represented using 6400 particles with a size 

range of 5-100 μm  in the CFD simulations. The 6400 particles follow a Rosin-Rammler distribution 

with a mean diameter of 35.2 μm  and spread parameter of 1.218, that are least-square regressed from 

the experimental measurement. 

 

Figure 3-3. The particle size distribution of the coal used in experiment and CFD simulations. 

 

Table 3-1. The operating conditions of the oxy-coal combustion experiment at RWTH Aachen University. 

 Mass flow rate O2 content CO2 content Temperature 
 kg/h vol% vol% oC 

Coal 6.5    
Primary stream 17.6 19 81 40 
Secondary stream 26.6 21 79 60 
Tertiary stream 1.5 21 79 60 
Staging stream 54.9 21 79 900 

Table 3-2. The proximate and ultimate analysis of the Rhenish lignite used in the RWTH Aachen University 

experiments. 

 97



 As received Dry DAF 
Proximate Analysis (wt%)    
Water 8.40   
Ash 4.10 4.48  
Volatiles 46.60 50.87 53.26 
Char 40.90 44.65 46.74 
Ultimate Analysis (wt%)    
Water 8.40   
Ash 4.10 4.48  
Carbon 67.40 73.58 77.03 
Hydrogen 4.24 4.63 4.85 
Oxygen 14.70 16.05 16.80 
Nitrogen 0.86 0.94 0.98 
Sulfur 0.30 0.33 0.34 

 

Multiple techniques were used in order to measure the velocity, gas and particle temperature, as 

well as the gas composition during the experiments. Laser Doppler anemometry (LDA) was applied for 

the nonintrusive measurements of the axial and tangential velocities. Coal and ash particles in the coal 

flame were used as tracers, with the assumption that the slip velocity between the particles and the gas 

was negligible for the small coal particles used in the experiment ( 90 75 μmpD  ). Gas samples were 

collected using a water-cooled suction probe with a ceramic tip, and the concentration of oxygen was 

measured by a magnetomechanical analyzer. The gas temperature was measured using a PtRh/Pt 

thermocouple mounted within a ceramic tip ( 27 mmouterD  ) of a water-cooled stainless steel 

traversable suction probe, while the particle temperature was measured by a two-color pyrometer. The 

reader is referred to [133] for more detail on the measurement techniques and processes. 

3.3. Modeling Approaches 

This section briefly introduces the approaches and sub-models used in the CFD simulations, 

including the turbulence sub-models in RANS and LES, the combustion models for coal and gas phase 

reactions, as well as the modified sub-models for radiative heat transfer.  

3.3.1. Modeling Turbulence: RANS Simulation 
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In variable-density problems such as compressible flows and reacting flows, the Favre-averaged 

Navier-Stokes equations are solved. Taking density weighted time average of the instantaneous 

continuity and momentum equations, we obtain the Favre-averaged Navier-Stokes equations as: 

  0i
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where , iu ju ,  are the Favre-averaged velocity components, and ku iu   and ju   are their fluctuations 

in the Cartesian coordinate,    and p  are the standard time-averaged density and statistic pressure, 

and   is the molecular viscosity of the fluid.  

The Reynolds stresses i iu u    are unknown. In turbulent-viscosity models, such as the k   and 

the k   model, the Reynolds stresses are related to the mean velocity gradients and turbulent 

viscosity, t , using the Boussinesq hypothesis: 
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In the standard k   model [169], the turbulent viscosity, t , is modeled as a function of the 

turbulent kinetic energy, , and its dissipation rate, k  : 
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which are obtained by solving two transport equations: 
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where  and  are the generation of turbulence kinetic energy due to the mean velocity gradients 

and buoyancy, respectively; 

kG bG

MY  represents the contribution of the fluctuating dilatation in 

compressible turbulence to the overall dissipation rate; k  and   are the turbulent Prandtl numbers 

for  and k  ; 1C  , 2C  , 3C  , C , k ,   are default model constants. The RNG k   model [170] 

has a similar transport equation form for  and k  , but it includes the effect of swirl on turbulence. 

In the k   model [179], the turbulent viscosity is computed as a function of  and the specific 

dissipation rate 

k

k
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and again  and k   are obtained from two transport equations: 
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where  is the damping coefficient for turbulent viscosity,  and G*a kG   are the generation of   and k

 , while  and YkY   represent the dissipation of  and k   due to turbulences. The SST k   

model [180] retains the k   model formulation in the near-wall region and switches to the standard 

k   model in the far field region using an appropriate blending function and a “cross-diffusion” term. 

The modification makes the SST model more accurate in adverse pressure gradient flows and swirling 

flows [174]. 
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3.3.2. Modeling Turbulence: Large Eddy Simulation 

Different from the RANS approach in which turbulence is modeled at all scales, in LES, the time-

dependent Navier-Stokes equations are filtered in physical or wave-number space. Therefore, in 

principle, the large eddies that transport most of the momentum, mass and energy, are directly resolved, 

while the small subgrid-scale eddies that dissipate energy are modeled [181]. A filtered variable is 

defined by: 

     ,
D

x x G x x dx       (3.10) 

where  is the fluid domain and  is the filter function that determines the scale of the resolved 

eddies. The filter function is applied in the finite-volume discretization scheme: 
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where   is the computational cell, and is the volume of the cell. The filtered variable becomes: V

   1
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The Favre-filtered Navier-Stokes equations are : 

  0i
i

u
t x

  


 
   (3.13) 

    2

3
ji k

i i j ij
j i j j i k

uu up
u u u

t x x x x x x
ij

jx


   

       
                

      
 (3.14) 

The over bar and tilde in the variables represent standard-filtered and Favre-filtered value, respectively. 

The subgrid-scale stress, ij , is defined by: 

ij i j i ju u u u      (3.15) 

Similar to the RANS model, the subgrid-scale turbulent stresses are assumed to have the form: 

1 ˆ2
3ij kk ij t ijS       (3.16) 
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where kk  is the isotropic part of the subgrid-scale stresses,  is the rate-of-strain tensor for the 

resolved scale defined by: 
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The subgrid-scale turbulent viscosity t  is modeled using the Smagorinsky-Lilly model [182], in 

which the eddy-viscosity is computed from: 

2 ˆ
t sL S   (3.18) 

where ˆ ˆ2 ij ijS S Ŝ  and sL  is the mixing length for subgrid scales calculated from: 

min ,sL d C s  (3.19) 

where  is the von Kármán constant,  is the distance to the closest wall,  d sC  is the Smagorinsky 

constant and  is the local grid scale defined as  1 3V  [181]. It is also assumed that the centroid of the 

wall-adjacent cell falls within the logarithmic region of the boundary layer, and the law-of-the-wall is 

employed as the near-wall treatment. 

Since the LES approach resolves the evolution of the large scale eddies, it is believed to be more 

accurate. However, it requires refined time and space discretization and involves significantly higher 

computational cost. 

3.3.3. Coal Combustion Sub-Models 

Pulverized coal combustion is modeled as a dilute two-phase (solid-gas) reacting flow using an 

Eulerian-Lagrangian approach. The mass, momentum and energy interactions between the gas phase 

and the solid particles are calculated using the “particle-source-in-cell” method [144] while updating 

the particle state along a set of particle trajectories. In total, 6400 particle representing 20 sizes between 

5-100 μm  were tracked in the simulations starting at the primary stream inlet of the burner. No 
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apparent changes can be observed when the number of tracked particles was doubled or halved. The 

particle size follows the Rosin-Rammler distribution shown in Figure 3-3.  

3.3.3.1. Modeling Coal Devolatilization 

The single kinetic rate devolatilization model was used to describe the thermal decomposition rate 

of dry coal particles: 

  ,0 ,0 ,01 1p
p v w p

dm
k m f f m

dt
        (3.20) 

where  and  are the current and initial particle mass, pm ,0pm ,0vf  is the mass fraction of volatiles on a 

dry basis, and ,0wf  is the mass fraction of moisture initially present in the coal particle as received, 

respectively. The rate constant, , is given by  k

 / u pE R T
k Ae

  (3.21) 

where  8314uR J kmol K   is the ideal gas constant,  is the particle temperature. Since the 

devolatilization kinetics data for this lignite coal are not provided in the experimental study, kinetics 

parameters were taken from the literature. The activation energy, 

pT

E , was taken from Badzioch and 

Hawksley [47] ( ) and the pre-exponential factor, 4.64 7 J/kmolE e A , was taken to be 20,000 as 

suggested by Al-Abbas et al. [172]. 

3.3.3.2. Modeling Oxy-Char Combustion 

Char combustion in a CO2 rich environment has been investigated in recent years. Bejarano and 

Levendis [110], and Shaddix and Molina [103] found that, when the oxygen concentrations in the gas 

are the same, the char burning temperatures are lower, and burnout times are longer under O2/CO2 

conditions than in O2/N2. Using a detailed single particle combustion model, Shaddix and co-workers 

discussed the effect of CO2 on oxy-char combustion and attributed the differences to CO2’s distinct 
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physical properties, such as the diffusivity and volumetric heat capacity, as well as the char-CO2 and 

char-H2O gasification reactions [112, 157]. The different physical properties and chemical effects of 

CO2 should be considered when modeling oxy-char burning process in CFD simulations. 

In conventional air-fired combustion, the Single-Film Model (SFM) is appropriate for the burning 

of char with typical pulverized coal particle sizes. Mitchell et al. [153] modeled the CO oxidation 

process in the coal particle boundary layer and suggested that little CO2 is formed in the boundary layer 

when the char diameter is smaller than 100 μm . For oxy-fuel combustion, Chen et al. [22] showed that 

the SFM along with appropriate diffusivity can capture the trends of lower char temperature and 

reaction rates in oxy-char combustion. Hecht et al. [157] found that the SFM is adequate for the 

simulation of a 130  diameter particle burning when oxygen mole fraction is below 12%. These 

facts warrant the applicability of SFM for the size range of pulverized coal combustion in the present 

study. 

μm

On the other hand, gasification reactions may play a role in determining the char particle 

temperature and burning rate. The char-CO2 gasification reaction may enhance the overall char 

consumption rate for oxygen concentrations up to 24%, while it reduces the overall consumption rate in 

environments with greater than 24% oxygen due to the endothermicity of the gasification reaction 

[157]. In this study, three heterogeneous reactions are considered on the char external surface: 

  22C +O 2COs   (3.22) 

  2C +CO 2COs   (3.23) 

  2C +H O CO+Hs  2  (3.24) 

In the oxidation reaction (Equation (3.22)), only CO is considered as the combustion product, 

which diffuses away from the char surface and reacts with oxygen to form carbon dioxide in the 

computational cell. This assumption is valid because the CO2/CO ratio formed by the heterogeneous 

reaction on the char surface is less than 0.1 at normal combustion temperatures [155]. 
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The char reaction rate, , by heterogeneous reaction  depends on the external diffusion rate, 

, and the surface reaction kinetic rate, 

,p im i

iD iR : 
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where pA  is the external surface area of the char particle, ip  is the partial pressure of species  in the 

bulk gas. The kinetic rate of the char external surface reactions, 

i

iR , is represented in an Arrhenius 

form: 

expi i
i i p

u p

E
R AT

R T
  

  
  

 (3.26) 

where the kinetics parameters were taken from empirical data for low-rank coal char in references [133, 

183, 184]. Diffusion often controls the char-O2 reaction rate at high temperatures. Following the 

approach described in [159], the mass transfer limited reaction rate, , can be expressed as: iD
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where  is the gas temperature in the cell,  is the particle diameter.  is the mass diffusion 

limited constant expressed as a function of the binary diffusivity, heterogeneous reaction stoichiometric 

coefficients, as well as the operating pressure [22]: 
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where i  is the stoichiometric coefficient of carbon relative to the gas phase reactant i in the oxidation 

and gasification reactions (Equation (3.22)-(3.24)); cMW  is the molecular weights of carbon.  and 

 are the reference temperature and pressure for the binary diffusivity .  is the operating 

0T

0P ,0iDF P
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pressure of the furnace. uR  is the gas constant, and  is the Sherwood number. The oxy-char sub-

model is implemented into the CFD code in the form of a User Defined Function (UDF). The 

parameters and coefficients used for the heterogeneous reactions are listed in 

Sh

Table 3-3. 

Table 3-3. The kinetics parameters and diffusion coefficients for the oxy-char surface reactions. 

iA  iE  i  iC  
Reaction 

 2kg m sPa  kJ mol   0.75s K  
Ref. 

Equation (3.22) 0.005 74 0 124.41 10  [133, 156] 

Equation (3.23) 0.00635 162 0 122.47 10  
Equation (3.24) 0.00192 147 0 122.47 10  

[133, 184] 

 

3.3.4. Modeling Gas Phase Reaction 

In the flame zone, gas phase reactions are mostly limited by the extent of mixing, because the 

turbulent mixing rate is generally slower than the kinetic rate. The eddy dissipation model (EDM) [163, 

164] was used in this study, in which the chemical reaction is governed by the large-eddy mixing time 

scale, k  , proposed by Spalding [164]. Based on the assumption that the reaction rate is limited by 

both the mixing of the reactants and the heating of the reactants through the mixing with the products, 

the net rate of production of species i due to reaction , r ,i rR , is given by the smaller of the reactant 

mixing rate (first term) and product mixing rate (second term): 
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(3.29)

 

where ,i r   and ,j r   are the stoichiometric coefficient for reactant i  and product j  in reaction , r

wM  is the molecular weight,  and RY PY  are mass fraction of any reactant and product species, 
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respectively.  and  are empirical model constants.  4.0A  0.5B 

volatile+

Three gas phase reactions were considered: 

1 2 2 3 2 4 2 5 2O CO+ H O+ N + SO      (3.30) 

CO+0.5O

H +

2 CO 2  (3.31) 

2 2 20.5O H O  (3.32) 

taking the burning of volatiles, carbon monoxide and hydrogen into account. The coefficients i  in 

reaction (3.30) are calculated using the coal proximate and ultimate analysis data in Table 3-2 

according to mass and element balance. It should be noted that the EDM does not incorporate finite rate 

kinetics. Therefore, this model can only be used to predict the major products species for stable 

diffusion flames in which the reaction rates are controlled by turbulent mixing. Since the simplified gas 

phase reaction scheme in reaction (3.30)-(3.32) could not reflect the chemical effect of CO2 on 

hydrocarbon oxidation [124, 135], it should not be expected to show accurate prediction of 

intermediate species such as CO and H2 in oxy-fuel combustion. Validation of the reaction mechanisms 

for oxy-fuel combustion remains a subject of investigation. 

3.3.5. Modeling Radiative Heat Transfer in Oxy-Fuel Combustion 

Radiation dominates the heat transfer in the combustion environment, especially within the flame 

zone, and it is modeled by solving the radiative transfer equation (RTE). The RTE at position 

r  in the 

direction  takes the form [146]: 
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where  is the path length,  is the absorption coefficient, s  is the scattering coefficient,  is the 

refractive index, and 

n

 ,r s
 

I r  is the spectral radiation intensity which is dependent on position 
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and 

direction .  s




Thermal radiation is directional in the wavenumber space. In this study, the Discrete Ordinates 

(DO) model [185, 186] is used to solve the RTE. Each octant of the angular space 4  is discretized 

into  solid angles, and a total of 72 RTE equations are solved in the three dimensional space. It is 

computationally expensive to solve radiative heat transfer in each wavelength band, and gray gas 

models such as the weighted-sum-of-gray-gas model (WSGGM) [187] are used to calculate the 

absorption coefficient of the participating gas mixture. In WSGGM, the absorption coefficient of the 

gas mixture is assumed to be the weighted-average of several (3 or 4) gray gases and a transparent gas, 

therefore it is a function of the H2O and CO2 concentrations and gas temperature. The model 

coefficients are derived from experimental data for oil and methane stoichiometric combustion, in 

which the CO2 partial pressure is around 0.1 atm, and the partial pressure ratio of H2O and CO2 is in the 

range of 1 to 2, with a path length of less than 10 m [148]. However, it is worth noting that the CO2 and 

H2O partial pressures and their relative ratio in oxy-coal combustion are not within the applicable range. 

Johansson et al. [151] modified the coefficients of the three gray-one clear gases model by fitting the 

emissivity to a Statistical Narrow Band (SNB) model. The new parameters are applicable under oxy-

fuel conditions with dry or wet flue gas recycle in the temperature range of 500-2500 K and for path 

lengths between 0.01 and 60 m. Similar to the method in reference [188], the modified WSGGM was 

implemented in the CFD simulation in the form of UDF. In the modified three gray-one clear WSGGM, 

the Planck-mean absorption coefficient of the gas mixture over a path length, , is determined by: 

3 3

s

  ln 1a    s  (3.34) 

where  is the radiation beam length, and s  , the gas emissivity. The former is estimated to be ~0.6 m 

based on an average dimension of the furnace domain; while the latter is calculated from: 

  (3.35)    , 1 expi
i

a T p s    i i

where ,ia  is the emissivity weighting factor for gray gas , i i  and ip  are the pressure absorption 
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coefficient (
1

Pa m
) and partial pressure ( ) of the absorbing gas , respectively. The emissivity 

weight factors 

Pa i

,ia  used in the previous equation (2.6) are polynomial correlations which are given as 

a function of the gas temperature: 

 

1

, , ,

j

i i j
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  (3.36) 

where  is a reference temperature. The coefficients of the polynomial correlations, , 

and the pressure absorption coefficients of the gray gas, 

1200 KrefT  , ,i jb

i , are summarized in Table 3-4. 

Table 3-4. The coefficients used in the three gray-one clear gases WSGG model for oxy-fuel combustion, 

adapted from reference [151].  

Gray gas  i 5 1
10

Pa mi
    

 , ,1ib  , ,2ib  , ,3ib  

1 0.0992 0.4995 -000170 -0.0393 
2 2.6589 0.3418 -0.1701 0.0196 
3 88.1078 0.1273 -0.0726 0.0101 

 

Moreover, the contribution of the particles (coal, char and ash) to the radiative heat transfer is also 

considered by modeling its absorption and scattering coefficient in the RTE.  

3.3.6. Boundary Conditions 

Mass flow rate boundary conditions are used for the burner inlets, i.e., the primary, secondary, 

tertiary and staging streams. The pressure outlet boundary condition is used at the furnace outlets. 

Measured wall temperatures are used for all the thermal boundary conditions in the simulation. 

Temperature (  oC) and heat flux (1000wallT 0q  ) thermal boundary conditions are used for the 

furnace wall and burner surfaces, respectively, with emissivity of 0.7 and 0.2 as suggested in the 

experimental study [172].  



3.3.7. Solution Strategy 

FLUENT 12.1 was used as the computation platform for this CFD study. For the RANS 

simulation, the three-dimensional pressure-based solver with double precision was chosen to solve the 

steady-state governing equations. Second-order upwind scheme is used for the momentum, species 

transport, energy and radiation equations. A converged solution was obtained for the cold flowfield 

with species transport after about 5000 iteration steps, and the Lagrangian tracking of coal particles, 

gas phase reactions and radiative heat transfer sub-models were added to the system of equations. 

Converged solutions for the reacting flow were obtained after about 50,000 iteration steps. The RANS 

simulations were performed on the Pharos computing cluster of MIT, using 8 parallel AMD Magny-

Cours 12-core 2.2 GHz processor cores. It takes about 90 hours clock time for each of the RANS 

simulation until convergence is achieved. 

In the LES, a second-order bounded central differencing scheme is applied to solve the 

momentum equation, and second-order upwind scheme is used for the species transport, energy and 

radiation equations. The time dependent terms are discretized using a second-order implicit scheme 

with an initial time step of  second, such a value guarantees that the Courant number is 

smaller than 1 in most of the computational cells. After obtaining a stable combustion field, the time 

step was increased to  second progressively. The LES starts with the converged RANS reacting 

flow solutions, and the unsteady calculation takes about 4-5 flow residence times, or about 1.5 second 

flow-time, to achieve fully developed reacting flow. The time-averaged statistics were obtained with 

another 0.5 second flow-time simulation. In general, for unsteady simulation of 1 second flow time, it 

takes about 300 hours clock time using 32 parallel processor cores on the same computing cluster. 

40.2 10

41 10

3.4. Results and Discussions 
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In this section, the CFD predictions are compared with the measurements in the test facility, 

especially in the vicinity of the burner where oxygen and fuel particle mix and the volatiles flame is 

stabilized. In particular, the performance of the different RANS turbulence models and the LES are 

compared, and their impacts on the mixing and reaction processes are discussed. 

(a)            (b) 

 

Figure 3-4. Comparison between the measured (scatters) and predicted (lines) velocity profiles at 0.025, 0.05, 0.2 and 

0.3 m away from the burner outlet. (a) Axial velocity, and (b) tangential velocity. 
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3.4.1. Velocity Field 

Figure 3-4 shows a comparison between the experimental measurements and the CFD simulations 

for the axial and tangential velocity profiles. In general, RANS and LES results capture the overall 

trends of the flowfield. However, they perform differently in terms of predicting the internal 

recirculation zone size and the mixing intensity between the burner streams and the staging stream. 

From Figure 3-4(a), it can be seen that all the turbulence models show an internal recirculation zone 

along the centerline downstream of the burner outlet, a positive axial velocity peak of 6-9 m/s at around 

0.05 m in the radial direction, and an external recirculation zone at around 0.07-0.15 m in the radial 

direction. The swirling secondary burner stream is responsible for establishing the internal recirculation 

zone, along with the bluffbody and quarl geometries. Another axial velocity peak is observed near the 

outer diameter of the furnace where the staging stream is injected. In Figure 3-4(b), all the simulation 

models show that the peak tangential velocity is reached at the burner outlet, and this peak decays in 

both the axial and radial directions.  

 

Figure 3-5. Comparison between the measured (scatters) and predicted (lines) gas phase mass flow rate and angular 

momentum along the axis: (a) mass flow rate in (kg/s), and (b) angular momentum in (kgm2/s2). The error bar with the 

LES results shows the velocity and density covariance term in mass flow rate calculation. 
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Discrepancies between the simulation and the measured results are found downstream, at 0.2 and 

0.3 m away from the burner exit. The simulation results show higher axial and tangential velocity 

magnitudes than the experimental results. In order to identify a possible source of the discrepancy, we 

calculated the total gas mass flow rate and the total angular momentum in the experimental and 

simulation results. Figure 3-5 shows the measured and CFD calculated average gas phase mass flow 

rate, m , and angular momentum, G . For the experimental results, these quantities are defined as: 

 
0

2
R

m r udr    (3.37) 

  
0

2
R

G r u wr    dr  (3.38) 

where u  and w  are the measured mean axial and tangential velocity, respectively. Piecewise-

polynomial representations of u  and w  were obtained by curve-fitting the measured mean velocity 

profiles in Figure 3-4. The gas density   is calculated using the measured mean gas temperature 

profiles (in Figure 3-9(b)) and the ideal gas state equation. The measured m  and G  were calculated 

by substituting the piecewise-polynomial curves and integrating Equation (3.37)-(3.38) at different 

axial locations. Similarly, the mass flow rate and angular momentum can also be integrated at different 

cross sections along the axis using the simulation results. We note that the mean mass flow rate 

contains a density-velocity covariance term due to turbulence,  

 
0 0

2 2
R R

m r udr r u    dr     (3.39) 

which is omitted in Equation (3.37). The magnitude of this covariance term was estimated using the 

LES results and shown in Figure 3-5. It is negligible comparing to the first term because of the stable 

combustion dynamics.  

The comparison in Figure 3-5 indicates several points: 
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 Figure 3-5(a) shows that the measured mass flow rate downstream is significantly lower than the 

total burner mass flow rate, which is 0.028 kg/s. The measured mass flow rate at x=0.2 m is 

negative, which indicates that the measured positive velocity in the inner radial section was lower, 

or the measured negative velocity in the external recirculation section (0.1 m<R<0.2 m) was 

higher than the actual value. On the other hand, the simulation solution satisfies gas phase mass 

conservation, as well as the mass exchange from coal particle (combustibles) to the flue gas.  

 Figure 3-5(b) shows that the measured angular momentum decays faster than the predicted results.  

The low measured axial and tangential velocities in the downstream sections may be partially 

due to the fact that coal/char particles were used as trace particles in the experimental measurement. 

We also note that the measured tangential velocity at the axis 0.05 m away from the burner shows a 

non-zero value. According to the experimental study, this might be due to “the minor misalignment 

between the burner and the furnace axes, or the procedure for alignment of the optical axis of the 

LDA system with the burner axis”[133].  

 

Figure 3-6. The predicted velocity distribution in the burner quarl using uniform vector length, colored by axial 

velocity. The results from (a) Standard k   model, (b) RNG k   model (c) SST k   model, and (d) LES 
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mean values, show different internal recirculation zone sizes and peak reverse velocity. 

 

Although all the simulations show the same overall trends, the turbulence models perform 

differently with regard to the near-burner internal recirculation zone and its peak velocities, and the 

external recirculation zone.  

 The internal recirculation zone: At 0.05 m away from the burner, LES reproduces the reverse 

velocity of about -3 m/s near the centerline (see Figure 3-4(a)), while the RANS simulations 

underestimate the peak reverse velocity. The experimental results at 0.3 m show that a reverse flow 

remains at the centerline, and only the LES can show this trend. It should be noted that the 

measured centerline axial velocity at x=0.2 m is inconsistent with the measurements upstream and 

downstream. As mentioned previously, the velocity profile at this cross section does not conserve 

the mass flow rate. Figure 3-6 shows the internal recirculation zones predicted by the different 

turbulence models. Again, all RANS models underestimate the internal recirculation zone size, 

while a significantly longer recirculation zone with higher reverse velocities is predicted by the 

LES. As a result, more hot gases are recirculated back to mix with the unburned burner stream and 

stabilize the coal flame in the quarl, which results in a higher turbulent mixing between the burner 

streams and the staging stream as will be shown later.  

 The external recirculation zone: At x=0.2 m and x=0.3 m, the measured axial velocity shows 

negative values (see Figure 3-4(a)), indicating an external recirculation zone. Only the SST k   

model and LES predict the external recirculation zone. This external recirculation zone is induced 

by the strong entrainment of the staging stream, and it has an impact on the oxygen distribution, 

which will be discussed in the next section. 

 115



 

Figure 3-7. RANS and LES predicted velocity (scaled vector) and oxygen concentration (colored contour) distribution 

in the near-burner region, showing the mixing between the staging stream and the burner streams. The figures show 

the results from (a) Standard k   model, (b) SST k   model, (c) LES in an instantaneous moment, and (d) 

LES mean values. Note that the LES instantaneous velocity vector scale is different from others because the 

instantaneous velocity magnitudes are larger than the mean values. 

 

In general, the best match with the experimental results in terms of the velocity profiles is 

obtained using LES. Although the RNG k   model accounts for the swirl effect in the turbulence 

viscosity calculation, it shows similar trends as those of the standard k   model. The SST k   

captures the external recirculation zone almost as close as the LES does, and it performs the best 
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among the RANS models.  

3.4.2. Mixing and Oxygen Diffusion 

The radial velocity profiles were not reported in the experimental study. These are, however, 

critical to the mixing between the burner streams and the staging stream. Figure 3-7 shows the 

predicted velocity and oxygen concentration distributions in the vicinity of the burner using the 

standard k   model, SST k   model and LES. For the latter, both instantaneous results and time-

averaged values are shown. The RNG k   model results are similar to those obtained using the 

standard k   model, therefore are not shown here. As discussed previously, an internal recirculation 

zone is predicted by both the RANS and LES approaches. However, significant differences can be 

observed in the entrainment of the staging stream and its mixing with the burner streams. In the 

standard and RNG k 

k

 models (see Figure 3-7(a)), the staging stream flows parallel to the burner 

streams, while the SST   model (see Figure 3-7(b)) predicts a different flow: the staging stream 

separates from the wall, forming a wall recirculation zone which results in a better mixing with the 

burner streams. The unsteady LES simulation (see Figure 3-7(c)) shows more detail regarding the 

turbulent structure and shear layer at the burner exit, where the staging stream is entrained into and 

mixes with the fuel-rich stream. In all the tested RANS turbulence models, only the SST k   model 

shows this mixing process as that observed in the LES time-averaged results (see Figure 3-7(d)).  
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Figure 3-8. The predicted turbulent kinetic energy  in the near-burner region. The figures show the results from (a) 

Standard 

k

k   model, (b) RNG k   model, (c) SST k   model, and (d) LES statistic values. 

Besides the mean velocity predictions, the other important quantity in turbulent flows is the 

velocity fluctuation, because of its role in mixing. Figure 3-8 compares the turbulent kinetic energy  

predicted by the RANS and LES approaches. The turbulent kinetic energy is the mean kinetic energy 

per unit mass associated with the unsteadiness or the eddies in turbulent flow. It is defined as the square 

of the root-mean-square velocity fluctuations in three dimensions: 

k

  2 2 21

2 i j kk u u u       (3.40) 
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As discussed in section 3.3.1 and 3.3.2, in the RANS approaches, k  is modeled using a transport 

equation; while in LES, the time dependent velocity is explicitly resolved, and  is calculated using 

the statistic results. Although all turbulence models show similar mean velocity profiles, they perform 

k



differently in predicting the turbulence intensity. The turbulent kinetic energy predicted by the LES 

approach is marginally higher than those predicted by the RANS models in the burner exit region, 

indicating more intense turbulence and better mixing between the staging and the burner streams.  

  
Figure 3-9. Comparison between the measured (scatters) and predicted (lines) oxygen mole fraction (left) and gas 

temperature (right) at 0.05, 0.1, 0.2, 0.3 and 0.5 m away from the burner. The error bar of the experimental results 

indicates two standard deviations. 

Figure 3-9(a) shows the oxygen mole fraction profiles at 0.05, 0.1, 0.2, 0.3 and 0.5 m away from 
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the burner. As a result of the different predicted flowfield and mixing processes, significantly different 

oxygen mole fraction distributions are observed when applying different turbulence models. For 

instance, the oxygen concentrations in the standard and RNG k   model deviate from the measured 

results significantly in the outer radial section, especially at 0.2 and 0.3 m away from the burner. The 

same results have also been reported in previous numerical studies using standard k   model [133, 

188]. The RNG  k   model predictions agree poorly with the measured results, since it under-

predicts the turbulent intensity in this region, as shown in Figure 3-8. On the other hand, the SST 

k   model and LES show better match in these regions as they better predict the flowfield and the 

mixing process. Both the experimental and simulation results show low oxygen concentration near the 

axis, and higher oxygen mole fraction in the outer region. Recalling that the stoichiometry in the burner 

region is set to 0.6, low oxygen mole fraction near the axis should be expected in the fuel-rich zone. 

The remaining oxygen is supplied by the staging stream for char burning in the downstream, and that 

will be discussed in greater detail later.  

In summary, we show that although similar mean axial and tangential velocity profiles are 

predicted by all the turbulence models, the standard and RNG k   model fail to predict the burner 

streams turbulence intensity and its mixing with the staging stream in the burner exit region, thus 

underestimating the downstream oxygen diffusion process. To the contrary, the SST k   model and 

LES can capture the formation of the recirculation zones induced by the staging stream, and hence 

show better match with the experimental results. 
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3.4.3. Temperature Distribution 

Figure 3-10 compares the predicted temperature distribution in the furnace using the standard  

k   model, the SST k   model and LES. The results show similar trends but different flame 

lengths. The standard and RNG k   models show longer flames because they underestimate the 

mixing of the staging stream. Although the SST k   model captures most of the average flow 



structures, it still underestimates the turbulent intensities as discussed previously. Intense mixing and 

temperature fluctuations in the char combustion zone are illustrated in the LES instantaneous result in 

Figure 3-10 (c). The LES time-averaged results match the experimental observations best in terms of 

the flame length, which can be seen more clearly in the comparison between the simulation and 

experimental results in Figure 3-9(b).  

 

Figure 3-10. The predicted temperature distributions using RANS and LES. (a) Standard k   model, (b) SST 

k   model, (c) LES in an instantaneous moment, and (d) LES mean values. 

 

Although predicting apparently different flowfield, the three RANS turbulence models predict 

similar temperature profiles in the furnace, while LES performs marginally better. For instance, at 50 

mm away from the burner, the predicted gas temperature by all the turbulence models closely follows 

the experimental results. However, in RANS, the minimum temperature at 0.05 m off axis is 300 K 

lower than the measured data, likely to be due to the burner cold stream penetration, while LES show a 
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marginally improved result. This is because the RANS models underestimate the turbulent mixing 

between the staging stream and the burner streams. Similar trend has been reported by Gharebaghi et al. 

[176] who compared the temperature predictions by the standard k   model and LES in an industrial 

coal combustion facility: they found that the RANS simulation was not able to predict the turbulence 

structures downstream the burner, leading to a longer and narrower flame than that predicted by LES 

and observed in the experiment. LES shows better temperature predictions at 0.05 ma and 0.1 m away 

from the burner, indicating that it models the turbulent mixing and reaction rates in the burner 

downstream more accurately. This is also shown at x=0.5 m where the LES results match the 

temperature measurements, while the RANS approaches overestimate the flame length.  

All the simulation underestimated the gas temperature in the outer radial region (0.1 m<R<0.2 m) 

at 0.1 and 0.2 m away from the burner: the predicted gas temperatures are about 200 K lower than the 

measured results. Recalling that all simulations over-predict the oxygen concentration in the same 

location, this might be partially due to the gas phase reaction model, the assumed coal devolatilization 

and char combustion kinetic parameters, or the deviation on particle trajectory predictions. The 

discrepancy may also be partially due to the experimental errors. Note that the diameter of the suction 

pyrometer tip is ~1/8 of the furnace radius, which may disturb the flowfield and average out the radial 

profiles. 

3.4.4. Flame Stabilization and Oxy-Char Combustion 

The CFD provides some insight into the coal combustion process, in particular the volatile flame 

stabilized in the vicinity of the burner, and the oxy-char combustion downstream. 

 122 



 

Figure 3-11. The LES instantaneous results, showing the flame stabilization mechanism in the burner quarl. (a) Gas 

temperature is shown using colored contour, and velocity is shown using uniform length vector, (b) coal particle 

moisture evaporation rate, (c) coal particle devolatilization rate, (d) volatiles mole fraction, (e) O2 mole fraction, and 

(f) volatiles burning rate in the quarl structure. 

 

Flame destabilization has been reported in oxy-coal combustion due to the different 

thermodynamic and transport properties [189]. Maintaining flame stability and keeping the heat 

transfer characteristics in oxy-fuel combustion similar to those in air combustion may be achieved by 

adjusting the flue gas recycle ratio [70], partitioning of the gas volume and oxygen contents in different 

burner streams [190, 191], as well as using advanced burner design. The swirl burner used in the test 

facility was specifically designed for oxy-coal combustion with low oxygen concentrations and has 

demonstrated favorable aerodynamics features in the experiment [177]. Using unsteady LES simulation, 
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the flame stabilization mechanism can be revealed. Combustion in this case is characterized by an 

attached flame, sufficient mixing between the recirculated hot gas and unburned burner streams, and 

stable coal particle devolatilization and ignition. Figure 3-11(a) shows the gas temperature and velocity 

distribution in the burner quarl. A stream of hot gas up to 1500 K is recirculated to the primary and 

secondary stream inlets along the centerline, which maintains the high temperature in the burner quarl. 

Figure 3-11(b) shows the coal de-watering processes: because of the fine particle size used in the 

experiment, the evaporation process takes place early in the primary stream duct, and nearly all the 

particles are dried out as soon as they are injected into the high temperature zone. Figure 3-11(c) shows 

the volatile release rate in the quarl: coal particles start releasing volatiles following the de-watering 

process, some of the coal particles are recirculated back following the gas flow while continuing the 

devolatilization process. Figure 3-11(d) and (e) show the volatile and oxygen concentration 

distributions in the quarl. A volatile mole fraction up to 30% shows that volatile matters are 

concentrated in the recirculation zone. Figure 3-11(f) shows the volatiles burning rate (reaction in 

Equation (3.30)). The volatiles are burned by the oxygen supplied from the primary and secondary 

streams. The wrinkled interface between the volatile and oxygen streams shows that a turbulent 

diffusion flame is stabilized near the burner quarl wall, which agrees well with the experimental 

observations.  

 



(a) 

 

(b) 

 

Figure 3-12. Predicted char consumption rate by oxidation and gasification reactions, and the gasification reaction’s 

contribution. (a) SST k   model, (b) LES in an instantaneous moment. 
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Following volatiles combustion, char particles are burned further downstream using mostly the 

oxygen supplied from the staging stream. Figure 3-12 shows the char consumption rates due to the char 

oxidation and gasification reactions predicted by the SST k   model, and the instantaneous result 

predicted by LES. Following the trajectory of the coal particles, char is burned using the oxygen 

supplied by the stating stream at the burner outlet where intense mixing takes place due to the local 

turbulence, as discussed in section 3.4.2. The char-O2 reaction occurs mainly within 0.3 m away from 

the burner, in accordance with the experimental observations [133]. On the other hand, the char-CO2 

and char-H2O gasification reactions can be observed across a broader region. However, noting the 

different contour ranges used in the figures, the gasification reaction rates are one to two orders of 

magnitude lower than the oxidation reaction because of their higher activation energies. In oxy-fuel 

combustion, char consumption is dominated by the oxidation reactions because of their higher reaction 

rates. The contributions of the char-O2, char-CO2 and char-H2O reactions to char consumption are 

91.9%, 7.46%, and 0.68%, respectively. However, the gasification reactions may become important 

locally where the gas temperature is high and the oxygen concentration is low [22]. As shown in the 

last chart of Figure 3-12(a) and (b), the gasification reactions’ contribution reaches up to 90% in the 

fuel-rich zone of the volatile-flame and the char-combustion regions, where the gas temperature is high 

and oxygen concentration is low. It should be noted that, because the calculations are based on a 

simplified oxy-char combustion model and global reaction kinetics, the relative contributions of 

oxidation and gasification reactions are only qualitative. They may vary depending on the coal rank, 

burner designs, and operating conditions such as overall stoichiometry, dry or wet flue gas recycle, as 

well as the flue gas recycle ratio. 

The experimental study also measured the particle temperature distribution at several axial 

locations. Figure 3-13 shows a comparison between the measurement and the CFD simulations. It 

should be noted that the two-color pyrometry method used in the experiment is based on optical 
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measurement of the infrared radiation intensity of the hot coal particle at two selected wavelengths, and 

only particles which are hotter than the background gas are detected. The same criteria were used when 

the particles were sampled in the CFD analysis. Figure 3-13 shows that the computed particle 

temperature follows the same trends as those observed in the experiment. However, the simulation 

results are significantly lower than the measured particle temperature at 0.05 m away from the burner, 

showing less burning intensity in a mean statistical sense, while the simulation results at 0.2 m away 

from the burner match the experimental results well. This may be due to the fact that only few char 

particles are burned at 0.05 m (see Figure 3-12), where the experimental result might have a higher 

uncertainty because hotter particles can be detected with higher probability. 

 

Figure 3-13. Comparison between the measured (scatters) and CFD predicted (lines) particle temperature at 50 and 

200 mm away from the burner. 

3.5. Conclusion 

In this chapter, three-dimensional CFD simulations were performed for oxy-fuel lignite coal 

combustion in a 100 kWth pilot-scale combustion unit using RANS and LES approaches, as well as 

radiation and char-combustion sub-models modified specifically for a high CO2 concentration oxy-

combustion environment. The predicted velocity, species and temperature distributions using different 

turbulence models, such as standard k   model, RNG k   model, SST k   model and LES 
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model, were compared with experimental results. These turbulence models show different performance 

in predicting the turbulent flowfield, which significantly impacts the prediction of oxygen diffusion, 

coal combustion and temperature distribution. The main conclusions are as follows: 

(1) All turbulence models show the overall trends of the measured mean axial and tangential 

velocity profiles, and capture the internal and external recirculation zone formed by the swirling burner 

stream. However, the RANS models underestimate the internal recirculation zone size and the turbulent 

intensity at the burner exit. LES shows better performance in predicting the turbulent structure and 

flowfield, and match well with the experiment. 

(2) The different performance of these turbulence models lead to different oxygen concentration 

predictions: the standard k   model and RNG k   model fail to predict the entrainment and 

mixing of the staging stream, while SST k   model can capture the corresponding flow structures 

and improve the oxygen concentration prediction. Nevertheless all the RANS models underestimate the 

turbulence intensity downstream in the char combustion zone, while LES shows intense mixing and 

oxygen diffusion, which also improves the prediction of the flame length and temperature field. 

(3) LES provides insights into the flame stabilization mechanism. The swirling flow forms strong 

internal recirculation zone along with the bluffbody and quarl geometry, which stabilizes the volatiles 

diffusion flame in the quarl.  

(4) Char-O2 reaction contributes up to 91.9% of the char consumption and dominates the char 

combustion process in oxy-fuel combustion. However, gasification reactions can become important 

locally at the fuel-rich zone of the volatile-flame and char-combustion regions, where the gas 

temperature is high and oxygen concentration is low. 
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Chapter 4 Modeling the CO2 Chemical Effects in Gas 

Phase Reactions 

In last chapter, we validated the CFD approach as a whole in predicting oxy-coal combustion. 

Note that a relatively simple combustion model (Eddy Dissipation model) was used, with which only 

the major species, such as oxygen, carbon dioxide, and steam, can be predicted. However, CO2 has its 

chemical effects on homogeneous reactions, which may significantly change the reaction rates and 

intermediate species such as CO under specific conditions. In this chapter, we will focus on these 

chemical effects and validate the appropriate modeling method in CFD simulations. 

4.1. Overview 

Higher CO concentration has been reported in oxy-fuel combustion tests, as compared to 

conventional air-fired combustion. For instance, increased CO level within the flame zone was reported 

in the experimental study performed in the IFRF 2.5 MWth furnace by Woycenko et al. [72]. Likewise, 

Rehfeldt et al. [78] found significantly higher CO concentration in the fuel-rich flame region of oxy-

Lausitz lignite coal combustion using a 0.5 MWth pilot scale test facility. Andersson et al. [68, 69] and 

Hjartstam et al. [70] measured the CO concentrations in a 100 kWth test facility using propane or lignite 

coal fuels, and they observed consistently higher CO concentrations in the combustion zone near the 

burner under oxy-fuel conditions than under air-fired conditions when the combustion temperatures are 

maintained the same.  

The mechanism responsible for the higher CO concentration observed in the diffusion flames is 

still under investigation. It has been widely accepted that the different CO level is due to the CO2 

chemical effects in homogeneous and/or heterogeneous reactions [19, 22], because CO2 is not inert but 

it participates in the chemical reactions [113]. In a thermodynamic point of view, CO2 can be 



 131

2dissociated into CO and O2 through , and the equilibrium concentrations are 

dependent on temperature, pressure, as well as the stoichiometry value. In reality, the majority of the 

CO formation in the flame zone is not from the dissociation reaction, but through elementary reactions 

between CO2 and intermediate species. Liu et al. [192] investigated the chemical effect of CO2 by 

modeling the ethylene diffusion flame using a detailed mechanism, CO2 was added in the fuel side or 

oxidizer side with a mole fraction of 20%. The simulation showed higher CO concentrations with CO2 

addition in both sides, while introducing CO2 on the oxidizer side has a more significant chemical 

effect than on the fuel side. The reaction  and  are shown to 

be responsible for the chemical effects of CO2 addition. In order to understand the chemical effect of 

CO2 on CO formation, Gloarborg and Bentzen [124] measured the CO concentration from highly 

diluted methane (~0.1%) premixed combustion at the exit of a plug-flow reactor in N2 or CO2 bulk 

gases under different equivalence ratios. Substantially higher CO concentrations were observed in the 

case of CO2 compared to those in N2, moreover, the difference increases significantly from the fuel-

lean to the fuel-rich conditions. Simulations with a detailed mechanism again identify the CO2/H and 

CO2/hydrocarbon fragment reactions as the major pathways responsible for the higher CO 

concentration. In oxy-coal combustion, the char-CO2 and char-H2O gasification reactions may also 

contribute to the higher CO in the fuel-rich region of the diffusion flame where oxygen concentration is 

low and temperature is high. This heterogeneous pathway is not discussed in the present study, and the 

reader is referred to other relevant studies [117, 193]. 

2CO CO+0.5O

2CO +H=CO+OH 2CO +CH=HCO+CO

Therefore, an accurate prediction of the CO formation in oxy-fuel combustion requires appropriate 

modeling of the CO2’s chemical effects in computational fluid dynamics (CFD) simulations [22]. 

However, the widely-used global reaction mechanisms used in CFD simulation are developed for 

traditional air-fired combustion, and they may not capture the chemical effects of CO2 in a high CO2 

concentration environment. Andersen et al. [135] reviewed two global combustion mechanisms, 



namely the Westbrook and Dryer two-step mechanism (WD2) and Jones and Lindstedt four-step 

mechanism (JL4), and modified the kinetic parameters by calibrating the peak and equilibrium CO 

predictions in a plug flow reactor using a detailed mechanism under oxy-fuel conditions. The modified 

global mechanism improved the CO predictions, but there are still discrepancies between the 

measurements and simulations.  

 

Figure 4-1. Schematic of three diffusion flames in the present study: (a) A counter flow laminar diffusion flame, (b) a 

jet flow turbulent partial premixed flame, and (c) a swirling flow turbulent diffusion flame. 

 

The objective of this study is to investigate the mechanisms responsible for the higher CO 

concentrations in oxy-fuel diffusion flames, and the appropriate approaches to model them in CFD 

simulations. The paper begins with chemical equilibrium calculations, gaining a thermodynamic 

perspective of the CO2 chemical effects. A basic 1-D counter-flow diffusion laminar flame was 

calculated using a detailed mechanism GRI-mech 3.0, in order to understand the fundamental 

differences between air-fired and oxy-fuel combustions. Based on the analysis, two turbulent diffusion 

flames with increasing fluid dynamics complexities, namely the Sandia Flame D burning methane and 

a swirling flow flame burning propane, were modeled using CFD approaches under both air-fired and 

oxy-fuel conditions. Figure 4-1 shows the schematics of the three air-fired and oxy-fuel diffusion flames 

investigated in this paper. The performances of the detailed, reduced, quasi-global, and global 
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mechanisms are compared in the 1-D simulation and CFD modeling of the diffusion flames, their uses 

and limitations in predicting the overall flame structure and CO concentration are discussed. 

4.2. Literature Experimental Results 

Many oxy-fuel combustion tests have been carried out in pilot scales since 1980s [29, 73, 77, 80, 

93, 96, 133, 189], however, available experimental measurements of CO concentration in flame region 

with detailed burner geometry and operating conditions are scarce. Therefore, available experimental 

results for air-fuel and oxy-fuel combustions are used in this study in order to test the performance of 

the combustion models and reaction mechanisms.  

4.2.1. Sandia Flame D 

Sandia Flame D [194-196] is a well-documented jet flow non-premixed turbulent flame. As shown 

in Figure 4-1(b), it consists of three concentric flows: a jet fuel/air flow in the center with an inner 

diameter of 7.2 mm, an annular hot pilot flow with an inner diameter of 7.7 mm and outer diameter of 

18.2 mm, and the wind tunnel flow outside supplying oxygen for the diffusion flame. It should be noted 

that the partial-premixed jet flow was used to eliminate soot formation and produce a robust flame, the 

mixing rates are high enough that the flame burns as diffusion flame [195]. The measured scalars 

include temperature, mixture fraction, and species including N2, O2, H2O, H2, CH4, CO, CO2, OH and 

NO measured by Raman scattering and LIF (Laser-Induced Fluorescence). The CO mass fraction 

measured by LIF is used for comparison with simulation results because of its higher accuracy. With 

similar operating conditions but a O2/CO2 environment, the oxy-fuel flame of methane in 35% O2/65% 

CO2 (labeled as OF35) is calculated and the performance of these mechanisms is compared. The 

operating conditions under air-fired and oxy-fuel conditions are shown in Table 4-1. 

Table 4-1. The operating conditions of the Sandia Flame D under air-fired and oxy-fuel conditions [194, 195]. 



 Temperature   Volume flow rate (m3/s) and species mole fraction (vol%) 

 (oC) Air OF35a 
Jet flow 21 2.02e-3 

CH4/Air=25/75 
1.41e-3 
CH4/(35%O2+65%CO2) =35.71/64.29 

Pilot flow 1635 2.43e-3 
O2/N2/CO2/H2O/CO 
=4.88/73.50/6.97/14.25/0.40 

1.67e-3 
O2/N2/CO2/H2O/CO =7.09/0/69.16/23.75/0 

Wind tunnel 18 6.34e-2  
Air 

3.80e-2  
35%O2+65%CO2 

a: Experimental unavailable 

 

4.2.2. Chalmers Swirling Flow Diffusion Flame 

Andersson and coworkers [68, 69] investigated propane flames under both air-fired and oxy-fuel 

combustion conditions using the Chalmers’100 kWth test unit. Comprehensive temperature and gas 

composition measurements were carried out at different locations downstream of the burner. The test 

furnace consists of a swirl burner, a cylindrical refractory-lined furnace with an inner height of 2.4 m 

and an inner diameter of 0.8 m, a fabric filter, as well as a flue gas recycle system. Figure 4-1(c) shows a 

schematic of the swirl burner in the test facility: the burner consists of a fuel lance (i.d.=34 mm), 

surrounded by cylindrical primary and secondary feed-gas registers. The primary register is equipped 

with 45o swirl vanes and with an outer diameter of 52 mm, whereas the secondary register has a more 

moderate swirl number with a fin angle of 15o and outer diameter of 92 mm. In the air-fired case, air is 

used in the primary and secondary streams; while in the oxy-fuel cases, two different flue gas recycle 

rates (hence different oxygen fractions in the feed gas) were used. The oxygen mole fraction was 21% 

and 27% in the primary and secondary stream under the cases labeled OF21 and OF27, respectively, 

balanced by recycled dry flue gas consisting of mainly CO2. In this study, we calculated the air-fired 

case and the OF27 case for their similar combustion temperatures and flame characteristics, and the 

stoichiometry was kept constant at stoichiometry of 1.15  . Details of the gas compositions and 

mass flow rates under the air-fired and oxy-fuel operating conditions are summarized in Table 4-2.  
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Table 4-2. The operating conditions of the propane combustion experiment under air-fired and oxy-fuel 

conditions. 

Streams Temperature Mass flow rate (kg/s) and mole fraction (vol%) in O2:N2:CO2 
 oC Air OF27 
Fuel lance 25 1.67e-3 (Propane) 1.67e-3 (Propane) 
Primary stream 25 1.22e-2 (21:79:0) 1.33e-2 (27:2:71) 
Secondary stream 25 1.78e-2 (21:79:0) 1.93e-2 (27:2:71) 
 

4.3. Modeling Approaches 

4.3.1. One-Dimensional Modeling of the Counter-Flow Diffusion Flame 

The counter flow diffusion flame is modeled using the 1-D opposed-flow diffusion flame model in 

CHEMKIN 4.0. The fuel (methane) and oxidizer streams (either O2/N2 or O2/CO2) are injected from 

two concentric, circular nozzles directed towards each other, as shown in Figure 4-1(a). Mass, 

momentum and energy equations in the axisymmetric coordinate are solved using the stead state solver 

TWOPNT.  

4.3.2. CFD Modeling of the Jet-Flow and Swirling-Flow Diffusion Flames 

FLUENT 12.1 was used for the CFD simulations. A 2-D axisymmetric mesh with 5580 

quadrilateral cells and a 3-D mesh with 400,000 hexahedral cells were used for the simulations of 

Sandia Flame D and Chalmers swirling flow flame, respectively. The mesh independence was checked 

by comparing the cold and reacting flow results using double-size meshes. For instance, the results 

from the 3-D mesh were compared with meshes with 1,000,000 cells. The 400,000-cell mesh with 1 

mm resolution in the burner region showed satisfactory accuracy at moderate computational cost. 

The realizable k   model was used for modeling the turbulence in Sandia Flame D, and the 

SST k   model [180] was used for the swirling flow turbulence modeling because of its better 

performance in swirling flows based on our previous studies [193]. The Discrete Ordinates (DO) model 
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[185, 186] was used to solve the radiative transfer equation (RTE) for radiative heat transfer, and the 

absorption coefficient of the participating gas mixture was modeled using weighted-sum-of-gray-gas 

model (WSGGM) [187] with modified parameters for oxy-fuel combustion as proposed by Johansson 

et al. [151]. The modified WSGGM was implemented in the CFD simulation in the form of user 

defined functions (UDFs) [197]. Unlike the Sandia Flame D which eliminates soot formation by the 

partial premixed jet stream, soot formation is observed and plays a significant role in radiative heat 

transfer in the Chalmers experiments [68, 113]. Therefore, soot formation was modeled in the latter 

case using a one-step model [198], and the effect of the soot particles on the radiative heat transfer is 

considered by modeling its absorption coefficient in the RTE.  

Two gas-phase reaction models, namely the eddy dissipation model (EDM) and eddy dissipation 

concept (EDC) model, were used in this study to model the turbulence-chemistry interaction. In the 

EDM [163, 164], the chemical reaction is governed by the large-eddy mixing time scale, defined as 

turbulence kinetic energy over its dissipation rate ( k  ), proposed by Spalding [164]. Based on the 

assumption that the reaction rate is limited by the mixing of the reactants and the heating of the 

reactants through the mixing with the products, the net rate of production of species i due to reaction , r

,i rR , is given by the smaller of the reactant mixing rate (first term) and product mixing rate (second 

term): 
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where   is density, ,i r   and ,j r   are the stoichiometric coefficient for reactant  and product i j  

in reaction , r wM  is the molecular weight,  and RY PY  are mass fraction of any reactant and 
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product species, respectively.  and 4.0A  0.5B   are empirical model constants. Hydrocarbon 

combustion is assumed to take place in two irreversible steps: 
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 (4.2) 

2 CO  (4.3) 

It should be noted that the EDM does not incorporate finite-rate kinetics, and the simplified gas 

phase reaction scheme in Equation (3.32)-(3.31) does not reflect the chemical effect of CO2 on 

hydrocarbon oxidation discussed previously. Therefore, this model can only be used to predict the 

major products species in stable diffusion flames in which the reaction rates are controlled by turbulent 

mixing, but not be expected to show accurate prediction of intermediate species such as CO and H2 in 

oxy-fuel combustion. This will be discussed in more details later. 

In the EDC model [163, 166], the reactions are assumed to occur in small turbulent structures, or 

fine scales associated with the length fraction as a function of the average turbulence intensity: 

1 4
*

2
=C

k
  
 
 

 (4.4) 

where * denotes fine-scale quantities,  ,  and k   are kinematic viscosity, turbulence kinetic energy 

and its dissipation rate, respectively. 2.1377C   is the volume fraction constant. The volume 

fraction occupied by the fine structure is *3 . The mean residence time *  of the fluid within the fine 

structures is modeled by: 

1 2
* =C
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where  is a time scale constant. Combustion at the fine scales is assumed to occur in a 

constant pressure reactor, with initial conditions taken as the current species and temperature in the cell. 

The overall reaction rate of species  is modeled as 

0.4082C 
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where  and  are the mass fraction of species  in the surrounding and fine scale, and  is 

calculated by integrating the laminar reaction rate of the reaction mechanism over time scale 

iY *
iY i *

iY

*  using 

the ISAT algorithm [199]: 
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where  represents the effect of third bodies on the reaction rate,  ,j rC    is the mole concentration of 

species j , ,i r   and ,i r   are the stoichiometric coefficient for reactant  in reaction  as defined 

previously, 

i r

,j r  is the rate exponent for species j  in reaction , r ,f rk  is the forward reaction rate 

constant for reaction  in the Arrhenius form: r

,

r

r

E

RT
f r rk A T e 
  (4.8) 

and the backward reaction rate constant, , is calculated using the equilibrium constant, , as 

follows: 

,b rk rK

,
,

f r
b r

r

k
k

K
  (4.9) 

For global reaction mechanisms where the rate exponents are different from the stoichiometric 

coefficients, the backward reaction rate is computed using individual kinetic parameter sets which are 

obtained by calculating the backward reaction constant at a series of temperatures to guarantee 

chemical equilibrium. 

The EDC model can incorporate detailed chemical mechanisms, and it is possible to predict 

intermediate species, such as CO and H2, given that appropriate reaction mechanisms are used. 
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 mechanisms that were tested in this numerical study, including detailed, 

skele

Mechanism Species Reactions  Calculated Cases Reference 

Table 4-3 summarizes the

tal, quasi-global, and global mechanisms. Detailed reaction mechanisms for hydrocarbon 

combustion have been shown to be valid under oxy-fuel combustion conditions. For instance, Glarborg 

and Bentzen [124] validated the detailed chemical kinetic model (DCKM) on CO prediction in a plug-

flow reactor. In our previous work [22], we have demonstrated that the GRI-Mech 3.0 is valid on 

predicting the burning velocity under both air-fuel and oxy-fuel conditions. Therefore, GRI-Mech 3.0 

[200] consisting of 53 species and 325 elementary reactions for CH4 combustion was used in the 1-D 

counter flow diffusion flame modeling. A skeletal mechanism for methane combustion consisting of 17 

species and 58 reactions [201] was used in the CFD simulation of Sandia Flame D. These two 

mechanisms have been tested in previous studies and serve as benchmarks in the simulation. 

Table 4-3. A summary of the mechanisms tested in this study. 

GRI-mech 3.0 53 325 1-D Counter flow [200] 
Skeletal 17 58 Sandia Flame D [201] 

ia Flame D, Chalmers Swirling Flow 
Sandia Flame D, Chalmers Swirling Flow 4, 136]

WDmult 12 22 1-D Counter flow, Sand [122, 136] 
WD2 5 2 1-D Counter flow, [122, 13
 

However, it is com

Alte

1 contains one step hydrocarbon oxidation reaction 

putationally expensive to apply detailed reaction mechanisms in CFD modeling. 

rnatively, quasi-global or global hydrocarbon combustion mechanisms have been proposed. 

Westbrook and Dryer [122, 136] proposed several simplified reaction mechanisms for the oxidation of 

hydrocarbon fuels in premixed flames, namely the WD one-step (WD1), WD two-step (WD2) and WD 

multi-step (WDmult) mechanisms. Later on, based on the analysis of premixed and diffusion flame 

structures, Jones and Lindstedt [137] proposed a four-step global reaction scheme (JL4) for 

hydrocarbon combustion. The features and limitations of these global and quasi-global mechanisms are 

as follows: 

 WD



  n m 2 2 2R.WD1-1  C H + O CO + H O
4 2

m m
n n   
 

 (4.10) 

This global mechanism, with empirical kinetic parameters for different hydrocarbons, agrees well 

with the laminar burning velocity over a range of equivalence ratio However, it cannot predict CO or 

H2. 

 WD2 contains two step reactions: 

  n m 2 2

2
R.WD2-1  C H + O CO+ H O

4 2

n m m
n

   
 

 (4.11) 

  2

1
R.WD2-2  CO+ O CO

2
 2  (4.12) 

This mechanism recognizes the fact that the hydrocarbons are partially oxidized to CO, and these 

two global reactions often proceed at different time scales. The rate of the CO oxidation (forward 

reaction in (R.WD2-2)) was taken from Dryer and Glassman [134], and a reverse reaction rate was 

proposed in order to reproduce the proper heat of reaction and the CO concentration at equilibrium. 

The reversible reaction (R.WD2-2) takes the CO2 dissociation into account in a global thermodynamic 

manner. 

 WDmult consists of an initiation reaction, in which CO and H2 are produced in hydrocarbon 

partial oxidation, and a 21 skeletal elementary reactions for CO-H2-O2 system. The initiation reaction is 

in the form of: 

  n m 2 2 R.WDmult 1  C H + O CO+ H
2 2

n m
n   (4.13) 

The CO-H2-O2 mechanism includes 11 species (H, O, H2, O2, OH, H2O, N2, CO, CO2, HO2 and 

H2O2) and 21 elementary reactions. The advantage of this mechanism is that it includes the critical 

elementary reactions in which CO2 participates, hence no special treatments are required for the CO-

H2-O2 system in a high CO2 concentration environment. 
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Another global mechanism is the JL4 consisting of two initiation reactions, along with one 

reversible reaction for H2 oxidation, and the reversible water gas shift reaction. The water gas shift 

reaction partially represents the CO2 chemical effects in a global reaction manner, which may improve 

the CO concentration predictions. However, as has been discussed by Andersen et al [135], a negative 

reaction order has to be assigned to H2 for the reverse reaction in order to satisfy the equilibrium 

constant, hence numerical difficulties were encountered under fuel-lean conditions where hydrogen 

concentration approaches zero. 

Table 4-4. The reduced, quasi-global, and global reaction mechanisms used for CH4 and C3H8 combustion 

under air- and oxy-fuel conditions (Units are in m-sec-kmol-J-K).  

Reaction No. Reaction rA  rE  r Reaction orders 

Skeletal [201]   
Skeletal-1-58 CH4-O2 system See reference [201] 
WD Multi-Step [122, 136] 

WDmult-1 4 2CH +0.5O CO+2H 2  7.54e11 2.00e8 0    0.7 0.8

4 2CH O  

 3 8 2 2C H +1.5O 3CO+4H  3.38e10 (8.44e9)a 1.25e8 0    0.1 1.65

3 8 2C H O  

WDmult-2-22 CO-H2-O2 system See reference [136] 
WD 2-Step [134, 136] 

WD2-1 4 2CH +1.5O CO+2H O 2  5.03e11 2.00e8 0    0.7 0.8

4 2CH O  

 3 8 2 2C H +3.5O 3CO+4H O 5.62e9 1.25e8 0    0.1 1.65

3 8 2C H O  

WD2-2f 2 2CO+0.5O CO  2.24e12 1.67e8 0      1 0.25 0

2 2CO O H O
.5

WD2-2r 5.00e8 1.67e82 2CO CO+0.5O  0  12CO  

a
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 The global reactions parameters shown in brackets are for oxy-fuel combustion. 

Based on the review of the reduced reaction mechanisms, the skeletal mechanism, quasi-global 

mechanism WDmult, and global mechanism WD2 were incorporated in the EDC model for modeling 

the turbulent flames, because of their capability on predicting CO and numerical robustness in 

commercial CFD software, and their formulations and rates are summarized in Table 4-4. We note that 

the initiation reactions for methane and propane are different and list them separately. 

4.4. Results and Discussions 
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 Concentration in Oxy-Fuel Combustion 

 coal combustion 

in O2/N2 and O2/CO2 at chemical equilibrium state. Under O2/CO2 condition, the CO concentration is 

316 ppm at 1700 K when burning with 10% excess oxygen, which is higher than that found in air 

combustion (64 ppm) at the same stoichiometry. The CO yield increases significantly to 2010 ppm at 

stoichiometry under O2/CO2 condition. However, the difference between the O2/N2 and O2/CO2 cases 

(0.025%-0.2%) is insignificant compared to that observed in the fuel-rich zone in the experiments (up 

to several percentage points) [68, 78]. Therefore, the apparent CO concentration difference must be 

associated with specific stoichiometry in the diffusion flame.  

In this study, we calculated the equilibrium compositions in methane/air and 

methane/(O2+3.76CO2) systems over a expanded range of stoichiometry. Figure 4-2 shows the CO 

mole fraction as a function of gas temperature and stoichiometry at equilibrium state. CO mole fraction 

increases with increasing the gas temperature and decreasing the stoichiometry under both air- and oxy-

conditions, while the stoichiometry plays a more significant role. When the air/fuel ratio, 

4.4.1. Thermodynamic Analysis of the CO

In a previous study, Zheng and Furimsky [123] calculated the CO emission from

 , is higher 

than unity, there are rarely CO remaining in both cases. At 1.05   which is a typical overall air/fuel 

ratio for combustion processes, the CO mole fraction difference between the air-fired and oxy-fuel 

environment is less than 1% up to 2000 K. 



 

Figure 4-2. The CO mole fraction at thermodynamic equilibrium in CH4/O2/N2 and CH4/O2/CO2 systems as a function 

of temperature and stoichiometry. 

However, under fuel-rich conditions, the difference increases drastically at high temperatures, 

showing that the CO2 chemical effect is more prominent under fuel-rich conditions. The equilibrium 

CO mole fraction is up to 26% at 2000 K, significantly higher than the maximum CO that can be 

produced from the methane partial oxidation (~15%). Similar results have been reported in the 

experiment performed by Glarborg et al. [124]. The equilibrium results indicate that the higher CO 

concentration observed in oxy-fuel flames can be attributed to the CO2 thermal dissociation under fuel-

rich conditions rather than oxidizer-rich conditions from a thermodynamic point of view. However, the 

pathways through which CO is formed can only be identified using kinetics calculation with detailed 

mechanism, which is discussed in the following sub-section. 

4.4.2. One-Dimensional Counter Flow Flames 

The one-dimensional counter-flow diffusion flame structures under CH4/Air and CH4/O2/CO2 

conditions were calculated using detailed mechanism GRI-Mech 3.0. The oxygen mole fraction in the 

oxy-fuel oxidizer jet was set to be 30% in order to maintain a similar peak combustion temperature 
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(2002 K) as that of the air-fired case (2067 K). Figure 4-3 shows the predicted species mole fraction 

profiles. Under a strain rate of ~60 s-1, the peak temperature is stabilized at about 1.12 and 1.02 cm 

away from the fuel nozzle outlet under air-fired and oxy-fuel conditions, respectively, indicating a 

slightly higher burning rate in the air-fired case. It can be seen that the CO concentration is 

significantly higher, and the H2 concentration is slightly lower, in oxy-fuel flame than in air-fuel flame.  

 
Figure 4-3. Counter flow diffusion flame structures in (a) air-fired and (b) oxy-fuel combustion under a strain rate of 

60 s-1. Results are predicted using GRI-mech 3.0 detailed mechanism. Note that CO and H2 mole fractions are 

enlarged 5 times in the figure. 

An analysis on the CO production rates show that CO is mainly produced via two pathways in 

both cases. The first pathway is the reactions between intermediate hydrocarbon and active radicals, 

including 

 R.167  HCO+M H+CO+M  (4.14) 

   2R.79  H+HCCO CH s +CO  (4.15) 

  2 2 2R.23  O+C H CO+CH  (4.16) 

   2 2R.153  CH s +CO CO+CH O 2

2

 (4.17) 

  3R.284  O+CH CO+H+H  (4.18) 
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     2 2R.140  CH +CO +M CH CO +M (4.19) 

  2R.132  CH+CO HCO+CO  (4.20) 

 

Figure 4-4. CO rate of production due to reactions (R.99), (R.167), (R.132), and (R.153) under (a) air-fired and (b) 

oxy-fuel conditions. Results are predicted using GRI-mech 3.0 detailed mechanism, and the strain rate is 60 s-1. 

 

We note that CO2 participates in some of the above reactions directly, such as (R.153) and (R.132), 

or in the form of a third-body (M), such as (R.167), (R.140), which produces CO at high CO2 

concentration. The second pathway is the reaction between CO2 and H radical 

  2R.99  OH+CO H+CO  (4.21) 

Figure 4-4 compares the CO rate of production by these elementary reactions in air-fuel and oxy-

fuel flames. The total CO production rate increases significantly from 0.5 kmol/m3s in the air-fuel 

flame to 1.3 kmol/m3s in the oxy-fuel flame, when the diluent changes from N2 to CO2. As discussed 

above, the higher total CO production rate in oxy-fuel flame are mainly attributed to hydrocarbon 

reactions in which CO2 participates, such as (R.167), (R.153) and (R.132), and the backward reaction 
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of the second pathway (R.99). Moreover, the second pathway reaction (R.99) dominates the CO 

production in the oxy-fuel flame, it contributes about one third of the total CO in the fuel-rich side of 

the flame sheet. It also dominates the CO oxidation in the fuel-lean side under both conditions. 

 

Figure 4-5. H2 and CO rate of production due to reactions (R.84) and (R.99) under (a) air-fired and (b) oxy-fuel 

conditions. Results are predicted using GRI-mech 3.0 detailed mechanism, and the strain rate is 60 s-1. 

Another interesting result in Figure 4-3 is the lower H2 and higher H2O concentrations in the oxy-

fuel flame. Analysis shows that the elementary reaction 

  2R.84  OH+H H+H O 2  (4.22) 

dominates H2 production in the fuel-rich side, and H2 oxidation in the fuel-lean side. In the fuel-rich 

side of the oxy-fuel flame, we have shown that the higher CO2 concentration promotes the backward 

reaction of (R.99), which leads to a higher OH and lower H concentration in the radical pool. 

Consequently, the reaction (R.84) is pushed forward, and H2 is shifted to produce H2O. Figure 4-5 

compares the H2 rate of production due to (R.84), along with the CO rate of production due to (R.99), 

between the air-fuel and oxy-fuel flames. The results show that the backward reaction of (R.84) is 

inhibited in the oxy-fuel flame, which leads to lower H2 production rate. Moreover, different from the 
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air-fuel flame in which CO and H2 are produced and consumed simultaneously in the fuel-rich and 

fuel-lean sides, there is a region between 1.00 and 1.02 cm in the flame sheet, where CO is produced 

through (R.99) and H2 is consumed through (R.84). The combined effect of these two elementary 

reactions is the backward water gas shift reaction 

 
Figure 4-6. Comparison of the predicted CO mole fractions in 1D counter flow diffusion flame using GRI-mech 3.0, 

WDmult and WD2 mechanisms under (a) air-fired and (b) oxy-fuel conditions. The strain rate is 60 s-1.  

2 2CO+H O CO +H 2  (4.23) 

In a global reaction perspective, the higher CO2 concentration moves the equilibrium of the water 

gas shift reaction, leading to lower H2 but higher CO and H2O concentrations in the fuel-rich side of the 

diffusion flame sheet. 

The performances of the quasi-global mechanism WDmult and the global mechanism WD2 are 

tested and compared with the benchmark GRI-mech 3.0. Figure 4-6 shows the predicted CO mole 

fractions under CH4-Air and CH4-O2/CO2 conditions using these mechanisms. It is interesting to see 

that both reduced and global mechanisms perform reasonably and show the higher CO concentration 

trend in oxy-fuel combustion. In the WDmult mechanism, the critical elementary reactions responsible 

to the CO2 chemical effects have been included, therefore, it can represent the higher CO trend in oxy-

fuel combustion. While the WD2 mechanism models the CO concentration through the reversible 
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reaction   2

1
R.WD2-2  CO+ O CO

2
 2

2

. At high temperature, both forward and backward reaction 

rates are high enough to ensure the chemical equilibrium, hence the higher CO concentration under 

oxy-fuel condition is predicted as well. 

In summary, the analysis has identified the reaction pathways in which higher CO2 concentration 

influences CO formation in the oxy-fuel diffusion flames: it interacts with hydrocarbon fragments, and 

promotes the  reaction, resulting in a higher CO concentration. Combined with 

the  reaction, higher CO2 also leads to lower H2 and higher H2O concentration. 

This has implications regarding the use of the reduced mechanisms. To capture the first pathway, 

appropriate kinetic parameters should be used for the initiation reaction, taking the chemical effect of 

CO2 on hydrocarbon-CO2 reactions into account. Regarding the second pathway, either critical 

elementary reactions, such as  and , should be calculated 

directly as the WDmult mechanism does; or the CO/CO2 equilibrium should be modeled using global 

reversible reactions as the WD2 mechanism does. Although the reduced mechanism and global 

mechanism capture the CO trends in the relatively simple one-dimensional laminar diffusion flame, 

their performances for turbulent diffusion flames should be further investigated because of the 

turbulence-chemistry interactions and the multi-scale nature of the chemical reactions. 

2H+CO OH+CO

2 2H+H O

H+C

OH+H

2O OH+CO 2OH+H H+H O

4.4.3. Jet Flow Diffusion Flame (Sandia Flame D) 

Based on the validation in the 1-D diffusion flame, three reaction mechanisms, namely the 

reduced methane skeletal mechanism, the quasi-global WDmult mechanism, and the global WD2 

mechanism, were tested in modeling the Sandia Flame D under both air-fired and oxy-fuel conditions. 

Following the validation study using air-fired experiment results, the performance of these mechanisms 

are compared under a conceived oxy-fuel operating condition.  
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Figure 4-7 and Figure 4-8 compare the CFD predicted temperature and CO mole fraction 

distributions under air-fired and oxy-fuel conditions, using the EDC model with (a) skeletal, (b) 

WDmult, and (c) WD2 mechanisms. Results using EDM with infinite-fast reaction rates were also 

compared. All these approaches predict the jet flow diffusion flame shape as observed in the 

experiment: a diffusion flame sheet is developed starting from the root of the burner stabilized by the 

hot pilot stream, and the peak temperature and CO concentration are observed in the flame sheet zone.  

 

 

Figure 4-7. Comparison of the predicted temperature distribution in jet flow partial premixed flames (Sandia Flame D) 

using skeletal, WDmult, WD2 mechanisms, as well as the infinite fast chemistry model under air-fired (left) and oxy-

fuel (right) conditions. 
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Figure 4-8. Comparison of the predicted CO mole fraction distribution in jet flow partial premixed flames (Sandia 

Flame D) using skeletal, WDmult, WD2 mechanisms, as well as the infinite fast chemistry model under air-fired (left) 

and oxy-fuel (right) conditions.  

Figure 4-9(a) compares the measured and the predicted axial profiles of temperature and species in 

air-fuel combustion. All the simulation approaches agree reasonably with the measured results for 

temperature and major species such as CH4 and O2, however their performances are distinct in the 

intermediate species predictions, such as CO and H2. The skeletal and quasi-global mechanism 

WDmult show significantly better agreements with the measurement, while the WD2 mechanism 

underestimates the CO concentration. Similar trends are observed in Figure 4-9(b), in which the 

predicted counterpart scalars in oxy-fuel combustion are compared. Moreover, the WD2 mechanism 

shows significant deviations from the benchmark simulation. 

Figure 4-10 compares the measured and predicted radial CO mole fraction at different distances 

from the burner exit. As it can be seen from Figure 4-8 and Figure 4-10, the performances of different 

mechanisms on CO predictions are distinct:  
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 All EDC model based finite-rate mechanisms capture the higher CO concentration in oxy-fuel 

combustion as they do in the 1-D diffusion flame, while the EDM fails to capture this trend because 

it assumes the reactions are turbulent mixing controlled and neglects the CO2 chemical effects. 

 The WDmult mechanism predicted CO concentration agrees well with measurement and the 

benchmark skeletal mechanism in the air-fuel case, while it slightly overpredicts the CO 

concentration in the oxy-fuel case than the benchmark skeletal mechanism.  

 The WD2 mechanism underestimates the peak CO concentration significantly in both cases. 

However, it shows an overpredicted ~1% CO mole fraction downstream because the forward and 

backward kinetic parameters of reaction (R.WD2-2) lead to a slight deviation from equilibrium 

[135]. 



(a) Air-fired     (b) Oxy-fuel 

 

Figure 4-9. Comparison of the measured (scatters) and predicted (lines) axial profiles of temperature, CH4, O2, CO 

and H2 mass fractions in the Sandia Flame D using skeletal, WDmult, WD2 mechanisms, as well as the infinite fast 

chemistry model under (a) air-fired and (b) oxy-fuel conditions. Results are shown as function of normalized axial 

distance (x/D) with a jet flow diameter D=7.2 mm. 
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(a) Air-fired     (b) Oxy-fuel 

 

Figure 4-10. Comparison of the measured (scatters) and predicted (lines) radial profiles of CO mass fraction in the 

Sandia Flame D using skeletal, WDmult, WD2 mechanisms, as well as the infinite fast chemistry model under (a) air-

fired and (b) oxy-fuel conditions. Results are shown as function of normalized radial distance (r/D) with a jet flow 

diameter D=7.2 mm. 

 

The results show that although all the mechanisms can predict the CO concentration in simple 

one-dimensional diffusion flame, their performances in the turbulent diffusion flame are apparently 

different. With the qualitative comparison in the Sandia Flame D, the two quasi-global (WDmult) and 

global (WD2) mechanisms are further tested and their predictions are compared with experimental 

results in a swirling flow oxy-fuel diffusion flame in the following sub-section. 
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4.4.4. Swirling Flow Diffusion Flames 

The aerodynamics of swirling flow is distinct from the free jet flow. As shown in Figure 4-1(c), in 

swirling flow combustion, reverse pressure gradient is generated along the axis forcing the hot gas to 

recirculate and mix with unburned streams in an internal recirculation zone (IRZ), which increases the 

flame intensity and stabilizes the diffusion flame. Therefore, it has been widely used in gaseous fuels 

and pulverized coal combustion [178]. The internal recirculation zone features high temperature and 

fuel-rich stoichiometry, which is favorable for CO formation as discussed in the thermodynamic 

analysis. In this section, the predicted temperature and species distribution are compared with 

measurements in the Chalmers 100 kWth test facility. Special attention is given to the CO formation 

mechanism in a swirling flow diffusion flame, and the performances of different combustion models 

and reaction mechanisms in such a case.  

 

 

Figure 4-11. Comparison between the measured (scatters) and predicted (lines) radial temperature in (a) air-fired, and 

(b) oxy-fuel combustion. Simulation results were obtained using different gas phase reaction models and reaction 

mechanisms. Infinite-fast represents EDM with infinite fast chemistry).  

Figure 4-11 show a comparison between the measured and predicted gas temperature along the axis 

of the furnace under air-fired and oxy-fuel conditions. Satisfactory agreements are obtained with all 
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approaches. For instance, all the predictions show the temperature rise at the flame zone, which is 

stabilized near the swirl burner, and a similar declining temperature profile due to mixing and heat 

transfer downstream. It should be noted that the temperature profiles were improved when the soot 

formation and its radiation were modeled in both air-fired and oxy-fuel combustion, as also has been 

shown in ref. [202]. Moreover, the predicted gas temperatures are all slightly higher than the 

measurements, especially in the flame region, probably because of the fact that not all minor radicals 

were calculated in the species transport and energy equations.  

Figure 4-12 shows a comparison between the measured and predicted oxygen mole fraction radial 

profiles at x=0.215 and x=0.384 m away from the burner. The EDM shows good match with the 

measurements under both air-fired and oxy-fuel conditions. On the other hand, the finite-rate 

mechanisms also agree with the measurement in the air-fired combustion, but slightly lower than those 

from the EDM, which translates to faster oxygen consumption rates. In the oxy-fuel combustion case, 

the WD2 mechanism over-predicts the oxygen mole fractions at 0.215 and 0.384 m away from the 

burner. This again might be due to the non-equilibrium backwards reaction rate [135], whose effect is 

magnified by high CO2 concentrations. While the WDmult mechanism shows much better match with 

the measurement. 

 



(a) Air-fired     (b) Oxy-fuel 

 

Figure 4-12. Comparison between the measured (scatters) and predicted (lines) oxygen mole fractions (dry basis) at 

0.215 and 0.384 m away from the burner in (a) air-fired, and (b) oxy-fuel combustion. 

 

(a) Air-fired     (b) Oxy-fuel 

 

Figure 4-13. Comparison between the measured (scatters) and predicted (lines) CO mole fractions (dry basis) at 0.215 

and 0.384 m away from the burner in (a) air-fired, and (b) oxy-fuel combustion. 
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Similar to that observed in the jet flow diffusion flame simulation, the performances of EDM and 

EDC models with various reduced mechanisms on CO concentration predictions are apparently 

different. Figure 4-13 shows the measured and predicted CO radial profiles at x=0.215 and x=0.384 m. 

Again, the EDM significantly underpredicts the CO concentrations in both air-fired and oxy-fuel 

combustion, and it cannot show the higher CO trend in oxy-fuel combustion because the reaction rates 

are assumed to be controlled by the turbulent mixing only, while the chemical kinetics are neglected. 

The WD2 mechanism improves the CO predictions and shows the higher CO trend in oxy-fuel 

combustion. However, it still underestimates the CO concentrations in both cases. Note that the original 

WD2 mechanism cannot approach chemical equilibrium and leads to 1% and 3% residual CO (~1%) in 

the furnace under air-fired and oxy-fuel combustion, respectively, which has been shown by Andersen 

et al. [135]. In contrast, the WDmult mechanism significantly improves the CO predictions in both air-

fired and oxy-fuel combustion, because it includes the critical reactions discussed in section 4.4.2. 

These results are consistent with those observed in the jet flow diffusion flame. 

We have shown in the 1-D diffusion flame calculation that the  reaction 

dominates the higher CO production rate and leads to higher CO concentration in oxy-fuel combustion. 

This is demonstrated by the EDC model with the WDmult mechanism in the CFD simulation. 

2H+CO OH+CO

2OH+CO H+CO

OH+CO H+

Figure 

4-14 shows the predicted species, velocity, and reaction rates distributions in the air-fired and oxy-fuel 

flames. The vector flowfield shows that an IRZ is formed by the swirled primary and secondary 

oxidizer streams (air or O2/CO2), which stabilizes the flame in the vicinity of the burner. Similar to the 

jet flow flame, reactions take place mostly at the diffusion flame sheet between the fuel-rich zone and 

the oxidizer-rich streams (see Figure 4-14(a)). CO and other active radicals are produced in the fuel-rich 

side of the diffusion flame sheet (shown in Figure 4-14(b)), and recirculated back to the burner along 

with the burned hot gases. Figure 4-14(b) compares the reaction rate of  in the air-

fuel and oxy-fuel flames. The significantly higher backward reaction rate of  in 2CO
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the oxy-fuel flame leads to its substantially higher CO concentration in the IRZ. 

(a) 

 

(b) 

 

Figure 4-14. Comparison between air-fired (left) and oxy-fuel (right) combustion: (a) the oxygen mole fractions and 

the carbon monoxide mole fraction shown in isoline and gray contour, respectively; and (b) the reaction rate of 

 shown in color contour in the vicinity of the swirl burner. The velocity field is shown using 2OH+CO H+CO
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uniform vectors. Results are obtained using the WDmult reaction mechanism. 

 (a) Air-fired     (b) Oxy-fuel 

 

Figure 4-15. Comparison of the flame structures at x=0.05 m away from the burner in (a) air-fired and (b) oxy-fuel 

swirling flow diffusion flames. Figures show the predicted profiles of species mole fractions and rates of the reaction 

. Results are obtained using the WDmult reaction mechanism. 2OH+CO H+CO

 

Figure 4-15 shows the predicted flame structures at 0.05 m away from the burner under the two 

operating conditions (the profile location is also illustrated in Figure 4-14). Unlike the jet flow diffusion 

flame, the species concentrations are uniform around the centerline due to the strong mixing in the IRZ. 

The species mole fraction profiles indicate a diffusion flame sheet in the interface between the fuel-rich 

recirculation zone and the surrounding oxidizer streams. Note that higher CO and H2O, and lower H2 

concentrations are observed in the recirculation zone under oxy-fuel condition. The backward reaction 

rate of  in the oxy-fuel flame sheet is about 1 kmol/m3s, significantly higher than 

that (almost 0) in the air-fuel flame, which explains the higher CO concentration in oxy-fuel 

2OH+CO H+CO
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2

2

combustion. Similar to the 1-D diffusion flame, the high CO2 concentration also impacts the reaction 

, and results in lower H2 in the oxy-fuel flame. 2OH+H H+H O

4.5. Conclusion 

Higher CO concentrations have been observed in oxy-fuel combustion than the traditional air-fuel 

combustion by previous experimental studies [68, 70]. In this section, the CO2 chemical effects on CO 

formation have been investigated using detailed mechanism in a 1-D simulation of the counter flow 

laminar diffusion flame, and the performances of reduced, quasi-global and global reaction 

mechanisms have been compared with experimental results in the CFD simulation of jet flow and 

swirling flow turbulent diffusion flames. The main findings are as follows: 

(1) From a thermodynamic point of view, the higher CO concentration observed in oxy-fuel 

flames can be attributed to the CO2 thermal dissociation under fuel-rich conditions rather than oxidizer-

rich conditions.  

(2) The 1-D counter flow diffusion flame simulation using detailed reaction mechanism identifies 

two reaction pathways through which CO formation is enhanced by the high CO2 concentration under 

oxy-fuel condition: (a) the hydrocarbon fragment-CO2 reactions and (b) the  

reaction. The latter one dominates the CO formation, and impacts the  reaction, 

leading to lower H2 and higher H2O in the reaction region. The combination effect of the above 

reactions may be partially represented in the form of water gas shift reaction  in 

the fuel-rich side. 

2OH+CO H+CO

2 2H+H O

2 2+H O CO +H

OH+H

CO

(3) The Eddy Dissipation Model with infinite-fast chemistry can be used to predict the 

temperature and major species in the jet flow and swirling flow turbulent diffusion flame under both 

air-fired and oxy-fuel conditions, however it fails to predict CO reasonably. 
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(4) Detailed and reduced mechanisms, such as GRI-mech 3.0 and the skeletal methane mechanism 

used in this study, fully resolve the CO2 chemical effect and agree well with the measured CO 

concentrations. The WD2 global reaction mechanism models the CO2 chemical effect through the CO2 

dissociation and can capture the higher CO concentration trend in the 1-D diffusion flame. However, it 

consistently underestimates the CO concentrations in the CFD simulations. The WDmult quasi-global 

reaction mechanism contains critical elementary reactions, and it is able to capture the chemical effects 

of CO2 in oxy-fuel combustion, showing improved performance in both air-fuel and oxy-fuel flame 

CFD simulations. 
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Chapter 5 Pressure’s Effects on Oxy-Coal 

Combustion 

In the last two chapters, we have introduced the CFD numerical approaches and submodels, and 

validated the turbulence models and combustion models specifically for oxy-coal combustion at 

atmospheric pressure. In this chapter, the validated CFD approach will be “extrapolate” to broader 

operating conditions under elevated pressures, with appropriate adaption of the submodels taking into 

account the physics at high pressures. We will focus on the pressure’s effects on oxy-coal combustion, 

and investigate the optimal operating conditions at high pressures. 

5.1. Introduction to the Pressurized Oxy-Coal Combustion 

Pressurized oxy-coal combustion has been proposed for improved power plant thermal efficiency 

[34, 48, 203]. Moreover, it is possible that combustion performance could be improved at higher 

pressure because of the faster reaction kinetics. Enel has carried out experimental studies on the 

pressurized oxy-coal combustion in a 3 MWth pilot-scale experimental furnace under an operating 

pressure of 4 bar. Preliminary measurements on the heat transfer, pollutant emissions and flame 

stability were evaluated while varying the amount of flue gas recycled back to the furnace, the oxygen 

excess and the burner settings. The experimental tests demonstrated that oxy-fuel combustion can be 

performed with low-NOx burners designed for air combustion under the investigated operating 

conditions, without having any stability problems. 

Based on different system configurations and assumptions, previous studies [35, 36, 46] have 

shown optimal system thermal efficiencies at significantly higher operating pressure (10-80 bar) than 
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the current tested operating conditions. However, to our knowledge, the effects of elevated pressure on 

oxy-coal combustion have not been fully investigated. The objective of this study is to examine the 

effect of pressure on oxy-coal combustion, such as flow patterns, coal conversion time, heat transfer, 

and slag behaviors. The validated CFD approaches [193] were used to simulate the oxy-combustion 

under elevated pressures (20 bar and 40 bar), with the distinct physical properties and char reaction 

kinetics considered in the modeling. Since the conversion time could be different at higher pressure, 

progressively increasing feeding rates were used in order to find an optimal thermal load at elevated 

pressures. 

5.2. Pilot Scale Experimental Facility 

5.2.1. The Test Facility Geometry 

The ISOTHERMⓇ pressurized oxy-fuel combustion system was developed by ITEA Spa and 

Enel and introduced elsewhere [34]. Figure 5-1 shows the schematic geometry of the 5 MWth 

pressurized CWS oxy-fuel combustion pilot scale test rig (the thermal capacity is 3 MWth in this study). 

It consists of a partial swirl burner, and a CWS atomizer located a small distance off the axis of the 

central bluffbody, as shown in Figure 5-2. The flue gas duct and the molten ash port are located at the 

top and bottom end of the combustor. The refractory wall lined cylindrical combustor is mounted 

horizontally with a 1.5 degrees slope. The experiments on this test rig showed good environmental 

performance [204].  



 

Figure 5-1. Geometry of the pressurized CWS oxy-fuel combustor. The center X-Y plane and vertical traverse lines 

are highlighted in this figure, showing the cross section where contours and velocity fields are plotted. 

 

 

Figure 5-2. Schematic diagram of the swirl burner and coal water slurry effervescent atomizer. 

5.2.2. Operating Conditions 

A bituminous coal was adopted in this numerical study. Its properties, including approximate and 

ultimate analysis, are shown in Table 5-1. The base case operating conditions for the burner and CWS 

atomizer are consistent with those in system analysis [33, 34], while scaled down to 3 MWth for the 

pilot-scale combustor CFD study, and the details are shown in Table 5-2. 

Table 5-1. Coal properties used in this study. 
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 Unit Value 
Proximate analysis (as received)   
HHV kJ/kg 29153 
Moisture % 6.4 
Ash % 7.0 
Volatile matter % 33.1 
Fixed carbon % 53.5 
Ultimate analysis (dry ash free)   
Carbon % 82.1 
Hydrogen % 5.43 
Oxygen % 10.5 
Nitrogen % 1.39 
Sulphur % 0.58 

Table 5-2. Operating conditions of the oxy-coal burner and atomizer. 

 Composition Mole (Mass) fraction Mass flow rate  Pressure Temperature 
  % kg/s bar ºC

O2 21.9 0.29
N2 3.37 0.038

CO2 36.3 0.56

Burner  
stream 

H2O 38.3 0.24

4 280

Coal (65) 0.1CWS 
Water (35) 0.054

8 37.22

Atomization gas Steam - 0.01 18 265

 

The combustor is lined with three-layer refractory wall inside of the steel shell, and a water 

cooling jacket outside of the steel shell. The conductive heat transfer in the refractory wall and the 

convective heat transfer by the external cooling water were modeled in the CFD thermal boundary 

condition. The parameters used in the heat transfer model are shown in Table 5-3. Since the convective 

heat transfer coefficient, h, of water cooling tubes is not known, for the case of forced convection by 

water, it is in the range of 50-10,000 [205]. A convective heat transfer coefficient of 200 W/m2K was 

used as an estimated value in the boundary condition. 

Table 5-3. Parameters of the refractory wall and cooling system of ISOTHERM combustor 

 Parameters Unit Value 
Refractory wall, ceramic fiber insulation Thermal conductivity W/mK 1.13 
 Thickness m 0.221 
Cooling water Temperature C 45 
 Convective heat transfer coefficient W/m2K 200 

 



5.2.3. Scaling Strategy at Elevated Operating Pressure 

There are several variables in the pressure parametric study: the operating pressure, the mass flow 

rate, the burner velocity, and the geometry of the burner and reactor, and they are independent when the 

operating pressure changes. For instance, the gas density increases proportionally at elevated pressure 

based on the ideal gas law, which results in a reduced velocity and increased residence time, if the 

geometry and the mass flow rates remain the same. Therefore, two equivalent strategies are reasonable 

to operate the reactor under elevated pressures:  

 Dimension scaling: Fix the mass flow rate (or the thermal load), while reduce the dimension of the 

burner and reactor under higher operating pressures; 

 Mass flow rate scaling: Fix the geometry of the burner and reactor, and increase the mass flow rate 

progressively under higher operating pressure. 

In the present study, we adopted the latter strategy, so that re-scaling the reactor and burner 

geometry is avoided, and the results can be more comparable with a fixed geometry. Special attention is 

paid to the coal particle residence time, in order to ensure a high carbon conversion under higher 

operating pressures. With the objective of optimizing the thermal load of the combustor in mind, 

simulations with increasing mass flow rates (or burner velocity) were carried out under 20 bar and 40 

bar. The low mass flow rate (termed as LV) cases were chosen to match the reference design’s axial 

momentum flux at 4 bar; and the median mass flow rate (termed as MV) cases maintain the identical 

axial burner velocity in the reference design; the high mass flow rate (termed as HV) cases are 

aggressive designs, with a burner velocity that doubles the reference case burner velocity. The 

operating conditions of the seven CFD cases are listed in Table 5-4, showing the mass flow rate of the 

burner oxidizer, coal water slurry, as well as the steam used for atomization. 

The same burner oxidizer composition and overall stoichiometry ( 1.057  ) is used for all the 
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simulation cases for comparison. Similarly, identical atomization steam to CWS mass flow rate ratio 

was used in all the simulation cases in order to ensure a good atomization effect. However, the 

atomization stream pressure has to be increased by ~20 bar higher than the reactor pressure in order to 

maintain choked condition, and the steam has to be heated up to 327 oC and 427 oC at 20 bar and 40 bar, 

respectively, in order to avoid condensation during the atomization process. Moreover, the coal water 

slurry droplet size distributions were assumed to be the same with the reference 4 bar case. 

Table 5-4. Operating conditions of the burner and atomizer under elevated pressures 

Case Ref. case 20-LVa 20-MVa 20-HVa 40-LVa 40-MVa 40-HVa

Operating pressure (bar) 4 20 20 20 40 40 40 
Burner velocity (m/s) Median Low Median High Low Median High 
Nominate thermal load (MW) 3 7 15 30 10 30 60 

oxidizerm  (kg/s) 1.148 2.566 5.738 11.475 3.629 11.475 22.950 

CWSm  (kg/s) 0.154 0.344 0.769 1.538 0.486 1.538 3.077 

atom steamm  (kg/s) 0.01 0.022 0.05 0.1 0.032 0.1 0.2 

Stoichiometryb 1.187 1.187 1.187 1.187 1.187 1.187 1.187 
a LV/MV/HV: Low/Median/High burner Velocity 

b This is the stoichiometry in the combustor, taking the recycled oxygen into account. 

 

5.3. Numerical models 
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5.3.1. Modeling Approaches 

FLUENT 12.0.16 was used in this study, with the validated submodels described in our previous 

oxy-coal combustion validation study [193]. A 3D mesh including 266,717 hexahedral and tetrahedral 

elements was constructed coupling the flow field in the burner duct, the flow across the swirlers, and 

the combustion chamber together, so that the effects of the swirlers on pressure drop and turbulence can 

be captured in the simulation. 

The Realizable k   model of the Reynolds Average Navier Stocks (RANS) approach was 

chosen for turbulence modeling because of its higher accuracy for weak swirling flows [206], and the 
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SIMPLE algorithm was used for pressure-velocity coupling. The eddy dissipation model was used to 

compute the gas phase reaction source term, in which the reaction rate is determined by the turbulent 

mixing, while detailed chemical kinetics were neglected. This assumption is valid for stable 

combustion, but it has limitations on predicting intermediate species such as CO and H2. Detailed 

introduction on the CFD framework is presented in reference [193], and is left out in this report. The 

ideal gas law was used to calculate the gas density at the elevated operating pressures. 

It should be mentioned that the pressure influences physical properties and char combustion 

kinetics, correspondingly, related submodels were modified, taking the pressure’s effects into account 

in the CFD simulations, which is discussed in greater detail below. 

5.3.2. Modeling the Coal Water Slurry Atomization 

An effervescent CWS atomizer is used in the combustor, and its properties such as the spray angle, 

droplet velocity and droplet size distribution were calculated using experimental observations and 

correlations by Sojka and Lefebvre [207] and Sovani et al. [208]. The estimated CWS droplet velocity 

is 50.11 m/s, with a Sauter Mean Diameter (SMD) of 134 micron.  

A total of 3000 atomized CWS droplets with 50 different sizes sampled from a Rosin-Rammler 

distribution are tracked using Lagrangian approach. Since experiments showed that the coal particles in 

a CWS droplet tend to agglomerate [209, 210], each droplet is modeled as a one phase sphere 

consisting of water and an agglomerated coal particle. The water content evaporates and boils at the 

saturation temperature (for instance, 143 ºC at 4 bar pressure) before devolatilization and burning 

occur. 

5.3.3. Modeling the Physical and Chemical Processes at High Pressure 

Higher operating pressures have significant effects on the physical properties and chemical 

kinetics, which may result in different turbulence intensity, heat and mass transfer, and heterogeneous 



reaction rates. For instance: 

 Increased gas density, and increased drag force on the particles; 

 Increased saturation temperature and delayed slurry droplet evaporation/boiling process; 

 Retarded volatiles mass diffusion in coal porous structure, secondary pyrolysis reactions and 

decreased total volatile yields; 

 Saturation of the active sites for heterogeneous reactions on the char surface and reduced reaction 

order at higher pressure; 

The different physical properties (density and saturation temperature) were modeled using the 

ideal gas law and piece-wise linear formula in the simulation. The reduced volatile yield effect was 

captured by the CPD model [211] using a pre-processing approach. Similar to the oxy-char combustion 

model used in Chapter 3, three surface reactions were taken into account as follows:  

  22C s +O 2CO  (R.1) 

  2C s +CO 2CO  (R.2) 
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2  2C s +H O CO+H  (R.3) 

The total reaction rate for each of the heterogeneous reactions, , is computed by: ir
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  (5.1) 

where  is the char particle diameter, and  and  are the kinetics controlled and bulk 

diffusion controlled reaction rates, respectively, for reaction . The kinetics controlled reaction rate is 

calculated using the Nth order equation: 
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where  is the particle temperature, pT ip  is the partial pressure for species , i uR  is gas constant. , iA



i , and  are pre-exponential factor, temperature order, and activation energy for reaction  i , 

respectively, taken from literature for high pressure char oxidation and gasification [

iE

206], which are 

summarized in Table 3-3. 

Table 5-5. The kinetics parameters and diffusion coefficients for the oxy-char surface reactions. 

iA  iE  i  in  
Reaction 

 2 nkg m sPa  kJ mol    

R.1 300 130 0 0.65 
R.2 2224 220 0 0.6 
R.3 42.5 142 0 0.4 

 

The diffusion controlled reaction rate is calculated by: 

  0.75
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where  is the temperature of the surrounding gas, and the diffusion constant, , is calculated by: T iC

0
,01.75

0

1
i i c i

u

P
C MW Sh DF

R T P
    (5.4) 

where i  is the stoichiometric coefficient of carbon relative to the gas phase reactant , i cMW  is the 

molecular weights of carbon.  and  are the reference temperature and pressure for the binary 

diffusivity .  is the operating pressure of the reactor.  is the Sherwood number for the 

sphere particle. Note that  is inversely proportional to the operating total pressure.  

0T 0P

0DF P Sh

iC

The char consumption model was implemented into the CFD platform as user defined function 

(UDF), which is provided as Appendix of the report. 

5.4. Results and Discussions 

5.4.1. Reference Case at 4 bar  
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5.4.1.1. Flowfield 

The velocity vector fields in the central cross-section of the combustor in XY and XZ planes are 

plotted in Figure 5-3. Figure 5-3(a) shows that in the vertical XY plane, a strong turbulent jet enters the 

combustor with a velocity magnitude of 20 m/s, which generates a large reversed flow zone at the top 

part of the combustion chamber through the length of the reactor. In contrast, the velocity distribution 

in the horizontal XZ plane shown in Figure 5-3(b) is more symmetric.  

A close look at the velocity distribution in vicinity of the burner is shown in Figure 5-4. The 

oxidizer flow (mixture of O2 and recycled flue gas) from the partial-swirl burner couples with the coal 

water slurry atomization spray, and this forms a high velocity jet in the along the axis. Since the 

tangential velocity is not high, no internal recirculation zone is observed in the burner flow downstream. 

The tangential momentum and its swirling effect will be discussed in greater detail later. Again, the 

vectors show an evident recirculation zone in the top part of the reactor space (Y>0). 
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Figure 5-3. Gas velocity vector field in the combustor: (a) central cross section in XY plane. (b) central cross section 

in XZ plane. 

 

Figure 5-4. Gas velocity vector field in vicinity of the burner. Vectors of uniform length show the flow directions, and 

background color show the magnitude of the axial velocity (Vx). 

The axial and tangential velocity distribution along the vertical traverses at different axial 

locations (i.e., the section 1-6 in Figure 5-1) is shown in Figure 5-5: the axial velocity is high in vicinity 

of the burner and it decays due to the entrainment of the recirculated gas. The negative velocity at the 

topside shows the maximum reversed flow velocity is ~5 m/s. This asymmetric flow field is caused by 

the asymmetric geometry of the flue gas duct arrangement, and was experimentally observed during the 

tests at the pilot plant.  
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Figure 5-5. Axial (a) and tangential (b) gas velocity profiles of traverses at different axial locations. 

The burner implements partial axial swirl blades to generate tangential momentum and enhance 

the mixing between oxidizer stream and the CWS spray. The swirl number ( ) characterizing the 

effect of the swirl flow is defined as [178]: 
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Based on the 3D CFD simulation results, it is ~0.18, indicating that it is a relatively weak swirling 

flow. The tangential velocity shown in Figure 5-5(b) decays faster than the axial velocity: the 

maximum tangential velocity decreases from 15 m/s at the burner outlet to 5 m/s at x=0.5 m. 

Figure 5-6 shows the mass flow rate and sensible enthalpy flow rate of gas phase at different axial 

locations. The net gas phase mass flow rates increase from ~1.2 kg/s to ~1.3 kg/s due to the evaporation 

of water and consumption of carbon in coal, while the recirculated mass flow rate (shown as negative 

in Figure 5-6(a)) varies from 0.4-1.0 kg/s. The recirculated mass contains ~2.5 MW sensible enthalpy, 

which is entrained and mixed with the unburned gas stream. The hot gas recirculation speeds up the 

evaporation of the water content in the CWS droplets, and facilitates the ignition of the volatiles.  
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The flow field in the ISOTHERM oxy-coal reactor governs the combustion characteristics. As it 

will be discussed in greater detail in the following sections, the hot gas recirculation in the reactor 

creates even temperature and species distributions, dilutes the reactions and results in some MILD 

combustion effects. 
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Figure 5-6. Net and recirculated gas phase mass and enthalpy flow rate of the YZ cross-sections at different axial 

locations. 

5.4.1.2. Gas temperature Distribution 

Figure 5-7 shows the temperature distribution in the combustor. The cold burner stream core is 

enveloped by hot burned gas in vicinity of the burner, and the high temperature gradient indicates a 

diffusion and combustion zone up to about 3 m downstream the burner exit. The gas temperature 

increases from 500-600 K to 1700 K at x=2.5 m, and remains at ~1800 K for most of the combustion 

chamber. Similar to that observed in the flowfield, Figure 5-7(a) shows an asymmetric temperature 

distribution: the cold unburned stream goes down towards the bottom of the combustor because of the 

asymmetric arrangement of the flue gas exit. On the other hand, the temperature distribution in the 

horizontal plane as shown in Figure 5-7(b) is much more symmetric. 
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(a) 

 

(b) 

Figure 5-7. Gas temperature distribution in the central XY and YZ cross-sections in the combustor. 

It is notable that the temperature distribution is so even that there are no extremely high 

temperature regions in the combustor. This is a result of the large volume hot gas recirculation as 

discussed in 5.4.1, and it indicates a potentially low NO formation. Further studies on the pollutant 

formation are needed in the future. 
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5.4.1.3. Species Distribution 

Figure 5-8(a) to (f) shows the distribution of gas species in the combustor, and indicates the 

reaction processes during the oxy-coal combustion. As shown in Figure 5-8(a), the volatiles begin to be 

released at about 0.5 m, and the maximum mass fractions (~ 21.5 10 ) are at ~1 m away from the 

atomizer. The volatile distribution indicates the location where most of the coal water slurry is dried out 

and devolatilization occurs. The volatiles exist throughout a distance of 0.5 to 2 m because the 



evaporation times vary with particle sizes. For small particle, the evaporation time is shorter and its 

velocity decays faster, so its devolatilization occurs faster compared with large particles. Figure 5-8(b) 

and Figure 5-8(c) show the H2 and CO distributions produced by decomposition of the volatiles, the 

secondary pyrolysis of tar, as well as the char combustion and gasification reactions. The major source 

of CO is the char oxidation since its concentration is higher than volatiles. The CO mass fraction is 

above  at a wide range from ~1 m to 3 m downstream the burner, showing where the char 

burning reactions take place. The maximum CO mass fraction is about , which is lower than 

the values reported in other oxy-coal combustion experimental studies [

34 10

21.2 10

70, 78] (typically ~10%). The 

lower maximum species fraction is attributed to the dilution by the burned gas at vicinity of the burner. 

The O2 concentration, therefore, decreases due to the consumption of volatile and H2/CO oxidation and 

char burning, as shown in Figure 5-8(d).  

Figure 5-8(e) and Figure 5-8(f) show that CO2 dominates the gas phase throughout the whole 

combustor, and it increases from 50% in the burner stream to 64% at the flue gas duct, while H2O 

concentration increases from 26% in the burner stream to 29% at x=1.5 m due to the water evaporation 

of the CWS, the mixing with the atomization steam and the combustion product of the hydrogen 

contents of coal. Triatomic gases consist of more than 70% of the gas throughout the combustion 

environment, and even higher (92%) at the end of the combustion process. Since the total emissivity of 

the triatomic gases increases with increasing temperature, the partial pressure of the gases, and the 

beam length, the elevated partial pressure of CO2 and H2O in the oxy-fuel combustor substantially 

enhances the radiative heat transfer compared to the air combustion. The radiation characteristics are 

discussed in a second paper (Part II) of this study. 
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Figure 5-8. Distribution of mass fractions for gaseous species: volatile, H2, CO, O2, CO2, and H2O in the central X-Y 

cross-section. Figures only show axial range of 0-3.3 m where combustion reactions take place. 

5.4.1.4. Coal Water Slurry Droplet Fate 

Coal water slurry droplets were injected into the computational domain in accordance with the 

experimental correlations as introduced in section 5.3.2. The motion of particles is calculated in a 

Lagrangian reference frame using force balance: 

   x pp
D p

p

gdu
F u u

dt

 



     (5.6) 

where  and  are velocities, and u pu   and p  are the densities of the gas and particle, 

respectively. The gravity is considered in the second term on the right side, while the drag force to the 

particle, DF , is considered as: 
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where DC  is the drag coefficient taken from [212],   is the molecular viscosity of the fluid, and  

is the particle diameter. Re is the relative Reynolds number, defined as: 

pd

Re
p pd u u



   (5.8) 

Therefore, the particle trajectories depend on particle size and density, its initial velocity, as well 

as the surrounding gas environment (velocity and compositions). Figure 5-9 shows 3 typical trajectories 

of 100 um droplet/particle, and the effect of particle size on its velocity decay is shown in Figure 5-10.  

It can be seen in Figure 5-10 that all particles start from a velocity of about 52 m/s at the orifice of 

the atomizer, however, the velocity decays at different rates for different sizes. Smaller 

droplets/particles decay faster, and large particles slower, because larger particles has a higher initial 

momentum, with which they can penetrate a longer path downstream the burner. The distinct 

trajectories also influence the drying, devolatilization and reaction process of the coal water slurry 

droplets and coal particles. 

 

Figure 5-9. Trajectories of sampled coal water slurry droplets (100um) in the reactor. Color shows the particle 

temperature (K). 
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Figure 5-10. Axial velocity decay of sampled coal water slurry droplets with different initial diameters. 3 samples 

were presented in the figure for each diameter. 

The mass and temperature histories of sampled droplets with four typical sizes (50, 100, 200, and 

500 μm) are compared in Figure 5-11. The weight loss shows the evaporation/boiling, inert heating, 

devolatilization and char burning processes with corresponding time scales. Larger droplets take 

significantly longer to heat up, dry out, and burn. The 50 μm droplet burns out within 0.3-0.4 s, during 

which the water content evaporation and devolatilization takes as much time as char burning; the 200 

μm droplet, however, burns out in about 1 s, and char oxidation takes most of the time (0.9 s). It is 

notable that agglomeration [209, 210] and fragmentation [213] has been discovered in previous 

experimental studies on CWS combustion. Since the particle history (velocity, temperature, and mass 

loss) depends on particle size, the above phenomena responsible for altering particle size should be 

considered in future development of the model. 
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Figure 5-11. Mass and temperature histories of sampled CWS droplets in different sizes show the evaporation, 

devolatilization, and char burning time scales. 

A statistic study of the time needed for moisture content evaporation, devolatilization, and 95% 

char conversion of the CWS droplet was carried out based on sampled discrete phase trajectories in the 

CFD modeling. The carbon conversion is defined as the proportion of carbon contents converted to gas 

phase in raw coal particle. Figure 5-12 shows the time average and its standard deviations calculated 

from 300 stochastic trajectories of specific sizes. It can be seen that the conversion time increases 

almost linearly with the increasing CWS droplet size: the average total conversion times are about 0.3 s, 

0.6 s, and 1.4 s, for 50, 100 and 200 m  diameter coal water slurry droplets, respectively. And the 

conversion time is dominated by char conversion. 
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Figure 5-12. Statistic of the time for evaporation, devolatilization, and 95% carbon conversion of the coal particle, 

as a function of the CWS droplet size.  
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Figure 5-13. Average residence time of CWS droplets as a function of the droplet size. 

Comparing with the 95% carbon conversion times, the residence times of the particles are long 

enough for a high conversion ratio. Figure 5-13 shows the residence time of coal water slurry particles as 

a function of the particle size. The average residence times are above 2 s for all the particle sizes, while 

 182 



 183

they increase with the increasing particle size. 

5.4.2. Oxy-Coal Combustion at Elevated Pressures 

In the previous study, the oxy-coal combustion characteristics under the identical tested operating 

conditions have been investigated using CFD, such as the flowfield, gas temperature and species 

distribution, coal water slurry droplet and char particle oxy-combustion processes. Results show a 

uniform distribution of chemical reactions and gas temperature with high carbon conversion under the 

reference operating conditions. In the following sections, the flowfield, gas temperature distribution, 

oxy-char combustion processes, residence time, heat transfer, and slag behaviors are compared under 

the investigated operating conditions. Special attention is given to the effects of pressure and burner 

velocity on the oxy-coal combustion processes, and the optimal operating conditions at elevated 

pressure. 

5.4.2.1. Flow field and temperature distribution 

As discussed in Part I and Part II report, the ISOTHERM flowfield is a confined jet flow with 

external recirculation, formed by the burner and atomizer injection confined by the cylindrical wall 

boundaries in this combustor. Figure 5-14 compares the axial velocity contour of the computed cases. It 

can be seen that the overall flowfield characteristics are similar to the reference case at 4 bar for all the 

20 bar and 40 bar cases, while pressure does not change the flow significantly. However, the flow 

pattern is apparently different depending on the burner velocity. Higher velocity magnitude, longer jet 

penetration depth, and larger recirculation zone size are observed at higher burner velocities. 

It is interesting to see in the bottom of Figure 5-14, that the jet flow becomes stronger and more 

uniform under the high burner velocity operating conditions than the reference case (with median 

burner velocity). The high burner axial velocity of 40 m/s from the burner has a stronger axial 

momentum, which results in longer penetration in the centerline of the reactor, and more uniform 



flowfield in the combustor. 

 
Figure 5-14. Comparison of the axial velocity (m/s) distributions among cases with low/median/high velocity under 

20 bar and 40 bar operating pressures. 

 
Figure 5-15. Comparison of the temperature (K) distributions among cases with low/median/high velocity under 20 

bar and 40 bar operating pressures. 

Similar trend was observed in the temperature distribution as well. Figure 5-15 shows the gas phase 

temperature contour of the tested cases. Again, due to the same adiabatic flame temperature in all cases, 

the peak temperatures are similar in all cases, and the pressure does not have significant effects on the 
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temperature distribution. However, it is significantly affected by the burner velocity. Comparing to the 

high burner velocity cases at 20 and 40 bar, the low and median burner velocity scenarios show a 

shorter burner flow penetration depth and non-uniform distribution. To the contrary, a high burner 

velocity improves the uniformity of the temperature distribution, and makes use of the reactor length 

for maximum thermal load. 

5.4.2.2. Coal combustion processes 

The char combustion process in pressurized oxy-fuel combustion under the reference 4 bar 

operating conditions has been discussed previously in report Part I, especially for the effects of CO2 on 

char combustion/gasification. In the current study, special attention is given to the effect of elevated 

pressure on coal combustion kinetics, its spatial distribution, and burnout time. 

Figure 5-16 and Figure 5-17 show the spatial distribution of char-O2 oxidation reaction and char-CO2 

gasification reaction rates in the ISOTHERM oxy-combustor. As has been discussed previously, the 

spatial distribution mainly depends on the burner velocity: more uniform distribution was observed in 

the median and high burner velocity cases at both 20 bar and 40 bar. Moreover, given the same burner 

velocity, the volumetric reaction rate increases significantly from 4 bar to 20 bar and 40 bar, due to the 

doubled thermal load. The results indicate that, given the assumed char oxidation and gasification 

kinetics, a high burner velocity (~40 m/s) is possible for the current combustor design, which 

significantly increases the thermal load to ~60 MWth at 40 bar. However, with a further increased 

burner velocity and feeding rate, the reactor length might be not long enough for the char conversion. 

This will be discussed in greater detail using the conversion time and residence time results later. 



 

Figure 5-16. Comparison of the char oxidation (C+O2) rate distribution among cases with low/median/high velocity 

under 20 bar and 40 bar operating pressures. 

 

Figure 5-17. Comparison of the char gasification (C+CO2) rate distribution among cases with low/median/high 

velocity under 20 bar and 40 bar operating pressures. 
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Figure 5-18. Comparison of the char surface reaction rates at 4 bar, 20 bar, and 40 bar operating pressures with 10% 

O2, 40% CO2 and 40% H2O (by vol.). Results indicate that the oxidation reaction (C+O2) becomes diffusion 

controlled at high temperatures, in particular at elevated pressure. Gasification reactions are kinetics controlled within 

the ISOTHERM reactor, and the reaction rates are times higher at 20 bar and 40 bar than the reference case. 
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Figure 5-19. Char consumption rate due to the oxidation and gasification reactions in the investigated cases. 

One of the research interests is the contribution of gasification reactions to char conversion at 

elevated pressure in oxy-fuel combustion. Through the analysis of the “oxy-base” case in Part I paper, 

it has been shown that the oxygen mass fraction reduces down to 6% due to the entrainment of the 

recirculated hot flue gas, while the mass fraction of CO2 (> 60%) and H2O (> 27%) are much higher at 
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most of the spaces. Therefore, the gasification reactions can contribute significantly to the overall char 

conversion in the ISOTHERM oxy-combustor, and this trend might become more prominent at higher 

operating pressure because of the enhanced gasification reaction rates. 

Figure 5-18 shows the ratio of the kinetics reaction rate and the diffusion rate for the char surface 

reactions, as an indicator of the reaction regimes (kinetics control or diffusion control) under the tested 

operating conditions. An order of magnitude analysis shows that the bulk diffusion rate does not change 

significantly when the total pressure increases [22], therefore, the results indicate the relative kinetic 

rate change along with pressure. It can be seen that based on the char reaction kinetics from the 

literature, kinetic rates of all the heterogeneous reactions are enhanced by the increased gas partial 

pressure. The kinetic rates increase more significantly from 4 bar to 20 bar, because the reaction order 

is less than unity. Moreover, the oxidation and gasification reactions are in different regimes at typical 

reactor temperature (1800 K): the oxidation reaction (C+O2) approaches bulk diffusion control above 

~1800 K, and it becomes more diffusion control under higher pressures. In contrast, the gasification 

reactions (C+CO2 and C+H2O) are still kinetics controlled in the typical environment of ISOTHERM 

reactor. Figure 5-19 compares the char consumption rates by the three heterogeneous reactions under 

different operating conditions. The gasification reactions contribute 30-40% of the total char 

conversion in all cases. The char-H2O reaction has a higher impact than the char-CO2 reaction due to its 

higher kinetics. However, it is interesting that overall contribution of the gasification reactions does not 

show significant increase as a function of the operating pressure. This might be due to the fact that the 

reaction order for the gasification reactions are smaller (see Table 3-3), therefore the gasification rates 

increase less prominently under higher total pressure. 



 

Figure 5-20. Statistics of water evaporation time as a function of droplet diameter in 4 bar, 20 bar, and 40 bar 

operating pressures with identical median burner velocity (~20 m/s). Results are the average and standard deviation 

values calculated using 300 droplet particle trajectories in the reactor. 

 

Figure 5-21. Statistics of 95% char conversion time as a function of droplet diameter in 4 bar, 20 bar, and 40 bar 

operating pressures with identical median burner velocity (~20 m/s). Results are the average and standard deviation 

values calculated using 300 char particle trajectories in the reactor. 

The conversion time is a critical indicator for the furnace and reactor design. For coal combustion, 

the conversion time is usually within seconds depending on the burner configuration, operating 

conditions, as well as the heat transfer characteristics. We put special attention on the effect of pressure 
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on coal particle combustion process, especially evaporation, devolatilization, as well as char conversion.  

Figure 5-20 shows the statistics of the evaporation time as a function of droplet size under 4 bar, 20 

bar, and 40 bar with median burner velocity. As expected, the drying time increases with the increasing 

CWS droplet size in all cases, and increases slightly (<0.01 s) with the elevated pressure. We have 

shown that the heat transfer to the droplets in the furnace is dominated by convective heat transfer [22], 

and if the ambient gas temperatures are similar, the heat transfer rate is controlled by thermal 

conductivity, . The thermal conductivity is a weak function of pressure, for instance, increases 

only slightly from 0.0706 W/mK at 4 bar to 0.0711 W/mK at 40 bar [

k
2COk

58]. Therefore, the heat transfer 

rate should not be changed significantly at higher operating pressure. However, the saturation 

temperature increases significantly from 143.6 oC at 4 bar to 250.4 oC at 40 bar. The delayed boiling 

process is the major reason for the longer droplet evaporation time. 

However, the increase in the evaporation time is negligible when comparing to the change in the 

char conversion time. Figure 5-21 compares the time for 95% char conversion at 4 bar, 20 bar, and 40 

bar operating pressure with median burner velocity. The conversion time reduces significantly from 4 

bar to 20 bar, and slightly from 20 bar to 40 bar. For instance, the conversion times at 20 bar and 30 bar 

is only 50% and 40% of those at 4 bar, even with 5 times and 10 times higher fuel feeding rate. 

Moreover, the smaller standard deviation at high pressures indicates a stable and uniform combustion. 

 190 

The significantly reduced coal particle conversion time is because of the enhanced char reaction 

kinetics as discussed previously in Figure 5-18. Again the conversion time does not decrease linearly 

with pressure increase because the reaction order is less than 1, and the reaction rates become less 

sensitive to the reactant partial pressure. The results indicate that an even higher feeding rate is possible 

(such as the 40 bar high velocity case), because less time is required to burn the coal water slurry fuel. 

However, one has to ensure that the residence time is higher than the conversion time, for a high carbon 

conversion ratio and minimum residue carbon in the ash particles.  



 

Figure 5-22. Statistic results of particle residence time in the oxy-combustor under different operating conditions. 

5.4.2.3. Particle residence time 

Figure 5-22 shows the statistics for the coal particle residence time in the reactor as a function of 

the coal water fuel droplet size. The results show that larger particles tend to stay longer in the reactor 

than small particles, probably due to larger stokes number. The residence time is mainly determined by 

the overall flow velocity, and it is almost inversely proportional to the burner velocity. For instance, the 

average residence time for 100 um droplets is 4.56 s, 2.31 s, and 1.35 s, respectively under a burner 

velocity of ~10 m/s, 20 m/s, and 40 m/s at 40 bar. To the contrary, the operating pressure has a much 

less impact on the residence time, especially for high pressure cases. The residence time for 100 um 

droplets decreases from 3.0 s at 4 bar to 2.35 s at 20 bar, and decreases slightly to 2.31 s at 40 bar. 

Compared to the conversion time shown in Figure 5-21, at 4 bar, the residence time with a median 

burner velocity is longer than the char conversion time, while the residence time with a high burner 

velocity might be too short for a high char conversion. However, if the operating pressure is raised to 

20 bar and 40 bar, the residence time with a high burner velocity is still longer than the char conversion 

time. This shows the advantages of pressurized oxy-coal combustion: that is the possibility to increase 

the thermal load significantly. 
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5.4.2.4. Heat loss 

Another point of interest is the heat loss from the oxy-coal reactor. The reactor is built with three-

layer refractory wall with the objective of reducing heat loss and ensuring good combustion 

performances. In this study, the same thermal boundary conditions were applied in the tested cases: the 

conductive heat transfer in the refractory wall and ceramic fiber material and the convection heat 

transfer of the external cooling water to the steel shell are calculated in the CFD simulations.  

Figure 5-23 shows the heat loss rate through the refractory wall under 4 bar, 20 bar, and 20 bar with 

a median burner velocity. The total heat loss increases slightly from 0.158 MW to 0.169 MW as the 

operating pressure increases from 4 bar to 20 and 40 bar, due to the high heat resistance of the 

refractory wall. As a result, the heat loss over the total thermal load reduces from 6.1% to 1.2% and 

0.62%, respectively, when the operating pressure increases. 
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Figure 5-23. Comparison of the total heat loss rate (MW) through the refractory wall under an operating pressure of 4 

bar, 20 bar, and 40 bar with identical median burner velocity (~20 m/s). 

5.4.2.5. Slag behaviors 

The slag flow behaviors have also been investigated under the tested operating conditions, taking 

advantage of the one dimensional slag model [113] developed previously in the ENEL-MIT oxy-
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combustion research program. Due to the limitation of the current slag model, the reactor is assumed to 

be vertically-oriented, and only the slag flow in the axial direction driven by gravity was modeled. 

 
Figure 5-24. Molten slag thickness (m) under an operating pressure of 4 bar, 20 bar, and 40 bar, with identical median 

burner velocity (~20 m/s). 

 
Figure 5-25. Molten slag flow velocity (m/s) under the same operating conditions above. 
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Figure 5-26. Ash that captured on the side refractory wall in the form of molten slag over the total ash mass flow rate 

under an operating pressure of 4 bar, 20 bar, and 40 bar, with identical median burner velocity (~20 m/s). 

Figure 5-24 and Figure 5-25 shows the steady-state molten slag thickness and molten slag flow 

velocity distribution on the side wall under 4 bar, 20 bar, and 40 bar operating pressures with a median 

burner velocity. Similar slag flow characteristics were observed in these cases because of the similar 

gas phase flowfield as shown in Figure 5-14. However, slag thickness becomes significantly higher, from 

0.8 mm at 4 bar to 1.2 mm at 20 bar, and 2.0 mm at 40 bar. This is mainly because of the significantly 

higher coal throughput. As a result, the slag flow velocity increases accordingly, governing by the 

gravity driven flow characteristics.  

The slagging tendency becomes more prominent at higher operating pressures, or, at higher coal 

throughputs. Figure 5-26 shows the captured slag mass flow rate over the total ash mass flow rate in the 

4 bar, 20 bar, and 40 bar cases with median burner velocity. We can see that the slag to total ash mass 

flow rate ratio increases from ~43% in the reference case to ~57% and 58% in the high pressure cases. 

The reason may be because of the thicker slag layer, which increases the capture probability, in 

particular at the near burner region. 
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5.5. Conclusions 

The pressure effects on oxy-coal combustion in a pilot scale combustor have been studied using 

CFD approach with validated submodels, the physical and chemical effects under elevated pressure 

were also considered and modeled in the CFD simulations. With a fixed reactor and burner geometry, 

the operating pressure is increased up to 20 and 40 bar with progressively increasing burner velocities. 

A comparison between the results of reference case and high pressure cases shows that: 

(1) Similar flowfields are maintained with the identical burner velocity at high pressures, which 

results in similar gas temperature and coal conversion spatial distributions in the reactor. Coal particle 

residence time is mainly determined by the burner velocity as well. 

(2) High pressure enhances the char reaction kinetics and reduces the char conversion time 

significantly. At 20 and 40 bar, the char conversion time decreases to about 40-50% of that in the 

reference 4 bar case, which makes higher burner velocity and coal throughput possible at high pressure. 

(3) It is possible to operate the current reactor at 60 MW thermal load at 40 bar, taking advantage 

of the enhanced char conversion kinetics. 

(4) The heat loss through the reactor wall does not change significantly due to the high thermal 

resistance of the refractory wall, and the relative heat loss rate reduces significantly at high pressures 

with high coal throughput. 

(5) Molten slag thickness and velocity increases significantly at high pressures due to the higher 

coal throughput. 

We note that the results in this study are based on coal reactivity kinetics data taken from the 

literature, and therefore the conclusions are only qualitative. However, it shows the trends of the oxy-

coal combustion at elevated pressure, and can be taken as instructive guideline for pressurized oxy-coal 
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combustor design. 
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Chapter 6  Development of 3-D Slag Model 

Following the pressure study conducted in last chapter, we will look closer to an important 

phenomenon in the pressurized oxy-coal combustor – slagging. Slagging and fouling are not unique in 

oxy-coal combustion, but widely observed in all combustion and gasification facilities dealing with 

coal, which contains inorganic matters (or ash content) that may form slag on the refractory wall or 

heat exchanger surfaces. Some of the furnace and gasifiers are intended to be operated with slag film 

formation on the wall, so called slagging combustion or slagging gasification. In this chapter, a first-of-

its-kind three-dimensional slag model will be introduced, and its predictions on the slagging behaviors 

in the ISOTHERM oxy-coal reactor will be compared with experimental observations. 

6.1. Overview 

6.1.1. Slagging Oxy-Coal Combustion 

Coal contains inorganic mineral content, when burned or converted in industrial furnace and 

reactors, these mineral residuals are discharged from the flue gas or synthetic gas in the forms of fly ash, 

bottom ash and slag. Slagging combustion and gasification is intended to operate at temperatures above 

the ash fusion temperature, in which the ash content is molten and deposited along the wall, forming a 

slag layer. Up to 90% of the ash can be discharged as molten slag from the bottom of the furnace or 

reactor to a water quenched slag hopper, where it forms crystal pellets. Advantages of slagging 

combustion and gasification include higher energy efficiency, broader fuel flexibility, compact heat 

exchangers, as well as higher value of the low-carbon content slag residuals for utilization [214, 215]. 

However, challenges associated with slag behavior have been identified on slagging combustors and 

gasifiers operating. If the operating conditions are not optimum, problems may damage the reliability 

and safety [216-218], such as excessive corrosion of the refractory wall and water membrane by molten 
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slag, and slag discharging difficulties due to solidification. Therefore, a better understanding of the 

char-slag interaction and slag flow behavior is imperative for the reactor design and optimization. 

Pressurized oxy-fuel combustion systems have been proposed recently, with the objective of 

improving the energy efficiency by recovering latent heat of the steam in the flue gas. The flue gas 

volume is reduced under elevated pressure, which results in smaller components size and possible 

capital cost for the same power output. Several studies have reported on the technical and economic 

feasibility of this process [31-36], which all concluded that the overall process efficiency improves with 

increasing operating pressure. This is mainly because latent heat recovery from the flue gases becomes 

possible at higher temperatures. However, one of the operating challenges for pressurized coal 

combustion system is the ash removal in the flue gas. Slagging combustion is favorable because most 

of the coal ash can be discharged in the form of molten slag in the combustor. As a pilot scale study of 

the ISOTHERMⓇ pressurized oxy-fuel combustion system [34], a 5 MWth oxy-coal combustion test 

facility was operated under slagging combustion conditions, and experiments on this test rig showed 

good combustion characteristics and environmental performance [204]. Figure 6-1 shows the slagging 

behaviors in the test facility during shut-down condition, and it can be seen that the slagging behavior 

can be complicated in different locations. The molten slag covers the top and side refractory wall of the 

reactor, and flows down to the bottom driven mainly by gravity. The thickness of the slag is not 

uniform, but depends on the gas phase flowfield, temperature distribution, as well as the particle 

depositions in the reactor. 



(a)       (b) 

  

Figure 6-1. The slagging behaviors in the 5 MWth oxy-coal reactor, pictures were taken from the end of the reactor 

during shut-down period. (a) shows the frozen slag on the ceiling of the reactor, and (b) shows the slag on the side and 

bottom wall of the reactor. 

 

Figure 6-2. A schematic diagram of the slag flow on refractory wall, with steel wall and water cooling outside. Figure 

is cited and modified from reference [219]. Red color arrows and curves show the heat transfer process, and dark blue 

arrows indicate mass transfer process. 

Figure 6-2 shows a schematic diagram of the slag layer with mass and heat transfer processes. 
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Molten ash particles are trapped and deposited on the refractory wall, which build up a dynamic 

balanced slag layer flowing down driven by gravity. Depending on the operating temperature, ash 

fusion temperature and heat transfer characteristics on the refractory wall, a solid slag layer may form 

between the molten slag and the refractory wall. In the current study, this solid slag layer is not 

modeled because the operating temperature is above the ash fusion temperature, and the reactor is 

refractory wall lined. Outside the refractory wall, a water-jacketed steel shell is used to support the 

reactor structure and operating pressure.  

6.1.2. CFD Modeling of the Slag Flow in Coal Combustion and Gasification 

The slag flow model in Computational Fluid Dynamics (CFD) simulation has been developed in 

previous studies [113, 219-221]. One approach is the one-dimensional slag model along the axial 

direction on the reactor wall. Seggiani [219] developed a one-dimensional time-varying slag flow 

model for a Prenflo entrained-flow gasifier and integrated it into a three-dimensional gasifier code. The 

gasifier wall was discretized to 15 cells in the vertical direction. In each of the cells, perimeter averaged 

analytical solutions derived from conservation equations are calculated to get the slag velocity, molten 

and solid slag thickness, and temperature distributions, with the particle mass deposition rate, gas 

temperature and heat flux from the three-dimensional code as input variables. Wang et al. [220, 222] 

developed another one-dimensional steady state model for the slag flow in a coal-fired slagging 

combustor. Compared to the Seggiani model, this model considers the wall-burning sub-process when 

particles are trapped on the slag surface and its effects on the char conversion and heat transfer near the 

wall region. In recent years, insights have been gained into the char-slag interaction and char capture 

sub-process by experimental and numerical approaches [218, 223, 224]. Yong et al. [113] proposed a 

set of particle trap criteria for the slag-particle interaction and applied it in the one-dimensional slag 

flow modeling.  

However, the one-dimensional slag models developed by Seggiani [219], Wang et al. [220, 222], 
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and Yong et al. [113] average the variables in the circumference, which can not resolve the non-

axisymmetric slag behavior in the azimuthal direction. Based on previous works, Bockelie et al. [225] 

and Chen et al. [226] expand the one-dimensional slag model into the two-dimensional wall surface in 

coal gasifier and coal combustor respectively, with the assumption that slag flow only in one direction. 

This two-dimensional approach captures the spatial distribution of ash particle deposition due to the gas 

phase flowfield, thus further improves the accuracy of the slag modeling in three-dimensional CFD 

simulation. However, this approach cannot fully resolve the three-dimensional flow behavior in the 

cases of horizontally-oriented reactors, or reactors with complicated geometry, with the limitations 

stemming from the one-dimensional model. 

In order to fully resolve the slag flow and its interactions with ash particle deposition and heat 

transfer, multiphase flow model has been used in slag flow modeling as a different approach. Liu and 

Hao [227] modeled the slag flow in an entrained flow gasifier using the Volume of Fluid (VOF) model. 

The computational domain is a two-dimensional near wall region, and a constant ash deposition of 0.5 

kg m s  was used as mass input to the free surface of the slag. Ni et al. [221] applied the same 

approach to model the slag flow in the entrained flow gasifier slag throat region, similarly to Liu and 

Hao’s work, a two-dimensional axisymmetric mesh and a constant ash deposition rate was used in the 

simulation. It should be noted that in these models, the ash deposition rate spatial distribution due to 

gas phase flowfield was neglected.  

In this work, a fully three-dimensional slag model was developed coupling two multiphase flow 

models: the VOF model and the Discrete Phase Model (DPM). This model fully resolves the three-

dimensional characteristics of char/ash deposition, slag flow, as well as heat transfer through the slag 

layer, and it is general to be applied in coal slagging gasification and combustion with any reactor 

geometry. The slag behavior in the 5 MWth pressurized oxy-fuel coal combustor was investigated using 

the slag model, and the simulation results were compared with the experimental observations.  



6.2. Reactor Geometry and CFD Mesh Refinement 

The geometry of a pressurized oxy-fuel combustor developed by ITEA Spa and ENEL has been 

introduced in Chapter 5. Figure 6-3 shows the schematic geometry of the 5 MWth pressurized Coal 

Water Slurry (CWS) oxy-fuel combustion pilot scale test rig. Since the flow of molten slag is fully 

resolved by the VOF model, a fine mesh size is required near the wall boundary layer regions. Based 

on our previous study [226], the average slag thickness is in the scale of several millimeter. Therefore, 

the first layer of the three-dimensional mesh was refined to be 0.01 mm, about 2 orders of magnitude 

lower than the slag layer in order to get a high resolution of the slag thickness. The mesh consists of 1.6 

million hexahedral cells in total. 

 

 

Figure 6-3. The geometry and three-dimensional mesh of the 5 MWth oxy-coal test unit. The axial velocity contour is 

shown in a XY cross section, and the slag volume fraction distributions were emphasized with the refined mesh in the 

near-wall region at the bottom and the back wall of the reactor. 

6.3. Mathematical Models 
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In this study, the oxy-coal combustion in the reactor is simulated using a three-dimensional 

commercial CFD code FLUENT 12.1.4. The three-dimensional slag model couples two multiphase 

methods: the VOF model and the DPM. The VOF model is an Eulerian-Eulerian approach used to 

model the gas phase and slag phase and their volume fraction in the computational cells; while the 

DPM is an Eulerian-Lagrangian approach used to model the coal particle trajectories in the reacting gas 

phase. The slag model was implemented in the form of User Defined Functions (UDF).  In this section, 

the conservation equations for the VOF model and DPM are introduced, followed by a description on 

the coupling of these two models. Implementation of the slag model with the CFD framework and its 

solving strategy are discussed as well. 

6.3.1. The Volume of Fluid (VOF) Model 

The VOF model [228] is a multiphase flow method that tracks the interfaces among immiscible 

fluids. It solves a continuity equation of volume fraction for each fluid, i , in the computations cells. 

For the molten slag flow in coal combustion, the gas phase (primary phase) and slag phase (secondary 

phase) are two non-interpenetrating fluids, with their volume fractions g  and s , respectively. There 

are three conditions for s  in the multiphase flow: 

 0s  : The cell is full of gas phase. 

 1s  : The cell is full of slag. 

 1s0   : The cell contains an interface between the gas and slag phase, which is the most 

interesting for free surface tracking. 

The tracking of the interface is achieved by solving the continuity equation of the slag volume 

fraction in the computational domain: 
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where s  is the slag density, sv


 is the velocity of the fluid, 
s

S  is the source term due to ash particle 

deposition, and gsm  and sgm  are the mass transfer rate between gas and slag phase due to phase 

change.  

Since the slag is hardly evaporated at the operating temperature, the last two terms due to phase 

change are neglected in the modeling. However, the source term 
s

S  due to particle deposition should 

be modeled when a ash particle or molten slag droplet is captured by the wall or the slag film on the 

wall. This is accomplished by coupling the DPM and the VOF model, which will be described in 

greater detail in 6.3.3. 

A single momentum is solved throughout the domain, and the resulting velocity field is shared 

among the phases: 
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where   and   are the density and viscosity of the fluid mixture in the cell,  is the gravity 

acceleration, and  is the momentum source term due to particle deposition. 
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Similarly, the energy equation is also shared all phases, is solved as: 
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where E  is the sensible energy of the fluid,  is the effective thermal conductivity, and the source 

term, , again is due to the particle deposition. 

effk

hS
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6.3.2. The Discrete Phase Model (DPM) 

The motion of coal water slurry droplets and coal particles are modeled with the Discrete Phase 

Model (DPM) using an Eulerian-Lagrangian approach. The velocity of the particle is determined by 



drag force, gravity force, and other body forces as formulated in the following equation: 
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where  and pv


gv
  are the particle and gas velocity, g  is the gas viscosity,  is the particle 

diameter, 

pd

DC  is the drag coefficient, and F


 is other body forces which are neglected in this 

simulation. 

Note that in the above equation, the particle trajectories are calculated using the time-average gas 

velocity, gv


, in a Reynolds Average Navier Stokes (RANS) approach, which neglects the turbulence’s 

effect on particle’s motion. In fact the local gas phase velocity contains the mean value, v


, and its 

fluctuation, : v

v v v   
    (6.5) 

Therefore, stochastic tracking and Discrete Random Walk (DRW) Model [229] was used for the 

particle dispersion due to turbulence. The particle is assumed to interact with a succession of fluid 

phase eddies over a time scale during its trajectory, where the fluctuation velocity is assumed as a 

function of the local turbulence kinetic energy, , for instance, the velocity fluctuation in x direction is 

modeled as: 
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where   is a normally distributed random number. The particle-eddy interaction time is taken to be 

the minimum of the eddy lifetime, , and the eddy-crossing time, , which are defined as: et crosst
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  is the particle relaxation time, 
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  is the eddy length scale, and  is 

modeling constant. Based on a validation study conducted by Kumar and Ghoniem [174, 175] for 

swirling turbulent flow,  is taken to be 0.6 in this study. 

LC
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Along the particle trajectories, the mass, momentum and heat exchanges between the particle 

phase and the gas phase are calculated using the “particle-source-in-cell” method.  

6.3.3. Coupling the VOF and DPM methods 

When a coal/char particle hits the boundary wall, it may be captured by the wall or the slag film, 

and form a slag layer in that location. If it is captured by the wall, its mass, momentum and sensible 

energy will be transferred to the slag phase by adding source terms in the volume fraction continuity 

equation, momentum equation, and energy equation. In this section, the capture criteria will be 

discussed, followed by an introduction to the modeling of source terms. 

6.3.3.1. Ash Particle Capture Criteria 

The particle capture submodel is to predict if a particle is captured to form slag or not when it 

reaches the wall boundary or the slag film. Two capture mechanisms were used in this study: the ash 

particle can either be captured by the reactor wall, or by the existing slag film. For the latter case, 

according to the order of magnitude analysis by Montagnaro and Salatino [230], under typical 

operating conditions of pulverized coal combustion, ash or char particles do not penetrate the slag 

surface due to the large surface tension and viscosity, and will captured or bounced by the slag film.  

In this study, the particle capture criterion is based on the temperature of the particle and the 

combustor wall, as well as the carbon conversion of the particle. Ash or char particles are able to be 

trapped on the wall or in the slag film when the following criteria are satisfied: 

 When there is no slag film on the wall, the particle is captured if the refractory wall internal surface 
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C C 

 If there is already slag film on the wall, the particle is captured if the particle char conversion is 

above the critical particle conversion factor ( 0.88cr ). C C 

6.3.3.2. Modeling the Source Terms 

Once the ash particle is captured by the wall or by the slag film, it forms a slag film on the wall, or 

resolves into the existing slag film. This process is accomplished by adding the particle phase’s mass, 

momentum and sensible heat into the slag phase. The mass source term 
s

S , momentum source term 

, and energy source term  in Equation ashS


hS (6.1)-(6.3), are modeled as: 
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where   pm kg s  is the ash deposition rate that captured in the local cell,  is the specific heat of 

ash,  and  are the reference temperature for enthalpy calculation and temperature of the 

captured particle, respectively, and  

,p pc

refT pT

cellV 3m    is the volume of the cell. 

6.3.4. Slag properties 

Slag physical properties such as viscosity, density, specific heat and thermal conductivity are 

functions of the ash chemistry composition, oxidation or reduction atmosphere in the surrounding gas, 
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K

as well as slag temperature. Empirical correlations are used to predict these properties and solve the 

conservation equations [232]. Table 6-1 and Table 6-2 show the proximate and ultimate analysis of the 

raw coal and ash composition, respectively. Mean temperature in each of the computational cell is used 

to evaluate the properties. 

The correlations for specific heat, thermal conductivity, density and surface tension are taken from 

Mills and Rhine [233, 234], whereas the slag viscosity is based on the Urbain and the Kalmanovitch-

Frank models [235]. Of all the slag properties, the temperature of critical viscosity, , is the most 

critical property for slag modeling because it defines the interface between liquid and solid slag layers, 

and it is the most challenging property to predict. Based on the correlations presented in Vargas et al. 

[

cvT

235] and Seggiani [219], we used a reference temperature 1480cvT   in the current study. These 

physical properties are summarized in Table 6-3. 



Table 6-1. Coal properties used in this study. 

 Unit Value 
Proximate analysis (as received)   
HHV kJ/kg 29153 
Moisture wt% 6.4 
Ash wt% 7.0 
Volatile matter wt% 33.1 
Fixed carbon wt% 53.5 
Ultimate analysis (dry ash free)   
Carbon wt% 82.1 
Hydrogen wt% 5.43 
Oxygen wt% 10.5 
Nitrogen wt% 1.39 
Sulphur wt% 0.58 
 

Table 6-2. Oxide composition of the coal ash. 

Ash composition wt% as oxide 
SiO2 44.35 
TiO2 1.56 
Al2O3 30.88 
CaO 3.82 
MgO 3.14 
Na2O 0.76 
K2O 0.67 
P2O5 1.027 
Mn3O4 0.1 
SO3 0.85 
Fe2O3 4.51 
 

Table 6-3. Physical properties of the coal slag. 

Slag properties Correlations in Ref. Range 

Temperature of critical viscosity  (K) cvT [219, 235] 1480 

Viscosity s  (Pa s) [235] 1-20 

Density s  (kg/m3) [233, 234] 2779.9-2887.9 

Specific heat  (kJ/kg K) pc [233, 234] 1.3825 

Thermal conductivity  (W/m K) lk [233, 234] 1.73-1.80 
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6.3.5. Solution Strategies 

Efforts have been made to develop and validate the CFD approaches in modeling oxy-coal 

combustion in a CO2-rich environment [22, 236]. In this study, the slag model is implemented in 

a three-dimensional CFD simulation of the oxy-coal test facility in the form of UDFs. 

Mathematical submodels, such as standard k   model, Eddy Dissipation model and Discrete 

Ordinate model, were used for modeling turbulence, chemistry-turbulence interaction and 

radiation heat transfer, respectively. The reader is referred to the previous reports for more details 

on the oxy-coal combustion CFD simulation [62, 193]. 

 

Figure 6-4. The algorithm of the slag model integration in the 3-D CFD framework. 

Solving the slag flow with the reacting gas phase is challenging because of their different 

time scales, as well as the large physical property gradient such as viscosity and density at the 

gas/slag interfaces. In general, the best practice for VOF model is to use explicit formulation 

with Geo-Reconstruct method as the volume fraction discretization scheme. However, this 

 211



numerical method requires a very small time step (in millisecond) for the gas phase with high 

velocity, which is not affordable to solve the slag phase with flow time of several hours. In order 

to improve the sharpness at the interfaces and resolve the slag thickness accurately, transient 

calculation with implicit numerical scheme is recommended, which allows a large time step, 

which is taken to be 10 seconds based on the Courant number of the slag flow. The transient 

simulation results in the same solution as a steady-state calculation, but it combines with the 

Modified HRIC as the volume fraction spatial discretization scheme, and significantly improves 

the interface resolution.  

 

Figure 6-5. The slag buildup along with time in the transient calculation. Figure shows the slag volume fraction 

on the first layer of the mesh near the wall at time 0-5h. 

The solving strategy is as follows: First, a converged steady-state solution of the coal 

combustion is achieved; then the slag model is loaded and implemented into the CFD calculation, 

and the problem is calculated using transient solver with a time step of 10 seconds. Figure 6-4 

shows a flow chart of the algorithm and the coupling of the DPM and VOF model in the CFD 

calculation. In each of the time step, there is one DPM calculation, followed by 20 continuous 
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phase iterations. In a DPM iteration step, the particle trajectories are calculated, and the 

deposition rates with trapped particle properties were saved in User Defined Memories (UDM) 

corresponding to the deposition local volumetric cells. Following each DPM calculation, the 

conservation equations for continuity, species transport, slag volume fraction, momentum, and 

energy are solved iteratively using the UDM values as source terms. For the current study, steady 

state results are reached with a flow time of about 4-5 hours. Figure 6-5 shows the transient 

solution of the slag volume fraction on the wall during a convergence process. The slag flow rate, 

molten slag thickness, slag average velocity, heat loss and slag layer temperatures in each of the 

cells are analyzed and discussed in the following section. 

6.4. Results and Discussions 

In this section, the modeling results of the three-dimensional slag flow in the 5 MWth 

reactor are analyzed. The turbulence is found to be important on particle’s trajectory and 

deposition on the wall, and should be modeled correctly using the turbulence-particle interaction 

model. The slag flow behaviors in the reference operating condition are investigated in details, 

and the effects of coal throughput on the slagging behaviors are discussed.  

6.4.1. Ash Deposition and the Effect of the Turbulence 

The modeling of the coal char and ash particle trajectory in the CFD modeling is critical for 

deposition rate prediction, which determines the molten slag behaviors. Based on the particle’s 

force balance Equation (6.4), we use the dimensionless Stokes number, , to characterize the 

behavior of particles suspended in a fluid flow. It is defined as the ratio of the relaxation time, 

Stk

 , 

to the flow time, c

g

d

u
: 
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where  is the characteristic length scale, cd gu  is the fluid velocity in far field. For the typical 

size of the pulverized coal particles (<100 um), and typical velocity field in the reactor, the  

is much smaller than unity, which indicates that the particles follow the fluid streamlines well.  

Stk

Therefore, the mean velocity, v


, cannot resolve the turbulence’s effect on the particle 

trajectories, while the fluctuation, v , has to be modeled in order to get an accurate particle 

deposition rate on the wall in the near-wall regions.  

(a)      (b) 

 

Figure 6-6. Char/Ash particle deposition flux (kg/m2s) in each of the wall finite face, (a) without and (b) with 

the particle dispersion model. 

Figure 6-6 shows the particle deposition flux (  2kg m s ) distribution, defined as the 

captured particle mass flow rate per unit area, on the refractory wall, without and with the 

particle dispersion model (DRW model). The consideration of the turbulence-particle interaction 
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has a major impact on the predicted deposition flux: when the turbulence’s effect on particle 

trajectory is considered, the particle deposition flux increases significantly, and the deposition 

location expands to both the top and the bottom of the reactor. The maximum particle deposition 

flux is in the range of  31 10  2kg m s , and the maximum deposition flux is located between 2 

and 3 meters away from the burner where char and ash particles impact the wall from the coal 

water slurry injector. It is noteworthy that the deposition flux is not uniformly distributed in the 

circumference direction on the cylinder wall due to the non-axisymmetric nature of the flowfield 

and particle trajectories in the combustor. As discussed in section 6.3.3.1, the fate of the ash 

particle (captured or not) varies depending on the particle temperature, carbon conversion, and 

the existing molten slag on the wall. Figure 6-7 shows the capture efficiency of coal ash on the 

reactor walls. With the particle dispersion model taken into account, about 80-90% of the total 

ash content in the coal is captured and can be discharged in the form of molten slag, which 

agrees with the experimental observations. To the contrary, only about 15% ash is captured when 

the particle dispersion is neglected. In both case, most of the ash is captured on the side wall. 

 
Figure 6-7. The ash capture efficiency on the reactor walls (including the front wall, back wall, and side wall), 

without and with the particle dispersion model.  
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(a)      (b) 

  

Figure 6-8. The slag volume fraction on the first layer of the mesh near the wall, (a) without and (b) with the 

particle dispersion model. 

The significantly different deposition flux leads to different slagging behaviors. Figure 6-8 

compares the calculated slag phase volume fraction on the wall without and with the particle 

dispersion (DRW) model. It can be seen that when the turbulence’s effect on particle trajectory is 

neglected, the slag is only built on the bottom of the reactor, and slightly deposited the front and 

back wall. However, when considering the velocity’s fluctuation on particle’s motion, the slag is 

built on both the top and the bottom of the reactor, as well as the front and back walls, which 

agrees better with the experimental observations shown in Figure 6-1. Therefore, the simulation 

results with particle dispersion model are analyzed in the following sections. 

6.4.2. Molten Slag Thicknesses and Flow Velocity 

Figure 6-9 (a) shows the molten slag layer thickness and its flow velocity distribution on the 

wall. The molten slag layer covers most of the reactor walls, in particular at the bottom half, and 

its thickness increases from 0 to above 1 mm due to the accumulation of ash particle deposition. 
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Figure 6-9 (b) shows the slag surface velocity magnitude. The molten slag flows both downward 

the side wall, and toward the end of the reactor at the bottom due to the 1.5 degree slope. The 

slag flow is mainly driven by gravity and particle deposition momentum. Due to its high 

viscosity, the average velocity is generally around 0.1 mm/s.  

(a)      (b) 

 

Figure 6-9. (a) The molten slag thickness (m), and (b) the slag surface flow velocity (m/s) in a steady state 

condition. 

The slag thickness results at a cross section of the reactor at 4 m away from the burner are 

shown in Figure 6-10, with greater detail on the top, side and bottom locations. It can be seen that 

the slag film is thicker down to the bottom due to the slag accumulation along its path, and the 

slag thickness can be resolved by the local refined mesh at all locations. It should be noted that 

the slag dripping phenomenon at the top of the reactor that observed in experiment in Figure 6-1 is 

not well represented in the simulation results, probably due to the fact that the mesh on the 

perimeter is larger than the slag drip length scale. However, this does not affect the slag mass 

conservation and the slag behavior on the side and bottom of the reactor. 
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Figure 6-10. The slag thickness distribution at x=4 m, with local slag volume fraction distribution on the top, 

side and bottom of the reactor wall. The mesh is also shown with the results. 

 

Figure 6-11. The slag volume fraction, temperature, viscosity and velocity distribution at the bottom of the 

reactor wall at x=4 m. The vector in the velocity distribution shows only the flow direction, and the velocity 

magnitude is shown in color.  
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Since the slag thickness reaches its maximum at the bottom of the reactor, its characteristics 

were analyzed in Figure 6-11, in which the slag volume fraction, temperature distribution, fluid 

viscosity, and velocity distribution are shown in details. The temperature gradient is high across 

the thin slag layer due to its low thermal conductivity; however, given the small slag thickness 

(~1 mm) on a relatively thick refractory wall (~200 mm), it would neither have a significant 

impact on the heat transfer through the wall, nor affect the combustion in the reactor. The 

situation would be different if the refractory wall is water-membrane lined, in which case the slag 

or fouling layer contributes to the thermal resistance in convective and conductive heat transfer, 

and can significantly reduce the radiation heat transfer. The viscosity of the molten slag is around 

10-20 , about 6 order of magnitude higher than the gas viscosity, which results in a small 

slag velocity as shown in the bottom of the figure. Due to its high density, the slag flow is mainly 

driven by gravity, therefore, different from the gas velocity which is mainly in the axis direction, 

the slag flows downward along the wall as shown by the vectors. 

Pa s

 (a)      (b) 

 

Figure 6-12. Coal throughput effect on the slagging behavior. (a) 4 bar 3MWth case, and (b) 40 bar 60 MWth 

case. 
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It should be noted that no solid slag layer is formed in this case when the reference  is 

set to be 1480K, because the refractory wall internal surface temperature  is above the slag 

melting temperature at all the locations covered by liquid slag layer. However, solid slag may 

begin to form or melt under the molten slag layer if the operating temperature or the feeding 

stock is changed, or in a different thermal wall boundary condition such as water membrane wall. 

cvT

wiT

It should also be noted that coal ash consists of complex chemistry components, which have 

very different phase change temperatures. Some metal oxides with higher melting temperature 

may condense and accumulate on the refractory wall to form solid slag. Solid slag layers are also 

formed because of the temperature fluctuations in operating of slagging combustors or gasifiers. 

Time- and composition-varying models are required to capture these physics, which will be 

conducted as a future work.[237] 

6.4.3. Effect of Coal Throughput on Slagging Behaviors 

As discussed in our previous pressure study using the one-dimensional slag model [238], 

the slag thickness can be increased at higher operating pressure, because of the higher coal mass 

flow rate in the reactor. Figure 6-12 compares the simulation results of the slag thickness under 4 

bar and 40 bar operating conditions, corresponding to 3 MWth and 60 MWth thermal loads. The 

slag thickness increases from about 1 mm to about 5 mm at the bottom of the reactor, due to the 

20 times higher coal mass flow rate. Moreover, the slagging tendency becomes significant on the 

top, side and back walls.  

6.5. Conclusion 

A novel fully three-dimensional slag flow model is developed for slagging coal combustion 
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and gasification CFD simulation. The model couples two multiphase flow models, i.e., the DPM 

and VOF model, for the gas, slag and particle phases. The slag model was implemented as user 

defined functions (UDF) in a three-dimensional CFD code FLUENT, and applied in the 

simulation of a pilot scale slagging oxy-coal combustor.  

The slag flow behaviors are obtained and compared with the experimental observations with 

good agreements. Results show that the turbulence has significant impact on particle trajectories 

and should be modeled correctly in order to achieve an accurate prediction of the particle 

deposition rate. Driven mainly by gravity, the molten slag flows down from the front, back and 

side walls and accumulates at the bottom of the reactor, forming a 1 mm slag stream which flows 

to the end of the reactor due to the slope. The slag velocity is around 0.1 mm/s due to its high 

viscosity. And the slagging behavior can be affected by the operating conditions such as pressure 

and coal throughput.  

The slag model is quite general and can be used for slagging combustion modeling with any 

geometry. Solidification and melting submodel can be added to model the solid slag layer 

formation in the case with water-membrane walls in the future. 
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Chapter 7  Conclusions 

In previous chapters, we have reviewed the characteristics and fundamentals of oxy-fuel 

combustion, due to the carbon dioxide’s different physical properties and chemical effects. We 

have also discussed the sub-models of oxy-coal combustion in a CFD framework, and validated 

the CFD approach as a whole using experimental results from lab-scale tests. The CFD model 

was extrapolated to oxy-coal combustion under elevated pressures, which provides insights into 

its combustion characteristics. Finally, we introduced the development of a novel three-

dimensional slag model which can be used as a design tool for slagging combustor or gasifier 

development, in particular at elevated operating pressures. The main conclusions in the study are 

summarized as follows. 

7.1. Conclusions 

Among all the sub-processes in oxy-coal combustion, turbulence is still the most important 

and challenging physics to model in oxy-coal combustion, because it couples with heat and mass 

transfer, and chemical reactions, in a fully dynamic manner. In the validation study on a 100 

kWth swirl oxy-coal burner (see Chapter 3), results show that although agreeing reasonably with 

the measured mean axial and tangential velocity, all the RANS turbulence models underestimate 

the internal recirculation zone size and the turbulence mixing intensity in the char combustion 

zone. The standard k   and RNG k   models with default model constants fail to predict 

accurately the flow and mixing process associated with the staging stream, and perform poorly 

on the oxygen concentration prediction. The SST k   model captures most of the flow 

regimes and improves the prediction of oxygen diffusion than other turbulent-viscosity models. 

 223



LES can resolve some of the large-scale turbulent structures of the swirling flow in the burner 

quarl and of the staging stream downstream of the burner, better matching the measured internal 

recirculation zone size, the entrainment of oxygen from the staging stream, and the overall flame 

length than the RANS approaches. 

The chemical effects of CO2 in oxy-coal combustion have been discussed in the CFD 

simulation. The carbon dioxide is not inert but participates in both the homogenous reactions (see 

Chapter 4) and the heterogeneous reactions (see Chapter 3). In the volatile or gaseous fuel 

diffusion flames, the reaction  enhances the CO formation in the fuel-rich 

side due to high CO2 concentration, leading to a significantly higher CO concentration. High 

CO2 concentration also impacts the reaction  via OH radical and results in 

lower H2 and higher H2O concentrations. Therefore, as an intermediate product sensitive to 

reaction rates, reasonable CO predictions can only be obtained using appropriate finite-rate 

mechanisms, such as the Westbrook-Dryer multiple-step mechanism. In the oxy-char combustion 

process, simulation shows that oxidation reactions dominate char consumption in oxy-fuel 

combustion. However, gasification reactions between char and carbon dioxide can be important 

locally in the fuel-rich zone of the volatiles-flame and the char-combustion regions, where the 

temperature is high and the oxygen concentration is low. 

2H+CO OH+CO

OH+H2 H+H O 2

Beyond the potential advances in net efficiency and capital cost in pressurized oxy-coal 

combustion system [34, 35], the study demonstrates that pressure is also beneficial to the coal 

combustion process (see Chapter 5). The high partial pressure of reactants, such as oxygen, 

carbon dioxide and steam, enhances combustion reaction significantly and leads to a shorter fuel 

conversion time under pressure. Therefore, a relatively higher burner velocity (and shorter 

residence time) can be used at higher operating pressure, which significantly increases the 
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thermal loads. It should be noted that, due to the lack of fuel chemistry and homogeneous 

kinetics data at elevated pressures, the homogeneous reaction rates were assumed to be 

controlled by turbulent mixing while neglecting the gas phase reaction kinetics, and only the char 

reaction kinetics were considered in the simulation. In fact, for coal combustion and gasification, 

the char conversion dominates the fuel conversion time. Therefore, the conclusion will not be 

affected even with consideration of the neglected homogeneous reaction kinetics. 

A three-dimensional slag model has been developed to investigate the slag flow behaviors 

in the pressurized oxy-coal combustor (see Chapter 6). The slag model resolves the detailed 

physics of slag flow, including ash particle deposition, slag layer thickness, molten slag flow 

velocity, as well as its effects on the heat transfer. Results show that the slag is driven mainly by 

gravity; the molten slag flows down from the front, back and side walls and accumulates at the 

bottom of the reactor, forming a 1 mm slag stream which flows to the end of the reactor due to 

the slope. The slag velocity is around 0.1 mm/s due to its high viscosity. And the slagging 

behavior can be affected by the operating conditions such as pressure and coal throughput. 

Achieving good agreement with the experimental observations, the slag model can be further 

applied as a useful tool in slagging coal combustion or gasification studies with any reactor 

geometry. 

7.2. Future Work 

As the most promising carbon capture technology for existing coal-fired power plants, the 

oxy-fuel combustion have been advanced significantly in the past two decades, in particular on 

the fundamental understanding of the carbon dioxide’s roles in transport and chemical 

phenomena. However, there are still engineering challenges before it reaches its full potential 
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and large-scale deployment in the power industry. In this study, the CFD simulation with 

appropriate sub-models has been demonstrated in oxy-coal combustion fundamental studies. 

Broader applications of the validated CFD models are expected in advanced oxy-burner and full 

scale furnace concept designs, such as: 

 Combustion dynamics and flame stability study using LES: The challenges to maintaining 

oxy-coal combustion stability have been reported in early pilot scale experimental studies 

[77, 189]. These challenges stem from the lower adiabatic flame temperature, the delayed 

ignition and the lower burning rate of coal particles in a CO2 diluted environment, among 

other fundamental issues discussed above. The LES approach resolves fluid dynamics 

properties in combustion, and can be used to study the flame stability characteristics, such as 

destabilization and blow off phenomena, with different burner geometry and operating 

windows. 

 Advanced oxy-burner designs: Operating in the oxy-fuel regime provides more flexibility 

because the oxygen concentrations in the oxidizing streams are not restricted to 21%. This 

opens up opportunities for advanced oxy-coal burner design including various flue gas 

recycle ratio, flexible oxygen partition in different streams, re-distribution of gas volumes in 

different streams, etc. Moreover, following the single oxy-burner development, the 

performance of scale-up burners and multi-burner configurations should also be carried out 

using CFD. 

 Full scale furnace/reactor simulations: A well-organized heat transfer characteristics is the 

most critical objective in furnace design. Although some efforts have been made to 

understand the combustion and heat transfer characteristics in full-scale boilers using CFD 

approaches [142, 176], much more remains to be done for a coupled simulation of the heat 
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 Further applications of the three-dimensional slag model: The slag model developed in 

Chapter 6 is quite general and can be used for slagging combustion modeling with any 

geometry. Solidification and melting submodel can be added to model the solid slag layer 

formation in the case with water-membrane walls in the future. In this case, the slag’s effect 

on heat transfer becomes prominent and should be investigated carefully. 

Due to its complexity, the combustion technology is still heavily dependent on experiments 

and operational experience, especially in its application in coal-fired power plants. Therefore, the 

CFD approach should be conducted along with experimental studies and on-site tests, in order to 

obtain insights and practical knowledge on oxy-coal combustion operation, heat transfer, its 

combustion dynamics and stability, as well as pollutant formation and control. 
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